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1 Preface

I This is a written version of a series of invited lectures on differential-algebraic systems of

equations (DAEs) at the IVth SERC Numerical Analysis Summer School of Lancaster
University. In line with the aims of the meeting these notes introduce some typical
applications and basic properties of DAEs and then present an overview of recent, new
existence theories for such systems based on differential geometric considerations and
on a numerical approach derived from these theories. In the presentation the stress is

on general concepts, results and applications rather than on detailed proofs.
Differential-algebraic systems of equations (DAEs) arise in many applications in

I science and engineering. For some examples we refer, for instance, to the monographs
i3,22] and the many references given there. Three typical applications are sketched in
Section 2 below. Over the years, it has become well known that the solution behavior
of DAEs may differ considerably from that of standard ordinary differential equations

(ODEs). A valuable measure of the deviation of a DAE from an ODE is the concept

of an index which was first introduced in [21] and has since been formalized in various
ways. The index highlights also some of the differences between the existence behavior
of DAEs and ODEs although it does not, by itself, provide for any existence results.

In fact, up to now, existence theories for nonlinear DAEs are available only for a few

selected classes of systems.
Since the solutions of any DAE are expected to be smooth paths in some space

of dependent variables, we should expect the equations to define a dynamical system

in a suitable domain of that space. While this connection with dynamical systems

'This work was in part supported by ONR-grant N-00014-90-J-1025 and NSF grant CCR-8907654.
t Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, PA 15238 - USA
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2 MODEL PROBLEMSI

is immediately obvious for ODEs this is certainly not the case for DAEs and there

appear to be only few studies that specifically address this connection (see e.g. 37 I
and 3S 1. Some aspects of the relationship between DAEs and dynamical systems will
be discussed in Section 3.

In a series of papers '38'.'41'. and 36' a differential-geometric approach has been

developed for the analysis of the dynamical system underlying a DAE and for the i

proof of general existence and uniqueness results for such systems. In Sections 4 and 5
the results in the two last-mentioned papers are summarized. moreover.Section 5 also 3
addresses relations between some of these results and the index concept.

Comprehensive introductions to numerical methods for DAEs may be found in the
cited monographs 13.22'. A brief survey of some of these methods is given in Section

6. Then in that section a new local parametrization approach for DAEs is presented
which derives naturally from the differential-geometric existence theories and has been

found to lead to very promising methods for the computational solution of higher-index I
DAEs. For the case of the Euler-Lagrange equations of constrained mechanical systems
this approach includes the socalled method of generalized coordinate partitioning in-
troduced first in !481.

2 Model Problems

This Section provides three illustrative examples of practical applications leading to
differential-algebraic equations. As indicated before, there are numerous other areas I
were DAEs occur. I
2.1 Constrained Dynamical Systems

A major source of DAEs is the kinematic and dynamic analysis of mechanical multi-
body systems. This is a venerable field of mechanics and we give here only some very
simple examples and refer for further details to the extensive literature (see e.g. _23.49).

Suppose that, under the influence of a force Q, a particle with mass m slides on a 3
two-dimensional surface in R' specified by the real-valued equation 1)(x) = 0. In order
for the point to remain on the surface, a constraining force must act in the normal

direction of the surface. If Dt(x) E L(RS, R 1) denotes the derivative of 4) at any 1

x E Rs, then this normal direction is given by the vector Dflx)r E R'. Hence. by

Newton's law we obtain here the DAE 3
(2.1) () = 0, mr" + zD4(-)t = Q

where z E R1 specifies the size of the constraining force. For example, suppose that 3
the surface is a paraboloid and that gravity is the only force acting on the mass. then

m ,m m nnununni Iii I II II



2 MODEL PROBLEMS 3!3

(2.1) becomes

x - ; = x 3

(2.2) mjx- 2zxl = 0

Mx 2 - 2zx 2 = 0

rx 3 - Z = Mg.

More generally, suppose that the vector X E R" characterizes the configuration of
all bodies of a mechanical system and that the kinematic constraints acting on the
system are modelled by the s-dimensional (holonornic) constraint equations

5 (2.3) (X, t) = 0.

Here -( is now a mapping from Rn x R1 into R", 1 < s < n and t represents time. Then3 the equations of motion are

(2.4) M(x. t)" - DtI(x. t) z = Q(x. X', t)

where M(x, t) is the mass matrix and Q(x, x', t) the vector of applied forces.
As an example consider a simple, planar "slider crank" consisting of two bodies,

namely, a bar of length 2 and a wheel of radius 1 centered at the origin of a (is. 77)

coordinate system in the plane. At one of its ends the bar pivots around a fixed
point on the circumference of the wheel while its other end slides along the -:-axis.
Any configuration of the system may be characterized by the vector x = (at. a.2. )I consisting of the current coordinate of the bar's sliding end and the two angles a- and
a 2 between the i-axis and the directions to either end of the bar. respectively. Thus,
if the wheel turns with a constant torque r, then the equations (2.4), (2.3) have here
the form

cos a 1 + 2 cos Ca2 =3 sina - 2 sina 2  = 0

(2.5) Ja' - zi sina1 + z, cosa = r3C - 2z, sin a 2 - 2z 2 cosa 2 = 0

J2 a'2' - Z = 0

where J1 and J2 are the moments of inertia of the wheel and the bar, respectively, and

m is the mass of the bar.

3 2.2 Electrical Circuits

A second extensive source of DAEs is the analysis of electrical circuits. Once again, we
refer for details to the literature (see e.g. [10] ) and discuss only the basic ideas and a
simple example.

I
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2 MODEL PROBLEMS 4 I
A circuit may be considered as an inter-connected collection of electrical devices.

such as. resistors. inductors, capacitors, sources. etc. Its connection pattern is modelled
by a finite. directed graph Q1 = (N. A) with node set N = {1.2 ..... p} and branch set
A = {A1 ..... Aq} C N x N where single-node loops (i.i) = x N are excluded. Each
branch corresponds to a specific component of the circuit. As an example consider a
graph with four nodes with the following branches and components:

branch (1.2) linear resistor resistance = R,
branch (2,3) voltage source voltage = u0
branch (1,3) linear capacitor capacitanc.- C1
branch (1,4) linear inductor inductanc L1
branch (4.1) linear capacitor capacitan I
branch (4,3) linear capacitor capacitance = C3
branch (3,4) linear resistor resistance = R,. 3

Generally, the graph Q2 can be characterized by its (node-arc) incidence matrix
.4 E RP' q with the elements

+1 if(i,k) EAforsomekEN

ai=t 1 if(k,i) e AforsomekEN
0 otherwise. I

In our example the graph underlying the circuit then has the incidence matrix

A -1 1 0 0 0 0 0
0 -1 -1 0 0 -1 1
0 0 0 -1 1 1 -1

With each branch Aj = (i, k) of 11 two electrical quantities are associated. namely
a current yj and a voltage-drop uj. They are connected by a functional relation 3
(2.6) Oj(yj, uj) = 0. j = 1,2,.... q,

the so-called branch-characteristic of A.. The specific form of (2.6) depends on the type 3
of the device modelled by the branch, such as, for instance,

current source: yj = b(t) 1
voltage source: u= = 0
ideal diode: max(u,, -y,) = 0
linear resistor: uj = Ryj
voltage driven resistor: y, = 't(u,)
current driven resistor: u, = 0(1j)
linear inductor: Cu,' Yj
linear capacitor: Ly, =u.

I
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2 MODEL PROBLEMS

In our example, the set of branch characteristics (2.6) is given by the equations

Rjy =ul

U2  - UO

C u3' =Y3

Ly 4' = U4

C2u5' = Y5

, 3u6  = Y6
R 2y7 = u7.

Kirchhoffs first conservation-law requires that the (algebraic) sum of the currents
on the branches starting at a node must equal the sum of the currents on the branches
terminating at that node. In terms of the incidence matrix .4 this means that a per-
missible current flow is characterized by any vector y = (yj, .... yq)T E Rq for which

(2.7) Ay = 0.

Kirchoff's second law specifies that the (algebraic) sum of all the voltage drops
on the branches of any loop of Q has to be zero. If we introduce the vector u =

(ul,... ,uq) T E R q of voltage drops, as well as the vector w = (w,.... uP)T E RP of all
nodal voltage levels, then the second law is corresponds to the equation

(2.8) u = Ay , Wi = 0

where the last equation was introduced to fix the absolute values of the nodal voltages.
Thus altogether (2.6),(2.7),(2.8) form a DAE of 2q p - 1 equations in 2q - p

unknown. The reason for this difference is that A does not have full rank. If f is a
connected graph - which is certainly a reasonable assumption - then a standard theorem
of graph theory (see e.g. [6]) ensures that rankA = p - 1. Thus one of the equations
(2.7), is a linear combination of the others and hence may be dropped.

The equations (2.6), (2.7), (2.8) are called a descriptor form of the circuit. There
are many ways of reducing the size of this system but we shall not enter into any details
here.

2.3 Punch-Stretching of Sheet Metal
We end with a somewhat different example arising in connection with sheet metal
stamping processes. Since in this case the formulation is somewhat more complex, we
do not include all the details but refer instead to the literature (see e.g., [8,93).

The processes to be considered involve the deformation of a sheet of metal in a
forming press with a particular punch and die configuration. In order to ease the

I
I ii 1 ~~lllll nllnimll I~ll IIIIm llllIIl ll l



I
I

2 MODEL PROBLEMS 6

discussion we consider a simpler problem. namely the so-called hydrostatic bulge test
used widely in metallurgy. An initially fiat sheet of metal is clamped over one end of a 3
cylindrical chamber into which hydraulic oil is then pumped. This creates a hydrostatic m

load on the sheet and causes it to bulge outward.
In line with the formulation presented in '47" the equation of virtual work for the 5

hydrostatic bulge deformation is given by -

(2.9) ho JA r& dA0 = ZA p6t, d.40.

Here ho, 40 denot- initial sheet thickness and surface area. respectively. c is the
radial distance to a erial point on the sheet at time zero, and ' is a volume measure.
Moreover, T = ("1, -r) is the vector of the Kirchhoff stresses in the radial and circumfer-
ential directions, respectively, while e = (-i, s) is the vector of the logarithmic strains
in the corresponding directions, defined by

UC 22 W2'1 1E,1 = ln[(1 "u) - 2 =. In

where. u and w denote the radial and vertical displacements of the material point whose

initial position is given by ( .0). I
In addition, we have the material-dependent constitutive equations in rate form.

These have the generic form 3
(2.10) '= r(r, l) _' =g(r,-)

where I

and E and v are Young's modulus and Poisson's ratio, respectively, 7 is the effective I
strain, and the nonlinear functions r and g depend on the specific form of the hardening
law. 3

The volume measure in (2.9) is defined by

v = w(1- )l + ut) I

adV(t) = lAo ( dAo

is the volume of the bulge at time t which may be assumed, for instance, to satisfy
V(t) = -t with fixed f. m

i
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3 DAES AND DYNAMICAL PROCESSESI
For the computation. we introduce finite element approximations of the displace-

ments u. w, the stress components rl, ,r2 , and the effective stress -L Then the equation
(2.9) of virtual work is approximated by a nonlinear equation of the form

I (2.11) F(x,y.qjt) = 0

where the vectors x, y, q contain the approximations of (u. w). (-i. -'2). and p. respec-
tively. Correspondingly, the constitutive equations (2.10) are approximated by a dif-
ferential equation of the form

(2.12) y'- Lz' = f 1(y.z)

' f2(Y, Z)

where the vector z represents the approximation of the effective strain E. Thus. alto-

gether the equations (2.11), (2.12) form a DAE.

I 3 DAEs and Dynamical Processes

5 3.1 DAEs and ODEs

The examples of Section 2 provide an indication of various possible forms of DAEs. In
all cases the differential equations and algebraic equations turned out to be separated.
Observe also that there may be variables for which no derivatives appear anywhere in
the system. Of course, for the computation various specific properties of the equations
are of particular interest. For instance, it is usually advantageous when the derivatives
only occur linearly, etc.

In some applications the form of the equations may vary in different parts of the
space. and, in particular, there may not exist a globally valid separation into algebraic
equations and differential equations. Hence, in such cases, the DAEs have the generic
form of an implicit differential equation

(3.1) F(x,x',t) = 0

3 which cannot be transformed into the form

(3.2) X'= f(z,t)

1 of an explicit ordinary differential equation (ODE)
If, in (3.1), F is a sufficiently smooth map from R2 '"1 into R ' and the derivative5DF(xpt) E L(R'n,R' ) is an isomorphism at some solution (x,yt) of F(x,y,t) = 0

then the implicit function theorem guarantees that (3.1) can be transformed locally

I
I
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3 DAES AND DYNAMICAL PROCESSES m

into the form (3.2). Hence, in our setting we should assume that DPF(x.p. t) does not
have full rank. More specifically, we shall call (3.1) an implicit DAE only if 3
(3.31 rankDPF(x,p.t) = constant < n,

on the domain under consideration. This constant-rank assumption excludes various m
singular implicit equations (3.1) with a solution behavior that may differ radically from
that of ODEs or DAEs (see e.g. '35]). m

The existence and uniqueness theory for solutions of explicit ODEs (3.2) is a well-
developed subject (see e.g. 11' and also the Appendix). In particular. if f : E
R - - R" is of class C' on some open set E. then we know that for any point
(x0. to) E E there exists a C 2 -solution x : J C R' - E of (3.2). defined on some open
interval J containing to, which satisfies the initial condition x(to) = 10. Moreover. any
two such solutions satisfying the same initial condition are identical on the intersection 3
of their domain.

This local solvability result for ODEs does not carry over directly to DAEs. In fact.
consider the simple system

X 1 = COS X2

(3.4) X = X3 m
X = ,

and suppose that x : J C R' - R3 is any Cl-solution of (3.4) on some open interval J. m
Then, by differentiating x1 (t) - cos X 2(t) = 0 with respect to t and using the differential
equations, we find that the solution must satisfy the algebraic condition m
(3.5) X3- sin x2 = 0,

whence necessarily m(Cos t
(3.6) X(t)= t .

-sint

Conversely, (3.6) does define a Coo -solution x : - R3 of (3.4). In other words. (3.6)
is the only solution of (3.4) and we certainly cannot prescribe any initial conditions 3
other than, trivially, a point of (3.6).

This result indicates that for DAEs there may be some "hidden" constraints, such
as (3.5), which all solutions have to satisfy. As a consequence. there may not exist any 3
solution through every choice of initial point; that is, only certain initial conditions

may be admissible.
Obviously, any "hidden" constraints may be expected to cause difficulties during I

the numerical solution of the DAE. This is indeed the case, and, in fact, it is by I
I



3 DAES AND DYNAMICAL PROCESSES 9

now well known that the degree of difficulty rises with the number of such additional
constraints. This observation led W.Gear and L. Petzold (_21') to introduce an index
which measures the "deviation" of a DAE from an ODE. We shall discuss later some
aspects of this concept; at this moment it will suffice to characterize the index of a
DAE loosely as the total number of given algebraic and hidden constraints that are
needed to specify the solution completely. In this sense. (3.4) is a DAE with index 2.

As another example consider the DAE (2.2) modelling the dynamics of a mass-point
on a paraboloid. This system can be written in the first order form

1,z X ;-z 3 = 0

I (3.7) X =
y ' 9 e 3  -- .D ) ( x ) T

I where x, y E R'. e3 is the third natural basis vector of R3 and we replaced z, rn by z.
By differentiating the algebraic equation and using the differential equations we obtain
as first "hidden" constraint

(3.8) 2xiyj - 2x 2y2 - Y3 = 0.

SIn turn, by differentiating (3.8) we are led to the further constraint
(3.9) 2( Y2 y') - z(1.-'4(x X2 _X2)) = 0.

I It is not difficult to see that (3.7) together with these two constraints (3.8). (3.9)
completely specifies the solutions. Thus in our terminology the DAE has index 3.

The two constraints have here a simple geometric meaning. In fact, (3.8) requires
the velocity vector y to be tangential to the paraboloid while (3.9) means that the
constraining force zD<(x)T has to balance the other two forces.3 This index-result is not restricted to the special example (2.2); in fact it turns out
that all Euler-Lagrange systems (2.3), (2.4) have index 3.

I 3.2 Dynamical Processes

Ordinary differential equations are a fundamental tool in the study of dynamical pro-
cesses that are finite-dimensional, differentiable and causal. By this we mean processes
for which

3 (i) the states are characterized by finitely many degrees of freedom,

(ii) the changes of the states are described by differentiable functions, and

(iii) the future behavior is uniquely determined by the initial conditions.

I

I



3 DAES AND DYNAMICAL PROCESSES 10

Our examples suggest that differential-algebraic equations also represent models of such
dynamical processes.

The theory of dynamical processes has been heavily influenced by mechanical consid-
erations. Thus. we use a simple mechanical example to review some of the basic termi-
nology. Consider the motion of k particles in R3 and let x, and y,. i = 1.2 ..... k, denote 3
the location and velocity of the particles at time t. Then with q =x, ..... x) R3k

and p = (Yi - ,Yk) E R 3k the state of the system is given by (q.p). The states are
usually restricted to some specified subset S C R k x R3k - the state space of the system.

In many cases. the state space is an open subset of R k x R3k. For instance, if no
two particles are ever allowed to be in the same place at the same time. then

S={(q.p) E R k×R :x, for i:Aj. i,j = 1.2,....k}

is certainly open.
On the other hand - for instance when there are angular variables or constraints

- the state space need not be an open set. For example. c.-- .ider a system of rigidly
connected particles. Then the configuration vectors q have to belong to the set 3

C -{q E R3k; - 2= -: for i j, ij=1.2...,k}

where cj are given constants. For k > 4 this is a six-dimensional submanifold of
R3k. This follows from the well-known fact that the position of a rigid body in R' is
uniquely characterized by the location of one point and the orientation of an orthonor-
mal coordinate system fixed within the body. Then the state space may be identified I
with the tangent bundle C x R 3k of C and hence is a 12-dimensional submanifold of
Ra k R3. •

In differential-geometric terms the two cases are not very different. In fact. any l
open subset of R' x R3k is a 6k-dimensional submanifold of that space and hence.
in either case, the state space is a submanifold. This agrees with the fundamental
assumption introd-:ced by H. Poincarx (-- 1880) that the state space of a mechanical
system should be .i differentiable manifold. Correspondingly, the dynamical system is
viewed as a field of vectors on this manifold such that a solution is a smooth curve

tangent at each of its points to the vector attached to that point. We refer. e.g., to Y
and the historical references included there.

However, from a computational viewpoint, there is indeed a substantial difference
between the above two cases which, in fact, reflects again the earlier indicated differ-
ences between ODEs and DAEs. As noted before, in the classical theory of explicit

ODEs (3.2) we assume f to be of class C' on some open subset E of R " ' and, of m
course, on E the ODE induces the natural .ector field

(X,t) E - ((x,t),f(x,t)) E TE = E x R" '.

I
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4 EXISTENCE THEORY FOR IMPLICIT DAES 11

Since the points (x. t) represent the states of the system. this corresponds to the case
when the state space is an open subset. On the other hand. as the above example
of rigidly connected particles shows, for a DAE the state space is expected to be a
lower dimensional manifold. For instance, in the trivial example (3.4) this is the one-
dimensional su omanifold

f{x E R3: x 1 -cos = 0-x 3 -- sin x, = 0}

3 defined by the given and hidden constraints.
In the standard theory of numerical methods for solving ODEs of the form (3.2) it is

critical that the domain E of the right-hand side is open and that there exists a locally
unique solution of (3.2) through each point x of E. In fact, any such method generates
a sequence {(xk, tk); k = 1.2,. .. } of approximating points on the solution through a
given initial point (x0, to). At best, we know that these points belong to some open
neighborhood of the exact solution contained in the open set E . Furthermore. for
the step from to X_-1 all methods are designed to approximate the local solution
through xk in the sense that the error between xk-1 and this local solution converges
to zero when the steplength tends to zero. It is by no means obvious how to extend
this approach to the case when the domain E is no longer an open set but some lower-

m dimensional submanifold of R' x R1 .

*4 Existence Theory for Implicit DAEs

As noted earlier, the literature on DAEs is growing rapidly but general existence the-
ories have only begun to be developed relatively recently. The earliest such result
appears to be the existence theory for gradient systems

3 V (x y) = 0 , = f(X, y).

developed by F.Takens [45] who used the approximating. singularly perturbed system
m of differential equations

= x'V~g(x,y) , ==f(=r,y).

3 with asymptotically small e.
Best understood are probably the linear DAEs with constant coefficieiits

3 (4.1) Ax'+ Bx = g(t), x E R', A, B E L(R"), rankA = r < n

for which existence results can be proved by means of the Kronecker canonical form for
matrix pencils (see, e.g., [16]). For a presentation of this theory see e.g. [21' or ]22.
For further references see also [26,46

I
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4 EXISTENCE THEORY FOR IMPLICIT DAES 12

In 38 the indicated interpretation of DAEs as dynanical systems on manifolds was

used to obtain existence results for semi-explicit systems

F1(x) = 0, A(x)x' = G(x).

These results were generalized in 41 to first and second order systems of the form I
(4.2) F (x) = O, F2(xx',z) = 0.

and
(4.3) Fi(x) = 0, F2,(x,x',x". z) = 0. 3
respectively.

For general implicit equations (3.1) - of course, under the constant-rank assumption
(3.3) - local existence results were first given in '221, however, under the restrictive
condition that kerDpF(x. p. t) is independent of x and p. Finally, without such a
condition. a solution theory for implicit DAEs was presented in [36'. This theory will

be outlined in the following sub-section: for proofs and further details we refer to the
original article.

4.1 Local Theory for Implicit DAEs

For ease of notation we shall consider (3.1) in the autonomous form 3
(4.4) F(x, x') = 0,

under the three assumptions

(Al) F : E C R' x R' - R" is C 2 on the open set E; 3
(A2) rankDF(x,p) = n, V (x,p) E E;

(A3) rankDpF(x,p) = r < n, V (z,p) E E.

The condition (A2) requires that the equations (4.4) are independent and also implies
that F-'(0) is an n-dimensional C2 -submanifold of R' x R' (see again the Appendix). 1

An instructive prototype for (4.4) is the semi-implicit DAE

(4.5) F(X,x') - ( F1 (x) ) 3

Here (Al) holds if F1 : E. - Rn-" and F2 : E. x Ep - R*, are of class C2 on 5
open sets E, and E = E - E., respectively. Moreover, (A2) and (A3) are satisfied if

I
I



4 EXISTENCE THEORY FOR IMPLICIT DAES 13I
rankDF,(x) = n - r, Vx E E., and rankDF 2(x,p) = r, V(x,p) E E. Obviously. the
first of these conditions implies that

(4.6) M - {x;- E,; Fi(x) = 0}

3 is an r-dimensional C 2-submanifold of R".
A Ch-solution of the general equation (4.4) is any mapping

x : J - R", (x(t),x'(t)) e E. F(x(t).'(t)) = 0, Vt E J

that is of class C' on some open interval J of R1.As noted in the previous Section. we
cannot expect that there is a solution through each point (x,p) = E and the following
lemma provides a necessary condition for this to hold:

3 Lemma 4.1 For (x.p) E E the conditions

(4.7) F(x,p) = 0, D.F(x,p)p E rgeDpF(xp),

I are neccessary for the ezistence of a C' -solution of (4.4) that passes through (x.p).

For any C 2-solution of (4.4) this follows directly from the fact that by differentiation
I of F(x(t), x'(t)) = 0 we obtain D.F(x(t). x'(t))x'(t) - DpF(x(t), x'(t))x"(t) = 0 for all t

in J. Of course, for Cl-solutions this argument cannot be used and a more subtle proof
is required (see ;36]).

For a closer analysis of the set of points characterized by the necessary conditions
(4.7) we introduce the orthogonal projections

SP.Q : E - L(R',R'), P(x,p)R' = rgeDpF(x,p),

Q(x,p) = I,,- P(xp), V(x,p) E E,

I Because of the constant rank condition (A3) these projections are Cl-functions on E.
Hence, also the reduced map

3 (4.8) F: E -- R",F(z,p) = P(x,p)F(z,p) + Q(x,p)D F(x,p)p, (zp) E E,

is of class C1 on E. Then we can show that the set EN of all points satisfying the
necessary conditions (4.7) is given by

(4.9) EN = {(x,p) E E; F(x,p) = 0, F(x,p) = 0}.

In the special case of (4.5) the projections are independent of z and p. In fact we
have5~ 0(on..i 0)P= 0 1,

I
I
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and therefore
(4.1) p) DFI(x)p(4.10) F(x,p) = F2 (xp)

and
EN = {(Xp) E E, Fi(x) = 0, DF(x)p = 0. F,(x,p) = 0 }.

Generally, the mapping (4.8) defines the reduced equation

(4.11) P(XX') = 0, 3
which. in essence. has the same solutions has the original DAE. More specifically the
following result holds:

Lemma 4.2 Any C'-solutzon of the original equations (4.4) solves the reduced equatwn
(4.11). Conversely, any C2 -solution of (4.11) that passes through some point of F-'(O)
is a C2 -solution of (4.4).

In the special case of (4.5) when F2 is linear in p; that is, in the case of the DAE I

(4.12) F(x, x') = (rr'-G(x ) ) O,

DPP(x,p) does not depend on p and the reduced equation (4.11) becomes the linear 3
equation

(4.13) B(x)x' = 0= 0, B(x)= A( ) "

Suppose that the subset

(4.14) Mo= E M; B(x) E Isom(R')} I

of the constraint manifold (4.6) is not empty. Then M0 is an r-dimensional submanifold
of R" on which (4.13) induces the tangential Cl-vectorfield

z E Mo -- (Xp) E TM, p= B(x)-' (0 ) 1

It is readily seen that the integral curves of this vectorfield are exactly the solutions of
(4.13) and therefore, by Lemma 4.2, also of the DAE (4.12). This corresponds to the 1
approach used in [38] to develop an existence theory for DAEs of the form (4.12).

For the general DAE (4.4), we proceed analogously and assume that the set

(4.15) EA = {(z,p) E EN; DP(x, p) E Isom(R')} I
I



1
I

4 EXISTENCE THEORY FOR IMPLICIT DAES 15I
is non empty. Clearly, by continuity EA is (relatively) open in EN. Moreover, by the
implicit function theorem it follows that locally in some open neighborhood of any
point (xo.po) - EA the reduced equation (4.11) can be transformed into an explicit
ODE. Thus by applying the standard ODE-theory we can now prove the following
local existence result for the original DAE (4.4):

Theorem 4.1 Given to E R'?. consider the initial value problem

(4.16) F(x.x') = 0. x(to) = xo, x'(to) = po

'nder the assumptions (A1.2.3). If a C'-solution of (4.16) exists, then (xo.po) f: E.v.
Conversely, for any (xo,po) E EA there exists a Cl-solution of (4.16) which is unique
on some sufficiently small interval J containing to. Moreover. this solution is actually
of class C 2 on J.

The set EA of (4.15) has a manifold structure. This is self-evident in the case of
j(4.5) where, obviously, the derivative of the mapping

(x,p) EE C_ (x) ER 2 "5 F(x,p) )

has full rank for any point of EA and hence, EA is either empty or an r-dimensional3 C'-submanifold of R' x R". But the result also holds in general:

Lemma 4.3 The set EA C E of admissible initial points of (4.4) is either empty or
an r-dimensional C' -submanifold of Rn x R' .

From the implicit function theorem it follows that for any point (x0, pa) Z EA there
exist an open neighborhood U = S, x Sy C E and a unique C'-mapping 17 : S-, - Sy

with 77(xo) = po such that Fx, p) = 0 for (x,p) E U if and only if p = 77(x). Since EA
is open in EN we may assume that Uo = U q EA = U n EN. Let II : Rn x R" - Rr be3 the projection onto the first factor. Then, the result means that the restriction R1[70 is
a Cl-diffeomorphism from Uo onto IIU0.Hence

3M = S n IIU0

is an r-dimensional submanifold of R' and

x EM - (x,p) E TM, p= (x),

is a tangential C'-vectorfield on M for which it can be shown that the integral curves
are exactly the solutions of (4.4) in Eo. In other words, the following result holds:

1
I



I

I4 EXISTENCE THEORY FOR IMPLICIT DAES 16 3
Theorem 4.2 With the above terminology, x : J - R" is a C'-solution of F(x. x') = 0
satisfying (x(t),x'(t)) E U fort E J if and only if x(t) E -M. x'(t) = 7(x(tf). -t .J.

Thus, as expected, the DAE (4.4) is locally equivalent to an explicit ODE on an
r-dimensional submanifold of R'. I

The results in this section can be extended easily to the general nonautonomous
caseI

F(t,x,x') = 0.

In fact. as usual we can transform this problem into autonomous form b: introducing
the mapping 3

G: Rn- 1 x Rx - 1 - R" . G((t.x),(-r.p)) - ( ) "

Then under the required smoothness assumptions the necessary conditions (4.7) for G
assume the form 3

F(tx,p) = 0, DtF(t,x,p) - D.F(t.x,p)p E rgeD F(t,x.p).

Similary, we can derive the form of the reduced mapping and of the set EA of admissible I
initial points (see [36]). I

4.2 Globalizations

Consider again the implicit DAE (4.4) under the assumptions (A1.2.3). As we saw in I
Theorem 4.1, for any (xo,po) in the set EA of (4.15) the initial value problem (4.16)
has a local Cl-solution on a sufficiently small open interval J = (a, b) E R' containing
to. As in the standard ODE-theory, under appropriate conditions these local solutions U
can be continued.

In [36] the following basic continuation result was proved: I
Theorem 4.3 Suppose that EA = EN.

() If for some f E (0,b-a) the set {p E R";p = x'(t),b-e < t < b} is bounded then I
lin.-b- X(t) = Zb exists.

(ii) If hrnt...b X(t) = Xb exists and for some sequence {tk} E J unth limk._o tk = b,
the sequence {x'(tk)} has an accumulation point p" for which (Xb,p*) E E then I
limt-b- X'(t) = p" and hence, for b < oo the solution can be continued to the
right. 5

I
I
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An analogous result holds for the left endpoint. Thus any local solution of (4.16)
can be extended to a maximal open interval J = (a'. b*), -oc < a" < b" _ c.

For an explicit initial value problem

3 x' =f(x). x(O)=x0, xzR'

with smooth f on all of R'. any maximally extended solution for which lim,_- x t)
exists has bounded derivatives x'(t) near b. This does not carry over to DAEs as the
following result shows (see again 1361):

Theorem 4.4 Suppose that E = Rn andEA = EN. If b < c, then x'(t) is unbounded
on the rntertal (b' - e,b') E J* for all sufficiently small e > 0. Hence. if limt-_b x t =

xb exists, then llmt-b-h x'(t)Y = c.

Again, an analogous result holds for the left endpoint.
Theorem 4.2 showed that the implicit DAE (4.4) is locally equivalent to a vector

field on some r-dimensional submanifold of R'. These local vectorfields can be extended
by applying the theory of covering spaces. This was first used in 1411 in connection with
the DAEs (4.2) and (4.3) and then extended to the implicit case in '36.

We sketch only briefly the general approach. Clearly, the local result shows that
the restriction IIiEA is a local homeomorphism between EA and fIEA. Let E be some
non-empty, arc-connected subset of EA for which (E , I ), with II = I EA. is a
covering space of IIE;. In other words, each point x E IE; is assumed to have an
open, arc-connected neighborhood U such that each arc-component of (HI )- U is not
empty and is mapped topologically onto U by IE;. Often E; = EA can be used here.

This is certainly the case when for fixed x E RlEA there are only finitely many p with
(x, p) E EA. For instance, this holds for the semi-linear DAE (4.5). In general. it is
always possible to choose E; as the closure of a non-empty, pre-compact. (relatively)
open, and arc-connected submanifold of EA.

For any given (xo, P0) E E; let now M" be a non-empty, (relatively) open, simply
connected subset of IIE; that contains x0 . For any x E M" choose a path : J - M

which connects x0 with x. Then there exists a unique lifting " : J -, EA with initial
point (zoP 0 ) for which 1If" = . This lifted path has a unique endpoint (x.p) in3 EA because all paths in M between x0 and x are homotopic. Since x was arbitrary
in M ° our local result can now be used to prove that M ° indeed is an r-dimensional
submanifold of Rn and that the DAE (4.4) induces a tangential vector field on M for

which all integral curves in M" are solutions of (4.4).

I
I
I



5 D.AES WITH HIGHER INDEX 18 5
5 DAEs with Higher Index

5.1 Linear, Constant Coefficient DAEs

As mentioned before, the linear problems with constant coefficients (4.1) probably
represent the most extensively studied DAEs in the literature. For sufficiently smooth
g the necessary condition (4.7) turns out to have the form Bx - g'(t) - rge.4 and it is
easily seen that EA , 0 exactly if U
(5.1) Au = 0 and Bu E rgeA imply u = 0.

The cited existence theory for (4.1) ensures solvability if and only if the matrix
pencil (A. B) is regular; that is, if there is some A E R1 such that B - AA is invertible.
A central concept in the solvability theory of (4.1) is its index which is defined to be
the index of the coefficient pencil assumed to be regular. For any regular pencil (A. B)
let A be such that B - AA E Isom(Rn), then the index of the pencil is the smallest

integer K such that 5
ker[(B - AA)-'A1]+ = ker[(B - AA)-'4]1

It can be shown that , is finite and independent of the choice of A. (see e.g. 22). I
and it is also readily seen that K = 0 if and only of A is invertible: that is. if (4.1) is
equivalent with an explicit ODE. 5

In order to relate the theory of Section 4 to this index-concept, let P E LI R') be
the orthogonal projection onto rgeA and set Q = I, - P. As before we differentiate the

DAE (4.1) and then multiply the resulting equation Ax" - Bx' = g'(t) by Q in order ro
remove again the second derivative of x. Together with the projection of the original
equation onto rgeA this produces the reduced DAE

(5.2) .4z' -,- Bx = g,(t), A, = PA QB, B, = PB. g1(t) = Pg(t) - Qg'(t).

Even without recourse to the earlier theory, it is readily checked that (5.1) is equiv-
alent with A1 E Isom(Rn) and, hence, that when (5.1) holds then (5.2) can be trans- I
formed into an explicit ODE.

Suppose therefore that A , is singular. Then we may apply the same procedure
repeatedly, as often as necessary, to obtain a sequence of DAEs of the form

(5.3) ,A,z'+ Bjx=gj(t), j=0,1,...,

where Aj, B,, gj are specified recursively by Ao = A, Bo = B, go = f and

(5.4) Aj+ 1 = PAj + QjBj, B,+1 = PjB,, 3
gj, 1 (t) = Pjgj(t) + Qjgj(t), j = 0,1. I

I
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while P, denote the orthogonal projections onto rgeA. and Q, = I, - P, The process
stops with the smallest integer k such that Ak is invertible.

The following result. proved in _36, shows that this integer k is exactly the index
of the DAE:

Theorem 5.1 If the matrix pencil (A. B) is regular and rank.4 < n (so that K > 1)
then k = K < tc. Conversely, if k < oc then (A. B) is regular and k = K.

3In 36" it was also shown that the theory of Section 4 provides all the solutions of
(4.1) provided only that g is smooth enough.

1 5.2 Nonlinear Problems with Higher Index

The discussion of the previous section suggests that we may proceed analogously when
the set EA is empty for the general implicit initial value problem

(5.5) F(x.x') = 0. x(O) = 0. x'(0) = po.

The first step in the construction of a sequence of problems corresponding to (5.3). (5.4)
was already done in Section 4. In fact. we differentiated the DAE and then applied the3 projections P and Q to obtain the reduced equation (4.11).

Our sufficient condition is that Dp.F(x,p) is invertible at the given initial point
(xo. po) G EN. If this sufficient condition does not hold. then. as in the linear case. it3 is natural to construct recursively the sequence of mappings

(5.6) F0  = F, F 1 =F,

Fj +  = P(x,p)F'(x,p) -r- Q(x,p)D.Fj(x,p), j = 0,1,...

where P. again is the orthogonal projection onto DpF and Q= I, - P. The process
I is repeated until DFk is invertible at the point under consideration.

As before, one might consider calling this integer k the local index of the problem
at the particular point. However, the situation differs here in a critical aspect from
that of the linear case. The theory of Section 4 can be applied to the map Fk only
if the conditions (A1,2,3) are valid for all the maps (5.6) in some neighborhood E0 of
the point (xo,po). In particular, we require rankDPF'(z,p) to be constant in such a
neighborhood for the projections P, Qj and hence F' to be of class C'. In addition.
we also need the three conditions to conclude from the non-singularity of DpFk that
the system Fk(X, X') = 0 can be tranformed locally into an explicit ODE and that the
original problem (5.5) has a unique solution. As mentioned earlier, the existence theory
for (5.5) changes considerably when the constant-rank condition is violated (see 351).

In line with this, the problem (5.5) will be defined to have local index k at (xo,po)
if there is some open neighborhood E0 of that point such that for j = 0,1..... k - 1

I
II
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the mappings (5.6) satisfy the conditions (A1.2.3) and D Fk(xo,p0 o) is invertible. Note
that this index does not merely depend on information at the given point and hence 3
has a global nature. Obviously, the theory developed in Section 4 assumes that the
implicit problem (4.4) has index one.

5.3 Semi-Implicit Problems with Higher Index

The recursive analysis outlined in the previous section is a powerful tool for the theo-
retical study of higher index problems. But for specific classes of equations it is often
easier to derive existence and uniqueness results directly. As an example of this we
consider in this section the special problems (4.2) and (4.3) both of which have. in m
general. index higher than one.

More specifically, for the system

(5.7) F(xx',z) ( F2(xz',. ) )
suppose that

(B1) Fi:E ER ' -R' is C 2, m

(B2) F2 E2 = E x Ep x E.E R ' x R ' x R ' - R ' is C1 ,

(B3) ( DF(x) 0 ): Isom(R - ' ), V(x, p. z) -E2(DpFj2(x,p. z) D=F,(x,p, z) )

where s <n <sr = n-rr and E.. £p C Rn. E, C R"' are non-empt y , open sets.
Evidently, these conditic-. , imply that (A1.2,3) are satisfied for (5.7). The assump-

tion (B3) is often called the index-two condition since the index of (5.7) can be at most
two. Of course, in the degenerate case s = m = 0, (B3) implies that (5.7) can be
transformed into an explicit ODE and thus has index zero. Moreover, it is easily seen
that for s = 0, m ? 0 or m = 0, s : 0 the index is one.

From (B3) it follows that rankDF(r) = s whence each member of the family of
sets
(5.8) Mb = {x E E.; F(x) = b}, b E F1 (E.) 5
is an (n - s)-dimensional C2 -submanifold of R' . Evidently, any x0 E E. belongs to the
unique constraint manifold (5.8) specified by b = Fl(xo). Moreover, for a solution of
(5.7) to pass through this point we must have o E M0.

Let x : J E E. be any C'-path defined on some open interval J E R1. If x is a p
on M0 ; that is, if F1 (x(t)) = 0, Vt E J, then necessarily m
(5.9) DF1 (z(t))z'(t) = 0, Vt E J;

. ............ .... ra m m ll m m m mm i II III
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that is. t e J - (x(t),x'(t)) has to be a path on the tangent bundle of M0 . The
explicit use of the differentiated constraint equation DFI(x)x' = 0 is a basic step in
the so-called index-reduction technique for rewriting the DAE as a lower index system
(see 18'). But (5.9) can also be interpreted in another way. In fact. if (5.9) holds for
some C1 -path x : J - E.. then it follows from the integral mean value theorem that
FI(x(t)) = Fl(x(to)) for any fixed to m J. Hence t E J - (x(t).x'(t)) is a path on
the tangent bundle of the manifold Mb specified by b = F(xo). This suggests that we
imbedd (5.7) into the family of DAEs

(5.10) F,(x) = b, be F(E-)

F 2(X.z', ) = 0

indexed by the vectors of F(Ex).
Let x : J - E_, z : J - E. be a Cl-solution of a member of (5.10). Then for any

point (xo,po. zo) = (x(to).x'(to),z(to)), to e J the value b = F(xo) uniquely specifies
the particular DAE. But, in addition., (ro,po, zo) must satisfy" DF(xo)po = 0, as well
as F2 (xo,po. z0 ) = 0. This suggests the definition of the C1 -map

(5.11) H: E - R' x W.H(x,p,z) = F2(,p,z) V(.p, z) C E2

as the initial data map of the family (5.10).
For any given (x,p,z) E E2 the derivative DpH of H with respect to (p. z) is

exactly the linear operator in condition (B3). The nonsingularity of DpH implies the
following result:

Lemma 5.1 For any (xo, Po, zo) E K we have an open neighborhood U = Sx x Sp x S.
in E2, and unique Cl -maps 77 : S -- , C : S--f S,, with 77(xo) = po, C(xo) = zo.
such that for any x E S, the only solution (p,z) E Sp x S_ of H(x,p,z) = 0 is
p = 77(x), z = C(X).

Thus, on the open neighborhood S, C E., of x0,

I (5.12) 7r: S. - TS., ir(x) = (x,77(x)), x E S=.

constitutes a Cl-vectorfield. Since Dp,,H E Isom(Rn+"y), the mapping H is a submer-3 sion and hence the solution set

(5.13) K={(x,p,z)EE 2; H(x,p,z)=0}

is an n-dimensional C'-submanifold of R 2 + -. This manifold turns out to be state
space of the family of DAEs (5.10). In fact, it can be shown that 7r is tangential to the5 constraint manifold through x; that is,

7r(x)ET.Mb, b = F(x) VES.,

I
I
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and that for any solution x : J - S., of the explicit ODE

(5.14) x' = 77(X),

we obtain the C'-solution t C J - (x(t), C(x(t))) of the member of (5.10) specified by

b = F 1(xlto)) for arbitrary fixed to E J.
Thus. from the standard existence theory of initial value problems for ODEs we

obtain the following result:

Theorem 5.2 Suppose that the conditions (B1,2.3) hold and that K is non-empty.

Then any point (xo,po, zo) =_ K has an open neighborhood U - S, x S x S, C E. such

that for any x, E S, there s exac'ly one point (xc,pc, zc) " K2 U. Moreover, for any
xC "Z S, there exists a unique, maximally extended C'-solutio - x : J - S,. z : J - S.,.
on some open interval J with 0 E J, of the DAE (5.10) specified by b = F(x,) which 1
satisfies x'(J) C Sp and the initial conditions x(O) = x,, x'(0) = Pc, z(O) = z,.

We refer to 141" for a globalization of this result based on the techniques from the I
theory of covering spaces mentioned at the end of Section 4.

The result extends to the second order DAEs (4.3). In analogy with (B1.2.3) we

suppose that the problem

(5.1.) F(x,X',",z) = ( F2(x'.0".=)
satisfies the conditions:

(el) F:E=, R' - R' is C',

(C2) F2 : E 2 = x Ey xEq x E. E R 3"'+ - R ' is C,

(C3) ( D ,F(z) I E Isom(R ') for each (x,p,q,z) E E 2,D~2(x,y,q,z) DF 2 (,y~~) eIo( m '

wheres<n<s+r=n+mandE,, EyEq C R c R'magainarenon -empty,
open sets.

It is natural to reduce (5.15) to a first order system by introducing a new variable y
and adding the equation x' = y. Then it turns out that, with (x,y) as new differential
variable, the resulting system constitutes a DAE of the form (5.7) for which (B' and
(B2) are valid. However, in general, (B3) does not hold which is hardly surprisir.. since
we should expect (5.15) to induce local second order vectorfields instead of the local

first order fields (5.12).

I
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If x : J - E., is a C2-path on AVib for some b E F (E,,): that is. if F, a'(t)) = b for5t -=J, then for all t EE J the we must have

DFI(x(t))x'(t) = 0,

5 as well as
(5.16) D, F,(x (t)) x "(t) - D F,(x (t ))(x'(t). x(t)) = 0.

This shows that t C- J - ((x(t), x'(t)), (x'(t), x"(t))) is a path on the second tangentI bundle T2 M4b of Mb. Conversely, by the integral mean-value theorem we obtain-the
following result:

I Lemma 5.2 Let x : J - E., be any C2 -path that satisfies (5.16). If there exists a to in
J such that DFi (x(to))x' (to) = 0 and therefore (x(to), x'(to)) E TMb for b = F, (x(to)).
then ((x (t) ,x'(t)), (x'(t), x"(t))) E T 2 .,1b for all t E J.

As in the first order case this suggests that we imbedd (5.15) into the family of
DAEs

(5.17) F, (x) = b, b EF, (E.)3F 2 (X, x '"z ) = 0

and that we define the Cl-initial-data map:

I(5.18) H: E2  -~R' xR'

3H(x, y, q,) = ( DFi(x) + D2FI(X)(YY) ) V(x, y, q,z) E E2.

By (C3) we have DqzH(x, y, q,z) E Isom(R8 ', R'+') for (x, y, qz) E E2., and hence
* H is a submersion and the solution set

(5.19) K = {(x, y,q, z) E E2; H(x, y, q, z) = 0}

I is a 2n-dimensional C'-submanifold of R"f+' and the following result holds:

Lemma 5.3 For any (x0 , yo, qo, zo) E K there exists an open neighborhood U =S., x
S, x Sq x S. in E2, and unique C' -maps 77 : So =_S,. x S,, - Sp, S,: - Sz, wi'th
77(xo,yo) = qo, C(xo,yo) = zo, such that for any given (x,-y) E So the only solution3(q, z) ESp xS. ofH(x,y, q, z) = 0isgiven by q = (x, y), z= (x, y).

Using this lemma we can now define on the open neighborhood So of (xo, yo) the
second-order C1 -vectorfield 

2.
(5.20) 7r: U E TS , - TS, ir(z, y) = ((x, y), (y, 77(x, y))), V(x, Y) E So~



6 NUMERICAL METHODS FOR DAES 24

Then. for any (x.y) - So such that DF(x)y = o, it follows that ,r(x.y) - T2 Mb for
b = F[.Ix). Moreover, if (x,y) : J - So is any solution of the explicit ODE-system

(5.21) x' =y, Y'=7(,Y),

satisfying DFI(x(to))y(to) = 0 for some to E J, then t - (x(t).C(x(t))) is a C'-solution
of (5.17) for b = F(x(to)).

Thus the standard solution theory provides here the following local existence result:

Theorem 5.3 Suppose that the conditions (C1.2.3) hold and that K z non-empty.
Then any (xo.yopo, zo) E K has an open neighborhood U = x S .-. x Sx in E& J

such that for any (xz, y,) E So = S, x S. there is exactly one po, - Z ) (c y,',

Moreover, for any (xe, ye) E So with DFI(xc)y, = 0 there ex,,.rs a unique. maximally
extended C'solution x : J E S., z : J E S. of (5.17) for b = FI(x,) on some open 3
interval J C R 1 containing the omgin which satisfies x'(J) C S., x"(J) C Sq and the
Initial condition x(O) = x , x'(O) = ye. x"(O) = q , z(O) = z. I

Once again covering-space theory can be used to globalize this result (see '41').

6 Numerical Methods for DAEs

6.1 Application of ODE Methods I
The most frequently used approach to the computational solution of DAEs is the ap-
plication of standard ODE methods. This idea appears to be due to W.Gear '17] who 3
proposed the use of backward-difference (BDF) methods in the form developed for stiff
ODEs.

Briefly, in an m-step BDF-method the derivative x' of the unknown function at
the time tk, k > m, is approximated by the derivative of the interpolation-polynomial
through (Xk,tk) and m earlier computed points (xk-i,tk-i), i = 1, 2. ... , m. Hence, in
the case of the implicit initial value problem

(6.1) F(t,x,x') =0, x(to) = xo, x'(to) = Po 3
the determination of Xk requires the solution of the nonlinear system of equations

(6.2) F(tk, Xk, Ckik .- i) = 0.
i=0

Here a .i, i = 0, 1,... , m are the coefficients of the BDF formula at the k-th step which,
of course, depend on k unless the stepsizes hi = tj - ti- 1 remain constant. For rn < 7 U

U
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3 the m-step BDF methods are .t-nown to be stable when applied to ODEs and hence we
assum from now on that 1 < m < 6.

When (6.1) represents a D .E: that is. when the constant-rank condition (3.?1 holds.
then the validity and performance of the process depends on several factors. In par-
ticular. the initial value problem (6.1) has to possess a solution and for m > 1 the
required m additional starting points have to approximate this solution. Moreover. at
each step the nonlinear system (6.2) has to have a feasible solution which is computable
by a suitable iterative process such as some form of Newton's method. In general. theI answers to these questions depend strongly on the index of the DAE.

For simplicity, we restrict ourselves here to the semi-implicit equation (14.5): tha' is.
* to the initial value problem

(6.3) F(x.x') = F1 (x) ') = X0. X'(0) = PO.

If the conditions (A1.2,3) hold. then. for (x0,po) in the set EA deined by (4.15). Theorem
4.1 ensures that (6.3) has a unique (local) solution. Moreover, on EA the derivative
D jF of the reduced mapping (4.10) is non-singular.

The nonlinear system. to be solved at each step of the process. can be written in
3 the form

= (hF( (x, w)) = 0 ,

I where u- incorporates all information at the earlier computed points. All basic forms

of Newton's method are locally convergent if the derivative DG is non-singular at the
desired solution. Hence we are interested in the non-singularity of the matrix

( DF, (x) D F''~) h (
DpF2(x,p) - hD.F2 (x,p) J D.F 2 (x.p) "

which, by definition of EA, is clearly guaranteed for all (x. p) in some open neighborhood
of any point on the exact solution in EA and for all sufficiently small h.

Under these conditons it can be shown that when an m-step BDF method is used
for the computational solution of (6.3), together with a fixed and sufficiently small
stepsize h, then the convergence of the approximate point3 to the exact solution is of

order O(h') provided that all initial points are correct to order O(h"') and stopping
criteria of order 0(hm'4-) are applied in the Newton process at each step. A proof of
this result for the general system (6.1) may be found in 13i where also its extension to

the case of variable steps is discussed. These results about BDF methods for index-one
systems form the theoretical basis for several highly successful numerical DAE-solvers3 notably the widely used codes DASSL '30] and LSODI 25].

InLSD
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Besides BDF-methods also other multistep have been considered in the DAE liter-
ature. In particular. an extensive analysis of general linear multistep methods for the i
index-one case is given in 22. I

The situation changes considerably when the DAE has index higher than one and
two basic difficulties arise. The first derives from the fact that for any particular 3
multistep method 2 there exist DAEs with index exceeding one for which the method
is unstable. r21'. The second difficulty is the appearance of a transient deterioration of
the discretization errors following any change of the step-size in the method. This type
of "boundary layer" was observed by several authors, see. e.g., 129.43'.

More specifically, in 43" it was proved that when an m-step. fixed-stepsize BDF
method is applied to a linear DAE (4.1) with index r > 1. then the process converges
with order O(h m ) after (K - 1)m - 1 steps. Moreover. in 19 it was shown that when
variable stepsizes are used and the ratios of adjacent steps remain bounded then the
global error has order O(h-) where y = rin(rn m - K - 2). Hence. for instance.
for an index-three system the use of the implicit Euler method with variable stepsizes
may lead to errors of order 0(1). However, note that for index-two problems we have
p - m and. in fact, it turns out. 72.4.27], that for seni-implicit systems (6.3) of index
two after m - 1-steps the m-step BDF method with fixed steps is globally convergent
of order O(hm ) provided again that the initial points are correct to order Oh' I and
the stopping-criteria of the iterative process at each step have order O(h'-' j. But.
nevertheless, these iteretive methods may well converge very poorly in the beginning
steps. The variable-stepsize case of this result is discussed in '20.

Besides multistep methods various one-step methods have also been considered for
the computational solution of DAEs. In particular, there exists a large literature on the
use of implicit Runge-Kutta (IRK) methods. Any such method can be characterized
by its Butcher tableau

Cl  a11  a 12  ... aim 3
C2  a21 . a 22  ... a2m

cm ,am, am2 ... a ,,

Ibi b2  ... b,

see e.g. F7]. When applied to the DAE (6.1) the basic algorithm assumes the form i

(i) solve F(tkI+ qh, Xk_.+ h EaY, Y)=O, i=1,2 .. m3
./=1

for Y,...,Y,,, E R"
21n fact this holds also for Runge-Kutta methods. I

I
I
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(ii) set xk=xk 1 -h b.I ~3=1

Implicit Runge-Kutta methods are useful for generating accurate initial data for
higher order multistep methods; they are also advantageous for problems with multiple
discontinuities. In general, the nonlinear system arising at each step has dimension mn
and may be very costly to solve unless A has special properties. Thus the complexity
of theses processes depends strongly on the form of the coefficient matrix .4 = (a,, i.
Some important special cases include the DIRK-methods for which .4 is block-lower-
triangular with equal diagonal blocks as well as the SIRK-methods where .4 has one3 real eigenvalue.

In the numerical integration of stiff ODEs it has become well-known that the com-
puted solution often exhibits a disappointingly low accuracy when compared with the
order of consistency of the method. For Runge-Kutta methods applied to a class of stiff
linear ODEs this was first observed in r34" where it was noted that for stiff problems the
order of consistency should not be based on the classical Lipschitz condition. Instead
in 15, and several subsequent papers (see also the monograph 112') one-sided Lipschitz
conditions were used to introduce the concepts of B-consistency and B-convergence
which provide order results that correspond more closely to the observed behavior for
stiff ODEs.

For an IRK method let the stage order be the largest integer r > 1 such that the
I conditions

M k-i 1 k
aijc3  = ci, i = 1, 2, ..., m,

are valid for k = 1,2,... , r. Moreover, define the quadrature order as the largest integer
q > 1 for which the conditions

1 3b _1 _1

hold for k = 1,2,... ,q. Then 5 = min(r,q) is called the internal stage order and for
q > / the classical nonstiff ODE order p satisfies q >_ p _> / -,- 1. There are examples
of stiff ODEs and IRK-methods where p > P and the observed order of convergence

equals the internal stage order P (see e.g. [12]).
This behavior is mirrorred in the application of IRK methods to DAEs. In fact,

DAEs have a close relationship with stiff ODEs, as is suggested, for instance, by theIfact that singularly perturbed systems

x' =-l1(X, Y), Y' =/f2(X, Y)

Iwith small e > 0 become a DAE for e = O.

I
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Consider again (6.3) subject to the conditions (A1.2.3) and with (xo,po) -2 EA. For
the approximation of the solution in EA we consider an IRK method with a non-singular
coefficient matrix A such that

1 -bTA-e, < 1. e=(1.,1 ..... 1 )T zR m  3
which means that the method is A-stable (see e.g. '7'). If q > P > 1 then for a constant
(sufficiently small) step-size h > 0 the global error is at least of order 0(h5- ') provided
any error in the initial point and the termination criterior for Newton's method are of
the same order.

A proof of this result is given in '3 where also exa. -,s of problems are found 3
for which the achieved orders are higher than the stated r bound. In essence. the
results also carry over to semi-implicit index-two probler, see again '3' and also .5').

Various other one-step methods have been used for tae computational solution of
DAEs. This includes, for example, the Runge-Kutta-Rosenbrock methods considered
in '42' and the extrapolation methods studied by Deuflhard et al (see e.g. "13' or 114").
We shall not enter here into any further detail.

6.2 Local Parametrizations 3
In this section we turn to a local parametrization approach suggested by the existence
results of the earlier sections. It was introduced in '411 and considered further in '32.31.
and is related to the generalized coordinate partitioning technique used in the numerical
solution of Euler-Lagrange equations by E. Haug et al (see 28.48')

Consider first the system (4.2) subject to the conditions (B1,2,3). and. more specifi-
cally. suppose that we are in the setting of Theorem 5.3. Then, for given (xo. po. zo) E K I
we wish to compute the C'solution x : J - S.,, z : J - S_, of the DAE (5.17)
specified by b = Fl(xo) that satisfies x'(J) C Sp as well as the initial conditions 3
x(O) = Xo, x'(O) = Po, z(0) = z0. For any x E S_ the unique solution p.z of the
equations

DF(x)p = 0, F2 (x,p,z) = 0, (x,p, z) E K I
is provided by the values p = q(x) and z = ((x) of the mappings of Lemma 5.1. As we
saw, once a procedure is available for computing 77(x) and ((x) for any needed x E S.,,

the problem of solving (5.17) in S. reduces to that of solving the explicit ODE

(6.4) x= 77(x), xeS,. 3
Since the desired solution x : J - S. of (6.4) through x0 has to remain on the

constraint manifold Mb through xG it is natural to work with a local coordinate system
on Mb. For this we use a simple class of such coordinate systems applied earlier in U
other differential-geometric numerical methods (see e.g. [39,40]). Let X, E Mb be any I

U



I

6 NUMERICAL METHODS FOR DAES 29I
point on the n - s-dimensional constraint manifold -ib through x0 and consider any
linear subspace T - R'. with dimT = n - r, such that

(6.5) T- - kerDF(x,) = {0}.

I If 4 c L(R-s. Rr) is any matrix with orthonormal columns which span T. then (6.5i
is equivalent with the assumption that

(6.6) ( DF1 (x ) E Isom(R).

I Hence there exist an open neighborhood V0 of the origin in R"- such that for all u U l
the system* ~~~ ( Fx~ 0

has a unique solution x = '(tu) G R'. It is readily seen that the resulting mapping IF
is a C' diffeomorphism from l,0 onto the relatively open neighborhood ''o C Mb of x,.
This is the desired local coordinate mapping. Note that with ,(u) = T(u) -x - .4U
we have 4T.,(u) = 0, and thus

: -R ' ., T (u) = x, - Au - w(u) 0 s .

shows that the point x = 'I(u) on Mb is obtained by adding to x, the vector Au = T
and the orthogonal correction w(u) E T'. The local coordinate system at the point x,
of Mb is completely determined by the matrix A and hence we shall also speak of the
local coordinate system induced by that matrix.

In practice, it is often useful to work with local coordinate mappings defined by the
tangent space T = kerDF(xc) at x, E MC b (see e.g. 401). Suppose that we compute the
QR-factorization

DF(X,)
T = (Q1Q2) (

where the matrices Q, E L(R 5 ,R) and Q2 E L(Rn-8.Rn) have orthonormal columns
and R E L(R ° , R) is upper-triangular and nonsingular. Then Q2 can be used as the
basis matrix A of T while the columns of Q, span T '.

A second, practically useful choice of a local-coordinate space T and its basis matrix
A consists in determining a permutation e-h , e-u,... , e- of the standard basis of R' such
that the matrix

A = (eo+,e o2 .. e)

I satisfies (6.6). This choice partitions the components of the vector x = (xj, x2, .. )
into a vector (Xj, 4 , XJ . .., , ) of independent coordinates and the complementary

l
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vector (x...... ) of dependent coordinates. This is the choice underlying the
mentioned generalized coordinate partitioning approach of E.Haug et al (loc. cit.).

Once a local coordinate system has been chosen then it can be shown (see "41.) that
the ODE (6.4) has the local representation

(6.7) u' = ATi'(I(u)). u 4E Tio C R '-'.

This is an (n - s)-dimensional explicit ODE without constraints to which any standard
ODE solver can be applied as long as the computed points remain in 10.

This local coordinate approach can also be carried over to the second order DAEs
(4.3). As before. suppose analogously that we are in the setting of Theorem 5.3. Let
(xo. yo. po, zo) E K be a given point for which DF1 (xo)yo = 0 and suppose that we wish
to compute the Cl-solution x : J - S_, z : J - S- of (5.17) specified by b = F(xo) *
that satisfies x'(J) C S., x"(J) Sq and the initial conditions x(O) = x0, x'(0) = yo. U
x"(0) = q0, z(0) = zo. For any (x.y) E So =- S x Su the unique solution q, z of

DF(x)q-- D2 F1 (x)(yiy) = 0, F(x,y,q,z) = 0, (x,y.q,z) E K I
is given by the values q = rq(x.y) and z = ((x.y) of the mappings of Lemma 5.3.
Thus, when a method for evaluating 7(x, y) and C(x. y) is available, then the problem U
of solving (5.17) in So is reduced to that of solving the explicit first order system

(6.8) X= y, y 77(x. y). U
As we know the desired solution (x, y) J - So of (6.10) through (xo, yo) remains

on the tangent bundle TMb of the constraint manifold Mb through Xro. Thus we have I
to work here with a local coordinate system on TM. As before, let the matrix ,4
L(R"-8, R') induce a local coordinate system at the point x, E Mb of Mb. Then 3
(6.9) G : x >< R'-° - TMb, G(u,v) = ('T(u),DT(u)v), u E V0, v E R' --'

defines a local coordinate system on TM'b. By restricting V0, if necessary, we can choose U
some neighborhood U0 of the origin of Vo x R"-' which e maps into E0 .

In this local coordinate system the differential equations (6.8) assume the local form I
(6.10) U/= v, v1= ATrl(T(u),DlI(u)v), (u,v) E Uo

and hence, once again a standard ODE solver can be applied as long as the computed U
points remain in U0 U

I
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6.3 Euler-Lagrange Equations

3 In this section we sketch briefly how a multistp method might be applied when the
local parametrization approach is used in the numerical solution of the Euler-Lagrange
equations (2.3), (2.4): that is the constrained equations of motion

(6.11) '((x.t = 0
M(x. t)x" - D,,I(x. t)T Z Q (x.x'. t).

I For further detail we refer to r24.33.
In the case of (6.11) it is easily seen that (C3) is equivalent with the assumption

(6.12) rankD.(,x.t) = s. yT M(x.t)y > 0. Vy . kerD,1(x.t)

which is equivalent with the non-singularity of the matrix of the linear system

( / M(x.t) DA(x.t) / q ) = ( Q(x.y.t)

(6.13) D (x.t) 0 z g(x. Y ) IThus under the condition (6.12) the general existence theory applies to (6.11). (see e.g.
r41').3For given (x, y, t), set

g(x,y.t) = -(D24(x,t)(yy) - D,4(x.t)y - D 2cI(x.t)).

in (6.13) and let q = i7(x,y.t), z = C(x,y.t) be the unique solution of that system.
Then the problem of solving (6.11) is reduced to solving the explicit first order system

5 (6.14) X' = y, = 77(X, .

As in the previous section let A E L(R"-. Rn) induce a local coordinate system at the
current point of Mb and introduce the corresponding local coordinate system (6.9) on
the tangent bundle TMb. Then it follows readily that the local represention of (6.14)
is given by
(6.15) u' = v, v = AT 7(IF (u,t),D.,q(u,t)v - DtP(u,t),t).

Suppose that for its solution we use a (consistent) explicit multistep method of the
formm vmmIk = E f~-+ h 1:Ov-iV = EQk-- h EY3vk-

j=1 j=i j=1 j=1

with constant step h > 0. For the computation it is advantageous not to work with

the local variables u, v but to transform all formulas immediately back to the original
variables z, y.

If the approximations Xkj., , y,_, Yk z,_, j = 1, 2,..., m of the solution are
already available, then the algorithm for computing xk, yk, Y' Zk has the form:

I
II



6 NUMERICAL METHODS FOR DAES 32 3
(i) Set tk = tk-. - h;

(ii) Evaluate

m m rn M
4a T {V. ' ajXk_3 - h-3 -} a'= Af{' %k- - h 3. Jj _}:

.J=1 J=1 -7

(iii) Solve the nonlinear system I
( X (xtk) ) 0

and set Xk = X:

(iv) Solve the linear system

(Dt(Xk, tk)) Y = -D, (Xk, tk))!

and set I/k = Y,

(v) Solve the linear system

D, D4(x,t) 0 . ) (XYk, tk)

and set y' = w and zk = z.

In stage (ii) the multistep formula is evaluated in terms of the original variables
x, y. Then the stages (iii) and (iv) determine the local coordinate mapping (6.15) and I
finally in stage (v) the linear system (6.13) is solved to obtain the accelerations y' and
the algebraic variable zk defining the constraint force.

In stage (iii) a chord-Newton process can be used involving the matrix obtained in
stage (iv) of the previous solution-step. When the computed points leave the domain
of validity of the current local coordinate system, then the matrix A has to be updated. 3
The need for this can be detected by monitoring the number of iteration-steps of the
nonlinear solver in stage (ii) or the condition of the linear system in stage (iii).

When an implicit multistep method is to be used then all three steps (iii)-(v) have to I
be combined into one. Now special attention has to be given to the inherent strut" :re
of the resulting large nonlinear system in order to keep the computational comple.ity I
at an acceptable level. For some detail we refer to [31] where also a numerical example U
is given. I

I
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7 Appendix

U In this Appendix we collect some background material used throughout the presenta-
tion. For further details, especially on the differential geometric aspects. we refer to
standard text such as -44 or 1.

As usual, a mapping F : U -R on the open set U 7_ R" is of class C'. r > 0.
on U if F is continuous and for r > 0 all its partial derivatives up to and including
order r exist and are continuous on U. More generally, a map F : S - R- on an
arbitrary set S C R' is of class C" if for each x ; S there exists an open set U - R '

containing x and a C'-mapping F : U - Rm that coincides with F throughout U - S.3 A map F: S C R' - T CR'm is a homeomorphism between the sets Sand T if F
is a one-to-one mapping from S onto T and both F and its inverse F- : T - S are
continuous. Finally, a map F : S C Rr' - T C Rm is a C'-diffeomorphism if F is a
homeomorphism between S and T and if both F and F ' are of class C'.

A subset M C R' is a d-dimensional C'-sub-manifold of R"  if for each point x E M
there exists an open set U C R' containing x such that the neighborhood U M of x onI A is Cr-diffeomorphic to an open subset V of Rd. Any particular such diffeomorphism
o : U M - V is called a chart and its inverse a local coordinate system on U - M.

By this definition any open subset U _ R' is an n-dimensional Cc-sub-manifold

of R ' *. The tangent space TU of this manifold U at any point x E U is defined as the
n-dimensional linear space {x} x R . and its tangent bundle TU is the 2n-dimensional

submanifold U x R' of R 2,.

Let F : U c R ' x R' , n > m, be some Cr-mapping, r > 1. on the open set " - R".
A point x C U is a regular point of F if dim DF(z)R' = m; that is, if the derivative

DF(x) has full rank m. If all points of a set S C R n are regular points then F is a

submersion on S. A point b E R' is a regular value of F if all points of the inverse

image F-'(b) = {x E U, F(x) = b} are regular; that is, if F is a submersion on F-'(b).
A fundamental result then states that for any regular value b E R' the inverse image
N 6 = F-(b) is either empty or a p = (n - m)-dimensional C'-sub-manifold of R ".The
tangent space T Mb at any point x of this manifold Mb may be identified with the set

T M6 = {(x,p) E T.R'; DF(x)p = 0}.

Clearly, T.M, is a p-dimensional linear subspace of the n-dimensional linear space

TR'. The tangent bundle TMb of Mb is the disjoint union of all tangent spaces TMb
for x E Mb; that is,

I TMb = {(x,p) E TU; F(x) = b, DF(x)p = 01,

and TM is a 2d-dimensional C'-sub-manifold of TRn. Evidently, then the tangent3 bundle of TMb is the 4d-dimensional C '-sub-manifold

T 2 Mb = {((x,y)(p,q)) E T2 U; F(x) = b, DF(x)p = 0, DF(x)q + D2F(x)(y.p) = 0}.

I
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of R4".
A C3-vectorfield on some open subset U C R' is a C8-mapping on U such that 3

(7.1) r: U - TU: 7r(x) = (x, 7(x)), vx E U.

An integral curve of 7r through a point xo E U is any C-path x : J - U, defined on
an open interval J C R 1 containing the origin, for which x(O) = x0 and (rit). x'(t -
,r(x(t)) for t E J; that is, which solves the initial value problem

X' = 7(x), x E U, x(O) = xo.

For a vectorfield (7.1) of class C8, s > 1, on the (non-empty) open subset U R".
the following results hold:

(i) There exists a C'-integral curve x : J -. U of 7r through each x r U defined on I
an open interval J. Moreover, any two such curves are equal on the intersection
of their domains. m

(ii) The union of the domains of all integral curves of r through a point x E U
is an open, possibly unbounded interval J. There exists a C'-integral curve
x" : J -- U, of 7r through x and J is the largest interval on which such an
intergal curve exists.

(iii) The set D(7r) = {(t, x) E R' x U; t E J,}is open in R' x U and contains {0} "(U. 
Moreover, the global flow : D(7r) - U, (t, x) = x*, t E J of 7r is of class C8

on D(7r).

Consider now a second order ODE z" = 77(x, x'), x E U where r7 is of class C8
on some open set E C R2". When this problem is written in the first order form

= y, y' -7(r,y), (X,y) E E, then we encounter a vector-field of the form

(7.2) ir : E C TU -- T2U; 7r(x,y) = ((xy),(y,ir7(x,y))), V(x,y) E E.

Note that the second and third component of the image vector are identical: in other
words, (7.2) represents a sub-class of all tangential vector fields on TU, namely, the

vector fields that are consistent with the second order ODE.
An integral curve of (7.2) through a point (xo, Yo) E E is now a C'-path x : J - R'.

defined on some open interval J C R 1 containing the origin, for which (x(t), .'(t)) E E

and ((x(t),x'(t)), (x'(t), x"(t))) = ?r((x(t),x'(t)) for all t E J; that is, which is a solution
of the original second order ODE.

U
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