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ROBUST APPROXIMATIONS FOR THE FILTERING PROBLEM

ROBERT J. ELLIOTT

Department of Statistics and Applied Probability
The University of Alberta

Edmonton, Alberta, Canada. T6G 2GI

ABSTRACT The signal is not observed directly but by Mnans
of the observation process (yt}, where YtcR is

A diffusion observation process is approximated 
the solution of:

by a Markov chain. The information obtained by

observing the Markov chain is the same as that dyt = h(xt)dt + dwt
obtained by observing a related multivariate n
point process. Filtering and Zakai equations yo = 0 cR. (2)
are obtained for multivariate point process
observations. These involve Stieltjes integrals For simplicity suppose that f, a and h are bounded
rather than Ito integrals with respect to and continuous, and the solution of (1) is unique
Brownian motion, and so they pro,ide robust in the sense of probability distributions. The
formulae, that is, formulae which are continuous following formulation of the non-linear filtering
in the observation process. problem is developed in detail in [1). Write

Y {ys :s<t}_ for the a-field representing the

t s-

history of the observation process up to time t
and Y = (Yt ) for the right continuous complete

filtration generated by Yo. The best estimate in,
t.

say, the mean square sense of xt , given the

history Yt is E[xt3t3. To determine this

conditional distribution it is enough to find
E[0(xt)IYt] for any twice, (or even infinitely),

differentiable real valued function 0 with compact
1. FILTERING support on Rd. Using the differentiation rule

All orocesses will bc defined on a comolete proba- 0(xt) : O(x) + ft L (x s)ds + ft v.o(x s)dBs
bility space (n, F, P). The time parameter 0 0

t c[o,-) and there is a right continuous, complete where L is the second order operator
filtration {Ft} on u with respect to which all m m

processes are adapted. Consider two independent L ijI aij(x) i + z i x
Brownian motions {Bt } = B' .... BM , (Wt }

n} ... W ). and suppose the signal processw (a.jt W...W t  with a = (ai) 4'2

is the solution of the stochastic differential
equation:

Write r for the Y-ootional nrojection so that
dxt = f(xt)dt + a(xt)dBt ? t() = (O(xt)) = E[0(xt)IYtJ. Then the filter-
x c Rd. (ing equation (l] for Trt(0) is:
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Vt = Yt ft f(h)u du (4) through (5) and (6). We can then establish

LEMMA 2.1. If y' y + 6 is the next state

Difficulties with Equation (3) are that it is value Ely - y'Ixt) = h(x t) 6 (x ) and
quadratic in v and involves an Ito stochastic t t t
integral with respect to v. Cov[y' - Yxt J = lt6(xt ) + o(at6(xt

)) where I

is n x n identity matrix.

2. APPROXIMATIONS FOR THE OBSERVATIONS REMARKS 2.2. The approximating Markov chain (y I,

n
In this section we shall describe an approximation with state space R6 , is determined by a sequence
to the observation process y by a Markov of jump times {T.), 1 1.2.......and a sequence
chain. Our approximation to the observation i
process is similar to that for diffusions intro- of positive or negative unit vectors (+ ci in Rn

duced by Kushner (2]. The resulting (approximate) which describes the jump values. That is, the
filtering equations involve Stieltjes integrals,
rather than Ito integrals as in (3). Why should Markov chain can be thought of as a marked point
approximations to the observation process be {Tn, Zn n
considered? This question can be countered by Z in the state space (+ ci}. In turn, this
pointing out the idealized nature of a diffusion, n
and by noting that all measurements are approxi- marked point process can be considered as a multi-

mations, so that at some level of accuracy any variate point Process

observation process is a jump process. Alter- N
natively we could just say we wish to consider t = {Nt(+ 1), Nt(- 1), . Nt(- n))
observations of this form.

where Nt(+ i) = E I(t>T n) I(Z n - + Ei )
To approximate the process fyt} by a Markov chain n>l

y6 consider 6>0 and the grid Rn on Rn with
difference parameter 6. Write The distribution of the jump times Tn is given by

n (6), so roughly

Q6(xt i=l P(T = t + SIT = t, T t + s and x

n+l 5In = n ~ 1  u

6t (xt) = 6 /06 (xt)" t<u't< + s)

Write c, for the unit vector in the ith coordi- (at 6(xt+S))"l = Q6(xt+s)/62.

nate direction of Rn, and for y c Rn, y, = y + 6 c,

define: Also, P(Zn 
= + cijT = t and xt )

p6(y, y, xt) = (1/2 + 6ht (xt))/Q6 (xt). = (1/2 + 6 ht (xt))/Q6 (t). These two condi-

tional probabilities determine the Levy system
Then P6 (y, y,. xt) will be the probability of a (see [1)) of the approximating Markov chain y6

jump from y to y', given xt and given there is a Write

jump at time t. Also, p6 (y, y,, xt) 0 0 and 2P (y y' xt  = . - +( t ) = (I + 2 6 h+ (xt))/262

1 1P6(y, Y" xt) = 1. +
y

Then we can show the processes

The conditional distributions 
of the jump times of

the approximating Markov process (y) are defined = Nt(+ i) - t Aoi(u) du

by:

P (next Jump after t + s I previous jump at t and are (Ft) martingales. The X±i are, therefore, the

x u , t < u < t + s) - intensities (see (1) of the point processes N(+ i).

exp (- fs+t du (6)
s at 6(xu 3. FILTERING WITH MULTIVARIATE POINT

u tPROCESS OBSERVATIONS

6 We have described an approximation to the original
The signal (xt } enters the Markov chain (y filtering problem in which the signal modulates a
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multivariate point process Then A is an (F, P,) martingale, \t>O a.s. and

Nt  (Nt( + i) , i= 1. n. Write E[ t] = 1. Define a new probability measure

P = P, by

Y06 =(Ns : s<t EdPYt S E [ LJF] = 3 t

and Y6 = (Y for the right continuous,
complete filtration generated by the 0 6 . Suppose Here El denotes expectation with respect to P1.

(0 ) is a process. Then (0t) will denote the Y
6  An application of Baye's rule establishes the

t following result:
optional projection of (0t and fit will denote

the Y6 predictable projection. Then we have the LEIMA 3.4. Under P = P the processes
fundamental result:

LEMMA 3.1. & = Nt(i ) - ft X.(u)du is a Y6 Qt N o(i) - i X (u) du,
E t 0o' 0

martingale for i = + 1, .... + n. +1, ... , +n are (Ft1) martingales.

The filtering equation for 0(xt) with observation 8

process N is proved similarly to that in [1], NOTATION 3.5. Write A for the Y-optional pro-

and states the following: jection of A under P1 . Then for each t>O

At = El[AtJY6]a.s. and A is a locally Square

THEOREM 3.2 (xt) = 0(xo ) integrable (Y6, Pl) martingale. Because we now

t ^ d n + n have the two measures P1 and P = PX. for any

+ t + o Yu dQu (7) process € = f t} we shall write w(c), resp. wr
-+for the (YV, P) optional, resp. predictable, pro-

where jection of 4. Therefore,

Y' (=(x ) Xi(u) - 0(xu) Xi(u))( i(u)) ,p(Ai(u)) = E[xi(u)[YVI a.s.

REMARKS 3.3. The Ito stochastic integral in (3) for i = +1, .... +n.
is now replaced by the (robust) Stieltjes inte-

grals with respect to the . However, the y LEMMA 3.6. At = 1 + l +lft f0 dQ (10)
still involve a product of projections and/or a 1u

division by i(u). These difficulties can bei ~~~~where 0'=A( (u)-U

circumvented by considering a different probability u u- P

measure P1. REMARKS 3.7. Using the it notation, Theorem 3.2

Suppose that under PI, (the reference probability), states:

each component N(i) of the multivariate point
process 7((xt)) = i(Xo)) + t W (LO(X ))du +

N = (N(+ 1), (N(- 1), ..., N(+ n), N(- n)) +n

t (11)
is a standard Poisson process of intensity 1. Then i= +l f t u dQu
for i = +1 ..., +n where

Q' = Nt(0) - t (8) i
Y u T' (p(WXu) X1i M) " ((Xu Wp(Xi M)

is a y6 martingale under P" Consider the -_i% (u))-1

of exponentials P(i

!I (u)I)d Now by Baye's formula:

At + I fA( u )dQ 1 (9)Bae
t -1+1 0 u- I u



4 OF 4

n(O(xt)) = E[0(xt)IY 1 0(0(x)) = E[0(xt) A jY6]

= Ei[AtO(xt)IY6] (ECAtIY'])'I is then:

a (0(xt)) a(])-1, a(O(xt)) = o(0(xo)) + f a(L(X u)) du
0

where c((xt)) = EI[At 0(xt)Iy6] + t  i6

t t t 2Z ft ao((x )h )6 dQ1  (14)i= +1 o u " (14

is an unnormalized conditional expectation and
At. Now the family of processes given by (14) for 6>0

is tight and converges weakly as 6-0 to a process

Therefore, o((xt)) = it r(1(xt)) and by computing 0(0(xt which is the solution of:

the product of (10) and (11) we obtain the follow- (0x 0(0(x )) + du
ing Zakai equation for o(O(xt)): t 0 (L(Xu)

THEOREM 3.8. a(0(xt)) = o(0(Xo)) + + 2 t

o + 2 r f 0(0(xu ix)d
t+n ti= +1

f a(LO(xu) ) dt + 1 f o(0(xu)(Xi(u) -1)) + 1 -n
o +1 0I where w - (w , w w w) is a Brownian

dQ . (12) motion.
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for 6>0 is tight and converges weakly to the
process given by (3) as 6-0.

However, the family of processes given by the
Zakai equation (12) does not converge as 6-0. To
obtain a convergent set of processes one must
assume that for each 6>0 there is a multivariate

point process Nt  (N'(+l), N'(-l), .... N'(-n))

such that under the reference measure P1 each
2 6

component is a point process with rate t/62. At
is defined by:

a+n 2i1

i + T (2 xA(u) - 1) d (13)1t i,+1 0 hu

where 0'6 " N6() - t/62 .

A new probability measure P6 is given by:

E dP6  6eI Za- IFt i At.

The Zakai equation for:


