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The purpose of this research is to investigate the significance
of using post-audit information in capital budgeting decisions. The
focus is directed at implemented projects whose proposals included cash
flow estimates that were represented as probability functions, and the
subsequent cash flow realizations of those projects. Since the cash
flows must be recorded for other reporting purposes, they represent an
essentially "free" source of information. Bayes theorem is used to
consider this post-audit information.

The Bayesian techniques consider the probabilistic cash flows
when they are modeled as one of three general situations:

(1) discrete functions, (2) continuous functions (beta or normal
probability distributions), ~v {3) discrete approximations to
continuous functions. This research introduces a concept that permits
incorporation of the user's strength of beliefs, or confidence, in the




quality of the estimates that were used during project selection. In
similar fashion, this research introduces the equivalent sample size
concept that permits the user to incorporate his strength of belief in
the quality, or replicability, of the sample information. These
concepts are then applied to case studies of actual decision problems.
While the decision problems specifically concern equipment replacement,
the concepts that are developed can be generalized for other capital
budgeting situations.

As the revision procedures generate the uncertainty resolution
for the project cash flows, it is helpful to provide the user with a
graphic illustration of this resolution. For this purpose, Cash Flow
Control Charts are developed as a management tool. These charts have
appearances that are similar to statistical quality control charts, but
they incorporate Bayesian revision procedures.

Finally, the research concludes that incorporation of post-audit
information can lead to changes in company investment strategies. The
methods led to improved decision making in the timing and magnitude of
equipment investments.
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I. INTRODUCTION

Capital budgeting decisions form one of the most critical and
difficult areas of business decision making. The decisions are
important because they affect the economic welfare of the campany. The
decisions are difficult because they usually involve unknown future
events, and budgeting constraints limit how many investments the
campany can initiate. As these decisions became increasingly camplex,
businessmen need analytic tools that enhance their decision making
capabilities.

The subject of capital budgeting covers a broad spectrum of
theories and practices that businessmen use to maximize the wealth of
their respective firms. These include (but are not limited to) the
development of capital expenditure programs, identification of new
investment opportunities, estimation of the future cash flows for these
investments, camparison and selection of investments, and management
ard review of the projects within the company program. This study is
concerned with the development of analytic decision making techniques
that will aid the businessman during his monitoring and management of
implemented projects. The techniques have impacts on the amount of
capital resources available, how initial estimates can be revised
through time, and how these revisions can affect the company's existing
project decision strategies.
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Problem Definition
The techniques that are developed in this study can be applied
to many different investment situations, but they are most vividly
represented by the circumstances that exist for manufacturing equipment
replacement decisions when technological innovations are present.

Replacement Situations

Traditional equipment replacement analysis has focused on the
question: Should we replace the present asset (called defender) with
an altermative asset (called challenger), or should we keep the
defender and make the replacement sametime in the future. The "asset"
in question has typically been one specific piece of machinery. For
this study, the scope of the equipment replacement decision is expanded
from the traditional machine for machine camparison (serial replacement
decisions), to encampass decisions that campare entire defender
production processes to innovative challenger production processes
(parallel replacement decisions). In these replacement situations, the
cash flows are modeled as probability distributions (either discrete or
continuous). Additionally, this study is only concerned with
replacement problems that have capital budget limits, which will limit
the number, or type, of alternatives that are feasible for
consideration.

When an egquipment replacement altemative involves a
technological innovation, it frequently has higher investment costs
than replacement altermatives without innovations. The increased costs
require more of a campany's limited budget. Therefore, these budgetary
limits make it necessary for the businessman to consider invested




3
capital as well as other existing capital (equities or loans), as
campany assets. While invested capital is not a very liquid asset, it
still retains an inherent salvage, or abandorment value. Therefore, it
is an important campany resource that must be utilized in the most
efficient fashion. Once any project is initiated, it is an asset whose

performance is subject to review at any subsequent point in time.

Decision Environment

Cawpany investment decision policies can be described by two
fundamental categories. In the first, the initial investment decision
is the only invest/termination decision to be made over the project's
econamic life. In general, firms only permit this type of policy if
the project has small capital requirements (under some cut-off level of
investment), or if their staffs are too small to monitor all projects,
or if the firm follows some very simple capital budgeting scheme.

The second policy, the one of interest, is where the firm makes
regular periodic reviews of all of its investments. If a project is
executed to its fully planned horizon, it is selected for retention at
each review. Project termination may occur at any of the sequential
decision points. Termination may be for either poor project
performance or the availability of new investments that have greater
benefits, effectively "bumping" existing investments.

Post-audit Information

When a project is considered for implementation, its periodic
cash flows (expenditures and receipts) are represented by estimated
values. At project campletion, its return on investment is determined
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from its actual, or realized, cash flows. These realizations are post-
audit information. At any intermediate point in the project's life, an
up-to-date estimate of the project's return can be found by cambining
the remaining estimates with the existing realizations. However, the
use of post-audit information varies widely fram firm to fimm.

In same campanies, the cash flow information is only used for
accounting purposes. Expenditures are campared to their budgetary
limits (with adjustments, as required, for excess experditures),
receipts are recorded as they occur, and the information is only used
for required reports (stockholders, taxes, etc). In other companies,
the information also goes to the project originator. He determines
where and, hopefully, why his estimates deviated from the realizations.
He also makes adjustments, when appropriate, in his methods, to improve
the quality of his estimates in future proposals. In other companies,
the information is not provided to the project originators, but to the
decision makers, who use the information to form opinions about the
bias their staffs may have in preparing proposals. lLastly, same firms
provide this feedback to both groups, for their individual reviews.

Because the information is collected for standard reporting
purposes, this post-audit information can be considered as essentially
"free" data. The only costs involved are for collating the information
into a usable form (as directed by the businessman conducting the
review). This information does not carry the "cost" normally
associated with data sampling or testing.




Uncertainty Resolution

The primary interest of this study is detemmining how the
uncertainty attached to future cash flow estimates is resolved through
the use of post-audit information (cash flow realizations), and the
effects of the revisions on the campany's capital budgeting strategy
(which was based on the original estimates), as the campany moves
through a sequential decision making process. When businessmen prepare
to make their decisions, they seek the most accurate information
available. They take this information and formulate estimates for
unknown future values. At project selection, these estimates are the
best (and only) information available. Once the project is initiated
and moves through its economic life, the original cash flow estimates
are replaced by profit and loss realizations. Each successive
realization reduces same of the original performance uncertainty,
until, at the end of the project's life, actual project performance
eliminates all uncertainty. This process of moving from greater
uncertainty toward less uncertainty is referred to as uncertainty
resolution. As this uncertainty resolution occurs in a given project,
the anticipated profitability of that project may be changed to the
degree that changes are needed in the campany's plans for that project.

Process of Revising Estimates

The concept of using post-audit information (sample data) to
revise an initial performance estimate (prior belief), to abtain a
revised estimate (posterior belief) fits the classic Bayesian revision
framework. While Bayesian techniques have been used in many areas
(including same portfolio models), they have not been applied to
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probability based models for equipment replacement decisions. This
study examines same existing Bayesian revision models and extends their
conceptualizations to cover several situations that occur frequently in
these replacement problems. The extended concepts permit the
businessman to incorporate his subjective opinions, or "strength of
beliefs", in the quality of the initial estimates, and to similarly
incorporate his beliefs about the relative quality of the cbserved cash
flow results.

Problem Statement

The importance of this uncertainty resolution process is that,
at minimal cost, insight about the accuracy of project estimates may be
obtained. The impact of that insight may serve to change the capital
budgeting plan at same point in the sequential decision making process,
as the uncertainty resolution may well cause changes in the economic
lives of various projects. Therefore, the problem statement is "Can
sequential post-audit information provide uncertainty resolution in
cash flow estimation and be utilized in an investment decision making

process?"

Research Objectives
The principle objective of this research is to develop the
techniques that are needed to obtain uncertainty resolution of initial
estimates of cash flow performances for capital budgeting decisions,
with specific attention to equipment replacement situations. Because
the cash flows may be represented by one of several probability
distributions, this research is concerned with techniques for both

L
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discrete and continuous probability functions. Ancther ocbjective is to
develop these uncertainty resolution techniques in a fashion that
permits the quantitative incorporation of the strength of beliefs about
the quality of the initial estimates and, similarly, the beliefs about
the representative quality (or replicability) of the aobserved cash flow
realizations. A final objective is to develop a managerial tool that
graphically displays the uncertainty resolution in a timely manner.
These objectives are accamplished by:

1. Developing uncertainty resolution techniques that are
modifications of existing Bayesian revision models. The Dirichlet
distribution revision model is adapted to provide the revision
techniques for situations when the cash flow distribution is
represented by a discrete probability function. For cash flows that
are represented by continucus probability distributions, procedures are
developed that modify established beta and normal distribution revision
models. These situations take advantage of the natural conjugate
properties of the particular distribution's family. When beta and
normal distributions do not accurately describe the prior beliefs, or
when the sample likelihood and prior beliefs are not natural
conjugates, a technique is developed that divides the contimuous prior
beliefs and sample likelihoods into discrete intervals, and applies the
Dirichlet revision techniques.

2. Developing the concept of an equivalent sample size to
incorporate the businessman's strength of beliefs about the quality of
the sample information, using a multiple of the cbserved results, to




8
reflect stronger or weaker beliefs about the representative quality of
the sample.

3. Developing the technique of manipulating the distributional
descriptive shape parameters (for the Dirichlet and beta revision
models) to incorporate the businessman's strength of belief in the
quality of his prior estimates, and describe those beliefs. The
Information Quality Factor (IQF) is developed for the Dirichlet model,
and, in a similar fashion, a technique that uses proportional (a, B)
values is developed for the beta distribution model. For the normal
distribution, the concept of an equivalent sample size is extended to
include the user's prior beliefs.

4. For a management tool, the concepts for Cash Flow Control
Charts are developed. These charts graphically portray uncertainty
resolution over time. However, the applicability of these charts is
limited to situations where there are more than just a few identical

projects of interest.

Study Plan

This study was prepared under manuscript format with the
principle chapters (III through VI) written as journmal articles. Each
of these chapters includes a case study of a decision problem handled
by an actual mamufacturing firm.

Chapter II provides a general review of the literature.
Specific issues that pertain to a particular chapter (jourmal article),
are included in the introductory and model development paragraphs of
that chapter. The review of the literature reflects the need for

uncertainty resolution techniques for the equipment replacement
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problem, the need for a means to systematically incorporate the user's
strength of beliefs about the quality of his prior and sample
information, and the need for a usable management tool.

Because this study is presented in manuscript format, Figure 1
is provided to illustrate how the remaining chapters are related.
Capital budgeting methods are the major problem categorization, with
equipment replacement decisions as the subset of interest. For this
study, these decisions are treated as being made with the existence of
both risk and uncertainty. Once implemented, these projects are
controlled by methods that either use or do not use post-audit
information. Use of post-audit information is the central theme of
this paper. The problems handled by these methods have initial
estimates that are described by probability functions, either discrete
or continuous. The continuous estimates and sample information can be
handled with either continuous natural conjugate distributions or by
discrete approximations.

Chapter III develops the techniques necessary to obtain
uncertainty resolution for replacement cash flows that are modeled as
discrete probability functions. The chapter introduces the concept of
using the Dirichlet revision model to accomplish this resolution.
Additionally, in the development of initial prior beliefs, this chapter
shows how the Dirichlet distribution's shape parameters can be used to
illustrate the user's strength of belief in the estimates.

Chapter IV develops the techniques necessary to obtain
uncertainty resolution for cash flows that are modeled as continuous
probability functions with natural conjugate properties existing
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Capital Budgeting Methods

(Other Decisions)

Equipment Replacement Decisions

(Non-Updating Models)
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Discrete Priors Continuous Priors

(Chapter III.)

|
Natural Conjugates

(ChaTteT Iv.)

Beta Priors Normal

-

Discrete Approximations

{(Chapter V.)

Priors

Cash Flow
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Figure 1. Relationship of Research Topics.
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between the sample data and the prior beliefs. In this chapter, a
unique method is introduced for the development of the beta
distribution shape parameters. This method permits the user to
incorporate his strength of beliefs in the prior estimates. The
chapter also introduces the concept of an equivalent sample size that
can be used to similarly incorporate the strength of prior beliefs for
a normal distribution. It then uses this concept to capture the user's
beliefs about the quality of his sample informaticn.

Chapter V develops the uncertainty resolution techniques needed
when the prior beliefs and/or sample likelihoods do not fit the natural
conjugate families described by Chapter IV. This chapter demonstrates
how the IQF and equivalent sample size can both be incorporated into a
decision problem.

Chapter VI develops the concept of Cash Flow Control Charts as a
businessman's management tool for on-going projects. The methods are
developed from a blending of statistical quality control charts
techniques and natural conjugate distribution concepts.

Chapter VII contains a discussion of the conclusions obtained in
chapters III through VI, and recommendations for further research.




IT. LITERATURE REVIEW

To be successful in the competitive market, companies must
invest their capital in the most advantagecus manner possible. Because
these campanies must contend with varying quantities of unknown future
events, they face the generalized problem of capital budgeting under
uncertainty. This problem can affect every area of a company's
operations, and its need for resolution has led to literary discussions
in a variety of disciplines (accounting, business, economics, finance,
operations research, and industrial engineering). These discussions
have led to the development of numerous capital budgeting models that
concentrate on investment selectic.., out, generally, fail to address
the continuous flow of information available from the earnings process.

The generalized problem of an on-going investment with
subsequently available cash flow information can be represented as a
manufacturing equipment replacement problem. The literature review
begins with a general discussion of equipment replacement problems, and
how variations of these problems have differing amounts of information
about future events. The review then discusses how the amount of
available information leads to problem solving by either deterministic
(which assume that future events are known with certainty) or
nondeterministic (which treat future events as unknown) methods. The
review then defines how the terms risk and uncertainty will be used in
this study. This permits the nondeterministic methods to be identified

12
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as procedures that either only address risk, or address both risk and
uncertainty.

The review then discusses the trend of increasingly available
post-audit information. The review categorizes the general capital
budgeting nondeterministic methods into models that either use
(information dynamic) or do not use (information static) updating
techniques. How information static models make adjustments for risk
and/or uncertainty is examined, as well as the uncertainty induced bias
that results from failing to use post-audit information. For the
information dynamic models, how various models incorporate uncertainty
resolution are discussed.

The last section of the review focuses on capital budgeting
models that are specifically designed for equipment replacement
decisions. Historically, the literature has focused on stochastic
mathematical programming models, with some applications of camputer
simulation. The potential for improved company investment performance,
by using an application of Bayesian revision for uncertainty resolution
is identified and becames the focus for this research.

Manufacturing Equipment Replacement Problems
As defined in Chapter I, the manufacturing equipment replacenent
problem focuses on whether a business should keep a defender asset, or
replace it with a challenger asset, now or sometime in the future. As
further described in Chapter I, this research is particularly concerned
with decisions that are made by companies that use periodic decision

reviews in their capital budgeting policies. These companies'
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investment strategies are affected by the economic lives of their
defender assets.

The replacement decisions are based on the estimated cash flows
of each alternmative. Surveys report that the determination of these
estimates is the most difficult of all capital budgeting tasks.
However, they also report that equipment replacement decisions usually
have the most accurate estimates [Pohlman, Santiago, and Markel
(1988) ). These accuracies are associated with the traditional
(machine-for-machine) comparison decisions. CQurrently, as defined
earlier, the camparisons have escalated from machine-for-machine to
process-for-process decisions. These expansions stem from evolving
high technology techniques (such as camputers, robotics, artificial
intelligence, just-in-time manufacturing, etc.) that incorporate
several processes into a single method. The difference between these
expanded (process-for-process) comparisons and the more traditional
ones is the expanded comparisons do not have the performance "track
records" of the traditional comparisons. Surveys report that when a
challenger process is a substantial deviation from a firm's previous
operations, the previously described cash flow estimation accuracy no
longer exists [Cook and Rizzuto (1989)].

The information available under the traditional comparisons led
to the development and use of many deterministic methods. The methods
proceed as if the decision maker has complete information regarding the
investment altermatives, at the time of decision. These deterministic
methods dominate the discussions of replacement methods in the
literature. The expanded camparisons, on the other hand, do not treat
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the estimates as known values, but approach them as random variables
with same form of probabilistic future, thus requiring the use of
nondeterministic methods.

Deteministic Methods

Several deterministic capital budgeting models have been
developed and are explained in great detail in the literature [Brown
and Kritzman (1987), Bierman and Smidt (1980), Weingartner (1963), and
Park and Sharp-Bette (1988)]. These discussions center on the model
developed by Weingartner that uses mathematical programming (linear,
integer, and dynamic) techniques to define the relationships of
different variables during the various periods of interest within the
planning horizon. The relationships may be simple or camplex, and can
cover the spectrum of lending and borrowing rate combinations.

One problem associated with these models is that treating all
future values as being known with certainty is not always an accurate
approach to real-world situations. In fact, it has been stated [Bawa,
Brown, and Klien (1979)] that under rapidly changing stock market
conditions, these deterministic methods can yield solutions that are
sub-optimal moments after they are generated. Another problem is that
the accuracy that has historically been attached to the traditional
camparisons has led many of the deterministic models to primarily focus
on the timing of the replacemcit instead of possible errors in the
estimated cash flows [Bean, Iohmann, and Smith (1985) and Oakford,
Iohmann, and Salazar (1984)]. Since most of the expanded replacement

decisions will involve cash flow estimates that are stochastic in
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nature, the main interest of this research focuses on nondeterministic
decision methods.
Nondeterministic Methods

The predictions of specific future events are made with varying
degrees of accuracy, dependent upon the nature of the event and skill
of the predictor. The need to reduce the levels of unknown elements in
decision making has led to a wide variety of approaches and techniques.
To address these concepts, it is necessary to first examine the
concepts of risk and uncertainty. For this study, the terms risk and
uncertainty must be clearly defined to properly differentiate this
research from other previous works, which used these terms
interchangeably. Once these terms are defined, the general form of
capital budgeting models can be categorized as those that incorporate
risk and those that incorporate both risk and uncertainty.

Risk. Risk is defined as the variability between a predicted
future event and its actual outcome, where the predictions are
probabilistically represented and the distributions have either known,
or assumed to be known, parameters. Risk has been historically
camputed as and represented by the statistical term variance. However,
it has been stated [Mao (1970)] that the use of variance as a risk
measurement is not entirely satisfactory, as it considers both positive
and negative cash flow extremes. The contention is that businessmen
are much more sensitive to potential losses than conditions of larger

than expected gains. Thereby, that author develops the concept of
semivariance, the variability of negative return. It must be noted
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that in the situation where an investment is made in cambination with
other investments, as in a portfolio, the calculation of variance and
semivariance requires full knowledge of the covariances between
investments (i.e., specific definition of the full covariance matrix,
Alexarder and Resnick (1985)). However, with many different
investments and mmerous future cash flows, this camputation is
difficult, and, as cited previocusly [Gurnani (1984)], the projects are
usually analyzed on an individual basis, with "no allowance made for
covariance between projects". Ancther assessment of risk is made by
considering the distribution of net present values, and determining the
probability of loss (the area of negative returns). Again, each of
these concepts is rooted in knowledge of, or assumed knowledge of,
distribution parameters.

Uncertainty. The term uncertainty is used when future events
are unknown, and the nature of the praobability distribution of event
occurrence is also unknown. This area is particularly concerned with
judgmental or subjective probability distribution estimates, where the
person making the predictions cannot precisely define the distribution
parameters. Since most factors can be bounded (either loosely or
tightly), the future cash flow estimates are frequently presented as
same form of a probability function, with estimated parameters for
expected values and variances. These parameters are estimates, and are
not known with certainty due to the variability of market or
performance conditions.

An immediate extension of an alternative considered under risk

and uncertainty is its current and future availability. Some models
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assume that investment availability is known with certainty. However, a
more realistic approach is that future invest;ment availability is an
unknown quantity. Several replacement models have attempted to capture
this availability [Chand and Sethi (1982)], but in doing so, they have
modeled the cash flows as deterministic values.

Post-Audit Information

As described previously, in realizing a given alternative's true
net worth over time, its initial cash flow estimates are replaced by
actual cash expenditure and receipt information. This information is
readily available within most firms. A review of capital budgeting
surveys [Istvan (1961), Bonini (1975), Rosenblatt and Jucker (1979),
McInnes, Morris, and Carleton (1982), Gurnmani (1984), Klammer and
Walker (1984), Mukherjee and Henderson (1987), and Pike (1989)]
indicates that an increasing percentage of the firms surveyed have
adopted same form of post-audit, to upwards of 90-percent [Klammer and
Walker (1984)] of the respondents.

While it is a relatively standard procedure to use this
information for accounting reports (stockholders, taxes, etc), same
campanies use this information as feedback. When used, this feedback
is either directed to project originators, the decision makers, or,
sametimes, both groups. How previous nondeterministic methods have
handled this information can be used to categorize these research
efforts. Same models have been developed that do not take advantage of
this "free" post-audit information (information static models), while
others incorporate this information to varying degrees (information

dynamic models). The consequence of ignoring this post-audit
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information is that an uncertainty induced bias may be incorporated
into the fimm's capital budgeting program. The concepts of information
static models and uncertainty induced bias will be examined, and then
this study will proceed with the case of interest, the information
dynamic models and their uncertainty resolution properties.
Information Static Models and
Uncertainty Induced Bias

The decision policy of making a single invest/termination
decision for a given project typifies the conditions of information
static models. These models may address risk only, or both risk and
uncertainty. If only risk is considered, then there are several risk
adjustment techniques in practice. The most popular techniques used by
businessmen are risk adjusted discount rates and adjustment of the
required payback period.

Firms currently use two predaminant means to determine their
required discount, or hurdle rates. The first uses the fim's current
weighted average cost-of-capital, and the second uses the marginal cost
of new capital. The second method was developed after the correctness
of using historical rates, in the face of steadily increasing or
decreasing capital costs, was questioned [Bussey (1978)]. Then, sinply
put, the risk-adjusted discount rate increases the amount of required
return on invested capital for investments with greater risk. The
drawback to this method is the subjective nature of the adjustment
[Park (1977)].

Before considering adjustment of the payback period, its
inherent shortfalls should be pointed out. There are three serious
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limitations to using payback period as a measure of effectiveness: (1)
investment risk is not integrated into the analysis, (2) the timing of
net cash flows and their time value of mone; is disregarded, and (3)
post-payback net cash flows are not considered. Reduction of the
required payback period creates an additional problem in the
development of adjustment consistency from risky investment to risky
investment. On the other hand, a more increasingly accepted means of
addressing risk is sensitivity analysis, which identifies the factors
that generate the risk, and attempts to bound the risk effects.

Since risk has been defined as the variability between predicted
and actual events, the most detailed way to represent risk is through
the underlying probability distribution of the predicted event (say the
net present value distribution). The two approaches that use
probability distributions to address this concern are the analytic
approach and the simulation approach. The analytic approach [Hillier
(1963, 1971)] used the future event probability parameters with a
selected interest rate, to determine the exact mean and variance of the
discounted value of the investment. The simulation, or Monte Carlo,
approach [Hertz (1964, 1968)] uses random sampling from the pre-
determined future event probability distributions, discounts them to
net present values, and, through repeated simulation, approximates the
mean and variance. The complex nature of many real world investment
situations often makes the analytic approach difficult, if not
impossible, to execute. On the other hand, the inherent flexibility of
the simulation approach, combined with more readily accessible camputer
support, has made simulation increasingly popular. However, both
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methods are limited by the required assumption that the probability
distribution parameters are known values, thereby ignoring uncertainty.

The recognition that uncertainty exists has led to the
realization that a corresponding performance bias exists in static
capital budgeting methods. In a previous work [Brown (1974)], it was
shown that in the consideration of an unbiased group of investments
(i.e., the expected value equals the estimated value for the group of
investments), the firm will usually rank the investments on the basis
of expected return, ard select those with returns above a specified
level. In developing the investments' performance estimates, in order
for the group to be unbiased, same of the investments with poor
performance estimates will have better than anticipated results and
same of the higher rated investments will perform worse than expected.
Because the non-randam nature of the selection process will select the
higher ranked investments, the selected group's performance will most
likely be less than their initial expected value. Thus, even though
the investment estimates were unbiased, an uncertainty induced bias
exists.

Another work [Miller (1978)] attempts to overcame this bias
through the development of an uncertainty compensating premium (the
greater the uncertainty, the greater the required correction). The
firm then only accepts those investments whose estimated returns
exceeds the required cut-off. However, a key assumption to this
approach is that the level of uncertainty is the same for all
considered investments (a rare occurrence in real life situations).

Lastly, he recommends that these steps be applied only by top level
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managers as he feels they would have more information about the
population of good and bad investments than the engineer or analyst
preparing the investment proposal.

Ancther primarily information static method that considers both
risk and uncertainty is the application of utility theory. The
development of utility theory is widely documented in the literature
[ (Fishburn (1970), Grossman, Kihlstrom, and Mirman (1977), Raiffa
(1970), Keeney and Raiffa (1976), and Kreps (1988), for example].
Utility theory addresses the decision maker's (or makers') subjective
response to a set of altermatives, given the risks and uncertainties
associated with those alternatives. The responses are used to identify
the preference or utility, function for that decision maker. The
utility “u~ciion describes the acceptable rate of trade-offs (gains
versy., variability) for the decision maker and he may be classified as
risk averse, risk neutral, or risk prone.

The expected value maximization model [Weingartner (1967)] and
the certainty equivalence model [Robichek and Myers (1965) and Percival
and Westerfield (1976)] are examples of utility theory applications.
However, while this approach is being more widely accepted [Mukherjee
and Henderson (1979)], it is difficult to derive the utility function
mmerically, especially when it is necessary to consider the time
value, or preference of the projected benefits (the problem of finding
a means to appropriately "discount" the utility values to other points
in time). Additionally, it is generally even more difficult to explain
those functions to decision makers that do not possess utility theory
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backgrounds, and those individuals usually prefer to use monetary
Each of the methods mentioned can only attempt to campensate for
the factor uncertainties, because they have no means to clarify them.
While using same form of uncertainty compensation premiums may be a way
to resolve the problem in information static models, feedback (post-
audit) information can provide a more efficient means to overcame the

uncertainty and makes the decision a dynamic, rather than static

process.
Information Dynamic Models

and Uncertainty Resolution

The concept of uncertainty resolution, as defined in chapter I,
has not received much attention in the literature as an application to
capital budgeting models, in general, and even less for eguipment
replacement problems, specifically. With regards to the general
models, the previous works have primarily sought to develop indices to
measure the attaimment of uncertainty resolution. These efforts have
examined using the payback period, the coefficient of variation,
certainty-equivalence, and the project balance concept.

The use of the payback period was proposed, based on a simple,
one decision investment, with the amount and timing of the cash flows
modeled as random variables [Weingartner (1969)]. This work defined
the time required for expected cash inflows to equal the initial
capital investment to be the rate of expected uncertainty resolution
(which is also the definition of the payback period). However, this
work failed to elaborate on how this concept could be extended to
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multi-period decision problems. It also failed to address the inherent
weaknesses in using the payback period: (1) the time value of money is
ignored, and (2) post-payback net cash flows are ignored.

When the coefficient of variation was introduced as a measure of
uncertainty resolution [Van Horne (1969)], it was proposed that the
square root of the weighted average (based on probability of
occurrence) of the variance (about the conditional mean) of probability
tree outcomes, at the end of any time period of concern, be divided by
the expected net present value of the cash flow, thus forming a
coefficient of variation ratio for each period of time. This was
extended to the portfolio situation, where the coefficient of variation
was used as a gage to the investor who desires to maintain a particular
risk profile. This method required developing the coefficient of
variation patterns, over time, for portfolios with existing products
and alternative portfolios that included new products. A corresponding
coefficient of variation differential chart is then developed, and,
based on the anticipated differential, it is determined when the
portfolio uncertainty is resolved enough to permit new investments.

In a critique of this work [Bierman and Hausman (1972)],
counter-examples are given that show that the coefficient of variation
technique does not provide camplete information. The critique goes on
to say that entire probability distribution (and not just mean and
variance) is needed to provide full information for the investment. In
the discussion of the portfolio approach, the critique agrees that
under the condition where the occurrence, timing and characteristics of

future investments are not known with certainty, Van Horne's
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uncertainty resolution may have merit in maintaining a given risk
profile. However, they contend that if the purpose is to maintain a
risk posture, an investor would be indifferent between a set of
investments that never resolve their uncertainty and a program that
acquires "new" investments each year that fully resolve their
uncertainty each year.

Another effort [Park (1977)], elaborates further on the
weaknesses of the coefficient of variation technique. It examines the
measure's dependence on the terminal net present value, and its
subsequent failure to consider the cash flow pattern of the probability
tree. The effort provides an example of two probability trees, each
with identical terminal values and conditional probabilities. By Van
Horme's technique, this situation will result in equivalent resolutiocn
of uncertainty over time. However, the construct of the two
alternatives is such that one recovers its initial investment faster
than the other. Thus, under conditions of uncertainty, the shape of
the cash flow pattern is important because it provides information
about the rate at which outcome uncertainty is resolved.

The project balance measure was introduced [Park (1977)) as a
measure of investment worth and uncertainty resolution. The measure is
a time sensitive application of incoming cash flows to an investment's
unrecovered balance of capital. Simply stated, an investment's
unrecovered capital balance is carried forward through time, being
steadily incremented at the firm's minimum attractive rate of retumrn,
and decremented by the arrival of cash inflows. The process continues

after the initial investment is recovered, running throughout the
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course of investment life. In graphic portrayal, this develops areas
of negative balance (ANB), corresponding to times when the cumilative
incoming cash flows do not exceed the amounts of investment, and areas
of positive balance (APB), corresponding to times when the cumilative
incoming cash flows exceed the amounts of investment. The project
balance concept simultaneously captures the payback period information
and the future worth information (another form of discounted cash
flows).

The author then turns to the matter of uncertainty resolution,
and, considering the shortcomings found in Van Horne's approach,
applies the project balance concept to the coefficient of variation.

To overcame the limitation created by Van Horne's use of terminal
project value, Park substituted the time sensitive measures ANB and
APB. When these measures were applied to Bierman and Hausman's
counter-example (two investments yielding identical mean and variances
but one having a shorter payback period), the results showed that
Park's resolution indices could be more discriminating than Van Horne's
(which could not discern any differences). In further explanation, the
author addresses the problem created whenever any standard deviation
based measure is used. Specifically, as a measure of variability, the
standard deviation treats any fluctuations from the expected value as
bad, but for risk-averters, fluctuations above the expected value are
not nearly as bad as those below. He overcomes this problem through an
enhancement based on Baumol's expected gain confidence limit ([Baumol
(1963)]. The result is a time-dependent measure of uncertainty
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resolution, and a subsequent application was provided [Park and Thuesen
(1979) ].

An alternative approach is to attain uncertainty resolution
through probability distribution revision by Bayesian techniques.
These techniques are well documented in the literature [Chernoff
(1968), Chernoff and Petkau (1986), Hey (1983), Iversen (1984), Lindley
(1965), West (1986), Winkler (1972), Zellner (1985), for example].
Earlier works [Magee (Jul-Aug 1964, Sep-Oct 1964)] laid the groundwork
for Bayesian decision tree investment analysis. The basic procedural
steps were to: (1) identify the problem and alternmatives, (2) layout
the decision tree, (3) obtain likelihood data, and (4) evaluate
alternative courses of action. These works were limited to discrete
event situations, addressing continuous alternatives by selectively
breaking them into intervals. Another work [Hespos and Strassman
(1965) )] addressed this problem of continuity through their development
of the stochastic decision tree, which used similation to derive the
final distributions. However, these initial efforts had an inherent
limitation, as they treated the parameter estimates as known values.
This effectively addressed the risk elements, but failed to address
questions concerning uncertainty.

Subsequently, it was proposed that updating information should
be periodically incorporated into a given project's valuation
considerations, because the capital budgeting process is seguential in
nature [Harpaz and Thamadakis (1984)]. In this method, an updated
valuation formula is found via Bayesian methods, and it is contrasted
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with conventional results in a camparison of two projects over two time
periaods.

Ancther effort developed the capital growth potential criterion
for a general multiperiod capital budgeting model [Park (1987)]. Under
this concept, an investor selects projects, uses Bayesian revision to
resolve the cash flow uncertainties quickly, and, thereby, gains
greater capital flexibility for reinvestment opportunities. This
effort combined Bayes theorem with binomial sampling to attain
uncertainty resolution. This effort found that post-audit information
should be incorporated into evaluations for project investment.

Other works with capital budgeting models, in general, have
shown tiiat these methods can be particularly beneficial when the
updating information can be used with replicable investments [Bierman
and Rao (1978) and Cyert and DeGroot (1987)]. The facts that many
equipment proposals include performance estimates, that many companies
employ periodic decision review policies, and that post-audit
information is available make these decisions fit the traditional
Bayesian decision framework.

Other applications of these techniques cover many areas,
including auditing applications [Crosby (1985) and Lin (1984)],
depletive and non-depletive inventory models [Azoury (1985)],
campetitive bidding models {Attanasi and Johnson (1975)], price
expectation models [Turnovsky (1969)], work sampling [Buck, Askin, and
Tanchoco (1983)], quality control [Hoadley (1981)], as well as many
other works that handle some form of directly measured data.
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Techniques for Solving Equipment
Replacement Problems

A principle goal of this research is to develop a methodology
that considers and resolves the uncertainties involved in an equipment
replacement problem where the firm uses a periodic decision review
policy. While it is apparent that Bayesian methods have great
potential benefit, these techniques are not presently being used for
replacement decisions. These decisions are primarily being handied by
two analytic techniques, stochastic mathematical programming and
camputer simulation.

Stochastic Mathematical
Programing Methods

The stochastic programming models are based on Weingartner's
horizon model, and expand it to address the variables' probabilistic
risk. An earlier work [Lockett and Gear (1975)] developed an integer
programming model that used stochastic decision trees to represent
sequences of events. They also state that this model may require
either simulation formulation or relaxation of the integer programming
approach to a linear programming model as the number of integer
variables increases. Another approach [Salazar and Sen (1968) ]
introduced a stochastic linear programming model that considered risk
by repeated similation of future events, after random selection of a
subset of investments, or trial portfolio, from the investment
population available. This results in a value distribution for each
trial portfolio, and this is used to generate a risk-return chart. If
the distribution of returns is not high enough, that trial portfolio is
unacceptable. The problem with both of these models is that the
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detailed information required to construct factor constraint
relationships may be difficult to accurately determine in real world
situations. Further, each assumes that the appropriate probability
distributions are known. (Although the Salazar and Sen work was
entitled "A Simulation Model of Capital Budgeting Under Uncertainty",
they only address risk in their model.)

Another model [Prastacos (1983)] attempted to combine dynamic
programming with probability distribution considerations, but it only
considered the most likely value of the probability function in its
formulation. As a result, this method does not capture the information
provided by the pattern of the probability distributions. In an
extension of that method, a model was introduced that combines dynamic
programning with camputer simulation [Lohmann (1986)]. The model uses
the equipment replacement problem with the cash flows and availability
of alternatives modeled as triangular probability distributions. The
dynamic programming formulation is repeated solved, based on samples
drawn from the simulated distributions, and the resulting analysis
seeks the optimal replacement sequence and its timing. This model has
flexibility, but its formulation considers the estimated triangular
distributions to be the true distributions of events, and makes no
adjustments to these distributions over time. Thereby, this model

addresses risk, but ignores uncertainty.

Camputer Simulation Methods
The use of camputer simulation has became more popular as
alternative investments and company investment situations have became

increasingly camplex. Computer simulation permits many factors to be
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included in the problem formulation. However, these applications have
predominately focused on risk considerations, and have no means to
explicitly incorporate uncertainty and post-audit information.

The first attempted use of simulation models as an investment
analysis tool [Hertz (1964, 1968)], followed the func.imental steps:

(1) key factors (to include investment alternatives) be identified,
(2) prababilistic natures, or risk profiles be developed for these
factors, (3) randomly select a subset of factors, (4) simlate
performance (using a 15-year horizon), (5) compute yearly results, (6)
replicate until stable, and (7) repeat for all policy subsets. The
short fall in this approach is that it considers the estimates of the
probabilistic parameters to be the known values.

A previous work attempts to address uncertainty through an
application of sensitivity analysis [Lothner, Hoganson, and Rubin
(1986) ). The authors recognized that the parameters were just
estimates, and correspondingly developed optimistic and pessimistic
sets of parameters to go along with the most likely set. The
simulations were replicated for all three sets, and the three resultant
outcame distributions were statistically compared. A similar approach
was used in a portfolio management simulation model [Bradley and Crane

(1975) ].

Bayesian Methods

An exploratory work [Snyder (1988)] examined the potential gains
that uncertainty resolution, via Bayesian methods, could provide to a
specific equipment replacement problem. This effort campared the cash

flows of a non-updating replacement sequence with a sequence that used
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post-audit information. The effort considered a situation where the
cash flows were modeled as normal probability distributions (in a
situation where the sanple variance was assumed to be the true
population variance). This effort also examined a specific investment
with sampling problem.

The importance of post-audit information and uncertainty
resolution to capital budgeting models, in general, has been addressed
by several authors. However, with the exceptions noted above, nowhere
in the literature is there a detailed application of that concept to
equipment replacement projects when periodic decision reviews are made
for those current projects. Therefore, the purpose of this research is
to investigate this situation.
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ABSTRACT

Capital budgeting models for project selection have been
extensively explored, but relatively little attention has been given to
the aspects of post-audit and project control for the projects
implemented. This paper examines the area of project control and
proposes a method that incorporates post-audit information as an active
element in the decision to maintain or terminate an initiated project.
Project selection is primarily based on anticipated performance, as
determined from the most accurate information available. However, in a
sequential decision enviromment, information that is accurate at ane
point in time may became inaccurate at another. This paper will show
how the Dirichlet distribution can be utilized to formulate
appropriately weighted prior probability beliefs, @ how these initial
beliefs can be updated as we receive post-audit information. To do
this, we incorporate categorized cash flow data in a unique Bayesian-
based framework. To illustrate the use of the Dirichlet distribution,
we present a case study of an actual automation decision for a flexible
manufacturing system. This case study also demonstrates how decision
strategies can be improved by using post-audit information, when
campared with conventional methods.
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INTRODUCTION

High equipment costs, particularly for high technology computer
and robotics equipment, combined with unknown future performances and
capital budget limitations have made manufacturing investment decisions
increasingly difficult. These investment decisions include both
project selection (the evaluation and camparison of alternatives) and
project implementation and control (the identification of deviations
from projections and subsequent evaluation and correction). while
capital budgeting models for project selection have been extensively
explored, relatively little attention has been given to the aspects of
project post-audit and control.

Investment decisions require the most accurate information
available, but what may have been accurate at the initial selection
time is not necessarily accurate for subsequent decision points. The
information collected during the passage of time from initial selection
to a subsequent decision point updates the previous level of
information. This paper presents a systematic updating method that
takes advantage of the flexibility characteristics of the Dirichlet
distribution, in a unique application to a sequential autamation
problem for a typical manufacturing system. This distribution, when
used with a multinomial likelihood function, provides a natural basis

for solving a decision problem with categorized outcames (excellent,
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fair, poor, etc.). An understanding of the following general concepts
will provide same insight to the discussions to follow.

In many nondeterministic capital budgeting models, the terms risk
and uncertainty are often used interchangeably in the discussion of
unknown future cash flows estimates [Magee (Jul-Aug 1964, and Sep-Oct
1964), Hespos and Strassman (1965), and Salazar and Sen (1968)].
However, in this paper, we treat these terms as distinct expressions.
We define risk as the variability between a predicted future event and
its actual outcome. These predictions are probabilistically
represented, and the distributions have known, or assumed known,
parameters. Risk has been historically computed and represented by the
statistical temm variance. Uncertainty describes future events that
cannot be predicted with certainty, and the exact nature, or the
descriptive parameters, of their occurrence probability distributions
is not known. Many analytic techniques will treat the distribution
parameters as known values in their risk assessments, thereby ignoring
the uncertainty in the unknown probability distribution. The proper
way to address prediction errors is through the process of uncertainty
resolution, which is defined as the process of moving from greater
uncertainty toward less uncertainty [Bierman and Hausman (1972)]. As a
project moves fram its inception through its economic life, the
original cash flow estimates are replaced by actual cash flow
realizations, and the prediction uncertainty is reduced as the

project's real performance distribution comes into sharper focus.
Uncertainty resolution is only possible if cash flow post-audit
information is available. A review of capital budgeting surveys
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indicates that an increasing percentage of firms have adopted same form
of pocst-audit [Istvan (1961), Bonini (1975), Rosenblatt and Jucker
(1979),, McInnes, Morris, and Carlton (1982), Gurnani (1984), Klammer
and Walker (1984), Mukherjee and Henderson (1987), and Pohlman,
Santiago, and Markel (1988)]. This post-audit information consists of
reports to the management staff concerning expense and receipt
realizations that are experienced by the project during its execution.
ihis project data could be used to create an information dynamic model

that is based on Bayesian techniques. These techniques are well

documented in the literature [Lindley (1965) and Winkler (1972), for
exanple].

Uncertainty resolution, via Bayesian revision, is most explicit
when applied to a situation involving project repeatability. Multi-
plant firms or single plants with multiple production lines that must
inmplement organization-wide projects can use an incremental approach to
their investments [Bierman and Rao (1978)]. The firms can use a
portion of the organization as a test vehicle for the project, and use
the observed success or failure to update their original proposal
estimates. Uncertainty resolution also occurs in "all or do-nothing"
scenarios, however, these situations do not have periodic decision
points where the firm can react to the revised information.

Ancther concept that has great impact on this Bayesian method is
project abandonment [Kee and Feltus (1982)]. To increase its
investment flexibility, a firm must consider its available capital
budget (cash held as equity and any amounts borrowed) and its
marketable real assets (properties and currently held equipment) as
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campany capital resources. The liquidation of a currently held asset
requires a decision to abandon that asset in its current capacity.
The abandomwent decision terminates a particular project or investment,
and it has an associated abandomment payoff that is the market salvage

value of the project or investment minus its associated expected
return, discounted to a specific point in time. Project abandorment
will require varying degrees of execution effort, dependent upon the
specific manufacturing situation. If the situation requires retention
of overall production capacity, the abandonment process must include
the acquisition of an alternative, capacity-maintaining piece of
equipment. The abandorment payoff, in this complex situation, will
include the salvage value of the old equipment, new equipment costs,
and expected return from the new equipment. Simpler abandorment
situations may involve either the retiring of a given piece of
equipment or the termination of a multi-phase project at same
intermediate point, resulting in multiple production processes.

Exactly how abandorment is handled requires many managerial inputs, and
an abandorment decision that results in mixed methods of production
will have more than just financial considerations. Product quality
mist be addressed. Should the firm keep the converted equipment or
bring back the old equipment, as well as various other questions. In
fact, the situation of mixed production modes may be unacceptable for
many firms, but those aspects are not intended for discussion in this
paper. The key factor in any abandonment decision is that the net gain

from the abandorment payoff is additional capital for reallocation.
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DECISTON MODEL,

In this section, we will present a general decision framework for

incremental automation with sampling.

Assumptions. Our method assumes that the following conditions

exist during a given project's life:

(a)

(b)

(c)

(d)

(e)

The firm makes regular periodic reviews of its investments.
The firm makes sequential project implementations, when the
nature of the project indicates that it is appropriate.

Cash flow estimates are represented as probability
distributions, either discrete or continuous (realizing that
the distribution parameters are not known with certainty).
Post-audit information on project performance is available
and immediately reported to management for the periodic
reviews. This information is the key to this revision
process, as the variations of this data will be the key
factor in the determination of whether or not to revise the
initial estimates.

Future investment opportunity availability is not known with
certainty. The alternatives that are available for
consideration at a particular point in time may not be the

same at some other point.

Theoretical Model. The modeling concept used in this paper is to

apply distribution parameter revision to incremental automation for a

typical manufacturing process. The initial adopt or delay decision for

automation is based on the best information available at time 0, amd is
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determined through conventional procedures. However, at the subsequent
review and decision points, the impacts of parameter revision can be
realized. The problem is formulated, with particular attention being
given to:

(a) cCash flow distribution estimations: the cash flow
estimations are represented by probability distributions with
uncertain parameters. As newer information becomes available, these
parameter estimates will most likely change during the project's
economic life.

(b) Quality of the sample post-audit information: determinations

must be made to assess the predictive quality of the sample
information and how well the firm can interpret that information. The
assessment of its predictive value will include an examination of the
project's market enviromment to determine the existence of any
anamalous incidents or trends. The assessment of interpretation
acauracy will examine the likelihood of analytic reports, given the
existence of particular true conditions. The purpose of these
assessr.ents is to prevent inappropriate (or premature) reactions to the
sample data.

(c) Probability distribution revision process: the updating
process will use the Dirichlet-multinomial family of natural conjugate
distributions. The Dirichlet distribution is sometimes referred to as
the multivariate beta distribution, and this method can be thought of
as a generalization of the beta-binomial conjugate family. In the
broadest terms, the process involves the formulation of a Dirichlet

prior distribution, sampling to develop a multinomial likelihood
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function, with a resultant determination of a Dirichlet posterior
distribution.

In the problem formilation, it is given that any particular result
will fit into exactly one of k different outcome categories. The
occurrence probabilities associated with each of the k respective
categories comprises the random vector © = (87, ..., 8k) with (ej 2 0;
j=1, ..., k) ad mj = 1. There also exists a parametric shape vector
a= (¢, ..., ag) with (aj >0; Jj=1, ..., k), such that the

probability density function of £(® | a) will form a Dirichlet prior

distribution
e, + ... + a) a. -1 -1
£fO© | a) = 1 s 911 ezk (1)
I‘(al) I"(ak)
where,

I'(a) =0[°° te-l o=t gt

and the aj are not limited to integer values, and if k=2, the result is
a beta distribution. Then, the observed sample is a random vector x =
(X3, +o., Xg) and (xJ- 2 0; j=1, ..., k), where a given X5 represents
the number of dbservations falling into a kth category, with x5 = n.
This cbserved sample uses the vector & = (87, ..., 6x), to form a

multinomial likelihood function

X
f(x | n, 8 = nt ell 8?( (2)

! |
Xl. cee Xk.

This likelihood function combines with the prior distribution to form a

Dirichlet posterior distribution




42

'n + Za,) a,+x. -1 +x -1
f(el a, x) = 1 ell 1 cee e;:kxk

I‘(a1+ xl) .. .I‘(ak+ xk)

This permits direct computation of the prior and posterior values of ©

(3)

(83', and 85 ", respectively) from the Dirichlet distributions' shape

parameters [Johnson (1960), and Johnson and Kotz (1969)]:

ej'
ejll

Before going further, there are two items that deserve attention.

oy / Zay (4)

(aj + xJ) / (n+ Z‘aj) (5)

The first item, and the most important underlying concept in using
the Dirichlet distribution, concerns the development of the
distribution's initial descriptive parameters. The natures of the aj's
are such that the stronger one believes a parameter is true, the larger
its corresponding @j. This belief may be subjective or objective in
origin. For examrle, a given Dirichlet distribution has three
equiprobable states of nature (8; = 6, = 65 = 1/3). These
probabilities can be described by a = (100,100,100), a strongly held
prior belief, or by a = (1,1,1), a weakly held prior belief. Ten units
are sampled, with all ten outcomes favoring 6; (n = 10, x; = 10, x5 =
X3 = 0). For the parameter set, a = (100,100,100), the posterior

values for e] became

a, +x
on=_t 1 =100+10 44355
n+ g 10+ 300
and,
85" = 83" = (100 + 0)/(10 + 300) = 0.323.

on the other hand, using the secord set, a = (1,1,1), yields
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81" = 1+ 10 ~ 0.846
10 + 3

and,

8" = 83" = (1 + 0)/(10 + 3) = 0.077
The second shape parameter set reacts very quickly to the sample
cbservations, while the first set is hardly disturbed. Perhaps an
easier way to visualize the problem is to consider a case where k = 2,
the Dirichlet distribution is now the more familiar beta distribution.
Figure 1 shows three beta distributions, each with an expected value of
0.5 ( E(X) = a/(a + B), for beta distributions), but it is readily
apparent that part (c) is more weighted, or is "tighter", to the 0.5
value than, say, part (a) or (b).

The estimation of the Dirichlet shape parameters raises two
important questions: (1) "what are the predicted outcame probabilities
for the various states of nature?", and (2) "How strongly do we
believe the predictions will hold true?" These are difficult
questions, and it has been noted that the relative proportion
elicitation becames increasingly difficult for the Jdecision makers,
when the states of nature exceed four [Bessler and Chamberlain (1988)].
Proper handling of the relative weights requires a thorough
understanding of the Dirichlet distribution properties by staff and
management personnel.

The second item focuses on earlier works with this distribution.
Same of the developmental works with this natural conjugate
distribution family were focused on goodness-of-fit and independence
tests [Good (1967)]. These works used symmetric (egquiprobable)
Dirichlet distributions, with the notation
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0<x<1;a>0;8>0

otherwise

Figure 1. Various beta distributions with a common expected value (0.5),
but having markedly different shapes, due to different
descriptive shape parameters (a, fB).
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£ | a =T ot ... ept (6)
T'(a) :
vhere,
al=a2=...=ak=a

and the a was referred to as a "flattening" constant. When this
equiprobable condition was used in a situation where there was a
natural grouping of categories (grouping a continuous variable), it was
shown that regeneration would eventually lead to loss of the Dirichlet
properties [Good (1965)]. However, this problem was overcome by adding
a distribution for a (maintaining the @i's as distinct elements) which
leads the posterior distribution away from equiprobability [Lindley
(1980) , and Good (1983)]. There were no such problems when an
asymmetric prior distribution was used, nor were any problems noted
when working in a noncontingency table structure (a three category
example, using "Prefer A", "Prefer B", "no preference", is discussed in
Draper, Hunter, and Tierney (1969)). In our presentation, we will
employ the generalized shape parameter a = (ap,....,ag) to avoid
potential problems, particularly since equiprobable event outcomes are
not generally anticipated as final distributions.

(d) Identification of decision strategies: at every periodic
review, the company must fully identify its set of investment
alternatives. This includes the retention or termination of any current
projects, as well as the selection of any new projects.

(e) Areas for sensitivity analysis:

(1) Project abandorment values: these values are estimated
for each decision point over the planning horizon,
subject to periodic revision, as necessary.
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(2) Selection of a discount rate: a particular value (the
firm's minimum acceptable rate of return, MARR) is used
in the initial analysis, but its effect on solution
raobustness should be evaluated.
(3) Selection of project planning horizon: this is based on
the fim's requirements, and the econamic life of each

alternative.

Model Synopsis. Once formulated, the adopt/delay decision problem
is solved for an initial strategy. Standard project evaluation
techniques (net present value method) are applied to reach this initial
solution. The importance of our proposed technique begins once the
initial strategy has been selected, and the project is implemented.
Cash inflows (receipts) and ocutflows (expenses) occur, and this data is
recorded (usually by an accounting department) for tax and stockholder
reports. Because the firm must collect this data for other purposes,
it can be viewed as essentially "free" information. This information,
and its use in this method, does not represent an additional cost,
unlike the costs associated with information collected from product
testing. (While the oollection is "free", there may be same
cawpilation costs if, as we propose, the information is used for more
than their original purposes.) The collected data can be used to
revise the original distribution parameter estimates through the use of
the Dirichlet-multinomial model. This revision process must be
accamplished prior to reaching the next decision point, where the
problem is readdressed, based on the revised cash flows and this new
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point in time. The uncertainty resolution provided by this process may
change the initial decision strategy, thereby affecting the fimm's
overall capital budgeting plan.

INCREMENTAL AUTOMATION: A CASE STUDY

The following case study, using data from an actual manufacturing
firm, is provided as an illustration of the Dirichlet-multinomial
model. The model requires sample information before it can be
utilized. However, rather than skip directly to that point in the case
study, there are same supporting points that deserve attention.
Incremental, or sequential analysis, along with Bayesian techniques
have not been widely used by firms considering the adoption of new
manufacturing technologies. Therefore, we have included those details

in the case study presentation, to emphasize their contributions.

Decision Problem. The Linkup Corporation is a large manufacturer
of shaft and pipe couplings. Their products, even though each type of
coupling is produced in a variety of sizes, can be described in three
basic categories: (1) gear-type couplings, with sleeves and rigid hubs,
(2) grid and flexible hub couplings, for smaller shafts that are
laterally or angularly misaligned, and (3) larger F-style and T-style
flexible hub couplings. They have two nearly identical factories, one
in Atlanta and one in Milwaukee. The factory layout designs were based
on anticipated large economic order quantities (BOQ), with equipment
that required long set-up and changeover times. However, order
quantities were smaller and more frequent than anticipated, and this

caused the corporation to carry large amounts of the various types of
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inventories (raw materials, work-in-progress (WIP), and finished goods)
to meet their customers' demands. The corporation is considering
changes to its operating procedures. They want to campare the economic
efficiency of their present machine shop operations, see Figure 2, to a
proposed flexible cellular manufacturing concept that will use robotics
(to reduce labor costs), flexible manufacturing processes (to reduce
set-up and changeover downtime), and just-in-time manufacturing (to
reduce inventory holding costs). The proposal indicates that each
factory can be converted into three modules (six total), with five
robotic cells in each module. Figure 3 is a schematic diagram of the
proposed conversion of both factories, and Figure 4 shows the proposed
layout for one five-celled module. The differences from cell-to—cell
are minimal, consisting mostly of different tooling sets. The proposed
layout is structured to have each module produce all three families of
product. This layout was designed with a phased, or incremental,
conversion in mind. Under those conditions, the factory's entire output
of one product family is not dependent upon the new technology, thus
reducing potential losses. The Engineering Department input predicts
cellular conversion results as a discrete set of three outcames:

Excellent (8;) P(8]) = 0.4
Fair (65) P(8;) = 0.4
Poor (83) P(63) = 0.2

At this time, it is felt that while there is tremendous success
potential for this flexible manufacturing system, there is no
historical data available as input to the probability determination.
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Qurrent machine shop layout in each factory.
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Figure 3. Schematic diagram of the Linkup Corporation's production
assets, under the cellular manufacturing concept.
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However, it is anticipated that the changeover should be very straight-
forward and sample results for any one cell could be representative of
any other cell. Therefore, the descriptive parameters for the
Dirichlet prior distribution were set as @ = (1., 1., 0.5) (note Zaj =
2.5 and 1./2.5 = 0.4 and 0.5/2.5 = 0.2).

The equipment needed for conversion will be available for purchase
during the next two years. The investment cost for one module is
presently $189,200. However, with improving computer production
technology, the actual cost for the computer camponents associated with
this equipment is expected to be reduced by $5,000 per year, during the
next two years.

The forecast for product demand leads the firm to adopt a 10-year
planning horizon for this project, and their minimum acceptable rate of
return (MARR), or cost of capital, is 10-percent, after taxes. The
projected after-tax cash flows for a converted module, and their
respective discounted values, are listed in Table 1. In preparing
these cash flows, the Marketing Department assumed that all cells in a
given module would have the same conversion result, and that each
module would handle one-third of the factory's projected requirements.
All equipment salvage values were treated as negligible after eight
production years.

The two-year equipment conversion window allows the corporation to
oconsider incremental conversion alternatives, along with the more
traditional "all or do-nothing" altermatives. The incremental
alternatives have the characteristics of sequential decision making

processes: a module is converted, its results interpreted, and
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Table 1. Projected actual and discounted modular cash flows, with all
cells having the same conversion result.
All Module Cells Having Conversion Result -
Excellent Fair Poor
Projected | Discounted | Projected | Discounted | Projected | Discounted
Year|Cash Flow|Cash Flow |Cash Flow|Cash Flow |Cash Flow|Cash Flow
0 {$-189,200|$-189,200 |$-189,200}%$-189,200 |$-189,200|$-189,200
1 70,000 63,636 56,000 50,909 35,000 31,818
2 -6,900 -5,702 -5,520 -4,562 -3,450 -2,851
3 52,500 39,444 42,000 31,555 26,250 19,722
4 52,500 35,858 42,000 28,687 26,250 17,929
5 52,800 32,785 42,240 26,228 26,400 16,392
6 33,900 19,136 27,120 15,309 16,950 9,568
7 25,600 13,137 20,480 10,509 12,800 6,568
8 30,900 14,415 24,720 11,532 15,450 7,208
9 30,700 13,020 24,560 10,416 15,350 6,510
10 30,700 11,836 24,560 9,469 15,350 5,918
Net Present
Value (10%) $48,364 $851 $-70,418
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decisions made accordingly. There is sufficient time for the
sequential conversion of two modules, if so desired, before the final
decision must be made. A listing of all possible decisions is provided
in Table 2. A decision to initiate a module conversion at the end of
year 1, instead of year 0, will have a lower initial cost ($184,200
versus $189,200), but also results in the 10th year's cash flow being
omitted by the planning horizon. End of year 2 initiations are treated
similarly. For simplicity, we will only address the abandonment
alterative as the decision to halt the conversion process at its then-
current state, realizing that mixed modes of production procedures will
be the result.

The possibility of incremental alternatives raises an important
point. The advantages of sequential decision making have been
discussed in the literature [Bierman and Rao (1978) and Cyert and
DeGroot (1987)], and many corporations follow these practices for their
research and development projects [Cook and Rizzuto (1989)]. However,
these corporations generally have not adopted advanced manufacturing
systems in an incremental fashion. These decisions are predaminantly
handled on an "all or do-nothing" basis. The repeatability structure
and timely post-audit information requirements has limited the number
of situations where the sequential approach is appropriate, and
departmental parochial interests may have further reduced these
opportunities [Gurnani (1984) and Mukherjee and Henderson (1987)].
Still, incremental alternatives are important, and we will use them in

our presentation to highlight their potential.
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Table 2. All possible decisions considered by the corporation.

Notation® Decision
dgo Do not convert any modules, reject this project.
do1 Convert all six modules immediately.
do2 Convert one module, collect data, and reevaluate

this proposal in one year. (Given that this
decision has been selected, the subsequent
decisions follow.)

dio Stop the conversion process with one module.
d1i Convert the remaining five modules.
dio Convert one more module, collect data, and make

final decision at the end of year two. (Given
that this decision has been selected, the
subsequent decisions follow.)

d20 Stop the conversion process with two modules.

dyy Convert the remaining four modules.

*Note- First subscript numeral is the decision time and the second
subscript numeral identifies a specific decision.
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Preliminary Steps and Solution Notation. The classic net present
value (NPV) term will refer to the discounted value of a particular
strategy at the respective decision point of interest (time 0, end of
year 1, and end of year 2). The term will be annotated by NPV(MARR)¢,
with the subscript t referring to the decision time reference point.

For the next step, this paper will use the notation EV(decisionj)t
to refer to the expected net present value of decision j at time t.
This will be based on the most current probability distribution with
the best alternative payoff. (This notation is used to simplify the
decision tree branches in the subsequent figures.)

Decision trees will be developed, with systematic branching for
events and decisions. In the figures, decision branches that are
cross-hatched (—+) are inferior decisions.

The cash flow projections in Table 1 are based on homogenous cell
conversion results. Because the cells are expected to make near equal
contributions to those cash flows, we can divide the module cash flows
and NPV's by the number of cells to obtain cash flows and NPV's on a
per cell basis. The NPV's for cell conversions initiated at time zero,
end of year one, and end of year two, are listed in Table 3, by cell
conversion result.

Since there are five cells per module, there are 21 possible
carbinations of cell conversion results for each module. By using the
estimated P(8) = (0.4, 0.4, 0.2) in the multinomial probability
function, we can find the probability associated with each cambination.
Table 4 lists all the outcome combinations, with the numbers of

excellent, fair, and poor cell conversions (columns (a), (b), and (c),
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Table 3. Cell net present values for different conversion initiation
times.

Cell Conversion Initiation Time

Time 0O End of Year 1 End of Year 2

Cell Conversion

Result NPV (10)*|NPV (10);|NFV (10)o|NPV (10),[NPV (10)¢

Excellent $9,673 $8,306 | $7,551 | $6,702 | $5,539
Fair 170 ~723 -657 | -1,807 | =-1,493
Poor -14,084 | -14,267 | -12,970 | -14,569 | -12,041

*Note - NPV (i)¢ = net present value for interest rate i, at point in
time t.
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respectively), and the probabilities for each cambination (column (d)).
For a single module, we can use the NPV's associated with each cell
outcome (Table 3) to find the NPV's corresponding to each combination
(colum (e)). Further, we can also obtain the cambinations' expected
values (colum (f)). In fact, columns (e) and (f), correspord to
terminal decision, d;g, values. Similar NPV computations can be

obtained for decisions dgj, dj;j;, dpo, and dy;, as shown in Table 5.

Potential Gains from Incremental Automation with Perfect Post-
audit Information. Because incremental methods have been relatively
ignored in autamation decisions, we will briefly review the benefits of
that process, as applied to this study, before addressing the
information updating procedures.

For the moment, we will hypothesize a situation where a sampled
module provides perfect insight information into all other module
conversions. Whatever results appear in the cells of a given sample
module will also appear in the cells of all other modules. The
decision alternmatives are do nothing, dgg, convert all modules, dg;, or
convert one module, dg,, and decide to convert the remaining modules or
halt at the end of year 1 (decisions d;; and dj, respectively). With
this perfect information, there is no need for a second sample module.
This leads to the development of the decision tree in Figure 5. The
expected values summarized in the figure indicate that decision dg;, to
sample one module before making the final decision, has the best payoff
($41,456 compared to $33,617 and $0). If the converted module has cell
carbinations 1 through 5,7,8, or 11, then the firm should convert all
remaining modules, otherwise, they should halt the process. This is
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Table 5. Net present values for terminal decisions, discounted to time
zero, for cell cambinations in one module - all modules
having identical outcame combinations.

NPV (10)* for Terminal Decisions

Cambination - d01 dio dll dzo d21
Cell Results**
1. (5,0,0) $290,186 $48,364 $237,129 $86,117 $196,889
2. (4,1,0) 233,171 38,862 186,585 68,406 151,051
3. (4,0,1) 147,647 24,608 110,769 41,840 82,295
4. (3,2,0) 176,155 29,359 136,041 50,695 105,213
5. (3,1,1) 90,632 15,105 60,224 24,129 36,457
6. (3,0,2) 5,109 851 -15,592 -2,437 -32,299
7. (2,3,0) 119,140 19,857 85,496 32,985 69,376
8. (2,2,1) 33,617 5,603 9,680 6,418 -9,381
9. (2,1,2) -51,907 -8,651 -66,136 -20,148 -78,137
10. (2,0,3) -137,430 -22,905 | -141,952 -46,714 -146,893
11. (1,4,0) 62,124 10,354 34,952 15,274 13,538
12. (1,3,1) -23,399 =3,900 -40,864 -11,293 -55,218
13. (1,2,2) -108,922 -18,154 -116,680 -37,859 | -123,975
4. (1,1,3) =194,445 -32,408 | -~192,496 -64,425 | -192,731
15. (1,0,4) -279,968 -46,661 | -268,312 -90,991 | -261,487
16. (0,5,0) 5,109 851 -15,592 -2,437 -32,299
17. (0,4,1) -80,414 -13,402 -91,408 -29,003 -101,056
18. (0,3,2) -165,938 -27,656 | -167,224 -55,570 | -169,812
19. {0,2,3) -251,461 -41,910 | -243,040 -82,136 | -238,569
20. (0,1,4) -336,984 -56,164 -318,856 | -108,702 -307,325
21. (0,0,5) -422,507 -70,418 | -394,672 -135,269 | -376,081

Notes: * NPV (i)¢ = net present value for interest rate i, at point in
time t.

** Cell results refers to mmber of cells having excellent,
fair, and poor conversion results.
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EV(dyo) g
$0
Cambination” Prob  Payoff
(56,060,086, 0.0102 $290186
(48,16,080;) 0.0512 233171
EV(dOl) (08,086,586, 0.0003 -422507
9y
$33,617
C:ombination*r Prob Decision Payoff
d0 $48364
(5 ,,06,,08;) 0.0102 ﬁ
d,; 237129
d, 38862
(4 6,186,086, 0.0512 ﬁ
d,, 186585
dq -70418
EV(d_.) (0,086,586, 0.0003
20 L2 3 q, -394672
$41,456 ] :

*Note - the combination values inside the parentheses refer to numbers
of cells having outcomes 6,, 65, 63. The topmost cambination
for each decision has five 6; cell outcomes, and zero 6, or 6.
The next cambination has four €;, one 6,, and zero 63 outcames,
and so forth.

Figure 5. Advantage of the sequential altermative (dg;) over "“all"
(dg1) or "nothing" (dgo) alternatives, in a one sample,
perfect information situation.
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readily seen in a camparison of the cambination NPV's for decisions djq
ard dy1, in Table 5.

This shows the risk reduction provided by the sequential approach.
In an earlier work [Bierman and Rao (1978)], this method was
specifically proposed for divisible projects whose "all" altermative
had a negative NPV. The sequential approach, as shown by this
situation, can also be better than the "all" alternative for a project
with a positive NPV. Here, the sequential option has a greater NPV

then either the "all" or "do-nothing" alternative.

Gains from Incremental Automation with Imperfect Post-audit
Information. The perfect sample information mentioned in the previous
section rarely, if ever, occurs in real life. The cash flow
realizations that are collected in years 1 and 2 are cbserved samples.
Our questions are: (1) "How well does the sample data represent the
true population?", and (2) "How well can the organization process and
interpret this information?" The imperfect representation and
interpretation characteristics make it necessary to establish
corditional probability relationships between the apparent results and
the true states of nature. These relationships could be based on
historical record, subjective assessment, or a cambination of many
other factors.

The absence of historical performance records and the large mumber
of cell result cambinations (21), makes the determination of
conditional assessments urwieldy. However, we can make it workable if
we reduce the mumber of categories. We do this by grouping cell

carbinations to form module conversion categories. Using the cell
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cambination NPV's in Tables 4 and 5 as a guide, conbinations 1~5 and 7
are grouped to form the "profitable" module conversion category,
cambinations 6, 8, 9, 11, 12, and 16 are grouped to form the "break
even" category, and cambinations 10, 13-15, and 17-21 are grouped to
form the "unprofitable" category. The categories will be annotated as
Qj, and P(#) = (0.3942, 0.4198, 0.1859) will be the initial module
prior belief.

The establishment of the module outcome probabilities allows us to
develop the conditional relationships. For this study, we will assume
that the conditional probabilities listed in Table 6 represent the best
beliefs for results from one year's sampling. Further, since this
problem has two levels of sampling cbservations (a second module is
sampled before the final autamation decision is made), it is necessary
to have a set of second level conditional probabilities. These
conditional event probabilities are dependent upon both the second and
the first module's apparent results. Therefore, the second level
conditional probabilities in Table 7 are also assumed to be reasonable.

Before we can construct our decision tree, we need to campute the
NPV's associated with each modular terminal decision, for the
respective module conversion outcames. (Recall that the cash flows in
Table 1 were for hamogencus cell conversion results.) Because our
module conversion result is the summation of select cell canbinations,
we can easily obtain these values by using the following relationship,
for each modular terminal decision, by conversion category:

(module outcame probability)*(module payoff for decision dj, given &y)
= I (weighted cell combinacion NPV's) (7)
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Table 6. Corditional probabilities for one year of sample data.

Conditional Probabilities®

True conversion result P(s; | &) | P(sy | &) | P(s3 | &)

) 0.8 0.15 0.05
¥ 0.1 0.8 0.1
#3 0.05 0.15 0.8

*Note - P(s, | &) = probability of having a report, s, given that
the true module conversion result is &, and

s = module conversion reported as excellent,
sy = module corversion reported as fair, and
S3 = mocule conversion reported as poor.
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Table 7. Second level conditional probabilities.
Conditional Probabilities®
Second |Previous
module |reported| P(syq | sp,¥k) | P(sia | sy, )| P(si3 | sp,y)
true result| result
2 s1 0.95 0.05 0.0
s> 0.35 0.6 0.05
S3 0.05 0.85 0.1
28 s1 0.4 0.55 0.05
Sy 0.05 0.9 0.05
s3 0.05 0.6 0.35
3 s1 0.05 0.85 0.1
S5 0.05 0.6 0.35
S5 0.0 0.05 0.95

*Note - s1t = tth apparent result in the module converted in year 1

P(s1t | sy,®#k) = probability that apparent result s,¢ will be
observ

ed in the second module sampled, given
that s, was observed in the first module, and
¢k is the true state of nature of the second
module.
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where,
weighted cell cambination NPV's
= (cambination probability * cambination NPV),
summing by module outcome category, by
terminal decision, and
module outcame probability = £ cell combination probabilities, for a
particular module outcome category.
We can then rearrange equation (7) as:

(module payoff for decision dj | $x) = Z_(weighted combination values)
T Combination probabilities

For example, terminal decision d;p, with a profitable outcome, has a
payoff of

(d10 | 1)

((0.0102*48364) + (0.0512#38862) + (0.0256*24608)
+ (0.1024*29359) + (0.1024*15105)
+ (0.1024*19857)) / (0.3942)

= $24,608
Thereby, the NPV's of all module terminal decisions are listed in
Table 8.

Time 0 Solution (Using Bayesian Techniques). To solve this
problem for its initial decision strategy, it is recognized that there
will be terminal decisions at time 0, end of year 1, and end of year 2.
Those decisions that are terminal at time 0 (dggp and dp;) have directly
camputable expected values, based on the prior praobability distribution
and appropriate payoffs, and their values are $0 and $33,617,
respectively. For those strategies involving sample information (dp,
and dj5), it is necessary to construct the "nature's" tree, which shows

the probabilistic branching of events and the conditional branching for
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Table 8. Net present value of module terminal decisions, at time zero.

Terminal Conversion Module
Decision Result NPV (10) g
doo ®1, %2, 3 $ N
doy 5 147,647

& 5,109
3 -143,808
dio ® 24,608
, 851
3 -23,968
dy; N 110,769
&5 ~-15,592
&, -147,606
dog &1 41,840
& -2,437
[ -48,696
doq - 3 82,295
3 -32,299
L 3 -152,021




reports, given those events.
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This '"natural" branching is based on the

prior distribution for the initial module and the imperfect nature of

the sample information.

The tree is revised to have the branches

follow the order of the reported results, branching initially for s,,

and subsequently for sj¢.
Bayes' theorem to convert from a prior belief with sample likelihood to

The revision process is an application of

a posterior belief and preposterior analysis, as shown in Figure 6.

The joint probabilities are computed and then used to determine the

marginal probabilities of reported results, for example:

P(®q) *
P(%y) *
P(33) *

where,

P(Sl)

P(sy | #)) =
P(Sl I @2) =
P(Sl l §3) =

0.3942 * 0.8
0.4198 * 0.1 =
0.1859 * 0.05 =

0.3154
0.0420

0.0093

0.3667

= P(s3)

Probability of getting an excellent conversion report.

Similarly we compute that P(s;) = 0.4229, and P(s3) = 0.2104. Then,

using the reported results from cell one as the initial branches, the

conditional probabilities for the true states of nature, given the

apparent results, are determined.

in Figure 6. (b).

This revision proces= is illustrated

The revised tree is then used with the NFV's for end

of year 1 terminal decisions to begin the .onstruction of the decision

tree in an "extensive" form analysis (fully detailing all branches).

The expected values associated with terminal decisions at the end of

year 1 are determined from the partially constructed decision tree in

Figure 7. For remaining figures, the branches that terminate with

decisions djg and djj will be abbreviaced to carry onl; the EV(dj)¢.
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P(s, | $) = 0.8  P(ey | s,) = 0.8601
P(¢,) P(s, | ¢,) =0.15 P(s)) l P(e, | s,) = 0.1145
0.3942 _ 0.3667 [ _
P(s, [ ¢,) = 0.05 P(e, | s,) = 0.0254
 P(sy I ¢,) = 0.1 P(2, | s,) = 0.1398
k p(@)/Lp(s | &) = 0.8 P(s.) P(¢, | s,) = 0.7942
2 2 ' T2 2 ) 2 ' %2
” 0.4198 Q 0.4229
P(s, | ¢,) = 0.1 P(2, | s,) = 0.0659
P(s, | ;) = 0.05 P(%, | S;) = 0.0937
P(¢,) P(s, | ;) =0.15 P(s,) ‘ P(2, | S,) = 0.1995
0.1859 _ 0.2104 _
P(s, | 2,) = 0.8 rp(% | ;) = 0.7068
(a) Nature's Tree (b) Revised Tree

*Definitions: s, converted module appears to have profitable results
s, converted module appears to have breakeven results
S, converted module appears to have unprofitable results

Figure 6. Bayesian revision process for imperfect information in year
one. (Prior beliefs arnd likelihood furction converted to
posterior beliefs and preposterior analysis structure.)
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(3, | s) Payoff
0.8601 _ $24608

do A 0.1145 851

\Tri 0.0254 =23968

0.8601 110769

P(s;) L dy L 51145  -15802
0.3667 Y 0.0254  -147606
EV(dyy) g 4
, 12
$ 0 »

0.1398 24608
EV(dOl)o 0.7942 851

—1 A\;

E(’ $33617 \Ti:, 0.0659 -23968
A
\rr,

0.1398 110769

d02 N\ P(SZ) i dll 0.7942 -15592
" LJ

0.4229 0.0659  -147606

d12 S

0.0937 24608
0.1995 851
0.7068 =23968

-
\{
0.0937 110769
P(s,) 955 Ajl\_‘ 0.1995  -15592
Y

0.2104 0.7068 -147606

12 '>

Figure 7. Partially constructed decision tree, with payoffs for
strategies that are terminal at end of year one. (Branches
for all d;, decisions will be developed subsequently.)
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The three branches for decision d;3, appearing in each of the
three major subbranches of Figure 7, require further expansion by the
set of second level conditional probabilities. In each of these
subbranches, the praobability of the second module's report is dependent
upon its true conversion result and the reported result of the first
converted module. Figure 8 shows the "nature's" tree and the
subsequently revised tree for the P(s;) branch. The revision
procedures are again applied to find the probabilities of $;, ¢, and
$3, given that the observable events s;;, s;3, or s)3 have occurred
(and the report from module 1, in this case, sj). In Figure 8, given
that s; has already been dbserved, the conditional prababilities of
P(s1y | s1), P(s33 | s7), and  P(sy3 | s1) were found to be 0.5518,
0.4087, and 0.0396, respectively. Then, the conditional probabilities
for the true conversion result, given s; and sj¢ had occurred, were
determined. (The steps illustrated in Figure 8 were then repeated for
the P(s3) and P(s3) branches.) The conditional probability
distribution defined at the end of year 2 is then used with the payoff
values at the end of year 2 to complete the decision tree, and this
extensive form analysis provides the initial decision strategy. Due to
the detailed nature of the extensive form analysis, the final
probability and payoff branches for all d,g and dy; decisions will be
abbreviated as shown in Figure 9, to provide only the expected value of
that decision. The use of this abbreviation technique is shown in
Figure 10, the extensive form analysis for the initial decision

strategy (a preposterior analysis). The initial strategy is:
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Joint
Probabilijties
P(s); | s, &) = 0.95 0.3745
P(%)) /L P(s , | s,, #) =0.05 0.0197
0.3942 | P(s,, ] S;s #;) = 0.0 0.0
P(s,; I s, &,) = 0.4 0.1679
L P(2,) A Pls), | s, &,) = 0.55 0.2309
E " 04198 ]  B(s,, | s, &) = 0.05 0.0210
. (S13 1 8ys %)) = 0. y
P(s,, | s,, &;) = 0.05 0.0093
P(2,) /l; P(s,, | s, #3) = 0.85 0.1580
0.1859 | P(s,, | sy, ¢;) = 0.1 0.0186

(a) Nature's Tree

P3¢, | s = 0.6788

1 sy
P(s,; | s)) ,L P(¢, | s;, 5;) = 0.3044

0.5518 | P(¢, | Sy1s Sq) = 0.0168

P(2) | Sy

[ Plsy, | sl)J]L P, | s),, ;) = 0.5651
S —‘N
1 @ 04087YP(0 | s.., s,) = 0.3867
’ 3 127 "1 ™

| s = 0.0482

P&, | S;3s §) = 0.0
P(s); | s)) L P@, | s)5, s)) =0.5303
0.0396 hd | = 697

. P(<li3 s13, sl) = 0.4

(b) Revised tree for S3 branch.

Figure 8. Bayesian revision of s; branch for imperfect information in
year two.
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Payoff
P(Ql) = 0.6788 $41840
d20 /L P(Qz) = 0.3044 -2437 Ev(dzo)o = $26838
Ysz) = 0.0168 =-48696
P(@l). = 0.6788 82295 q
dyqy L P(2,) = 0.3044 -32299 EV(d, ), = 43469
W/
P(§3) = 0.0168 -152021

Figure 9. Sample simplification and annotation used for abbreviation
of terminal branches of decision tree. Branch used for
illustration is the one that follows cbservations s; in year
one and s;7 in year two.
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I'N(dzo) = $26838

E}.V(dlo) o $20656

1)
0.5518 i EV(d,)) = 43469

P(s,) & EV(d,,) = 89750
0.3667 EV(d,g) o= -18190
AL AN
15594 f 0.4087 EV(d21 = 73070
EV(d,.) .= -24164
Ple,, | 5 dyo)g
E¥(dyg)g = ©
0.0396 EV(dzl) -88531
EV(d_.).= 33617 (d2) = 31315
0 0
+_21_ =
[y v B(dyglo = 257 5,)
0.1683 EV(d,))g= 55054
Ev(dy,) L Psy L EV(dn) 6628
3 el
39767 0.4229 EV(d,g),= 4882
EV(d,,)g d) P(s), | s))
10413 0.7260 E\Ill(d21)0= -13357
EV(d, ) .= -22644
P(sl3 I sz) 20°0
0.1058 i EV(d,) = -8459
1
(dz) = 19005
_ 0
E{'V(dlo)o' 14466 (51, 155
0.0407 EV(d,)), = 2319
P(sy) | EV(d, )= -97065
Y
0.2104 EV(d,g) = 21724
I‘N(dlz)o AP P(S s5)
\/
11662 0.5963 EV(dZI) 30232

BV (d0) =

=-20137

s,)
0.3630 {l[]EV(d.‘,l) -78108

Figure 10. Extensive form analysis of decision tree at time zero when
sample information is imperfect (preposterior analysis).
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Time Action

0 Convert a single module to the new egquipment,
review results, and make another decision at end of
year 1 (decision dgpj).

1 If module one has profitable results, then convert
all five remaining modules (decision djj). If
module one has break even or unprofitable results,
then convert a second module, review its results,
and make final decision at end of year two
(decision d;5).

2 a. If the first module result was break even and the
second was profitable, then convert the remaining
four modules (decision dp;). If the second module
was break even or unprofitable, then terminate the
process (decision dyq).

b. If the first module result was uiprofitable and the
secord was profitable or break even, then convert
the four remaining modules (decision dp;). If the
secord module was unprofitable, then terminate the
process.

The expected payoff from this strategy is $39,7G7.

STRATBEGY REVISION BASED ON DIRICHIFT-MULTINOMIAIL MODEL

At the end of year 1, the first module's sample information is

available, and the Dirichlet-multinomial model can be used.
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ision Revision. For this case study, we assume that
the observed cellular conversion results are proportional to the true,

but unknown, Dirichlet distribution of ©. Specifically,

Conversion True, but unknown Converted module cells
result probability reporting this result
6, 0.2 | 1
8 0.6 3
65 0.2 1

Many firms would interpret this module's performance as falling into
the break even category, and based on the strategies developed at time
zero, would initiate the conversion of a second cell, with the final
decision at the end of year two. However, a more efficient way to
address this prablem is to take the sample information, update the
prior cell probability distribution, via the Dirichlet-multinamial
model (equation (3)), develop revised module cutcame probabilities, and
then make decision adjustments. Following these steps, the cell

outcame probabilities are revised as described by equation (5):

State of Prior Initial Observed Posterior
Nature  _©y_ —a5. Xy B E X5 O
0, 0.4 1.0 1 2.0 0.2667
20 0.4 1.0 3 4.0 0.5333
63 0.2 0.5 1 1.5 0.2
7.5

The posterior values are cbviously more representative of the true,
unknown, distribution (0.2, 0.6, 0.2) than the prior distribution.

The multinamial prabability function then uses the cell posterior
probabilities to determine the new probability values for the cell
outcome cambinations (as in Table 3, previously). These new

canbination probability values are grouped into the module outcome
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categories to form the revised module outcame distribution,
specifically, P(#) = {0.2222, 0.4873, 0.2905). The module terminal
decision payoffs are updated by campounding the remaining pertinent
values forward, to the end of year 1. These values are listed in
Table 9. The revised module probabilities and terminal decision
payoffs are used to reconstruct the decision tree. The expected values
for each decision tree branch are computed by the methods shown
previously. For example, decision d;g will have an expected value of

EV(dg)1 = (0.2222 * 27069) + (0.4873 * 937) + (0.2905 * -26365)

= $-1,190

and the expected value of decision d;; is similarly computed. Decision
dy5 will require another year of observations before its terminal
decisions, dyg or dy;, can be made.

The revision is performed by using the new prior distribution in
conjunction with the conditional probabilities for one level of
sampling information. The conditional probabilities values used for
P(sy | #) in the time 0 analysis are now used for P(s;¢ | #) in the
end of year 1 analysis. Figure 11 illustrates the "nature's" and
revised trees for the dy; branch. The nature's tree initially branches
under the new prior distribution (0.2222, 0.4873, 0.2905), and then
follows the one level conditional branching. The revision yields a
preposterior analysis that is based on the anticipated apparent results
of a second module's sampling. The revised probability tree is used to
develop the extensive form analysis shown in Figure 12. Based on this
revised analysis, the decision strategy is changed to terminate the

conversion process with one cell (decision dyg).
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Table 9. Net present values of remaining terminal decisions,
discounted to the end of year one.

Terminal Conversion Module
Decision Result NPV (10)4
dio * $ 27,069
& 937
3 -26,365
di; ¢4 121,845
& ~17,151
&5 -162,367
dyo & 46,024
& -2,681
&5 -53,565
dyy -5 90,524
2 -35,529
&3 -167,224
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Joé.m,: )
Probabilities
P(s), | ¢,) = 0.8 0.1777
P(%,) rL P(s,, | %) = 0.15 0.0333
0.2222 Y P(s|, | 2,) = 0.05 0.0111
| P(s, | &) ,= 0.1 0.0487
a ’Cb P(2,) ,L P(s,, | ¢) = 0.8 0.3898
2 0.487? Y P(s,, I &, = 0,1 0.0487
P(s); | ®,) = 0.05 0.0145
P(2,) /l\ P(s,, | 23) = 0.15 0.0436
0.2905 \Lﬁ P(s), | ¢,) = 0.8 0.2324
(a) Nature's Tree
P(®, | S11) 0.7375
P(s,,) KLP(QZ I S14) = 0.2022
0.2410 T P(2, | S1q) = 0.0603
| P(%, | s,,) = 0.0714
1, ’(P P(s,,) /L P(e, | S15) = 0.8352
0.4667 \( P2, | s, ,) = 0.09?4‘
P(%, | S15) = 0.0380
P(s)5) A P, | S15) = 0.1667
0.2023 T P®, | s..) = 0.7953
3 13

(b) Revised tree for d12 branch.

Figure 11. Bayesian revision of dj; branch for imperfect information
in year two, after sample information in year one has been
used to revise prior probability distribution.
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P(# | s ) Payoff

Figure 12.

0.7375 $ 46024
EV(d,q}, ,L 0.2022 -2681
—+— $ 30172 \lf
0.0603 -53565
P(sll)J:l
0.2410 0.7375 90524
EV(d,,), ,L 0.2022 -35529
49497 Y
EV(d, ), 0.0603 _ -167224
$-1190
0.0714 46024
EV(d..) /L
.,'J}% 11’1 EV(d, ), 0.8352 -2681
-28461 Y
-3955
1 0.0934 -53565
Ev(dlz)lﬂr} P(sy,) I
-1987 0.4667 | 0.0714 90524
— EVdy), L o.8352 -35529
-38826 \r
0.0934  -167224
0.0380 46024
EV(d,),y ,L 0.1667 -2681
-41296 T
0.7953 ~-53565
P(s13) ‘s
0.2923 0.0380 90524
—
BV(d,,), J\ 0.1667 _ -35529
-135469 \r
0.7953  -167224

Decision tree for imperfect information example after
sample information from year one has been incorporated.
(Posterior analysis for year 1, and, simultaneocusly,
preposterior analysis for year 2.)
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In sumary, the expected payoff associated with the revised
automation strategy is $-1,190. This expected payoff is considerably
less than was anticipated at time 0. However, that expected payoff
($39,767) was based on the initial set of probabilities, a set that had
an associated uncertainty that has now been samewhat resolved. The
value of that initial decision strategy, at time 1, is now revised to
be $-1,987. The value of the change in decision strategies is a
savings of $797, a quantifiable measurement.

Another way to view this result is to consider the aspects of the
expected value of sample information approach [Raiffa (1970), and Park
and Sharp-Bette (1988)]. Consider, at time 0, that the expected payoff
without sampling (decision dp; dominates dgpg) is $33,617, and that the
expected value with sampling is $39,767. The expected value of sample
information is $6,150 (= $39,767 - $33,617), and, since the information
is free, it is ocbviocus that the sampling approach is the best option.
At the end of year 1, the expected values of the halt conversion
strategy and the further sampling approach are $-1,190 and $-1,987,
respectively. At this point in time, the expected value of sample
information is $-797 (=$-1,987 - ($-1,190)). Because the value of
further sampling is negative, it is best to halt the conversion

process.

Sensitivity Analysis and Normal Form Analysis. For simplicity,
the sensitivity analysis of the traditional factors described in the

model development will not be performed. For any real problem, these

analyses are extremely important. There is, however, a non-traditional
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element that needs to be examined, and that is the initial descriptive
shape parameter a. If the initial proposal had more historical data,
then the aj's oauld have been proportionately increased, to reflect a
stronger prior belief. If the initial vector had instead been ¢ =
(6.0, 6.0, 3.0), then the posterior cell prabability vector would have
been P(6) = (0.35, 0.4, 0.25), and the module vector would have been
P(®) = (0.3296, 0.4499, 0.2204). This would have resulted in expected
payoffs of $3,533 and $11,163 for d;o and d;5, respectively (decision
d;} is daminated by d;g), and would have led to a continuation of the
current decision strategy (sample in year 2, then make the final
decision). This highlights the point that the initial shape parameter
selections must be made very judiciously, and as abjectively as
possible.

The method of normal form analysis has been proposed as an
alternative that provides additional insight when event probability
assigrment has a degree of associated uncertainty (Raiffa and Schlaifer
(1961), Raiffa (1968), and Park and Sharp-Bette (1988)). The thrust
of the method is to find a dominant decision strategy over a range of
probabilities. The cited references use a two cutcome event example,
with probabilities of © and (1 - ©) for events one and two,
respectively. This problem, having three possible results, requires an
expansion of the previously cited method. Figure 13.(a) shows that if
there are three outcome possibilities, the solution space of all
possible probabilistic outcome combinations forms a triangular shaped
plane. For each decision strategy, it is possible to construct a
payoff response surface projecting from that probabilistic solution
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P(e)) ¢

(a) Plane representing all possible combinations of reported cutoomes.

(0,0,1)

(b) Payoff planes and dominance regions for active decision strategies at
time 0. Point A = (0.3942, 0.4198, 0.18%9).

Figure 13. Case study normal form analysis at time zero.
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space that varies according to the respective outcame combinations.
For this problem, at time zero there are three active decision
strategies (dpg, dp;, and dgy). The payoffs that correspond to each
strategy's potential conversion results are
Payoff for outcame

Strateqy . L 7) 3
doo $0 $0 $o0
doy 147,647 5,109 -143,808
do2 89,750 10,413 11,662

Strategy dgp, dominates dgg, as all of dg,'s payoffs are greater than
dgo's for the various outcomes. The construction of the payoff planes
is shown in Figure 13. (b), with the respective dominance regions marked
by solid lines. Solution by this method requires finding the decision
payoff plane that has the highest elevation above the prior probability
outcame cambination (0.3942, 0.4198, 0.1859), or, if so desired, region
of ocutcame combinations.

When the problem moves to subsequent decision points, payoff
planes can be constructed for each relative decision strategy. The
dominant strategy is then found for the revised outcame combination
(like at the end of year 1, when P(#) = (0.2222, 0.4873, 0.2905)).
Thus, this generalization of normal form analysis can be used to
support the other results.,

OONCLUSIONS

This case study demonstrates how direct application of post-audit

information can have a serious effect on a company's autcomation
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strategy. When project estimates are developed as probability
distributions having descriptive parameters that are not known with
certainty, the availability of post-audit information creates the
opportunity for uncertainty resolution to occur in those estimates,
through revision of the distribution parameters. The gains that can be
obtained are quantifiable, and the magnitude of that gain will be a
direct reflection of the amount of resolution abtained.

In this case study, the decision to make all conversions at time
zero (dp;) had a positive NPV. Under many corporations' current
practices, they would have implemented a full transition. However,
this positive NPV is derived fram uncertain prababilities. In a
sequential replacement process, the Dirichlet-multinomial model shows
how these probabilities can undergo uncertainty resolution, and that
our proposed autamation decision process has the sensitivity and
flexibility to permit decision strategy changes. For this study's
corditions, the results of a full changeover are disastrous, when
campared with our model's results.

The drawback to this method is that it requires detailed
understanding of the potential sensitivity/insensitivity of the initial
prior distribution to revision by sampling informati.:. The initial
parameter selection must consider the quality of prior information and
its relative merit when compared with the quality and quantity of the
incoming sample information. Still, as shown by our method, decision
strategy modification, based on post-audit information, should increase
canpany investment return and flexibility if it is incorporated into a

company's capital budgeting plan.
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IV. PHASED CAPACITY EXPANSION -~ USING
QONTINUOUS DISTRIBUTIONS TO

MODEL: PRTOR BELIEFS

ABSTRACT

Many current equipment replacement/production capacity expansion
decisions carry increasing amounts of performance uncertainty when the
altermative processes include technical innovations. In a sequential
decision making environment, post-audit information can be used to
resolve this uncertainty. In this paper, we demonstrate how three-
point, PERT-type estimates can be used to determine continuous prior
probability distributions that incorporate the post-audit information
in Bayesian revision. We develop the concept of an equivalent sample
size that initially is used to reflect our belief in the quality of the
prior estimates, and subsequently in an assessment of the typicality of
the observed sample data. A case study of an actual decision problem
is used to illustrate the concepts.

INTRODUCTION
The capital budgeting process can be generalized into four basic
areas: (1) alternative identification, (2) cash flow development and
estimation, (3) project selection, and (4) post-audit and control.
Because capital budgeting has historically been viewed as an

89
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acquisition/allocation process, its literature has been daminated by
discussions of camparison and selection methods [Moore and Chen
(1984) ). This emphasis has led many businessmen to mistakenly believe
that once they initiate a project, they are camitted to it for its
estimated life. The less emphasized area of post-audit and control
focuses on monitoring the performance of implemented projects, and
permits businessmen to update the initial estimates with observed
results. If the revised estimates indicate that the project will not
meet its expectations, the firm may want to abandon the project and
reallocate its capital [Kee and Feltus (1982)]. Many businessmen also
have the misconception that projects can only be taken on an "all or
nothing" basis. Frequently, projects may be divided into several
smaller, identical modules. The results from a few implemented modules
can be used as essentially "free" sanple information for the remaining
modules. If the revised estimates are better than the initial ones,
the firm can make additional replications, and profits can be made from
projects that were initially unattractive [Bierman and Rao (1978), and
Cyert and DeGroot (1987)].

Decision making for equipment replacement and production capacity
expansion are areas that have not used this phasing methodology. Most
replacement analyses have held a very limited scope, trying to solve
the question: Should we keep the present machine (called defender) for
an additional time period, or should we replace it with a new machine
(called challenger)? Capacity expansion decisions have been limited to
determining: How many more machines, like those currently being used,

are needed to meet requirements? Wwhile surveys report that cash flow
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estimation is the most difficult capital budgeting task, they also
report that replacement decisions usually have the most accurate
estimates [Pohlman, Santiago, and Markel (1988)]. This accuracy has
led some businesses to solve these problems with deterministic methods,
primarily using dynamic programming approaches {Oakford and Lohmann
(1984) , Bean, Lohmann, and Smith (1985), and ILohmann (1986)]. However,
many current equipment replacement/capacity expansion decisions no
longer fit this mold. The pursuit of a competitive advantage is
leading more firms into newer, high technology manufacturing techniques
that include computers, robotics, artificial intelligence, and flexible
manufacturing cells, to name a few. These innovations broaden the
decisions from a comparison of specific machines to a camparison of
entire processes. While these challenger processes have increased
potential, they do not have the situation-dependent performance
histories of more traditional processes. Under this condition, where
the challenger process is a substantial deviation from previous
operations, the cash flow estimation accuracy no longer exists [Cook
and Rizzuto (1989)]. We define the estimate inaccuracy that
accompanies the new technology's cash flows as "uncertainty", which has
a probabilistic nature with unknown descriptive parameters. As a new
technology is implemented, the firms can employ the concept of
uncertainty resolution to confirm/disprove their initial beliefs
{Bierman and Hausman (1972)). (For this process to be effective, the
firm must provide a sequential decision making environment, with

periodic contimue/review decision points; otherwise, as the uncertainty
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resolution occurs, the firm is unable to react, and it remains
comitted to the project.)

The generalized structure (initial estimate plus sample cash flow
data yields a revised estimate) is the familiar Bayesian analysis
framework. Many Bayesian models have been developed for specific
probability distributions (normal, gamma, beta, etc.), but their
camplexities, and other probability concepts, have created same
confusion for the businessmen who are supposed to use them [Koehler
(1968)]. Some have reported difficulties in understanding the
.theoretical concepts and/or identification of hypothetical models that
match real situations. In this paper, we will present the following:

1. Demonstrate how Bayesian analysis techniques can, and should,
be applied to equipment replacement and capacity expansion
problems that involve technological innovations. This will
provide uncertainty resolution for the challenger process.

2. Provide an interpretation of a cash flow's 3-point, PERT-type
estimates (optimistic, most likely, and pessimistic) that
leads directly to the development of continuous distribution
models.

3. Develop the concept of equivalent sample size for periodic
cash flows. This permits us to take better advantage of the
sanmple information (adjusting for anomalous or better than
expected conditions), as capital budgeting problems involving

equipment usually do not have large samples sizes.




93
4. Illustrate t* .se techniques through the case study of an
actual equipment replacement/capacity expansion decision
problem.
In presenting these concepts, we are limiting the approach to using

continuous distribution models that have natural conjugate properties.

MODEL _DEVETOPMENT

Our procedure starts with Bayes' theorem for continuous
probability models. To briefly review/ that theorem, we are given an
uncertain continuous quantity of interest, ©, with beliefs about its
occurrence behavior that are summarized as a probability density
function. The belief that exists before sample information is taken is
called the prior belief. If we describe the sample information
involving © by the statistic X, then the parameter's posterior density
is the conditional density of €, given X = x, written as:

f® | X=x) =_£(8, %)
f(x)

where,
f(® | X = x) is the conditional density of one randam
variable, given a second random variable,
£(8, x) is the joint distribution of the two randam
vairiables,
f(x) is the marginal density of the second random
variable.
The joint density, £(8,x), and the marginal density, f(x), are usually
not known, but, they are expressible in terms of the prior distribution
and the sample likelihood function. Defined as:
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£(8, x) = £(8) * f(x | 8)

[ +]
£(x) = J £(8) * f(x | ©) d8

£(©) * f(x | ©)

fe | x) = <

_J £() * f(x | 8) d®
which provides the revision structure. Also, the marginal distribution
of x, in the denominator, is also referred to as the sample's
predictive distribution. Conventional Bayesian methods are listed in
Figure 1.(a).

Bayesian models have been elegantly developed for many probability
distributions, but few firms use probability theory to describe their
cash flow estimations, more typically using single values (the
deterministic approach), or 3-point, PERT-type estimates [Pohlman,
Santiago, and Markel (1988)]). Same analysts are reluctant to fit a
smooth distribution to these estimates, because they feel the proposals
do not provide enough information about the distribution of events
and/or their own lack of familiarity with certain distributions. As an
alternative, they fit the 3-points to a triangular distribution,
particularly where repeated computer simulation runs can be used for
analysis [ILohmann (1986)). Therefore, our first proposed modification
is to provide a means where the 3-point estimates can be readily fit to
a continuous probability distribution, so we can take advantage of the
available Bayesian methods. Subsequently, we will also address the
concept of equivalent sample sizes, once data has been obtained. Our

modified procedure is outlined in Figure 1. (b).




Begin procedures with a given
prior distribution, with
specific descriptive values

Collect sample data
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Develop a prior continuous
distribution belief fram the
3-point estimate of a project
cash flow.

- For beta distribution model,
adjust parameters a and 8 to
reflect strength of prior
beliefs and particular
interval probabilities.

- For normal distribution
model, determine relative
value of prior estimates
and sample information, to
develop assumed population
variance.

Oollect sanple data

Evaluate the conditions for
intermal and external factors
that affect cash flow
performance, assess result
repeatability, and apply the
equivalent sample size
concept, as appropriate.

Revise the distribution, find
the descriptive properties of
interest (expected values,
payoffs, etc.), and make
decision adjustments. If
appropriate, collect more
data and continue the process.

(a) Conventional method.

Figure 1.
approach.

Revise the distribution, find
the descriptive properties of
interest (expected values,
payoffs, etc.), and make
decision adjustments. If
appropriate, collect more
data and continue the process.

(b) Modified method.

Camparison of conventional Bayesian methods and the modified
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Jistributi

As stated previously, 3-point estimates are frequently used to
develop triangular distributions, but, as shown in Apperdix A, the
camuilative density functions (c.d.f.'s) of the triangular distribution
and certain families of beta distributions have almost
indistinguishable differences, making them probabilistically
interchangeable. Therefore, we can use the beta distribution to model
the predicted outcames, providing a more descriptive model, and a
distribution with natural conjugate properties. The standardized beta
density function is:

£0x) = %ﬁ)lf*% ¥l a-xf1 os<xsa
0 otherwise
with,
mean = a/(a + B) (1)
mode = (a - 1)/(a + 8 =2) , which also equals xg (2)
variance = (af) / ((a + B)%(a + B + 1)) (3)

and its shape can be easily changed by varying the shape parameter
values (@ and 8), as shown in Figure 2. Further, if a and B are
greater than zero, the distribution density function touches the
horizontal x-axis at x=0 and x=1. These intersections imply that the
end points established by the optimistic and pessimistic estimates are
absolute limits. If they are poorly chosen, and a sample falls outside
of these limits, the prior density function (P(x)=0 for x not between 0
ard 1) will cause the posterior probability for that value to remain
zero. We will use the following estimate notation:

A = interval lower limit = pessimistic estimate
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M = value of interval mode = most likely estimate

B = interval upper limit = optimistic estimate
and, the standardized terms are

= lower limit =0

Xy = value of the standardized mode = (M - A)/(B - A)

b = upper limit =1

Initial prior beljef. Conventional Bayesian methods for beta
distributions can only begin once an initial belief is given. However,
when the information is provided as a 3-point estimate, the initial
belief must first be derived. Thereby, if we use the PERT assunmption
that the variance = (1/6)2, then equations (2) and (3) can be solved
similtaneously for a, giving

(@ - 1)3 + (Txg - 36%2 + 36x;°) (@ - 1)2

- 20%,2(a - 1) = 24x%,> = 0 (4)

ard this cubic equation (in terms of (a - 1)) can be solved for the
positive values of a. Then, with this a, equation (2) can be used to
find the value of 8. We can use a and § to find the cumulative density
of any interval, C to D, on t, by using the nonstandard form of the
incamplete beta function:

Ly o e
T(x) T(B) {B-A B-A
- - (5)
[y b= b
A F(a) T(B) [(B-A B-A

and factoring cammon terms and canceling gives
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D
c[ (t - a1 (B - )81 at

- (6)
AJ' (t - 21 (B -t)f1at

An earlier work [Greer (1970)], also uses this approach, but we will
deviate fram that work, as we will now refine the initial belief by
using the incampiete beta function to dbtain more information about our
derived probability distribution. If we are not satisfied with the
cumulative probability for a specific range, we can adjust the values
of a and 8 to cbtain the desired value. However, the changes must be
proportional, to maintain the value of x,. For example, the sets (a,B8)
= (2,2) and (3,3), have differently shaped distributions (see Figure
2), but share a cammon mode, 0.5.

The proportional changes to a and 8 leave the mode unchanged, but
creates changes the variance value. The intent of this variance term
variation is a better portrayal of the prior belief. It does, however,

create deviations from the well known PERT equations:

mean = (A + 4M + B)/6 ,for general distributions (7)
= (4M + 1)/6 ,for standardized distributions (8)

variance = ((B - A)/6)2 ,for general distributions (9)
= (1/6)2 ,for standardized distributions  (10)

However, these formulas are just approximations, and holding strictly
to them limits the user to a specific family of beta distributions [as
seen in Greer (1970), Fielitz and Myers (1975), and Littlefield and
Randolph (1987)]. An earlier work (Swanson and Pazer (1971)] shows
that if we solve equations (1) and (8) simultaneously, we obtain the
linearly related family of a and f in Figure 3.(a). If we solve




(a)

(b)

Figure 3.
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equations (2), (3), and (10) simultaneously, we obtain the family shown
in Figure 3.(b).

To remove this constraint, we will only use the assumption,
variance = (1/6)2, for our initial a and 8 determinations. We will
refine a and B8, using insights from the incamplete beta function,
realizing that these refinements will change the variance value. This
provides more accurate values for the prior distribution mean and
variance, because the values will be camputed directly from the shape
parameters and not from simplifying approximations.

An interactive BASIC camputer program is attached at Appendix B,
and it is designed to take the user fraom the proposal's 3-point
estimate, to the initial prior beta distribution. After refinement,
the program provides summary information about o, §, mean, mode, and
variance. The program approximates the incamplete beta function by
using Simpson's rule. Sampled values from the program have been
campared to Pearson's Tables for the Incomplete Beta Function and have
been fourd to be accurate to four decimal places.

Equivalent sample size concept -~ in the initial prior belief.
Another purpose of parameter refinement is to permit us to subjectively
"weight" our prior assessment. By doing so, we are introducing the
concept of an equivalent sample size. (This differs from an earlier
work [Smidt (1979), where the term referred to the conversion of a
continuous variable to a dichotamous variable, in an investigation of
biased decisions.) As we develop the initial parameters, we are making
inferences abavt the quality of our estimates, effectively assigning

our prior beliefs an "equivalent" sample size, n,. This sample size is
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the sum of @ and B. If we use proportionately large values of a ard S,
we are implying that we have a strong belief about the mode's value.
Conversely, if we use smaller values, we are expressing a weak belief.
In using this equivalent sample size concept, we must make a relative
worth assessment, considering the quality of the estimate and its
relationship with the amount and timing of the sample information. For
example, if the estimates are felt to be as good as 20 of the coming
cbservations, then ng = 20. (In a totally uninformed prior information
condition, a = B = 1, which corresponds to a uniform distribution. 1In
this condition, the distribution of the sample information will also be
the posterior distribution.)

This method has increased flexibility over previous works because
it is not constrained by the PERT variance assumption. It will also
provide more accurate values for the prior distribution mean and
variance because those values are camputed directly from the shape
parameters, and not from simplifying approximations, such as PERT
equations (6) and (8) or improved PERT equations like the extended-
Pearson-Tukey approximations {Keefer and Bodily (1983)] (which can be
applied to a variety of distributions). The use of the incomplete beta
function will also permit more accurate distribution fitting than
previous methods that fit the moments of the distribution to fractiles
and quartiles {Pratt, Raiffa, and Schlaifer (1965)].

Conventional Bayesian methods for beta distributions. If a beta
distribution describes the prior beliefs, then a Bernoulli process,
either Binomial or Pascal sampling, is needed to keep within a natural

conjugate framework. (In an equipment replacement situation, it is
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unlikely that a firm would set a specific number of successes, and
continue investing until they attained that number. Therefore, we will
focus on the binamial sampling approach.) A Bernoulli trial has only
two outcomes, described as "success" or "“failure". However, since cash
flow data is a contimuous variable and not a dichotomous one, we will
satisfy the Bernoulli description by categorizing the cash flow as a
success if it exceeds its most likely estimate, and a failure if it
does not. The shape parameters are transformed to this success/failure
orientation by

r'=a (11)

n=a+p (12)

where the (') denotes a prior belief, and equations (1) through (3)

becane:
mean =x' / n' (13)
mode = (r' - 1) / (n' - 2) (14)
variance = (r'(n' - r')) / (n'2(n' + 1)) (15)

Data is collected as r successes in n trials. The prior belief and
likelihood function form the natural conjugate family. This
relationship is readily proven by:

beta prior * binamial likelihood

f(x | n', r') *1(x | n, r)

) 0[1 f(x|n, r') *1(x| n, r) ax

1) | - Vot 1 -
. ) ;‘52')_ =5 X' - ¥’ T 1 - (2;1-)! (1 -t
1 ] e LT | o
(J ) ;%'L_ 7 'y - ' T 1 F(%—?)—' x 1 -0"T a
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Ll n'-r'+n-r-1

(1 -x)

1 ' er'+n-r-
oj xr*-r-l(l_x)n r'+n-r-1 dx

L} . oyt -
_ xr+r1(1_x)n r'+n-r-1
P(r' +r) ’'(n* = r' + n - r)
r'n' + n)
= '(n' + n) r'+r-l1 _ ' -rtn-r-1
T(r' +r) I'(n' ~r' +n-1 = (=)
= beta posterior

The parameters are revised by the established formulas (where the (")
denctes a posterior belief):

n"=n'+n (16)
" =r'+r (17)

While a theoretic Bernoulli trial has only two possible outcomes, "real
life" data frequently lacks that absolute clarity. Consequently,
before we incorporate the sample, we must consider: (1) "How well
does the sample information represent the parent population?", (2)
YHow well can the firm interpret the reported results?", and (3) "what
is the relative quality of the sample information when compared to the
estimated performances?" The first two questions focus on result
repeatability, and the third question examines the equitability of the
distribution revision to be performed. We can resolve these questions
by 2gain applying the equivalent sample size concept.

A given period, n, has a cash flow, a,, that is the average of all
cells that have been implemented. The period also has optimistic, most

likely, and pessimistic estimates that we will denote as ang, apy, and
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Anp» respectively. The value of the actual cash flow is related to the

estimates by

ap = app + (re/ne) (ano = anp) (18)

where rg and ng are the "equivalent" sample's number of "successes" and
"trials". If the user does not desire to interject subjectively into
the process, he can use ng = n. But, if he feels that the
representative quality of the data makes it an efficient performance
indicator, he can increase the equivalent sample, such that ng > n.
This increases the "weight" of the sample information. Equations (16)
and (17) are modified as

n" =n'+ng (19)

" =1'+re (20)
Conversely, if the user feels that conditions have made the sample an
anamaly, he can make ng < n. (Appendix C contains a model development
for the normal distribution. It offers a unique derivation of prior

beliefs, based on the 3-point estimates.)

Method summary
Before presenting the case study, we will summarize the overall

method, and annotate (*) where our innovations are inserted.

1.* Develop a prior belief from a 3-point performance estimate,
using a continuous distribution. Adjust prior distribution's
descriptive parameters to reflect the strength of the prior
belief, by using the eguivalent sample size concept.

2, Given the prior belief and sampling to be performed, identify
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all possible sample cutcames, and their predictive
probabilities.

3. Determine the posterior distributions for each outcaome
possibility, and their respective expected values.

4. Determine the terminal decision expected values (applying the
step 2 predictive probabilities to the step 3 expected
values).

5. Formilate decision strategy.

6. Givan that a phased implementation strategy is initiated,

collect sample information.

7.7 Evaluate sample and economic environment consistency
(subjectively assess the repeatability of the sample
information). Apply n or ng, as appropriate, to cbtain new
posterior distributions.

8.* Determine new expected values and revise the decision

strategy, if ng has been used.
9. Continue this process throughout the project's econamic life.
The conventional Bayesian approach is designed to provide a
caprehensive decision strategy that will have a contingency plan for
every possible event, and our modifications provide increased
flexibility for those methods.

CASE STUDY: INCREMENTAIL CAPACTTY EXPANSION
The following case study is provided as illustration of the
techniques presented. The study is an examination of an actual
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capacity expansion and equipment rep'acement decision made by a large

corporation.

General situation

The United Aerospace Corporation is a large manufacturer of
military and commercial aircraft. These aircraft use five different
sizes of engines, and their respective designs require a total of 84
different camponent airfoils (precision-forged compressor blades). Two
years ago, the corporation built a highly automated 700,000 square foot
facility, with a designed annual capacity of 1.3 million blades that
supports a 10-year production requirement. After the factory was
completed, two events occurred that created capacity problems for the
firm. The first event, a favorable one, the corporation won an
additional procurement contract from the govermment. This contract
will increase the annual requirements by 500,000 blades within two
years. The second event, an unfavorable one, was a problem in the
finish application process. The airfoils have very fine tolerances for
their finished surfaces and edges. Originally, these finishes were to
be applied by a series of manual buffing operations (finish application
was not an automated process). However, complications resulted in a
near two-fold increase in buffing time, creating a bottleneck in the
operations. The factory currently has eight manually operated buffing
centers, but the complications and increased demands will require the
factory to double its current finish application capacity within two

years.
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The corporation can meet its capacity expansion requirements by
purchasing eight more manually operated buffing centers, or by adopting
automated abrasive flow machines (AFM), a technology that has just
became available. These machines use a synthetic putty, impregnated
with silicon carbide, that flows urder pressure across the edges and
surfaces of the part. The pressured flow removes material and provides
the desired finish. The flow is camputer controlled and the process is
fully autamated. It is projected that one AFM has the capacity of four
buffing centers, and two AFM's could meet the increased capacity
requirements. As an extension of this problem, the corporation also
considers replacement of their existing buffing centers with AFM's.
This extension means that the corporation has three configuration
alternatives to consider: (1) sixteen manually operated buffing
centers, (2) four AfM's, or (3) same mixture of buffing centers and
AFM's. However, there are concerns over the fact that these machines
are a technical innovation for this process, and uncertainty
accampanies their predicted performances.

An incremental approach is used to highlight the differences in
the cash flow performances of the two technologies. One AFM currently
costs $265,000 more than four buffing centers. The AFM is expected to
have lower labor and operating costs (campared to four buffing
centers), and its faster processing time is expected to permit
reductions in the work-in-progress (WIP) levels for all types of
blades, resulting in lower inventory holding costs. When the proposal
was prepared, the incremental after-tax cash flow (one AFM - four

buffing centers) was given in the form of optimistic, most likely, and
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pessimistic estimates. These values are listed in Table 1 for the
eight~-year planning horizon (the dollar values that appear in the
tables and on the figures are rounded to the nearest $10, and any
apparent inconsistencies in calculated values are due to this round-
off). The range of estimates is a reflection of the uncertainty
associated with the AFM's performance. To address the concerns over
this uncertainty, the AFM alternative has the option of phasing its
machines into operation over the available window of two years.
Additionally, the AFM's have computer camponents that will be cheaper
in the near future. The equipment supplier has told the firm that the
equipment's current list cost will be reduced by $15,900 at the end of
the year, and by ancther $16,560 ($32,460 total) at the end of two
years. Accordingly, the firm prepared per unit (one AFM to four
buffing centers) incremental estimates of the after-tax cash flows for
equipment initiated at the end of year 1, or the end of year 2. The
latter cash flows are limited by the planning horizon, but the AM's
will have increased salvage values that correspondingly increase the
final year's after-tax cash flow. This information is shown in Table
2. The incremental cash flows that have been thus far developed
explicitly address the capacity expansion comparison of AFM to buffing
center. For the equipment replacement consideration, the on-hand
buffing equipment would normally have a lower value than new centers,
and the cash flows would be adjusted accordingly. However, because
these centers are both relatively inexpensive and readily adaptable to
other factory needs, the value of the current equipment is felt to be

carparable to new equipment, and we will assume that the incremental
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Table 1. Estimated anmual cash flows for one incremental unit
(one AFM - four buffing centers) initiated at time

Zero.
Estimate
Year Pessimistic | Most Likely | Optimistic
0 $-265,000 $-265,000 $-265,000
1 34,200 38,000 39,900
2 60,300 67,000 70,350
3 63,000 70,000 73,500
4 61,200 68,000 71,400
5 58,500 65,000 68,250
6 58,500 65,000 68,250
7 58,500 65,000 68,250
8 58,500 65,000 68,250
EV(ugy)o”* -17,760 9,710 23,450

*Note - EV(ug;)( refers to the expected value of a cash
flow for one unit, initiated at time O,
discounted at the MARR of 15% (value rounded to
the nearest $10).
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cash flows for the AMM's to existing centers can be treated as the same
as those developed in Tables 1 and 2.

The firm's after-tax minimm attractive rate of return (MARR) is
15-percent. The net present value for the incremental cash flows (AFM
- buffing center) are interpreted by the following:

Positive net present value = AFM performance is superior,

Negative net present value = buffing center performance is

superior.
To clarify the multiple options created by the phased adoption policy,
a caplete listing of all possible decisions is provided in Table 3.
For this corporation, a decision that creates mixed modes of finish
application is acceptable. (For brevity's sake, the sensitivity
analysis of interest rates, projected savings, etc., will not be
presented in this paper, but it recognized that such analyses are
critical to any decision problem.)

Beta distributjon model
our first step is the selection of a beta prior probability
distribution that will satisfactorily model our uncertainty in the cash
flow's expected value. We will use the following notation:
EV(ut1)§ = expected value of one unit (one AFM - four buffing
centers), initiated at time t, discounted at the MARR
to time j.
EV(djk) q = expected value of terminal decision k, made at time j,
discounted at the MARR to time g. This term combines

unit expected values (as for, EV(dgy)g = 4 * EV(ug)o) -
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Table 3. Decisions, and follow-on options, that were considered at
time zero.

Decision

Explaination

Do not initiate any units, reject this altermative.
Initiate all four units immediately.
Initiate one unit, collect data, and reevaluate

this proposal in one year. (Given that this
decision has been selected, the options contimue.)

Stop the incremental process with one AFM, acquire
four buffing centers to meet remaining capacity
requirements.

Initiate the remaining three units.

Initiate one more unit, collect data, and make the
final decision at the end of year two. (Given that
this decision has been selected, the options
continue.)

Stop the incremental process with two units.
Evaluate if it would now (the end of year 2) be
better to replace the existing AFM's with buffing
centers.

Initiate the last two units, to replace the buffing
centers that were installed when the factory was
built.
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Development of the prior distribution. We use the 3-point
estimate for a single unit at time 0 ($-17,760, $9,710, $23,450) to
determine a standardized mode, x;, and solve equation (4) to get a =
4.64, and equation (2) gives B8 = 2.82. 'The set (4.64, 2.82) describes
our initial candidate beta distribution, which has a per unit expected
value, EV(ugi)g = $7,870, and a probability of negative return, or the
buffing centers' performance being superior to the AMM's, P(ug; < 0) =
0.14. At this point, we propose that this candidate solution be
refined, because our initial feeling is that the probability that the
AFM's performance will not exceed the buffing centers' performance is
greater than 0.14. After reviewing several other candidate parameter
sets, we select a = 3.667, B = 2.333, with E(ug;)g = $7,420 and P(ugy <
0) = 0.18. The selected parameters retain the mode at $9,710, but the
variance has changed from the equation (9) approximation of 6,8702, to
a directly camputed value of 7,5902 (through a non-standardization of
equation (3)). The variance change is a direct reflection of our
desired change in a particular interval's probability, depicting our
prior beliefs better than the PERT approximations.

Conventional Bayesian methods at time 0. The remaining steps in
the time 0 analysis follow conventional Bayesian techniques. Since
they have not been typically considered in equipment replacement
scenarios, those steps are presented in abbreviated fashion. The
payoffs for the time 0 terminal decisions are (using (a, B) = (3.667,
2.333)):

EV(dgo)o = $0

EV(dpy)o = $29,690
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Under a pure net present value criterion, the positive EV(dg;)q would
dictate that we initiate all units immediately. However, in our
modified procedures, we follow the course of action that yields the
highest expected value. So, continuing, the values of a and g are used
in equations (11) and (12) to give r' = 3.667 and n* = 6. The
incremental options available in this project permit the initiation of
a single unit at time 0, with a second unit, if desired, at the end of
year 1. The initiation of a single unit implies that our sample
information will have n=1, with possible outcoames r=0 and r=1. An r=0
outcame means that the observed result falls short of the year 1
expected value, while an r=1 cutcome means that the performance
prediction was exceeded. The predictive probabilities for those
outcomes, given n', r', and n, follow the beta-binamial distribution,
with P(r=0 | r',n',n) = 0.389, and P(r=1 | r',n',n) = 0.611. The year
one sample results for (r, n) = ((0, 1) and (1, 1)) are combined with
r' and n' in equations (16) and (17) to yield two posterior sets of
descriptive parameters, (r", n") = ((3.667, 7) ard (4.667, 7)}. We
then campute the per unit expected values and probabilities of loss for
units initiated at time 0 and time 1. The results are:

r _x_ n" EV(ug1lo P(ug; < 0) EV(uj1)o P(uj) < 0)

0 3.667 7 $3,830 0.31 $4,020 0.27
1 4.667 7 9,710 0.10 9,030 0.08

From this, we campute the end of year 1 terminal decision payoffs:
forr =0,  EV(djg)g = EV(ug)o = $3,830
EV(djj)o = EV(ugy)o + 3 * EV(ujy)g = $15,890

for r

i
[
-

EV(dlo) 0° $9, 710

EV(dj1)o = $36,790
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The posterior values r' arnd n" then became the prior values for the
secord year's sampling. The predictive probabilities for year 2 are:

Year 1 Year 2
_r r' n' r Pr | r'.n'.n
0 3.667 3.333 0 0.476
0 3.667 3.333 1 0.524
1 4.667 2.333 0 0.333
1 4.667 2.333 1 0.667

The per unit expected values for the end of year 2 distributions are

(all values of r" have an associated value of n" = 8):

L By, Bluyy<0)  B(w,), B(y),<0) E(U), P(u,)<0)

3.667 $3,210 0.28 $1,730 0.40 $1,130 0.45
4.667 6,950 0.09 6,110 0.16 6,280 0.19
5.667 10,690 0.02 10,480 0.04 11,430 0.05

and the payoffs for the end of year 2 terminal decisions are:

Year 1 Year 2

T _x B B, EMd),
0 0 3.667 8 $2,860 $9,280
0 1 4.667 8 12,390 26,280
1l 0 4.667 8 12,390 26,280
1 1 5.667 8 21,910 43,290

Although the cash flow is continuous, the discrete nature of the sample
information makes the problem readily presentable in decision tree
form, as shown in Figure 4. (Branches that are cross-hatched, — ,
are inferior decisions.) The strategy determined at time 0 is to
initiate single units at time 0 and the erd of year 1, and initiate the
remaining units at the end of year 2. The expected return for this
strategy is $30,060. The strategy mapping shown in Figure 4
illustrates the level of detail provided by the Bayesian methods. All

conventional sample outcames are anticipated and appropriate actions
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EV(d,5) g
$3,830
P(r = 0) {5 EV(d ),
0.389 $15, 890

EV(dyo) g $9,280
' ‘ $0 EV(dy))g j

[
$18,190 EV(d,0)
c EV(dyy)o $12,390
l $29,690
EV(d,)),
$26,280
EV(dOZ)O /)
$30,060 W Ev(dlo)o
$9,710
EV(d,,)
e =1 ] ), _i__fzo_g
0.611 ~ 1 436,790 $12,390
. ' P =0) [
0.333
EV(d,1),
$26,280
EV(d;,) o_{P
$37,620 EV(d20)0
$21,910

$43,290

Figure 4. Extensive form analysis, at time zero, with predicted sample
results for years one and two.
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are emmerated for each possibility. The observations in years 1 and 2
will "steer" the movement along the extensive form analysis.

Applying equivalent sample size concept to the beta model. The
year 1 incremental cash flow realization was $39,330, which was easily

greater than the predicted value $38,000. The time O decision strategy
would have the firm initiate a second unit, and continue monitoring.
Here, we again deviate from the conventional approach. During year 1,
the firm's economic environmental conditions were noted, and a review
of the typicality, or repeatability, of the year 1 performance results
was conducted. This review concluded that the sample data was as
informative as the initial predictions, and should carry as much
informative "weight" as those forecasts. Therefore, rather than use a
value of n = 1 for the sample, we will use an equivalent sample size of
ne = 6. We then solve equation (18) for rg:

Yo = (6 * (39,330 - 34,200)) / (39,900 - 34,200) = 5.4

This result is not possible under conventional methods. The values of
re and ng generate a new set of posterior parameters, r" = 9.067 and n"
= 12.

Conventional methods for remaining end of year 1 analysis. We
then use these parameters to resolve the decision problem. The per
unit expected values that are used with end of year 1 terminal
decisions are:

L. oo EV(uy), Py, <0 E(w,), Py, <0)
9.067 12 $15,380 0.01 $13,960 0.01

The payoffs for the end of year 1 terminal decisions are:
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EV(d;g)1 = $15,380

EV(dj1); = $57,260

The beta~-binamial predictive probabilities, with r' = 9.067, n' = 12, n

= 1, for the second year's sampling are:

r P(r | r', n', n) " n"
0 0.244 9.067 13
1 0.756 10.067 13

Based on the postcorior distributions, the per unit expected values are
(all values of r" have associated values of n" = 13):
! EV(uy), Pluy<0)  EV(uy,),  B(u<0)  EV(W,); P(u,,<0)

9.067 $12,630 0.02 $11,620 0.02 $11,920 0.01
10.067 16,270 0.01 14,720 0.00 14,560 0.00

The payoffs for the end of year 2 terminal decisions are:

r" n" Ev(d,.), Ev(d ;)
9.067 13 $24,250 $48,080
10.067 13 31,000 60,110

These results can also be mapped into a decision tree format, as shown
in Figure 5. This extensive form analysis shows that the new optimal
strategy is to convert all remaining units immediately. The expected
return from this strategy is $57,260. The expected return, as carpared
to the time 0 return of $30,060, has nearly doubled. The net gain from
the strategy change is small ($57,260 - 57,170 = 90), but the magnitude
of that gain will always be situation and performance dependent.
Further, the sample information shows that the probability of the AMM's
performance exceeding the buffing centers is greater than we initially

anticipated. The accelerated implementation decision, djj, could only
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| BV(dy504
$15,380
EV(d,.)
EH EV(d,,), | dy0)1
$24,250
f $57,260 P(r = 0) -
0.244
Ev(d,,),
$48,080
| Ev(d12)044<
$57,170 I EV(d,q)
[4,$31,000
Pr=1)
0.756 LJ
EV(d,q),
$60,110

Figure 5. Extensive form analysis at the end of year one. Revisions
are made after obtaining year one sample information, and
applying values for ro and ng with r' and n'.
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became the best option through the addition of our equivalent sanmple

size concept to conventional Bayesian methods.

OONCTISTONS

In this paper, we have developed concepts for continuous models

that have natural conjugate distribution families. They have been

developed within an equipment replacement/capacity expansion framework,

and the key ideas were:

(1)

(2)

(3)

(4)

demonstrating how Bayesian techniques can be applied to
equipment replacement/capacity expansion problems.
demonstrating how a beta prior distribution can be readily fit
to 3-point PERT-type estimates, and how these estimates can be
refined through the use of the inccmplete beta function
(examining probability values for specific intervals of
interest) and the equivalent sample size concept (that
reflects our initial beliefs in the quality of the estimates).
applying the concept of equivalent sample size to the cbserved
results (a conparison of estimate quality and result
typicality), in beta distribution revisions.

the illustration of these techniques in a case study

presentation of an actual decision problem.

In the case study we used the beta conjugate family, and obtained

a prior distribution candidate solution by simultaneocusly solving PERT

and beta mean and variance equations. We refined that prior belief by

keying on its probability of negative return, a measure of

effectiveness that highlights the best performing alternative in an
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incremental analysis. When we revised that prior belief, we used
sample information that incorporated the equivalent sample size
concept. The result we cbtained was not possible under conventional
Bayesian methods, arnd it led us to a new decision strategy that had a
greater expected value than our initial (time 0) strategy.

The new strategy demonstrates that incorporation of these
procedures can lead to more efficient use of capital, and greater
return on investment. However, a critical mide@tim to applying
these methods is that the user have a thorough understanding of the
quantity and quality of both the initial and sample information. The
assignment of "weight" factors must reflect the relative strengths of
the information, as misapplication of these concepts will give

distorted information.
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APPENDIX A. Beta distributions fit to 3-point PERT-type
approximations.

Many capital budgeting proposals, including equipment replacement
projects, are prepared as 3-point approximations of the anticipated
performance (pessimistic, most likely, and optimistic). The
uncertainty described these estimates has frequently been addressed by
probabilistic representation as triangular distributions. This is
especially true in simulation studies. We feel that this uncertainty
can be modeled equally well by variations of the beta distribution
(which has other advantageous properties). An earlier work [Keefer and
Bodily (1983)] examined several methods that could approximate a
distribution's mean and variance, based on 3-point estimates of
performance, and tested those approximations with a series of beta
distributions. As an extension of some of the concepts presented
there, we will examine the similarities of the cumlative distribution
functions (c.d.f.'s) of certain triangular and beta distributions.

When the beta distribution shape parameters (a, B) are relatively
small, the beta and triangular c.d.f.'s are nearly identical. 1In fact,
the slope of a right triangle (with the 90° angle on the left) is
identical to a beta distribution with (a, 8) = (1, 2). To demonstrate
the similarities of the c.d.f.'s, we will use two different values of
the distribution mode (for a 0 to 1 range of x): (1) the mode is 0.5,
and (2) the mode is 1/3. In the symmetric case, we compare the
triangular c.d.f. to beta distribution c.d.f.'s for (a, B) sets of (3,
3), (4, 4), and (10, 10). The set (3, 3) is used because it is a

development fram the linear solution of the PERT approximation of the
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mean, equation (8), and the beta distribution equation (1) for the
mean. The set (4, 4) is used because it is the solution to the PERT
and beta equations when the assumption that the Var(x) = (1 / 6)2 is
included. The set (10, 10) is used because it represents a
distribution where the prior beliefs are more strongly held than the
first two cases. As seen in Figure A-1l, parts (a) and (b) show that
there is little difference between the c.d.f.'s for the triangular
distribution and the B(3, 3) and B(4, 4) distributions, respectively.
However, the c.d.f. for the B(10, 10) distribution shows a much greater
difference.

The second situation, using the skewed distribution with x, = 1/3,
examines the beta parameter sets (2.333, 3.667), (2.82, 4.64), and (10,
19). The set (2.333, 3.667) corresponds to the previously mentioned
linear solution, the set (2.82, 4.64) incorporates the variance
assumption, and the set (10, 19) represents the stronger belief
example. As shown by items (d) and (e), the beta distributions
described by the sets (2.333, 3.667) and (2.82, 4.64) closely
approximate the triangular distribution's c.d.f. Item (f) shows that
there is considerable difference between the B(10, 19) and the
trianqular distribution.

As shown by the figures, when the a and f values are low, as when
they are within the range of the PERT and beta equation simultaneous
solutions (either with or without the variance assumption), the
triangular and beta distributions are nearly identical. (For brevity,
cases with greater asymmetry were not presented. However, those cases
show that the more pronounced the asymmetry, the fit is increasingly
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poorer for increasing values in the (a, B) parameter sets.) Thereby,
since the triangular distribution was an acknowledged approximation of
prior beliefs, using the beta distribution will not present a radical
change in those beliefs. 1In fact, when the estimates represent
strongly held prior beliefs, a properly fitted beta distribution will
provide a much more accurate representation than the triangular
distribution. Lastly, modeling the prior beliefs with the beta
distribution will allow us to use a natural conjugate family of
distributions.
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APPENDIX B. BASIC camputer program used to obtain initial and refined
beta distribution shape parameters.

The attached BASIC camputer program takes the initial three-point
PERT-type estimates and uses the cubic equation to determine an initial
cardidate solution for the beta distribution shape parameters, a and S.
The user can implement those parameters, or refine them, as desired.
The program can then be used to find probability values for specific
intervals, and this information is provided as feedback to the user in
the parameter refinement process. The program uses Simpson's
approximation technique to find the probability values of the
Incamplete Beta Function. The program also provides the user with

summary information on the evaluated beta distribution.
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DIM ROOT'(3)

' This program is designed to find beta distribution shape

! ters from a given 3-point estimate. The estimate may
' be standardized (0 to 1) or nonstandard values.
]

INFUT " Enter the most optimistic estimate ";HIGH
INFUT " Enter the most likely estimate ", MOSTL
INFUT " Enter the most pessimistic estimate";LOW

Fram these values, a standardized mode is coamputed for use in
the determination of Beta distribution shape parameters. This
program will handle nonstandard values, and it also assumes
that the optimistic and pessimistic values are true end points.

A=IOW : B=HIGH
XM= (MOSTL - LOW)/(HIGH - LOW)

with this value, the beta shape parameters, alpha and beta, can
be found by solving the cubic equation that results from the
simultaneous equations for the distribution mode and variance,
assuming that the variance = 1/36

to solve the cubic equation, let

P=(7.%XM) - (36.%XM"2.) + (36.*XM"3.)
Q=-20.*XM"2.

R=—24.%XM"3.

?

' use P, Q, ad R to find the branching value D
Y1=Q - ((P°2.)/3.)

Y2=((2./27.)*(P"3.)) - (P*Q/3.) + R
D=((Y2°2.)/4.) + ((Y1"3.)/27.)

' branch on D if it is <, =, > 0
]

IF (D < 0) THEN GOTO 410

IF (D = 0) THEN GOTO 670

IF (D > 0) THEN GOTO 900

]

determine the real cubic roots when D < 0, (three real roots)

' find the sign of COS(PHI), then angle PHI

IF (Y2 < 0) THEN CSPHI=(((Y2"2.)/4.)/(-1.*((Y1"3.)/27/)))".5
ELSE CSPHI=-1.*(((Y2"2.)/4.)/(=1.*((Y1"3.)/27/)))".5

DEF FNAROCOS (X)=1.570796327-ATN (X/SOR(1~X*X) )

PHI=FNARCOOS (CSPHI)

' now find the three roots

FOR I=0 TO 2
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520 ROOT(I + 1)=(2.*(SQR(-1.*Y1/3.)))*COS(PHI/3. + (2.%*3.141592/3.)%*I)
- (B/3.)
530 NEXT I
540 *

550 ' with these roots, find the corresponding alpha and beta values
560 !

570 FOR I=1 TO 3

580 ALPHA=ROOT(I) + 1.

590 BETA=((ALPHA - 1.)/XM) - ALPHA + 2.

600 PRINT " Candidate values for Alpha and Beta are ";ALPHA;BETA

610 NEXT I

620 !

630 ' then go to the incomplete beta function

640 !

650 GOTO 1320

660
670
680
690
700 !

710 IF (Y2 < 0) THEN GOTO 750

720 ROOT(1)=(-2.%*(-1.*Y1/3.)".5) - (P/3.)
730 ROOT(2)=((~1.*Y1/3.)".5) - (P/3.)
740 GOTO 780

750 ROOT(1)=(2.*(-1.*Y1/3.)".5) - (P/3.)
760 ROOT(2)=(-1.*(-1.*%Y1/3.)".5) - (P/3.)
770
780
790 '

800 FOR I=1 TO 2

810 ALPHA=ROOT(I) + 1.

820 BETA=((ALPHA ~ 1.)/XM) - ALPHA + 2.

830 PRINT " Candidate values for Alpha and Beta are ";ALPHA;BETA
840 NEXT 1

Determine the cubic roots when D = 0 (3 roots, at least 2 =)

branch on the sign of Y2

with these roots, find the alpha and beta candidates

850 !

ng : go to the incamplete beta function

8

880 GOTO 1320

890 !

900 ' Determine the single real root when D > 0, branching on the
910 ' value of Y1.

920 '

930 IF (Y1 < 0) THEN GOTO 1190

940 !

950 ' for D> 0, amd Y1 > 0, find angle PSI
960 !

970 IF (Y2 < 0) THEN CIN2PSI=(((Y2°2.)/4.)/((Y1*3.)/27.))".5
ELSE CIN2PSI=-1.*(((Y2°2.)/4.)/((Y1"3.)/27.))".5

980 DEF FNARCOOT(X)=1.570796327 ~ ATN(X)

990 PSI=(FNARCOOT(CIN2PSI))/2.

1000 !

1010 ' then find angle PHI
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TNPHI=(TAN(PSI)) “ (1./3.)
PHI=ATN (TNPHI)

' now, find the real root

DEF FNOOT(X)=1./TAN(X)
TERM=(2. (SQR(Y1/3.)) *FNCOT(2.*PHI)) - (P/3.)

next, find the values for Alpha and Beta, and go to the
incaomplete beta function steps

ALPHA-TERM + 1.

BETA=( (ALPHA - 1.)/XM) - ALFHA + 2.

PRINT " Candidate values for Alpha and Beta are " ;ALPHA;BETA
GOTO 1320

!

' Determine the real root when D > 0 and Y1 < O.
BIGA=((~-1.*Y2/2.) + (D".5))"(1./3.)
BIGB=((-1.*Y2/2.) - (D".5))"(1./3.)

TERM=BIGA + BIGB

next, find the values for Alpha and Beta, and go to the
incamplete beta function steps

ALPHA=TERM + 1.
BETA=((ALPHA - 1.)/XM) - ALPHA + 2.
PRINT " Candidate values for Alpha and Beta are ";ALPHA;BETA

1
' ‘This part of the program uses the derived parameters to find
' intervals of the beta cdf, by the incomplete beta function.

' 'The beta odf is approximated by Simpson's rule. The user has
' Jjust seen the candidate Alpha and Beta values, and he must

' make his parameter value selections.

1

INPUT " Enter the desired value for AIPHA " ;ALFPHA
INPUT " Enter the desired value for BETA ";BETA
ALPHA=ATFPHA ~ 1.

BETA=BETA - 1.

When canmputing the incomplete beta function, the constant

in both numerator and denomenator. This leaves the function
inside the integral as

- - . e =@ -

DEF FNF(X)=(X - LOW) "ALPHA * (HIGH - LOW) “BETA

' first, campute the denomenator value
]

GOSUB 1900

CQONSTANT=S

inside the integral can be factored and canceled (as it appears
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1540 '
1550 ' We can now campute the probability over any desired interval
1560 ' within the range established by the optimistic and pessimistic
1570 ' values. For initial information to the user, the cumulative
1580 ' probability from the pessimistic value to the mode is found.
1590 !
1600 B=MOSTL

1610 GOSUB 1900

1620 BPROB=S/CONSTANT

1630 PRINT " "

1640 PRINT " For the interval from ";A;" to ";B;", the cumulative"
1650 PRINT " probabilities for your BETA distribution and a "

1660 PRINT " triangular distrilbution using the 3-point approximation"
1670 PRINT " are, Beta distribution probability ";BPROB

1680 PRINT * Triangular distribution probability";xM

1690 PRINT " "

1700 PRINT " Enter codes for next investigation -"

1710 PRINT " 1 = other intervals, with current Alpha and Beta"
1720 PRINT " 2 = change Alpha, Beta, and Interval®

1730 PRINT " 3 = summarize distribution information”

1740 PRINT " 4 = Quit"

1750 INPUT MORE%

1755 IF (MORE%

1760 IF (MORE%

1770 IF (MORE%

1780 IF (MORE%

1790 PRINT " "

1800 INPUT " Enter the upper limit for the interval of interest';B

1810 INPUT " Enter the lower limit for the interval of interest";A

1820 PRINT " "

1830 GOSUB 1900

1840 PRINT " Probability for interval ";A;" to ";B;" is ";S/CONSTANT

1850 PRINT " "

1860 GOTO 1700

1870 END

1900 ' This subroutine computes the area for the interval selected,
]

1) THEN GOTO 1800
2) THEN GOTO 2200
3) THEN GOTO 2400
4) THEN GOTO 1870 ELSE GOTO 1700

1910 by using Simpson's rule (without error term)
1920 !
1930 =B - A

1940 T=(FNF(A) + FNF(B)) * H/2.

1950 GOTO 1970

1960 T=(T + M)/2.

1970 M=0

1980 FOR X=A + H/2. TO B STEP H

1990 M=M + FNF(X)

2000 NEXT X

2010 M=M * H

2020 S=(T + 2.*M) / 3.

2030 H=H/2.

2040 !

2050 ' The stopping rule uses a comparison of the average f(x) values
2060 ' for the interval endpoints and subinterval midpoints. This
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approximation's beta probabilities were compared to a sample
of distributions, using the same Alpha and Beta parameters,
from Pearson's tables of the incomplete beta function, and
were accurate to four decimal places, or better

IF ((ABS(T ~ M) / ABS(S)) > .001) THEN 1960
RETURN

' This subroutine camputes probabilities for new shape parameters
)

INPUT " Enter value for AIPHA " ;ALPHA

INFUT " Enter value for BETA ";BETA

INPUT " Enter range lower endpoint ";LOW

INFUT " Enter range upper endpoint ";HIGH

ALPHA=ALFHA - 1.

BETA=BETA - 1.

A=IOW : B-HIGH

GOSUB 1900

CONSTANT=S

INPUT " what is the lower limit for the interval of interest ";A
INPUT " What is the upper limit for the interval of interest ";B
GOSUB 1900

mmr "

PRINT " Probability for interval ";A;" to ";B;" is ";S/CONSTANT
mmr Hn

GOTO 1700

RETURN

' This subroutine summarizes the current distribution information
1]

AIPHA=ATPHA + 1.

BETA=BETA + 1.

EMEAN=ALPHA / (ALPHA + BETA)

BMODE=(ALPHA - 1.) / (ALPHA + BETA - 2.)

BVAR=(ALPHA*BETA) / (((ALFHA + BETA)“2.) * (ALPHA + BETA + 1.))
mmr nn

PRINT " The Beta distribution you have selected has"

PRINT " Interval ";LoOw;" to ";HIGH

PRINT * Alpha »-AIPHA

PRINT " Beta “:BETA

PRINT * Mean ", BMEAN* (HIGH - LOW) + LOW

PRINT " Std Dev ";(BVAR .5)*(HIGH - LOW)
PRINT " Mode "; BMODE* (HIGH - LOW) + 1OW
GOTO 1700

RETURN
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APPENDIX C. Model development and case study application for a normal
prior distribution.

MODEL DEVELOPMENT

When the 3-point estimates are symmetric, we can model the
uncertainty about the cash flow's expected value with a normal
distribution. We can use the 3-point estimates to find E(u) and
Var(u). The apparent drawback to using this model is that the 3-point
estimate provides no information about the variance of the cash flow's
parent population, 0¢. Further, because the challenger processes
involve technical innovations, there will also generally be no other
historical records to provide input. while we are truly facing an
unknown population variance condition, the 3-point estimates give us no
information to establish values for E(0?) and Var(o?). Fortunately,
other circumstances in this problem will permit us to overcome the
absence of E(0?) and Var(o?). As shown in an earlier work [Prueitt and
Park (1989)], uncertainty resolution oocurs very slowly in the
population variance (Var(o2) goes to zero slowly), requiring many
sample cbservations. Because many replacement projects have limited
sample sizes, they would not realize the effects of that resolution.
Thereby, if we develop a value for 02, and treat it as a known value,
there would be little difference in the end results. As we will show,
subsequently, we can use the 3-point estimates with the equivalent
sanple size concept to develop a value for 02. We will then follow
conventional procedures for an unknown mean, Known variance condition.

When we use the normal distribution, we also follow the belief
that the sample information is normally distributed. The information
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provided by its likelihood function is generally more descriptive than
the Bermoulli process, but we must consider the following:

a. Normality assumptions. The normal distribution models are
based on the mean performances of same X3, j=1,2,°**,n, that
are assumed to be independent identically distributed random
variables (IIDRV), with a camnon mean arnd variance. The
accuracy of this model is adversely affected by undetected
trend or seasonal effects.

b. Sample size requirements. The closer the distribution of X5's
is to the normal curve (specifically, the closer the
distribution is to being symmetric, or having smaller third
central moment, or skewness, values), the smaller n can be,
and still provide good accuracy.

c. Period of cbservation. If we model a project's net present
value (including investment ¢ well as return) as the xj's,
then the required observation period is one unit's econamic
life. This is frequently several years for manufacturing
equipment, which makes this an unattractive approach for
project net present value. However, we can resolve
performance uncertainty if the xj's occur in "steady-state"
corditions, as with periodic cash flows from an on-line
process operating at a relatively fixed level of production.
Here, the Xj's would be the pericdic (monthly, quarterly,
yearly, etc.) cash flows, and their uncertainty resolution
will be used to refine the project performance estimates, in

anticipation of the sequential decision reviews.
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Initial prior belief. Wwhen we begin fitting a normal distribution
to a 3-point estimate, we must consider how to handle the estimate
extreme points, realizing that there is only a limited amount of
flexibility for any interval probabilities. For this normal model, the
optimistic and pessimistic estimates will not represent absolute
limits. This gives some flexibility to the estimating process, but, if
those estimates are truly absolute limits, then tail probabilities
outside of extremes are misrepresented. To fit a normal distribution
to a 3-point estimate, the optimistic and pessimistic values must be
associated with specific percentiles of the distribution, and the
outcame probability for an interval of interest can only be slightly
modified. For example, the 3-point estimate of $50, $100, and $150 is
modeled as a normal distribution. The ocutcome probability for each $10
interval fram $100 to $150, with the pessimistic and optimistic
estimates being used as the (ist, 99th), (5th, 95th), and (10th, 90th)
percentiles is listed in Table C.1. It is readily seen that there are
minimal differences between the (5th, 95th) and the (10th, 90th)
percentile sets, the percentiles most often used with PERI-type
equations. The percentiles will be used with the normal c.d.f., to
find the standard deviation of the cash flow expected value. For
exanple,

x(0.95) - x(0.05) = 2 * 1,6449 * ay
and,

0,2 = Var(u).
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Table C.1. Effects of changing percentiles associated with the 3-point
estimate extreme values, using the estimate
($50, $100, $150) and a normal distribution model.

Estimate percentiles and values

Probability of x(0.01) = $50 | x(0.05) = $50 | x(0.10) = $50

interest x(0.99) = 150 | x(0.95) = 150 | x(0.90) = 100
P(100 £ x £ 110) 0.179 0.129 0.101
P(110 < x £ 120) 0.145 0.116 0.095
P(120 € x £ 130) 0.095 0.094 0.083
P(130 £ x £ 140) 0.050 0.068 0.068
P(140 £ x £ 150) 0.021 0.044 0.053
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The other key parameter in this approach is the parent population
standard deviation, o. If we consider the established relationship
[Winkler (1972)]:

n' = a2 / g,2
where n' is the relative weight, or quality, of information for Var(u)
compared to 02. We can rearrange the equation such that

n' g,2 = ¢2
For example, if we were to believe that the estimates are as good as
the reports from six periodic cash flows, then n' = 6. By defining auz
and n', we obtain a value for 02, and we have enocugh information to use
the conventional procedures for a normal distribution in a known
variance condition.

Conventional Bayesian procedures for normal distributions.
Briefly, when the cash flow variance is assumed known, the uncertainty
of the cash flow mean, pu, can be represented as a normal prior density
function, of the form:

£ () = (210'2)7% exp(~(p - m")2 / 20'2)
where,

¢ is the unknown mean,

m' is the prior estimate of the expected cash flow, E(u), and

0'2 is the prior estimate of the variance of the expected cash

flow.
When a sample y, of n abservations and observed mean m, is taken from a
normally distributed population, the likelihood function combines with
the prior belief to form a normally distributed posterior belief:

' | y) = (@r0"2)7¥ exp(-(u - w")2 / 20"2)
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The resulting population cash flow distribution is described as sN(m",
02), and the posterior belief about the expected value of the cash flow
is described as aN(m", 0"2). We find m" and o"2 from:

12 - 12+ n2 (c-1)
o" o! o
t
R
w - _—9'" o
n = 1 a (C-2)
—_+—
0'2 02

Now, defining the terms
n' = g2 / o' , and n" = g2 / o"2

then equation (C-1) can be rewritten as

" '
n2 - n2 + n2 (C-3)
o o o
or,
n" =n'+n (C-4)

where n' refers to the amount, or relative weight, of information for

c'2 = Var(u), as campared to 02. We then use equation C-3 to solve

equation C-2:
o = ___n'ln“: I nm (C~5)
ivalent e size concept for the normal distributi . The

prior estimate of the cash flow expected value, m', was developed from
forecasts for specific econamic conditions. As mentioned previously,
the conditions that exist during the dbservation period may not match
those in the predictions. If the actual performances vary markedly
from the predictions, they may be felt to be more representative of the

true performance than the initial estimates. In either case, the
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value, or "weight", of the sanple information needs adjustment, as
ocampared to the initial information. We make this adjustment by using
an equivalent sample size, ng. We rewrite equations C-3 and C-5 to
incorporate the strength of belief in the prior estimate concept
(through the inclusion of n'), and to incorporate the strength of
belief in the replicability of the sample (through the inclusion of

ng), which gives:

n
nl
:2 = 5t (c-6)
o o o
n'm' + nem
" — =
m n' + ne (c=7)

If the sample information is more accurate than the predictions, then
we make ng > n, and 0"2 will go to O faster. If the results are
anamalous, then we make ng < n, and 0"2 will move to 0 more slowly.

As a final note to this section, saome authors have stated that
when the variance is not known, the sample variance, s2 = (Z(xy - m)2)
/ (n - 1), can be substituted for the population variance. However,
for initial decision formulation, there is no sample variance. After
project initiation, this approximation is only appropriate when the
mumber of observations is "sufficiently" large, and use of the sample
variance modeling may not be appropriate in many equipment situations,
because they only have a small mnumber of replicable elements.

: CA' OF ON
The normal model is used when the estimates are symmetrically

distributed. Since the case study involves an asymmetric situation, we
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will modify it for illustrative purposes. We will assume that the
estimates are symmetric, that the newly acquired equipment caomes in
assemblies that are readily installed, and that production conditions
will be stable in the first year. We will assume that the cash flows
of years 5 through 8 begin in year 1, and a "steady-state" condition
exists. We summarize the modifications by restating the anmual cash

flow estimates as:

x(0.05) $58,500
X = 63,375
x(0.95) = 68,250
Detemination of prior belief. We will first use the estimates to
find the cash flow's expected value, E(u), and that expected value's
variance, Var(u) = 0,2 = 0'2. This variance mist not be confused with
the variance of annual cash flows, 2. We will treat the estimates as
the 5th, 50th, and 95th percentiles of the expected values
distribution, such that
E(u) = m' = $63,375
Var(u) = '2 = [(x(0.95) - x(0.05)) / (2 * 1.6449)]2 = 2,9642
We feel that the expected value estimate may be samewhat inaccurate,
due to the technical innovations in the process, and the estimates are
camparable to a sample of four cash flow abservations. Thereby,
n' =4
02 =n' * g'2 = 5,9282

and 02 will be treated as being known with certainty.
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entj ian methods fo ining time 0 ana . If
the prior belief in p is normally distributed, with known o2, the
predictive distribution for the sample mean, m, is also normal, with:

E(m) = m' = $63,375
2 1 1 2
var(m) = ¢“ ( £+ 2 ) = 2,651

Because the expected outcame, E(m), is equal to the prior belief, there
are no changes in the different alternatives' payoffs, and the result
keyed decision process of the beta-binamial distribution is not
applicable. The information provided by the predictive distribution is
the relative reduction in the variance provided by the sample size, n.
Applying the eguivalent sample size to the sample data. One year
of sample data was recorded, and the incremental cash flow was $67,188.
The process was found to operate faster than predicted, creating a
larger than anticipated reduction in WIP. There were no ancmalous
external economic conditions during the year. After a review, it was
felt that the sample information had twice as much weight as the
initial forecasts. Therefore, when we make the revisions, we use
equations C-6 and C-7, with ng = 8, rather than n = 1. This gives us:

m" = 4(63375) + 8(67188) = $65,917 = E(u)
4 +8

0"2=—§2£—
4 +8

= 1,7112 = Var(p)

the posterior Var(u), when campared to its prior value, reflects a
marked uncertainty reduction. If we desire, we can use this
information to make predictive intervals about the estimated mean
value, but more importantly, we can update the decision altermative
payoffs. The posterior mean is then used to revise the expected net




145
present values for each of the remaining unit initiation times. This
leads to a subsequent recamputation of decision altermative payoffs,
and once these values are obtained, the firm makes its sequential

decision review.

CONCIISION
Here, we have demonstrated how the information in a 3-point
estimate could be used to approximate the values needed in an unknown
mean, known variance situation. The population variance was estimated
by an application of the equivalent sample size concept, based on a
quality of information assessment. The revision of those initial

beliefs was also illustrated, using the equivalent sample size concept.




V. DISCRETE APPROXIMATIONS TO CONTINUOUS MODELS

IN SEQUENTTIAL BQUIPMENT REPLACEMENT DECISIONS

ABSTRACT

Capital budgeting models have been extensively developed for
project selection, but little attention has been given to methods for
project control through the use of post-audit information for
implemented projects. This paper develops an approximation technigque
that uses post-audit information to resolve the uncertainty about the
expected net present value of a technically innovative process. We
take a project's three-point, PERT-type estimates of expected cash flow
performance and use them to develop a discrete probability distribution
that represents our prior beliefs. We then show how the Dirichlet
distribution can be used to formulate weighted initial beliefs, and how
it can be used with an equivalent sample size concept that results in a
flexible and efficient means to revise cur initial beliefs. We
exercise these concepts in a case study analysis of an actual decision
problem.

INTRODUCTTON

Manufacturing equipment replacement decisions have not,
historically, received as much attention as other capital budgeting
decisions (such as initial investments, portfolio camposition, etc.).
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Past replacement decisions were typified by a current, or defender
asset's performance being compared to an alternative, or challenger
asset's performance. The performance realizations generally had only
small variations fram their estimates. In fact, surveys reported that
the estimates used in equipment replacement decisions were more
accurate than any other investment estimates [Pohlman, Santiago, and
Markel (1988)]. Consequently, some firms began to use deterministic
methods in these decisions, concentrating on the timing of equipment
changeovers [Bean, Lohmann, and Smith (1985)]. This approach
effectively ignored the uncertainty in the cash flow estimates.

Currently, technological advances have changed the scope of the
replacement decision. Many corporations must now consider state-of-
the-art processes that include computers, robotics, flexible
manufacturing cells, and just-in-time manufacturing. Many of these new
alternatives require the restructuring of entire production processes,
essentially expanding the replacement decision from machine for
machine, to process for process considerations. A freguently occurring
exanmple is the camparison of factory machine shop layouts and flexible
mamufacturing cell organizations. The drawback in this expanded
decision is that while all the technical innovations represent great
potential, they do not have proven performances, in the form of
detailed historical records. Surveys report that when processes vary
markedly from previous corporation practices, there tends to be much
more variation between performance realizations and their estimates

[Cook and Rizzutto (1989)]. Because these broad scope alternatives
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have increased variability, corporations can no longer ignore the
uncertainty that accampanies these replacement comparisons.

The unknown aspects of the performance estimates can be overcome
by the process of uncertainty resolution [Bierman and Hausman (1972)].
When firms use a periodic, or sequential decision review policy, this
resolution permits them to make more informed decisions. In this type
of decision structure, when the investment alternatives involve items
that can be replicated, the uncertainty resolution provided by the
sampled portion may even lead to some initially unattractive
investments being profitable [Bierman and Rao (1978)].

We will present a method that can be used in a sequential decision
making environment, that provides uncertainty resolution to the
generalized case (the special case being when the prior belief and
sample likelihood function form a natural conjugate family of
distributions). This paper is the fourth in a series [Prueitt and Park
(1989 (a—))] that explores post-audit information and the replacement
problem decision. Here, the generalized approach is to develop
discrete approximations to continuous prior beliefs, record the sample
results, and place the dbservations in discrete categories that
correspand to those in the prior belief. Cambining these discrete
distributions in a Bayesian framework relaxes the assumptions used in
the contimious case. Specifically, those concerning data sanple sizes
and that the sanple data belong to a particular family of
distributions. We will apply this method to a case study of an actual
decision problem.
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MODEL, DEVEIOPMENT

When we consider the expected net present value (NPV) of a
project's cash flow, three natural factors lead to its being modeled as
a continuous randaom variable: (1) the divisible nature of the data (or
dollar count), (2) the uncertainty in the timing of cash flow
occurrences, ard (3) the process of discounting the cash flow to a
particular point in time. However, circumstances may preclude handling
the cash flow as a continuous variable, requiring us to use a discrete

approximation, instead.

Conditions making discrete approximations appropriate

Some of the conditions that may lead us to using a discrete
approximation are:

1. The uncertainty about the cash flows may not be representable
by a smooth probability density function (p.d.f.), as: (a) the prior
distribution is based on some development of a histogram that does not
fit any particular distribution, (b) varying economic envirormental
conditions may have drastic effects of the cash flows, creating a
multiple mode condition, or (3) the cash flow may be developed on an
incremental basis (altermative A - alternative B), and that incremental
distribution may be irregular, due to different alternative reactions
to specific economic conditions.

2. The prior beliefs and the sample likelihood function may not
form a natural conjugate family of distributions. For example, the
prior distribution may be modeled as a beta distribution, while the

data observations are represented as samples from a normal distribution
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(earlier works [Winkler (1972) and Jones (1977)) have only presented
concepts using a normal likelihood function, without addressing the
appropriate steps if the sample distribution is cbviously skewed).

3. The amount of sample information to be available may be
limited (a continuous variable with a sample size of one or two) to the
extent that it is not appropriate to model them as a normal, or any
other type of distribution.

These conditions require us to make an adjustment before we can
apply Bayesian revision concepts on a generalized basis, and that is to
convert the range of continuous outcomes to a set of discrete

intervals.

General as ions

Due to uncertainty, the expected NPV of a given project is treated
as having a probability distribution with some unknown parameters.
This NPV is the discounted sum of a series of periodic cash flows, and
each of these periodic cash flows can likewise be described as having
some descriptive probability function (see Figure 1). In this model we
are interested in the situation where the periodic cash flows are
modeled as identically distributed random variables. This description
most often describes the projected cash flows of equipment replacement
projects. This includes technically innovative projects, which tend to
have tremendous uncertainty over the region of cash flow occurrences,
but stable cash flows within the true operating portion of that region.
This is attributable to the fact that once installed and operating,
these projects exist in stable economic enviromments. If the number of

periodic cash flows is large (greater than 30) *he net present value
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Figure 1. Prababilistic nature of periodic cash flows and the
resulting net present value.
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of the cash flow cbservations can be treated as being normally
distributed, as per the Central Limit Theorem. However, we are
interested in the situations where there are only a small number of
cbservations, and such an elegant property is not reasonably assumable.
Therefore, we will instead model the distribution of periodic cash
flows with a discrete approximation.

We also assume that the projects of interest have replicable
cells, and the firm uses a periodic decision review process. This
permits us to record sample results, use that information in Bayesian
revision procedures to update ocur initial beliefs, and make appropriate

decision strategy adjustments.

Development of initial periodic cash flow distribution

The capital projects we are interested in are most frequently
prepared as three-point, PERT-type estimates (optimistic, most likely,
ard pessimistic). The 3-point periodic cash flow estimates are
discounted at the firm's minimum attractive rate of return (MARR) to
provide the project expected NPV, with upper and lower bounds. We will
refine this process by keying on the initial 3-point estimates of the
periodic cash flows. We propose that the initial range of outcames
described by the 3-point estimates be divided into discrete, non-
overlapping intervals. (It is not necessary that the intervals be of
equal length, but that approach will make it easier to portray the
results.) Once those intervals are designated, we establish
corresponding probabilities of occurrence for each interval. An
earlier work [Prueitt and Park (1989(c))] describes how the 3-point

estimates can be fit to non-standard beta distributions, and how the
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incamplete beta function can provide the cumilative probabilities for
specific distribution intervals. (We will use this approach in the
case study.) Another approach would be to subjectively assign
probabilities to the intervals.

These initial interval probabilities, 85's, are then examined and
refined as appropriate. The revision can be done by graphically
comparing the ej's, and making adjustments, one interval relative to
ancther, until it accurately describes our beliefs. (This refinement
is not necessary if the initial probabilities are subjectively
assigned.) This flexibility permits us to describe prior beliefs that
could not be adequately illustrated by a pure beta, or other,
distribution.

A discrete prior distribution can be used to directly campute a
project's expected NPV, through the use of the multinomial probability
density function. However, that application would not take advantage
of the available sample information. Therefore, we will instead use
the 85 's to develop descriptive parameters, aj 's, for a Dirichlet
distribution, which has natural conjugate distribution qualities.

The a4's are determined by first making a subjective relative
assessment of the quality of the initial estimates (both the 3-point
and the developed 84's) as campared to the amount of sample information
that can be collected during one time period, under anticipated
econamic conditions. We will call this comparison an information
quality factor (IQF). For example, if we feel that the estimates are
twice as informative as a single periodic cash flow, then the IQF = 2.
If the first period will have six cells reporting cash flows, and we
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feel that those results will be as informative as our estimates, then
the IQF = 6. We then abtain the descriptive aj's fram the relation:
aj=ej*IQF for j=1, ..., Kk
With the initial Dirichlet distribution defined, we are prepared for

the revision process.

Bayesian revision model

The updating process will use the Dirichlet-multinomial family of
natural conjugate distributions. The Dirichlet distribution is
sametimes referred to as the multivariate beta distribution, and this
method can be thought of as a generalization of the beta-binamial
conjugate family. The process uses a Dirichlet prior distribution,
samples that form a multinamial likelihood function, and results in a
Dirichlet posterior distribution.

In the formulation, it is given that a particular cash flow result
will fit into exactly one of k different outcome categories. The
probabilities associated with each of the k respective categories
canprises the random vector € = (6;, ..., 6x) with (ej 20; j=1, ...,
k) amd }.'BJ = 1. There also exists a parametric shape vector a = (aj,
ce., @g) with (ay > 0; j=1, ..., K), such that the probability density

function of £(@ | a) will form a Dirichlet prior distribution

F'a, + ... + ) a. -1 -1
£o | o) = 1 % el1 e:k (1)

I‘(al) oo I"(ak)

where,

I'(a) = 0J‘°° ta-l ot gt,
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The a4 are not limited to integer values, and if k=2, the result is the
familiar beta distribution. Then, the observed sample is a random
vector X = (X1, ..., Xg) and (x4 2 0; j=1, ..., K), where a given x4
represents the murber of cbservations falling into a kth category, with
x5 = n. This cbserved sample uses the vector 8 = (6;, ..., €), to
form a multinamial likelihood function

X
£(x | n,8) = ot ot e:k ()
X! .o x!
1 %

This likelihood function combines with the prior distribution to form a

Dirichlet posterior distribution

rnm+ zZa,) a +x. -1 +x ~1
£0 | a % = i 911 17 ... e:k XK

T(ap+ %)) ... Tt X)
This permits direct computation of the prior and posterior values of ©

(3)

(ej', and ej", respectively) from the Dirichlet distributions' shape
parameters [Johnson (1960), and Johnson and Kotz (1969)]:
85' = aj / Zay (4)
85" = (a5 + x3) / (n + Zay) (5)
It 'sing this revision model, we must keep in mind that the natures of

the oy's are such that the stronger one believes a parameter is true,
the larger its corresponding a5 (as described by the IQF). For
example, a given Dirichlet distribution has three equiprabable states
of nature (8; = 6; = 83 = 1/3). These probabilities can be described
by a = (100,100,100), a strongly held prior belief, or by a = (1,1,1),
a weakly held prior belief. Ten units are sampled, with all ten
outcames favoring €; (n = 10, x; = 10, X3 = X3 = 0). For the parameter

set, a = (100,100,100), the posterior values for ej became
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_% 77X 100 + 10
n+a; 10+ 300

= 0.355

ard,
85" = 5" = (100 + 0)/(10 + 300) = 0.323.
On the other hand, using the second set, a = (1,1,1), yields

8" = 1.+ 10 ~ 0.846
10 + 3

and,
8;" = 83" = (1 + 0)/(10 + 3) = 0.077
The second shape parameter set reacts very quickly to the sample
ocbservations, while the first set is hardly disturbed.
Another item that should be noted stems from earlier works with
this natural conjugate distribution that focused on goodness-of-fit and
independence tests [Good (1967)). These works used symmetric

(equiprobable) Dirichlet distributions, with the notation

£0 | a) = —EIQKL o1 ... et (6)
I'(a)
where,
a1=a2= case =(!k=a

ard the a was referred to as a "flattening" constant. Wwhen this
equiprobable condition was used in a situation where there was a
natural grouping of categories, or overlapping categories for a
contimuous variable, it was shown that regeneration would eventually
lead to loss of the Dirichlet properties [Good (1965)]. However, this
problem was overcame by adding a distribution for a (maintaining the
a;j's as distinct elements) which leads the posterior distribution away
fram equiprobability (Lindley (1980), and Good (1983)]. There were no
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such problems when an asymmetric prior distribution was used, nor were
any problems noted when working in a noncontingency table structure.
Here, we will employ the generalized shape parameter a = (a3,....,ax)
with distinct intervals to avoid any potential problems.

Equivalent sample size concept -~ for observed results

We stated previously that the predicted sanple results are based
on anticipated econamic envirommental conditions. As we collect the
cash flow data, we must make assessments of the occurring econamic
corditions to determine the typicality, or repeatability of the
observation. If we have disparity between the assumed and observed
econamic conditions, we may need to adjust the numbers of the
observations, X3's, with the equivalent sample size concept [Prueitt
and Park (1989(c))]). If the estimates included processes that were
misjudged, and we feel that the sample is more representative of the
true state than the estimates, we will want to increase the cbserved
sample size. If there are unanticipated conditions that are of a once
and temporary nature, we will want to reduce the observed sample size.
In either case, if we use the equivalent sample size, we must make the
adjustments to all categorical results proportionately. As
appropriate, we would replace the cbservations, X5 's, with equivalent
cbservations, xe.'s, so long as,

J
X
X, e.
S B I s
Exj zxe for j=1, ..., k

ard equation (5) is rewritten as:




J .
e." - - 1 (7)

If the econamic conditions are as anticipated, then the observed Xj's
can be applied directly.

Decision strategy revision

At every decision point, the distribution of periodic cash flows
is used to determine the project's expected NFV. As that value
changes, the existing decision strategy may need to be revised.
Conventional Bayesian methods strive to predict all sample outcames,
and plan decision options for each outcome. However, because we may
feel it necessary to apply the equivalent sample size concept (in the
handling of anamalous conditions), we cannot predict all possible
sanmple results, as the revision of the periodic cash flows may take
unanticipated changes. Therefore, we must review and update our
strategy at each periodic decision point.

Method summary

We will briefly summarize the steps for this procedure, which is a
generalized approach that can provide an approximation for any prior
distribution of beliefs:

1. Develop the prior distribution (incremental or otherwise),
considering the range of the periodic cash flow ocutcames. Determine
the desired number of intervals, and where the partitions should be
made. (It is critical that the intervals do not overlap.) The

intervals selected will be common to all periods.
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2. Determine the initially associated probabilities, ej's, for
each interval.

3. Determine the values for the shape parameters, aj's. In
making this construction, we must consider the quality of the estimates
and the quantity of the sample information and develop the IQF. We
then multiply that factor by each of the 8j's to obtain the respective
aj's.

4. Implement the project, and cbtain the sample results.

5. As the data is collected, make assessments of the
repeatability, or typicality of the cbserved results. If there are
anamalous conditions, adjust the numbers of observations with the

equivalent sample size concept, X, -
J

6. Revise the interval ej's, using Bayesian procedures for the

Dirichlet distribution, using xj's or x_ 's, as appropriate.
J

7. Use the new 8y's to determine the new distribution's expected
value, and make decision strategy adjustments, as necessary.

8. Continue the process for the life of the project.
To illustrate these procedures, the following section is a case study

of an actual decision problem.
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CASE STUDY

The following case study of an actual decision problem is provided
as an illustration of the techniques we have developed.

General situation

The North American Telecommanications Corporation is a medium
sized manufacturer of electronic circuit boards, called "backpanels".
They make three series, or "families" of products that are sold to
larger camputer manufacturing firms. Two of the families are high
volume/low marginal return items, and the third is a more camplex,
custamer-tailored product, with a higher marginal return. A critical
part of their production process is the aligmment of connecting leads,
or pins. This task is performed by two machines. One of the devices
is an automatic pin insertion machine, or "pin staker", which provides
90% of the pin quantity required on a given backpanel. The remaining
10% is provided by a robotic secondary pinning process. Other steps in
the process include preforming, soldering, assembly, inspection, and
rework.

The current factory design layout, or defender process, is a
machine shop layout, based on operational functions (see Figure 2).
This layout was designed to handle large batches of product as they
moved through each of the centralized areas. Because each batch
requires part specific setups, the batches compete with one another for
available work areas. After factory operations began, the orders
received were not exactly as the corporation had anticipated. The

total order quantities were accurate, but the orders were in more
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Figure 2. Factory design under existing machine shop organization.
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frequent, much smaller lot sizes. This caused plant operations to be
characterized by scheduling difficulties, high levels of work in
progress (WIP), and only a limited ability to track a specific product
through the process. The magnitude of the difficulties is not expected
to keep the firm from meeting its projected demands.

To resolve same of the present difficulties, the corporation is
considering converting from its present layout to an alternative
design, or challenger process. This process will use flexible
manufacturing cells and the just-in-time (JIT) manufacturing concept.
This altermative will require several additional pieces of equipment,
as well as all the existing equipment. The challenger layout is shown
in Figure 3. Here, the assembly process is broken into smaller pieces,
with specific product families being produced in dedicated cells. In
the modified layout, two cells are dedicated (one each) to the high
volume families, with the remaining two cells dedicated to the complex
products. It is anticipated that this design will ease scheduling and

improve the firm's ability to track a specific product.

Economic factors for the immediate, full conversion alternative
The full conversion from the defender to challenger process will

require the following expenditures:

Capital equipment (tax depreciable items)-
Pin staker, installed.....cccieevrececse...$240,591
Robot, installed..... cecessne cerecsne cesecsne 86,194
Lubrication stations, 2, €$7,000......c¢.....14,000
Parts replenishment units, 4, €$625...........2,500

Other costs (tax expense items)............ ceeess_16,780
Total $420,065
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The capital equipment is classified as a five-year property, and will
be depreciated by the Modified Accelerated Cost Recovery Syctem
(MACRS). Some of the quantifiable benefits are expected to be from WIP
ard labor costs, The factory currently carries an average of 2,200
backpanels in WIP, at an average cost of $120 each. The challenger
process is expected to reduce WIP by 50%, to 1100 units. This will
create a one-time release of $132,000 of working capital back to the
firm, and a reduction of non-capital components of the inventory
holding costs of $9,240 per year. The holding cost savings are for
reductions in taxes, insurance, handling, storage, and item
accountability. These costs are rated as being 7% of the inprocess
unit cost ($120). Additionally, under the challenger configuration,
each backpanel is expected to be completed in 6% less working time.
This improved labor efficiency is expected to gererate $99,720 in
savings each year (based on 150,000 annual labor hours at an average
hourly wage of $11.08). The proposal was prepared as a three-point,
PERT-type estimate, with the following savings:

Pessimistic Most Iakely Optimistic

WIP reduction 35% 50% 60%
Change in Working Capital $92,400 $132,000 $158,400
Annual Holding Cost Savings  $6,468 $9,240 $11,088
Improved labor Efficiency 4% 6% 8%
Annual Labor Improvement $66,480 $99,720 $132,960

The market projections are relatively firm for the next six years,
and the rapid appearance of technological innovations in camputer
products makes it unsound to make projections for periods beyond that
time. Therefore, we will use a six year planning horizon “or this
evaluation. The corporation faces a combined tax rate of 38.7%. The

economic factors listed, with a salvage value equals book value
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consideration, generate the incremental (challenger process - defender
process) cash flows shown in Table 1. The positive terms indicate
when the challenger process will have a better return than the
defender. The negative values show that there are same conditions

where the defender process is better than the challenger process.

ic_factors fo e ial ersio te jv

Because the full conversion alternative has such a wide range of
estimated return ($-113,811 to $117,133), the corporation is willing to
consider the option where one cell (of the four) is converted
immediately, with the final decision for the flexible cell versus
machine shop operating process being deferred until the end of one
year. A camplete listing of all decision options is provided at Table
2. Mixed modes of production will not be acceptable for any time
beyond this one year period.

The sequential altermative can be implemented by rearranging on-
hand equipment, and deferring the purchase of the remaining equipment
until the end of the sample year. However, it is necessary to use
$60,000 (of the $76,780) of the conversion expenses for additional
wiring, exhaust systems, and other cell setups. The remaining $16,780
will be required for the movement and setup of the last three cells.
If the corporation chooses to stay with the machine shop organization
at the end of the sample year, there will be a net cost of $6,000 to
re-establish that layout.

The secornd high volume product family was selected to be the
sample cell, because its cost and profit results are expected to most

closely approximate what the average of the four conversions. If we
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Table 1. 2Annual cash flows and net present value estimates for the
time zero (immediate) full cellular conversion altermative.

PERT-Type Cash Flow Estimate
Year Optimistic Most Likely Pessimistic
0 $-308,731 $-335,131 $-374,731
1 114,872 93,363 71,287
2 130,814 109,305 87,230
3 113,809 92,300 70,225
4 103,606 82,097 60,022
5 103,606 82,097 60,022
6 95,954 74,445 52,369
NPV(lS)* $117,133 $9,333 $-113,811

*Note: NPV(15) = cash flow net present value, discounted at
the corporation MARR of 15%.

Table 2. Decisions, and follow-on options, that were considered at

time zero.
Decision Explanation
doo Do not initiate any cells, reject this alternative.
doy Initiate all four cells immediately.
do2 Initiate one cell, collect data, and reevaluate

this proposal in one year. (Given that this
decision has been selected, the options continue.)

dio Stop the sequential conversion, revert back to the
machine shop layout.

dy; Initiate the remaining three cells.




167

shift existing assets, then this cell's periodic cash flows and NPV's
for each estimate condition are as listed in Table 3. Although the
estimated NPV's are each greater than zero (indicating profitability),
it must not be forgotten that all equipment must eventually be in a
similar configuration. Wwhen we include the remaining conversion costs,
the new equipment costs, and the one year shifting of the cash flows
for the remaining cells, we cbtain the estimated NPV's for the
sequential approach (these estimates do pot use the first cells results
for decision input):

Optimistic estimate $99,135

Most likely estimate 7,945

Pessimistic estimate  -96,928
and the sequential alternative's range of outcomes is less than that of

the immediate full conversion alternmative.

Devel of injtial i 1s and associated

To find the expected NPV for each of the alternatives, we must
develop their cash flow probability distributions. An important point
for these alternatives is that the periodic cash flows for a given
estimate are not independent from period to period. For the WIP
savings, the reduction level that is attained defines both the one-time
return of working capital and the periodic holding cost savings (a
percentage of the WIP reduction value). The labor efficiency
improvement should remain fairly constant throughout the life of the
project. Additionally, as seen in Tables 1 and 3, the ranges of
variation between the estimates for years one through six of the full
conversion alternative, and years two through six for the sequential

alternative are identical. These ranges are offset by depreciation
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Table 3. Anmual cash flows ard net present value estimates for the
time zero (immediate) conversion of a single flexible
manufacturing cell.

PERT-Type Cash Flow Estimate
Year Optimistic Most Likely Pessimistic
0 $2,820 $-3,780 $-13, 680
1 22,075 16,698 11,179
2 22,075 16,698 11,179
3 22,075 16,698 11,179
4 22,075 16,698 11,179
5 22,075 16,698 11,179
6 22,075 16,698 11,179
NPV(15)* $86, 364 $59,414 $28,628

*Note: NPV(15) = cash flow net present value, discounted at
the corporation MARR of 15%.
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factors, but the relative differences in the estimates are the same.
Therefore, when we develop the intervals and their probabilities, we
will establish them proportionately for all cash flow three-point
estimates.

Since we will be using the first cell's year one results for
decision input, we will use those estimates to develop relative
intervals, and the probability distribution. We use the three
estimates ($22,075, $16,698, and $11,179) to fit a beta distribution
{Prueitt and Park (1989(c))]. Our fitting yields a nonstandard beta
distribution with shape parameters, a=4.04 and f=3.96. We then
establish the discrete intervals, based on the range of outcomes. We
will use the rarnge $11,075 to $22,325, in nine intervals of $1,250. We
use the incomplete beta function to find the cumilative probabilities
within each of the intervals, and graphically represent that value at
the midpoints of the respective intervals, as shown in Figure 4(a).
After review, the prior beliefs were determined to be more accurately
represented by the distribution in Figure 4(b), a flatter, slightly
skewed distribution. (These changes preclude further representation as
a beta distribution.)

The developed distribution is then applied proportionately to the
3-point estimates of the immediate full conversion, and sequential
conversion alternatives. The expected value of the full conversion
alternative is $207, found by summing the products of the interval
midpoints and their respective probabilities. Under a pure expected
value decision criteria, we would accept this alternative because its

expected NPV is greater than zero. The expected value of the
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sequential alternative, ignoring the year one sample result, is $-131.
The drop in the expected value is a reflection of the potential payoff
losses due to the postponement of the final decision. The sign change
also indicates that the defender layout is superior to the sequential
alternative (when the sample information is not used).

el of initial Dirichlet d iptive

A better approvach for the sequential altermative is to use the
sample information to update our beliefs about the expected NPV
outcane. We first develop the IQF, by making an assessment of the
quality of the estimates as compared to one annual cash flow
cbservation. In this study, the prior estimates are felt to be three
times as accurate as one annual cash flow observation. We then take
this factor of three, multiply it by the respective interval
probabilities, 85's, to obtain the initial Dirichlet descriptive
parameters, aj's. These 8y's and aj's reflect the strength of our
prior beliefs.

The multinamial predictive distribution, because there is only one
sanmple observation to be recorded, has the same interval probabilities
as the prior beliefs, ej's. For each predicted cutcome, the predicted
posterior distribution can be fcund, and, subsequently, the expected
value of that result. For example, for the interval $11,075 to
$12,325, the predictive probability of an observation falling in that
interval is 0.02. Given that this event occurs, the revision process

is shown as follows:
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Interval
Prior ay + Observed x4 = Posterior ey - Posterjor 6 - Expected value

0.05 1 1.05 0.26 $-22,998
0.20 0 0.20 0.05 ~3,300
0.48 0 0.48 0.12 ~5,128
0.54 0 0.54 0.13 -2,686
0.63 0 0.63 0.16 380
0.54 0 0.54 0.13 3,332
0.31 0 0.31 0.08 3,696
0.20 0 0.20 0.05 3,545
0.05 0 0.05 0.01 1,173

4.00 $-21,986

This process is then repeated each of the nine intervals. For any
sanple result, a decision must be made between converting the remaining
cells (with their respective expected values) or halting the conversion
process (at a net cost of $6,000). This leads to the development of
the abbreviated decision tree of Figure 5. (The tree is abbreviated as
only the expected value of the conversion payoff is given, instead of
illustrating all of its following 9 branches. The term EV(djx)¢ is
used to represent the expected value of the nine intervals for decision
djk: discounted at the MARR to time t.) 1In the figure, branches that
are cross-hatched ( —}— ) are inferior decisions. As shown, the
sequential approach is superior to the other altermatives, and provides
the time zero decision strategy:

Time 0 Convert the second product family's high volume
cell, using existing equipment, and record the first
year's results.

Time 1 If the year one cash flow falls into any of the
categories in the range $11,475 to $14,825, then

terminate the conversion process. If the cash flow




| EV(diolo

| -
8. = 0.02 $-6,000

EV(di1)o

22,999

Note-~ EV(dJk)t = expected net present value of decision d ke
discounted at the corporation MARR, to time t.

Figure 5. Preposterior analysis of sequential alternative, using one
sample observation, and net present values discounted to
time zero.
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is greater *han $14,825, then convert the remaining

cells.

ivalen le size concept and the enti tive

As the sample data were recorded, the econamic conditions within
and outside the factory were noted. It was observed that there were
several differences between the observed conditions and those used in
the estimating process. After evaluation, it was felt that the sample
data should carry as much informative "weight" as the prior estimates
(the X, should equal the IQF of 3). This takes the equivalent sample
result outside of those considered in the time zero preposterior
analysis. The abserved result was $15,500, which falls into the fourth
interval. This end of year one prior to posterior probability revision
is shown as follows:

Interval
Prior ay + Ml‘j = Posterior ay - Posterior 8y - Expected value

0.05 0 0.05 0.01 $-851
0.20 0 0.20 0.03 -2,530
0.48 0 0.48 0.08 -3,931
0.54 3 3.54 0.59 -13,602
0.63 0 0.63 0.10 291
0.54 0 0.54 0.09 2,554
0.31 0 0.31 0.05 2,834
0.20 0 0.20 0.03 2,717
0.05 0 0.05 0.01 898

6.00 $-11, 620

This revision has an end of year one expected value of $-11,62V, which
is well below the halt conversion decision payoff of $-6,000.
Therefore, our best decision is to halt conversion and revert back to

the machine shop layout.
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Sensitivity analysis

Because the principle purpose of this case study is to illustrate
the techniques we have developed, we will not present a sensitivity
analysis of the conventional factors (demand, interest rates, etc.),
but focus on an analysis of the factors unique to this technique.

The first factor we examine is the selection of the initial
Dirichlet shape parameters, the aj's. Recall that our initial
development considered the estimates' IQF as three, and, thereby, Zay =
3. We will now vary this IQF value, and cbserve the effects of the
variation on the posterior 95 's. While it is necessary to examine the
results of the dbserved sample falling into each of the nine intervals,
for brevity's sake, we will illustrate this analysis with the
ocbservation falling into the fourth interval. Table 4 lists how the
posterior ej's respord to the observation, for each of the IQF values,
with Figure 6 illustrating the trend for the IQF values of one, five,
and nine. The figure shows that as the IQF increases, the distribution
becomes less responsive to the sample data. When we extend this
phenomenon to its effects on the expected NPV, we find that varying the
IQF leads to the changes in the payoff, EV(dgy)g, that are shown in
Figure 7. Further, it can be shown that as the IQF approaches
infinity, this expected NPV asymptotically approaches $-131. (A
sequential alternative that did not use the sample information would
have an identical payoff.) Now, recalling that EV(Qg;)g = 5207, we see
that if the IQF is no more than six, then the sequential option has the
greatest payoff. The case study result is sensitive to this factor.
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Sensitivity analysis of Information Quality Factor (IQF)

values ranging from one to nine.

Table 4.
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The sensitivity analysis of the equivalent sample size can be
interpreted directly from the IQF analysis. The values of xg and IQF
form a proportional relationship. In the above IQF analysis, the
sanple size was one observation, and the IQF was some multiple of that
value. By using xg, we change the proportion. In the case study, the
use of xo=3 effectively changed the IQF = Zay = 3, from a three to one,
to a three to three relationship. The change in the posterior
probabilities is identical to the one that would have occurred if the
IQF had originally been one, and one was used as the sample size. It
can be shown that similar relationships exist for other proportions.

These analyses show that this model and case study are sensitive
to the selections of the IQF and X values. From a philosophical
perspective, it shows that the stronger the belief, the less likely
sanmple results will change any initial decisions. In fact, if we feel
we have no uncertainty (implicitly allowing IQF to go infinity), then
we have the known distribution condition that is unaffected by any
sample results. However, when uncertainty exists, particularly when
there is a large amount of uncertainty, this technique provides a

responsive model that takes advantage of any sample information.
CONCIUSIONS

In this paper, we have developed a technique that can be used to
provide uncertainty resolution to the expected net present value of a
project's cash flows. We have shown how any form of prior beliefs,
when approximated by a discrete distribution, can be used to develop a
Dirichlet distribution, and how that distribution's descriptive
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parameters can be used to reflect our perceived quality of those
initial beliefs (through the use of the IQF). We then show how
unforeseen conditions in the sample observations can be taken into
consideration during the revision process, through the use of the
equivalent sample size concept.

We then exercised these concepts in a case study analysis of an
actual decision problem. The most important point of that example was
that in the time zero decision strategy, we directed that if the sanple
observation was greater than $14,825, then we should convert the
remaining cells. However, using the equivalent sample size approach
changed that strategy. The observed result, $15,500 with a xg = 3,
generated a revised distribution whose expected net present value was
different from those predicted at time 0. This led us to a modified
decision strategy that directed halting the conversion process.
Therefore, the ability to generate a revised decision strateqgy, based
on the most accurate information, will permitted us to increase the
fim's profitability.

The sensitivity analysis shows that the IQF and Xg techniques
provide responsiveness to the model, which is particularly beneficial
in decision situations that have uncertainty. It also shows that these
values must be selected carefully, to preclude any inappropriate or
biased results.

These methods should be applicable to many other situations, with

similar decision improvement results.
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VI. MONITORING PRQJECT PERFORMANCE
WITH POST-AUDIT INFORMATION:

CASH FIOW CONTROL CHARTS

ABSTRACT

An important aspect of the capital budgeting process is the post-
audit, which involves (1) comparing actual results with those predicted
by the decision maker and (2) explaining why any differences occurred.
When decision makers systematically revise their uncertain initial
forecasts with actual outcames, there is a tendency for the estimates
to improve. As any biases are observed and eliminated, management can
improve operations and bring results and forecasts into agreement. This
paper presents a post-audit method for the class of investment problems
where each element of the cash flow forecast is uncertain. These
problems have multiple, identical units with uncertain cash flow
estimates, as found in many fleet replacement problems or in advanced
manufacturing systems with multiple cells. This method graphically
illustrates the uncertainty resolution that occurs, providing a means
to post-audit and monitor the performance of a project through the
development of Cash Flow Control Charts.
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INTRODUCTTION

The capital budgeting process embraces a rather broad and diverse
class of activities in allocating capital resources to campeting
investment projects. while phases in the decision making process could
be identified in many ways, we divide it into four: (1) identification
of areas of opportunity, or problems, that indicate a need for capital
expenditure, (2) development of various projects in response to the
opportunity or need, (3) selection of projects for implementation, and
(4) control or evaluation of the performance of the approved projects.

The development phase, which includes definition and cash flow
generation, is often considered as the most difficult portion of the
capital budgeting process. The success of this phase depends on the
type and availability of information provided for the capital budgeting
process. The selection phase encampasses such things as measures of
investment worth, the timing of the investment, the determination of
the amount to be invested within any given time period, and arranging
for the financial means necessary for the campletion of the projects.
In contrast, the major concern in the control phase relates to the
improvement of future capital expenditure, by learning from past
results. This is accamplished through the use of post-audits. It is a
camon practice to post-audit projects, and provide feedback to
decision makers and analysts about the accuracy of the forecasts used
to make these decisions. In this paper, we are primarily concerned
with the analytical techniques used during the post-audit phase.

The need for a post-~audit can be critical for investments in
advanced manufacturing systems. Many campanies must maintain capacity
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requirements and keep pace with newer campetitors by upgrading their
manufacturing processes with camputers, robotics, and other
sophisticated production processes. These advanced manufacturing
systems frequently have high investment costs, but do not have
extensive performance "track records" (as campared with more
traditional processes). Further emphasizing the need for accurate
forecasts is that, as they strive for optimal capital utilization, many
firmms are including implemented projects as nonliquid assets in their
capital budgets, in the amounts of their salvage, or abandorment values
(13]. The post-audit will affect both the implemented project and
subsequent budgeting decisions.

We must recognize that each element of the cash flow forecast is
subject to uncertainty, so a percentage of all projects undertaken by
any reasonably venturesome firm will necessarily go awry. Whenever the
actual outcames for the project implemented differ from the forecasts,
management begins to worry about making decisions good (as opposed to
making good decisions). Management's problems are further campounded
by prolonged beliefs that the initial estimates are true distribution
values. The differences are usually not readily detected because
little emphasis is given to post-audit information.

The concept of utilizing conventional quality control charts with
econamic factors was first used as an attempt toc monitor and minimize
resource usage. These initial works did not consider cash inflows, but
focused on physical inputs, such as labor hours, production units, and
raw materials used [9,17]. These initial efforts treated the design
parameters as true distribution values, and used these charts to
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control the expenditure process. Subsequently, the sources of possible
cost variation were addressed: (a) controllable versus noncontrollable
variation, (b) investigative cost viability, and (c) overlapping, or
joint variation causes [12]. These discussions focused on keeping
expenditures within the designed budget. Other methods sought to
provide new graphical measures of effectiveness [14], but these methods
fail to consider cash inflows and the time-value~of-money concept.

A different approach uses Bayes theorem [6,22], and recent surveys
indicate that classical and empirical Bayesian methods (where prior
beliefs are based only on past empirical results) are being more widely
used in decision making areas [15,26]. Bayesian techniques have been
applied to modular projects, under sequential sampling, with periodic
project contimue/discontinue decision making [4,5]. A previous work
developed a one step, project balance control chart using Bayesian
methods [18]). Other works applied Bayesian methodology as a means to
correct the problem of given an abnormality, should we investigate or
not investigate [9], and the revision of expected machine downtime and
mmber of control inspections [12].

The purpose of this paper is to develcop a systematic means to
post-audit, monitor, and revise the initial estimates of an on-going
project, and graphically portray this information to the user. This
will be accamplished by developing Cash Flow Control Charts (CFCC),
which are a unique cambination of Bayesian revision techniques and
statistical quality control methods. At this point, we want to
emphasize that these CFCC are not Shewhart-type control charts
(x and R—charts). They are similar in appearance, because the CFCC use
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same of the same procedures for initial set-ups, but the CFOC differ
markedly in their purpose and execution procedures.

DEVEILOPMENT OF CASH FIOW CONTROL CHARTS

To explain our development of cash flow control charts, we will
first discuss the underlying assumptions, other factors that need to be

considered, the conceptualization of the CFOC, and their limitations.

Assumptions

The methods we are about to describe and use in the illustrative
example are applicable under the following assumptions:

1. The CFCC are designed with the assumption that the project
being post-audited has some measure of repeatability, a situation that
frequently occurs with "fleet” replacement problems. In this
situation, the incoming equipment fleet has multiple like items
(whether they are many load carrying vehicles or a just a few
manufacturing machines). This permits the project to be divided into
several identical cells.

2. The cash flows fram manufacturing equipment performance are
assumed to be relatively stable (as campared to the stock market, for
example) , because the equipment is being used in an enviromment that
has existing, as well as projected, production requirements. For the
specific exanple we have included in this paper, the cash flow
forecasts will not have trend or seasonal effects. (Though not covered
in this text, we believe that this assumption can be relaxed, to
address problems with those elements. These problems would require
that the cash flow residuals, observations minus forecasts, be IIDRV.
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This extension will be more apparent, after examination of the concepts
presented here.)

3. The cash flows from these cells are assumed to be independent
identically distributed random variables (IIDRV). Thereby permitting
the Central Limit Theorem to be applied to the cash flow performances
of groups of these cells [25].

4. We assume that we can apply appropriate conventional quality
control chart procedures for subgroups, subgroup size, and sampling
methods [2,7].

Other Factors to Consider
Before developing our CFCC, we need to address the following

additional factors: (1) time value of money, (2) timing of sampling and
(3) cost of sampling.

Time-value-of-money. For cash flow realizations, an important
factor that may influence the sampling method is the time-value of
money. Machining processes can be generalized as generating products,
on a regularly timed basis, for operating periods of hours, shifts, or
days. These products, once produced and inspected, experience very
small changes in value over time (usually only in the form of inventory
holding costs). Project cash flows are usually projected over longer
time periods (weekly, moithly or anmually), and they usually have same
variability associated with their projected time of occurrence. Thus,
same otherwise identical cells, but with different expense and revenue
schedules, will have different net values when they are discounted to a

camon decision point in time.
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Time periods of observation. If the individual cells come into

service at different points in time, then decisions must be made to
determine if it is more important to capture each respective cell's
cash flow information over a common period in its econamic life (say
first year of operation), or if it is more important to capture cash
flow information over a cammon operational period (say, January to
May). For cammon econamic life periods, endogenous factors, such as
tool wear or operator experience, are hamogeneous. Cammon operational
periods will have homogenous econamic environmental conditions. We can
also require that the internal performance and external conditions be
hamogenous fram period-to-period. This can be done by making each
subgroup consist of all cell performances in a specific period (say, a
week), and then use a different period (say, the next week) for the
next subgroup. Thereby, the control chart horizontal axis will
delineate different time periods, instead of physically different
subgroups.

When period-to-period sampling is used, the method requires the
samewhat limiting assumption that the econamic envirommental conditions
are identical fram period-to-period. However, this sampling method can
be cambined with period-by-period Bayesian revision, and provide
uncertainty resolution faster than conventional control chart
procedures.

Cost of Sampling. Conventional control charts consider sample
size and cost of inspection. However, these cost limitations do not
normally apply to cash flow control charts, because the cash flow data
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is already being collected for tax and stockholder reports. So, it is
essentially free sample information.

Conceptualization of the Cash Flow Control Charts

Before going further, we need to stress the differences in
rationale behind conventional quality control charts and these CFCC.
When a conventional control chart indicates that the process is "in
cantrol", it means that the process is stable, or predictable, at same
predetermined prabability level. Upper control limit (UCL) or lower
control limit (ICL) violations signal that it is necessary to
investigate for causes that may be responsible for the out-of-control
cordition. The probable cause may be considered randam, and no
adjustments are made in the process, or there may be assignable causes,
and corrective actions are required. Wwhen the CFCC is "in control", it
means that the cash flow cbservations are accurately fitting the
probabilistic descriptions given by the current estimates. Conversely,
UCL or ICL violations indicate that the current estirates (i and o)—(z)
are inaccurate, and revisions are needed.

This cash flow control chart approach is conceptualized with two
charts, one for expected performance and one for performance
variability (similar to x and R charts, respectively).

CFCC for Expected Performance. As a review, the centerline for
the conventional x-chart is camputed from:

x3/9

xi
It M

j=1
using sample data, where,
;=averageofthesubgmxpaverag&s
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x4 = average of the jth subgroup

g = mumber of subgroups
In operation, the chart's centerline ard limits are revised when there
is evidence that assignable causes exist, ard they have caused the
process average to shift.

We alter these procedures for our CFCC for expected performance.
Sample data may not be available for the first abservation, so the
centerline is set at the expected value of the subgroups' mean (E(u;{-)).
The UCL and ICL are set as multiples of the expected value of the
subgroup variance (E(o;z)). The limits may be +207 , #30; , or some
other desired accuracy level. For this paper, we will use 130, .

How well the data dbservations fit the expected value control
chart upper and lower limits describes the accuracy of distribution
estimates. However, there is a need for an additional term that is
only partially analogous to control or reject limits, and that term
will be called a minimm retwn limit (MRL). In basic temms, a simple
investment project consists of an initial outlay of capital, followed
by a series of cash inflows. When these receipts are discounted at
same minimum acceptable rate of return (MARR), and combined with the
initial investment, the result must have a net worth of at least zero
for the project to be acceptable. The amounts of the receipts thus
have an associated minimm acceptable value.

For exanple, a campany has a 2-year project that costs $1000 per
producing unit, and their MARR is 10%. The annual return, for
particular unit, must be $577 for that unit's performance to be
acceptable. The campany wants this "break-even" performance level to
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appear on the CFCC. Now, because the CFCC works with grouped, rather
than individual data, this per unit minimum return must be similarly
cawerted, before it is posted as the subgroup's MRL. This conversion
is accamplished by relating the probability that an individual uw. t
from the parent population will fail to meet the required return, to a
correspanding probability that a subgroup average will fail to meet a
value (to be determined) for the distribution of subgroup averages.
That value is the MRL. This concept can be applied when the producing
units' cash flows are IIDRV, regardless of the specific nature of the
parent population, because the MRL value is dependent upon the
distribution of the subgroup averages (which is normal).
As a simplified demonstration of this concept, we will assume

that the estimated anmual cash flow for an individual unit has a
uniform distribution between $550 and $600 (estimates may also be
described by beta, normal, or any other distribution). Then, the
probability that a particular unit will fail to meet the required level
of return, $577, is

P(x < $577) = (577 - 550) / (600 - 550) = 0.54
The parent population variance is

Var(x) = (600 - 550)2 / 12 = 14.4342
which, for subgroup size of four, gives the subgroup variance

Var(x) = Var(( 2 %) /

j=1
= 14.4342 / 4 = 7.2172

Then, the value of the MRL can be foud by

P(x < $577) = P(x < MRL)
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0.54 = P(Z < 0.1005)

S0,

(MRL - 575) / 7.217 = 0.1005

MRL = $575.73
which is posted on the chart, and cbservations falling below this limit
are of special concern to the project managers.

CFCC for Performance Varjabjlity. The initial set-up of the

performance variability control chart is similar to the conventional R-
chart, the centerline is camputed from:

- g
R= T Ry/g
3=1

g = number of subgroups
E = average of the subgroup rarges
Ry = range of the jth subgroup
However, where the conventional R-chart uses sample data or a design
"standard" to provide the estimate of the parent population's standard
deviation, we will use the expected value of the standard deviation of
the estimated cash flow. Thereby, using #30, accuracy limits:
UCLg = da0y + 3d30y = D0y
IClg = da0x = 3d30x = D10y
where,
dy, d3, D; and D, are standard table values (7], mathematically
' based on the subgroup sample size, n, and
0y is the expected value of the population standard deviation,
(E(,2)*.
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For a canventional R-chart, the user is cautioned about using design
values to determine the UCL ard ICL. As specification errors that make
oy too small lead to wrwarranted expenses, as attempts are made to
determine assignable causes of error when only chance causes may be at
work, and, if the o, specification is too large, the process will
appear to be in control when there are actually deviations with
assignable causes present. Our CFCC for performance variability does
not have these specification concerns, because its purpose is pot to
monitor if the cdbservations are within the charts parameters, but is,
instead, to use the dbservations to revise its chart parameters.

Updating the expected values for the subgroup mean and variance
will require the CFCC centerlines and control limits be redrawn after
each revision (creating more frequent reconstructions than conventional
procedures). As the observations move fram an out-of-control to an in-
control condition, we can conclude that uncertainty resolution is
occurring and our post-audit estimates are more accurate than our
initial estimates.

Limitati
When working with the expected performance control chart, (as with
an x-chart) the applicability of the techniques is based on the
cbservations being ITDRV's, such that the subgroup means are normally
distributed, as shown in Figure 1. The concern is that in focusing on
the grouped data, there is no inherent procedure that will work
backwards to describe the underlying parent population. To be specific,
just because an abserved Var(x) matches its estimate, it does not
necessarily mean that the assumed distrilution is correct. For
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example, an observed sample, in groupings with n = 4, shows;=5and
Var(x) = o)—(z = 52, The prior belief was that the parent population was
normal, and, if true, its variance given by:
Var (x) =ox2=m,—‘2=4 * 52 = 100 = 102

Following this belief, the distribution is believed to be N(5,102).
However, it is also possible that the same Var(x) = 52 could have come
fram same other type of distribution. It could have came from a
uniform distribution, so that

Var(x) = Var(%uniform) /7 N
and, recalling

Var (%uniform) = (high - low)2 / 12
then,

n * Var(x) * 12 = (high~low)2

(4 * 52 * 12)% = 20/3 = high - low = range of x
and, x is distributed as

= U((s - 10/3), (B + 10/3)) = U(~-12.3205, 22.3205)
The importance of this realization goes back to the initial project
selection. There, consideration was given to the project's potential
for success or failure, based on its probability of net negative
return, Prob (x < 0). Using the normal prior belief, it could be
concluded that the N(5,10%) distribution has

P(x < 0) = P( (x-5) < (0-5) ) = P(2 < -0.5) = 0.3085
10 10

hut, using the uniform distribution possibility

P(x < 0) = __(0 ~ (=12.3205)) = 0.3557
(22.3205 ~(-12.3205))
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a somewhat different result, and one that is cbscured in standard x-
chart procedures.

If the mean and variance (the first and second moments) of the
observed ard forecast distributions are the same, an examination of the
third central moments of the distributions can confimm if the two
distributions are, indeed, identical. If these moments differ, we will
know that our observed distribution is not what we predicted, and we
may not be able to clearly determine the abservations parent
distribution.

Further, when working with the performance variability chart (as
with the R—chart), we know that the ICIg, centerlinep, and UCIg
formulas are based on the assumption that the parent population is
normally distributed, but minor departures from normality have not
created major difficulties (7). However, the central purpose of this
technique is to refine the accuracy of the cash flow distribution, so
we will attempt to overcome this limitation by conducting goodness-of-
fit testing (in addition to the independence testing) as we construct
the cash flow control charts.

The development of the MRL implies the use of a uniform series of
cash flows, as each subgroup average is compared to this fixed limit.
This does not infer that the cash flow performances must be uniformly
distributed, nor does it infer that the individual cash flows must be
identical. Instead, this implies that we anticipate that the subgroup
average cash flows are more likely to have nearly the same value, from
period-to-period, than other investments. This is a reasonable
assumption, because tiie cash flows from equipment replacement prvijects
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tend to be more stable than other types of investments. In fact, survey
results show that 57-percent of the firms polled had cash flow
estimation errors at less than 10-percent for equipment replacement
projects, as compared to 43-percent for all other investments [21]). If
the cash flow estimates are an uneven series of payments, these CFCC
can still be used for updating purposes. However, their construction
may require the use of the residuals (subgroup average less estimate)
of the cash flows, rather than the adbservations themselves. Another
alternative would be to transform the data to same approximately normal
distrilution [23]). Thereby, when considering these factors, as well as
the time-value-of- , 1f we do proceed with the MRL, we would

exercise caution in its use and interpretations.

When the cash flow realizations are correctly described as forming
a randam sample from a normal distribution, this distribution has two
parameters of interest, the subgroup mean () and variance (a;f). Two
important scenarios are:

1. The mean cash flow for the subgroup is unknown, but the

2. Both the cash flow mean and variance are unknown.
The appropriate analytic approach will be determined by the level of
estimate detail included in the proposal. When i is unknown, it will
have an associated expected value, E(p;), and same variance, Var(p)—() .
The calculation of E(y;) will involve all factor inputs at their most
likely outcomes. The Var (i) is determined from the variability of the
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inputs' most likely outcomes. 'Ihismstmtbeconfusedwiththeo;{z
terms, which are based on the entire range of outcomes for the inputs
(pessimistic to optimistic). The value of E(a;z) can be thought of as
being developed from the most likely ranges of input outcomes, while
Var(o;z) describes the variation in those ranges. Now, proposal
estimates may be written in terms of the individual producing units,
rather than as subgrouped estimates that have the necessary normal
distribution properties. If so, it will be necessary to use the
following transformations (which assume that the covariance temms are
equal to zero):

E(px) = E(ng) (1)

E(0x%) = E(n * 0;2) = n * E(0,2) (2)

Var(oy?) = Var(n * a§2) =n2 * Var(a)—(2) (3)
_ 2 _ 2

var{u,) = o“x =n * ap)_( (4)

Where n is the subgroup sample size. The importance of this reasoning
stems from the survey results that show increasing numbers of firms
using probability theory in their cash flow estimations, with 44% of
the larger, more capital intensive firms already using same form of
range estimations [21].

Population Mean Unknown, Variance Known
Here, the population variance of the cash flow is known, or
assumed known, due to the following circumstances:
1. The value of 0,2 is known and given in the project proposal.
2. The project proposal fails to provide enough information to
determine Var(o,2), so the estimate of E(0,2) is assumed as
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known (E(0y2) assumed to equal 0,2), and the temm Var(o,?) is

not used. (This includes those situations where o}—‘2 is

approximated by same s)—(z.)
The subgroups' mean is unknown, and the uncertainty about this
parameter is assumed to follow a normal probability distribution, with
sane estimated mean and variance. The subgroup means provide a normal
sampling process, and the necessary structure for the normal
distribution's family of natural conjugate distributions.
Specifically, the prior normal distribution of [ov canbined with a
normal sampling procedure, produces a posterior distribution of the
belief in [ that is also normally distributed. The Bayesian revision
begins with the initial estimates of E(u;) and Var(p;) , represented by
the notation for the prior beliefs:

E(ky) = m' and Var (i) = g'?

(the ' denotes prior beliefs). The sampling information is taken from
g subgroups, with overall average, m, and the posterior parameters (the
" denotes posterior beliefs) are fourd by [22]:

Rl
c g og
and,
m'_ 4
2 2
a' 'o—z + |2
n = 2 %% = D% "9 (6)
R TR A
o' oy

with these posterior values, we have the updated estimates
E(sy) = u"

var (i) = o"2
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Sinc:ecr}—‘2 is fixed, we see that in equation (5), that as g approaches
infinity, the Var (i) goes to zero. We interpret this as camplete
uncertainty resolution of the mean, since the population of samples is
consumed. A short exanple will demonstrate this process.

A hypothetical firm has just replaced a dozen drill presses with
new ones that are estimated to save $100 per month, but that estimate
is uncertain, and has a variance, Var(uy) = 152. The savings variation
from unit-to-unit is known, 0,2 = 102. One month's cash flow data is
used to monitor project performance and update the monthly savings
estimate. The twelve presses are randamly assigned to subgroups of
four units each. At the end of the month, the three subgroups cambined
average savings was $85 per unit. The estimates were revised by using
equations (5) and(6):

0? = 10° = 25 = 5
X

4

3

A _ 1,3
w2 27 2

Q

.19&(_5_)._"'_3_(.3_5)_(11_). = 85.536

B = w =
X 52 + 3(159)

The posterior belief is that each drill press' monthly savings are
normally distributed as N($85.54, 102), and the Var(u—i) is reduced to

2.8352,
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Population Mean and Variance Unknown
A more likely scenario considers the mean (p}—() and variance (0;2)
of this distribution as unknown. This situation requires the
assigment of a joint prior distribution of (v and 0)_(2, with subsequent
determination of an appropriate posterior distribution, given an
observed sample. The natural conjugate distribution family that
satisfies these circumstances is the normal-gamma family of
distributions. This family assumes that the ~onditional distribution
of i, for a given value of o)—(z, is normal, with a variance that is
proportional to 0;2 Same authors develop this family by using the
term r = 1/02 for computational convenience [6], and the proportional
variance is represented as
kr = k/g?
where k is the scaling constant. Further, the marginal distribution of
the process variance reciprocal, 1 = 1/0)—(2, is a gamma distribution.
When the mumber, g, of subgroup means, (;(-1,...,_)(g}, form a random
sample with mean (vl and there is a specific value for r, the
development of a joint, normal p.d.f. is possible as
£x | ugy 1) = (/MY expl-(k1/2)5(%5 ~ 1))
and the gamma distribution of 7 has the p.d.f.
(B%/T(a)) 1571 exp[-pr) for >0
£f(r | a, B) = {
0 for 7<0
where,
a ard B are the gamma distrilbution shape parameters, and
E(r) = E(l/a)—{z) = a/f (sometimes written as = 1/v)
Var(r) = Var(l/o)—(z) = a/p2 (scmetimes written as = 2/6v°)
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In the normal-gamma family of coajugate distributions, the terms L and
0;(2 are dependent, and it is not possible to find the joint prior
distribution by simply determining the individual marginal
distributions of uz and 0;2, respectively, and multiplying them
together (as appropriate for a single parameter). However, it has been
shown that the marginal distribution of s is a t~distribution with 2a
degrees of freedam [22]. More importantly the two marginal
distributions share shape parameters such that
E(u)—() =m ifé§>1
Var(p;) =§v / (k(§ - 2)) if § > 2

where,

§ and v are the shape parameters shared by both the t and gamma

distributions, and

k is the scaling constant described in the conditional
Next, we will examine the relationship between r and a)—(2 Proposal
variance estimates will be made in terms of E(o;z) and Var(o,—f), and
not E(7) ard Var(r). Therefore, it is critical that the gamma
distribution shape parameters be determined by their direct
relationship to the proposal estimates. The gamma distribution is
described as

00 00 a
J £(r | a, B)dr = B 191l BT g
I'(a)

with

E(r) ==~ amd, Var(n) = —:—2—

Then, making the variable transformations
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x = og
T = 1/x
_ir_l -1 or ar = 9
| - i
a=6/2 and, B = év/2

SO,
00 o0
J £(r | a, B)dr =J £f(1/x | 6, v)ax

- J‘”.(Béyf“s & 16-1 ooV/2x  _dx
0

r'(%s) x <2

(x ]‘16 %6+1 -
- BT 202 o

which is an inverted-gamma distribution {22]). This distribution has

E(x) =E(c?) = §v
§ 2

Var(x) = Var(c:2) = 252
€6-2)2 (6~4)

So, with this information, it is possible to determine the prior
distribution shape parameters directly fram proposal estimates, and to
describe the prior to posterior parameter relationships. The values
for m*, k', v', amd §' are found from the relations

E(g) =m' (7)

Var (i) = s'v' (8)
k'(6'-2)

E(0?) = &y ®)
(6'-2)

Var(o)_(z) = 26‘2 12 (10)

(6'-2)2(5-4)
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Then the posterior distribution can be found, with the incorporation of

sample information, by

m" = (K'm' + gm) (11)
(k! +9)
k"=k' +g (12)
"=6"+g (13)
" = ' ] 2 2 2
V' =6'v' + k'm'” + (g-1)v + gm” - k"m" (14)
é'+ g

g is the number of subgroup means,

m is the mean of all subgroups, and

v is the sample variance, fram  (1/(g-1)) E(xj - m)2.
Then, when the posterior descriptive parameters have been calculated,
they became the prior descriptive terms for the next iteration.

ILIUSTRATIVE EXAMPLE

As a demonstration of the concepts developed in this paper, the
subsequent section provides a concise summary of the procedures,
followed immediately by an example problem.

) Me: o.

The procedures explained in the development and updating sections

are sumnarized as follows:

1. Determine the expected value and variance of the underlying
distribution of individual cbservations by using the project
proposal estimates and the appropriate formulas for that type
of distribution.
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Determine the desired subgroup size, n, for the conditions, or
situation of interest.
Determine the predicted standard deviation of the subgroup
means.
Construct the expected performance control chart. Determine
the desired description accuracy for the subgrouped means
(1—30)—( ' 120,—{ , or any other desired accuracy level), and post
the UCL and ICL, respectively. Determine any minimm return
limits (MRL), and post them accordingly.
Construct the performance variability control chart, using the
predicted value of oy, and the desired accuracy level to
determine the control limits.
Determine the prior distribution shape parameters m', 4', v',
and §°'.
Post the cbservations. Determine if there are any control
limit violations, and, if so, determine if these violations
have assignable causes.
Revise the parameter estimates for s and a)—‘z, using Bayesian
revision techniques. Use the revised expected values to
capute new control limits for each chart, in preparation for
the next set of dbservations. Provide the updated estimates
to the appropriate sequential decision making review, in case
there is a need to change current decision strategies.
Test cbservations for independence and normality
characteristics.
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10. Repeat steps until project terminates.
These procedures can be easily autamated on a camputer.

le wi le Data
\A firm has selected four type A forging presses to replace its
\ fleet. The project proposal claims that the monthly operating
cost sav\mgs will be $50,000 per unit. It is recognized that there is
a degree cf uncertainty associated with the estimated savings,
uncertainty that is described by the parameters (mumbers scaled as
thousards) :
E(uy) = $50 Var (p,) = 202
E(0,%) = 10° var (0,2) = 322
Due to the high investment cost of each new press, the break-even
monthly savings must be $47,500 per unit. Production demands are
estimated as steady throughout the planning horizon (no trerd,
seasonal, or cyclical components).

Cash flow control charts are prepared to monitor the project's
performance. Since there are only four units, they will all be used to
form a single grouping, and the group's monthly performance will be
used as a sampling observation. The calculation of grouped performance
beliefs is derived from the parent population estimates and equations
(1) through (4):

E(r) = E(uy) = 50

Var(uz) = (1/n) Var(uy) = 102

E(02) = (I/n) E(o,°) = 5

Var(o;‘z) = (1/n?) Var(oy?) = 82
Wedesimi:'sa)—(acmracy, and the CFCC for expected performance has the
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following limits:
UCLe = 50 + (3)(5) = 65
Oen'cerline)-{- = 50
LCIg = 50 - (3)(5) = 35
The MRL is established (here, the parent population is normally
distributed) from

P(x < 47.5) = P(2 < =0.25) = 0.4013 = P(x < MRL)

MRL = (-0.25) (5) + 50 = 48.75
The CFCC for performance variability is constructed by using the
standard coefficients for a subgrouping of size 4 (d; = 2.059, Dy = 0,
and D, = 4.698), such that its control limits are:
UClg = Dyoy
Centerlineg = dy0, = 2.059 (10) = 20.59
ICIg = Dyoy = 0 (10) = 0
The assumptions that the marginal distributions of u— and 0=2 are

X X
normal and inverted-gamma, respectively, are considered valid, and the

4.698 (10) = 46.98

prior distribution parameters are found by solving equations (7)
through (10):
m' = E(u;) = 50

g!? 2 6’—
Eod) = &5 = 5P or, v = 2GR
2 ..,2
Var(o2) = j&'zv' = g2
(6'=2)7(6'-4)
after substituting for v'2, and cancelling terms
2,2 2,2
Zf?_-i— = g2 or, sr= 231 44 =235m

8
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v' = 22.875

Var(p;) = s'v! = 102
k! (8'-2)

k' = 0.3906

The monthly savings generated by each forging press in the first 6
months of operation are listed in Table 1, along with the monthly
average and range. The table values represent the discounted
summations of costs and benefits incurred, carried from their time of
occurrence to the end of the calender month. For brevity's sake, the
summations and discounting are omitted.

To apply the techniques of this paper, the first month's
cbservations are averaged (= 49.25) and then posted to the expected
performance control chart. This value is within the chart's UCL and
ICL, and is above the MRL, so, the first month's grouped mean appears
consistent with the prior belief. On the performance variability
control chart, the range of point one is 46.65, and it also falls

within the chart's control limits. We then revise the prior

parameters, using equations (11) through (14), as follows:

m" = (0.3906) (50) + (1) (49.25) = 49.46
0.3906 + 1
k" = 0.3906 + 1 = 1.3906
" = 23.531 + 1 = 24.531
2 2 2
vh = (23,531) (22.875)+(0.3906) (50 )+0+49.25 -(1,3906) (49.46 )
24.531
= 21.953

The revised estimates are found from equations (7) through (10):
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Table 1. Disocounted monthly savings for each forging unit,
with group average and range.

Observation

Unit 1| Unit 2| Unit 3| Unit 4

1 32.37 | 79.02 | 42.04 | 43.56 49.25 46.65
2 10.95 | 45.51 | 57.61 | 38.37 38.11 46.66
3 58.96 | 56.06 | 45.73 | 35.66 49.10 23.30
4 53.43 | 27.61 | 54.16 7.19 35.60 46.97
5 63.91 | 39.84 | 33.97 | 44.33 45.51 29.95
6

55.48 | 28.59 | 39.21 | 47.70 42.74 26.89
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E(n,—() = 49.46

Var (i) = 4.152

E(o}—‘z) = 4.892

Var(o§2) = 7.462
These descriptive terms are listed as the second line of Table 2. In
preparation for the second month's sampling, the control limits and MRL
must be similarly revised, based on the new expected values for the
subgroup mean and variance. The expected performance chart's revised
control limits, MRL, and the probabilities that the subgroup will not
meet the MRL, are listed in Table 3. The MRL has decreased slightly
(48.75 to 48.48), but the probability of failing to meet the MRL has
increased from 0.40 to 0.42. The second month's group average of 38.11
is within the control limits, but below the MRL. This is shown in
Figure 2, along with the other monthly postings. It is important to
note that by the time six monthly samplings have been campleted, the
MRL has an associated probability of failing to meet the MRL of 0.6327,
a drastic increase from the original 0.4013.

An inspection of the monthly plottings (particulary of months 4
through 6) shows that the revised means are fairly accurately
describing the cash flow. It is also apparent that the management
should take interest in this project, because the MRL has been violated
in 4 of the 6 months sampled.

For the performance variability control chart, Figure 3, the
revised E(0;2)4 generate new centerlines and UCL's for each month, and
it appears that the sequential revisions are adjusting with the sample
ranges. When the first month's sample is used to revise the UClg, the
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Table 2. Revised estimates of distribution parameters.

Applicable Prior Belief
Month E(e-) | (E(@2))% | (Var(u))% | (var(o-2))%

X X X X

1 50. 5. 10. 8.

2 49.46 4.89 4.15 7.46

3 44.71 5.11 3.30 7.94

4 46.01 5.06 2.75 7.61

5 43.64 5.28 2.52 8.11

6 43.98 5.19 2.23 7.68

7 43.79 5.09 2.02 7.27

Table 3. Expected performance control chart revised control limits,
MRL, probabilities of failing to meet the MRL, and cbserved

averages.
Month Center- -
of ICIr- line— UCL— MRL P(x < MRL) | Observed
Sampling X X x Average
1 35. 50. 65. 48.75 0.4013 49.25
2 34.79 49.46 64.13 48.48 0.4207 38.11
3 29.38 44.71 60.04 46.11 0.6076 49.10
4 30.83 46.01 61.19 46.76 0.5584 35.60
5 27.80 43.64 59.48 45.57 0.6428 45.51
6 28.41 43.98 59.55 45.74 0.6327 42.74
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point indicates an out-of-control condition. We interpret this as an
indication that our initial estimate was somewhat inaccurate. when the
second month's range is posted, it also indicates an out-of-control
condition. However, when the second month's data is incorporated into
the revised UCLlg (in preparation for month three), the first and second
month's data points are no longer out-of-control, the revision process
has adjusted the linmits to campensate for those points. The monthly
control limits are listed in Table 4. (For brevity's sake, we will
anit the investigations of cbservation independence and normality.)

Analysis of Sample Data

The individual data points were generated fram a N(40, 202)
distribution. For our subgrouping size of four, this corresponds to an
average value distribution of x = N(40, 102). Clearly, the final
version of the expected values for the grouped mean, 43.79, and
variance, 5.092, are much closer than the original (N(50, 52)). The
true P(x < 47.5) = 0.6462, is also closely approximated by the sample
data (at 0.6327).

In camparison, the treatment of this data by conventional control
chart methods has different results. Without our revision process, the
control limits on each chart remain unchanged, as none of the samplings
are aut-of-control, and the run of six consecutive points below the
mean does not constitute a revision requirement (seven are required).
So, for the data generated, there is no reason to believe that the
process is out-of-control. This belief is not as accurate as the
revised belief. Also, since the minimum acceptable return that is not
being met, this is a costly lack of information.
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Table 4. Performance variability control chart revised
limits and observed ranges.

Month
of ICln Center- | UCln Observed

Sampling lineg R

1l 0. 20.59 46.98 46.65

2 0. 20.14 45.95 46.66

3 0. 21.04 48.01 23.30

4 0. 20.84 47.54 46.97

5 0. 21.74 49.61 29.95

6 0. 21.37 48.77 26.89
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One of the primary purposes of conventional quality control charts
is to provide the operator with a clear picture of process performance.
If there are trerds, or out-of-control observations, those charts
provide a visual aid to the operator. These cash flow control charts
provide a visual aid, but in a distinctly different manner. As samples
are collected and posted, any performance trends or abnormalities will
still appear, but as the parameter estimates are revised, they will
adjust so that they accurately describe those cbservations. The
movement from out-of-control to in-control conditions is the visual

depiction of uncertainty resolution.

Analysis with Theoretic Data

As a further, more analytic demonstration of the system's revision

capabilities, recall those initial prior beliefs

E(u3) = 50. Var (i) = 102

E(a§2) = 52 Var(o;z) = g2
with the same initial values for parameters m', §', v' ard k'. The
true but unknown, distribution of p is again N(40,10%). But this
time, every month's sample data is an exact representation of the true
distribution, with m = 40, g = 1, v = 102. Repeated application of
this data to the parameter revision formulas results with the expected
value termms moving towards their true values, and the variance terms go
to zero (the Var(a)—(z) initially gets larger, peaking at sample 27, and
then steadily decreasing). Figure 4 provides an illustration of how
the expected values of the group mean and variance move towards their
true values (in parts (a) and (b), respectively), and also how their
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respective uncertainties are resolved, as their variabilities go to

zero (parts (c) amd (d)).
OONCLUSTIONS

The method presented here seeks to take advantage of the normal
distribution properties of subgrouped data, and the relative stability
of the cash flows for engineering replacement problems. Then, cambine
these properties with Bayesian revision techniques for the normal-gamma
natural conjugate family of distributions and statistical quality
control chart procedures, in order to provide a meaningful tool for
economic project management and control. The example demonstrates that
the revision process can clarify proposal estimation errors, and the
chart construction process clearly provides a visual depiction of those
revisions. The benefits, in more general terms, are that the
uncertainty resolution provided by the revision process makes the
current project a stronger incumbent in future comparisons, if its
performance was underestimated, or a weaker incumbent if its
performance was overestimated. Further, there are advantages to this
method that are not available under conventional control chart methods.
Application of this method can drastically affect the timeliness of
decision strategy changes. It performs estimate revision before other
procedures would do so, providing a means for near contimuous updating.
This type of flexibility provides improvement of information that can
lead to econamic gains for the firm. In the example problem, the
revised process provided updating information five months before
conventional control chart methods would have indicated any errors. In
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summary, the near-costless information improvement that this system
provides can be beneficial in a sequential decision making process.
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VII. QOONCIUSIONS AND RECOMMENDATIONS

The purpose of this research has been to investigate the
significance of using post-audit information in capital budgeting
decisions. This research has focused on situations where capital
projects have been implemented by campanies that follow periodic
decision review policies, and the sequential post-audit information of
the implemented projects is readily available for each review. General
areas of interest have been the development of a means to quantify the
user's beliefs about the quality of the initial estimates, application
of techniques to incorporate the post-audit information, and a means to
incorporate the user's beliefs in the quality of the post-audit
information. Additionally, the development of a management tool that
captures uncertainty resolution is of interest. 1In the sections that
follow, the results of this research will be summarized, followed by
conclusions that can be drawn from those results, and recommendations

for future research in this area.

Summary of Results
This research begins with a discussion of the problem elements

that make manufacturing equipment replacement decisions one specific
area of the various types of capital budgeting problems. A review of
the literature reveals that an increasing number of campanies are

collecting post~audit information. However, the review also reveals
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that only a limited amount of attention has been given to applying this
information to capital budgeting, in general, with even less attention
being given to equipment replacement, in particular. To address this
shortfall, the following specific areas were investigated: (1) the
adaptation of existing modeling techniques to provide the descriptions
of the probability based estimates of the equipment cash flows, (2) the
incorporation of the user's strength of belief in the quality of those
cash flow estimates, (3) the use of post-audit cash flow realizations
as sample information in the revision of the estimates, (4) the
incorporation of the user's strength of belief in the quality, or
repeatability, of the sample information, and (5) the development of a

management tool to illustrate the uncertainty resolution that occurs in

the estimates.
Adaptatjon of Modeling Techniques

The unknown nature of the future cash flows makes it appropriate
to model them as probability functions. However, the level of detail
incorporated into the estimates and the type and quantity of future
sample observations makes it necessary to have several probability
modeling techniques available. These methods involve using either
discrete or continuous probability functions.

When the cash flow probability distribution is modeled with a
discrete function, whether as the initial formulation or as an
approximation to same continucus function, the formulation involves the
assignment of prababilities to each outcome interval or category.
Instead of simply modeling this situation with a discrete function,
this research uses a Dirichlet distribution, which has descriptive
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shape parameters that can be interpreted for the interval
probabilities. Using this distribution, as opposed to a discrete
function, creates no loss in descriptive quality.

When the prior distribution is to be modeled as a contimous
distribution, this research uses the beta or normal distributions. The
flexible nature of the beta distribution, through manipulation of the
shape parameters a and 8, makes it suitable for many prior probability
distributions. This research uses the incamplete beta function as a
means to refine the user's prior belief, thereby extending previous
modeling efforts that limited themselves to using simultaneous solution
of PERT and beta distribution equations. This refinement was keyed to
the use of proportional changes in a and . When the continuous belief
is symmetric, this research examines the option of using the normal
distribution. This procedure permits refinement of beliefs through
manipulation of the distribution percentiles that are assigned to the
extreme points of the three-point estimate.

Strength of Belief in Prior Estimates

Concurrent with the selection of a descriptive prior prabability
distribution was the development of a concept to incorporate the user’'s
strength of belief in the quality of those initial estimates. This
research examined several modeling techniques for each of the
previously mentioned possible distributions.

When the initial beliefs are modeled with discrete intervals
(whether as the initial belief or as an approximation to that belief),
the Dirichlet distribution is used. This study introduces the concept
of using the descriptive parameters to reflect the strength of belief
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in the quality of the estimates. The term Information Quality Factor
(IQF) was introduced as a relative measure of the quality of the
initial estimates campared to the anticipated sample. The IQF was
multiplied by the respective category probabilities to dbtain the
initial Dirichlet shape parameters. The stronger the belief in the
prior estimates, the larger the values assigned to the shape
parameters, a5 's.

When the initial beliefs are modeled as continuous probability
distributions (beta or normal), the concept of the user's strength of
belief was similarly incorporated. The previocusly mentioned
manipulation of proportional a and g shape parameters serves a dual
purpose. Because the shape parameters, a and 8, are transformed into
the temms, r' and n', for revision by sample information, the use of
proportionately larger a and f values has the effect of creating a
larger value of n'. This effectively reflects a stronger belief than
lower shape parameter values. This concept was also extended to normal
prior beliefs through the use of the equivalent sample size and the
term n'. As a direct result of this concept, this research develops a
method to approximate the population standard deviation, for use in an
unknown mean, known variance (assumed) situation. (This method is used
in situations when there is insufficient information in the project

proposal for an unknown mean and variance approach.)

The development of the prior probability distributions had the
immediate concerns for description and strength of beliefs. The
subsequent task, but one that was considered simultanecusly during the
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development, is efficient revision of those prior beliefs through the
use of post-audit sample information. This research uses existing
Bayesian techniques to perform the revisions, ard while the techniques
are not new, how they are applied to the replacement situations are
innovations.

When the prior beliefs were described as a discrete model, this
research uses a Dirichlet probability distribution. This distribution
was selected in anticipation of the impending sample data. The
critical procedure in this modeling approach is to manipulate the
modeling of the cash flow realizations as categories, or intervals,
that correspond to the intervals in the prior belief. This gives the
sample results multinomial distribution characteristics. More
importantly, the sample and prior belief create a Dirichlet-multinamial
conjugate distribution, which makes the prior distribution naturally
responsive to the categorized sample information.

When the prior belief is modeled as a beta distribution, it is
necessary to transform the sample data from the form used in the
preposterior analysis, to the form that is used for the revision
process and posterior analysis. During the preposterior analysis, the
sample data is predicted as either being above or below its expected
value. This gives the sample data a binamial characteristic, and
sample outcome projections are made from the use of the beta-binamial
predictive distribution. The sample data is collected on a continuous
(approximately) monetary index. This research transforms that scale to
an equivalent success/failure index, through the terms rg and n, or ng
(more on the term ng is covered in the immediately following section),
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to reqain the binomial characteristics. This transformation determines
the number of "successes", rg, to be the proportion of the outcome
range attained by the sample observations, n, or equivalent sanples,
Ne. This definition permits the prior belief to be revised by the
sample information, through the use of the beta-binamial natural
conjugate distribution. When the prior belief is modeled as a normal
distribution, the procedures (with the exception in the section that

follows) follow conventional Bayesian procedures.

Strength of Belief in Sample Quality
Two facts precipitated the need for the user to be able to

incorporate his strength of beliefs in the quality of the cash flow
realizations, or sample cbservations: (1) the installation and
implementation of the equipment may not occur in the same fashion that
was projected at time zero, and/or (2) the financial corditions outside
the factory may not be as anticipated. In either case, the changes may
alter the perceived quality of the initial estimates. In each of the
distributions developed in this study, the strength of the prior
beliefs was based on a relative comparison of their perceived quality
and an anticipated mmber of sample results. These results are to be
taken under an assumed set of circumstances. How accurately the actual
conditions compare to those assumptions determines the magnitude of the
equivalent sample size adjustment, which is essentially the application
of a multiple, or scaling factor, to the observed results (ng = k * n,
where k is the magnitude of the scaling factor).

The equivalent sample size, ng, is designed to reduce the
quantity of the sample observations when the conditions are anamalous
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and not likely to occur again. The equivalent sample size increases
the quantity when the conditions are anamalous, but are considered to
be more representative than those used for the initial estimates. When
the conditions are as projected, there is no change.
Illustration of Uncertainty
Resolution

As cash flow realizations replace estimated values, uncertainty
resolution occurs. This research investigated the concept of modifying
statistical quality control charts (specifically, x and R-charts) to
graphically portray this resolution. The situation examined was an
equipment fleet replacement problem, with the population of the
individual unit's cash flows assumed to be normally distributed with
unknown mean and variance (this situation was selected to take
advantage of the Central Limit Theorem's properties). This procedure
utilized the normal-gamma family of conjugate distributions. These
procedures found that as uncertainty resolution occurred, the upper and
lower control limits would adjust towards the true values, providing an
illustration of the resolution. The use of the Minimm Return Limit
permits the user to see how the resolution is affecting the anticipated
profitability of the project.

The study examined the behavior of the uncertainty resolution
when repeated representative samples were used to revise the initial
estimates. This found that the expected values for the unknown mean
and variance move quickly to their true values. However, the variance
of the expected value of the mean, a measure of uncertainty resolution,

moved slower to zero, or complete resolution. Further, the variance of




230
the expected variance moved at an even slower rate to camplete

resolution.

Conclusions

This research shows that sequential post-audit information, in
the form of cash flow realizations, can be used to provide uncertainty
resolution in implemented capital projects. This research presents
several probability based modeling techniques that can be used to
illustrate varying amounts of uncertainty that accampany initial cash
flow estimates. The flexible natures of the beta and Dirichlet
distributions make them appropriate for many problem situations. an
assessment of the quantity and quality of information that was
available for the formulation of those probabilistic estimates can be
incorporated into the initial model, as a reflection of the user's
strength of belief in those estimates. Similarly, the conditions
surrounding the occurrence of particular cash flow realizations can
provide input to the user in his determination of the replicability of
those results. Once assessed, this information is incorporated into
the revision process. The impacts of these decision modeling
techniques can affect the previcusly determined equipment
implementation strategies, creating the need for coampany decision
strategy adjustments. These adjustments may include changing the
timing and/or amounts of future investments (the basis of the equipment
replacement problem). On the other hand, the uncertainty resolution
may not create decision strategy changes if events occur as
anticipated, but the resolution still improves the quality of the
initial estimates. This information gain can then be used in future
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camparisons of the defender asset with new, currently unknown,
challenger assets. The incorporation of just the u.ec's strength of
belief in the prior information or just the sample information can
provide clarity to the decision problem.

The use of the cash flow control charts provides a graphic
illustration of the uncertainty resolution process, and provides the
user with an easily identifiable indicator (MRL) that can be used to
initiate the decision strategy changes. The proximity of the expected
value center line and MRL graphically depicts the discounted "break
even" performance of the project.

These concepts, and the potential gains available through
decision strategy adjustments, will improve a company's overall
investment performance. However, the potential benefits of these
decision-aiding concepts must be considered with their potential
abuses. These measures are designed to incorporate the decision-makers
unbiased beliefs in the quality of information. If these methods are
applied in a parochial manner, the results will be similarly biased

decision strategies.

Recommendations for Further Research

A logical extension of this research would be an investigation
of how these post-audit information concepts, and the uncertainty
resolution process in general, are affected when the initial estimates
include trend, seasonal, and/or cyclical components that have
uncertainties associated with their respective estimates. This task

may require the development of a joint factor resolution model.
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Ancther area would be a further investigation of cash flow

control charts. As many cash flows are uneven, the use of CFCC based
on residuals could be investigated, as well as an investigation of the
use of CUSUM charts, to detect small shifts in trend. Ancther area
could be the development of CFCC when the Central Limit Theorem is not
appropriate. The procedures developed in this study were modifications
of methods for x and R-charts. The investigation in this area may
involve using cother statistical quality control chart methods, with

sane transformation of the reported cash flow data.
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