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ROBUST APPROXIMATIONS FOR THE FILTERING PROBLEM

ROBERT J. ELLIOTT

Department of Statistics and Applied Probability
The University of Alberta
tdmonton, Alberta, Canada. T6G 2GI1

ABSTRACT

A diffusion observation process is approximated
by a Markov chain. The information obtained by
observing the Markov chain is the same as that
obtained by observing a related multivariate
point process. Filtering and Zakai equations
are obtained for multivariate point process
observations. These involve Stieltjes integrals
rather than Ito integrals with respect to
Brownian motion, and so they pro.:de robust
formulae, that is, formulae which are continuous
in the observation process.

1. FILTERING

A11 processes will be defined on a complete proba-
bility space (q, F, P). The time parameter

t e[o,»} and there is a right continuous, complete
filtration {Ft} on Q with respect to which all

processes are adapted. Consider twg independent
Brownian motions (B,) = {Bé. ey 82), (W, }

= (W, ..., N"). and suppose the signal process
t

is the solution of the stochastic differential
equation:
dx, = f(xt)dt + °(xt)d8t

Xy € Rd, (1)
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The signal is not observed directly but by means
of the observation process (yt). where e R s

the solution of:

dyt = h(xt)dt + dw,

- n
Yo * 0 eR". (2)

For simplicity suppose that f, o and h are bounded
and continuous, and the solution of (1) is unique
in the sense of probability distributions. The
following formulation of the non-linear filtering
problem is developed in detail in [1]. Write

Yg = c(yszsit} for the g-field representing the

history of the observation process up to time t
and Y = {Yt] for the right continuous complete

filtration generated by Yg. The best estimate in,
say, the mean square sense of Xgs given the
history Y is E[xt\Yt]. To determine this

conditional distribution it is enough to find
E[ﬂ(xt)|Yt] for any twice, (or even infinitely),

differentiable real valued function @ with compact
support on Rd. Using the differentiation rule

- t t g,
B(x,) = B(x ) + ! L B(x;)ds + é v@-0(x )dB
where L is the second order operator

m 2

L= Z a..(x) 2

3 3
—— + I f(x)__
i,j=1 3Xi3XJ- = 1

i=1 X,

with a = (aij) = ng'/2.

Write ~ for the Y-optional nrojection so that
o (@) = =(B(x,)) = E[@(x.)|Y,]. Then the filter-
ing equation [1] for nt(ﬂ) is:

t t
(8 = 1y (8) + £ 0 (L0)du + £ (s, (9h)

- WU(O) nu(h))'dvu (3)

Here v, the innovations process, is a (Y,P)
Brownian motion defined by
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ve T Yy ” é n(h)u du (4)

Difficulties with Equation (3) are that it is
quadratic in » and involves an Ito stochastic
integral with respect to v.

2. APPROXIMATIONS FOR THE OBSERVATIONS

In this section we shall describe an approximation
to the observation process y by a Markov

chain. Our approximation to the observation
process is similar to that for diffusions intro-
duced by Kushner [2]. The resulting (approximate)
filtering equations involve Stieltjes integrals,
rather than Ito irtegrals as in (3). Why should
approximations to the observation process be
considered? This question can be countered by
pointing out the idealized nature of a diffusion,
and by noting that all measurements are approxi-
mations, so that at some level of accuracy any
observation process is a jump process. Alter-
natively we could just say we wish to consider
observations of this form,

To approximate the process {yt} by a Markov chain

y6 consider >0 and the grid Rg on R" with
difference parameter &. Write

n
Q,(x,) =n+¢ izl (hy(x )|
Até(xt) = 62/05(xt).

Write € for the unit vector in the ith coordi-
nate direction of R?, and for y ¢ Rg. ¥yl =y +§ €5
define:

Poly, y's %) = (1/2 + shT (x))/Q,(x,).  (5)

Then P°(y, ', x,) will be the probability of a
jump from y to y', given Xy and given there is a
jump at time t., Also, Pd(y. y', xt) >0 and
TPy, ¥yt ox) =0

yl

The conditional distributions of the jump times of
the approximating Markov process (yz) are defined
by:

P (next jump after t + s | previous jump at t and
Xptuste s) =

exp (- St Qv (6)
X s Até(xu)

The signal (xt} enters the Markov chain (y6}

through (5) and (6). We can then establish

LEMMA 2.1, If y' = v ¢+ 5 ¢ is the next state

. 7 3
value Efy - y |xt] = h(xt) at (xt) and
Cov[y' - ylxt] = Iaté(xt) + o(At6(xt)) where |
is n x n identity matrix.

REMARKS 2.2. The approximating Markov chain (yé}.
with state space Rz. is determined by a sequence
of jump times (Ti), i=1,2, ..... and a sequence
of positive or negative unit vectors (1_:1} in R"

which describes the jump values. That is, the
Markov chain can be thought of as a marked point
process ((Tn. Zn))' with jump times Tn and jumps

Z, in the state space (+ €4} In turn, this
marked point process can be considered as a multi-
variate point process

N, = {Nt(+ N, Nt(- 1D PN Nt(- n))

where N (+ i) = & T(t>T ) I(Z =¢ e
n>1

The distribution of the jump times Tn is given by

(6), so roughly

P(Tg =t *tsT =t Ty 2t+sandx,

n+ n+l

t<u<t< + §)

= (0t (xy )7 = Qglxygy/6%

t+s
Also, P(Zn =+ Ci'Tn = t and xt)

= (172 + & n} (x,))/Q,(t). These two condi-
tional probabilities determine the Levy system

(see [1]) of the approximating Markov chain ya.
Write

it = (v 2 b (xt))/zaz.

Then we can show the processes

+3 t

Q "t(f i) - g ‘31(“) du

are (Ft) martingales. The x:j are, therefore, the
intensities (see [1] of the point processes N{+ 1)}.

3. FILTERING WITH MULTIVARIATE POINT
PROCESS OBSERVATIONS

We have described an approximation to the original
filtering problem in which the signal modulates a
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rultivariate point process

= (Nt(: i) . i=1, ..., n}. Write

08 _ .
Yt = a[Ns 1 s<t}
and v$ (Y } for the right continuous,

complete fi]tratlon generated by the Y°6 Suppose

(9 } is a process. Then {ﬂ ) wi]l denote the Y°
optlonal projection of (0 } and (ﬂt} will denote

the 'S predictable progection Then we have the
fundamental result:

LEMMA 3.1. 61 is a Y5-

martingale for 1

R t*
= Nt(\) - é xi(u)du

+1, ooy 20,

The filtering equation for D(xt) with observation

process N is proved similarly to that in [1],
and states the following:

THEOREM 3.2 @(x,) = p(x,)

— .t i i
vy dQ, (7)

where
_F__—-f\

,: = (0(x,) 2, (u) - é(xu) ;i(u))(;‘(U))']

REMARKS 3.3. The Ito stochastic integral in (3)
is now replaced by the (robust) Stieltjes inte-

grals with respect to the O However, the y
still involve a product of projections and/or a

division by Ai(u). These difficulties can be

circumvented by considering a different probability
measure P].

Suppose that under P]. (the reference probability),
each component N(i) of the multivariate point
process

= (N(+ 1), (N(- 1), ..., N(+ n), N(- n))

is a standard Poisson process of intensity 1. Then
for i = #1, ..., #n

Q) = N, (1) - ¢ (8)
t t

is a ¥ martingale under Pl' Consider the “-mi:-

of exponentials
+n

P
i= *1

b (g w)-1) @@l (9)

:]#

Then A is an (F, P]) martingale, At>0 a.s. and

E[At] = 1. Define a new probability measure
= P~A by
dP _

E][aﬁ;“‘-t] = .\t.

Here E] denotes expectation with respect to P].

An application of Baye's rule establishes the
following result:

LEMMA 3.4, Under P = PA the processes
Ql = N () - st () du

t ot o M J

i=+1, ..., tn are {Ft}- martingales.

Write A for the Ya-optional pro-
Then for each t>0

NOTATION 3.5.
jection of A under P].

Ay = E][AtlYi]a.s. and A is a locally square
integrable (Y§, P]) martingale. Because we now
have the two measures P] and P = Px' for any
process ¢ = (¢} we shall write »(c), resp. wp(c).

for the (Y P) optional, resp. predictable, pro-
jection of ¢. Therefore,

"0 () = ED (Yo aus.
for i = +1, ..., #n.
. i“ t
LEMMA 3.6. Rp = 1+ 4.0y f a dQ (10)
i = A -
where ﬂu = Au_(np(xi(u)) 1).
REMARKS 3.7. Using the = notation, Theorem 3.2
states:
1(B(x)) = w(B(xg)) + 1% n(LB(x,))du +
"
N ER Iy (an
i= £l /7y, dq,
where

= (n (B0x,) A(u)) = w(Blx,)) w(r (u))
n ()™

Now by Baye's formula:
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"(B(x,)) = E[B(x,)|Y;]

= £, 08, 00x) 18] (Ey L0, 1YeD)!

a(@(x,)) o(1)7",
s
where o(B(x,)) = E;[n, B(x)|Y{]
is an unnormalized conditional expectation and

a(1) = Rt'

Therefore, o(Q(xt)) = Rt w(Q(xt)) and by computing

the product of (10) and (11) we obtain the follow-
ing Zakai equation for o(ﬂ(xt)):

THEOREM 3.8. o(B(x,)) = c(ﬂ(xo)) +

+n
T st oBx ) () - 1)

{=:]0

dﬁ:. (12)

st o(L(x,)) du +
o

REMARKS 3.9. The advantages of equation (12) are
that it is linear in o and, because it involves
only Stieltjes integrals with respect to the

Poisson processes Q', it is robust.

The remaining questions concern the convergence
of the approximate filters as the mesh size &
goes to zero. In fact it can be shown that the
family of filtered processes given by Theorem 3.2.
for §>0 is tight and converges weakly to the
process given by (3) as s-+0.

However, the family of processes given by the
Zakai equation (12) does not converge as §+0. To
obtain a convergent set of processes ane must
assume that for each >0 there is a multivariate
point process N: = (N:(+l). N:(-l). cens N:(-n))

such that under the reference measure P1 each

component is a point process with rate t/az. A:
is defined by:
+n
s . = t .S 2 - 15
A 1+ i'1:” {) Ay (25 ‘1(“) 1) dﬁu (13)

16 _ S - 2
where bt No (1) - t/6".
A new probability measure pS is given by:
8
dP < 26
E][EF; lFt] At.

The Zakai equation for:

a(B(x,)) = E;[0(x,) A3]¥¢)

is then:

o(Blxy)) = o(B(xg)) + /F o(LB(x,)) du

+ %2 /b o(Bx ) h)s dq's . (14)
i= +1 0 u’ i u

Now the family of processes given by (14) for 6>0
is tight and converges weakly as 6+0 to a process
a(ﬂ(xt)) which is the solution of:

a(B(x,)) = o(B(x,)) + 1% o(LB(x,) du

no i
+2 i=£+] é o(ﬂ(xu) hi(xu))d"u

+ - +n N .
where w = (w ]. w ], v.., W ', w ) is a Brownian

motion.
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