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The purpose of this research is to investigate the significance

of using post-audit information in capital budgeting decisions. The

focus is directed at inplemented projects whose proposals included cash

flow estimates that were represented as probability functions, and the

subsequent cash flow realizations of those projects. Since the cash

flows must be recorded for other reporting purposes, they represent an

essentially "free" source of information. Bayes theorem is used to

consider this post-audit information.

The Bayesian techniques consider the probabilistic cash flows

when they are modeled as one of three general situations:

(1) discrete functions, (2) continuous functions (beta or normal

probability distributions), , -- '3) discrete approximations to

continuous functions. This research introduces a concept that permits

incorporation of the user's strength of beliefs, or confidence, in the
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quality of the estimates that were used during project selection. In

similar fashion, this research introduces the equivalent sample size

concept that permits the user to incorporate his strength of belief in

the quality, or replicability, of the sample information. These

concepts are then applied to case studies of actual decision problems.

While the decision problems specifically concern equipment replacement,

the concepts that are developed can be generalized for other capital

budgeting situations.

As the revision procedures generate the uncertainty resolution

for the project cash flows, it is helpful to provide the user with a

graphic illustration of this resolution. For this purpose, Cash Flow

Control Charts are developed as a management tool. These charts have

appearances that are similar to statistical quality control charts, but

they incorporate Bayesian revision procedures.

Finally, the research concludes that incorporation of post-audit

information can lead to changes in company investment strategies. The

methods led to improved decision making in the timing and magnitude of

equipment investments.
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I. INRDUION

capital budgeting decisions form one of the most critical and

difficult areas of business decision making. The decisions are

important because they affect the economic welfare of the company. The

decisions are difficult because they usually involve unknown future

events, and budgeting constraints limit how many investments the

company can initiate. As these decisions become increasingly oumplex,

businessmen need analytic tools that enhance their decision making

capabilities.

The subject of capital budgeting covers a broad spectrum of

theories and practices that businessmen use to maximize the wealth of

their respective firms. These include (but are not limited to) the

development of capital expenditure programs, identification of new

investment opportunities, estimation of the future cash flows for these

investments, comparison and selection of investments, and management

and review of the projects within the cmpany program. This study is

concerned with the development of analytic decision making techniques

that will aid the businessman during his monitoring and management of

implemented projects. The techniques have impacts on the amount of

capital resources available, how initial estimates can be revised

through time, and how these revisions can affect the ccumpany's existing

project decision strategies.
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Problem Definition

The techniques that are developed in this study can be applied

to many different investment situations, but they are most vividly

represented by the circumstances that exist for manufacturing equipment

replacment decisions when technological innovations are present.

Replacement Situations

Traditional equipment replacement analysis has focused on the

question: Should we replace the present asset (called defender) with

an alternative asset (called challenger), or should we keep the

defender and make the replacement sometime in the future. The "asset"

in question has typically been one specific piece of machinery. For

this study, the scope of the equipment replacement decision is expanded

from the traditional machine for machine comparison (serial replacement

decisions), to encompass decisions that compare entire defender

production processes to innovative challenger production processes

(parallel replacement decisions). In these replacement situations, the

cash flows are modeled as probability distributions (either discrete or

continuous). Additionally, this study is only concerned with

replacement problem that have capital budget limits, which will limit

the number, or type, of alternatives that are feasible for

consideration.

When an equipment replacenent alternative involves a

technological innovation, it frequently has higher investment costs

than replacement alternatives without innovations. The increased costs

require more of a campany's limited budget. Therefore, these bukgetary

limits make it necessary for the businesan to consider invested
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capital as well as other existing capital (equities or loans), as

ccmpany assets. %ile invested capital is not a very liquid asset, it

still retains an inherent salvage, or abandonment value. Therefore, it

is an important ccupany resource that must be utilized in the most

efficient fashion. Once any project is initiated, it is an asset whose

performance is subject to review at any subsequent point in time.

Decision Environment

Ccmpany investment decision policies can be described by two

fundamental categories. In the first, the initial investment decision

is the only invest/termination decision to be made over the project's

econcmic life. In general, firms only permit this type of policy if

the project has small capital requirements (under some cut-off level of

investment), or if their staffs are too small to monitor all projects,

or if the firm follows some very simple capital budgeting scheme.

The second policy, the one of interest, is where the firm makes

regular periodic reviews of all of its investments. If a project is

executed to its fully planned horizon, it is selected for retention at

each review. Project termination may occur at any of the sequential

decision points. Termination may be for either poor project

performance or the availability of new investments that have greater

benefits, effectively "bumping" existing investments.

Post-audit Information

When a project is considered for implementation, its periodic

cash flows (expenditures and receipts) are represented by estiae

values. At project ompletion, its return on investment is determined
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frau its actual, or realize, cash flows. These realizations are post-

audit information. At any intermediate point in the project's life, an

up-to-date estimate of the project's return can be found by ocmbining

the remaining estimates with the existing realizations. However, the

use of post-audit information varies widely from firm to firm.

In same cpanies, the cash flow information is only used for

ao untix purposes. Experditures are caqpared to their budgetary

limits (with adjustments, as required, for excess expenditures),

receipts are recorded as they occur, and the information is only used

for required reports (stockholders, taxes, etc). In other cmpanies,

the information also goes to the project originator. He determines

where and, hopefully, why his estimates deviated frum the realizations.

He also makes adjustments, when appropriate, in his methods, to imrprove

the quality of his estimates in future proposals. In other ccmpanies,

the information is not provided to the project originators, but to the

decision makers, who use the information to form opinions about the

bias their staffs may have in preparing proposals. Lastly, same firms

provide this feedback to both grups, for their individual reviews.

Because the information is collected for standard reporting

purposes, this post-audit information can be considered as essentially

"free" data. The only costs involved are for collating the information

into a usable form (as directed by the businessman conducting the

review). This information does not carry the "cost" normally

associated with data sanpling or testing.
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Uncertainty Resolution

The primary interest of this study is determining how the

uncertainty attached to future cash flow estimates is resolved thrcugh

the use of post-audit information (cash flow realizations), and the

effects of the revisions on the company's capital budgeting strategy

(which was based on the original estimates), as the ccmpany moves

through a sequential decision making process. Mhen businessmen prepare

to make their decisions, they seek the most accurate information

available. They take this information and formulate estimates for

unknown future values. At project selection, these estimates are the

best (and only) information available. Once the project is initiated

and moves through its econcmic life, the original cash flow estimates

are replaced by profit and loss realizations. Each successive

realization reduces some of the original performance uncertainty,

until, at the end of the project's life, actual project performance

eliminates all uncertainty. This process of moving frum greater

uncertainty toward less uncertainty is referred to as uncertainty

resolution. As this uncertainty resolution occurs in a given project,

the anticipated profitability of that project may be changed to the

degree that changes are needed in the ccpany's plans for that project.

Process of Revising Estimates

The concept of using post-audit information (sample data) to

revise an initial performance estimate (prior belief), to obtain a

revised estimate (posterior belief) fits the classic Bayesian revision

framework. While Bayesian techniques have been used in many areas

(including some portfolio models), they have not been applied to
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probability based models for equipment replacement decisions. This

study examines some existing Bayesian revision models and extends their

conceptualizations to cover several situations that occur frequently in

these replacement problems. The extended concepts permit the

businessman to incorporate his subjective opinions, or "strength of

beliefs", in the quality of the initial estimates, and to similarly

incorporate his beliefs about the relative quality of the observed cash

flow results.

Problem Statement

The importance of this uncertainty resolution process is that,

at minimal cost, insight about the accuracy of project estimates may be

obtained. The impact of that insight may serve to change the capital

budgeting plan at same point in the sequential decision making process,

as the uncertainty resolution may well cause changes in the economic

lives of various projects. Therefore, the problem statement is "Can

sequential post-audit information provide uncertainty resolution in

cash flow estimation and be utilized in an investment decision making

process?"

Research Obectives

The principle objective of this research is to develop the

techniques that are needed to obtain uncertainty resolution of initial

estimates of cash flow performances for capital budgeting decisions,

with specific attention to equipment replacement situations. Because

the cash flows may be represented by one of several probability

distributions, this research is concerned with techniques for both



7

discrete and continious probability functions. Another objective is to

develop these uncertainty resolution techniques in a fashion that

permits the quantitative incorporation of the strength of beliefs about

the quality of the initial estimates and, similarly, the beliefs about

the representative quality (or replicability) of the observed cash flw

realizations. A final objective is to develop a managerial tool that

graphically displays the uncertainty resolution in a timely manner.

These objectives are accomplished by:

1. Developing uncertainty resolution techniques that are

modifications of existing Bayesian revision models. The Dirichlet

distribution revision model is adapted to provide the revision

techniques for situations when the cash flow distribution is

represented by a discrete probability function. For cash flows that

are represented by continuous probability distributions, procedures are

developed that modify established beta and normal distribution revision

models. These situations take advantage of the natural conjugate

properties of the particular distribution's family. When beta and

normal distributions do not accurately describe the prior beliefs, or

when the sample likelihood and prior beliefs are not natural

conjugates, a technique is developed that divides the continuous prior

beliefs and sample likelihoods into discrete intervals, and applies the

Dirichlet revision techniques.

2. Developing the concept of an equivalent sample size to

incorporate the businessman's strength of beliefs about the quality of

the sample information, using a multiple of the observed results, to
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reflect stronger or weaker beliefs about the representative quality of

the sample.

3. Developing the technique of manipulating the distributional

descriptive shape parameters (for the Dirichlet and beta revision

models) to incorporate the businessman's strength of belief in the

quality of his prior estimates, and describe those beliefs. The

Information Quality Factor (IQF) is developed for the Dirichlet model,

and, in a similar fashion, a technique that uses proportional (a, P)

values is developed for the beta distribution model. For the normal

distribution, the concept of an equivalent sample size is extended to

include the user's prior beliefs.

4. For a management tool, the concepts for Cash Flow Control

Charts are developed. These charts graphically portray uncertainty

resolution over time. However, the applicability of these charts is

limited to situations where there are more than just a few identical

projects of interest.

y bdW Plan

This study was prepared under manuscript format with the

principle chapters (III through VI) written as journal articles. Each

of these chapters includes a case study of a decision problem handled

by an actual manufacturing firm.

Chapter II provides a general review of the literature.

Specific issues that pertain to a particular chapter (journal article),

are included in the introductory and model developnent paragraphs of

that chapter. The review of the literature reflects the need for

uncertainty resolution techniques for the equipmnent replacement



9

problem, the need for a means to systematically incorporate the user's

strength of beliefs about the quality of his prior and sample

information, and the need for a usable management tool.

Because this study is presented in manuscript format, Figure 1

is provided to illustrate how the remaining chapters are related.

Capital budgeting methods are the major problem categorization, with

equipment replacement decisions as the subset of interest. For this

study, these decisions are treated as being made with the existence of

both risk and uncertainty. Once implemented, these projects are

controlled by methods that either use or do not use post-audit

information. Use of post-audit information is the central theme of

this paper. The problems handled by these methods have initial

estimates that are described by probability functions, either discrete

or continuous. The continuous estimates and sample information can be

handled with either continuous natural conjugate distributions or by

discrete approximations.

Chapter III develops the techniques necessary to obtain

uncertainty resolution for replacement cash flows that are modeled as

discrete probability functions. The chapter introduces the concept of

using the Dirichlet revision model to accomplish this resolution.

Additionally, in the development of initial prior beliefs, this chapter

shows how the Dirichlet distribution's shape parameters can be used to

illustrate the user's strength of belief in the estimates.

Chapter IV develops the techniques necessary to obtain

uncertainty resolution for cash flows that are modeled as continuous

probability functions with natural conjugate properties existing
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Capital Bdgeting Methods

(Other Decisions)

Equipuent Replacement Decisions

I - (Non-Updating Models)

Models Using Post-Audit Information

Discrete Priors Continuous Priors(Chapter III. ) II

Natural Conjugates Discrete Approximations
(Cha IV.) (Chapter V.)

Beta Priors Normal Priors
I Cash Flow'

Control Charts
(Chapter VI.)

Figure 1. Relationship of Researchi bpics.
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between the sample data and the prior beliefs. In this chapter, a

unique method is introduced for the development of the beta

distribution shape parameters. This method permits the user to

incorporate his strength of beliefs in the prior estimates. The

chapter also introduces the concept of an equivalent sample size that

can be used to similarly incorporate the strength of prior beliefs for

a normal distribution. It then uses this concept to capture the user's

beliefs about the quality of his sample information.

Chapter V develops the uncertainty resolution techniques needed

when the prior beliefs and/or sample likelihoods do not fit the natural

conjugate families described by Chapter IV. This chapter demonstrates

how the IQF and equivalent sample size can both be incorporated into a

decision problem.

Ch apter VI develops the concept of Cash Flow Control Charts as a

businessman's management tool for on-going projects. The methods are

developed from a blending of statistical quality control charts

techniques and natural conjugate distribution concepts.

Chapter VII contains a discussion of the conclusions obtained in

chapters III through VI, and reccwndations for further research.



II. LIM TURE PVIEW

TO be successful in the competitive market, companies must

invest their capital in the most advantageous manner possible. Because

these companies must contend with varying quantities of unknown future

events, they face the generalized problem of capital budgeting under

uncertainty. This problem can affect every area of a ccmpany's

operations, and its need for resolution has led to literary discussions

in a variety of disciplines (aoounting, business, economics, finance,

operations research, and industrial engineering). These discussions

have led to the development of numerous capital budgeting models that

concentrate on investment selectic. , jut, generally, fail to address

the continuous flow of information available from the earnings process.

The generalized problem of an on-going investment with

subsequently available cash flow information can be represented as a

manufacturing equipment replacement problem. The literature review

begins with a general discussion of equipment replacement problems, and

how variations of these problems have differing amounts of information

about future events. The review then discusses how the amount of

available information leads to problem solving by either deterministic

(which assume that future events are known with certainty) or

nondeterministic (which treat future events as unknown) methods. The

review then defines how the term risk and uncertainty will be used in

this study. This permits the nondeterministic methods to be identified

12
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as procedures that either only address risk, or address both risk and

uncertainty.

The review then discusses the trend of increasingly available

post-audit information. The review categorizes the general capital

budgeting nondeterministic methods into models that either use

(information dynamic) or do not use (information static) updating

techniques. How information static models make adjustments for risk

and/or uncertainty is examined, as well as the uncertainty induced bias

that results from failing to use post-audit information. For the

information dynamic models, how various models incorporate uncertainty

resolution are discussed.

The last section of the review focuses on capital budgeting

models that are specifically designed for equipment replacement

decisions. Historically, the literature has focused on stochastic

mathematical programming models, with sae applications of computer

simulation. The potential for improved company investment performance,

by using an application of Bayesian revision for uncertainty resolution

is identified and beomes the focus for this research.

Manufacturing Equipment Replacement Problens

As defined in Chapter I, the manufacturing equipment replace.nt

problem focuses on whether a business should keep a defender asset, or

replace it with a challenger asset, now or sometime in the future. As

further described in Chapter I, this research is particularly concerned

with decisions that are made by ccpanies that use periodic decision

reviews in their capital budgeting policies. These companies'
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investment strategies are affected by the economic lives of their

defender assets.

The replacement decisions are based on the estimated cash flows

of each alternative. Surveys report that the determination of these

estimates is the most difficult of all capital budgeting tasks.

Hw ever, they also report that equipment replacement decisions usually

have the most accurate estimates [Pohlman, Santiago, and Markel

(1988) ]. These accuracies are associated with the traditional

(machine-for-machine) comparison decisions. currently, as defined

earlier, the comparisons have escalated from machine-for-machine to

process-for-process decisions. These expansions stem from evolving

high technology techniques (such as computers, robotics, artificial

intelligence, just-in-time manufacturing, etc.) that incorporate

several processes into a single method. The difference between these

expanded (process-for-process) comparisons and the more traditional

ones is the expanded comparisons do not have the performance "tracK

records" of the traditional ccmparisons. Surveys report that when a

challenger process is a substantial deviation frum a firm's previous

operations, the previously described cash flow estimation accuracy no

longer exists (Cok and Rizzuto (1989)].

The information available under the traditional comparisons led

to the development and use of many deterministic methods. The methods

proceed as if the decision maker has complete information regarding the

investment alternatives, at the time of decision. These deterministic

methods daminate the discussions of replacement methods in the

literature. The expanded coumparisons, on the other hand, do not treat
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the estimates as known values, but approach them as randu variables

with some form of probabilistic future, thus requiring the use of

nx-deterministic methods.

Ep~lacement Decisions Using

Deterministic Methods

Several deterministic capital budgeting models have been

developed and are explained in great detail in the literature [Brown

and Kritzman (1987), Bierman and Smidt (1980), Weingartner (1963), and

Park and Sharp-Bette (1988)]. These discussions center on the model

developed by Weingartner that uses mathematical programming (linear,

integer, and dynamic) techniques to define the relationships of

different variables during the various periods of interest within the

planning horizon. The relationships may be simple or complex, and can

cover the spectrum of lending and borrowing rate combinations.

One problem associated with these models is that treating all

future values as being known with certainty is not always an accurate

approach to real-world situations. In fact, it has been stated (Bawa,

Brown, and Klien (1979)] that under rapidly changing stock market

conditions, these deterministic methods can yield solutions that are

sub-optimal numents after they are generated. Another problem is that

the accuracy that has historically been attached to the traditional

comparisons has led many of the deterministic models to primarily focus

on the timing of the replacerni-it instead of possible errors in the

estimated cash flows [Bean, Lohmann, and Smith (1985) and Oakford,

tchmann, and Salazar (1984)]. Since most of the expanded replacenent

decisions will involve cash flow estimates that are stochastic in
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nature, the main interest of this research focuses on nondeterministic

decision methods.

Replacement Decisions UsinM

NondetenRinistic Methods

The predictions of specific future events are made with varying

degrees of accuracy, dependent upon the nature of the event and skill

of the predictor. The need to reduce the levels of unknown elements in

decision making has led to a wide variety of approaches and techniques.

To address these concepts, it is necessary to first examine the

concepts of risk and uncertainty. For this study, the terms risk and

uncertainty must be clearly defined to properly differentiate this

research from other previous works, which used these terms

interchangeably. Once these terms are defined, the general form of

capital budgeting models can be categorized as those that incorporate

risk and those that incorporate both risk and uncertainty.

Risk. Risk is defined as the variability between a predicted

future event and its actual outcome, where the predictions are

prcbabilistically represented and the distributions have either known,

or assumed to be known, parameters. Risk has been historically

cxmputed as and represented by the statistical term variance. However,

it has been stated [Mao (1970)] that the use of variance as a risk

measureient is not entirely satisfactory, as it considers both positive

and negative cash flow extremes. The contention is that businessmen

are much more sensitive to potential losses than conditions of larger

than expected gains. Thereby, that author develops the concept of

senivariance, the variability of negative return. It must be noted
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that in the situation where an investment is made in combination with

other investments, as in a portfolio, the calculation of variance and

semivariance requires full knowledge of the covariances between

investments (i.e., specific definition of the full covarianae matrix,

Alexander and Resnick (1985)). However, with many different

investments and nmerxous future cash flows, this ccmputatin is

difficult, and, as cited previously [Gurnani (1984)], the projects are

usually analyzed on an individual basis, with "no allowance made for

covariance between projects". Another assessment of risk is made by

considering the distribution of net present values, and determining the

probability of loss (the area of negative returns). Again, each of

these concepts is rooted in knowledge of, or assumed knowledge of,

distribution parameters.

Uncertany. The term uncertainty is used when future events

are unknown, and the nature of the probability distribution of event

ou n is also unknown. This area is particularly concerned with

judgmental or subjective probability distribution estimates, where the

person making the predictions cannot precisely define the distribution

parameters. Since most factors can be bounded (either loosely or

tightly), the future cash flow estimates are frequently presented as

some form of a probability function, with estimated parameters for

expected values and variances. These parameters are estimates, and are

not known with certainty due to the variability of market or

performance conditions.

An immediate extension of an alternative considered under risk

and uncertainty is its current and future availability. Some models
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assume that investment availability is known with certainty. However, a

more realistic approach is that future investrent availability is an

unknown quantity. Several replacement models have attempted to capture

this availability [Chand and Sethi (1982)], but in doing so, they have

modeled the cash flws as deterministic values.

Post-Audit Information

As described previously, in realizing a given alternative's true

net worth over time, its initial cash flow estimates are replaced by

actual cash expenditure and receipt information. This information is

readily available within most firms. A review of capital budgeting

surveys [Istvan (1961), Bonini (1975), Rosenblatt and Jucker (1979),

McInnes, Morris, and Carleton (1982), Gurnani (1984), Klammer and

Walker (1984), Mukherjee and Henderson (1987), and Pike (1989)]

indicates that an increasing percentage of the firms surveyed have

adopted some form of post-audit, to upwards of 90-percent [IKlamer and

Walker (1984) ] of the respondents.

While it is a relatively standard procedure to use this

information for accounting reports (stockholders, taxes, etc), some

companies use this information as feedback. khen used, this feedback

is either directed to project originators, the decision makers, or,

sometimes, both groups. How previous nondeterministic methods have

handled this information can be used to categorize these research

efforts. Some models have been developed that do not take advantage of

this "free" post-audit information (information static models), while

others incorporate this information to varying degrees (information

dynamic models). The consequence of ignoring this post-audit
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information is that an uncertainty induced bias may be incorporated

into the firm's capital budgeting program. The concepts of information

static models and uncertainty induced bias will be examined, and then

this study will proceed with the case of interest, the information

dynamic models and their uncertainty resolution properties.

Information Static Models and

Uncertainty Induced Bias

The decision policy of making a single invest/termination

decision for a given project typifies the conditions of information

static models. These models may address risk only, or both risk and

uncertainty. If only risk is considered, then there are several risk

adjustment techniques in practice. The most popular techniques used by

businessmen are risk adjusted discount rates and adjustment of the

required payback period.

Firm currently use two predominant means to determine their

required discount, or hurdle rates. The first uses the firm's current

weighted average cost-of-capital, and the second uses the marginal cost

of new capital. The second method was developed after the correctness

of using historical rates, in the face of steadily increasing or

decreasing capital costs, was questioned [Bussey (1978)]. Then, sinply

put, the risk-adjusted discount rate increases the amount of required

return on invested capital for investments with greater risk. The

drawback to this method is the subjective nature of the adjustment

[Park (1977) ].

Before considering adjustment of the payback period, its

inherent shortfalls should be pointed out. There are three serious
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limitations to using payback period as a measure of effectiveness: (1)

investment risk is not integrated into the analysis, (2) the timing of

net cash flows and their time value of mone is disregarded, and (3)

post-payback net cash flows are not considered. Reduction of the

required payback period creates an additional problem in the

development of adjustment consistency frum risky investment to risky

investment. On the other hand, a more increasingly accepted means of

addressing risk is sensitivity analysis, which identifies the factors

that generate the risk, and attempts to bound the risk effects.

Since risk has been defined as the variability between predicted

and actual events, the most detailed way to represent risk is through

the underlying probability distribution of the predicted event (say the

net present value distribution). The two approaches that use

probability distributions to address this concern are the analytic

approach and the simulation approach. The analytic approach [Hillier

(1963, 1971) ) used the future event probability parameters with a

selected interest rate, to determine the exact mean and variance of the

discounted value of the investment. The simulation, or Monte Carlo,

approach [Hertz (1964, 1968)] uses random sampling from the pre-

determined future event probability distributions, discounts them to

net present values, and, through repeated simulation, approximates the

mean and variance. The complex nature of many real world investment

situations often makes the analytic approach difficult, if not

impossible, to execute. On the other hand, the inherent flexibility of

the simulation approach, combined with more readily accessible computer

support, has made simulation increasingly popular. However, both
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methods are limited by the required assumption that the probability

distribition parameters are known values, thereby ignoring uncertainty.

The recognition that uncertainty exists has led to the

realization that a corresponding performance bias exists in static

capital budgeting methods. In a previous work [Brown (1974)], it was

shown that in the consideration of an unbiased group of investments

(i.e., the expected value equals the estimated value for the group of

investments), the firm will usually rank the investments on the basis

of expected return, and select those with returns above a specified

level. In developing the investments, performance estimates, in order

for the group to be unbiased, same of the investments with poor

performance estimates will have better than anticipated results and

same of the higher rated investments will perform worse than expected.

Because the non-randm nature of the selection process will select the

higher ranked investments, the selected group's performance will must

likely be less than their initial expected value. Thus, even though

the investment estimates were unbiased, an uncertainty induced bias

exists.

Another work [Miller (1978)] attempts to overcome this bias

through the development of an uncertainty capensating premium (the

greater the uncertainty, the greater the required correction). The

firm then only accepts those investments whose estimated returns

exceeds the required cut-off. However, a key assumption to this

approach is that the level of uncertainty is the same for all

considered investments (a rare occurrence in real life situations).

lastly, he recmmerds that these steps be applied only by top level



22

managers as he feels they would have more information about the

population of good and bad investments than the engineer or analyst

preparing the investment proposal.

Another primarily information static method that considers both

risk and uncertainty is the application of utility theory. The

development of utility theory is widely documented in the literature

[(Fishburn (1970), Grossman, Kihlstram, and Mirman (1977), Raiffa

(1970), Keeney and Raiffa (1976), and Kreps (1988), for example].

Utility theory addresses the decision maker's (or makers') subjective

response to a set of alternatives, given the risks and uncertainties

associated with those alternatives. The responses are used to identify

the preference or utility, function for that decision maker. The

utility :u-(-ion describes the acceptable rate of trade-offs (gains

versu. variability) for the decision maker and he may be classified as

risk averse, risk neutral, or risk prone.

The expected value maximization model [Weingartner (1967)] and

the certainty equivalence model [Rcbichek and Myers (1965) and Percival

and Westerfield (1976)] are examples of utility theory applications.

However, while this approach is being more widely accepted [Mukherjee

and Henderson (1979)], it is difficult to derive the utility function

numerically, especially when it is necessary to consider the time

value, or preference of the projected benefits (the problem of finding

a means to appropriately "discount" the utility values to other points

in time). Additionally, it is generally even more difficult to explain

those functions to decision makers that do not possess utility theory
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backgrounds, and those individuals usually prefer to use monetary

indices.

Each of the methods mentioned can only attempt to compensate for

the factor uncertainties, because they have no means to clarify them.

While using some form of uncertainty compensation premiums may be a way

to resolve the problem in information static models, feedback (post-

audit) information can provide a more efficient means to overccme the

uncertainty and makes the decision a dynamic, rather than static

process.

Information Dynamic Models

and Uncertainty Resolution

The concept of uncertainty resolution, as defined in chapter I,

has not received much attention in the literature as an application to

capital budgeting models, in general, and even less for equipment

replacement problems, specifically. With regards to the general

models, the previous works have primarily sought to develop irdioes to

measure the attainment of uncertainty resolution. These efforts have

examined using the payback period, the coefficient of variation,

certainty-equivalence, and the project balance concept.

The use of the payback period was proposed, based on a simple,

one decision investment, with the amount and timing of the cash flows

modeled as random variables [Weingartner (1969)]. This work defined

the time required for expected cash inflows to equal the initial

capital investment to be the rate of expected uncertainty resolution

(which is also the definition of the payback period). Hcwever, this

work failed to elaborate on how this concept could be extended to
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multi-period decision problems. It also failed to address the inherent

weaknesses in using the payback period: (1) the time value of money is

ignored, and (2) post-payback net cash flows are ignored.

When the coefficient of variation was introduced as a measure of

uncertainty resolution [Van Home (1969)], it was proposed that the

square root of the weighted average (based on probability of

ocarrence) of the variance (about the conditional mean) of probability

tree outcomes, at the end of any time period of concern, be divided by

the expected net present value of the cash flow, thus forming a

coefficient of variation ratio for each period of time. This was

extended to the portfolio situation, where the coefficient of variation

was used as a gage to the investor who desires to maintain a particular

risk profile. This method required developing the coefficient of

variation patterns, over time, for portfolios with existing products

and alternative portfolios that included new products. A corresponding

coefficient of variation differential chart is then developed, and,

based on the anticipated differential, it is determined when the

portfolio uncertainty is resolved enough to permit new investments.

In a critique of this work [Bierman and Hausman (1972)],

counter-examples are given that show that the coefficient of variation

technique does not provide complete information. The critique goes on

to say that entire probability distribution (and not just mean and

variance) is needed to provide full information for the investment. In

the discussion of the portfolio approach, the critique agrees that

urder the condition where the occurrence, timing and characteristics of

future investments are not known with certainty, Van Horne's
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uncertainty resolution may have merit in maintaining a given risk

profile. However, they contend that if the purpose is to maintain a

risk posture, an investor would be indifferent between a set of

investments that never resolve their uncertainty and a program that

acquires "new' investments each year that fully resolve their

uncertainty each year.

Another effort [Park (1977)), elaborates further on the

weaknesses of the coefficient of variation technique. It examines the

measure's dependence on the terminal net present value, and its

subsequent failure to consider the cash flow pattern of the probability

tree. The effort provides an example of two probability trees, each

with identical terminal values and conditional probabilities. By Van

Home's technique, this situation will result in equivalent resolution

of uncertainty over time. However, the construct of the two

alternatives is such that one recovers its initial investment faster

than the other. Thus, under conditions of uncertainty, the shape of

the cash flow pattern is important because it provides information

about the rate at which outcome uncertainty is resolved.

The project balance measure was introduced [Park (1977)) as a

measure of investment worth and uncertainty resolution. The measure is

a time sensitive application of inccxi cash flows to an investment's

unrecovered balance of capital. Simply stated, an investment's

unreovered capital balance is carried forward through time, being

steadily incremented at the firm's minimum attractive rate of return,

and decrevented by the arrival of cash inflows. The process continues

after the initial investment is recovered, running throughout the
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course of investment life. In graphic portrayal, this develops areas

of negative balance (ANB), corresponding to times when the cmulative

inoming cash flows do not exceed the amunts of investment, and areas

of positive balance (APB), corresponding to times when the cumulative

ircxxng cash flows exceed the amounts of investment. The project

balance concept simultaneously captures the payback period information

and the future worth information (another form of discounted cash

flows).

The author then turns to the matter of uncertainty resolution,

and, considering the shortcomings found in Van Horme's approach,

applies the project balance concept to the coefficient of variation.

To overcome the limitation created by Van Home's use of terminal

project value, Park substituted the time sensitive measures ANB and

APB. When these measures were applied to Bierman and Hausnan's

counter-example (two investments yielding identical mean and variances

but one having a shorter payback period), the results showed that

Park's resolution indices could be more discriminating than Van Home's

(which could not discern any differences). In further explanation, the

author addresses the problem created whenever any standard deviation

based measure is used. Specifically, as a measure of variability, the

standard deviation treats any fluctuations from the expected value as

bad, but for risk-averters, fluctuations above the expected value are

not nearly as bad as those below. He overcomes this problem through an

enhancement based on Baumol's expected gain confidence limit (Baumol

(1963)]. The result is a time-dependent measure of uncertainty
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resolution, and a subsequent application was provided [Park and Tuesen

(1979) ].

An alternative approach is to attain uncertainty resolution

through probability distribution revision by Bayesian techniques.

These techniques are well documented in the literature [Cernoff

(1968), Chernoff and Petkau (1986), Hey (1983), Iversen (1984), Lindley

(1965), West (1986), Winkler (1972), Zellner (1985), for example].

Earlier works [Magee (Jul-Aug 1964, Sep-Oct 1964)] laid the groundwork

for Bayesian decision tree investment analysis. The basic procedural

steps were to: (1) identify the problem and alternatives, (2) layout

the decision tree, (3) obtain likelihood data, and (4) evaluate

alternative courses of action. These works were limited to discrete

event situations, addressing continuous alternatives by selectively

breaking them into intervals. Another work [Hespos and Strassman

(1965) ] addressed this problem of continuity through their development

of the stochastic decision tree, which used simulation to derive the

final distributions. However, these initial efforts had an inherent

limitation, as they treated the parameter estimates as known values.

This effectively addressed the risk elements, but failed to address

questions concerning uncertainty.

Subsequently, it was proposed that updating information should

be periodically incorporated into a given project's valuation

considerations, because the capital budgeting process is sequential in

nature (Harpaz and Thcmadakis (1984)]. In this method, an updated

valuation formula is found via Bayesian methods, and it is contrasted
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with conventional results in a cxmparison of two projects over two time

periods.

Another effort developed the capital growth potential criterion

for a general multiperiod capital budgeting model [Park (1987)]. Under

this concept, an investor selects projects, uses Bayesian revision to

resolve the cash flow uncertainties quickly, and, thereby, gains

greater capital flexibility for reinvestment opportunities. This

effort combined Bayes theorem with binomial sampling to attain

uncertainty resolution. This effort found that post-audit information

should be incorporated into evaluations for project investment.

Other works with capital budgeting models, in general, have

shown that these methods can be particularly beneficial when the

updating information can be used with replicable investments (Bierman

and Rao (1978) and Cyert and DeGroot (1987)). The facts that many

equipment proposals include performance estimates, that many ccmpanies

employ periodic decision review policies, and that post-audit

information is available make these decisions fit the traditional

Bayesian decision framework.

Other applications of these techniques cover many areas,

including auditing applications [Crosby (1985) and Lin (1984)],

depletive and non-depletive inventory models [Azoury (1985)],

campetitive bidding models [Attanasi and Johnson (1975)), price

expectation models [Turnovsky (1969)), work sampling [Buck, Askin, and

Tanchooo (1983) ], quality control [Hoadley (1981) ], as well as many

other works that handle same form of directly measured data.
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Techniques for Solvin Equiment
Replacement Problems

A principle goal of this research is to develop a methodology

that considers and resolves the uncertainties involved in an equipment

replacement problem where the firm uses a periodic decision review

policy. While it is apparent that Bayesian methods have great

potential benefit, these techniques are not presently being used for

replacement decisions. These decisions are primarily being handled by

two analytic techniques, stochastic mathematical programming and

cumquter simulation.

Stochastic Mathematical

Dno~rmM Methods

The stochastic programming models are based on Weingartner's

horizon model, and expand it to address the variables' probabilistic

risk. An earlier work [Iockett and Gear (1975)] developed an integer

prograuug model that used stochastic decision trees to represent

sequences of events. They also state that this model may require

either simulation formulation or relaxation of the integer prograuniir

approach to a linear programming model as the number of integer

variables increases. Another approach [Salazar and Sen (1968)]

introduced a stochastic linear programming model that considered risk

by repeated simulation of future events, after random selection of a

subset of investments, or trial portfolio, fraum the investment

population available. This results in a value distribution for each

trial portfolio, and this is used to generate a risk-return chart. If

the distribution of returns is not high enough, that trial portfolio is

unacceptable. The problem with both of these models is that the
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detailed information required to construct factor constraint

relationships may be difficult to accurately determine in real world

situations. Further, each assumes that the appropriate probability

distributions are known. (Although the Salazar and Sen work was

entitled "A Simulation Model of Capital Budgeting Under Uncertainty",

they only address risk in their model.)

Another model [Prastacos (1983) ] attempted to combine dynamic

programming with probability distribution considerations, but it only

considered the most likely value of the probability function in its

formulation. As a result, this method does not capture the information

provided by the pattern of the probability distributions. In an

extension of that method, a model was introduced that ocmbines dynamic

programing with computer simulation [Lohmann (1986)]. The model uses

the equipment replacement problem with the cash flows and availability

of alternatives modeled as triangular probability distributions. The

dynamic progranming formulation is repeated solved, based on samples

drawn from the simulated distributions, and the resulting analysis

seeks the optimal replacement sequence and its timing. This model has

flexibility, but its formulation considers the estimated triangular

distributions to be the true distributions of events, and makes no

adjustments to these distributions over time. Thereby, this model

addresses risk, but ignores uncertainty.

Qomouter Simulation Methods

The use of computer simulation has become more popular as

alternative investments and company investment situations have become

increasingly complex. Computer simulation permits many factors to be
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included in the problem formulation. However, these applications have

predominately focused on risk considerations, and have no means to

explicitly incorporate uncertainty and post-audit information.

The first attempted use of simulation models as an investment

analysis tool [Hertz (1964, 1968)], followed the funmental steps:

(1) key factors (to include investment alternatives) be identified,

(2) probabilistic natures, or risk profiles be developed for these

factors, (3) randomly select a subset of factors, (4) sinulate

performance (using a 15-year horizon), (5) compute yearly results, (6)

replicate until stable, and (7) repeat for all policy subsets. The

short fall in this approach is that it considers the estimates of the

probabilistic parameters to be the known values.

A previous work attempts to address uncertainty through an

application of sensitivity analysis [Lothner, Hoganson, and Rubin

(1986)]. The authors recognized that the parameters were just

estimates, and correspondingly developed optimistic and pessimistic

sets of parameters to go along with the most likely set. The

simulations were replicated for all three sets, and the three resultant

outcome distributions were statistically compared. A similar approach

was used in a portfolio management simulation model [Bradley and Crane

(1975) ].

Bayesian Methods

An exploratory work [Snyder (1988)] examined the potential gains

that uncertainty resolution, via Bayesian methods, could provide to a

specific equipment replacement problem. This effort compared the cash

flows of a non-updating replacement sequence with a sequence that used
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post-audit information. The effort considered a situation where the

cash flows were modeled as normal probability distributions (in a

situation where the sample variance was assumed to be the true

population variance). This effort also examined a specific investment

with sampling problem.

The importance of post-audit information and uncertainty

resolution to capital budgeting models, in general, has been addressed

by several authors. However, with the exceptions noted above, nowhere

in the literature is there a detailed application of that concept to

equipment replacement projects when periodic decision reviews are made

for those current projects. Therefore, the purpose of this research is

to investigate this situation.
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ABSTRACT

Capital budgeting models for project selection have been

extensively explored, but relatively little attention has been given to

the aspects of post-audit and project control for the projects

implemented. This paper examines the area of project control and

proposes a method that incorporates post-audit information as an active

element in the decision to maintain or terminate an initiated project.

Project selection is primarily based on anticipated performance, as

determined from the most accurate information available. However, in a

sequential decision environment, information that is accurate at one

point in time may become inaccurate at another. This paper will show

how the Dirichlet distribution can be utilized to formulate

appropriately weighted prior probability beliefs, # how these initial

beliefs can be updated as we receive post-audit information. To do

this, we incorporate categorized cash flow data in a unique Bayesian-

based framework. To illustrate the use of the Dirichlet distribution,

we present a case study of an actual automation decision for a flexible

manufacturing system. This case study also demonstrates how decision

strategies can be improved by using post-audit information, when

compared with conventional methods.
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INTR0UcrION

High equipment costs, particularly for high technology camputer

and robotics equipment, combined with unknown future performances and

capital budget limitations have made manufacturing investment decisions

increasingly difficult. These investment decisions include both

project selection (the evaluation and cctmparison of alternatives) and

project implementation and control (the identification of deviations

from projections and subsequent evaluation and correction). While

capital budgeting models for project selection have been extensively

explored, relatively little attention has been given to the aspects of

project post-audit and control.

Investment decisions require the most accurate information

available, but what may have been accurate at the initial selection

time is not necessarily accurate for subsequent decision points. The

information collected during the passage of time from initial selection

to a subsequent decision point updates the previous level of

information. This paper presents a systematic updating method that

takes advantage of the flexibility characteristics of the Dirichlet

distribution, in a unique application to a sequential automation

problem for a typical manufacturing system. This distribution, when

used with a multinmial likelihood function, provides a natural basis

for solving a decision problem with categorized outcomes (excellent,
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fair, poor, etc.). An understanding of the following general concepts

will provide scme insight to the discussions to follow.

In many nondeterministic capital budgeting models, the terms risk

and uncertainty are often used interchangeably in the discussion of

unknown future cash flows estimates [Magee (Jul-Aug 1964, and Sep-Oct

1964), Hespos and Strassman (1965), and Salazar and Sen (1968)].

However, in this paper, we treat these terms as distinct expressions.

We define risk as the variability between a predicted future event and

its actual outocme. These predictions are probabilistically

represented, and the distributions have known, or assumed known,

parameters. Risk has been historically computed and represented by the

statistical term variance. Uncertainty describes future events that

cannot be predicted with certainty, and the exact nature, or the

descriptive parameters, of their occurrence probability distributions

is not known. Many analytic techniques will treat the distribution

parameters as known values in their risk assessments, thereby ignoring

the uncertainty in the unknown probability distribution. The prcper

way to address prediction errors is through the process of uncertay

resolutin, which is defined as the process of moving frum greater

uncertainty toward less uncertainty [Bierman and Hausman (1972)]. As a

project moves from its inception through its economic life, the

original cash flow estimates are replaced by actual cash flow

realizations, and the prediction uncertainty is reduced as the

project's real performance distribution comes into sharper focus.

Uncertainty resolution is only possible if cash flow post-audit

iDLQ-mtion is available. A review of capital budgeting surveys
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indicates that an increasing percentage of firms have adopted sae form

of post-audit (Istvan (1961), Bonini (1975), Rosenblatt and Jucker

(1979), McInnes, Morris, and Carlton (1982), Gurnani (1984), Klaner

and Walker (1984), Mukherjee and Henderson (1987), and Podlman,

Santiago, and Markel (1988)]. This post-audit information consists of

reports to the management staff concerning expense and receipt

realizations that are experienced by the project during its execution.

Tis project data could be used to create an information dynamic model

that is based on Bayesian techniques. These techniques are well

documented in the literature [Lindley (1965) and Winkler (1972), for

example).

Uncertainty resolution, via Bayesian revision, is most explicit

when applied to a situation involving project repeatability. Multi-

plant firms or single plants with multiple production lines that must

implement organization-wide projects can use an incremental approach to

their investments [Bierman and Rao (1978)]. The firms can use a

portion of the organization as a test vehicle for the project, and use

the observed suocess or failure to update their original proposal

estimates. Uncertainty resolution also occurs in "all or do-nothing"

scenarios, however, these situations do not have periodic decision

points where the firm can react to the revised information.

Another concept that has great impact on this Bayesian method is

project abandonment [Kee and Feltus (1982)]. To increase its

investment flexibility, a firm must consider its available capital

budget (cash held as equity and any amounts borrowed) and its

marketable real assets (properties and currently held equipment) as
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oumpany capital resources. The liquidation of a currently held asset

requires a decision to abandon that asset in its current capacity.

The abandonment decision terminates a particular project or investment,

and it has an associated abandonment payoff that is the market salvage

value of the project or investment minus its associated expected

return, discounted to a specific point in time. Project abandonment

will require varying degrees of execution effort, dependent upon the

specific manufacturing situation. If the situation requires retention

of overall production capacity, the abandonment process must include

the acquisition of an alternative, capacity-maintaining piece of

equipment. The abandonment payoff, in this cmuplex situation, will

include the salvage value of the old equipment, new equipment costs,

and expected return from the new equipment. Sinpler abandonment

situations may involve either the retiring of a given piece of

equipment or the termination of a multi-phase project at some

intermediate point, resulting in multiple production processes.

Exactly how abandonment is handled requires many managerial inputs, and

an abandonment decision that results in mixed methods of production

will have more than just financial considerations. Product quality

must be addressed. Should the firm keep the converted equipment or

bring back the old equipment, as well as various other questions. In

fact, the situation of mixed production modes may be unacceptable for

many firms, but those aspects are not intended for discussion in this

paper. The key factor in any abandonment decision is that the net gain

from the abandonment payoff is additional capital for reallocation.
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DECISION MDEL

In this section, we will present a general decision framework ft-r

incremental automation with sampling.

Assumptions. Our method assumes that the following conditions

exist during a given project's life:

(a) The firm makes regular periodic reviews of its investments.

(b) The firm makes sequential project implementations, when the

nature of the project indicates that it is appropriate.

(c) Cash flow estimates are represented as probability

distributions, either discrete or continuous (realizing that

the distribution parameters are not known with certainty).

(d) Post-audit information on project performance is available

and immediately reported to management for the periodic

reviews. This information is the key to this revision

process, as the variations of this data will be the key

factor in the determination of whether or not to revise the

initial estimates.

(e) Future investment opportunity availability is not known with

certainty. The alternatives that are available for

consideration at a particular point in time may not be the

same at same other point.

Theoretical Model. The modeling concept used in this paper is to

apply distribution parameter revision to incremental automation for a

typical manufacturing process. The initial adopt or delay decision for

automation is based on the best information available at time 0, and is
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determined through conventional procedures. However, at the subsequent

review and decision points, the impacts of parameter revision can be

realized. The problem is formulated, with particular attention being

given to:

(a) Cash flow distribution estimations: the cash flow

estimations are represented by probability distributions with

uncertain parameters. As newer information becomes available, these

parameter estimates will most likely change during the project's

economic life.

(b) Quality of the sample post-audit information: determinations

must be made to assess the predictive quality of the sample

information and how well the firm can interpret that information. The

assessment of its predictive value will include an examination of the

project's market environment to determine the existence of any

anomalous incidents or trends. The assessment of interpretation

accuracy will examine the likelihood of analytic reports, given the

existence of particular true conditions. The purpose of these

assesaents is to prevent inappropriate (or premature) reactions to the

sample data.

(c) Probability distribution revision process: the updating

process will use the Dirichlet-multincznial family of natural conjugate

distributions. The Dirichlet distribution is sometimes referred to as

the multivariate beta distribution, and this method can be thought of

as a generalization of the beta-binmial conjugate family. In the

broadest terms, the process involves the formulation of a Dirichlet

prior distribution, sampling to develop a multinomial likelihood
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function, with a resultant determination of a Diridlet posterior

distribution.

In the problem formulation, it is given that any particular result

will fit into exactly one of k different outcome categories. The

occurrence probabilities associated with each of the k respective

categories ccmprises the rando vector a = (e1 , ... , 9k) with (9j > 0;

j=l, ... , k) and Z = 1. There also exists a parametric shape vector

a = (a,, ... , ak) with (aj > O; j=l, ... , k), such that the

probability density function of f(0 1 a) will form a Dirichlet prior

distribution

r(a1 + ... + c) al-l . -i
f( 1 a)= I  " ek (1)

r(a ... r( k )

where,
r (a) = 2 taz-l e- t dt

and the aj are not limited to integer values, and if k=2, the result is

a beta distribution. Then, the observed sample is a random vector x =

(xl, ... , xk) and (xj > 0; j=l, ... , k), where a given xj represents

the number of observations falling into a kth category, with Exj = n.

This observed sample uses the vector 0 = (01, ... , 9k), to form a

nultincmial likelihood function

f(x I n, 0) n! l .. Xk(2)
Xl1! ... Xk! 1k

This likelihood function combines with the prior distribution to form a

Dirichlet posterior distribution
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r(n + Zai) k+Xl-1 a+xk- (
I~e a, x) -- 11 "' (3)r(al+ x1) ... r(ak+ xk) Ie

This permits direct computation of the prior and posterior values of e

(qj', and ej", respectively) fran the Dirichlet distributions' shape

parameters [Johnson (1960), and Johnson and Kotz (1969)]:

i' = aj / Faj (4)

Ii" = (aj + xj) / (n + Faj) (5)

Before going further, there are two items that deserve attention.

The first item, and the most important underlying concept in using

the Dirichlet distribution, concerns the development of the

distribution's initial descriptive parameters. The natures of the aj' s

are such that the stronger one believes a parameter is true, the larger

its corresponding aj. This belief may be subjective or objective in

origin. For exanle, a given Dirichlet distribution has three

equiprbable states of nature (01 = 02 = e3 = 1/3). These

probabilities can be described by a = (100,100,100), a strongly held

prior belief, or by a = (1,1,1), a weakly held prior belief. Ten units

are sampled, with all ten outcomes favoring e1 (n = 10, x, = 10, x2 =

x3 = 0). For the parameter set, a = (100,100,100), the posterior

values for Ej become

al + x 1 = 0 + 10
n + a 0 + 300

and,

2"= 83" = (100 + 0)/(10 + 300) z 0.323.

On the other hand, using the second set, a = (1,1,1), yields
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01" = 1 + i0 0.846
10 + 3

and,

02" = 93" = (1 + 0)/(10 + 3) = 0.077

The second shape parameter set reacts very quickly to the sample

cbservations, while the first set is hardly disturbed. Perhaps an

easier way to visualize the problem is to consider a case where k = 2,

the Dirichlet distribution is now the more familiar beta distribution.

Figure 1 shows three beta distributions, each with an expected value of

0.5 ( E(X) = a/(a + P), for beta distributions), but it is readily

apparent that part (c) is more weighted, or is "tighter", to the 0.5

value than, say, part (a) or (b).

The estimation of the Dirichlet shape parameters raises two

inportant questions: (1) 'hat are the predicted outcome probabilities

for the various states of nature?", and (2) "How strongly do we

believe the predictions will hold true?" These are difficult

questions, and it has been noted that the relative proportion

elicitation becomes increasingly difficult for the decision makers,

when the states of nature exceed four [Bessler and Chanerlain (1988)].

Proper handling of the relative weights requires a thorough

understanding of the Dirichlet distribution properties by staff and

management personnel.

The second item focuses on earlier works with this distribution.

Some of the developmental works with this natural conjugate

distribution family were focused on goodness-of-fit and independence

tests (Good (1967)]. These works used symmetric (equiprcbable)

Dirichlet distributions, with the notation
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0 x 0 K 0
0 0.5 10 0 0.5 1.0 n 0.5 1.0

(a) (b) (c)

O<x< I;c,>0;13>0
f(x;o,13) = Ba1)

S0, 
otherwise

E(X) = act +1

Figure 1. Various beta distributions with a comwn expected value (0.5),
but having markedly different shapes, due to different
descriptive shape parameters (a, t).
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f(ea r (ak a-1 a-1(6)k 1 (6)r(a)

where,

al = a2 =. =ak= a

and the a was referred to as a "flattening" constant. When this

equiprobable condition was used in a situation where there was a

natural grouping of categories (grouping a continuous variable), it was

shown that regeneration would eventually lead to loss of the Dirichlet

properties [Good (1965)). However, this problem was overcome by adding

a distribution for a (maintaining the ai's as distinct elements) which

leads the posterior distribution away from equiprobability [Lindley

(1980), and Good (1983)]. There were no such problems when an

asymmetric prior distribution was used, nor were any problem noted

when working in a noncontingency table structure (a three category

example, using "Prefer A", "Prefer B", "no preference", is discussed in

Draper, Hunter, and Tierney (1969)). In our presentation, we will

enploy the generalized shape parameter a = (a, ..... ,ak) to avoid

potential problems, particularly since equiprobable event cutmues are

not generally anticipated as final distributions.

(d) Identification of decision strategies: at every periodic

review, the company must fully identify its set of investment

alternatives. This includes the retention or termination of any current

projects, as well as the selection of any new projects.

(e) Areas for sensitivity analysis:

(1) Project abandornent values: these values are estimated

for each decision point over the planning horizon,

subject to periodic revision, as necessary.
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(2) Selection of a discount rate: a particular value (the

firm's minimum acceptable rate of return, MARR) is used

in the initial analysis, but its effect on solution

robustness should be evaluated.

(3) Selection of project planning horizon: this is based on

the firm's requirements, and the econamic life of each

alternative.

Model Synopsis. Once formulated, the adopt/delay decision problem

is solved for an initial strategy. Standard project evaluation

techniques (net present value method) are applied to reach this initial

solution. The importance of our proposed technique begins once the

initial strategy has been selected, and the project is implemented.

Cash inflows (receipts) and outflows (expenses) occur, and this data is

recorded (usually by an accounting department) for tax and stockholder

reports. Because the firm must collect this data for other purposes,

it can be viewed as essentially "free" information. This information,

and its use in this method, does not represent an additional cost,

unlike the costs associated with information collected from product

testing. (While the collection is "free", there may be same

cmpilation costs if, as we propose, the information is used for more

than their original purposes.) The collected data can be used to

revise the original distribution parameter estimates through the use of

the Dirichlet-multinamial model. This revision process must be

accxmplished prior to reaching the next decision point, where the

problem is readdressed, based on the revised cash flows and this new
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point in time. The uncertainty resolution provided by this process may

change the initial decision strategy, thereby affecting the firm's

overall capital budgeting plan.

INC4E1rAL AUTCHATION: A CASE SIUDY

The following case study, using data from an actual manufacturing

firm, is provided as an illustration of the Dirichlet-multinomial

model. The model requires sample information before it can be

utilized. However, rather than skip directly to that point in the case

study, there are scme supporting points that deserve attention.

Incremental, or sequential analysis, along with Bayesian techniques

have not been widely used by firms considering the adoption of new

manufacturing technologies. Therefore, we have included those details

in the case study presentation, to emphasize their contributions.

Decision Prcblem. The Linkup Corporation is a large manufacturer

of shaft and pipe couplings. Their products, even though each type of

coupling is produced in a variety of sizes, can be described in three

basic categories: (1) gear-type couplings, with sleeves and rigid hubs,

(2) grid and flexible hub couplings, for smaller shafts that are

laterally or angularly misaligned, and (3) larger F-style and T-style

flexible hub couplings. They have two nearly identical factories, one

in Atlanta and one in Milwaukee. The factory layout designs were based

on anticipated large economic order quantities (EQ), with equipment

that required long set-up and changeover times. However, order

quantities were smaller and more frequent than anticipated, and this

caused the corporation to carry large amounts of the various types of
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inventories (raw materials, work-in-progress (WIP), and finished goods)

to meet their custamers' demands. The corporation is considering

changes to its operating procedures. They want to cumpare the ecouic

efficiency of their present machine shop operations, see Figure 2, to a

proposed flexible cellular manufacturing concept that will use robotics

(to reduce labor costs), flexible manufacturing processes (to reduce

set-up and changeover downtime), and just-in-time manufacturing (to

reduce inventory holding costs). The proposal indicates that each

factory can be converted into three modules (six total), with five

robotic cells in each module. Figure 3 is a schematic diagram of the

proposed conversion of both factories, and Figure 4 shows the proposed

layout for one five-celled module. The differences frum cell-to-cell

are minimal, consisting mostly of different tooling sets. The proposed

layout is structured to have each module produce all three families of

product. This layout was designed with a phased, or incrental,

conversion in mind. Under those conditions, the factory's entire output

of one product family is not dependent upon the new technology, thus

reducing potential losses. The Engineering Department input predicts

cellular conversion results as a discrete set of three outoumes:

Conversion result (notation) Probability of outcm

Excellent (e1 ) P(e1 ) = 0.4

Fair (e 2 ) P(02 ) = 0.4

Poor (e3) P(e3) = 0.2

At this time, it is felt that while there is tremendous success

potential for this flexible manufacturing system, there is no

historical data available as input to the probability determination.
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Milwaukee, Wisconsin Factory

Figure 3. Schematic diagram of the Linkup Corporation's production
assets, under the cellular manufacturing concept.
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Figure 4. Proposed layout for one five-celled mo~dule.
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However, it is anticipated that the changeover should be very straight-

forward and sample results for any one cell could be representative of

any other cell. Therefore, the descriptive parameters for the

Dirichlet prior distribution were set as a = (1., 1., 0.5) (note Eai =

2.5 and 1./2.5 = 0.4 and 0.5/2.5 = 0.2).

The equipment needed for conversion will be available for purcbase

during the next two years. The investment cost for one module is

presently $189,200. However, with improving computer production

technology, the actual cost for the czmputer caponents associated with

this equipment is expected to be reduced by $5,000 per year, during the

next two years.

The forecast for product demand leads the firm to adopt a 10-year

planning horizon for this project, and their minimum acceptable rate of

return (MARR), or cost of capital, is 10-percent, after taxes. The

projected after-tax cash flows for a converted module, and their

respective discounted values, are listed in Table 1. In preparing

these cash flows, the Marketing Department assumed that all cells in a

given module would have the same conversion result, and that each

module would handle one-third of the factory's projected requirements.

All equipment salvage values were treated as negligible after eight

production years.

The two-year equipment conversion window allows the corporation to

consider incremental conversion alternatives, along with the more

traditional "all or do-nothing" alternatives. The incremental

alternatives have the characteristics of sequential decision making

processes: a module is converted, its results interpreted, and
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Table 1. Projected actual and discounted modul cash flows, with all
cells having the same conversion result.

All Module Cells Having Conversion Result -

Excellent Fair Poor

Projected Discounted Projected Discounted Projected Discounted
Year Cash Flow Cash Flow Cash Flow Cash Flow Cash Flow Cash Flow

0 $.-189,200 $-189,200 $-189,200 $-189,200 $-189,200 $-189,200
1 70,000 63,636 56,000 50,909 35,000 31,818
2 -6,900 -5,702 -5,520 -4,562 -3,450 -2,851
3 52,500 39,444 42,000 31,555 26,250 19,722
4 52,500 35,858 42,000 28,687 26,250 17,929
5 52,800 32,785 42,240 26,228 26,400 16,392
6 33,900 19,136 27,120 15,309 16,950 9,568
7 25,600 13,137 20,480 10,509 12,800 6,568
8 30,900 14,415 24,720 11,532 15,450 7,208
9 30,700 13,020 24,560 10,416 15,350 6,510

10 30,700 11,836 24,560 9,469 15,350 5,918

Net Present
Value (10%) $48,364 $851 $-70,418
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decisions made acoordingly. There is sufficient time for the

sequential conversion of two modules, if so desired, before the final

decision must be made. A listing of all possible decisions is provided

in Table 2. A decision to initiate a module conversion at the end of

year 1, instead of year 0, will have a lower initial cost ($184,200

versus $189,200), but also results in the 10th year's cash flow being

citted by the planning horizon. End of year 2 initiations are treated

similarly. For sinplicity, we will only address the abandonment

alterative as the decision to halt the conversion process at its then-

current state, realizing that mixed modes of production procedures will

be the result.

The possibility of incremental alternatives raises an important

point. The advantages of sequential decision making have been

discussed in the literature [Bierman and Rao (1978) and Cyert and

DeGroot (1987)], and many corporations follow these practices for their

research and development projects LCook and Rizzuto (1989)]. However,

these corporations generally have not adopted advanced manufacturing

system in an incremental fashion. These decisions are predcadnantly

handled on an "all or do-nothing" basis. The repeatability structure

and timely post-audit information requirements has limited the number

of situations where the sequential approach is appropriate, and

departmental parochial interests may have further reduced these

opportunities [Gurnani (1984) and Mukherjee and Henderson (1987)].

Still, incremental alternatives are important, and we will use them in

our presentation to highlight their potential.
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Table 2. All possible decisions considered by the corporation.

Notation* Decision

do0 Do not convert any modules, reject this project.

do, Convert all six modules inediately.

d02 Convert one module, collect data, and reevaluate
this proposal in one year. (Given that this
decision has been selected, the subsequent
decisions follow.)

dl0 Stop the conversion process with one module.

dll Convert the remaining five modules.

d12 Convert one more module, collect data, and make
final decision at the end of year two. (Given
that this decision has been selected, the
subsequent decisions follow.)

d20 Stop the conversion process with two modules.

d21 Convert the remaining four modules.

*Note- First subscript numeral is the decision time and the second

subscript numeral identifies a specific decision.
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Preliminary Steps and Solution Notation. The classic net present

value (NPV) term will refer to the discoyunted value of a particular

strategy at the respective decision point of interest (time 0, end of

year 1, and end of year 2). The term will be annotated by NPV(MARR)t,

with the subscript t referring to the decision time reference point.

For the next step, this paper will use the notation EV(decisionj)t

to refer to the expected net present value of decision j at tine t.

This will be based on the most current probability distribution with

the best alternative payoff. (This notation is used to simplify the

decision tree branches in the subsequent figures.)

Decision trees will be developed, with systematic branching for

events and decisions. In the figures, decision branches that are

cross-hatched (---) are inferior decisions.

The cash flow projections in Table 1 are based on homogenous cell

conversion results. Because the cells are expected to make near equal

contributions to those cash flows, we can divide the module cash flows

and NPV's by the number of cells to obtain cash flows and NWV's on a

per cell basis. The NWV's for cell conversions initiated at time zero,

end of year one, and end of year two, are listed in Table 3, by cell

conversion result.

Since there are five cells per module, there are 21 possible

combinations of cell conversion results for each module. By using the

estimated P(G) = (0.4, 0.4, 0.2) in the multinomial probability

function, we can find the probability associated with each combination.

Table 4 lists all the outcome combinations, with the numbers of

excellent, fair, and poor cell conversions (columns (a), (b), and (c),
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Table 3. Cell net present values for different conversion initiation
times.

Cell Conversion Initiation Time

Time 0 End of Year 1 End of Year 2
Cell Conversion

Result NPV (10)0 NPV (10)i NPV (10)0 NPV (10)2 NWV (10)0

Excellent $9,673 $8,306 $7,551 $6,702 $5,539
Fair 170 -723 -657 -1,807 -1,493
Poor -14,084 -14,267 -12,970 -14,569 -12,041

*Note - NPV (i)t = net present value for interest rate i, at point in

time t.
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respectively), and the probabilities for each combination (column (d)).

For a single module, we can use the NPV's associated with each cell

outcome (Table 3) to find the NPV's corresponding to each cumbination

(column (e)). Further, we can also obtain the combinations' expected

values (column (f)). In fact, columns (e) and (f), correspond to

terminal decision, dl 0 , values. Similar NPV computations can be

obtained for decisions do,, d1 , d2 0 , and d2 1 , as shown in Table 5.

Potential Gains from Incremental Automation with Perfect Post-

audit Informatio . Because incremental methods have been relatively

ignored in automation decisions, we will briefly review the benefits of

that process, as applied to this study, before addressing the

information updating procedures.

For the moment, we will hypothesize a situation where a sampled

module provides perfect insight information into all other module

conversions. Whatever results appear in the cells of a given sample

module will also appear in the cells of all other modules. The

decision alternatives are do nothing, d00 , convert all modules, do,, or

convert one module, d0 2 , and decide to convert the remaining modules or

halt at the end of year 1 (decisions d1l and dl 0 , respectively). With

this perfect information, there is no need for a second sample module.

This leads to the development of the decision tree in Figure 5. The

expected values summarized in the figure indicate that decision d0 2 , to

sample one module before making the final decision, has the best payoff

($41,456 compared to $33,617 and $0). If the converted module has cell

combinations 1 through 5,7,8, or 11, then the firm should convert all

remaining modules, otherwise, they should halt the process. This is
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Table 5. Net present values for terminal decisions, discounted to time
zero, for cell ombinations in one module - all modules
having identical cutcme cxmibinations.

NPV (10)0" for Terminal Decisions

Ctmbination - do, dl0 dll d20 d21
Cell Results**

1. (5,0,0) $290,186 $48,364 $237,129 $86,117 $196,889
2. (4,1,0) 233,171 38,862 186,585 68,406 151,051
3. (4,0,1) 147,647 24,608 110,769 41,840 82,295
4. (3,2,0) 176,155 29,359 136,041 50,695 105,213
5. (3,1,1) 90,632 15,105 60,224 24,129 36,457
6. (3,0,2) 5,109 851 -15,592 -2,437 -32,299
7. (2,3,0) 119,140 19,857 85,496 32,985 59,376
8. (2,2,1) 33,617 5,603 9,680 6,418 -9,381
9. (2,1,2) -51,907 -8,651 -66,136 -20,148 -78,137
10. (2,0,3) -137,430 -22,905 -141,952 -46,714 -146,893
11. (1,4,0) 62,124 10,354 34,952 15,274 13,538
12. (1,3,1) -23,399 -3,900 -40,864 -11,293 -55,218
13. (1,2,2) -108,922 -18,154 -116,680 -37,859 -123,975
14. (1,1,3) -194,445 -32,408 -192,496 -64,425 -192,731
15. (1,0,4) -279,968 -46,661 -268,312 -90,991 -261,487
16. (0,5,0) 5,109 851 -15,592 -2,437 -32,299
17. (0,4,1) -80,414 -13,402 -91,408 -29,003 -101,056
18. (0,3,2) -165,938 -27,656 -167,224 -55,570 -169,812
19. (0,2,3) -251,461 -41,910 -243,040 -82,136 -238,569
20. (0,1,4) -336,984 -56,164 -318,856 -108,702 -307,325
21. (0,0,5) -422,507 -70,418 -394,672 -135,269 -376,081

Notes: *NPV (i)t = net present value for interest rate i, at point in
time t.

** Cell results refers to number of cells having excellent,
fair, and poor conversion results.
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EV(do00) 0

$0

Combination Prob ayQf

(5 01,0 e2,0 e3) 0.0102 $290186

(4 I, 11 2,0 e3) 0.0512 233171

EV(d 01 0  (0 6l,0 e2 ,5 e 3 ) 0.0003 -422507

$33,617

Combination Prob Decision Payoff
dl10 $48364

(5 c10 2,0 83) 0.0102 e1, 6.71i o

for achdecsio ha fie e cel ~t~ns, rdzer 23or129

do s 38862
(4 9 1,1 e2,0 03) 0.0512 dl 168

dl10 -70418
EV(d 02)0 (0 e 1,0 )2,5 83) 0.0003 -4~ 347
$41,456 ll  -947

Note - the combination values inside the parentheses refer to numbers
of cells having outcomes 81, E)2, E3 . The topmost combination
for each decision has five el cell outcmes, and zero E2 or e3.
The next combination has four el, one e2, and zero e3 outcomes,
and so forth.

Figure 5. Advantage of the sequential alternative (do2) over "all"
(do) or "nothing" (d9o) alternatives, in a one sample,
perfect information situation.
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readily seen in a comparison of the combination NPV's for decisions d1 0

and d1l, in Table 5.

This shows the risk reduction provided by the sequential approach.

In an earlier work [Bierman and Rao (1978) ], this method was

specifically proposed for divisible projects whose "all" alternative

had a negative NPV. The sequential approach, as shwn by this

situation, can also be better than the "all" alternative for a project

with a positive NPV. Here, the sequential option has a greater NPV

then either the "all" or "do-nothing" alternative.

Gains from Incremental Aui*-ation with Imperfect Post-audit

Information. The perfect sample information mentioned in the previous

section rarely, if ever, occurs in real life. The cash flow

realizations that are collected in years 1 and 2 are observed samples.

Our questions are: (1) "How well does the sample data represent the

true population?", and (2) "How well can the organization process and

interpret this information?" The imperfect representation and

interpretation characteristics make it necessary to establish

conditional probability relationships between the apparent results and

the true states of nature. These relationships could be based on

historical record, subjective assessment, or a combination of many

other factors.

The absence of historical performance records and the large number

of cell result combinations (21), makes the determination of

conditional assessments unwieldy. However, we can make it workable if

we reduce the number of categories. We do this by grouping cell

crmbinations to form module conversion categories. Using the cell
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combination NPV's in Tables 4 and 5 as a guide, combinations 1-5 and 7

are grouped to form the "profitable" module conversion category,

combinations 6, 8, 9, 11, 12, and 16 are grouped to form the "break

even" category, and ombinations 10, 13-15, and 17-21 are grouped to

form the "unprofitable" category. The categories will be anmotated as

0j, and P(O) = (0.3942, 0.4198, 0.1859) will be the initial mou

prior belief.

The establishment of the module outcome probabilities allows us to

develop the conditional relationships. For this study, we will assume

that the corditional probabilities listed in Table 6 represent the best

beliefs for results frum one year's sampling. Further, since this

problem has two levels of sampling obseivations (a second module is

sampled before the final automation decision is made), it is necessary

to have a set of second level conditional probabilities. These

conditional event probabilities are dependent upon both the second and

the first module's apparent results. Therefore, the second level

conditional probabilities in Table 7 are also assumed to be reasonable.

Before we can construct our decision tree, we need to compute the

NPV's associated with each modular terminal decision, for the

respective module conversion outocmes. (Recall that the cash flows in

Table 1 were for homogenous cell conversion results.) Because our

module conversion result is the summation of select cell combinations,

we can easily obtain these values by using the following relationship,

for each modular terminal decision, by conversion category:

(module utcme probability) *(module payoff for decision dj, given Ok)

= E (weighted cell combinacion NPV's) (7)
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Table 6. Conditional probabilities for one year of sample data.

Conditional Probabilities*

True conversion result P(sl I $jk) P (s 2 I tk) P(s 3 I Ok)

03 0.8 0.15 0.05
02 0.1 0.8 0.1
F3 0.05 0.15 0.8

*Note - P(sr I 4k) = probability of having a report, Sr, given that
the true module conversion result is Ok, and

s I  = module conversion reported as excellent,
s 2  = module conversion reported as fair, and
s 3 = module conversion reported as poor.
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Table 7. Second level conditional probabilities.

Conditional Probabilities*

Secord Previous
module reported P(sll I Sr,fk) P(sl 2 I Sr,§k) P(sl 3 I Srtk)

true result result

f1 Sl 0.95 0.05 0.0
s 2  0.35 0.6 0.05
S3  0.05 0.85 0.1

02 s I  0.4 0.55 0.05
s2  0.05 0.9 0.05
S3  0.05 0.6 0.35

03 sI 0.05 0.85 0.1
s2  0.05 0.6 0.35
S3  0.0 0.05 0.95

*Note - slt= tth apparent result in the module converted in year 1

P(slt I Sr,tk) = probability that apparent result Slt will be
observed in the second module sampled, given
that sr was observed in the first module, and
tk is the true state of nature of the second
module.
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where,

weighted cell combination NPV's

= (combination probability * ozmbination NPV),

msmdi by module outcome category, by

terminal decision, and

module outcome probability = E cell combination probabilities, for a

particular module outcome category.

We can then rearrange equation (7) as:

(module payoff for decision dj I k) = Z (weichted combination values)
E Combination probabilities

For example, terminal decision d1 0 , with a profitable outcome, has a

payoff of

(dl0 I ti) = ((0.0102*48364) + (0.0512*38862) + (0.0256*24608)

+ (0.1024*29359) + (0.1024*15105)

+ (0.1024*19857)) / (0.3942)

= $24,608

Thereby, the NPV's of all module terminal decisions are listed in

Table 8.

Time 0 Solution (Using Bayesian Techniques). Th solve this

problem for its initial decision strategy, it is recognized that there

will be terminal decisions at time 0, end of year 1, and end of year 2.

Those decisions that are terminal at tire 0 (doo and do,) have directly

computable expected values, based on the prior probability distribution

and appropriate payoffs, and their values are $0 and $33,617,

respectively. For those strategies involving sanple information (d02

and d12), it is necessary to construct the "nature's" tree, which shows

the probabilistic branching of events and the conditional branching for
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Table 8. Net present value of module terminal decisions, at time zero.

Terminal Conversion Module
Decision Result NPV(10) 0

dO0 1, 'P2, 3$ 0

do, ti 147,647

't2 5,109
03 -143,808

dl0 0i 24,608

'F2 851
§3 -23,968

dll 0.i 110,769

02 -15,592
03 -147,606

d20 fI 41,840

t2 -2,437
03 -48,696

d2 1  1i 82,295

t2 -32,299
03 -152,021
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reports, given those events. This "natural" branching is based on the

prior distribution for the initial module and the imperfect nature of

the sample information. The tree is revised to have the branches

follow the order of the reported results, branching initially for s r ,

and subsequently for Slt. The revision process is an application of

Bayes' theorem to corrvert from a prior belief with sample likelihood to

a posterior belief and preposterior analysis, as shown in Figure 6.

The joint probabilities are coputed and then used to determine the

marginal probabilities of reported results, for example:

P(tl) * P(S1 I ti) = 0.3942 * 0.8 = 0.3154

P(02) * P(sl I 42) = 0.4198 * 0.1 = 0.0420

P(03) * P(sl J $3) = 0.1859 * 0.05 = 0.0093

0.3667 = P(sl)

where,

P(sl) = Probability of getting an excellent conversion report.

Similarly we coapute that P(s2 ) = 0.4229, and P(s3) = 0.2104. Then,

using the reported results fran cell one as the initial branches, the

conditional probabilities for the true states of nature, given the

apparent results, are determined. This revision proces- is illustrated

in Figure 6. (b). The revised tree is then used with the NPV's for end

of year 1 terminal decisions to begin the --nstruction of the decision

tree in an "extensive" form analysis (fully detailing all branches).

The expected values associated with terminal decisions at the end of

year 1 are determined from the partially constructed decision tree in

Figure 7. For remaining figures, the branches that terminate with

decision- d1o and d1l will be abbreviated to carry onlj the EV(dj)t.
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P(s 1 I1 ) = 0.8 P(41 IS) -- 0.8601

P(4 1) P(s2 I -) = 0.15 P(s 1) P(t 2 I 1- 0.1145

0.3942 P(s 3  4 1) = 0.05 0.366 P($ 3 1 sl) 0.0254

P(s_ 1 t2_) = 0.1 P( 1  s 2 ) 0.1398

H P (t2  P(s t = 0. 8 P(S) P(§ 2  s s) 0.7942
0.4198 P(s 3  t #2)= 0.1 0.4229 P( I3 s2) = 0.0659

P(s 1  § 3) = 0.05 P(4 1  s3) 0.0937

P(43) P(s 2  3) = 0.15 P(s3) P(42 I s 3 ) 0.1995

P(s3 I 43) = 0.8 .2104 P(§3 I s3) 0.706,

(a) Nature's Tree (b) Revised Tree

*Definitions: s converted module appears to have profitable results

s 2 converted module appears to have breakeven results
s 3 converted module appears to have unprofitable results

Figure 6. Bayesian revision process for imperfect information in year
one. (Prior beliefs and likelihood function converted to
posterior beliefs and preposterior analysis structure.)
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P(kJ-r Payoff

0.8601 $24608
dl 10 0.1145 851

0.0254 -23968

0.8601 110769

P(Sl) d 11 0.1145 -15592

0.3667 0.0254 -147606
EV (do0)0  

d1$ U 1

0.1398 24608[3 EV(d 0l)0 do 10 0.7942 851

$33617 0.0659 -23968

0.1398 110769

do02 ) P(s 2) [ dl 0.7942 -15592

0.4229 d 20.0659 -147606

0.0937 24608dl 10 0.1995 851

0.7068 -23968

0.0937 110769

P(s 3) dll 0.1995 -15592

0.2104 0.7068 -147606

d 12 
1

Figure 7. Partially co:nstructed decision tree, with payoffs for
strategies that are terminal at end of year one. (Branches
for all d1 2 decisions will be developed subsequently.)
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The three branches for decision d1 2 , appearing in each of the

three major subbranches of Figure 7, require further expansion by the

set of second level conditional probabilities. In each of these

subbranches, the probability of the second module's report is dependent

upon its true conversion result and the reported result of the first

converted module. Figure 8 shows the "nature's" tree and the

subsequently revised tree for the P(sl) branch. The revision

procedures are again applied to find the probabilities of 01, 02, and

03, given that the observable events Sll, s12, or s13 have occurred

(and the report from module 1, in this case, Sl). In Figure 8, given

that s I has already been observed, the conditional probabilities of

P(Sll I sl), P(s12 I sl), and P(S1 3 I sl) were found to be 0.5518,

0.4087, and 0.0396, respectively. Then, the conditional probabilities

for the true conversion result, given s, and Slt had occurred, were

determined. (The steps illustrated in Figure 8 were then repeated for

the P(s 2 ) and P(s 3 ) branches.) The conditional probabilitY

distribuition defined at the end of year 2 is then used with the payoff

values at the end of year 2 to complete the decision tree, and this

extensive form analysis provides the initial decision strategy. Due to

the detailed nature of the extensive form analysis, the final

probability and payoff branches for all d20 and d21 decisions will be

abbreviated as shown in Figure 9, to provide only the expected value of

that decision. The use of this abbreviation technique is shown in

Figure 10, the extensive form analysis for the initial decision

strategy (a preposterior analysis). The initial strategy is:
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Joint
Probabilities

P(Sl I s1 , ti) = 0.95 0.3745

P(-f1 )  P(Sl2 si t .1i
) = 0.05 0.0197

0.3942 - E P(Sl3 Is I i = 0 .0 0.0

P(s11 s1  2 = 0.4 0.1679

P( 2) Ps 12 Isit t2) = 0.55 0.2309
1 0.4198 (sI3 s I t2) = 0.05 0.0210

P(SllI Sit t3) = 0.05 0.0093

P(t 3)  P(s12 si t t 3
) = 0.85 0.1580

0.1859 -P(Sl3 I sI , t3
) = 0.i 0.0186

(a) Nature's Tree

P( I s ill s1) = 0.6788

P(S11 I S1 ) P($2 I S ll S) = 0.3044

0.5518 3 ill, s1) = 0.0168

P( 1 i s 12' sI1 = 0.0482

S P(S1 2 I s1) P($ 2 I s 1 2, s I ) = 0.5651

0.4087 P( 3 I s 1 2 , s I ) = 0.3867

P(l I s13, sI) 
= 0.0

P(S13 1 s1 ) P($ 2 I s 1 3, sI1 
= 0.5303

0.0396 P($3 I s1 3, s = 0.4697

(b) Revised tree for s1 branch.

Figure 8. Bayesian revision of s, branch for inperfect information inyear two.



73

Payoff

P(OI) = 0.6788 $41840

d P( 2) = 0.3044 -2437 EV(d2 0)0 = $26838

P( 3) 0.0168 -48696

P(Ol 1 0.6788 82295

d21 = 0.3044 -32299 EV(d2 1)O = 43469

P(§3) 0.0168 -152021

Figure 9. Sample simplification and annotation used for abbreviation
of terminal branches of decision tree. Branch used for
illustration is the one that follows observations s, in year
one and Sll in year two.
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EV(d2())o $26838
EV(d ) = $20656 P(S Sj) -

10 0 
11 -- r0.5518 EV(d2j) 0 43469

P(S .) FEVV (ld 11 ) 0 = 89750

0.3667 EV(d2O)O= -18190
EV(d ) 1)(S S ) -
4._ 12 0 .12 1 - EV (d2j), = -7307015594 0.4087 0

EV(d2O)O= -24164
P(S S

F (doo)o 0 
13 1 -TEV( LI)6- 885310.0396

L-I(d 33617 EV(d2O)O = 3131501 0 EV(djO)O 2537 P(S S
4_ 11 2

V.- (d 02)0 P(S 2) EV(d 11 ) 0 = -6628 0.1683 EV(d2j)O= 55054

4_1
39767 0.4229 EV(d 12)0 P(S 12 1 S2) EV(d2O)O= 4882

10413 0.7260 - EV(

1) 6 -
13 3 5 7

P(S 13 1 S 2) 
EV(d 20)0= -22644

0.1058-2L-f FEV(d 21)0= -84596

EV(dO)O= -14466 P(S S 3) EV(d 20)0 = 19005

4_ 
--- rd'0.0407 EV(d2j)o = 23196

P(S 3 E EV (d 11 ) 0 = -97065

L
0.2104 EV(dl2)0 P(S 12 1 S3) EV(d2o) 0 = 21724 .

11662 0.5963 -Y4EV(d O= 3023221)(3

EV(d2O)O= -20137
P(S 13 1 S 3 r-q-- -

0.3630 EV(d2j) = -78108
0

Figure 10. Extensive fonn analysis of decision tree at time zero when
saMle inforration is inperfect (preposterior analysis).
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Time Action

0 Convert a single module to the new equipment,

review results, and make another decision at end of

year 1 (decision d0 2 )-

1 If module one has profitable results, then convert

all five remaining modules (decision d1l). If

module one has break even or unprofitable results,

then convert a second module, review its results,

and make final decision at end of year two

(decision d 12 ).

2 a. If the first module result was break even and the

second was profitable, then convert the remaining

four modules (decision d2 1 ). If the second module

was break even or unprofitable, then terminate the

process (decision d2 1 ).

b. If the first module result was '-Vrofitable and the

second was profitable or break even, then convert

the four remaining modules (decision d2 1 ). If the

second module was unprofitable, then terminate the

process.

The expected payoff from this strategy is $39,767.

STRATEGY REVISION BASED ON DIR IIMr-MLTINCIIAL VDE.

At the end of year 1, the first module's sample information is

available, and the Dirichlet-multinmial model can be used.
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Decision Strateiv Revision. For this case study, we assume that

the observed cellular conversion results are proportional to the true,

but unknown, Dirichlet distribution of 0. Specifically,

Conversion True, but unknown Converted module cells
result probability reporting this result

81 0.2 1

82 0.6 3

e3 0.2 1

Many firms would interpret this module's performance as falling into

the break even category, and based on the strategies developed at time

zero, would initiate the conversion of a second cell, with the final

decision at the end of year two. However, a more efficient way to

address this problem is to take the sample information, update the

prior cell probability distribution, via the Dirichlet-multinumial

model (equation (3)), develop revised module outcume probabilities, and

then make decision adjustments. Following these steps, the cell

outcome probabilities are revised as described by equation (5):

State of Prior Initial Observed Posterior
Nature __ _ _j_ ___xj__ & j +xj_ _A _

01 0.4 1.0 1 2.0 0.2667
02 0.4 1.0 3 4.0 0.5333

e3  0.2 0.5 1 1.5 0.2

7.5

The posterior values are obviously more representative of the true,

unknown, distribution (0.2, 0.6, 0.2) than the prior distribution.

The multinamial probability function then uses the cell posterior

probabilities to determine the new probability values for the cell

outocme combinations (as in Table 3, previously). These new

cubination probability values are grouped into the module cutcume
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categories to form the revised module outcmie distribution,

specifically, P(#) = (0.2222, 0.4873, 0.2905). The module terminal

decision payoffs are updated by ccup0unding the remaining pertinent

values forward, to the end of year 1. These values are listed in

Table 9. The revised module probabilities and terminal decision

payoffs are used to reconstruct the decision tree. The expected values

for each decision tree branch are ccuputed by the methods shown

previously. For example, decision d1 0 will have an expected value of

EV(dI0)I= (0.2222 * 27069) + (0.4873 * 937) + (0.2905 * -26365)

= $-i,190

and the expected value of decision dl is similarly ccupited. Decision

d12 will require another year of observations before its terminal

decisions, d20 or d2 1 , can be made.

The revision is performed by using the new prior distribution in

conjunction with the conditional probabilities for one level of

sampling information. The conditional probabilities values used for

P(Sr I #k) in the time 0 analysis are now used for P(Slt I #k) in the

end of year 1 analysis. Figure 11 illustrates the "nature's" and

revised trees for the d12 branch. The nature's tree initially branches

under the new prior distribution (0.2222, 0.4873, 0.2905), and then

follows the one level conditional branching. The revision yields a

preosterior analysis that is based on the anticipated apparent results

of a second module's sanpling. The revised probability tree is used to

develop the extensive form analysis shown in Figure 12. Based on this

revised analysis, the decision strategy is changed to terminate the

cotversion process with one cell (decision d1 0 ).
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Table 9. Net present values of remaining terminal decisions,
discounted to the end of year one.

Terminal Conversion Module
Decision Result NPV (10)1

dl0 01 $ 27,069
02 937

0'3 -26,365

dll 1i 121,845
't2 -17,151
03 -162,367

d20 t1 46,024
02 -2,681
03 -53,565

d21 0i 90,524
02 -35,529
$3 -167,224
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Joint
Probabilitie

P(Sll I $I) = 0.8 0.1777

P(1) i P(S12 I 11) = 0.15 0.0333

0.2222 P(S1 3  $Ql)  = 0.05 0.0111

P(Sll §2) 2 = 0.1 0.0487

d2 P(§ 2) P(s12 Y 2) = 0.8 0.3898
0.*87? - P(s13 ! @2C = 0.1 0.0487

P(S11 I3) = 0.05 0.0145

P(O3) A P(s12 I $3) = 0.15 0.0436

0.2905T P(s13  0 $3) = 0.8 0.2324

(a) Nature's Tree

P(l 1I s11 ) = 0.7375

1)P(2 S1) = 0.2022

0.2410 E P(O3 S 11l)  = 0.0603

P(oI s 12) = 0.0714

)P(s 12)  P(§ 2 s12) = 0.8352

d2 20.4667 P($3  s12) = 0.0934

P(O I s 13 ) = 0.0380
P(sI13) P(§ 2 S s13 ) = 0.1667

0.2923 y - P(03 s13) = 0.7953

(b) Revised tree for d12 branch.

Figure 11. Bayesian revision of d 12 branch for imperfect information
in year two, after saple information in year one has been
used to revise prior probability distribution.
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0.7375 $ 46024

2(60)1 0.2022 -2681
-- $ 30172

P~il 40.0603 -53565

P(SlI)

0.2410 0.7375 90524

EV(d 21) 1 0.2022 -35529

EV(dl 1 44 0.603 -167224

$-1190
0.0714 46024

1 V l)284611 Ed20)_ 9 5 1 0.8352 -2681

gEV(d 12)1 P(s 12) for f 0.0934 e53eat

-1987 0.4667 .0714 90524

E~V (d 21I)l1386 ( 0.8352 -35529

-382 0934 -167224

0. 0380 46024

EV(d 0112l 0 . 1667 -2681

P 1) .7953 -53565

.2923 0. 0380 90524

EV (d21)1(l} 0.1667 -35529

-1549O. 7953 -167224

Figure 12. Decision tree for imperfect information example after
sample information from year one has been incorporated.
(Posterior analysis for year 1, and, simultaneously,
preposterior analysis for year 2.)
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In summary, the expected payoff associated with the revised

automation strategy is $-1,190. This expected payoff is considerably

less than was anticipated at time 0. However, that expected payoff

($39,767) was based on the initial set of probabilities, a set that had

an associated uncertainty that has now been somewhat resolved. The

value of that initial decision strategy, at time 1, is now revised to

be $-1,987. The value of the change in decision strategies is a

savings of $797, a quantifiable measurement.

Another way to view this result is to consider the aspects of the

expected value of sample information approach [Raiffa (1970), and Park

and Sharp-Bette (1988)]. Consider, at time 0, that the expected payoff

without sampling (decision do, dominates do0 ) is $33,617, and that the

expected value with sampling is $39,767. The expected value of sample

information is $6,150 (= $39,767 - $33,617), arid, since the information

is free, it is obvious that the sampling approach is the best option.

At the end of year 1, the expected values of the halt conversion

strategy and the further sampling approach are $-1,190 and $-1,987,

respectively. At this point in time, the expected value of sample

information is $-797 (=$-1,987 - ($-1,190)). Because the value of

further saipli-q is negative, it is best to halt the conversion

process.

Sensitivity Analysis and Normal Form Analysis. For simplicity,

the sensitivity analysis of the traditional factors described in the

model development will not be performed. For any real problem, these

analyses are extremely important. There is, however, a non-traditional
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elemnt that reads to be examined, and that is the nitial d iptive

shape parameter a. If the initial proposal had more historical data,

then the ajIs could have been prqxwtionately incremsed, to reflect a

stroner prior belief. If the initial vector had instead been a -

(6.0, 6.0, 3.0), then the posterior cell probability vector wold hav

been P(O) - (0.35, 0.4, 0.25), and the mxkule vector would have

P(O) - (0.3296, 0.4499, 0.2204). This ld have resulted in expcted

payoffs of $3,533 and $11,163 for do and d12, repctively (decision

dll is dominated by d 1 o), and would have led to a continuation of the

current decision strategy (sample in year 2, then make the final

decision). This highlights the point that the initial shape parameter

selections must be made very judiciously, and as objectively as

possible.

The method of normal form analysis has been proposed as an

alternative that provides additional insight when event probability

assigrment has a degree of associated uncertainty r Raiffa and Schlaifer

(1961), Raiffa (1968), and Park and Sharp-Betta (1988)). The thrust

of the method is to find a dominant decision strategy over a range of

probabilities. The cited referee use a two outome event example,

with probabilities of e and (1 - e) for events one and two,

respectively. This problem, having three possible results, requires an

expansion of the previously cited method. Figure 13. (a) shows that if

there are three outcome possibilities, the solution space of all

possible probabilistic outcome cuinations forms a triangular shaped

plane. For each decision strategy, it is possible to construct a

payoff response surface projecting frum that probabilistic solution
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1.0

(a) Plane repeting all ioible cominatiam of rqorted ouztco

$150,00 1rcreas ing
Payoffs

$1150.000

/ .Ota plane S-150.000

-(0,1,0)
(0,0,1)-

(b) Payoff planes and doiance regions for active decision strategies at
tineo. Point A - (0.3942, 0.4198, 0.1859).

Figur 13. Ca.se study normal form analysis at time~ zero.
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space that varies according to the respective outahIe cmbenations.

For this problem, at time zero there are three active decision

strategies (d, do1, and d0 2 ). 7he payoffs that correspo d to each

strategy's potential conversion results are

Payoff for outcome

$0 $0 $0

do, 147,647 5,109 -143,808

d02 89,750 10,413 11,662

Strategy d0 2 dominates dO0, as all of d0 2 'S payoffs are greater than

d00's for the various outcomes. The construction of the payoff planes

is shown in Figure 13. (b), with the respective dominance regions marked

by solid lines. Solution by this method requires finding the decision

payoff plane that has the highest elevation above the prior probability

Outome combination (0.3942, 0.4198, 0.1859), or, if so desired, region

of outcome combinations.

Ven the problem moves to subsequent decision points, payoff

planes can be constructed for each relative decision strategy. The

duminant strategy is then found for the revised Outcome cubination

(like at the end of year 1, when P(#) - (0.2222, 0.4873, 0.2905)).

Thus, this generalization of normal form analysis can be used to

support the other results.

0NCLUSIONS

This case study demonstrates how direct application of post-audit

information can have a serious effect on a cxmpany's automation
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strategy. When project estimates are developed as probabiity

distributions having descriptive parameters that are not known with

certainty, the availability of post-audit information creates the

opportunity for uncertainty resolution to occur in those estimates,

through revision of the distribution parameters. The gains that can be

obtained are quantifiable, and the magnitude of that gain will be a

direct reflection of the amount of resolution obtained.

In this case study, the decision to make all conversions at time

zero (do,) had a positive NPV. Under many corporations' current

practices, they would have implemented a full transition. However,

this positive NPV is derived from uncertain probabilities. In a

sequential replacement process, the Dirichlet-nultinomial model shows

how these probabilities can undergo uncertainty resolution, and that

our proposed automation decision process has the sensitivity and

flexibility to permit decision strategy changes. Fbr this study's

conditions, the results of a full changeover are disastrous, when

compared with our model's results.

The drawback to this method is that it requires detailed

understanding of the potential sensitivity/insensitivity of the initial

prior distribution to revision by sampling informat :. The initial

parameter selection must consider the quality of prior information and

its relative merit when cmpared with the quality and quantity of the

incoming sample information. Still, as shown by our method, decision

strategy modification, based on post-audit information, should increase

camany investment return and flexibility if it is incorporated into a

company's capital budgeting plan.
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IV. PHASED CAPACITY EXPANSION - USING

CT1INXXS DISTRIBURIONS TO

MODEL PRIOR BELIEFS

ABSTRACT

Many current equipment replacement/production capacity expansion

decisions carry increasing amounts of performance uncertainty when the

alternative processes include technical innovations. In a sequential

decision making environment, post-audit information can be used to

resolve this uncertainty. In this paper, we demonstrate how three-

point, PERT-type estimates can be used to determine continuous prior

probability distributions that incorporate the post-audit information

in Bayesian revision. We develop the concept of an equivalent sample

size that initially is used to reflect our belief in the quality of the

prior estimates, and subsequently in an assessment of the typicality of

the observed sample data. A case study of an actual decision problem

is used to illustrate the concepts.

nn~MurION

The capital budgeting process can be generalized into four basic

areas: (1) alternative identification, (2) cash flow development and

estimation, (3) project selection, and (4) post-audit and control.

Because capital budgeting has historically been viewed as an

89
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acquisition/allocation process, its literature has been dcminated by

discussions of ccaparison and selection methods [Moore and Chen

(1984)]. This eaphasis has led many businessmen to mistakenly believe

that once they initiate a project, they are ocmmitted to it for its

estimated life. The less empasized area of post-audit and ocntrol

focuses on monitoring the performance of implemented projects, and

permits businessmen to update the initial estimates with observed

results. If the revised estimates indicate that the project will not

meet its expectations, the firm may want to abandon the project and

reallocate its capital [Kee and Feltus (1982)]. Many businessmen also

have the misconception that projects can only be taken on an "all or

nothing" basis. Frequently, projects may be divided into several

smaller, identical modules. The results from a few implemented ndules

can be used as essentially "free" sample information for the remaining

modules. If the revised estimates are better than the initial ones,

the firm can make additional replications, and profits can be made from

projects that were initially unattractive (Bierman and Rao (1978), and

Cyert and DeGroot (1987)].

Decision making for equipment replacement and production capacity

expansion are areas that have not used this phasing methodology. Most

replacement analyses have held a very limited scope, trying to solve

the question: Should we keep the present machine (called defender) for

an additional time period, or should we replace it with a new machine

(called challerer)? Capacity expansion decisions have been limited to

determining: How many more machines, like those currently being used,

are needed to meet requirements? While surveys report that cash flow

I
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estimation is the most difficult capital budgeting task, they also

report that replacement decisions usually have the most accurate

estimates [Pohlman, Santiago, and Markel (1988)). This accuracy has

led sane businesses to solve these problems with deterministic methods,

primarily using dynamic programing approaches [Oakford and Lohmann

(1984), Bean, Lohmann, and Smith (1985), and tdhmann (1986)]. However,

many current equipment replacenent/capacity expansion decisions no

longer fit this mold. The pursuit of a competitive advantage is

leading more firms into newer, high technology manufacturing techniques

that include conputers, robotics, artificial intelligence, and flexible

manufacturing cells, to name a few. These innovations broaden the

decisions from a comparison of specific machines to a xomparison of

entire processes. While these challenger processes have increased

potential, they do not have the situation-dependent performance

histories of more traditional processes. Under this condition, where

the challenger process is a substantial deviation from previous

operations, the cash flow estimation accuracy no longer exists [Cook

and Rizzuto (1989)]. We define the estimate inaccuracy that

aooaxmpanies the new technology's cash flows as "uncertainty", which has

a probabilistic nature with unknown descriptive parameters. As a new

technology is implemented, the firms can employ the concept of

uncertainty resolution to confirm/disprove their initial beliefs

[Bierman and Hausman (1972)]. (For this process to be effective, the

firm must provide a sequential decision making enviroment, with

periodic continue/review decision points; otherwise, as the uncertainty
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resolution occurs, the firm is unable to react, and it remains

committed to the project.)

The generalized structure (initial estimate plus sample cash flow

data yields a revised estimate) is the familiar Bayesian analysis

framework. Many Bayesian models have been developed for specific

probability distributions (normal, ganmna, beta, etc.), but their

ccvplexities, and other probability concepts, have created some

confusion for the businessmen who are supposed to use them [Koehler

(1968)]. Some have reported difficulties in understanding the

theoretical concepts and/or identification of hypothetical models that

match real situations. In this paper, we will present the following:

1. Demonstrate how Bayesian analysis techniques can, and should,

be applied to equipment replacement and capacity expansion

problem that involve technological innovations. This will

provide uncertainty resolution for the challenger process.

2. Provide an interpretation of a cash flow's 3-point, PERT-type

estimates (optimistic, most likely, and pessimistic) that

leads directly to the development of continuous distribution

models.

3. Develop the concept of equivalent sample size for periodic

cash flows. This permits us to take better advantage of the

sample information (adjusting for anomalous or better than

expected conditions), as capital budgeting problem involving

equipment usually do not have large samples sizes.
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4. Illustrate tV+ se techniques through the case study of an

actual equipent replacement/capacity expansion decision

problem.

In presenting these concepts, we are limiting the approach to using

continuous distribution models that have natural conjugate properties.

MODEL DEVELOPR4

Our procedure starts with Bayes' theorem for continuous

probability models. To briefly reviei that theorem, we are given an

uncertain continuous quantity of interest, 8, with beliefs about its

occurrence behavior that are summarized as a probability density

function. The belief that exists before sample information is taken is

called the prior belief. If we describe the sample information

involving e by the statistic X, then the parameter's posterior density

is the conditional density of e, given X = x, written as:

f(I X -= x) = f(. x
f (x)

where,

f (E I X = x) is the conditional density of one random

variable, given a second random variable,

f(e, x) is the joint distribution of the two random

variables,

f(x) is the marginal density of the second random

variable.

The joint density, f(e,x), and the marginal density, f(x), are usually

not known, but, they are expressible in terms of the prior distribution

and the sample likelihood function. Defined as:
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f(e, x) = f () * f(x I e)

f(x) = J. f(e) * f(x I e)

so that,

f(e) * f(x I e)
f(e Ix) -

j f(e) * f(x I e ci9

which provides the revision structure. Also, the marginal distribution

of x, in the denominator, is also referred to as the sample's

predictive distribution. Conventional Bayesian methods are listed in

Figure 1.(a).

Bayesian models have been elegantly developed for many probability

distributions, but few firms use probability theory to describe their

cash flow estimations, more typically using single values (the

deterministic approach), or 3-point, PEY-type estimates [Pohlman,

Santiago, and Markel (1988)]. Some analysts are reluctant to fit a

smooth distribution to these estimates, because they feel the proposals

do not provide enough information about the distribution of events

and/or their own lack of familiarity with certain distributions. As an

alternative, they fit the 3-points to a triangular distribution,

particularly where repeated coputer simulation runs can be used for

analysis [Inmann (1986)]. Therefore, our first proposed modification

is to provide a means where the 3-point estimates can be readily fit to

a continuous probability distribution, so we can take advantage of the

available Bayesian methods. Subsequently, we will also address the

concept of equivalent sample sizes, once data has been obtained. Our

modified procedure is outlined in Figure 1. (b).
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Begin procedures with a given Develop a prior continious
prior distribution, with distribution belief from the
specific descriptive values 3-point estimate of a project

cash flow.

- For beta distribution model,
adjust parameters a and P to
reflect strength of prior
beliefs and partialar
interval probabilities.

- For normal distribution
model, determine relative
value of prior estimates
and sample information, to
develop assumed population
variance.

collct ampe dta ollect samiple data

Evaluate the conditions for
internal and external factors
that affect cash flow
performance, assess result
repeatability, and apply the
equivalent sample size

cxnept, as aropriate.

Revise the distribution, find Revise the distribution, find
the descriptive properties of the descriptive properties of
interest (expected values, interest (expected values,
payoffs, etc.), and make payoffs, etc.), and make
decision adjustments. If decision adjustments. If

appropriate, collect more appropriate, ollect more
data and continue the process. data and contiue the process.

(a) Conventional method. (b) Modified method.

Figure 1. Comparison of conventional Bayesian methods and the modified
approach.
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Beta distributij

As stated previously, 3-point estimates are frequently imed to

develop triargular distributions, but, as shown in Appendix A, the

cumulative density functions (c.d.f. 's) of the triangular distribution

and certain families of beta distributions have almt

indistinguishable differee, making them probabilistically

interchangeable. Therefore, we can use the beta distribution to model

the predicted outcoumes, providing a more descriptive model, and a

distribution with natural conjugate properties. The standardized beta

density function is:

r (a+o) x - 1 (1- x) - 1  0<X< 1f(x) r r(a) r(

0 otherwise

with,

mean = a/(a + ) (1)

mode = (a - 1)/(a + 0 -2) , which also equals xr (2)

variance = (p) / ((a + #) 2 (a +'0 + 1)) (3)

and its shape can be easily charged by varying the shape parameter

values (a and P), as shown in Figure 2. Further, if a and P are

greater than zero, the distribution density function touches the

horizontal x-axis at x=0 and x=l. These intersections imply that the

end points established by the optimistic and pessimistic estimates are

absolute limits. If they are poorly chosen, and a sample falls outside

of these limits, the prior density function (P(x)=O for x not between 0

and 1) will cause the posterior probability for that value to remain

zero. We will use the following estimate notation:

A = interval lower limit = pessimistic estimate
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M = value of interval mode = most likely estimate

B = interval uWer limit - cptimistic estimate

and, the standardized terms are

a = lower limit = 0

xm = value of the standardized mode = (M - A)/(B - A)

b = upper limit = 1

Initial prior belief. conventional Bayesian methods for beta

distributions can only begin once an initial belief is given. However,

when the information is provided as a 3-point estimate, the initial

belief must first be derived. Thereby, if we use the PERT assumption

that the variance = (1/6)2, then equations (2) and (3) can be solved

simultaneously for a, giving

(a - 1) 3 + (7 xm - 36 ,? + 36Xm3 ) (a - 1)2

- 20Xm2(a 1) - 24m 3 = 0 (4)

and this cubic equation (in terms of (a - 1)) can be solved for the

positive values of a. Then, with this a, equation (2) can be used to

find the value of P. We can use a and O to find the cumulative density

of any interval, C to D, on t, by using the nonstandard form of the

incomplete beta function:

r(a +) r l B-0

r(a) ) [ B -A] LB --

and factoring ccmvn terms and cancelirq gives
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D(t - A) 1 (B - t)-dt

I B (6)

(t - A)a - ' (B - t)' - 1 dt

An earlier work (Greer (1970)), also uses this approach, but we will

deviate from that work, as we will now refine the initial belief by

using the inccplete beta function to obtain mre information about our

derived probability distribution. If we are not satisfied with the

cumulative probability for a specific range, we can adjust the values

of a and P to obtain the desired value. However, the changes must be

proportional, to maintain the value of xm . For example, the sets (a,3)

= (2,2) and (3,3), have differently shaped distributions (see Figure

2), but share a common mode, 0.5.

The proportional changes to a and 1 leave the mode unchanged, but

creates changes the variance value. The intent of this variance term

variation is a better portrayal of the prior belief. It does, however,

create deviations from the well known PERT equations:

mean = (A + 4M + B)/6 ,for general distributions (7)

= (4M + 1)/6 ,for standardized distributions (8)

variance = ((B - A)/6)2  ,for general distributions (9)

= (1/6)2 ,for standardized distributions (10)

However, these formulas are just approximations, and holding strictly

to them limits the user to a specific family of beta distributions [as

seen in Greer (1970), Fielitz and Myers (1975), and Littlefield and

Randolph (1987)]. An earlier work (Swanson and Pazer (1971)] shows

that if we solve equations (1) and (8) simultaneously, we obtain the

linearly related family of a and 0 in Figure 3. (a). If we solve
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Standardized Mode Values

(a) Family of ax andl P values that satisfy the PETard
beta equations for the moean.

S
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Standardized Mode Values

(b) Family of a and P3 values that satisfy the beta imode
and variance equations, with the PERP approximation
that the variance = (1/6)2.

Figure 3. Graphs of families of a aid P3 values that satisfy particular
PERT' and beta equations.
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equations (2), (3), and (10) simultaneously, we obtain the family shown

in Figure 3. (b).

To remove this constraint, we will only use the assumption,

variance = (1/6)2, for our initial a and P determinations. We will

refine a and P, using insights from the incomplete beta function,

realizing that these refinements will dange the variance value. This

provides more accurate values for the prior distribution mean and

variance, because the values will be computed directly from the shape

parameters and not from simplifying approximations.

An interactive BASIC computer program is attached at Appendix B,

and it is designed to take the user from the proposal's 3-point

estimate, to the initial prior beta distribution. After refinement,

the program provides summary information about a., fl, mean, mode, and

variance. The program approximates the incomplete beta function by

using Simpson's rule. Sampled values frum the program have been

ccumpared to Pearson's Tables for the Incumlete Beta Function and have

been found to be accurate to four decimal places.

Equivalent sample size ooncept - in the initial prior beliei.

Another purpose of parameter refinement is to permit us to subjectively

"weight" our prior assessment. By doing so, we are introducing the

concept of an equivalent sample size. (This differs frum an earlier

work [Smidt (1979), where the term referred to the conversion of a

continuous variable to a dichotomous variable, in an investigation of

biased decisions.) As we develop the initial parameters, we are making

inferences abovt the quality of our estimates, effectively assigning

our prior beliefs an "equivalent" sample size, ne. This sample size is
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the sum of a and 6. If we use proportionately large values of a and /,

we are implying that we have a strong belief about the mode's value.

Coversely, if we use smaller values, we are expressing a weak belief.

In using this equivalent sample size concept, we muist make a relative

worth assessment, considering the quality of the estimate and its

relationship with the amount and timing of the sample information. For

example, if the estimates are felt to be as good as 20 of the coming

observations, then ne = 20. (In a totally uninformed prior information

condition, a = P = 1, which corresponds to a uniform distribution. In

this condition, the distribution of the sample information will also be

the posterior distribution.)

This method has increased flexibility over previous works because

it is not constrained by the PERT variance assumption. It will also

provide more accurate values for the prior distribution mean and

variance because those values are computed directly from the shape

parameters, and not fram simplifying approximations, such as PERT

equations (6) and (8) or improved PERT equations like the extended-

Pearson-Tukey approximations [Keefer and Bodily (1983)] (which can be

applied to a variety of distributions). The use of the incomplete beta

function will also permit more accurate distribution fitting than

previous methods that fit the moments of the distribution to fractiles

and quartiles [Pratt, Raiffa, and Schlaifer (1965)).

Conventional Bayesian methods for beta distributions. If a beta

distribution describes the prior beliefs, then a Bernoulli process,

either Binomial or Pascal sampling, is needed to keep within a natural

conjugate framework. (In an equipment replacement situation, it is
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unlikely that a firm would set a specific number of successes, and

continue investing until they attained that number. Therefore, we will

focus on the binomial sampling approach.) A Bernoulli trial has only

two octmes, described as "success" or "failure". However, since cash

flow data is a continuous variable andi not a dichotomous one, we will

satisfy the Bernoulli description by categorizing the cash flow as a

success if it exceeds its most likely estimate, and a failure if it

does not. The shape parameters are transformed to this success/failure

orientation by

r' = a (11)

n' = a + (12)

where the (') denotes a prior belief, and equations (1) through (3)

become:

mean = r' / n' (13)

mode = (r' -1)/ (n' -2) (14)

variance = (r'(n' - r')) / (n' 2 (n' + 1)) (15)

Data is collected as r successes in n trials. The prior belief and

likelihood function form the natural conjugate family. This

relationship is readily proven by:

beta prior * binomial likelihood

f(x I n', r') * l(x n, r)
4 f(x I n', r') * l(x n, r) dx

r(n') r'-l (i n'-r'- I  n! xr (i - n-r
r(r') r(n' - r') ' r!(n-r)!

1 r(n') xr'-l(l xn'-r'-i n! xr (i n-r

r(r') r(n' - r') r! (n-r)! - dx
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xr'+r-1 (I - X)n'-r'+n-r-1

xr {i - x) n l- r l+n - r - 1 dX

r'+r-1 R - X)n'-r'+n-r-1

r(r' + r) r(n' - r' + n - r)
r(n' + n)

r(n' + n) xr'+r-i1 x)n'-r'+n-r-i
r(r' + r) r(n' - r' + n - r) (i-

= beta posterior

The parameters are revised by the established formulas (where the (")

denotes a posterior belief):

n"= n' + n (16)

r"= r' + r (17)

Euivalent sarmle size concept - in the samlpe observations.

While a theoretic Bernoulli trial has only two possible outcomes, "real

life" data frequently lacks that absolute clarity. Consequently,

before we incorporate the sample, we must consider: (1) "How well

does the sample information represent the parent population?", (2)

"How well can the firm interpret the reported results?", and (3) '"What

is the relative quality of the sample information when compared to the

estimated performances?" The first two questions focus on result

repeatability, and the third question examines the equitability of the

distribution revision to be performed. We can resolve these questions

by again applying the equivalent sample size concept.

A given period, n, has a cash flow, an, that is the average of all

cells that have been implemented. The period also has optimistic, most

likely, and pessimistic estimates that we will denote as ano, anm, and
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arp, respectively. The value of the actual cash flow is related to the

estimates by

an = anp + (re/ne)(ano - anp) (18)

where re and ne are the "equivalent" sample's number of "successes" and

"trials". If the user does not desire to interject subjectively into

the process, he can use ne = n. But, if he feels that the

representative quality of the data makes it an efficient performance

indicator, he can increase the equivalent sample, such that ne > n.

This increases the "weight" of the sample information. Equations (16)

and (17) are modified as

n" = n' + ne (19)

V1 = r' + re (20)

Conversely, if the user feels that conditions have made the sample an

ancmaly, he can make ne < n. (Appendix C contains a model development

for the normal distribution. It offers a unique derivation of prior

beliefs, based on the 3-point estimates.)

Method mmz

Before presenting the case study, we will summarize the overall

method, and annotate (*) where our innovations are inserted.

1. * Develop a prior belief from a 3-point performance estimate,

using a continuous distribution. Adjust prior distribution's

descriptive parameters to reflect the strength of the prior

belief, by using the equivalent sample size concept.

2. Given the prior belief and sampling to be performed, identify
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all possible sample outcomes, and their predictive

probabilities.

3. Determine the posterior distributions for each outcome

possibility, and their respective expected values.

4. Determine the terminal decision expected values (applying the

step 2 predictive probabilities to the step 3 expected

values).

5. Formulate decision strategy.

6. Givn that a phased implementation strategy is initiated,

collect sample information.

7.* Evaluate sample and economic environment consistency

(subjectively assess the repeatability of the sample

information). Apply n or he, as appropriate, to obtain ne

posterior distributions.

8.* Determine new expected values and revise the decision

strategy, if ne has been used.

9. Continue this process throughout the project's econumic life.

The conventional Bayesian approach is designed to provide a

ccmprehensive decision strategy that will have a contingency plan for

every possible event, and our modifications provide increased

flexibility for those methods.

CASE SIUDY: INCM=4ENTAL CAPACIW EXPANSION

The following case study is provided as illustration of the

techniques presented. The study is an examination of an actual
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capacity expansion and equipment rep tacement decision made by a large

corporation.

General situation

The United Aerospace Corporation is a large manufacturer of

military and commercial aircraft. These aircraft use five different

sizes of engines, and their respective designs require a total of 84

different component airfoils (precision-forged compressor blades). Two

years ago, the corporation built a highly automated 700,000 square foot

facility, with a designed annual capacity of 1.3 million blades that

supports a 10-year production requirement. After the factory was

completed, two events occurred that created capacity problems for the

firm. The first event, a favorable one, the corporation won an

additional procurement cont-act from the government. This contract

will increase the annual requirements by 500,000 blades within two

years. The second event, an unfavorable one, was a problem in the

finish application process. The airfoils have very fine tolerances for

their finished surfaces and edges. Originally, these finishes were to

be applied by a series of manual buffing operations (finish application

was not an automated process). However, ccnplications resulted in a

near two-fold increase in buffing time, creating a bottleneck in the

operations. The factory currently has eight manually operated buffing

centers, but the couplications and increased demands will require the

factory to double its current finish application capacity within two

years.
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The corporation can meet its capacity expansion requirements by

purchasing eight more manually operated buffing centers, or by adopting

automated abrasive flow machines (AFM), a technology that has just

become available. These machines use a synthetic putty, impregnated

with silicon carbide, that flows under pressure across the edges and

surfaces of the part. The pressured flow removes material and provides

the desired finish. The flow is ccuputer controlled and the process is

fully automated. It is projected that one AFM has the capacity of four

buffing centers, and two AFM's could meet the increased capacity

requirements. As an extension of this problem, the corporation also

considers replacement of their existing buffing centers with AFM's.

This extension means that the corporation has three configuration

alternatives to consider: (1) sixteen manually operated buffing

centers, (2) four AFM's, or (3) some mixture of buffing centers and

AFM's. However, there are concerns over the fact that these machines

are a technical innovation for this process, and uncertainty

acxompanies their predicted performances.

An incremental approach is used to highlight the differenes in

the cash flow performances of the two technologies. One AFM currently

costs $265,000 more than four buffing centers. The AIM is expected to

have lower labor and operating costs (compared to four buffing

centers), and its faster processing time is expected to permit

reductions in the work-in-progress (WIP) levels for all types of

blades, resulting in lower inventory holding costs. When the proposal

was prepared, the incremental after-tax cash flow (one AFM - four

buffing centers) was given in the form of optimistic, most likely, and
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pessimistic estimates. These values are listed in Table 1 for the

eight-year planning horizon (the dollar values that appear in the

tables and on the figures are rounded to the nearest $10, and any

apparent inconsistencies in calculated values are due to this round-

off). The range of estimates is a reflection of the uncertainty

associated with the AFM' s performance. To address the conerns over

this uncertainty, the AFM alternative has the option of phasing its

machines into operation over the available window of two years.

Additionally, the AFM's have computer components that will be cheaper

in the near future. The equipment supplier has told the firm that the

equipment's current list cost will be reduced by $15,900 at the end of

the year, and by another $16,560 ($32,460 total) at the end of two

years. Acoordingly, the firm prepared per unit (one AFM to four

buffing centers) incremental estimates of the after-tax cash flows for

equipment initiated at the end of year 1, or the end of year 2. The

latter cash flows are limited by the planning horizon, but the AFM's

will have increased salvage values that correspondingly increase the

final year's after-tax cash flow. This information is shown in Table

2. The incremental cash flows that have been thus far developed

explicitly address the capacity expansion comparison of AFM to buffing

center. For the equipment replacement consideration, the on-hand

buffing equipment would normally have a lower value than new centers,

and the cash flows would be adjusted accordingly. However, because

these centers are both relatively inexpensive and readily adaptable to

other factory needs, the value of the current equipment is felt to be

comparable to new equipment, and we will assume that the incremental



110

Table 1. Estimated annual cash flows for one incremental unit
(one AFM - four buffing centers) initiated at tine
zero.

Estimate

Year Pessimistic Most Likely optimistic

0 $-265,000 $-265,000 $-265,000
1 34,200 38,000 39,900
2 60,300 67,000 70,350
3 63,000 70,000 73,500
4 61,200 68,000 71,400
5 58,500 65,000 68,250
6 58,500 65,000 68,250
7 58,500 65,000 68,250
8 58,500 65,000 68,250

EV(Uol)o* -17,760 9,710 23,450

*Note - EV(uoI)O refers to the expected value of a cash

flow for one unit, initiated at time 0,
disconted at the MRR of 15% (value rounded to
the nearest $10).
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cash flows for the AFM's to existing centers can be treated as the same

as those developed in Tables 1 and 2.

The firm's after-tax minimum attractive rate of return (MAMR) is

15-percent. The net present value for the incremental cash flows (AFM

- buffing center) are interpreted by the following:

Positive net present value = AFM performance is superior,

Negative net present value = buffing center performance is

superior.

To clarify the multiple options created by the phased adoption policy,

a cxmplete listing of all possible decisions is provided in Table 3.

For this corporation, a decision that creates mixed modes of finish

application is acceptable. (For brevity's sake, the sensitivity

analysis of interest rates, projected savings, etc., will not be

presented in this paper, but it recognized that such analyses are

critical to any decision problem.)

Beta distribution model

Our first step is the selection of a beta prior probability

distribution that will satisfactorily model our uncertainty in the cash

flow's expected value. We will use the following notation:

EV(Utl)j = expected value of one unit (one AFM - four buffing

centers), initiated at time t, discounted at the MRR

to time j.

EV(djk)q = expected value of terminal decision k, made at time j,

discounted at the MRR to time q. This term coabines

unit expected values (as for, EV(d 0 1 )0 = 4 * EV(uOl)o ) .
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Table 3. Decisions, and follow-on options, that were considered at
time zero.

Decision Explaination

d00 Do not initiate any units, reject this alternative.

do, Initiate all four units invediately.

do2 Initiate one unit, collect data, and reevaluate
this proposal in one year. (Given that this
decision has been selected, the options continue.)

dl0 Stop the incremental process with one AFM, acquire
four buffing centers to meet remaining capacity
requirements.

dll Initiate the remaining three units.

d12 Initiate one more unit, collect data, and make the
final decision at the end of year two. (Given that
this decision has been selected, the options
continue.)

d20 Stop the incremental process with two units.
Evaluate if it would now (the end of year 2) be
better to replace the existing AFM's with buffing
centers.

d21 Initiate the last two units, to replace the buffing
centers that were installed when the factory was
built.
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Develoent of the prior distribution. We use the 3-point

estimate for a single unit at time 0 ($-17,760, $9,710, $23,450) to

determine a standardized mode, xm, and solve equation (4) to get a =

4.64, and equation (2) gives P = 2.82. The set (4.64, 2.82) describes

our initial candidate beta distribution, which has a per unit expected

value, EV(UoI)o = $7,870, and a probability of negative return, or the

buffing centers' performance being superior to the AFM's, P(uol < 0) =

0.14. At this point, we propose that this candidate solution be

refined, because our initial feeling is that the probability that the

AFM's performance will not exceed the buffing centers' performance is

greater than 0.14. After reviewing several other candidate parameter

sets, we select a = 3.667, P = 2.333, with E(uol) 0 = $7,420 and P(uOl <

0) - 0.18. The selected parameters retain the mode at $9,710, but the

variance has changed from the equation (9) approximation of 6,8702, to

a directly ccuputed value of 7,5902 (through a non-standardization of

equation (3)). The variance change is a direct reflection of our

desired change in a particular interval's probability, depicting our

prior beliefs better than the PERT approximations.

Conventional Bayesian methods at time 0. The remaining steps in

the time 0 analysis follow conventional Bayesian techniques. Since

they have not been typically considered in equipment replacement

scenarios, those steps are presented in abbreviated fashion. The

payoffs for the time 0 terminal decisions are (using (a, P) = (3.667,

2.333)):

EV(doo)o = $0

EV(doI)o = $29,690



115

Under a pure net present value criterion, the positive EV(doI) 0 would

dictate that we initiate all units immediately. However, in our

modified procedures, we follow the course of action that yields the

highest expected value. So, continuing, the values of a and 0 are used

in equations (11) and (12) to give r' = 3.667 and n' = 6. The

incrental options available in this project permit the initiation of

a single unit at time 0, with a second unit, if desired, at the end of

year 1. The initiation of a single unit implies that our sample

information will have n=l, with possible cutcomes r=0 and r=l. An r=O

utcome means that the observed result falls short of the year 1

expected value, while an r-l outcome means that the performance

prediction was exceeded. The prjdjyt probabilities for those

outcomes, given n', r', and n, follow the beta-bincmial distribution,

with P(r=0 I r',n',n) = 0.389, and P(r=l I r',n',n) = 0.611. The year

one sample results for (r, n) = ((0, 1) and (1, 1)) are combined with

r' and n' in equations (16) and (17) to yield two posterior sets of

descriptive parameters, (r", n") = ((3.667, 7) and (4.667, 7)). We

then cxmpite the per unit expected values and probabilities of loss for

units initiated at time 0 and time 1. The results are:

I rot 1 LL3J 110 E-:5 M- -M 11 P0 ki ----
0 3.667 7 $3,830 0.31 $4,020 0.27
1 4.667 7 9,710 0.10 9,030 0.08

Frcm this, we ccmpute the end of year 1 terminal decision payoffs:

for r = 0, EV(dl0)0 = EV(u 0 1)0 = $3,830

EV(dn) 0 = EV(u 0 1 ) 0 + 3 * EV(u 11 ) 0 = $15,890

for r = 1, EV(dI0)0 = $9,710

EV(dlI) 0= $36,790



116

The posterior values r" and n" then becomse the prior values for the

second year's sampling. The predictive probabilities for year 2 are:

Year 1 Year 2
__ r n _n r Lrl I 'nI.n)
0 3.667 3.333 0 0.476
0 3.667 3.333 1 0.524
1 4.667 2.333 0 0.333
1 4.667 2.333 1 0.667

The per unit expected values for the end of year 2 distributics are

(all values of r" have an associated value of n" = 8):

r" _ UOuljO RLMo,1<_50 L(-u1l 0  PU 11<50) M 1 0  kL2l<0

3.667 $3,210 0.28 $1,730 0.40 $1,130 0.45
4.667 6,950 0.09 6,110 0.16 6,280 0.19
5.667 10,690 0.02 10,480 0.04 11,430 0.05

and the payoffs for the end of year 2 terminal decisions are:

Year 1 Year 2
_ _ r" n't EV 01 9L(!2i10

0 0 3.667 8 $2,860 $9,280
0 1 4.667 8 12,390 26,280
1 0 4.667 8 12,390 26,280
1 1 5.667 8 21,910 43,290

Although the cash flow is continuous, the discrete nature of the sample

information makes the problem readily presentable in decision tree

form, as shown in Figure 4. (Branches that are cross-hatched, -+- ,

are inferior decisions.) The strategy determined at time 0 is to

initiate single units at time 0 and the end of year 1, and initiate the

remaining units at the end of year 2. The expected return for this

strategy is $30,060. The strategy mapping shown in Figure 4

illustrates the level of detail provided by the Bayesian methods. All

conventional sample outcomes are anticipated and appropriate actions
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are enumerated for each possibility. The observations in years 1 and 2

will "steer" the movement along the extensive form analysis.

Applving eauivalent sample size concept to the beta model. The

year 1 incremental cash flow realization was $39,330, which was easily

greater than the predicted value $38,000. The time 0 decision strategy

would have the firm initiate a second unit, and continue monitoring.

Here, we again deviate from the conventional approach. During year 1,

the firm's economic environmental conditions were noted, and a review

of the typicality, or repeatability, of the year 1 performance results

was conducted. This review concluded that the sample data was as

informative as the initial predictions, and should carry as much

informative "weight" as those forecasts. Therefore, rather than use a

value of n = 1 for the sample, we will use an equivalent sample size of

ne = 6. We then solve equation (18) for re:

r e = (6 * (39,330 - 34,200)) / (39,900 - 34,200) = 5.4

This result is not possible under conventional methods. The values of

re and ne generate a new set of posterior parameters, r" = 9.067 and n"

= 12.

Conventional methods for remaining end of year 1 analysis. We

then use these parameters to resolve the decision problem. The per

unit expected values that are used with end of year 1 terminal

decisions are:

r" n" __i i Pu 0 I < 0) EV(U 1 111  P(Ull < 0)

9.067 12 $15,380 0.01 $13,960 0.01

The payoffs for the end of year I terminal decisions are:
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EV(d10)1 = $15,380

EV(dlI)1 = $57,260

The beta-binumial predictive probabilities, with r' = 9.067, n' = 12, n

1 1, for the second year's sampling are:

r P(r I r' n, n) r" n"

0 0.244 9.067 13
1 0.756 10.067 13

Based on the post-rior distributions, the per unit expected values are

(all values of r" have associated values of n" = 13):

r" nVUuol)l LL0_ 5- ono) ivu11)1 EP_ 141 _E _u 141 E_ _21-:o--
9.067 $12,630 0.02 $11,620 0.02 $11,920 0.01

10.067 16,270 0.01 14,720 0.00 14,560 0.00

The payoffs for the end of year 2 terminal decisions are:

r" n" EV(20)-1 EV(d 2 1 4I

9.067 13 $24,250 $48,080
10.067 13 31,000 60,110

These results can also be mapped into a decision tree format, as shown

in Figure 5. This extensive form analysis shows that the new optimal

strategy is to convert all remaining units immediately. The expected

return from this strategy is $57,260. The expected return, as compared

to the time 0 return of $30,060, has nearly doubled. The net gain from

the strategy change is small ($57,260 - 57,170 = 90), but the magnitude

of that gain will always be situation and performance dependent.

Further, the sample information shows that the probability of the AFM's

performance exceeding the buffing centers is greater than we initially

anticipated. The accelerated implementation decision, d1 , could only
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EV (d]_0) 1.

$15,380

$57,260 P(r = 0) $24,250

FEa. 
244 EV (d 21)1

$48,080WV(d12 ) 0

$57,170 EV(d20)l1
P~r =i) A $31,000

0.756 T EV(d1 )1

$60,1ii0

Figure 5. Extensive form analysis at the end of year one. Revisions

are made after obtaining year one sample information, and
applying values for re and ne with r' and n'.
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become the best option through the addition of our equivalent sample

size concept to conventional Bayesian methods.

CONCUISIONS

In this paper, we have developed concepts for continuous models

that have natural conjugate distribution families. They have been

developed within an equipment replacement/capacity expansion framework,

and the key ideas were:

(1) demonstrating how Bayesian techniques can be applied to

equipment replaoement/capacity expansion problems.

(2) demonstrating how a beta prior distribution can be readily fit

to 3-point PERT-type estimates, and how these estimates can be

refined through the use of the inccmplete beta function

(examining probability values for specific intervals of

interest) and the equivalent sample size concept (that

reflects our initial beliefs in the quality of the estimates).

(3) applying the concept of equivalent sample size to the observed

results (a oamparison of estimate quality and result

typicality), in beta distribution revisions.

(4) the illustration of these techniques in a case study

presentation of an actual decision problem.

In the case study we used the beta conjugate family, and obtained

a prior distribution candidate solution by simultaneously solving PERT

and beta mean and variance equations. We refined that prior belief by

keying on its probability of negative return, a measure of

effectiveness that highlights the best performing alternative in an
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increvental analysis. When we revised that prior belief, we used

sanple information that incorporated the equivalent sanple size

concept. The result we obtained was not possible under conventional

Bayesian methods, and it led us to a ne decision strategy that had a

greater expected value than our initial (tire 0) strategy.

The new strategy demonstrates that incorporation of these

procedures can lead to more efficient use of capital, and greater

return on investment. However, a critical consideration to applying

these methods is that the user have a thorcgh understaning of the

quantity and quality of both the initial and sanple information. The

assignment of "eight" factors must reflect the relative strengths of

the information, as misapplication of these concpts will give

distorted information.
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AEDIX A. Beta distributions fit to 3-point PERT-type
approximations.

Many capital budgeting proposals, including equipment replacement

projects, are prepared as 3-point approximations of the anticipated

performance (pessimistic, most likely, and optimistic). The

uncertainty described these estimates has frequently been addressed by

probabilistic representation as triangular distributions. This is

especially true in simulation studies. We feel that this uncertainty

can be modeled equally well by variations of the beta distribution

(which has other advantageous properties). An earlier work [Keefer and

Bodily (1983)] examined several methods that could approximate a

distribution's mean and variance, based on 3-point estimates of

performance, and tested those approximations with a series of beta

distributions. As an extension of same of the concepts presented

there, we will examine the similarities of the cumulative distribution

functions (c.d.f. 's) of certain triangular and beta distributions.

When the beta distribution shape parameters (a, 0) are relatively

small, the beta and triangular c.d.f. 's are nearly identical. In fact,

the slope of a right triangle (with the 90* angle on the left) is

identical to a beta distribution with (a, 8) = (1, 2). To demonstrate

the similarities of the c.d.f. 's, we will use two different values of

the distribution mode (for a 0 to 1 range of x): (1) the mode is 0.5,

and (2) the mode is 1/3. In the symmetric case, we compare the

triangular c.d.f. to beta distribution c.d.f.'s for (a, B) sets of (3,

3), (4, 4), and (10, 10). The set (3, 3) is used because it is a

development frum the linear solution of the PER approximation of the
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mean, equation (8), and the beta distribution equation (1) for the

mean. The set (4, 4) is used because it is the solution to the PEU

and beta equations when the assumption that the Var(x) = (1 / 6)2 is

included. The set (10, 10) is used because it represents a

distribution where the prior beliefs are more strongly held than the

first two cases. As seen in Figure A-i, parts (a) and (b) show that

there is little difference between the c.d.f.'s for the triangular

distribution and the B(3, 3) and B(4, 4) distributions, respectively.

However, the c.d.f. for the B(10, 10) distribution shows a much greater

difference.

The second situation, using the skewed distribution with xm = 1/3,

examines the beta parameter sets (2.333, 3.667), (2.82, 4.64), and (10,

19). The set (2.333, 3.667) corresponds to the previously mentioned

linear solution, the set (2.82, 4.64) incorporates the variance

assumption, and the set (10, 19) represents the stronger belief

example. As shown by items (d) and (e), the beta distributions

described by the sets (2.333, 3.667) and (2.82, 4.64) closely

approximate the triangular distribution's c.d.f. Item (f) shows that

there is considerable difference between the B(10, 19) and the

triangular distribution.

As shown by the figures, when the a and P values are low, as when

they are within the range of the PERT and beta equation simultaneous

solutions (either with or without the variance assumption), the

triangular and beta distributions are nearly identical. (For brevity,

cases with greater asymmetry were not presented. However, those cases

show that the more pronounced the asymmetry, the fit is increasingly
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poorer for increasing values in the (a, P) parameter sets.) Thereby,

since the triangular distribution was an acknowledged approximation of

prior beliefs, using the beta distribution will not present a radical

change in those beliefs. In fact, when the estimates represent

stronl held prior beliefs, a properly fitted beta distribution will

provide a much more accurate representation than the triangular

distribution. Lastly, modeling the prior beliefs with the beta

distribution will allow us to use a natural conjugate family of

distributions.
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APFMIXB. BASIC ocuputer program used to obtain initial and refined
beta distribution shape parameters.

The attached BASIC cczputer program takes the initial three-point

PERT-type estimates and uses the cubic equation to determine an initial

candidate solution for the beta distribution shape parameters, a and .

The user can inplement those parameters, or refine then, as desired.

The program can then be used to find probability values for specific

intervals, and this information is provided as feedback to the user in

the parameter refinement process. The program uses Simpson's

approximation technique to find the probability values of the

Incumplete Beta FUnction. The program also provides the user with

summary information on the evaluated beta distribution.
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10 DIM RCOT(3)
20 ' This program is designed to find beta distribution shape
30 ' parameters from a given 3-point estimate. The estimate may
40 ' be standardized (0 to 1) or nonstandard values.
50
60 INU" Enter the most optimistic estimate ";HIGH
70 INPUr " Enter the most likely estimate ";MWSTL
80 INPU" Enter the most pessimistic estimate" ;rOW
90

100 Fran these values, a standardized mode is computed for use in
110 the determination of Beta distribution shape parameters. This
120 program will handle nonstandard values, and it also assumes
130 that the optimistic and pessimistic values are true end points.
140
150 A=IDW : B=HIGH
160 XM= (MOSTL - UN)/(HIGH - ILW)
170
180 with this value, the beta shape parameters, alpha and beta, can
190 be found by solving the cubic equation that results frum the
200 simultaneous equations for the distribution mode and variance,
210 assuming that the variance = 1/36
220
230 to solve the cubic equation, let
240
250 P=(7.*XM) - (36.*XM-2.) + (36.*XMK3.)
260 Q=-20.*XM-2.
270 R=-24.*XM^3.
280 1
290 ' use P, Q, and R to find the branching value D
300
310 YI=Q - ((P-2.)/3.)
320 Y2=((2./27.)*(P-3.)) - (P'Q/3.) + R
330 D=((Y2-2.)/4.) + ((Yl3.)/27.)
340 '
350' branch on D if it is <, =1 > 0
360
370 IF (D < 0) THEN2 GOI 410
380 IF (D = 0) THE GOTO 670
390 IF (D > 0) M GOlD 900
400 '
410 ' determine the real cubic roots when D < 0, (three real roots)
420
430 ' find the sign of COS(PHI), then angle PHI
440
450 IF (Y2 < 0) THE2' CSPHI=(((Y2-2.)/4.)/(-I.*((Yl13.)/27/)))-.5

ELSE CSPHI=-I.*(((Y2 2.)/4.)/(-i.*((Yl3.)/27/))) 5
460 DEF FNARCOOS(X)=1.570796327-ATN(X/SQR(I-X*X))
470 PHI=FNARCODS (CSiI)
480 '
490 ' now find the three roots
500
510 FOR I=0 TO 2
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520 RIXT(I + 1)=(2.*(SQR(-.*Y/3.)))*XS(PHI/3. + (2.*3.141592/3.)*I)
- (P/3.)

530 NEXT I
540 '
550 ' with these roots, find the corresponding alpha and beta values
560
570 FOR I=1 TO 3
580 AIM-AR=IT(I) + 1.
590 E]TA=( (AuHA - 1. )/XM) - ALPHA + 2.
600 PRINT " Candidate values for Alpha and Beta are ";ALPHA;BErA
610 NEXT I
620 '
630 ' then go to the inccmplete beta function
640
650 GOMO 1320
660 1
670 ' Determine the cubic roots when D = 0 (3 roots, at least 2 =)
680
690' branch on the sign of Y2
700
710 IF (Y2 < 0) THEN3 G 750
720 FOOT(1)=(-2.*(-1.*Y1/3.)-.5) - (P/3.)
730 ROOT(2)=((-l.*Y1/3.) .5) - (P/3.)
740 GOlD 780
750 R1r(1)=(2.*(-l.*YI/3.)-.5) - (P/3.)
760 RrOT(2)=(-l.*(-l.*YI/3.)-.5) - (P/3.)
770 '
780 ' with these roots, find the alpha and beta candidates
790
800 FOR I=1 TO 2
810 AIPHA=cROT(I) + 1.
820 EMA=((AUPA - l.)/XM) - AUMI + 2.
830 PRINT " Candidate values for Alpa and Beta are ";AUMA;BEA
840 NEXT I
850 '
860 ' go to the incomplete beta function
870
880 GOlD 1320
890 '
900 ' Determine the single real root when D > 0, branching on the
910 ' value of Y1.
920
930 IF (Y1 < 0) TEN GOTD 1190
940 '
950' for D > 0, and Y1 > 0, find angle PSI
960
970 IF (Y2 < 0) TMI CIN2PSI=(((Y2^2.)/4.)/((Yl3.)/27.))-.5

ELSE CTN2PSI=-1.*(((Y2"2.)/4.)/((YI13.)/27.)) .5
980 DEF FMARCXT(X)=1.570796327 - ATN(X)
990 PSI=(FNARCOOT(CTN2PSI) )/2.
1000 1
1010 ' then find angle PHI



133

10201030 TNPHJ=(TAN (PI) ) (1./3.)
1040 PHI=ATN(TrPHI)
1050 1
1060 ' now, find the real root
1070
1080 DU FIKW(X)=1./TAN(X)
1090 TEi=(2.(SQR(Y/3))*FNr(2.*PHI)) - (P/3.)
1100 1
i10 ' next, find the values for Alpha and Beta, and go to the

1120 incxmplete beta function steps
1130
1140 ALPHA--TERM + 1.
1150 BEA-=( (ALPHA - 1.)/XM) - ALPHA + 2.
1160 PRI 1" Candidate values for Alpha and Beta are ";AIA;ETA
1170 GUMO 1320
1180 1
1190 ' Detexmine the real root when D > 0 and Y1 < 0.
1200
1210 BIGA=((-1.*Y2/2.) + (D- . 5)) (./3.)
1220 BIGB=((-I.*Y2/2.) - (D-.5)) (1./3.)
1230 TEMWBIGA + BIGB
1240 '
1250 ' next, find the values for Alpha and Beta, and go to the
1260 ' incomplete beta function steps
1270
1280 ALPHA-TER + 1.
1290 BEA=( (ALPHA - 1.)/XM) - ALPHA + 2.
1300 PRINT " Candidate values for Alpha and Beta are ";ALPHA;BEIA
1310
1320 This part of the program uses the derived parameters to find
1330 intervals of the beta odf, by the inccmplete beta function.
1340 The beta crdf is approximated by Simpson's rule. The user has
1350 just seen the candidate Alpha and Beta values, and he Must
1360 make his parameter value selections.
1370
1380 INPUr" Enter the desired value for AIPHA ";ALPHA
1390 I4r" Enter the desired value for BEA ";BEMA
1400 ALUIA=AIA - 1.
1410 BErA=BErA - 1.
1420
1430 When ccpiting the incomplete beta function, the constant
1440 inside the integral can be factored and canceled (as it appears
1450 in both numerator and dencuenator. This leaves the function
1460 inside the integral as
1470
1480 DEF FNF(X)=(X - DOW) ALPHA * (HIGH - LOW) BETA
1490 '
1500 ' first, ccmpute the denomenator value
1510
1520 GOSUB 1900
1530 OSTANI-
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1540
1550 We can now cxmpute the probability over any desired interval
1560 within the range established by the optimistic and pessimistic
1570 values. For initial information to the user, the cumulative
1580 probability from the pessimistic value to the mode is found.
1590
1600 B4MWr
1610 GOSUB 1900
1620 BPRDB=S/CDNSTANT
1630 PRINT " "
1640 PRINr For the interval from ";A;" to ";B;", the cumulative"
1650 PRINT" probabilities for your BETA distribution and a "
1660 PRINT" triangular distribution using the 3-point approximation"
1670 PRINT" are, Beta distribution probability ";BPROB
1680 PRINT" Triangular distribution probability";XM
1690 PRINT " "

1700 PRINT" Enter codes for next investigation -"
1710 PRINT" 1 = other intervals, with current Alpha and Beta"
1720 PRINT" 2 = change Alpha, Beta, and Interval"
1730 PRINT" 3 = summarize distribution information"
1740 PRINT " 4 = Quit"
1750 NPUT MORE%
1755 IF (MORE% = 1) MHW GOMD 1800
1760 IF (MORE% = 2) MEN GMO 2200
1770 IF (MIRE% = 3) MiE2 GOlD 2400
1780 IF (MVRE% = 4) MHW GOlD 1870 ELSE GOD 1700
1790 PRINT " "

1800 1NPur" Enter the upper limit for the interval of interest";B
1810 INPr " Enter the lower limit for the interval of interest" ;A
1820 PRINT " "

1830 GOSUB 1900
1840 PRINT " Probability for interval ";A;" to ";B;" is ";S/OONSANT
1850 PRINT " "

1860 0010 1700
1870 END
1900 ' This subroutine cxmputes the area for the interval selected,
1910 ' by using Sinpson's rule (without error term)
1920
1930 H=B - A
1940 =-(FNF(A) + FNF(B)) * H/2.
1950 GUM1 1970
1960 T=-(T + M)/2.
1970 M=O
1980 FOR X=A + H/2. 70 B STEP H
1990 M=M + FNF(X)
2000 NEXT X
2010 M=M * H
2020 S=(T + 2.*M) / 3.
2030 H=H/2.
2040 '
2050 ' The stopping rule uses a comparison of the average f(x) values
2060 ' for the interval endpoints and subinterval midpoints. This
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2070 ' approximation's beta probabilities were ccmpared to a sample
2080 ' of distributions, using the same Alpha and Beta parameters,
2090 ' from Pearson's tables of the incomplete beta function, and
2095 ' were accurate to four decimal places, or better
2100
2110 IF ((ABS(T - M) / ABS(S)) > .001) U[IEN 1960
2120 REIUM
2200 '
2210 ' This subroutine computes probabilities for new shape parameters
2220
2230 INPU " Enter value for AILPHA ";ALPHA
2240 INPr" Enter value for BETA ";BErA
2250 IN4r" Enter range lower endpoint ";C*W
2260 INUr " Enter range upper endpoint ";HIGH
2270 AMI Ffrl - 1.
2280 EEA=E-rA - 1.
2290 A=ILW : B=HIGH
2300 GOSUB 1900
2310 CONSTANT=S
2320 INUr " What is the lower limit for the interval of interest ";A
2330 INPU "What is the upper limit for the interval of interest ";B
2340 GOSUB 1900
2350 PRINT " "

2360 PRINT " Probability for interval ";A;" to ";B;" is ";S/OONSTANT
2370 PRINT " "
2380 GO 1700
2390 RE1UN
2400 1
2410 ' This subroutine summarizes the current distribution information
2420
2430 ALPHA=AULPA + 1.
2440 BETA=BErA + 1.
2450 I / (ALIPHA + BETA)
2460 EMDM=(ALIPHA - 1.) / (ALPA + BETA - 2.)
2470 BVAR=-(AIPHA*ETA) / (((ALPHA + BETA) 2.) * (ALPHA + BETA + 1.))
2480 PRINT " "
2490 PRINT " The Beta distribution you have selected has"
2500 PRINT " Interval f;W;" to ";HIGH
2510 PRFIT " Alpha ";ALPHA
2520 PRINT " Beta ";BETA
2530 PRINT " Mean "1;BMEAN*(IGH - LOW) + LOW
2540 PRINT " Std Dev ";(BVAR^.5)*(HIGH - LOW)
2550 PRINT" Mode ";HMDE* (HIGH - IM) + DW
2560 GOTO 1700
2570 RETURN
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MI1RLX . Model development and case study application for a ri~i
prior distribution.

MCLDEVELOHr

When the 3-point estimates are symmetric, we can model

uncertainty about the cash flow's expected value with a normal

distribution. We can use the 3-point estimates to fild E(g) and

Var(g). The apparent drawback to using this model is that the 3-point

estimate provides no information about the variance of the cash flow's

parent population, o4. Further, because the challen er processes

involve technical innovations, there will also generally be no other

historical records to provide input. While we are truly facing an

unknown population variance condition, the 3-point estimates give us no

information to establish values for E(o 2 ) and Var(o 2 ). Fortunately,

other circumtanes in this problem will permit us to oveoe the

absence of E(o 2 ) and Var(o 2 ). As shown in an earlier work (Prueitt and

Park (1989)), uncertainty resolution occurs very slowly in the

population variance (Var(o 2 ) goes to zero slowly), requiring many

sample observations. Because many replacement projects have limited

sample sizes, they would not realize the effects of that resolution.

Thereby, if we develop a value for a2, and treat it as a known value,

there would be little difference in the end results. As we will show,

Subsequently, we can use the 3-point estimates with the equivalent

sample size concept to develop a value for a 2 . We will then follow

conventional procedures for an unknown mean, known variance condition.

Mhen we use the normal distzibution, we also follow the belief

that the sample information is normally distributed. The information
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provided by its likelihood function is generally more descriptive than

the Bernoulli process, but we must consider the following:

a. Normality assumptions. The normal distribution models are

based on the mean performances of some xj, j=1,2, "-,n, that

are assumed to be independent identically distributed random

variables (IIIRV), with a common mean and variance. The

accuracy of this model is adversely affected by undetected

trend or seasonal effects.

b. Sample size requirements. The closer the distribution of xj's

is to the normal curve (specifically, the closer the

distribution is to being symmetric, or having smaller third

central moment, or skewness, values), the smaller n can be,

and still provide good accuracy.

c. Period of observation. If we model a project's net present

value (including investment z. well as return) as the xj's,

then the required observation period is one unit's econmic

life. This is frequently several years for manufacturing

equipment, which makes this an unattractive approach for

project net present value. However, we can resolve

performance uncertainty if the xj's occur in "steady-state"

conditions, as with periodic cash flows from an on-line

process operating at a relatively fixed level of production.

Here, the xj's would be the periodic (monthly, quarterly,

yearly, etc.) cash flows, and their uncertainty resolution

will be used to refine the project performance estimates, in

anticipation of the sequential decision reviews.
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Initial prior belief. when we begin fitting a normal distribution

to a 3-point estimate, we must consider how to handle the estimate

extreme points, realizing that there is only a limited amount of

flexibility for any interval probabilities. For this normal model, the

optimistic and pessimistic estimates will not represent absolute

limits. This gives sane flexibility to the estimating process, but, if

those estimates are truly absolute limits, then tail probabilities

outside of extremes are misrepresented. To fit a normal distribution

to a 3-point estimate, the optimistic and pessimistic values must be

associated with specific percentiles of the distribution, and the

outcome probability for an interval of interest can only be slightly

modified. For example, the 3-point estimate of $50, $100, and $150 is

modeled as a normal distribution. The outcome probability for eachi $10

interval fron $100 to $150, with the pessimistic and optimistic

estimates being used as the (1st, 99th), (5th, 95th), and (10th, 90th)

percentiles is listed in Table C.I. It is readily seen that there are

minimal differences between the (5th, 95th) and the (10th, 90th)

percentile sets, the percentiles most often used with PER-type

equations. The percentiles will be used with the normal c.d.f., to

find the standard deviation of the cash flow expected value. For

example,

x(0.95) - x(O.05) = 2 * 1.6449 *a

and,

GM2 = Var(p).
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Table C. 1. Effects of chaging percentiles associated with the 3-point
estimate extreme values, using the estimate
($50, $100, $150) and a normal distribution model.

Estimate percentiles and values

Probability of x(O.01) = $50 x(O.05) = $50 x(O.l0) = $50
interest x(0.99) = 150 x(0.95) = 150 x(0.90) = 100

P(l00 < x 5 110) 0.179 0.129 0.101
P(110 _< x 5 120) 0.145 0.116 0.095
P(120 < x < 130) 0.095 0.094 0.083
P(130 < x 5 140) 0.050 0.068 0.068
P(140 < x 5 150) 0.021 0.044 0.053
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The other key parameter in this approach is the parent population

standard deviation, a. If we consider the established relationship

[Winklier (1972)]:

n' = a2 / a,
2

where n' is the relative weight, or quality, of information for Var(p)

compared to a2. We can rearrange the equation such that

n' a.2 = a2

For example, if we were to believe that the estimates are as good as

the reports from six periodic cash flows, then n' = 6. By defining a.
2

and n', we obtain a value for a2 , and we have enough information to use

the conventional procedures for a normal distribution in a known

variance condition.

Conventional Bayesian procedures for normal distributions.

Briefly, when the cash flow variance is assumed known, the uncertainty

of the cash flw mean, ti, can be represented as a normal prior density

function, of the form:

f' ( = (2ra'2) - exp(-(4 - m')2 / 2a'2 )

where,

ft is the unknown mean,

m' is the prior estimate of the expected cash flow, E(A), and

a'2 is the prior estimate of the variance of the expected cash

flow.

When a sample y, of n observations and observed mean m, is taken from a

normally distributed population, the likelihood function combines with

the prior belief to form a normally distributed posterior belief:

f"(M 1 y) = (27rah"2) - exp(-(g - m",)2 / 2a' ' 2 )
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The resulting population cash flow distribution is described as mN(m",

a2), and the posterior belief about the expected value of the cash flow

is described as WN(m", 0' ' 2). We find m" and 0" 2 fran:

1 1 + n (C-1)0112  as'2 a 2(-1

T = 0 2 2 (C-2)
1 + R-

at 2  a 2

Now, defining the terms

n' = a2 / a1 2 , and nit = a2 /0 ,2

then equation (C-i) can be rewritten as

na2 nI + n2 (C-3)
a2 a2 a2

or,

n" = n' + n (C-4)

where n' refers to the amount, or relative weight, of information for

a,2 = Var(A), as ccmpared to G2. We then use equation C-3 to solve

equation C-2:

n'm' +nm+ =rn (C-5)

Eguivalent samle size cncept for the normal distributions. The

prior estimate of the cash flow expected value, m', was developed from

forecasts for specific economic conditions. As mentioned previously,

the conditions that exist during the observation period may not match

those in the predictions. If the actual performances vary markedly

frum the predictions, they may be felt to be more representative of the

true performance than the initial estimates. In either case, the
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value, or "weight", of the sample information needs adjustment, as

compared to the initial information. We make this adjustment by using

an equivalent sample size, ne. We rewrite equations C-3 and C-5 to

incorporate the strength of belief in the prior estimate concept

(through the inclusion of n'), and to incorporate the strength of

belief in the replicability of the sample (through the inclusion of

ne), which gives:

1 = n' + e (C-6)
0"I2  02 a2

n'm' + ne m
" = n' + n (C-7)

e

If the sample information is more accurate than the predictions, then

we make ne > n, and a '' 2 will go to 0 faster. If the results are

anomalous, then we make ne < n, and a '' 2 will move to 0 more slowly.

As a final note to this section, some authors have stated that

when the variance is not known, the sample variance, s2 = (E(xj - m)2)

/ (n - 1), can be substituted for the population variance. However,

for initial decision formulation, there is no sample variance. After

project initiation, this approximation is only appropriate when the

number of observations is "sufficiently" large, and use of the sample

variance modeling may not be appropriate in many equipment situations,

because they only have a small number of replicable elements.

CASE SIUDY: APPLICATION OF NOM4AL DISTRIBTION MVEEL

The normal model is used when the estimates are symmetrically

distributed. Since the case study involves an asymmetric situation, we
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will modify it for illustrative purposes. We will assume that the

estimates are symmetric, that the newly acquired equipment comes in

assemblies that are readily installed, and that production conditions

will be stable in the first year. We will assume that the cash flows

of years 5 through 8 begin in year 1, and a "steady-state" corvition

exists. We summarize the modifications by restating the annual cash

flow estimates as:

x(o.05) = $58,500

)% = 63,375

x(O.95) = 68,250

ntion of prior belief. We will first use the estimates to

find the cash flow's expected value, E(i), and that expected value's

variance, Var(A) = aA2 = a ' 2. This variance must not be confused with

the variance of annual cash flows, a2 . We will treat the estimates as

the 5th, 50th, and 95th percentiles of the expected values

distribution, such that

E(A) = m' = $63,375

Var(g) = a' 2 = [(x(0.95) - x(0.05)) / (2 * 1.6449)]2 = 2,9642

We feel that the expected value estimate may be somewhat inaccurate,

due to the technical innovations in the process, and the estimates are

cxamparable to a sample of four cash flow observations. Thereby,

n' 4

2= n' * a' 2 = 5,9282

and a2 will be treated as being known with certainty.



144

Conventional Bayesian methods for remaininm time 0 analysis. If

the prior belief in p is normally distributed, with known a2, the

predictive distribution for the sample mean, m, is also normal, with:

E(m) = m' = $63,375
2 (+1 ,61

Var(m) = a2 ( I + 
)  2

Because the expected outcome, E(m), is equal to the prior belief, there

are no changes in the different alternatives' payoffs, and the result

keyed decision process of the beta-binumial distribution is not

applicable. The information provided by the predictive distribution is

the relative reduction in the variance provided by the sample size, n.

Arlvin the eauivalent sample size to the sample data. One year

of sample data was recorded, and the incremental cash flow was $67,188.

The process was found to operate faster than predicted, creating a

larger than anticipated reduction in WIP. There were no anomalous

external econcnic conditions during the year. After a review, it was

felt that the sample information had twice as much weight as the

initial forecasts. Therefore, when we make the revisions, we use

equations C-6 and C-7, with ne = 8, rather than n = 1. This gives us:

= 4(63375) + 8(67188) = $65,917 = E(g)
4+8

a,'2 = 59282 = 1,7112 = Var(A)
4+8

the posterior Var(M), when ccupared to its prior value, reflects a

marked uncertainty reduction. If we desire, we can use this

information to make predictive intervals about the estimated mean

value, but more importantly, we can update the decision alternative

payoffs. The posterior mean is then used to revise the expected net
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present values for each of the remaining unit initiation times. This

leads to a subsequent reoxmputation of decision alternative payoffs,

and once these values are obtained, the firm makes its sequential

decision review.

CONCLUSION

Here, we have demonstrated how the information in a 3-point

estimate could be used to approximate the values needed in an unknown

mean, known variance situation. The population variance was estimated

by an application of the equivalent sample size concept, based on a

quality of information assessment. The revision of those initial

beliefs was also illustrated, using the equivalent sample size concept.



V. DISCRE APPROXIMATIONS IT CONTINUCUS MDEIS

IN SE1W1TIAL BQUIPFME~ REPLACEMETI DECISIONS

ABSTACT

capital budgeting models have been extensively developed for

project selection, but little attention has been given to methods for

project control through the use of post-audit information for

implemented projects. This paper develops an approximation technique

that uses post-audit information to resolve the uncertainty about the

expected net present value of a technically innovative process. We

take a project's three-point, PERT-type estimates of expected cash flow

performance and use them to develop a discrete probability distribution

that represents our prior beliefs. We then show how the Dirichlet

distribution can be used to formulate weighted initial beliefs, and how

it can be used with an equivalent sanple size concept that results in a

flexible and efficient means to revise our initial beliefs. We

exercise these concepts in a case study analysis of an actual decision

problem.

INTRODUCTION

Manufacturing equipment replacement decisions have not,

historically, received as much attention as other capital budgeting

decisions (such as initial investments, portfolio cumpsition, etc.).

146
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Past replacement decisions were typified by a current, or defender

asset's performance being compared to an alternative, or challenger

asset's performance. The performance realizations generally had only

small variations fram their estimates. In fact, surveys reported that

the estimates used in equipment replacement decisions were more

accurate than any other investment estimates [Pohlman, Santiago, and

Markel (1988)]. Consequently, same firms began to use deterministic

methods in these decisions, concentrating on the timing of equipment

changeovers [Bean, tohmann, and Smith (1985)]. This approach

effectively ignored the uncertainty in the cash flow estimates.

currently, technological advances have changed the scope of the

replacement decision. Many corporations must now consider state-of-

the-art processes that include computers, robotics, flexible

manufacturing cells, and just-in-time manufacturing. Many of these new

alternatives require the restructuring of entire production processes,

essentially expanding the replacement decision from machine for

machine, to process for process considerations. A frequently occurring

example is the comparison of factory machine shop layouts and flexible

manufacturing cell organizations. The drawback in this expanded

decision is that while all the technical innovations represent great

potential, they do not have proven performances, in the form of

detailed historical records. Surveys report that when processes vary

markedly from previous corporation practices, there tends to be much

more variation between performance realizations and their estimates

(Cook and Rizzutto (1989)]. Because these broad scope alternatives
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have increased variability, corporations can no longer ignore the

uncertainty that acccmpanies these replacement comparisons.

The unknown aspects of the performance estimates can be overome

by the process of uncertainty resolution [Bierman and Hausman (1972)].

Hen firms use a periodic, or sequential decision review policy, this

resolution permits them to make more informed decisions. In this type

of decision structure, when the investment alternatives involve items

that can be replicated, the uncertainty resolution provided by the

sampled portion may even lead to some initially unattractive

investments being profitable [Bierman and Rao (1978)].

We will present a method that can be used in a sequential decision

making environment, that provides uncertainty resolution to the

generalized case (the special case being when the prior belief and

sample likelihood function form a natural conjugate family of

distributions). This paper is the fourth in a series [Prueitt and Park

(1989(a-c))] that explores post-audit information and the replacement

problem decision. Here, the generalized approach is to develop

discrete approximations to continuous prior beliefs, record the sample

results, and place the observations in discrete categories that

correspond to those in the prior belief. Combining these discrete

distributions in a Bayesian framework relaxes the assumptions used in

the continuous case. Specifically, those concerning data sample sizes

and that the sample data belong to a particular family of

distributions. We will apply this method to a case study of an actual

decision problem.
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MODEL DEVEIDPMENT

When we consider the expected net present value (NPV) of a

project's cash flow, three natural factors lead to its being modeled as

a continuous random variable: (1) the divisible nature of the data (or

dollar count), (2) the uncertainty in the timing of cash flow

occurrences, and (3) the process of discounting the cash flow to a

particular point in time. However, circLmstances may preclude handling

the cash flow as a continuous variable, requiring us to use a discrete

approximation, instead.

Conditions making discrete approximations appropriate

Scme of the conditions that may lead us to using a discrete

approximation are:

1. The uncertainty about the cash flows may not be representable

by a smooth probability density function (p.d.f.), as: (a) the prior

distribution is based on same development of a histogram that does not

fit any particular distribution, (b) varying economic environmental

conditions may have drastic effects of the cash flws, creating a

multiple mode condition, or (3) the cash flow may be developed on an

incremental basis (alternative A - alternative B), and that incremental

distribution may be i-regular, due to different alternative reactions

to specific economic conditions.

2. The prior beliefs and the sample likelihood function may not

form a natural conjugate family of distributions. For example, the

prior distribution may be modeled as a beta distribution, while the

data observations are represented as samples from a normal distribution
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(earlier works [Winkler (1972) and Jones (1977)] have only presented

concepts using a normal likelihood function, without addressing the

appropriate steps if the sample distribution is obviously skewed).

3. The amount of sample information to be available may be

limited (a continuous variable with a sample size of one or two) to the

extent that it is not appropriate to model them as a normal, or any

other type of distribution.

These conditions require us to make an adjustment before we can

apply Bayesian revision concepts on a generalized basis, and that is to

convert the range of continuous outcomes to a set of discrete

intervals.

General assumptions

Due to uncertainty, the expected NPV of a given project is treated

as having a probability distribution with some unknown parameters.

This NP? is the discounted sum of a series of periodic cash flows, and

each of these periodic cash flows can likewise be described as having

some descriptive probability function (see Figure 1). In this model we

are interested in the situation where the periodic cash flows are

modeled as identically distributed random variables. This description

most often describes the projected cash flows of equipment replacement

projects. This includes technically innovative projects, which tend to

have tremendous uncertainty over the region of cash flow occurrences,

but stable cash flows within the true operating portion of that region.

This is attributable to the fact that once installed and operating,

these projects exist in stable economic environments. If the number of

periodic cash flows is large (greater than 30), i-he net present value
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Figure 1. Prc~abilistic nature of periodic cash flows andi the
resulting net present value.
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of the cash flow observations can be treated as being normally

distributed, as per the Central Limit Theorem. However, we are

interested in the situations where there are only a small number of

observations, and such an elegant property is not reasonably assumable.

Therefore, we will instead model the distribution of periodic cash

flcs with a discrete approximation.

We also assume that the projects of interest have replicable

cells, and the firm uses a periodic decision review process. This

permits us to record sample results, use that information in Bayesian

revision procedures to update our initial beliefs, and make appropriate

decision strategy adjustments.

Development of initial periodic cash flow distribution

The capital projects we are interested in are most frequently

prepared as three-point, PERr-type estimates (optimistic, most likely,

and pessimistic). The 3-point periodic cash flow estimates are

discounted at the firm's minimum attractive rate of return (MARR) to

provide the project expected NWV, with upper and lower bounds. We will

refine this process by keying on the initial 3-point estimates of the

periodic cash flows. We propose that the initial range of outomes

described by the 3-point estimates be divided into discrete, non-

overlapping intervals. (It is not necessary that the intervals be of

equal length, but that approach will make it easier to portray the

results.) Once those intervals are designated, we establish

corresponding probabilities of ocurrence for each interval. An

earlier work [Prueitt and Park (1989(c))] describes how the 3-point

estimates can be fit to non-standard beta distributions, and how the
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uxcmplete beta function can provide the cumulative probabilities for

specific distribution intervals. (We will use this approach in the

case study.) Another approach would be to subjectively assign

probabilities to the intervals.

These initial interval probabilities, ej ,s, are then examind and

refined as appropriate. The revision can be done by graphically

ccoparing the j 's, and making adjustments, one interval relative to

another, until it aocurately describes our beliefs. (This refinement

is not necessary if the initial probabilities are subjectively

assigned.) This flexibility permits us to describe prior beliefs that

could not be adequately illustrated by a pure beta, or other,

distribution.

A discrete prior distribution can be used to directly compute a

project's expected NPV, through the use of the multinomial probability

density function. However, that application would not take advantage

of the available sample information. Therefore, we will instead use

the ejls to develop descriptive parameters, aj 's, for a Dirichlet

distribution, which has natural conjugate distribution qualities.

The aj's are determined by first making a subjective relative

assessment of the quality of the initial estimates (both the 3-point

and the developed 9j's) as campared to the amount of sample information

that can be collected during one time period, under anticia

economic conditions. We will call this comparison an information

quality factor (IQF). For example, if we feel that the estimates are

twice as informative as a single periodic cash flow, then the IQF = 2.

If the first period will have six cells reporting cash flows, and we
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feel that those results will be as informative as our estimates, then

the IQF = 6. We then obtain the descriptive aj's from the relation:

aj = Oj * IQF for j=l, ... , k

With the initial Dirichlet distribution defined, we are prepared for

the revision process.

Bayesian revision m de

The updating process will use the Dirichlet-multnxnial family of

natural conjugate distributions. The Dirichlet distribution is

sanetimes referred to as the multivariate beta distribution, and this

method can be thought of as a generalization of the beta-bincmial

conjugate family. The process uses a Dirichlet prior distribution,

samples that form a maltinamial likelihood function, and results in a

Dirichlet posterior distribution.

In the formulation, it is given that a particular cash flow result

will fit into exactly one of k different outome categories. The

probabilities associated with each of the k respective categories

ccmprises the random vector e = (81, ... , ek) with (j >_ 0; j=l, ... ,

k) and 09j = 1. There also exists a parametric shape vector a = (ai,

.... ak) with (aj > 0; j=l, ... , k), such that the probability density

function of f (0 I a) will form a Dirichlet prior distribution

f (elIa)o r(a 1 +... + ak ) al- . ck-i (1)
r(a ) e ,(a k )

whIere,

r (a) = 2 t a - l e- t dt.
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The aj are not limited to integer values, and if k=2, the result is the

familiar beta distribution. Then, the observed sample is a random

vector x = (xI, ... , xk) and (xj > 0; j=l, ... , k), where a given xj

represents the number of observations falling into a kth category, with

Exj = n. This observed sample uses the vector e = (81, ... , k), to

form a multininial likelihood function

f(x n,O)= n! _ xl  ... exk  (2)X! ... Xk'. 1

This likelihood function combines with the prior distribution to form a

Dirichlet posterior distribution

r(n + 1) a+x1-1 . xk-lf(9 I a, x) = 1~i e 1  "' k (3)

r(a 1+ x1)...r(%+ x 1

This permits direct cumputation of the prior and posterior values of 0

(e ', and Gj", respectively) frm the Dirichlet distributions' shape

parameters [Johnson (1960), and Johnson and Kotz (1969)]:

j' = aj / rj (4)

j" = (aj + xj) / (n + Faj) (5)

Ii 'sing this revision model, we must keep in mind that the natures of

the aj's are such that the stronger one believes a parameter is true,

the larger its corresponding aj (as described by the IQF). For

example, a given Dirichlet distribution has three equiprobable states

of nature (81 = 82 = 83 = 1/3). These probabilities can be described

by a = (100,100,100), a strongly held prior belief, or by a = (1,1,1),

a weakly held prior belief. Ten units are sampled, with all ten

outcomes favoring 81 (n = 10, x, = 10, x2 = x 3 = 0). For the parameter

set, a = (100,100,100), the posterior values for 8j beome
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S100+10 = 0.355

n + Em 1. 0 + 300

and,

02" = 83" = (100 + 0)/(10 + 300) = 0.323.

On the other hand, using the second set, a = (1,1,1), yields

81" = 1 + 1 = 0.846
10 + 3

and,

82" = e3 " = (1 + 0)/(10 + 3) - 0.077

The second shape parameter set reacts very quickly to the sample

observations, while the first set is hardly disturbed.

Another item that should be noted steis from earlier works with

this natural conjugate distribution that focused on goodness-of-fit and

independence tests [Good (1967)). These works used symmetric

(equipribable) Dirichlet distributions, with the notation

f (0e1 ) = a e a1 a-1 6
r(a)k I  ... (6)

where,

al = ... =ak=a

and the a was referred to as a "flattening" constant. When this

equiprobable condition was used in a situation where there was a

natural grouping of categories, or overlapping categories for a

continuus variable, it was shown that regeneration would eventually

lead to loss of the Dirichlet properties [Good (1965)]. Hcwever, this

problem was overcome by adding a distribution for a (maintaining the

ci's as distinct elements) which leads the posterior distribution away

from equiprobability [Liniley (1980), and Good (1983)]. There were no
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such problems when an asymmetric prior distribution was used, nor ware

any problems noted when working in a noncontingency table structure.

Here, we will employ the generalized shape parameter a = (al , .  k)

with distinct intervals to avoid any potential problems.

Equivalent sample size concept - for observed results

We stated previously that the predicted sample results are based

on anticipated econcmic environmental conditions. As we collect the

cash flow data, we must make assessments of the occurring econKmic

conditions to determine the typicality, or repeatability of the

observation. If we have disparity between the assumed and observed

economic conditions, we may need to adjust the numbers of the

observations, xj 's, with the equivalent sample size concept [Prueitt

and Park (1989(c))]. If the estimates included processes that ware

misjudged, and we feel that the sample is more representative of the

true state than the estimates, we will want to increase the observed

sample size. If there are unanticipated conditions that are of a once

and temporary nature, we will want to reduce the observed sample size.

In either case, if we use the equivalent sample size, we must make the

adjustments to all categorical results proportionately. As

appropriate, we would replace the observations, xj 's, with equivalent

observations, x 's, so long as,

x

_I_ = efor j=l, ... , k
ZXj e.

and equation (5) is rewritten as:
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ej= (7
Zj+ DCe

If the econcmic conditions are as anticipated, then the observed xj 's

can be applied directly.

Decision strategy revision

At every decision point, the distribution of periodic cash flows

is used to determine the project's expected NV. As that value

changes, the existing decision strategy may need to be revised.

Conventional Bayesian methods strive to predict all sample outccmes,

and plan decision options for each outcome. However, because we may

feel it necessary to apply the equivalent sample size concept (in the

handling of anomalous conditions), we cannot predict all possible

sample results, as the revision of the periodic cash flows ay take

unanticipated changes. Therefore, we must review and update our

strategy at each periodic decision point.

Method

We will briefly summarize the steps for this procedure, which is a

generalized approach that can provide an approximation for any prior

distribution of beliefs:

1. Develop the prior distribution (incremental or otherwise),

considering the range of the periodic cash flow outcumes. Determine

the desired number of intervals, and where the partitions should be

made. (It is critical that the intervals do not overlap.) The

intervals selected will be commn to all periods.
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2. Determine the initially associated probabilities, ej 's, for

each interval.

3. Determine the values for the shape parameters, aj's. In

making this construction, we must consider the quality of the estimates

and the quantity of the sample information and develop the IQF. We

then multiply that factor by each of the 9j's to obtain the respective

j I S.

4. Implement the project, and obtain the sample results.

5. As the data is collected, make assessents of the

repeatability, or typicality of the observed results. If there are

anmualous conditions, adjust the numbers of observations with the

equivalent sample size concept, Xej.

6. Revise the interval ej's, using Bayesian procedures for the

Dirichlet distribution, using xj's or Xe' s, as appropriate.

7. Use the new ej's to determine the new distribution's expected

value, and make decision strategy adjustments, as necessary.

8. Continue the process for the life of the project.

To illustrate these procedures, the following section is a case study

of an actual decision problem.
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CASE SIJDY

The following case study of an actual decision problem is provided

as an illustration of the techniques we have developed.

General situation

The North American Teleccmunications Corporation is a medium

sized manufacturer of electronic circuit boards, called "backpanels".

They make three series, or "families" of products that are sold to

larger omputer manufacturing firms. Two of the families are high

volume/low marginal return items, and the third is a more cumplex,

custcmer-tailored product, with a higher marginal return. A critical

part of their production process is the alignment of connecting leads,

or pins. This task is performed by two machines. One of the devices

is an automatic pin insertion machine, or "pin staker", which provides

90% of the pin quantity required on a given backpanel. The remaining

10% is provided by a robotic secondary pinning process. Other steps in

the process include preforming, soldering, assembly, inspection, and

rework.

The current factory design layout, or defender process, is a

machine shop layout, based on operational functions (see Figure 2).

This layout was designed to handle large batches of product as they

moved through each of the centralized areas. Because each batch

requires part specific setups, the batches compete with one another for

available work areas. After factory operations began, the orders

received were not exactly as the corporation had anticipated. The

total order quantities were accurate, but the orders were in more
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frequent, much smaller lot sizes. This caused plant operations to be

characterized by scheduling difficulties, high levels of work in

progress (WIP), and only a limited ability to track a specific product

through the process. The magnitude of the difficulties is not expected

to keep the firm from meeting its projected demands.

To resolve some of the present difficulties, the corporation is

considering converting from its present layout to an alternative

design, or challenger process. This process will use flexible

manufacturing cells and the just-in-tine (JIT) manufacturing concept.

This alternative will require several additional pieces of equipment,

as well as all the existing equipment. The challenger layout is shown

in Figure 3. Here, the assembly process is broken into smaller pieces,

with specific product families being produced in dedicated cells. In

the modified layout, two cells are dedicated (one each) to the high

volume families, with the remaining two cells dedicated to the complex

products. It is anticipated that this design will ease scheduling and

inprove the firm's ability to track a specific product.

Fconumic factors for the immediate. full conversion alternative

The full conversion from the defender to challenger process will

require the following expenditures:

Capital equipment (tax depreciable items)-
Pin staker, installed ...................... $240,591
Robot, installed ............................. 86,194
Lubrication stations, 2, @$7,000 ............. 14,000
Parts replenishment units, 4, @$625 ........... 2,500

Other costs (tax expense item) .................. 76.780
Total $420,065
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The capital equipment is classified as a five-year property, and will

be depreciated by the Modified Accelerated Cost Recovery ayrtem

(MACS). Some of the quantifiable benefits are expected to be from WIP

and labor costs. The factory currently carries an average of 2,200

backpanels in WIP, at an average cost of $120 each. The challenger

process is expected to reduce WIP by 50%, to 1100 units. This will

create a one-time release of $132,000 of working capital back to the

firm, and a reduction of non-capital components of the inventory

holding costs of $9,240 per year. The holding cost savings are for

reductions in taxes, insurance, handling, storage, and item

accountability. These costs are rated as being 7% of the inprocess

unit cost ($120). Additionally, under the challenger configuration,

each backpanel is expected to be completed in 6% less working time.

This improved labor efficiency is expected to ge"'-rate $99,720 in

savings each year (based on 150,000 annual labor hours at an average

hourly wage of $11.08). The proposal was prepared as a three-point,

PERr-type estimate, with the following savings:

Pessimistic Most Likely Optimistic
WIP reduction 35% 50% 60%
Change in Working Capital $92,400 $132,000 $158,400
Annual Holding Cost Savings $6,468 $9,240 $11,088
Improved Labor Efficiency 4% 6% 8%
Annual Labor Improvement $66,480 $99,720 $132,960

The market projections are relatively firm for the next six years,

and the rapid appearance of technological innovations in computer

products makes it unsound to make projections for periods beyond that

time. Therefore, we will use a six year planning horizon 'or this

evaluation. The corporation faces a combined tax rate of 38.7%. The

economic factors listed, with a salvage value equals book value
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ccusideration, generate the incremental (challenger process - defender

process) cash flows shown in Table 1. The positive terms indicate

when the challenger process will have a better return than the

defender. The negative values show that there are same conditions

where the defender process is better than the challenger process.

Economic factors for the seauential conversion alternative

Because the full conversion alternative has such a wide range of

estimated return ($-113,811 to $117,133), the corporation is willing to

consider the option where one cell (of the four) is converted

iurediately, with the final decision for the flexible cell versus

machine shop operating process being deferred until the end of one

year. A cxmlete listing of all decision options is provided at Table

2. Mixed modes of production will not be acceptable for any time

beyond this one year period.

The sequential alternative can be implemented by rearranging on-

hand equipment, and deferring the purchase of the remaining equipment

until the end of the sample year. However, it is necessary to use

$60,000 (of the $76,780) of the conversion expenses for additional

wiring, exhaust systems, and other cell setups. The remaining $16,780

will be required for the movement and setup of the last three cells.

If the corporation chooses to stay with the machine shop organization

at the end of the sample year, there will be a net cost of $6,000 to

re-establish that layout.

The second high volume product family was selected to be the

sample cell, because its cost and profit results are expected to most

closely approximate what the average of the four conversions. If we
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Table 1. Annual cash flows and net present value estimates for the
time zero (imiediate) full cellular conversion alternative.

PER-Type Cash Flow Estimate

Year Optimistic Most Likely Pessimistic

0 $-308,731 $-335,131 $-374,731
1 114,872 93,363 71,287
2 130,814 109,305 87,230
3 113,809 92,300 70,225
4 103,606 82,097 60,022
5 103,606 82,097 60,022
6 95,954 74,445 52,369

NPV(15) * $117,133 $9,333 $-113,811

•Note: NPV(15) = cash flow net present value, discounted at

the corporation MARR of 15%.

Table 2. Decisions, and follow-on options, that were considered at
time zero.

Decision Explanation

do0 Do not initiate any cells, reject this alternative.

do1  Initiate all four cells imnediately.

do2  Initiate one cell, collect data, and reevaluate
this proposal in one year. (Given that this
decision has been selected, the options continue.)

dl0 Stop the sequential conversion, revert back to the

machine shop layout.

dll Initiate the remaining three cells.
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shift existing assets, then this cell's periodic cash flows and NPV's

for each estimate condition are as listed in Table 3. Althugh the

estimated NPV's are each greater than zero (indicating profitability),

it must not be forgotten that all equipment must eventually be in a

similar configuration. When we include the remaining conversion costs,

the new equipment costs, and the one year shifting of the cash flows

for the remaining cells, we obtain the estimated NPV's for the

sequential approach (these estimates do not use the first cells reslts

for decision input):

Optimistic estimate $99,135
Most likely estimate 7,945
Pessimistic estimate -96,928

and the sequential alternative's range of outcomes is less than that of

the immediate full conversion alternative.

Develoment of initial intervals and associated probailities

To find the expected NPV for each of the alternatives, we must

develop their cash flow probability distributions. An important point

for these alternatives is that the periodic cash flows for a given

estimate are not independent from period to period. For the WIP

savings, the reduction level that is attained defines both the one-time

return of working capital and the periodic holding cost savings (a

percentage of the WIP reduction value). The labor efficiency

improvement should remain fairly constant throughout the life of the

project. Additionally, as seen in Tables 1 and 3, the ranges of

variation between the estimates for years one through six of the full

conversion alternative, and years two through six for the sequential

alternative are identical. These ranges are offset by depreciation
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Table 3. Annual cash flows and net present value estimates for the
time zero (imiediate) conversion of a single flexible
manufacturing cell.

PEFr-Type Cash Flow Estimate

Year Optimistic Most Likely Pessimistic

0 $2,820 $-3,780 $-13,680
1 22,075 16,698 11,179
2 22,075 16,698 11,179
3 22,075 16,698 11,179
4 22,075 16,698 11,179
5 22,075 16,698 11,179
6 22,075 16,698 11,179

NW(15) * $86,364 $59,414 $28,628

*Note: NWV(15) = cash flow net present value, discounted at

the corporation MARR of 15%.
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factors, but the relative differences in the estimates are the same.

Therefore, when we develop the intervals and their probabilities, we

will establish them proportionately for all cash flow three-point

estiates.

Since we will be using the first cell's year one results for

decision input, we will use those estimates to develop relative

intervals, and the probability distribution. We use the three

estimates ($22,075, $16,698, and $11,179) to fit a beta distribution

(Prueitt and Park (1989(c))]. our fitting yields a nonstandard beta

distribution with shape parameters, a=4.04 and P=3.96. We then

establish the discrete intervals, based on the range of outcoes. We

will use the range $11,075 to $22,325, in nine intervals of $1,250. We

use the incomplete beta function to find the cumulative probabilities

within each of the intervals, and graphically represent that value at

the midpoints of the respective intervals, as shown in Figure 4(a).

After review, the prior beliefs were determined to be more accurately

represented by the distribution in Figure 4(b), a flatter, slightly

skewed distribution. (These changes preclude further representation as

a beta distribution.)

The developed distribution is then applied proportionately to the

3-point estimates of the immediate full conversion, and sequential

conversion alternatives. The expected value of the full conversion

alternative is $207, found by summing the products of the interval

midpoints and their respective probabilities. Under a pure expected

value decision criteria, we would accept this alternative because its

expected NPV is greater than zero. The expected value of the
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sequential alternative, inr the year one sample result, is $-131.

The drop in the expected value is a reflection of the potential payoff

losses due to the postponement of the final decision. The sign chne

also indicates that the defender layout is superior to the sequential

alternative (when the sample information is not used).

Develoument of initial Dirichlet descriptive parameters

A better approach for the sequential alternative is to use the

sample information to update our beliefs about the expected NPV

outoame. We first develop the IQF, by making an assessment of the

quality of the estimates as conpared to one annual cash flow

observation. In this study, the prior estimates are felt to be three

tines as accurate as one annual cash flow observation. We then take

this factor of three, multiply it by the respective interval

probabilities, 9i 's, to obtain the initial Dirichlet descriptive

parameters, Cfj's. These j 's and aj's reflect the strength of our

prior beliefs.

The multinumial predictive distribution, because there is only one

sample observation to be recorded, has the same interval probabilities

as the prior beliefs, 's. For each predicted outcue, the predicted

posterior distribution can be fc'nd, and, subsequently, the expected

value of that result. For example, for the interval $11,075 to

$12,325, the predictive probability of an observation falling in that

interval is 0.02. Given that this event occurs, the revision process

is shown as follows:
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Interval
Prior j + observed xj= Posterior aj Posterior j Expected va

0.05 1 1.05 0.26 $-22,998
0.20 0 0.20 0.05 -3,300
0.48 0 0.48 0.12 -5,128
0.54 0 0.54 0.13 -2,686
0.63 0 0.63 0.16 380
0.54 0 0.54 0.13 3,332
0.31 0 0.31 0.08 3,696
0.20 0 0.20 0.05 3,545
0.05 0 0.05 0.01 1,171

4.00 $-21, 986

This process is then repeated each of the nine intervals. For any

sample result, a decision must be made between converting the revaining

cells (with their respective expected values) or halting the conversion

process (at a net cost of $6,000). This leads to the development of

the abbreviated decision tree of Figure 5. (The tree is abbreviated as

only the expected value of the conversion payoff is given, instead of

illustrating all of its following 9 branches. The term EV(djk)t is

used to represent the expected value of the nine intervals for decision

djk, discounted at the MARR to time t.) In the figure, branches that

are cross-hatched ( --- ) are inferior decisions. As shown, the

sequential approach is superior to the other alternatives, and provides

the time zero decision strategy:

Time 0 Convert the second product family's high volume

cell, using existing equipment, and record the first

year's results.

Time 1 If the year one cash flow falls into any of the

categories in the range $11,475 to $14,825, then

terminate the conversion process. If the cash flow
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EV(dlo) 0

1  0. 02 0$-6,000

SEV (dl11) 0

-21,986

-EV (do) 0

EV(do0)o = $0 E)2 =0.07 $-6,000

EV (d 0)°0 = 207 + -16,363

EV(d 02)0 1,602

I| [ EV(dlo)O

09 0 .02 $-6,000

EV (all) 0

22,999

Note- EV(djk)t = expected net present value of decision djk,
discounted at the corporation MARR, to tim t.

Figure 5. Preposterior analysis of sequential alternative, using one
sanple observation, and net present values discounted to
time zero.



174

is greater 'han $14,825, then convert the remainir

cells.

The euivalent samle size concept and the sequential alternative

As the sample data were recorded, the econcmic conditions within

and outside the factory were noted. It was observed that there were

several differences between the observed conditions and those used in

the estimating process. After evaluation, it was felt that the sample

data should carry as much informative "eight" as the prior estimates

(the Exe should equal the IQF of 3). This takes the equivalent sample

result outside of those considered in the time zero preposterior

analysis. The observed result was $15,500, which falls into the furth

interval. This end of year one prior to posterior probability revision

is shown as follows:

Interval
Prior gj + bserved xj= Posterior j Posterior ec value

0.05 0 0.05 0.01 $-851
0.20 0 0.20 0.03 -2,530
0.48 0 0.48 0.08 -3,931
0.54 3 3.54 0.59 -13,602
0.63 0 0.63 0.10 291
0.54 0 0.54 0.09 2,554
0.31 0 0.31 0.05 2,834
0.20 0 0.20 0.03 2,717
0.05 0 0.05 0.01 898

6.00 $-11,620

This revision has an end of year one expected value of $-11,620, which

is well below the halt conversion decision payoff of $-6,000.

Therefore, cur best decision is to halt conversion and revert back to

the machine shop layout.
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Sensitivity analysis

Because the principle purpose of this case study is to illustrate

the techniques we have developed, we will not present a sensitivity

analysis of the conventional factors (demand, interest rates, etc.),

but focus on an analysis of the factors unique to this technique.

The first factor we examine is the selection of the initial

Dirichlet shape parameters, the aj's. Recall that our initial

development considered the estimates' IQF as three, and, thereby, Zaj =

3. We will now vary this IQF value, and observe the effects of the

variation on the posterior ej' s. While it is necessary to examine the

results of the observed sample falling into each of the nine intervals,

for brevity's sake, we will illustrate this analysis with the

observation falling into the fourth interval. Table 4 lists how the

posterior Oj's respond to the observation, for each of the IQF values,

with Figure 6 illustrating the trend for the IQF values of one, five,

and nine. The figure shows that as the IQF increases, the distribution

becomes less responsive to the sample data. When we extend this

penomenon to its effects on the expected NPV, we find that varying the

IQF leads to the changes in the payoff, EV(d 0 2 )0 , that are shown in

Figure 7. Further, it can be shown that as the IQF approaches

infinity, this expected NPV asymptotically approaches $-131. (A

sequential alternative that did not use the sample information would

have an identical payoff.) Now, recalling that EV(doI) 0 - V207, we see

that if the IQF is no more than six, then the sequential option has the

greatest payoff. The case study result is sensitive to this factor.
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Table 4. Sensitivity analysis of Information Quality Factor (IQF)
values ranging from one to nine.

Posterior 9j's for IQF values -
Interval Prior Sample- - - - _- -

ej 1 2 3 4 5 6 7 8 9

1 0.02 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02
2 0.07 0 0.03 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06
3 0.16 0 0.08 0.11 0.12 0.13 0.13 0.14 0.14 0.14 0.14
4 0.18 1 0.59 0.45 0.38 0.34 0.32 0.30 0.28 0.27 0.26
5 0.21 0 0.10 0.14 0.16 0.17 0.17 0.18 0.18 0.19 0.19
6 0.18 0 0.09 0.12 0.13 0.14 0.15 0.15 0.16 0.16 0.16
7 0.10 0 0.05 0.07 0.08 0.08 0.09 0.09 0.09 0.09 0.09
8. 0.07 0 0.03 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06
9 0.02 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02
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The sensitivity analysis of the equivalent sample size can be

interpreted directly from the IQF analysis. The values of xe and IQF

form a proportional relationship. In the above IQF analysis, the

sample size was one observation, and the IQF was some multiple of that

value. By using Xe, we change the proportion. In the case study, the

use of Xe= 3 effectively changed the IQF = Za = 3, from a three to one,

to a three to three relationship. The change in the posterior

probabilities is identical to the one that would have occurred if the

IQF had originally been one, and one was used as the sample size. It

can be shown that similar relationships exist for other proportions.

These analyses show that this model and case study are sensitive

to the selections of the IQF and xe values. Frm a philosophical

perspective, it shows that the stronger the belief, the less likely

sample results will change any initial decisions. In fact, if we feel

we have no uncertainty (implicitly allowing IQF to go infinity), then

we have the known distribution condition that is unaffected by any

sample results. However, when uncertainty exists, particularly when

there is a large amount of uncertainty, this technique provides a

responsive model that takes advantage of any sample information.

CONCLUSIONS

In this paper, we have developed a technique that can be used to

provide uncertainty resolution to the expected net present value of a

project's cash flows. We have shown how any form of prior beliefs,

when approximated by a discrete distribution, can be used to develop a

Dirichlet distribution, and how that distribution's descriptive
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parameters can be used to reflect our perceived quality of those

initial beliefs (through the use of the IQF). We then show how

unforeseen conditions in the sample observations can be taken into

corsideration during the revision process, through the use of the

equivalent sample size concept.

We then exercised these concepts in a case study analysis of an

actual decision problem. The most important point of that example was

that in the time zero decision strategy, we directed that if the sample

ciservation was greater than $14,825, then we should convert the

remaining cells. However, using the equivalent sample size approach

changed that strategy. The observed result, $15,500 with a xe = 3,

generated a revised distribution whose expected net present -value was

different frci those predicted at time 0. This led us to a modified

decision strategy that directed halting the conversion process.

Therefore, the ability to generate a revised decision strategy, based

on the most accurate information, will permitted us to increase the

firm's profitability.

The sensitivity analysis shows that the IQF and xe tec ques

provide responsiveness to the model, which is particularly beneficial

in decision situations that have uncertainty. It also shows that these

values must be selected carefully, to preclude any inappropriate or

biased results.

These methods should be applicable to many other situations, with

similar decision improvement results.
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VI. MONIDRING PRO!EC PERFDMCE

WITH POST-AUDIT INFOINMON:

CASH FLOW CONTROL aviA

ABSTRACT

An important aspect of the capital budgeting process is the post-

audit, which involves (1) camparing actual results with those predicted

by the decision maker and (2) explaining why any differences occurred.

When decision makers systematically revise their uncertain initial

forecasts with actual outcomes, there is a tendency for the estimates

to improve. As any biases are observed and eliminated, management can

improve operations and bring results and forecasts into agrievnt. This

paper presents a post-audit method for the class of investment problems

where each element of the cash flow forecast is uncertain. These

problems have multiple, identical units with uncertain cash flow

estimates, as found in many fleet replacement problems or in advanced

manufacturing systems with multiple cells. This method graphically

illustrates the uncertainty resolution that occurs, providing a means

to post-audit and monitor the performance of a project through the

development of Cash Flow Control Charts.
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The capital budgeting process embraces a rather broad and diverse

class of activities in allocating capital resources to campeting

investment projects. while phases in the decision making process could

be identified in many ways, we divide it into four: (1) identification

of areas of opportunity, or problems, that indicate a need for capital

expenditure, (2) development of various projects in response to the

oportunity or need, (3) selection of projects for inplementation, and

(4) control or evaluation of the performance of the approved projects.

The development -.ase, which includes definition and cash flow

generation, is often considered as the most difficult portion of the

capital budgeting process. The success of this phase depends on the

type and availability of information provided for the capital budgeting

process. The selection phase encompasses such things as measures of

investment worth, the timing of the investment, the determination of

the amount to be invested within any given time period, and arranging

for the financial means necessary for the completion of the projects.

In contrast, the major concern in the control phase relates to the

inprovement of future capital expenditure, by learning from past

results. This is accomplished through the use of post-audits. It is a

common practice to post-audit projects, and provide feedback to

decision makers and analysts about the accuracy of the forecasts used

to make these decisions. In this paper, we are primarily ccerned

with the analytical techniques used during the post-audit phase.

The need for a post-audit can be critical for investments in

advanced manufacturing systems. Many companies mst maintain capacity
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requirements and keep pace with newer ccpetitors by upgrading their

manufacturing processes with cxzputers, robotics, and other

sophisticated production processes. These advanced manfacturing

systems frequently have high investment costs, but do not have

extensive performance "track records" (as compared with more

traditional processes). Further enphasizing the need for accurate

forecasts is that, as they strive for optimal capital utilization, many

firms are including implemented projects as nonliquid assets in their

capital budgets, in the amounts of their salvage, or abandonment values

(13]. The post-audit will affect both the implemented project and

subsequent budgeting decisions.

We must recognize that each element of the cash flow forecast is

subject to uncertainty, so a percentage of all projects undertaken by

any reasonably venturesome firm will necessarily go awry. enever the

actual outcomes for the project inplemented differ frum the forecasts,

management begins to worry about making decisions good (as opposed to

making good decisions). Management's proble are further compounded

by prolonged beliefs that the initial estimates are true distribution

values. The differences are usually not readily detected because

little emphasis is given to post-audit information.

The concept of utilizing conventional quality control charts with

eunomic factors was first used as an attempt to monitor and minimize

resource usage. These initial works did not consider cash inflows, but

focused on physical inputs, such as labor hours, production units, and

raw materials used (9,17]. These initial efforts treated the design

parameters as true distribution values, and used these charts to



186

control the expenditure process. Subsequently, the sources of possible

cost variation were addressed: (a) controllable versus noncontrollable

variation, (b) investigative cost viability, and (c) overlapping, or

joint variation causes (12]. These discussions focused on keeping

expenditures within the designed budget. Other methods sought to

provide new graphical measures of effectiveness [14], but these methods

fail to consider cash inflows and the time-value-of-money concept.

A different approach uses Bayes theorn [6,22], and recent surveys

indicate that classical and empirical Bayesian methods (where prior

beliefs are based only on past enpirical results) are being more widely

used in decision making areas [15,26]. Bayesian techniques have been

applied to modular projects, under sequential sampling, with periodic

project continue/discontinue decision making [4,5]. A previous work

developed a one step, project balance control chart using Bayesian

methods [18]. Other works applied Bayesian methodology as a means to

correct the problem of given an abnormality, should we investigate or

not investigate [9], and the revision of expected machine downtime and

number of control inspections [12].

The purpose of this paper is to develop a systematic means to

post-audit, monitor, and revise the initial estimates of an on-going

project, and graphically portray this information to the user. This

will be acotmplished by developing Cash Flow Control Charts (CFtX),

which are a unique coumbination of Bayesian revision techniques and

statistical quality control methods. At this point, we want to

emphasize that these CFOC are not Shewhart-type control charts

(x and R-diarts). They are similar in appearance, because the CFC use
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some of the same procedures for initial set-ups, but the CFCC differ

markedly in their purpose and execution procedures.

DEVEIOPMERr OF CASH FLCD CONML CHARM

To explain our develcpment of cash flow control charts, we will

first discuss the underlying assumptions, other factors that need to be

considered, the conceptualization of the CFOC, and their limitations.

Assumptions

The methods we are about to describe and use in the illustrative

example are applicable under the following assumptions:

1. The CFC are designed with the assumption that the project

being post-audited has some measure of repeatability, a situation that

frequently occurs with "fleet" replacement problems. In this

situation, the incxming equipment fleet has multiple like items

(whether they are many load carrying vehicles or a just a few

manfacturing macines). This permits the project to be divided into

several identical cells.

2. The cash flows frum manufacturing equipment performance are

assumed to be relatively stable (as compared to the stock market, for

example), because the equipment is being used in an environment that

has existing, as well as projected, production requirements. For the

specific example we have included in this paper, the cash flow

forecasts will not have trend or seasonal effects. (Though not covered

in this text, we believe that this assumption can be relaxed, to

address problem with those elements. These problems would require

that the cash flow residuals, observations minus forecasts, be IIERV.
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This extension will be more aparent, after examination of the concepts

presented here.)

3. The cash flows from these cells are assumed to be independent

identically distributed random variables (IIERV). Thereby permitting

the Central Limit Theorem to be applied to the cash flow performances

of groups of these cells [25].

4. We assume that we can apply appropriate conventional quality

control chart procedures for subgroups, subgroup size, and sampling

methods [2,7].

Other Factors to Consider

Before developing our CFCC, we need to address the following

additional factors: (1) time value of money, (2) timir of sampling and

(3) cost of sampling.

Time-value-of-ne V. For cash flow realizations, an important

factor that may influence the sampling method is the time-value of

money. Machining processes can be generalized as generating products,

on a regularly timed basis, for operating periods of hours, shifts, or

days. These products, once produced and inspected, experience very

small changes in value over time (usually only in the form of inventory

holding costs). Project cash flows are usually projected over longer

time periods (weekly, miathly or annually), and they usually have some

variability associated with their projected time of occurrence. Thus,

some otherwise identical cells, but with different expense and revenue

schedules, will have different net values when they are discounted to a

common decision point in time.
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Time periods of otservation. If the individual cells came into

service at different points in time, then decisions must be made to

determine if it is more important to capture each respective cell's

cash flow information over a common period in its ecorxnic life (say

first year of operation), or if it is more important to capture cash

flow information over a common operational period (say, January to

May). For common econmic life periods, endogenous factors, such as

tool wear or operator experience, are hmiogeneous. Ommon operational

periods will have homogenous economic environmental conditions. We can

also require that the internal performance and external conditions be

hcmogenous frcm period-to-period. This can be done by making each

subgroup consist of all cell performances in a specific period (say, a

week), and then use a different period (say, the next week) for the

next subgroup. Thereby, the control chart horizontal axis will

delineate different time periods, instead of physically different

subgrus.

hen period-to-period sanpling is used, the method requires the

somewhat limiting assumption that the economic environmental conditions

are identical from period-to-period. However, this sampling method can

be combined with period-by-period Bayesian revision, and provide

uncertainty resolution faster than conventional control chart

procedures.

Cost of Samulini. Conventional control charts consider sample

size and cost of inspection. However, these cost limitations do not

normally apply to cash flow control charts, because the cash flow data
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is already being collected for tax and stockholder reports. So, it is

essentially free sample information.

Qoncptulization of the Cash Flow Control Charts

Before going further, we need to stress the differences in

rationale behind conventional quality control charts and these CFMC.

Men a conventional control chart indicates that the process is "in

control", it means that the process is stable, or predictable, at some

predetermined probability level. Upper control limit (UCL) or lwer

control limit (LCL) violations signal that it is necessary to

investigate for causes that may be responsible for the cut-of-control

ccndition. The prcbable cause may be considered random, and no

adjustments are made in the process, or there may be assignable causes,

and corrective actions are required. When the CF= is "in control", it

means that the cash flow observations are accurately fitting the

probabilistic descriptions given by the current estimates. Conversely,

UCL or LCL violations indicate that the current estirates (W- and a-)

are inaccurate, and revisions are needed.

This cash flow control chart approach is conceptualized with two

charts, one for expected performance and one for performance

variability (similar to x and R charts, respectively).

CFWC for Expected Perfo n. As a review, the centerline for

the conventional x-chart is coaputed from:

x= E xj/g
j=l

using sample data, where,

x = average of the subgrup averages
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Xj = average of the jth subgroup

g = number of subgroups

In operation, the chart's centerline and limits are revised when there

is evidence that assignable causes exist, and they have caused the

process average to shift.

We alter these proeures for our CFCC for expected performance.

Sample data may not be available for the first observation, so the

centerline is set at the expected value of the subgroups' mean (E(w-)).x
The UCL and LCL are set as multiples of the expected value of the

subgroup variance (E(a)). The limits may be +2a , +3a- , or sane

other desired accuracy level. For this paper, we will use +3q-.
x

How well the data observations fit the expected value control

chart upper and lower limits describes the accuracy of distribution

estimates. However, there is a need for an additional term that is

only partially analogous to control or reject limits, and that term

will be called a minimum return limit (MRL). In basic terms, a simple

investment project consists of an initial outlay of capital, followed

by a series of cash inflows. When these receipts are discounted at

some minimum acceptable rate of return (MARR), and combined with the

initial investment, the result must have a net wrth of at least zero

for the project to be acceptable. The amounts of the receipts thus

have an associated minimum acceptable value.

For example, a campany has a 2-year project that costs $1000 per

producing unit, and their MRR is 10%. The annual return, for

particular unit, must be $577 for that unit's performance to be

acceptable. The campany wants this "break-even" performance level to
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appear on the CFO. Now, because the CFC works with grouped, rather

than individual data, this per unit minimum return must be similarly

cxuverted, before it is posted as the subgroup's MRL. This conversion

is acomplished by relating the probability that an individual i. .t

from the parent population will fail to meet the required return, to a

corresponding probability that a subgroup average will fail to meet a

value (to be deternined) for the distribution of subgroup averages.

That value is the MRL. This concept can be applied when the producing

units' cash flows are IIDRV, regardless of the specific nature of the

parent population, because the MRL value is dependent upon the

distribution of the s averages (which is normal).

As a simplified demonstration of this concept, we will assume

that the estimated annual cash flow for an individual unit has a

uniform distribution between $550 and $600 (estimates may also be

described by beta, normal, or any other distribution). hen, the

probability that a particular unit will fail to meet the required level

of return, $577, is

P(x < $577) = (577 - 550) / (600 - 550) = 0.54

The parent population variance is

Var(x) = (600 - 550)2 / 12 = 14.4342

which, for subgroup size of four, gives the subgroup variance

- g
Var(x) = Var(( Z xj) / g)

j=l

= 14.4342 / 4 -7.2172

Then, the value of the MRL can be found by

P(x < $577) = P(x < MRL)
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0.54 = P(Z < 0.1005)

so,

(MRL - 575) / 7.217 = 0.1005

MRL = $575.73

which is posted on the chart, and observations falling below this limit

are of special concern to the project managers.

CFW for Performance Variability. The initial set-up of the

performance variability control chart is similar to the conventional R-

dcart, the centerline is computed from:

- g

R = E Rj/g

where,

g = number of subgroups

R = average of the subgroup ranges

Rj = range of the jth subgroup

However, where the conventional R-chart uses sample data or a design

"standard" to provide the estimate of the parent population's standard

deviation, we will use the expected value of the standard deviation of

the estimated cash flow. Thereb., using ±3ax accuracy limits:

UC-R = d2 ax + 3d 3ax = D2 ax

IMRa = d2 ax - 3 d3ax = D1ax

where,

d2 , d3 , D1 and D2 are standard table values [7], mathematically

based on the subgroup sample size, n, and

ax is the expected value of the population stardard deviation,

(E(ox2 )) '.
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For a ocentional R-chart, the user is cautioned about using design

values to determine the UCL and IL. As specification errors that make

ax too small lead to unwarranted expenses, as attempts are made to

determine assignable causes of error when only dance causes may be at

work, and, if the ax specification is too large, the process will

appear to be in control when there are actually deviations with

assignable causes present. Our CFO for performance variability does

not have these specification conoerns, because its purpose is not to

monitor if the observations are within the charts parameters, but is,

instead, to use the observations to revise its chart parameters.

Updating the expected values for the subgroup mean and variance

will require the CFCC centerlines and oontrol limits be redrawn after

each revision (creating more frequent reconstructions than conventional

procedures). As the cbservations move from an out-of-cxrtrol to an in-

control condition, we can conclude that uncertainty resolution is

occurring and our post-audit estimates are more accurate than our

initial estimates.

Lii

Mhen working with the expected performance control chart, (as with

an x-chart) the applicability of the techniques is based on the

cbservaticns being IIDRV's, such that the subgroup means are normally

distributed, as shown in Figure 1. The concern is that in focusing on

the grouped data, there is no inherent procedure that will work

backwards to describe the underlying parent population. To be specific,

just because an otserved Var(x) matches its estimate, it does not

necessarily mean that the assumed distribution is correct. For
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Figure 1. Exaples of distributiaml relationships for parent
pculations of individual values and subgrtupa'
mean values.
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example, an observed sample, in groupings with n = 4, shows x = 5 and

Var(x) = 0-2 = 52. The prior belief was that the parent population wasx
normal, and, if true, its variance given by:

Var(x) = oa 2 = = 4 * 52 = 100 = 1O2

Fbllowing this belief, the distribution is believed to be N(5,102).

Ilwever,it is also possible that the same Var(x) = 52 could have come

frum some other type of distribution. It could have come from a

uniform distribution, so that

Var(x) = Var(xnform) / n

and, recalling

Var(xuniform) = (high - low) 2 / 12

then,

n * Var(x) * 12 = (high-low)2

(4 * 52 * 12)h = 20/3 = high - low = range of x

and, x is distributed as

= U((A - 10/3), (A + 10/3)) = U(-12.3205, 22.3205)

The i portance of this realization goes back to the initial project

selection. There, consideration was given to the project's potential

for success or failure, based on its probability of net negative

return, Prcb (x < 0). Using the normal prior belief, it could be

c1nclued that the N(5,102) distribution has
P(x < 0) = P( j- <IO ) = P(Z < -0.5) = 0.3085

10 10

but, using the uniform distribution possibility

P(x < 0) = (0 - (-12.3205)) = 0.3557
(22.3205 -(-12.3205))



197

a somewhat different result, and one that is obscured in standard x-

chart procedures.

If the mean and variance (the first and second moments) of the

observed and forecast distributions are the same, an examination of the

third central moments of the distributions can confirm if the two

distributions are, indeed, identical. If these moments differ, we will

know that our observed distribution is not what we predicted, and we

may not be able to clearly determine the observations parent

distribution.

Further, when working with the performance variability chart (as

with the R-chart), we know that the ICR, centerlineR, and UCIR

formulas are based on the assumption that the parent population is

normally distributed, but minor departures frum normality have not

created major difficulties [7]. However, the central purpose of this

technique is to refine the accuracy of the cash flow distribution, so

we will attempt to overcome this limitation by conducting goodness-of-

fit testing (in addition to the independence testing) as we construct

the cash fl.: control charts.

The developnent of the MRL implies the use of a uniform series of

cash flows, as each subgroup average is compared to this fixed limit.

This does not infer that the cash flow performances must be uniformly

distributed, nor does it infer that the individual cash flows must be

identical. Instead, this implies that we anticipate that the subgroup

average cash flows are more likely to have nearly the same value, fran

period-to-period, than other investments. This is a reasonable

assumption, because tUe cash flows frm equipment replacement py'jects
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tend to be more stable than other types of investments. In fact, survey

results show that 57-percent of the firms polled had cash flow

estimation errors at less than 10-percent for equipment replacement

projects, as camred to 43-percent for all other investments [21]. If

the cash flw estimates are an uneven series of payments, these CFtM

can still be used for updating purposes. However, their construction

may require the use of the residuals (subgroup average less estimate)

of the cash flows, rather than the observations themselves. Another

alternative would be to transform the data to sane approximately normal

distribution [23]. Thereby, when considering these factors, as well as

the time-value-of-money, if we do proceed with the MRL, we would

exercise caution in its use and interpretations.

UPDTING CASH FL C OL C1IS - BAYESIAN REVISION

en the cash flow realizations are correctly described as forming

a random sample from a normal distribution, this distribution has two

parameters of interest, the subgroup mean (i-) and variance (o-2). Twox
important scenarios are:

1. The mean cash flw for the subgroup is unknown, but the

variance is known.

2. Both the cash flow mean and variance are unknown.

The appropriate analytic approach will be determined by the level of

estimate detail included in the proposal. wn W- is unknown, it will

have an associated expected value, E(Wx-), and some variance, Var(P-).

The calculation of E(W-) will involve all factor inputs at their most
x

likely outcomies. Th Var(ji-) is determined fromn the variability of the
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inputs' most likely outcomes. This must not be confused with the a-2

x
terms, which are based an the ent range of outcomes for the inputs

(pessimistic to optimistic). The value of E(O-x) can be thought of as

being developed from the most likely ranges of input outcomes, while

Var(a x 2 ) describes the variation in those ranges. Now, proposal

estimates Pay be written in terms of the individual producing units,

rather than as subgrouped estimates that have the necessary normal

distribution properties. If so, it will be necessary to use the

following transformations (which assume that the covariance terms are

equal to zero):

E(jx) = E(A2) (1)

E(ax2 ) = E(n * a7x2 ) = n * E(a x 2 ) (2)

Var(X 2 ) = Var(n * c2) = n2 * Var(-7x) (3)

Var(t x ) =a 2 n * 2 (4)

Where n is the subgroup sample size. The importance of this reasoning

stem from the survey results that show increasing numbers of firms

using probability theory in their cash flow estimations, with 44% of

the larger, more capital intensive firms already using some form of

range estimations [21].

PEMulation Mean Unknown. Variance KnYw'

Here, the population variance of the cash flow is known, or

assumed known, due to the following circumtances:

1. The value of a. 2 is known and given in the project proposal.

2. The project proposal fails to provide enough information to

determine Var(o.2), so the estimate of E(ax2 ) is assumed as
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known (E(ax2) assumed to equal a2), ad the term Var(ax2) is

not used. (This includes those situations where O,2 is
x

aproximated by some Six. )

The subgrops' mean is unknown, and the uncertainty about this

parameter is assumed to follow a normal probability distribution, with

some estimated mean and variance. The subgroup means provide a normal

sanpling process, and the necessary structure for the normal

distribution's family of natural conjugate distributions.

Specifically, the prior normal distribution of W, combined with a

normal sampling procedure, produces a posterior distribution of the

belief in W- that is also normally distributed. The Bayesian revision

begins with the initial estimates of E(x-) and Var(wx-), represented by

the notation for the prior beliefs:

E(Wx) = m' and Var(wx-) = a'2

xx
(the ' denotes prior beliefs). The sanpling information is taken from

g subgroups, with overall average, m, and the posterior parameters (the

" denotes posterior beliefs) are found by [22]:

-I- _ _ + CI (5)
012  a 12 0_2

x

and,

m' +_

m" - -2 (6)-I- + __q_ crx 2 + cja,12
al2  Ox-2

with these os yue, we have the updated estimates

E(P) = &"

Var(p-) = 0,,2
x
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Since a-2 is fixed, we see that in equation (5), that as g approachesx
infinity, the Var(px) goes to zero. We interpret this as omplete

uncertainty resolution of the mean, since the population of sanples is

consmed. A short exanple will denstrate this process.

A hypothetical fin has just replaced a dozen drill presses with

new ones that are estimated to save $100 per mnth, but that estimate

is uroetain, and has a variance, Var(px-) = 152. The savings variation

from unit-to-unit is knwn, ax2 = 102. One month's cash flow data is

used to monitor project performance and update the monthly savings

estimate. The twelve presses are randomly assigned to subgroups of

four units each1. At the end of the month, the three subgroups catbined

average savings was $85 per unit. The estimates were revised by using

equation (5) and(6):

- 2 = 25 = 52
4

-L _JL + 0.124
aV, 2  152 5 2

so,

Var(x) = a"2 = 8.036 = 2.8352

= in")Mel 100(52) + 3 (85) (152) = 85.536
52 + 3(152 )

The posterior belief is that each drill press' mnuthly savings are

normally distributed as N($85.54, 102), and the Var(pz-) is reduced to

2.8352.
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Poplaticn Mean and Variance Unkn

A more likely scenario considers the mean (W-) and variance (a2)x
of this distribution as unknown. This situation requires the

assignment of a Joint prior distribution of p- and a-2, with subsequent

determination of an appropriate posterior distribution, given an

observed sample. The natural conjugate distribution family that

satisfies these circumstances is the normal-gamma family of

distributions. This family assumes that the ronditional distribution

of -, for a given value of a2, is normal, with a variance that is

proportional to a- 2 . Some authors develop this family by using thex
term r = i/a 2 for computational convenience [6], and the proportional

variance is represented as

kr = )/a 2

where k is the scaling constant. Further, the marginal distribution of

the process variance reciprocal, r = i/c,2, is a gamma distribution.

When the numrber, g, of subgroup mreans, (x 1 1,.. xg) , form a random

sample with mean W-, and there is a specific value for r, the

development of a joint, normal p.d.f. is possible as
f(x I x' T) -- (T/2,) 2 exp[-(kr/2)E(xj - ) 2 ]

and the ganma distribution of T has the p.d.f.

I(a/r(a)) rU-i exp[-p7] for r>0
f(r I a, )=

0 for T<0

where,

a and 0 are the gamma distribution shape parameters, and

E(r) = E(1/c2i) = a/P (sometimes written as = l/v)

Var(v) = Var(3/2x ) = alp2 (sametiimes written as = 2/6v2 )
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In the normal-gamma family of conjugate distributions, the terms w- ari

q-2 are dependent, and it is not possible to fini the joint prior
x

distribution by simply determining the individual marginal
distributions of p- and q-2, respectively, and multiplying them

x x
together (as appropriate for a single parameter). However, it has been

shown that the marginal distribution of w- is a t-distribution with 2a

degrees of freedcm [22]. More importantly the two marginal

distributions share shape parameters suich that

E(Wx) = m if 6 > 1x
Var(Ax ) = 6v / (k(6 - 2)) if 6 > 2

where,

6 and v are the shape parameters shared by both the t and gamma

distributions, and

k is the scaling constant described in the conditional

distribution.

Next, we will examine the relationship between r and a- 2 . Proposalx
variance estimates will be made in terms of E(a-) and Var(q-), and

not E(v) and Var( i). Therefore, it is critical that the gama

distribution shape parameters be determined by their direct

relationship to the proposal estimates. The gamma distribution is

described as

0 f(r Ia, )d=r = a a lr-1 ePT dr
J J r (a)

with

E(f) = a and, Var(r) - a
n th2

Then, making the variable transformations
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X = a-2x

7= 1/x

dr 1 - or, dr db x2  x2

a = 6/2 aid, f3=6v/2

so,

af(r P a, /)dr=J f(I/x, 6, v)dx

o 6 6  1 k6-1 e 6V/2x dx= r(6s) xx 2

(6V k6  1 k6+1 v2
or rL6) (A)N 2e 6 V/2 X dx

which is an inverted-gmma distribution [22]. This distribution has

E(x) = E(c27) =

6-22

Var(x) = Var(li2 ) = 262v 2

,6-2) 2 (6.-4)

So, with this information, it is possible to determine the prior

distribution shape parameters directly from proposal estimates, and to

describe the prior to posterior parameter relationships. The values

for m', k', v', and 6' are found from the relations

E( ) = ' (7)x
Var(Ax-) = .Av' (8)k' (6'-2)

E(- 2)= 6'V' (9)(6' -2)

var(2) = 6- 2v (10)
(61'-2) 2(61'-4)
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Then the posterior distribution can be found, with the incorporation of

sanple information, by

Mt= (k'm' + cn) (1)

(kI' + g)

k"= k' + g (12)

6" = 6' + g (13)

V= 6'v' + k'm, 2 + (g-l)v + m2 - k'r ' ' 2

6 + g(14)

where,

g is the number of subgroup means,

m is the mean of all subgroups, and

V is the sample variance, frum (I/(g-l)) E(xj - r) 2 .

Then, when the posterior descriptive parameters have been calculated,

they became the prior descriptive terms for the next iteration.

As a demonstration of the concepts developed in this paper, the

subsequent section provides a concise summary of the procedures,

followed immediately by an example problem.

Cash Flow Control chart Methodoloy

The procedures explained in the development and updating sections

are summarized as follows:

1. Determine the expected value and variance of the underlying

distribution of individual observations by using the project

proposal estimates and the appropriate formulas for that type

of distribution.
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2. Determine the desired subgrxup size, n, for the conditions, or

situation of interest.

3. Determine the predicted standard deviation of the subgroup

means.

4. Construct the expected performance control chart. Determine

the desired description accuracy for the subgrouped means

(±3ax , +2ax- , or any other desired accuracy level), and post

the UCL and LCL, respectively. Determine any minimum return

limits (MRL), and post them accordingly.

5. Construct the performac variability control chart, using the

predicted value of ax and the desired accuracy level to

determine the control limits.

6. Determine the prior distribution shape parameters m', d', v',

and 8'.

7. Post the observations. Determine if there are any control

limit violations, and, if so, determine if these violations

have assignable causes.

8. Revise the parameter estimates for w- and a2, using Bayesian

revision techniques. Use the revised expected values to

cxmpute new control limits for each chart, in preparation for

the next set of observations. Provide the updated estimates

to the appropriate sequential decision making review, in case

there is a need to change current decision strategies.

9. Test observations for independence and normality

characteristics.
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10. Repeat steps until project terminates.

These procedures can be easily automated on a computer.

Examle with Sample Data

\A firm has selected four type A forging presses to replace its

curr fleet. The project proposal claims that the monthly operating

cost savings will be $50,000 per unit. It is recognized that there is

a degree of uncertainty associated with the estimated savings,

uncertainty that is described by the parameters (numbers scaled as

thousands):

E(Ax) = $50 Var (p.) = 202

E(ax2 ) O2 Var (a, 2 ) = 322

Due to the high investment cost of each new press, the break-even

monthly savings must be $47,500 per unit. Production demands are

estimated as steady throughout the planning horizon (no trend,

seasonal, or cyclical cxmonnts).

Cash flow control charts are prepared to monitor the project's

performance. Since there are only four units, they will all be used to

form a single grouping, and the group's monthly performance will be

used as a sampling observation. The calculation of grouped performance

beliefs is derived from the parent population estimates and equations

(1) thrcouh (4):

E (wz-) = E(14) = 50

Var(px) = (1/n) Var (x) = 102

E( x2x) = (1/n) E(ox 2 ) = 52

Var(o-2) = (1/n2 ) Var(ox2) = 82

We desire +3o- accuracy, and the CFXC for expected performance has the
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followig limits:

UCrj - 50 + (3)(5) = 65

Centerlinex- = 50

LWr-= 50 - (3) (5) = 35

The MRL is established (here, the parent population is normally

distributed) from

P(x < 47.5) = P(Z < -0.25) = 0.4013 = P(x < MRL)

so,

MRL = (-0.25)(5) + 50 = 48.75

The CFM for performance variability is constructed by using the

standard coefficients for a subgrcuping of size 4 (d 2 = 2.059, D1 = 0,

and D2 = 4.698), such that its control limits are:

UCLR = D2a x = 4.698 (10) = 46.98

CenterlineR = d2ax = 2.059 (10) = 20.59

UIR = Djax = 0 (10) - 0

The assumptions that the marginal distributions of W- and a-2 arex x

normal and inverted-gammia, respectively, are considered valid, and the

prior distribution parameters are found by solving equations (7)

through (10):

m' = E(trx-) = 50

6'V' 52 or, v'- = (6'-21
( 6'-2 6'

Var(O-2 ) 26' 2v ' 2  82
X ,-2) 2 (61 -4)

after substituting for v'2, and cancelling terms

2(2 2 . 82 or, 6'= .2(5) + 4 =23.531
6'-4 82

and,
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v' = 22.875

Var( x-) = 6v =102S k' (6'-2)

kI = 0.3906

The monthly savings generated by each forging press in the first 6

months of cperatin are listed in Table 1, along with the monthly

average and range. The table values represent the discounted

summations of costs and benefits incurred, carried from their time of

ocurrence to the end of the calender month. For brevity's sake, the

summations and discounting are cmitted.

To apply the techniques of this paper, the first month's

observations are averaged (= 49.25) and then posted to the expected

performance control chart. This value is within the chart's UCL and

ILM, and is above the MRL, so, the first mxnth's grouped mean appears

consistent with the prior belief. On the performance variability

control chart, the range of point one is 46.65, and it also falls

within the dart's control limits. We then revise the prior

parameters, using equations (11) through (14), as follows:

" = (0.3906) (50) + (1) (49.25) = 49.46
0.3906 + 1

k" = 0.3906 + 1 = 1.3906

6" = 23.531 + 1 = 24.531

2 2 2
v" = (23.531) (22.875)+(0.3906) (50 )+0+49.25 -(1,3906) (49.46 1

24.531

= 21.953

M-se revised estimates are found from equations (7) through (10):
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Table 1. Disomuted monthly savings for each forging unit,
with grop average and range.

Observation
Mcnth x R

Unit 1 Unit 2 Unit 3 Unit 4

1 32.37 79.02 42.04 43.56 49.25 46.65
2 10.95 45.51 57.61 38.37 38.11 46.66
3 58.96 56.06 45.73 35.66 49.10 23.30
4 53.43 27.61 54.16 7.19 35.60 46.97
5 63.91 39.84 33.97 44.33 45.51 29.95
6 55.48 28.59 39.21 47.70 42.74 26.89
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X-) = 49.46

Var(C-) = 4.152

E(o-2) = 4.892

Var(o-2) = 7.462

These descriptive terms are listed as the second line of Table 2. In

preparation for the second mUnth's sampling, the control limits and MRL

must be similarly revised, based on the new expected values for the

subgroup mean and variance. The expected performance chart's revised

control limits, MRL, and the prdoabilities that the subgroup will not

meet the MRL, are listed in Table 3. The MRL has decreased slightly

(48.75 to 48.48), but the probability of failing to meet the MRL has

increased fromn 0.40 to 0.42. The second month's group average of 38.11

is within the control limits, but below the MRL. This is shown in

Figure 2, along with the other monthly postings. It is important to

note that by the time six monthly samplings have been ocmpleted, the

MRL has an associated probability of failing to meet the MRL of 0.6327,

a drastic increase from the original 0.4013.

An inspection of the monthly plottings (particulary of months 4

through 6) shows that the revised means are fairly accurately

describing the cash flow. It is also aparent that the management

should take interest in this project, because the MRL has been violated

in 4 of the 6 months sanpled.

For the performance variability oontrol chart, Figure 3, the

revised E(oX2 ) j generate new centerlines and UCL's for each mnrth, and

it appears that the sequential revisions are adjusting with the sample

ranges. When the first month's sample is used to revise the UCIR, the
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Table 2. Revised estimates of distribution parameters.

Applicable Prior Belief

MnhE(W-) (E(a-2)) (Var (g-)) h (Var(a-x)
xxx x

1 50. 5. 10. 8.
2 49.46 4.89 4.15 7.46
3 44.71 5.11 3.30 7.94
4 46.01 5.06 2.75 7.61
5 43.64 5.28 2.52 8.11
6 43.98 5.19 2.23 7.68
7 43.79 5.09 2.02 7.27

Table 3. Expected performance control diart revised control limits,
MRL, probabilities of failing to meet the MRL, aId observed
averages.

Month Center-
of LCL- line- UCL- NRL P(x < MRL) Observed

Sampling x x x Average

1 35. 50. 65. 48.75 0.4013 49.25
2 34.79 49.46 64.13 48.48 0.4207 38.11
3 29.38 44.71 60.04 46.11 0.6076 49.10
4 30.83 46.01 61.19 46.76 0.5584 35.60
5 27.80 43.64 59.48 45.57 0.6428 45.51
6 28.41 43.98 59.55 45.74 0.6327 42.74
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point indicates an out-of-control condition. We interpret this as an

indication that cur initial estimate was somewhat inaccurate. When the

second month's range is posted, it also indicates an out-of-control

condition. However, when the second month's data is incorporated into

the revised UCIR (in preparation for month three), the first and second

month's data points are no longer out-of-coltro1, the revision process

has adjusted the limits to ccmpensate for those points. The monthly

control limits are listed in Table 4. (For brevity's sake, we will

cmit the investigations of cbservation p and normality.)

Analysis of Sample Data

The individual data points were generated from a N(40, 202)

distribution. For cur subgrouping size of four, this corresponds to an

average value distribution of x = N(40, 102). Clearly, the final

version of the expected values for the grouped mean, 43.79, and

variance, 5.092, are mich closer than the original (N(50, 52)). The

true P(x < 47.5) = 0.6462, is also closely approximated by the sample

data (at 0.6327).

In coupariscn, the treatment of this data by conventional control

dtmxt methods has different results. Without cur revision process, the

control limits on each chart remain unchanged, as none of the samplings

are out-of-control, and the run of six consecutive points below the

mean does not constitute a revision requiement (seven are required).

So, for the data generated, there is no reason to believe that the

process is cut-of-control. This belief is not as accurate as the

revised belief. Also, since the minimum acceptable return that is not

being met, this is a costly lack of information.
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Table 4. Performaice variability control chart revised
limits and cbserved ranges.

Month
of LIR Center- UCLR observed

Sanpling lineR R

1 0. 20.59 46.98 46.65
2 0. 20.14 45.95 46.66
3 0. 21.04 48.01 23.30
4 0. 20.84 47.54 46.97
5 0. 21.74 49.61 29.95
6 0. 21.37 48.77 26.89



217

One of the primary purposes of conventional quality control charts

is to provide the operator with a clear picture of process performance.

If there are trends, or out-of-control observations, those charts

provide a visual aid to the operator. These cash flow control charts

provide a visual aid, but in a distinctly different manner. As samples

are collected and posted, any performance trends or abnormalities will

still appear, but as the parameter estimates are revised, they will

adjust so that they accurately describe those observations. The

movement from out-of-control to in-control conditions is the visual

depiction of uncertainty resolution.

Analysis with Theoretic Data

As a further, more analytic demonstration of the system's revision

capabilities, recall those initial prior beliefs

E(p)= 50. Var(p-) = 1O2
x x

E(o-) =52 ar(2) = 82

with the same initial values for parameters m', 6', v' and k'. The

true but unknown, distribution of W- is again N(40,102). But this

time, every month's sample data is an exact representation of the true

distribution, with m = 40, g = 1, v = 102. Repeated application of

this data to the parameter revision formulas results with the expected

value terms moving towards their true values, and the variance terms go

to zero (the Var(a 2) initially gets larger, peaking at sample 27, and

then steadily decreasing). Figure 4 provides an illustration of how

the expected values of the group mean and variance move towards their

true values (in parts (a) and (b), respectively), and also how their
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respective uncertainties are resolved, as their variabilities go to

zero (parts (c) and (d)).

CONCUSIONS

The method presented here seeks to take advantage of the normal

distribution properties of subgrouped data, and the relative stability

of the cash flows for engineering replacement problem. Then, ocubine

these properties with Bayesian revision techniques for the normal-ganma

natural conjugate family of distributions and statistical quality

control chart procedures, in order to provide a meaningful tool for

cnmic project management and control. The example demonstrates that

the revision process can clarify proposal estimation errors, and the

chart construction process clearly provides a visual depiction of those

revisions. The benefits, in mre general terms, are that the

uncertainty resolution provided by the revision process makes the

current project a stronger incumbent in future comparisons, if its

performance was underestimated, or a weaker incumbent if its

performanc was overestimated. Further, there are advantages to this

method that are not available under conventional control dart methods.

Application of this method can drastically affect the timeliness of

decision strategy changes. It performs estimate revision before other

procedures wuld do so, providing a means for near continuous updating.

This type of flexibility provides improvement of information that can

lead to economic gains for the firm. In the example problem, the

revised process provided updating information five months before

conventional control dart methods would have indicated any errors. In
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summary, the near-costless information improvement that this system

provides can be beneficial in a sequential decision making process.
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VII. OONCLUSIONS AND EOCIE2DA 1IONS

The purpose of this research has been to investigate the

significance of using post-audit information in capital budgeting

decisions. This research has focused on situations where capital

projects have been implemented by ccmpanies that follow periodic

decision review policies, and the sequential post-audit information of

the implemented projects is readily available for each review. General

areas of interest have been the development of a means to quantify the

user's beliefs about the quality of the initial estimates, application

of techniques to incorporate the post-audit information, and a means to

incorporate the user's beliefs in the quality of the post-audit

information. Additionally, the development of a management tool that

captures uncertainty resolution is of interest. In the sections that

follow, the results of this research will be summarized, followed by

conclusions that can be drawn from those results, and recamprndations

for future research in this area.

Summary of Results

This research begins with a discussion of the problem elements

that make manufacturing equipment replacement decisions one specific

area of the various types of capital budgeting problems. A review of

the literature reveals that an increasing number of cxmpanies are

collecting post-audit information. However, the review also reveals
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that only a limited amount of attention has been given to applying this

information to capital budgeting, in general, with even less attention

being given to equipment replacement, in particular. To address this

shortfall, the following specific areas were investigated: (1) the

adaptation of existing modeling techniques to provide the descriptions

of the probability based estimates of the equipment cash flows, (2) the

incorporation of the user's strength of belief in the quality of those

cash flow estimates, (3) the use of post-audit cash flow realizations

as sample information in the revision of the estimates, (4) the

incorporation of the user's strength of belief in the quality, or

repeatability, of the sample information, and (5) the development of a

management tool to illustrate the uncertainty resolution that occurs in

the estimates.

Adaptation of ModelinM Techniques

The unknown nature of the future cash flows makes it appropriate

to model them as probability functions. However, the level of detail

incorporated into the estimates and the type and quantity of future

sample observations makes it necessary to have several probability

modeling techniques available. These methods involve using either

discrete or continuous probability functions.

When the cash flow probability distribution is modeled with a

discrete function, whether as the initial formulation or as an

approximation to some continuous function, the formulation involves the

assignment of probabilities to each outcome interval or category.

Instead of simply modeling this situation with a discrete function,

this research uses a Dirichiet distribution, which has descriptive
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shape parameters that can be interpreted for the interval

probabilities. Using this distribution, as opposed to a discrete

function, creates no loss in descriptive quality.

When the prior distribution is to be modeled as a continuous

distribution, this research uses the beta or normal distributions. The

flexible nature of the beta distribution, through manipulation of the

shape parameters a and P, makes it suitable for many prior probability

distributions. This research uses the incuplete beta function as a

means to refine the user's prior belief, thereby extending previous

modeling efforts that limited themselves to using simultaneous solution

of PERT and beta distribution equations. This refinement was keyed to

the use of proportional changes in a and 3. When the continuous belief

is symmetric, this research examines the option of using the normal

distribution. This procedure permits refinement of beliefs through

manipulation of the distribution percentiles that are assigned to the

extreme points of the three-point estimate.

Stregnth of Belief in Prior Estimates

Concurrent with the selection of a descriptive prior probability

distribution was the develocment of a concept to incorporate the user's

strength of belief in the quality of those initial estimates. This

research examined several modeling tedniques for each of the

previously mentioned possible distributions.

When the initial beliefs are modeled with discrete intervals

(whether as the initial belief or as an approximation to that belief),

the Dirichlet distribution is used. This study introduces the concept

of using the descriptive parameters to reflect the strength of belief
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in the quality of the estimates. The term Information Quality Factor

(IQF) was introduced as a relative measure of the quality of the

initial estimates ccWpared to the anticipated sample. The IQF was

nultiplied by the respective category probabilities to obtain the

initial Dirichlet shape parameters. The stronger the belief in the

prior estimates, the larger the values assigned to the shape

parameters, aj's.

Mhen the initial beliefs are modeled as continuous probability

distributions (beta or normal), the concept of the user's strength of

belief was similarly incorporated. The previously mentioned

manipulation of proportional a and 6 shape parameters serves a dual

purpose. Because the shape parameters, a and P, are transformed into

the terms, r' and n', for revision by sample information, the use of

proportionately larger a and P values has the effect of creating a

larger value of n'. This effectively reflects a stronger belief than

lower shape parameter values. This concept was also extended to normal

prior beliefs through the use of the equivalent sample size and the

term n'. As a direct result of this concept, this research develops a

method to approximate the population standard deviation, for use in an

unknown mean, known variance (assumed) situation. (This method is used

in situations when there is insufficient information in the project

proposal for an unknown mean and variance approach.)

Estimate Revision

The development of the prior probability distributions had the

immediate concerns for description and strength of beliefs. The

subsqent task, but one that was considered simultaneously during the
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development, is efficient revision of those prior beliefs through the

use of post-audit sample information. This research uses existing

Bayesian techniques to perform the revisions, and while the techniques

are not new, how they are applied to the replacement situations are

innovations.

When the prior beliefs were described as a discrete model, this

research uses a Dirichlet probability distribution. This distribution

was selected in anticipation of the impending sample data. The

critical procedure in this modeling approach is to manipulate the

modeling of the cash flow realizations as categories, or intervals,

that correspond to the intervals in the prior belief. This gives the

sample results multicuial distribution characteristics. More

importantly, the sample and prior belief create a Dirichlet-multinamial

conjugate distribution, which makes the prior distribution naturally

responsive to the categorized sample information.

When the prior belief is modeled as a beta distribution, it is

necessary to transform the sample data from the form used in the

preposterior analysis, to the form that is used for the revision

process and posterior analysis. During the preposterior analysis, the

sample data is predicted as either being above or below its expected

value. This gives the sample data a binomial characteristic, and

sample outcome projections are made from the use of the beta-binmial

predictive distribution. The sample data is collected on a continuous

(approximately) monetary index. This research transforms that scale to

an equivalent sucxess/failure index, through the terms re and n, or ne

(more on the term ne is covered in the inediately following section),
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to regain the binomial characteristics. This transformation determines

the number of "successes", re, to be the proportion of the outcame

range attained by the sample observations, n, or equivalent samples,

ne . This definition permits the prior belief to be revised by the

sample information, through the use of the beta-bincmial natural

conjugate distribution. When the prior belief is modeled as a normal

distribution, the procedures (with the exception in the section that

follows) follow conventional Bayesian procedures.

Strgn= of Belief in Sample Quality

Two facts precipitated the need for the user to be able to

incorporate his strength of beliefs in the quality of the cash flow

realizations, or sample observations: (1) the installation and

implementation of the equipment may not occur in the same fashion that

was projected at time zero, and/or (2) the financial conditions outside

the factory may not be as anticipated. In either case, the changes may

alter the perceived quality of the initial estimates. In each of the

distributions developed in this study, the strength of the prior

beliefs was based on a relative ccparison of their perceived quality

and an anticipated number of sample results. These results are to be

taken under an assumed set of circumstances. How accurately the actual

conditions compare to those assumptions determines the magnitude of the

equivalent sample size adjustment, which is essentially the application

of a multiple, or scaling factor, to the observed results (ne = k * n,

where k is the magnitude of the scaling factor).

The equivalent sample size, ne, is designed to reduce the

quantity of the sample observations when the conditions are anomalous
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and not likely to occur again. The equivalent sample size increases

the quantity when the conditions are anomalous, but are considered to

be more representative than those used for the initial estimates. M-&en

the conditions are as projected, there is no change.

Illustration of Uncertaint7

Resolution

As cash flow realizations replace estimated values, uncertainty

resolution occurs. This research investigated the concept of modifying

statistical quality control charts (specifically, x and R-charts) to

graphically portray this resolution. The situation examined was an

equipment fleet replacement problem, with the population of the

individual unit's cash flows assumed to be normally distributed with

unknown mean and variance (this situation was selected to take

advantage of the Central Limit Theorem's properties). This procedure

utilized the normal-gamma family of conjugate distributions. These

procedures found that as uncertainty resolution occurred, the upper and

lower control limits would adjust towards the true values, providing an

illustration of the resolution. The use of the Minimum Return Limit

permits the user to see how the resolution is affecting the anticipated

profitability of the project.

The study examined the behavior of the uncertainty resolution

when repeated representative samples were used to revise the initial

estimates. This found that the expected values for the unknwn mean

and variance move quickly to their true values. However, the variance

of the expected value of the mean, a measure of uncertainty resolution,

muved slower to zero, or complete resolution. Further, the variance of
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the expected variance muved at an even slower rate to cumplete

resolution.

Conclusions

This research shows that sequential post-audit information, in

the form of cash flow realizations, can be used to provide uncertainty

resolution in implemented capital projects. This research presents

several probability based modeling techniques that can be used to

illustrate varying amounts of uncertainty that accompany initial cash

flow estimates. The flexible natures of the beta and Dirichlet

distributions make them appropriate for many problem situations. An

assessment of the quantity and quality of information that was

available for the formulation of those probabilistic estimates can be

incorporated into the initial model, as a reflection of the user's

strength of belief in those estimates. Similarly, the conditions

surrouning the ocrrence of particular cash flow realizations can

provide input to the user in his determination of the replicability of

those results. Once assessed, this information is incorporated into

the revision process. The impacts of these decision modeling

techniques can affect the previously determined equipment

implementation strategies, creating the need for company decision

strategy adjustments. These adjustments may include changing the

timing arx/or amnts of future investments (the basis of the equipment

replacement problem). On the other hand, the uncertainty resolution

may not create decision strategy changes if events ocr as

anticipated, but the resolution still improves the quality of the

initial estimates. This information gain can then be used in future
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comparisons of the defender asset with new, currently unknown,

challenger assets. The incorporation of just the - strength of

belief in the prior information or just the sample information can

provide clarity to the decision problem.

The use of the cash flow control charts provides a graphic

illustration of the uncertainty resolution process, and provides the

user with an easily identifiable indicator (MRL) that can be used to

initiate the decision strategy changes. The proximity of the expected

value center line and MRL graphically depicts the discounted 'break

even" performance of the project.

These concepts, and the potential gains available through

decision strategy adjustments, will improve a company's overall

investment performance. However, the potential benefits of these

decision-aiding concepts must be considered with their potential

abuses. These measures are designed to incorporate the decision-makers

unbiased beliefs in the quality of information. If these methods are

applied in a parochial manner, the results will be similarly biased

decision strategies.

Recarmerglations for Further Research

A logical extension of this research would be an investigation

of how these post-audit information concepts, and the uncertainty

resolution process in general, are affected when the initial estimates

include trend, seasonal, and/or cyclical components that have

uncertainties associated with their respective estimates. This task

may require the develcpment of a joint factor resolution model.
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Another area would be a further investigation of cash flow

ontrol charts. As many cash flows are uneven, the use of CFCC based

on residuals could be investigated, as well as an investigation of the

use of CUSUM charts, to detect small shifts in trend. Another area

could be the development of CFCC when the Central Limit Theorem is not

appropriate. The procedures developed in this study were modifications

of methods for x and R-charts. The investigation in this area may

involve using other statistical quality control chart methods, with

same transformation of the reported cash flow data.
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