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INTRODUCTION

Motivation and Overview

The difficulty involved in experimentally validating NASP type high altitude/high Mach
number configurations has driven a large hypersonic CFD effort. The nonequilibrium real gas
effects and steep gradients found in this regime are characterized by multiple time and length
scales. Specifically, the relaxation lengths for such nonequilibrium processes often differ from
the convective length scale by several orders of magnitude, introducing both stiffness and
complexity into attempted analysis (1,31). Moreover, these nonequilibrium length scales may
change radically throughout the field. In terms of numerical simulation, these factors drive up
the cost of computation by grossly increasing the resolution requirements for acceptable

solutions (30,32).

In response to such needs, the technique of adaptive grid embedding locally refines the
computational mesh based on information from a developing solution (6,16,33). Triggered
by both gas dynamic and nonequilibrium variables, embedding increases the resolution of
flow features associated with these processes. In this way, the grid scale locally adapts to the
dominant physical scale within the gas. The technique ensures grid resolution comparable
with all important physical scales of the problem while still avoiding unnecessary rcso‘lution in

smoother regions of the flow.

Of course, in reacting blunt body flows, the chemical and convective lengths are not

the only scales in the flow. The bow shock adds a third type of length scale. However, since




this structure is on the order of the local mean free path, its scale is too disparate to attempt to
resolve. In fact, with the exception of transatmospheric problems, the bow shock may be
treated as a discontinuity. With this motivation, shock fitting removes the shock from the
domain interior in the present work. The discontinuous shock assumption is consistent with a
continuum description of the flow, but breaks down in the large Knudsen number regime

characteristic of very high altitude flight (28).

From a computational standpoint, an adaptive embedding procedure requires
unstructured data storage and a compact computational stencil. In response to these
pressures, Ni's (29) node-based finite-volume scheme was chosen. Over the course of the
research the initial inviscid perfect gas scheme was extended to include chemical source terms,

viscous terms, and axisymmetric configurations.

Organization

This work is divided into three main parts. The first takes up high temperature gas
dynamics. After briefly discussing nonequilibrium and real gas phenomena in air, it develops
the governing equations and gas model used to describe chemically reacting high temperature
air. The model applies to both coupled and uncoupled reacting mixtures and degenerates to a
classical perfect gas when the chemistry is frozen. The final results of these discussions are

the chemical source terms for use in the governing equations.

In Part II, focus shifts to the adaptive numerical algorithm and its associated numerical
procedures. The integration scheme emphasizes the conservative nature of the governing
equations. Discussions of the embedded mesh procedure also stress this point, especially

with respect to the treatment of computational interfaces between embedded mesh levels. This




Part closes with a presentation of shock fitting algorithms for both nonequilibrium and

equilibrium real gas models.

Part III contains the major results and conclusions. These discussions include
analysis of both fundamental physical phenomena in blunt body flows and an overall look at
the effectiveness of the adaptive procedure in a hypersonic environment. In examining the
physical process found in high temperature shock layers, the analysis emphasizes the im-
portance of length scales and their effect on the flow's behavior. Such investigations gave
experience with the adaptive method as an engineering tool, and they provided a firm basis for

evaluating the effectiveness of the embedded procedure.




I REAL GAS DYNAMICS

1. Some Elements of High Temperature Gas Dynamics

We briefly discuss some aspects of high temperature gas flows and present an
extended form of the conservation equations to model such flows. This permits close study
of the terms responsible for modeling the physics of gases at elevated temperatures. The
examination reveals the strengths and weaknesses in the present modeling, and provides

insight into which physical processes may be described within this framework.

Physical Processes

Nonequilibrium involves both the chemical composition and the intemﬂ energy
storage modes of the gas particles. In steady, air breathing flight within the Earth's
atmosphere, hypersonic vehicles experience both kinds of nonequilibrium. Figure 1.1 shows
the corridor for sustained flight with regions of thermo-chemical excitation superimposed
(20). Despite the somewhat approximate boundaries in the sketch, it is clear that these modes

affect nearly all flight at hypersonic Mach numbers.

N ilibrium Rate P

While excitation of internal modes is important, excitation alone does not imply a
relevant nonequilibrium process. In the context of flowing gases, nonequilibrium implies that
the time for an energy mode to equilibrate is an appreciable fraction of some time scale within
the flow. On average, chemical reactions require thousands of collisions between the re-

actants. These collisions occur over a finite time and distance. In general, the more efficient




energy transfer between internal modes of a particle implies less space and time to achieve
equilibrium. This observation often leads to a heavy particle temperature approximation (21).
The temperature characterizes a particle’s internal energy by assuming thermal equilibrium
takes place instantaneously. That is, all internal modes remain in equilibrium with each other.
While valid throughout much of the flight corridor in Figure 1.1, recent work by Candler (5),
Park (31), and others (4) suggests that the approximation breaks down near orbital

conditions.
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FIGURE 1.1 . .
Velocity - Altitude map with regions of modal excitation superimposed on it. (From Ref. 20.)

At elevated Mach numbers and low densities, the vibrational tcmpcrature may take appreciable
time (and distance) to equilibrate with the translational-rotational temperature. This results in
thermal nonequilibrium within the different molecular species in heated regions of the shock
layer. In this context, "molecular species” refers mainly to nitrogen, since oxygen molecules
tend to dissociate before their vibrational and translational temperatures differ appreciably. It
is worth noting, however, that the stagnation enthalpy error produced by ignoring this tem-

perature difference is negligibly small for a wide class of problems. Thus, while multiple

vibrational temperatures remain important in re-entry or transatmospheric problems, a




one-temperature model does accurately model a wide class of problems within the Earth's

atmosphere.

1.1 Conservation Equations for Chemically Reacting Viscous Flow

Many texts develop the conservation equations for chemically reacting viscous flows
(for example (36), (13). (1)). This section first states this set and then discusses specific

modeling for terms within these relations.

Governine Equations in C. ve F

Global conservation of mass and momentum simply account for mass and momentum
flux through a fluid without concern for any internal structure of the gas particles. The
description therefore remains unchanged from the classical Navier-Stokes or Euler

formulation. In full conservation form:

Continuity 3
2 + Vo(pV)=0
a T VV)= (1.1)
x Momentum
dpu) + Apu? + p) + Apuv) _ Atxx) + Axy)
ot ox dy ox dy
y Momentum (1.2)
Apv) , Apuv) JPVZ +0) A%y + A7yy)
or ox ay ox dy

Here, the shear stresses are

Ty =Ty = #(ax ay

and the normal viscous stresses are




_ ou _ ,dv
Tx -(l+2u)§+).$
du
ox
The Stokes hypothesis eliminates the second coefficient of viscosity by setting A = —%y .

1,,=(2.+2p)g—;-+/1

Since the energy equation imposes a detailed balance of all energy fluxes, it must include an
explicit description of the diffusive energy flux arising from gradients in species
concentrations. However, collecting those effects within the heat flux term, q, the equation to

be couched in classical form.

ﬁe) dule +P)] a:v(e +p) _ _;(utn + VT - qx) + %(u't,, + VTyy - qy)

ot ox ay (1.3)

Here e refers to the total internal energy per unit mass, and the stagnation enthalpy
becomes: e+p
P (1.4)

As mentioned, q includes both:the Fourier heat conduction term, and the diffusive
energy flux contributions. . |
q=—kVT+Z piUih; 5)

Here, U; is the diffusion velocity of the ith component in the mixture. More

precisely, U; measures the relative velocity of the ith species to the bulk velocity of the gas.

The diffusion velocity also contributes to the species conservation equations. These

relations trace the net production or destruction of each species in the mixture.




For the ith species:

a(gm) dpiu) aps") =W, Iig:“:! ﬂpt"n!
t ) 4

ox (1.6)

The source term W; contains the net reaction rate expression, and in general is a summation

over all reactions contributing to the net rate of change of any particular species.

Naturally, conservation of atomic nuclei and electrons prohibits the gross numbers of

particles of any species from changing.

2,Wi =0 (L.7)
Additionally, global continuity forces the net diffﬁsive flux of all individual species to
cancel. o
2 pCili=0 (1.8)
Siate Vector Form

The conservative form of the governing equations permits an arrangement more

amenable to numerical computation.
au aF ac _dR  dS

wEy "=ty W (1.9)
Here

o T oy T

P ] pu+p puv
z: | puv pvi+p
U=| e |, F=| ule+p) |, G=| vie+p)

Pi piu piv

L ps : :
| Psu | Psv ]




0 0 0
Txx 'txy 0
Txy Tyy 0
R=| (Uta+Vviy=-q) |, S (utey + vy —qy) |, W 0
pil; pivi Wi
L Psiis A | PsVs _ 5 “}3 4

F and G are the inviscid flux vectors while R and S contain the viscous fluxes. Setting the
viscous flux vectors identically to zero results in the governing equations for chemically
reacting inviscid gas mixtures. W contains the chemical source terms for either case. Setting
this vector to zero degenerates the set of equations further and results in the Euler equations

for perfect gas modeling.

N lizati |
Table 1.1 shows the scaling of flow variables and properties used to non-dimension-

alize the governing equations. The subscript ( )r refers to frozen conditions.




TABLE 1.1
Scaling of flow variables and properties used to non-dimensionalize the governing equations.
Dimensional Reference Non-dimensional
varigble quantity trees:ream value |
P P 1
u,v ar,., M Xeo, My..
e PeliFon Dependent upon modeling
p Poctfn V.
T T. 1
t Rn/a,“ _
H Heo 1
k ke 1
Dim Dim. 1
X -~ Rp —
y Rp _

Taking the frozen sound speed as a reference velocity conveniently rescales the freestream

flow velocity and Mach number to numerically equal values.

Non-Di ionalization iffusi

Inserting this scaling into the governing equations permits a collection of all
dimensionless parameters within R, S, and W. Collecting these parameters into the non-
dimensional heat flux vector q and shear stress tensor 7 leaves the form of the governing

equation set (1.9) unchanged.

Defining the Reynolds, Prandtl, and Schmidt number (respectively) as

p-ar-R

Re= . praleels
Th

k.

e
p-Dim.

Sc=

permits 7 to be expressed without dimension.
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B0 e

T = %E(Zu, - v,)
B .

Ty = %Te?(z"’ - i3) (1.10)

Ty = %(u,‘ +v})

H
* %* U * - H
where, u*=—,u —a’__.,and 14 =ar -

Since significant ionization occurs only at temperatures too high to simulate accurately
within the present single temperature framework, any charge separation predicted due to ionic
species must remain small. Given this, Fick's first law-of diffusion relates the diffusion

velocity to species gradients.

U= —E”Dimvci
pi (1.11)

Collecting dimensional parameters in the energy equation returns a non-dimensional form

of this quantity. In cartesian form the diffusion velocities become:

~ 1 ( +p’ ac-'} " i ‘ «p’ ac@‘)
;= Din—=—p Vi=- Dim— =5
Re Sc p; ox | Re Sc p; 9y _ (1.12)

With these quantities now known, we may write the non-dimensional heat flux vector.

- _—_L Phi-oim _)‘
q-(l"rReﬂ:-..VT - ; Re Sc Vei

Breaking this vector into its cartesian components, q becomes;

11




_( —k T th‘ imc; |
U=\ PrRe = 0x Re Sc ox

-k PhiDimoc; \
W= (PrRenr..ay Z Re Sc ay)

After developing a mixture gas model, the next chapter details the non-dimension-

(1.13)

alization of chemical source terms.

Modeling of Diffusion P .

Precise modeling of diffusion properties requires details of the collision cross-sections
from kinetic theory (21, 36). However, the level of accuracy for the current modeling does
not warrant such details. Moreover, i and k should take into account mixture values in
reacting calculations, but such effects are of higher order, and are not crucial for

understanding the basic physics here.

Sutherland’'s law predicts g to within 10% below 9000 K (10). All viscous

calculations presented later use this approximation.

u"'i [T.+1104}(T )

T+110.4 (1_14)

The definition of Prandtl number relates thermal conductivity to viscosity.

HeeCpp.

ke = Pr.,

A constant Prandtl number assumption provides a first approximation for the high

temperature transport property behavior,

gl
k.§L= cp"~u‘ p
ke Pr Cpra
Pra (1.15)
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Unless otherwise stated, all viscous calculations assume that ¢#/c,,_= 1.0.

Similarly, the definition of Sc provides a basis for evaluating D;,

“‘; - .D,-:,.=-=-21L=u—_

ime, =

(1.16)

for constant Schmidt number modeling.

The ‘N ilibri

The earlier statement that nonequilibrium is relevant when relaxation occurs over an
"appreciable” distance was accurate, but not very quantitative. A clearer statement of the

degree of nonequilibrium relates the fluid and chemical time scales

Consider a steady state inviscid species equation. From Equation (1.6),

dp;u) =W;
ox (1.17)

This may be non-dimensionalized as before with freestream conditions.

3(Pi“)‘ RnWi.ref ir* iy ®
= W,‘ Wi .
ox* Pl v (118

Here, ¥ is a form of the Damkdéhler number and relates the chemical reaction rate 1o
the bulk fluid motion. The reference reaction rate, Wi er, was evaluated at conditions
downstream of a normal shock. As 'V increases, the chemical length scale shrinks until

- identical equilibrium modeling describes the flow. Similarly as ¥ approaches zero the flow

becomes progressively more frozen.
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1.3 Chemical Effects in High Temperature Air

With the governing equations for a general nonequilibrium chemically reacting gas
mixture completely outlined, we next exar uae how they model a known system. Moreover,
the chemical composition of high temperature air will provide a datum by which to judge the
resuits of later computations. For equilibrium air, the species equations reduce to the

equivalent Law of Mass Action form.

0.8

Mole Fraction

Temperature K

FIGURE 1.2
Composition of equilibrium air as s function of temperature at 1 atm pressure (1).

Figure 1.2 illustrates the temperature dependence of the equilibrium mole fraction X for the
five major constituents of air. The mole fraction of the /¥ species X; is defined as the ratio of

the number of moles of i, V;, to the total number of moles in the mixture N.

At atmospheric pressure, the system remains quiescent from a few degrees above

absolute zero to nearly 800 K. Over this range, rotation and translation are fully excited, and

14




the equipartition principle dictates that both modes participate in energy storage. At about
800 K, the vibrational mode begins to contribute to such storage, but overall energy levels are
insufficient to appeciably dissociate any of the vibrating molecules. Classically speaking, this
vibrational excitation alters the specific heat ratio - affecting such things as the relationship

between pressure and internal energy of a static gas.

At about 2000 K, these relatively benign effects change character. Molecular vibration
and collisions have now increased to the point where appreciable oxygen dissociates. Again
the specific heat ratio begins to change rapidly, except that now it varies more wildly, since

changes in temperature also bring about changes in composition.

By 4000 K, only trace amounts of O3 remaih; and N3 begins to dissociate. This
process continues until essentially only atomic species survive above 9000 K. At such
temperatures, the equilibrium constants favor atoms, and the diatomic species which do form
exist only long enough to dissociate again. Above this temperature, additional thermal energy
can only be stored by breaking down the electronic bonds holding electrons to the atomic

nuclei.

One interesting feature is the bubble of NO appearing between 2000 and 6000 K. As
background, consider the five basic neutral species reactions in the air system (below
9000 K).

N2+M & 2N+M
O2+M & 20+ M
NO+M ©N+O+M
NO+O & N+0O;
O+N2 @& NO+N

“ AW N~
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The last two exchange reactions (or "shuffle" reactions) are responsible for creating
NO in the system. Atomic oxygen collides with nitrogen molecules, forming NO which

dissociates more slowly than it is produced, shifting the equilibrium composition upward.

1.E+00 p———
E —
. c v TLiidd:
L o 1E02 e — 2+Mc—20+M
!l na L ‘ * N2+Mc—>2N+M
2 : S’ ***NO+Me—>N+O+M
% . 1.E-04 - ...-' "v = NO+Oc—>N+0O2
. &° ’
i n & J =+ 0+N2<—>N+NO
u ¢ s "
m 1.E-06 :.' "
§ ’
s /
N "
1.E-08 o ¢ ¢ + $ + ,
2000 4000 6000 8000 10000 12000 14000 16000 18000
Temperaturé K
FIGURE 13

Equilibrium constants for neutral species of air. (From Ref. 33.)

Figure 1.3 provides greater insight into the role of the exchange reactions. This shows the
equilibrium constants resulting from the ratio of the net forward to the backward rates of the
five reaction system. Note that at relatively lower temperatures, the shuffle reactions proceed
at rates orders of magnitude faster than the dissociation paths. At those temperatures, the
reverse rates tend to dominate both (4) and (5), and the NO produced by (4) reacts in (5),
tending to hold the overall level of NO nearly constant. Additionally, both reactions consume

atomic nitrogen, further depleting whatever trace amounts may exist.

Although completed at standard pressure, the composition plot (Fig 1.2) holds
qualitatively to quite low pressures. Lowering the pressure shifts the curves to the left,
raising the degree of dissociation at any fixed temperature. Finally, this figure provides some

reference state for the high temperature shock layers presented later.
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2. Modeling High Temperature Air

The gas model developed to describe high temperature reacting flow extends the concept
of a finite rate ideal dissociating gas (11, 23) to include both coupled and uncoupled systems.
While capable of predicting the essential physical phenomena, this model introduces a
minimum of algebraic complexity. Strictly speaking, it is reasonably accurate to 9000 K, and
presently includes only electrically ncutrél species. Nevertheless, Chapter 6 presents evidence
which demonstrates accurate modeling of flows where small portions of the shock layer

include much higher temperatures.

After examining mixture thermodynamics, attention turns to the formulation of chemical
source terms and details of the chemical modeling. Although the focus is on air chemistry, an

extension to general mixtures is straightforward.

2.1 Thermodynamics of a Mixture, of Ideal Dissociating Gases

The relationship between thermodynamic quantities in a system relies on the details of gas
behavior on a molecular scale. The primary simplifications in the present modeling concern
internal energy storage within molecular species. A single temperature characterizes all internal
modes since the vibrational mode follows Lighthill's "half excited" assumption. In 1983, Park

et al demonstrated that this assumption accurately predicts static enthalpy over the range of tem-
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peratures where vibrational excitation is present (30). Figure 2.1 reproduces this work,
comparing the static enthalpy and vibrational energy of Lighthill's model with a more accurate

modeling (14). The indication is that only a small error exists over much of the shock layer.

10

T

— Rigorous Air Model (Hilsenrath, 1964)
«—- Half - Excited Modcl (Lighthill, 1957)

2 L 3
Vibrational Contribution
S e e 1
0 t t t + + '
2000 2500 3000 3500 4000 4500 S000
Temperature (K)
FIGURE 2.1

Energy level comparison of equilibrium air between half-excited model and more precise
model of reference (14) (reproduced from ref. (31)).

Pressure
For ideal gas mixtures, Dalton's Law of Partial Pressures states that the total pressure is

the sum of the contributions of each component.
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R
= is=T
P ;pm‘ .1

Here, the density of the ith species, p; , is related to the total density by

p=2 pi
s

(2.2)

Since the law is purely mechanical, it remains unchanged in nonequilibrium flows.

Intemal Encrgy and Enthalpy

The overall internal energy,E, for an inert mixture is the sum of the component internal

energies.
E=YE
5
Here the tilde indicates that reactions are absent. The mixture enthalpy is

;=;‘E;+%

making the total internal energy per unit volume of a mixture

= z&)
¢= ‘E T3P (2.3)
With this definition, the total enthalpy becomes
+p
hy=6XP
p (2.4)

If, however, the mixture is chemically reacting, the internal energy, E, must track the encrgy .

absorbed during dissociation. That is:

R
E=Y E- Y S5 O;
A (2.5)
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In which ODj is the characteristic temperature for dissociation of the jth molecular species.

Equation (2.5) implies that a mixture of only atoms will have zero energy at zero Kelvin.
While convenient for some applications, this datum is not unique. Moreover, since at low
temperatures air is virtually all molecules, we reset the datum to zero internal energy at absolute
zero and 100% molecules.

E=)Y Ei+ 2& %Gpj(l-cj)

s j="s (2.6)

Energy Storage
Expressions for the internal energy of each species, E;, stem from the kinetic theory of
gases. Each species stores %R,'T for each equilibrium degree of freedom.

ETrans =

Ra,T , ERot = Ry,T, and Evjp = Rp,T

N W

However, since the current model assumes vibration is only half excited, Ev;p= 1r AsT.
y 7 2

In a system with atomic species, A, and molecular species, A2

Atomic Species: E = ETpgns = % RAT
Molecular Species:E = ETrans + ERot+ Evip = %RAZT + Ry,T + % Ra;T =3 Ra,T

For the specific mixture of the five major species in high temperature air N, O, NO, N2, and

O3 (species 1-5 i'cspectively), thc internal energy becomes

¢36p, , caBp, 56D
E = 39!1'(%#1- %"7!22'+ﬁ}3-+_i+_}_ +9K(gbl+——1-+—l ( st s s

2.7

As a check, consider the special case of a symmetric dissociating gas, A2 <> 2A, with charac-
teristic temperature &p (i.e. with c2=c3=c5=0,c4=1-cy, and ms =2my),

E = Ra,(3T + ¢,6p)
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This is precisely Lighthill's result for the same case (36).

Finally, the integration scheme uses the total internal energy per unit volume, based on

combining (2.3) and (2.7)

[ 90 804 9D ’
39"(2"11 %7"22- m3 m4 )+9‘( 3: + my * ms5

(cseb, +C490. cseo,)+% ’8)
m4 ms (2.

2.2 Law of Mass Action

The "half excited” assumption corresponds to certain behavior of the molecular partition
function. This is expected, since those functions statistically describe how the energy storage
modes of a particle behave. However, Lighthill's original work considered only symmetric
diatomic gases, and a model of the complete air system must extend the analysis 1o include

asymmetric particles such as NO.

For the general dissociation reaction, AB <> A + B, the number densities measure

Nap = Total number of nuclei per unit volume (including those in both
atoms and molecules)

NA = Number of A atoms per unit volume

NB = Number of B atoms per unit volume

NAB = Number of AB molecules per unit volume

Within this present framework, the total number of nuclei remains constant.

2NA8 + NA 4+ NB = N,up (2.9)
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From statistical mechanics, the law of mass action for this general system relates the number

densities to the partition functions of each species and the change in zero point energy, Agy, of

the reaction.

MXL:; = QAQBB e-AE’KT
N QA (2.10)

The change in zero point energy divided by Boltzman's constant, x; is the characteristic tem-
perature for dissociation, referred to earlier as 6p.
We may now define the degree of dissociation as the ratio of particles of a particular type to the

total number of nuclei available.

A B
oz gp=N"
ATNas' P Nas @.11)

When combined with a statement of nuclei conservation,

NA":(l—aA—aB}—“-Nz 2.12)

we may define a4p as

AB
cairn2(l -4 - -_-ZM_
A8 2(1 - as — ap) Nag 2.13)

Note that in single reaction systems with stoichiometric coefficients, little distinction is usually

made between the degree of dissociation, a;, and the mass fractions, ¢;. However, if other

kinds of particles are present, the degree of dissociation differs from the mass fraction, as will

be detailed. For now, simply note that by definition a4 + ag + a4 =1,butcs + cg +cag

is not unity in the pfcscnce of other particles.

Repeating the law of mass action in terms of the degree of dissociation and the total

number of nuclei, N4g ,
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oap __2'0° e
oAB ZNABQAB (2.14)
These nuclei have an average mass defined by

o=t mpN4B +m,NA + mpNB
Nag (2.15)

m' remains constant for any reaction at any specific time provided that the reactants exist at
stoichiometric ratios. Moreover, for any reaction in a multi-reaction system, we may define a

density, p', derived from the fraction of the mixture's density that is actually involved in any

specific reaction.
p' = p(ca + cp + caB) (2.16)

From these above two defiaitions,

p'v
Nap =—
AB =T 2.17)
and the law of mass action becomes
onop . _m' 0'0° .air
asg  2p'V QAB (2.18)

Notice again that since @4, ag, and a4 represent the degree of dissociation, this form applies

for systems containing other (possibly inert) reactions.

In the very special case of asymmetric dissociating reaction with no other species present

and reactants at stoichiometric ratios, Equation (2.18) becomes

_0'3_=(.nL(.QAi 6T
I-a 2Vor) » (2.19)
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The contents of the parenthesis on the right side have units of mass per volume. Moreover, for
nitrogen and oxygen systems, the ratio of partition functions remains remarkably constant
below 9000 K. By defining a characteristic density, pp , we may approximate this term with a
constant, thus avoiding the added complexity of evaluating partition functions. It is easy to
show (36, pp. 159) that this simplification is equivalent to the "half excited" assumption stated

earlier.

o {stic Density of / ic Molecul

Returning to the boxed Equation (2.18), we seek to define a characteristic density for this
asymmetric reaction. However, the form of (2.18) is unfortunate since m' will vary when
other reactions are present. Specifically, in a general mixture nothing insures that a4 will
equal og , and thus there is the possibility of an excess of particles which will remain inert.

Any attempt to define a pp parameter will result in a quantity which varies according to n'.
In order to reexpress f"— examine the definition of p' (2.16). Recall the mass fraction of
the ith species is the total mass of i divided by the total mass in the system,

AN
p' = plca + cp + cap), but ciE—ﬁ‘-I-V——

2 miN/
L
where

-—c- . .
M-ﬁ;mw

Substituting for the mass fractions,

maNA + mgNB + m,pNAB
2 mi
s

p=p
(2.20)

in a mixture with s components. The total number of nuclei in this system stems from

Equation (2.9):
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Nag = mABZm'N‘ A;m,‘Ni +%;m;Ni

(2.21)
We now re-form the ratio & from (2.10) and (2.16).
' -
p p(_A_ + _.E. 2cap )
ms mp -~ map (2.22)

Defining 71 as the average mass per nucleus in AB molecules,

7 my ;mﬁ ___mzﬂﬂ

and multiplying both the numerator and denominator of (2.22) by this quantity results in

l’l’l'_ - z‘z)g.{%) ) P[CAB + m'(;%; %—n-g-]

W
o IR

(2.23)

m is constant for any reaction irrespective of any other inert or active species present. Thus,

the variation has moved from m' into "p, while simultaneously re-expressing the ratio of

(2.23) in terms of the (more common) mass fractions.

To demonstrate the value of this step, re-examine the law of mass action. Equation

(2.18) becomes:

o717 m_Qi_}aJ

CAB 2V pAB (2.24)

Following Lighthill, the term in the bracket may be defined as a characteristic density for disso-

ciation of AB, pp,p.

pp= X o’
2V pas (2.25)

This form reduces identically to that presented by Lighthill in 1957 for a symmetric diatomic

gas.
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Values of op_and €p
Figure 2.2 displays plots of Equation (2.25) for the major diatomic species in equilibrium

air below 9000 K. Reference 36 provided the values used in evaluation of the partition

functions.
@®- Nivogen Oxide O= Oxygen 8- Nitrogen
180.00 . I l
16000 + //_\\
1ow { \
> . g /——‘\‘\‘ b
§ Ok e '
2 "‘E 100.00
2 < 3
S 5§ %00 §
: :
E 6000 +
) s
40.00
20.00 .:7//‘_’**\’*‘
000 +
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Temperature K
FIGURE 2.2

Characteristic density,pp for the three major diatomic molecules in high temperature air.

Table 2.1 summarizes values of pp , and &p for N2, 07, and NO.

TABLE 2.1
Characteristic temperatures and densities for dissociation of the major molecular species in equi-
librium air below 9000 K.

Characteristic Temp. (K)
Characteristic Density (kg/m’)
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2.3 Finite Rate Expressions

S ic Di e
Freeman (11) approximated the general chemical rate expression by separating the law of
mass action into forward and backward components (37, pp. 232). For an ideal dissociating

gas with law of mass action

a? _Pp,elr
l-a p (2.26)

the rate of dissociation 4%, is:

de = cTp|(1 - oz)e-en/T——'o—oz2
dr | PD (2.27)

which describes the production of atoms. Notice that for symmetric diatomic gases with no

other species in the mixture, &= Ca.

iX Di
The law of mass action for asymmetric molecular dissociation with a half excited
vibrational state (2.24) may be re-written in terms of the characteristic density and degree of
dissociation.
asop _FPD -6t
@aB p | (2.28)

The analog of (2.27) is simply

_d—adﬂ = CT"p '&aAaB - aABe'a’b'
dt Pp (2.29)

which describes the production of AB molecules. Note that p=Y; p; as in (2.2).
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Equation (2.29) describes AB production as a function of the degree of dissociation
instead of mass fraction. Since the species equations express W in terms of the mass fraction,

(2.29) requires reformulation.

Recalling the definition of a4 from (2.13) and then substituting for N and N4z leads to .
dad B _ 1 dcap

[CAB + +ﬁ(;c':—+;—:)] ds

Re-arranging to express the mass fraction in terms of the degree of dissociation gives

dCﬂﬂ___pdaﬂQ
ad p d& | (2.30)

after substituting for p from (2.23).

For the symmetric diatomic casc% reduces to unity, c4 +cg +c4g = 1, and mg = mg.

Equation (2.30) collapses to the rate expression (2.27).

Finally, for the general dissociative reaction, AB > A + B, in a mixture with many

components

m = CTnp iaAaB _'aABe"Q);[‘
dr PD (2.31)
This simple form appears to rely on fortuitous cancellation and careful definition of p. How-
ever, by expressing the dcgrcé of dissociation fn terms of mass fractions through the number

densities M and total number of nuclei Ngg, one may show

asp = %CABo ap = %%CA» and ap= %%CB

(2.32)

Substituting back into (2.31) expresses the rate of change of species mass fractions as direct

functions of these mass fractions of the reactants and products.
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Q.
o

—p“CACB

_ [ ine-®
_—CT"p Cape’ /r‘(mAmB eo 7 (2.33)

Here, again, m is the average mass per atom in the AB molecule.

Elimination of i ion

With the species production terms formulated, attention returns to the governing
equations. In general, as many species equations exist as species. However, for a system
with only two types of nuclei, conservation permits discarding two differential equations -
slightly reducing computational requirements and effort. In the present work, with the species
N, O, NO, N3 and O, numbered 1-5 (respectively), we elect to eliminate the last two species

based on conservation of atoms.

The simplification is a convenience. Moreover, since we presently consider only the air

system, the notation will refer to N and O directly, dropping the pretense of A and B.

Nitrogen nuclei: Ny =2NN:+ NN 4+ NNO
Oxygen nuclei: N =2N% + NO + NNO
Total number of nuclei: Nyo =Ny + Np (2.34)
Differentiating and re-organizing these equations leads directly to the rate expressions for

molecular nitrogen and oxygen.

dCNz dL‘N my dCNo)

dr dr mNO dt (2.35)
dco, _ _(dc )
d: mNO dt

In addition to the rate expressions, the concentrations of N2 and O2 need to be expressed as
functions of the other species. Taking air as 79% nitrogen and 21% oxygen by number (i.e.
Nn =0.79Nn0, No= 0.21Nnp) conservation of atomic nuclei yields

0.79 _SNo _
v =[5 my +021mg Mo ™~ N

(2.36)
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- 0.21 vl
€0:=|0.79my + 0.21mg _mNo| ™0 ~ 0

Non-Di jonalization of Rate Expression
Non-dimensionalization of the source expressions follows directly from the assumed
scaling (Table 1.1). In a mixture with only one reaction, the inviscid species conservation

equation in one dimension has the form

de; o C w;
{ i - Ly R =
—al + u—-——ax miT”p{[ F] [ B ]) —-‘-p (2.37)

in which [F] and [B] are forward and backward (i.e.: dissociation and recombinat. i,

dimensionless expression terms, as in Eq. (2.33), and C = Cgm; as shown in Ref. (36).

After rescaling this equation with the parameters in Table 1.1, the source term becomes:

W = "[Tﬁpz([F]-[B]}]‘ (2.38)
L y

Here, the star denotes non-dimensional quantities and @ is a non-dimensional rate parameter

defined by :

o = CiTrePreflee (2.39)
l m; Uref

The appearance of 77 in this expression is consistent with the reference mass appearing in the

forward and reverse terms. The generalization extends the classical definition of @ to include

systems with multiple, coupled reactions.
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2.4 Chemical Source Terms

Reactions Considered

The chemical source terms for any particular species results from the summation of all

rate expressions contributing to that species. The primary neutral reactions occurring in air

below 9,000 K are:

1) N2+M © 2N+ M
2) Oo+M & 20+M
3) NO+M & N+O+M (2.40)
4) N2o+O & NO+N
5) NO+O & O2+N

This system neglects ions of NO which may appear at such temperatures in small quantities.

These ions, and their associated free electrons, however, contribute primarily to charge

separation and electron densities within the shock layer, and are assumed to be of secondary

importance in the present study, which therefore includes only the neutral reactions listed

above.

Complete Rate Expressions

The rate expression for each reaction makes use of the species production terms of the

previous section (e.g. Eq. 2.35). The numerical subscripts on the properties in each of the

expressions below refer to the reactions numbered as in (2.40), and the subscript i refers to the

individual species in the mixture.

E ¢l.~Tm’Pi r 3
Rl=s g Oob__P 2
T oo, t|P
Y, P T™Mp; .
2m2 ] 5 PD,C% p
2 O3 T™ip; 1 —2
= p| m3y ) -6p,
R3=-5 ms LPD,(m1m2 cic2 — C3¢€ /f}p (2.41)
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O, p2e N g ) _l_( ¥ )
R4 == e ~CaC2\om +K -m—shich;c;

vl (o) alm
RS = s —C5C) s mi3m7 c;cz

These expressions for the non-dimensional rates of each reaction have been written without the

starred notation for clarity. Notice that the subscripts on &p and pp refer to properties associ-
ated with each reaction and its Arrhenius rate expression. Both of the exchange reactions
contain the equilibrium constant K. Finally, m for each reaction retains its previous definition
as the average mass per nucleus of the reactants normalized by the atomic mass of atomic

hydrogen.

Source Terms
The source term, W, , for any spccies follows upon summing the contributions from all
reaction rate expressions affecting that species.
W1 = Eidtﬂ: ml(—2R1 -R3-R4- R5)
Wy = 9(% = my(-2R2 - R3 + R4 + R5)

, _dp3
W3 = T = M3(R3 R4 + RS) (242)

Ws= d—(‘;i =m4(R1 + R4)

Ws = %:ms(RZ—RS)

As mentioned previously, Equation (2.35) eliminates the need for the last two source

expressions.
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2.5 Rate Constants

Unless specifically noted, all calculations completed for Part 111 use rate constants and

temperature exponents as presented in Reference 30.
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II AN ADAPTIVE NUMERICAL
METHOD

3. Numerical Integration of Governing Equations

Several levels of embedding removes all structure from a uniform initial mesh. Such
unstructured grids do not fit neatly into rectangular matrices and demand unstructured data
storage. A numerical integrator for such an environment should operate on a cell by cell basis,
dependent only upon information contained Within a single cell. This effectively rules out most

implicit schemes and focuses attention on explicit integration schemes.

This need for a compact computational stencil resulted in the selection of Ni's (29) finite
volume formulation of the classic Lax-Wendroff, explicit, time marching scheme. Pervaiz (33)
extended this scheme to include chemical source terms in 1987 and Kallinderis and Baron (16)
recently formulated a consistent viscous integration extension. The algorithm stores the state
vector at cell vertices and integiates each cell independently, requiring only cell-based

information, and preserving second-order accuracy at computational nodes.

This chapter briefly describes inviscid integration on 2-D cartesian meshes and includes
notes concerning chemical source terms, smoothing, and boundary conditions. For complete-
ness and convenience, Appendix A contains the additional equations for 2-D non-orthogonal
curvilinear coordinates (Appendix A-1), axisymmetric non-orthogonal curvilinear coordinates
(Appendix A-2), and viscous integration in non-orthogonal 2-D curvilinear coordinates

(Appendix A-3).
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3.1 Integration in One Dimension

Consider the one-dimensional domain of
Ax —P
L R Figure 3.1. The 1-D governing equation
system in strong conservation form is
i-1 i i+l
FIGURE 3.1
A one-dimensional computational domain. U=-F:+W 3.1

and the change at node { occurring after Ar is

dU;=Ur*1_U"=|U,Ar + U AL2+O(At3)'l
i 9 ) 3.2)

Dropping terms of third order and higher and substituting from Equation (3.1) for U; provides

the second-order total change at node i based on contributions at the ath time level.

2
8U; = AW — F ! + S-{Wo(W - F) ~[Fu(W - F,)l (3:3)

Equation (3.3) contains the Lax-Wendroff step and evaluates the second derivatives of the state
vector using the flux Jacobians Wy and Fy.

Uy, = WUU:—(FUUIL

The first and second terms in (3.3) contain the first- and second-order changes
to node i . Ni's primary contribution involved reinterpreting these terms based on cell-
centered values of the state, flux and source vectors. To see this, recognize that the source

vector at i is

w.= W+ We
y 2 . (3.4)

Here W, and Wr represent cell centered values of W. Using central differencing

F =Fi+1 -Fio =®+1 —F,‘)+(F,'—F,'.1)
* 2Ax 2Ax 2Ax
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allows reexpressing the first parenthesis of (3.3) in terms of cell-centered values.

Ar(W - Fx)=%-(AUL+AUR) 3.5)

Here AU and AU, are the cell changes defined by:
AUL=W_ At —(F;_ - F)ﬂ
s Ax

At
AUgp= WpAt-(F; - F,'H)E

Similarly, we may recast the second-order term of (3.3) using these cell changes.

AITZ{WU(W - Fx)-[Fy(W-F)) = % {—‘%,Q(AUL + AUp) - [Fy(AUL + AUR)L

Defining the flux change and source change vectors

AFL=FyAUL
AW, = WyAU,

allows the second-order term of (3.3) to be expressed simply as

Al[ AW, + AWy + AFL—AFR]

2 2 Ax (3.6)
Combining Equations (3.5) and (3.6) to form the total change ati then results in:
At A & Ar
oU; = é—(AU + Kx_AF+ —Z-AW)L + %-(AU - EEAF"' ?AW)R a7)

This form clearly shows the origin of contributions to node i from both adjacent celis.
This propei'ty makes Ni's scheme very attractive for use with unstructured meshes. Changes .
to each node may be computed separately for each cell. Then all contributions to any node
simply may be summed according to Equation (3.7).
More precisely, with Equation (3.7) written as
8U;=1{su,, + 8U
4 2( L R;) (3. 8)
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the contributions to i from each cell

- Ap N
8UL, = (AU + 2 AR 2 AW)L
At LYs
Ug, = (AU QAR+ —Aw)
R Ax 2 R (3.9)

may be computed on a cell-by-cell basis. These distribution formulae make use of cell center

and nodal information only, fulfilling the stated requirement for only cell-based information.

3.2 Ni Scheme in Two Dimensions with Source Terms

In two spatial dimensions, the integration scheme closely resembles the one-dimensional

formulation. The governing equations now contain a second flux vector as shown here.

Upu=—Fx+G,))+W (3.10)

An analysis comparable to that of the last section leads to corresponding nodal change formulae

and auxiliary equations. On uniform cartesian meshes, like that in Figure 3.2, the change at

node i is
At At A
AUL + TAF 4+ T AGy + 7AWA)\
oU; b C +|AUp - i‘-‘x—AFB+ Z“ AGg+ %AWB)
— — U= % Y, N }
A 8 +{AUc - EAF c— EAGC + TAWC’
JaYs At ANt
+|AUp + —AFp—-—AGp + —AW )
( PTAT TRy P DJ(3.11)
FIGURE 3.2
A two-dimensional computational domain.
AGc = GyAUc (3.12)
AWce=WyAUc
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Rather than repeat the previous analysis to derive (3.11), we consider an equivalent finite
volume approach. This alternate derivation provides greater physical insight into the behavior
of the scheme. Here, we intend to examine the 2-D equations, and also show how the distribu-
tion formulae assemble the governing equations. The Lax-Wendroff scheme is second order
accurate in time and space. Ni's formulation (without dissipation) retains this order of accu-
racy at the nodes, despite the fact that each cell is computed separately. The advantage of this

property cannot be overstressed in the context of the present unstructured solver.

In Equation (3.9) the contribution to each node consists of primary changes from
neighboring cells plus or minus secondary corrections for the fluxes through cell boundaries.
In terms of a difference stencil at any node, it is clear that each cell on either side of a node
performs half of the standard central difference across that node and, when added together at
each node, these changes complete the stehcil. As a result, in the steady state, AU for any
particular cell may be non-zero, provided it cancels exactly with the AU contribution from its

neighbor at the nodes.

In keeping with a cell-based approach, the differential governing equation (3.10) should
be replaced by its integral form.

f U,dA +I(F, +Gy)dA =f WdA

The divergence theorem changes the integral of flux vectors into a loop

integral over the cell's perimeter.

58?1 UdAc +§ (Fay - de)=[ WdAc

Letting U and W take on cell-averaged values rids the far left and right terms of their integral

signs. For some cell C on the mesh shown in Figure 3.3,
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U.+-L§(de- Gdx)=W
Ac (3.13)

Over a short period of time Az Equation (3.13) predicts the first order change in C.

AUc =AW - f‘«f (Fdy - Gdx)
C

This form displays the nature of the original conservation
equations. The first-order change in any cell results from the
average contributions of sources within the cell and the flux
through its boundaries. Expanding the surface integral using

the midpoint rule gives

FIGURE 3.3
A two-dimensional computational domain.

AUc=Aaw-X

(E‘;—FL)()'. -y)- (9,;_(}_, Xj — Xi)
(3.149)

Close examination reveals that this equation reduces exactly to the “cell changes” defined
after Equation (3.5). However, the physics exposed by the conservation law of (3.13) offers

strong motivation for defining AUc in such a way.

With this in mind, return to the differential Equation (3.10). Substituting the Lax-

Wendroff step from (3.2) into (3.10) results in

A n
8U; =AU + —{AW;~[AF ) ~[AGy}, ) (3.15)

Here AU); and AW); are cell average quantities for cells A - D (Fig. 3.3)
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AU); = i{AU,‘ +AUp + AUc + AUp)
AW); = i—(AW,‘ + AWg + AW + AWp)

and the derivatives of the flux Jacobizas are

. _ 1/AFg—AF, AFC—AFD)
[AF), é{—g »AFc

1 = AGg-AG, AGc—AGD)
[AG), %{ + 88c

Back substituting Equations (3.16) and (3.17) into (3.15) results in

At At At
(AUA + EAFA+ ——AGA + —Z—AWAN
(AUB - %AFﬁ A AGp+ é‘.AwB)
5U; =
At A At
(AUC - gyAFc- £AGe+ ?ch)
At At At
+ (AUD + KX_AFD— Ay —AGp + ——AWD)J

which is exactly Equation (3.11).

(3.16)

(3.17)

(3.18)

Again, we see that each node receives a contribution from surrounding cells to complete

the differencing and preserve second-order accuracy at the nodes.

The sketch on the left of Figure 3.4 shows a schematic of the changes accumulated at

some node as described by (3.18).

The right side of this same figure presents the same information from a cell-based point

of view. Each cell distributes to its nodes and we may rewrite Equation (3.18) from this celi-

based perspective, giving the distribution formulae for the 2-D scheme.




s
N/ X)Q_
AN A

FIGURE 34
Schematic of changes accumulated at the i node in a two-dimensional domain.

' At At Ao ]
8Uc), = }‘-.AUC - 8Fc 3 AGe+ TaWc|
5Uc) = Lauc + %AFC- A rGe+ %ch
A At
8Uc), = JAUc + FaFc+ K AGe+ 7ch
“Uau —Map. M A&
SUC), 4 -AUC AxAFC+ Ay —AGc+ 3 AW (3.19)

Equation (3.19) implicitly assumes identical time steps for each of the cells. However,
for cells of similar size, local time stepping does not present a problem in steady state

calculations. The time-accurate work of Pervaiz (33) discusses these points in some detail.

In the preceding discussion AF, AG, and AW involve the product of the Jacobian
matrices and changes to the state vector. For finite rate reacting systems, these terms differ
from the original perfect gas modeling presented by Ni (29). Appendix B contains these
matrices for a calorically perfect gas (B-1), and the multiply-reacting, nonequilibrium gas
detailed in the previous section (B-2). For gas models with more elaborate modeling of
internal energy modes and energy transfer processes, these matrices may not always exist in

analytic form.
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3.3 Smoothing Formulation

Although the Euler ‘equations do not include any dissipation, the Lax-Wendroff discrete
approximation does. The scheme's truncation error introduces fourth-order terms into the
modified PDEs capable of dissipating weak waves. Figure 3.5 displays this property through
a plot of the amplification factor of the finite difference Equations (2). While this behavior may
provide enough damping to attenuate weak waves, it can be insufficient for the steeper
gradients typically found in hypersonic calculations. Additionally, the central differenced
algorithm permits odd-even (sawtooth) waves to remain undetected and these waves must be

damped.

1.00 0.00 1.00

Amplification Factor IGl

FIGURE 3.5
Amplification factor of the Lax-Wendroff finite difference scheme. (From Ref. 2.)

Smoothing Formulation in One or Tswo Spatial Dimensi

Referring to the cells in Figure 3.6 and taking o as the artificial dissipation coefficient, the

artificial dissipation at node i is

i1 — 2Uj + U;
Di=-c 62u =0 Ui-1 i H-l)
(- e

Or, in terms of the average value of the property « in each cell
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— A { ——b

B
A D= ‘l(ﬁA — Up) +‘g'(HB - Up)
Aé Aé
T 7 o7 >x
FIGURE 3.6
A one-dimensional computational domain smoothing
formulation.

This formulation extends easily into two dimensions. Referring to Figure 3.7, the dissipation

vector at ij becomes

K
_ . D C
D;J=0jg+zlﬁ{ (EA U..;)+(Ea U‘J)} 9
+(UC-U,~J)+(UD—U1'J) (3.20) A ’ B
>S5
FIGURE 3.7

A two-dimensional computational
domain smoothing formulation.

Defining
Ao N
= 0|—+-—
=0l )

and the smoothing contribution to the  node of any cell C as
D¢ = 1(Uc - U))

alters the two-dimensional net change to i (Eq. 3.11) as follows.

At AN At

( AU, +‘ A—x'AFA+ EAGA + ?AWA +Dg4

+{AUgp - ﬂAFB+ ~A—'-AGB + QAWB +Dp
N
AUp - 2 AR~ 28 A

+{AUc AxAFC AyAGc+ > AWc + D¢
A AN At

+ ‘AUD +—AFp-—AGp+—AWp + DD)

Ax Ay 2 ) (3.21)
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The shock fit approach removes the bow shock from the domain "interior,” and virtually the
entire flowfield is smooth by comparison. Nevertheless, the "smooth" region is still strongly
nonlinear and requires stabilization throughout. Placing the discontinuity at the boundary of
the computational domain effectively removes the need for alternate smoothing levels near and

away from discontinuities.

Criticism of smoothing operators stems from the fact that they modify the original set of
equations. To assess how the second difference smoothing operator alters the actual system,

examine the change at any node i in a one-dimensional domain.

i= l{AUB + —-AFB + ‘;’ Sawg + c——(“—“—"“—)}
_1_ _AL ar At (Uivy — U
_l i L +1|AUc - LaFc+ 2AW¢+0 (——-)
FlGURE 38

A one-dimensional computational domain 3.22)
for examining smoothing contributions.

This is Equation (3.21) for a single dimension. The first bracket contains the change to i from
B and the second contributes the change from C. Decomposing this equation further results in

a modified form of the Lax-Wendroff step (Equation 3.3).

Al2
= AW - F3) + ZA{ Wy(W - Fy) - [Fy(W - Fx)l, } +0Ar (U (3.23)

Equations (3.3) an (3.23) differ only by the smoothing term on the extreme right of the latter

expression, forcing us to examine the magnitude of the error introduced by this term.

oU; = [U,At +U,, ] +(68 U)At (3.24)

Here operator notation has been used to highlight the second difference smoothing. Since the

smoothing adds a first-order error to the change at i, o must be kept small enough to avoid

changing the value of the state vector appreciably. Fortunately, in smooth regions, the second
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difference of U tends to vanish and the scheme retains its accuracy even for moderate values of
0. Equation (3.24) also predicts the algorithm will contain the largest errors where flow

gradients change most rapidly. In practice o varies from 0.1 to 1.0 for hypersonic calculations

and from about 0.02 to 0.1 for trarsonic and subsonic problems.

Behavior of Smoothing Near Boundari

The form of Equation (3.22) demonstrates that the overall smoothing contribution to any
node results from taking the difference of two first differences. That is
(Mivr — i) = (i ~ wio1) = A ¥y~ Aui_y, = U1 — 2u; + Ujsy
Each cell contributes one first difference, forming the second difference when the changes from

both cells combine at any node.

Consider the special case of a linearly varying

property u across nodes i j, to k at the boundary.
Since the second difference measures curvature, it
should return a zero at any of these nodes. In

particular, the smoothing contributions from cells A

FIGURE 3.9 and B to nodes j and k are:

Variation of property 4 showing degeneracy of
smoothing operator near boundaries.

. - 3 = om :
at the interior node j; Dj=DA)j"'DB)i=(_2L+%)E=O (3.25)

oMt

Axan

at the boundary node k; ~ Di=Dp + 0 =(Z +0

Since the operator detects curvature and the line is straight, zero contributions are expected at
both nodes. However, only cell B contributes to the smoothing stencil at k, and a first
difference operator results. While the operator behaves correctly on interior points, it
degenerates along boundaries. Notice that the first difference operator appears as a direct result
of the boundary and is not related to the property variation.
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Generalizing, the modified governing equations take the following forms:

Oninteriornodes Uy + Fg+ G =W+ of83U + 82U
Along §=const. boundary Uy +Fz+Gp=W+ O(SEU + A,,U) (3.26)

Along n=const. boundary U, + Fg +Gp=W+ o{A;U + S%U)

Obviously, the first differences along the boundaries will create severe errors in flows with
large spatial gradients. However, since the second difference operator measures curvature, it
will remain small in such fields - provided the gradients themselves do not change rapidly.
Additionally, while the second difference operator is purely dissipative, the first difference

behaves convectively, significantly changing the nature of the smoothing terms.

Not smoothing in a direction normal to the boundaries avoids this error. Dropping the

first difference terms on the right side of Equation (3.26) results in:

On interior nodes U,,+F§+G7,=W+d(5éU +83,U)
Along & = Const. boundary Un+F;+Gp=W+ o(8§U) (3.27)

Along n = Const. boundary Up+Fe+Gp=W+ o(&f,U)

S ion Enthalpy S hi
Writing the equations as in (3.27) shows that the smoothing terms behave like source
terms in the governing equations. To minimize changing the physics of the problem, we

choose o to keep such "sources” small.

Without smoothing, the steady-state, inviscid energy equation holds stagnation enthalpy con-

stant. In one dimension

i + pum =0
or e
(3.28)




In the steady state this becomes
pu ko) _ 0
9 (3.29)

Any additional terms violates this adiabatic statement. For a nonequilibrium system,
enthalpy is representative of many modes and an altered stagnation enthalpy may lead to
unrealistic solutions. For example, if a nonequilibrium mode absorbs only 1% of the total
enthalpy, and the error in stagnation enthalpy is 1%, that mode's behavior may be totally
incorrect. Although the net effect will be small (only 0.01 A,), the outcome may mask the true
physics of the problem. Since hypersonic flows are characteristically high enthalpy flows,

these observations can have serious implications.

Errors iﬁ stagnation enthalpy have other, more subtle, effects. Consider the schematic in
Figure 3.10. For a stagnated, frozen, perfect gas, all enthalpy must reside in random particle
motion, and constant stagnation enthalpy implies constant stagnation temperature. When the
flow enters the shock layer at point b, it very nearly stagnates behind the normal shock. The
post-shock temperature at b’ jumps to within a few percent of T,,. In slowing isentropically to
the stagnation point ¢, T increases very little. However, this small variation is of primary
interest within the shock layer and even a small error in total enthalpy can appear large by

comparison.

body

O
o4 ..

FIGURE 3.10
Stagnation streamline temperature behavior in a frozen flow.
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The one-dimensional energy equation with artificial smoothing terms

a(P“ho)= 52
). )

(3.30)

no longer implies constant h,. Instead, the balance forces total enthalpy to vary in space in
accord with the non-linearity of the total internal energy. The term is small but the preceding

discussion indicates the possible consequences. In practice, a o level of 0.1 has a noticeable

effect on h, in the domain downstream of the shock.

To prevent this, a second smoothing term Dp,); adds a correction to the internal energy at
i to counteract the error produced in (3.30). This correction forces hy; toward /.., tending to
hold h, constant throughout the domain. Specifically,

_ ﬂh,(ho- - ho.')ei
- ho.

Dho)i
(3.31)

Here the subscript i denotes local quantities, U, is a stagnation enthalpy smoothing coefficient
and the ratio €/p,.. rescales the term for use in the energy equation. If h, = const = hy.. this
correction vanishes. In other words, the term contributes only if the standard second differ-
ence smoothing violates the physics expressed by the energy equation. Adding this term to the

energy equation (only) results in the following change in total internal energy at any node i.

At M At
(AUA + -A—x-AFA-F -A—;AGA + —Z-AWA +Dy+ D',_)‘- \
+ (AUB ~ A AFp+ X AGy+ X AWy + Dp + Dy,
- |
4
+ (AUC - EAFC_ X)'-AGC + ?AWC +Dc+ D;,.)‘-)
At At At
\+ (AUD + EAFD—- EAGD + 7AWD +Dp+ D;..)‘- J (3.32)

In practice a value of pp, two to three times larger than the overall smoothing coefficient u
suppresses total enthalpy variations to 0.1% or less. Use of such a large coefficient seems

reasonable since the term tends to restore the physics of the original governing equations.
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As a final comment on stagnation enthalpy smoothing, note that smoothing terms affect
all of the conservation equations. At any point in the field they effectively create mass sources,
momentum sources, etc.. Reference 7 shows that the second difference operator is globally
conservative for constant smoothing coefficients. Since the other conservation statements
(mass, momentum, species) are integral properties, the local sources and sinks globally cancel
due to the conservative nature of this smoothing formulation. On the other hand, stagnation
enthalpy is a point property, and while overall ene1gy may be conserved, any source term will

be incorrect at a particular point.

3.4 Numerical and Physical Boundary Conditions

A typical hypersonic shock layer maps from physical to computational space as shown
below (Figure 3.11). All flow in the domain passes through the shock ( ad ) and, in the steady
state, must be balanced by the out flow across the shock layer (cd). When the gas is assumed

inviscid, it slips tangentially over the body's surface.

£\ oufon

d

N
Ouft \

Shock / Inflow ow
Shock | N
Inflow N

} Body
c D \
Body t
N
N
N
N
- - - N
"3 CAANNANNNNNINNNNNNN
ypm Symmetry
FIGURE 3.11

Schematic of physical and computational space for blunt body computations.
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For symmetric two-dimensional problems, the natural symmetry plane allows calculation
of only half the domain. In the axisymmetric case, the stagnation streamline becomes the axis
of symmetry, again permitting this simplification.

Figure 3.11 contains four types of boundaries surrounding the computational mesh, and
all boundary nodes have physical cells on only one side. For cell vertex based schemes this

results in incomplete differencing across such nodes.

/ \ / \ Consider the boundary cells A and B in the

sketch shown to the left (Figure 3.12). The

/A\ / B\ nodes i, j, and k receive corrections §A and

e 3B from one side only. In other words,

\A'} . boundary nodes, such as these, receive only

two corrections, while interior nodes receive

FIGURE 3.12 four.
Edge cells in a node-based finite-volume scheme.

From a finite difference standpoint, the spatial derivatives make use of a central difference
operator at all computational nodes. Normal to boundaries, this operator becomes one-sided

and requires special treatment.

To prevent this degeneracy, imagine a second set of cells A’ and B’ outside the physical
boundary. These fictitious cells complete the central difference taken normal to the boundary
and permit upgrading of these nodes. In this figure, cells A’ and B’ contribute a change 34’
and 8B’ to j providing it with a total of four changes - just like an interior node. In the event
no better estimate exists, setting 84’ and 8B° equal to &4 and 8B results in first order accuracy

(since this is equivalent to a forward or backward difference).




Implementing this general treatment requires simply doubling the changes to each
boundary node. Each of the boundaries shown in Figure 3.11 presents a physical situation
which permits modification of this procedure to improve the accuracy of this procedure based
on knowledge of the physical boundary. |

Inflow / Shock Boundary
The bow shock forms the inflow boundary of the domain. This confines the domain to

points within the shock layer and avoids introducing undisturbed cells. Chapter 5 describes the

shock fitting procedure in some detail.

Symmetry Plane Boundary

The symmetry plane presents precisely the situation shown in 3.13. The imaginary cells
A’and B’ are simply mirror images of A and B. The boundary conditions for such nodes is

clear. Using the notation of Figure 3.12, the change at node j is:
8Uj = ZEUA)j + 25U3)j (3.34)

Since it is also a streamline of the flow, the normal velocity vanishes identically. This
recognizes no flow across the boundary and prevents the growth of spurious error and

sawtooth oscillations.
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Outflow

FIGURE 3.13
Schematic of outflow boundary in blunt body flow showing location of the sonic line.

Doubling the changes for the exit plane results in only first order accuracy across the
downstream boundary. However, for most configurations, the supersonic flow across this

plane does not permit the error to propagate upstream and corrupt the rest of the domain.

Solid Wall Boundary

Inviscid flow slips tangentially along the wall following the local surface inclination and
the body surface streamline. For low enthalpy flows, this boundary condition is easily imple-
mented. At each time étcp, one computes the total velocity at a body node, discarding the nor-
mal components. Alternatively, when integrating the cells along the solid wall boundary, one
may enforce a no-flux condition along the body surface. This prevents the face from con-
tributing to the flux integral. These simple treatments usually perform adequately. However,

the high-enthalpy flows presently under consideration require greater care.

In these flows - especially near the stagnation region - these treatments may lead to strong
transients during convergence, or extreme sensitivity to initial conditions. In reacting flows, or

gas models with muitiple internal energy modes, any error in stagnation enthalpy may lead to
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non-physical solutions. Clearly, discarding the normal velocity component throws away

energy. To avoid such enthalpy errors, it is better to reorient the velocity vector at each node.

FIGURE 13.14 .
Flow tangency condition for inviscid simulations showirg reorientation of the total velocity
vector.

The velocity vector V consists of the chrncnt (time n) values of velocity plus changes to this
vector 8V. After first computing this quantity at some surface node i,

Vil = Va2 + 57 (3.35)
with x and y components

@%=ul + 20u;
Uit= vl + 20v;

rotate this vector to the local surface slope inclination angle to preserve translational energy.

N = ~_ax3x ~3!3x
Uu; "‘agag +v,a§a€
I TTTIRSFTFY (3.36)

Finally, rescale the resulting vector to the same overall magnitude of the original velocity vec-

tor.

Vet (3.37)




At first glance, forcing the velocity véctors tangential at each body node may appear equivalent
to enforcing the no-flux condition on the surface. The nodal velocity will convect members of
the state vector parallel to the surface preventing these fluxes from contributing to the integral
performed upon each cell.

Certainly this is the case for both linear and parabolic bodies, but, upon more generally
shaped bodies, flow tangency at surface nodes may not entirely prevent contributions to the
flux integral. The cell's wall may not necessarily be at the same (algebraic mean) slope of the
corner nodes. While this is a higher order error, experience suggests that not enforcing a no-

flux boundary may degrade the initial convergence properties of the scheme.

Examine the integral expression for the changes to cell C.

AU) = A:wc-%‘c«f Fdy - Gdx )

(3.38)
The contribution to the loop integral over the south face is:
pu PV
pu’ +p puv
FAy, - GAX, =| puv |Ay,—| pvi+p |Axg
«pe +p) v(pe+p)
pu av (3.39)

FIGURE 3.15
No contribution to flux integral from surface face.




Re-arranging yields

p 0
pu PAy,
FAy; - GAI, =| pv (uAy, - VAX,) + -pAx,
phe 0
A 0 (3.40)

But, no-flux implies n ¢ V = 0 through the southern face.

nev =_(uAy:- vAx,) =0
AS

So, ulys—vax;=0 (3.41)

Equation (3.41) forces the entire first term on the right of (3.40) to zero leaving only the
pressure forces in the second and third elements of the flux integral to contribute to the integral.
0
' pAy:
FAys - GAI, = -PAX.
0 .
Y (3.42)

Applying Equation (3.42) during the integration step, reorienting the velocity vector by (3.37),
and doubling the changes to the nther members of the state vector by (3.37) insures correct

boundary treatments and avoids most problems with initial transients.
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4. Adaptation and Unstructured Meshes

The discrete equations only approximate the governing equations of inviscid, reacting,
supersonic flow. The Lax—Wendroff integration scheme neglects terms of third order and
above in both space and time. As a result, it may become necessary to increase the quality of
any given solution by increasing the grid's spatial resolution. However, since smooth and
slowly varying regions of the flow field contain little third order activity, refinement in those
areas adds little to the global accuracy of the solution. In more steeply varying regions,
however, the linear and second order terms in the FDE's do not permit adequate flexibility to
resolve the physics of compressible flows. As discussed previously, this situation results in
the largest numerical errors where the flow gradients vary the fastest. Unfortunately, it is

precisely such physical structures which often dominate a flow's behavior.

Grid adaptation attempts to resolve this disparity by either re-distributing or embedding
nodes to improve resolution of flow features. References 9, 35, and 7 contain discussions

comparing the relative merits of both approaches.

Originally developed by Dannenhoffer and Baron (6), the technique described here
refines a solution by embedding finer grids in response to flow features detected on coa:er
grids. While this method reliably detects these features, its real strength is the ability to embed

several grid levels in arbitrarily shaped regions during evolution of a solution.
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In a hypersonic shock layer, one expects large species gradients after a chemically excited
flow passes through a strong bow shock. In order to resolve these gradients, the chemical
relaxation length cannot be much smaller than about one percent of a local cell dimension. This
effect also was documented by Park (30) who described it in terms of the mesh Damkdhler
number. Such near equilibrium flows present significant computational difficulties due to the
small length scales. Although it is tempting to consider identical equilibrium modeling, the
rapidly varying chemical relaxation length demands a nonequilibrium calculation as the flow
continues through the shock layer. Dissociation, for example, absorbs much of the flow's en-
ergy and may change the chemical length scale by sévcral orders of magnitude. In addition to
providing greater resolution of the relaxation zone, grid adaptation helps to resolve behavior

near internal shocks, expansion fans, sliplines etc..

Note that the bow shock forms the inflow boundary and the domain contains no
freestream cells. All computational cells lie in "disturbed” regions and contribute to the
solution. Thus, shock fitting performs a somewhat similar function as adaptation. Moreover,
since the blunt body domain is narrowest near the stagnation point, the shock layer shape
automatically clusters nodes near the nose during the initial grid generation phase. As a result
we expect a reasonably applicable coarse mesh, and the adaptation serves to tailor the grid by

further refining structures within the shock layer.

4.1 General Procedure

Adaptation greatly increases the quality of a given solution with modest additional
computational effort. The results published by Baron, Dannenhoffer, Kallinderis, Pervaiz and

Shapiro (6, 17, 33, and 34) demonstrate this quite clearly. Often, equally resolved solutions
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without embedding must use globally fine grids and are too expensive to compute, even to

benchmark a particular solution.

This added efficiency comes at the expense of coding effort. To some degree, the
perceived complexity of coding an unstructured, adaptive domain prevents the widespread use
of adaptive techniques. Here we describe a simple (but effective) adaptive algorithm.
Additionally, the final Section (4.5) stresses the ease of implementing adaptation routines in a

reasonably efficient manner.

The basic algorithm contains three steps:

i. Detection: Examination of the flowfield in search of flow features.

ii. Division: Dividing large cells into smaller cells to create new cclls and
nodes.

iii. Pointer Updating: Absorption of new cells and nodes into the existing data
structure

While the procedure described here is similar to that presented by Dannenhoffer (6) and the
spatial adaptation by Pervaiz (33), the implementation is believed to be less complex than
either. As a result it lacks some of the subtler features of these previous works. Nevertheless,

it works well in practice.

4.2 Detection of Flow Features

Detecting features in a flowfield typically requires consideration of threshold values,
differences in computational space, and independent detection parameters. The suggested
scheme examines one or more independent properties throughout the domain and evaluates
either first or second differences. Then, after normalizing by a convenient rule, the algorithm

tags cells containing differences above a certain threshold for refinement.
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Feature detection is not a unique procedure, and while it is relatively simple to design a
system capable of trapping some given feature, designing a detector to trup all interesting or
important features is a much more difficult task. It is difficult to precisely define “interesting or
important.” More importantly, most flow features do not have clearly defined "edges,"” making

threshold selection somewhat arbitrary.

Figure 4.1 indicates some of the expected flowfield structures. These features result
from both fluid dynamic and thermo-chemical phenomena and all exist to varying degrees in
most hypersonic flows. The inviscid Euler equations predict the entropy layer and expansion
fan in supersonic blunt body flows for gases with and without internal degrees of freedom.
The nonequilibrium features arise as a direct result of a real gas incorporating into the

governing equations.

Shock

Nearly Frozen
‘? fz low

Nonequilibrium Flow
B Stagnation Poins (Equilibrium) _ . __

FIGURE 4.1
Some flow features in hypersonic, real-gas, blunt body flows.
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Selection of Flowfield Indi

In order to separate the gas dynamic and chemical features, we search for flow variables
which respond independently to fluid and nonequilibrium chemical structures. As an element
of gas flows through an expansion fan e.g., p, T and p all decrease monotonically. The
smooth behavior implies small second differences, indicating the benefits of first differences
for detection. First differences furnish a slope per cell. Over a typical blunt wedge, p, T and p
tend to be constant in both the stagnation region and along the flat body surface downstream of
the expansion fan, and differences for any one of the variables will correctly identify the
feature. T and p respond much the same to an entropy layer and either of those properties
would identify this feature. Reference 7 lists several gas dynamic features and evaluates

criteria for locating specific structures.

For the features in Figure 4.1 the choice of a best parameter to identify the fluid dynamic
structures is not crucial. Density was chosen since it is a state variable and mass must be
conserved. Moreover, since it is a primitive variable, integration yields a direct value without
auxiliary equations. As a result it is less prone to spurious errors than are calculated quantities

like pressure or temperature.

The choice of nonequilibrium parameters depends largely upon the internal modes
included in the gas model. In general, these modes act independently and on different physical
scales, and each requires its own independent parameter. For dissociating and vibrating gas
models, both species concentrations and vibrational temperature should be considered as
independent parameters. For cases where all nonequilibrium modes are chemical, the reaction
rates associated with production of different species vary greatly and result in different
reactions occurring in various parts of the domain. For such flows, differences in all

independent species indicate chemical behavior along the various reaction paths.




Of course, the most important criteria that a flowfield indicator must satisfy is
independence. Since pressure, temperature, and density all respond to an expansion fan, any
one of them would identify the feature. Interrogating more than one is unnecessarily
expensive. However, through that same expansion fan, the chemistry will often tend to freeze
out and display little variation. Since it responds to an entirely different class of flow feature,

species concentration behaves as an independent parameter.

Since cells spanned by large differences (in computational space) divide as the adaptive
process continues, the procedure drives the solution toward uniform differences in
computational space. Embedding smooths out variations in computational space. The first and
second order terms preserved by the Lax-Wendroff differencing permit tracking of the
governing equations up to the second derivatives. This smoother domain, with its smaller

higher order derivatives lends itself to more accurate computation of the state vector.

i® ~-O-- &° For a general cell considered by a feature detector, comer

nodes 2, 4, 6 and 8 always exist. The midface nodes 3, 5,

’ ] 1 1 l . . .
QO , O s 7, and 9 may exist if any adjacent cells are already divided
T_. & The difference in the £ direction is
S
o—or—e [*]LLLL
ils i
FIGURE 4.2 deci

General undivided cell.

where p is density and ¢; is a nonequilibrium parameter (i.c. mass fraction of the ith species).

| 2]-e)

Similarly the difference in ) is

A rational definition gives the overall change in any cell; ¢.g.

61




sp =V (5epf +(8npf @.1)

Ac;= '\/(SgCi)z +(5n‘-'i)2

These definitions could easily be biased toward € or 17 by altering the exponents under the

radicals.

The magnitudes of the differences are important primarily for comparison with other dif-
ferences, and should be normalized. Popular choices for reference levels include the statistical
mean, mode, or maximum value. Choosing the maximum value, Ap max and ACimax+
conveniently bounds the variation of flowfield indices between zero and one. Obviously, the

reference choice is not unique and most parameters work equally well.
Adaptation Maps and Thresholds

After computing the refinement Acy
parameters for each cell, it is helpful to
preparc a map as shown (Fig. 4.3). (The

magnitudes implied by the positive branch of

the radical in Equation (4.1) actually collapse

the map to the 18t quadrant.) This example

shows a map for two parameters. In general,

such maps contain as many dimensions as

] FIGURE 4.3
there are adaptation parameters. An adaptation map based on two parameters.

Cells containing little or no variation will cluster near the origin, while cells within or near fea-
tures plot turther from the origin. Since the two parameters should be independent, we antici-

pate little activity along the 45° diagonal Ac; = Ap. Clustering along such a line would indicate

a feature being tracked by both parameters, and thus parameters which do not respond

independently.
The adaptation parameter measures the distance from the origin to any point on the map,
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AC =V(ApP +(Acif (4.2)

and the scheme marks a cell for division whenever AC is greater than some threshold, Tagap.

For n adaptation parameters, AC becomes a radius in n dimensional space, and Eq.(4.2)

generalizes to

AC =/ (Ap)P + Z (AciP (4.3)

Again, adjusting the exponents under the radical weights any parameter accordingly.

Figure 4.4 presents an example of an actual adaptation map computed for a relatively low

enthalpy Mach 5 flow with a simple dissociation reaction (A2 + M & 2A + M) and illustrates

many of the features discussed above.

FIGURE 4.4
Adaptation map for Mach § flow showing polarization.

Since the plot exhibits considerable scatter, it is fair to say that differences in various

r:2tons remained relatively benign with respect to one another. More precisely, the chemical
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and density gradients are distributed relatively evenly throughout the field and not confined to a
few isolated regions. Since nearly all cells have some species and density variation, it is clear
that the reactions in the domain did not occur over scales very disparate from the physical scale

of the body. For example, the dissociative activity did not occur solely adjacent to the shock.

The polarization of these data demonstrate that atom mass fraction and density are
responding independently as intended. This polarization cannot be overstressed and
demonstrates that each of the adaptive indices responds (independently) to its own type of flow

features.

Density
4 r Figure 4.5 examines this behavior in more

A S B detail. Here a mock adaptation map shows

Ac, "$*  all cells having AC 2 0.75 tagged for divi-

ACima c m 8

sion. Cells in region A demonstrate such ex-
treme nonequilibrium that they will be
adapted regardless of their density behavior.

Typically, cells in this area lie in rapidly re-

0 Ap 1 laxing flow regions. Conversely, cells in D

AP show large density differences, but little

FIGURE 4.5
Behavior of a general adaptation map.

chemical activity. As the flow expands out of a stagnation region and around a body, the
density drops rapidly, making it difficult for various reactants to locate collision partners and
effectively turning off the chemistry. Indicative of rapid variation in both parameters, region B
contains few cells in practice. However, if the fluid dynamical parameters depend strongly on
the degree of nonequilibrium, cells may appear here. This often occurs in gases such as ni-
trogen where the dissociation energy may comprise a significant portion of the flow's total en-

thalpy. Chapter 7 details these effects more thoroughly. Finally, region C contains cells which




adapt due to contributions from all indices. Note that an actual map (e.g. Fig. 4.4) contains no

cells in either region 8 or C.

To address the question of which cells adapt due to which parameters, consider the Fig

4.6 sequence below.

FIGURE 4.6
Adaptation based on different parameters

These figures contain grids for hot nitrogen flowing at Mach 5.66 over a blunt wedge.
Since the freestream is 2390 K, considerable chemical activity occurs. Using p as an adaptive
index captures the expansion fan and developing entropy layer, while concentration differences
identify the chemical relaxation. Due to the strong coupling as the flow tends toward

equilibrium at the stagnation point, both indices define this region.

Threshold Selection
Often great debate surrounds the topic of what constitutes a "feature.” This may result in

claborate schemes for threshold selection (seé for example (7) and (33)). In practice, however,
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the question is not critical and a relatively broad range will adequately capture flow physics.
Different thresholds adapt different numbers of cells, but both can capture the feature
reasonably well and small changes in "good" threshold value should not radically alter the

adaptation pattern.

As an example, increasing or decreasing Tagapt by 10% from the 0.75 level in Figure 4.4
would have little effect on the ultimate number of cells divided. However, if located within the
"crotch” in the map, slight changes in value would produce large changes in the size of adapted
regions. In fact, were Tadapt reduced to below about 0.4, the arc would cut arbitrarily through
the data based on meaninglessly small differences in adaptive indices. The resulting embedded
grid would suffer not only from ragged interface patterns but also from problems with islands
and voids. Threshold values for shock fit problems typically range from 0.6 - 0.7 since the
shock fitting has eliminated freestream cells, while those for approaches that include freestream

cells are smaller by approximately a factor of two.

Figure 4.7 traces an adaptive sequence on a Mach 12 flow over a blunt wedge in air at an
altitude of 45 km. Oxygen dissociates noticcably but the stagnation enthalpy is insufficient
to dissociate appreciable amounts of nitrogen. These maps plot normalized differences in
oxygen mass fraction against normalized density differences. For this 2-D example, the body
size is such that the reaction completely relaxes in about 1% of the nose radius, producing very

stiff, near equilibrium, behavior near the shock.

The first part of the sequence (4.7a) shows the adaptation map for the original grid on the
left and the adaptation resulting from Tadap = 0.65 on the right. Since the chemical behavior is
severe, only 1 row of cells extends along the vertical axis, these cells corresponding to the
string of data extending vertically on the map. Additionally, the scheme adapts cells containing
large density differences. By removing the extremum, this process effectively spreads out the

remaining pile of cells. After re-converging the solution two orders of magnitude, the adapta-
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tion map of 4.7b is essentially a close-up of the original map and reexamines the field after one
level of embedding. Notice that the shock cells still span the largest chemical gradients - i.e.

4%

an

Figure 4.7
Adaptive sequence on a blunt nose.

the reaction is still buried within this first set of cells. The differences in density, however,

exhibit more scatter, are more evenly distributed across the abscissa, and a few cells still
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contain large differences. Subdividing this map with the same 0.65 threshold value results in
the grid to the right. Here we see two levels of embedding indicating the relaxation zone,

entropy layer and expansion fan.

Figure 4.7c depicts the map after converging on the doubly embedded grid. The cells
are now evenly distributed across the abscissa and none still contain extreme density
differences, demonstrating that the density varies smoothly in computational space. Only one
line of cells still contains severe chemical behavior, indicating that the majority of the relaxation
still spans only one cell. Notice, however, that this string of cells demonstrates little variation

in density. The adaptive process has separated the adaptive indices.

The last two plots (Figure 4.7c) show the adaptive map after a third adaptation. Here the
abscissa is completely diffuse and only shock cells contain large chemical gradients.
Examining the actual chemical behavior, we see that despite these large differences across the
first cell, the grid completely captures the chemical relaxation. Moreover, the initial linear
decay contains little if any third order truncation error making further adaption pointless (and

expensive).

4.3 Unstructured Grids

The mechanics of adaptation revolve around the use of unstructured grids. The addition
of adaptation to any unstructured solver is usually straightforward. An unstructured grid
should not be considered a 2-D net of cells, or even as nodes with typical i, j addresses.
Instead the grid is simply a collection of cells with some explicitly defined "connectivity"

relating the cells to the physical domain.
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An unstructured solver operates on each cell
independently. This fact alone rules out most implicit
integration algorithms. Ni's (29) scheme works well
because the calculation proceeds on a cell by cell basis and
still provides second order spatia: accuracy at the nodes.

Moreover, the line integration is quite tolerant of misshapen

cells and retains its accuracy for reasonably large degrees of FIGURE 4.8

skewing and stretching (7). i cell in unstructured domain.

Applying the integration scheme of the last chapter to the cell in Figure 4.8 requires:
i Geometrical information describing size, shape, etc..
ii. The ability to locate neighboring cells for any node
iii. Knowledge of nodes which define the cell's boundaries.

Each node receives a unique node nwnber in lieu of a more typical i, j address permitting a two

element geometrical pointer to locate each node in physical space.

GEOM(1, node number) = 1%t coordinate in physical space
GEOM(2, node number) 2M coordinate in physical space

Since the calculation proceeds cell-by-cell, we need to determine which cells surround any

node. The neighbor pointer contains four elements for each node

NEIB(1, node number) = SW cell number

NEIB(2, node number) = SE cell number 4 3

NEIB(3, node number) = NE cell number ®;

NEIB(4, node number) = NW cell number 1 2
FIGURE 4.9

Cell numbers surrounding a -0de.
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If the node is along a boundary, certain cells may not exist and this pointer receives a zero

value.

Once inside any cell, the cell pointer locates the nine ncdes defining its boundaries (Fig.
4.8).

Central node number
SW node number

ICELL(1, node number)
ICELL(2, node number)

ICELL(3, node number) S  node number
ICELL(4, node number) SE node number
ICELL(S, node number) E  node number
ICELL(6, node number) NE node number
‘ “ELL(7, node number) N  node number

NW node number
W  node number

ICELL(8, node number)
ICELL(9, node number)

Again, if a node does not exist, its location in the cell pointer receives a zero.

These computational structures make clear the advantages of the integration scheme as pre-
sented in the previous chapter. By formulating "cell changes"” and "distribution formulae," we
may apply this node-based scheme in a completely unstructured manner on general moving or

stationary grids.

In addition, other pointers can be defined for convenience. The overall system was
developed by Dannenhoffer and Baron (6) and has been used with minor modifications by

(17), (33) and (34) among others.

4.4 Cell Division

Several authors discuss the process of cell division (7, 33, and 34) in some detail. In

general, these algorithms are tailored to a specific data structure and pointer system. After first
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describing the steps which all such algorithms must include, this section discusses the present

approach.

Cell division not only adds new cells and nodes to the data structure, but also changes
the global grid connectivity. Obviously the pointer system must account for these changes.
The matrices must absorb the new cells and nodes seamlessly, insuring that new cells require

no special treatment by the integrator.

The steps which all cell division algorithms must include are ( Fig. 4.10):

Find cell number of the tagged cell

Find cell numbers of the 12 surrounding cells (zero if no cell exists)

Find node numbers of nodes 2-9 if they exist

Create new node at center (Fig. 4.10, node 1)

Create new nodes at the center of each face if they do not exist already
Update pointers of cell being divided to reflect new comer nodes and new size
Create four new cells by appending Cell pointer

Update neighbor pointers of nodes 1-9

Inform surrounding cell pointers of any new nodes

Find boundary location for new boundary nodes

For moving grids, specify position of new nodes relative to existing nodes
(see Chap. 5)

S0 s RN TR

x o

Since the state vector and auxiliary properties (p, T, hy, etc.) reside at nodal locations,
new nodes must be accompanied by initial guesses for these variables. Properties at new face
nodes take values equal to the average of the corner nodes, while properties at centr=] nodes

take the simple average of all four corner nodes.
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FIGURE 4.10

Cell A tagged for division.

Naturaily, new nodes which lie on boﬁndaries require special attention. In addition to
finding the correct position of the new node (either from interrogation of the surface splines, or
from metrics of surrounding nodes) the boundary poiater must receive this new information.
By looping through the new nodes after division, it is relatively simple to update the pointer to

account for new boundary nodes.

Implementation
Implementing these steps requires specific decisions about data structure, appending
pointers, preserving parent cell information, etc.. As a result, implementation differs with each

investigator.

By avoiding "holes" in the data structure where a cell "existed” before division and
placing new cells and nodes at the end of their respective pointers, the procedure described here
results in an adapted data structure indistinguishable from the original grid. Thus, the solver
never need know when it operates on an adapted cell. This permits sequential integration of

each cell without ever asking if a cell has been divided and without skipping over any vacancies
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in the pointer. While very attractive from the viewpoint of simplicity and elegance, this system
does not retain parent information and does exclude the possibility of applying a multigrid

accelerator.

For an arbitrary tagged cell n in a grid of M cells Figure 4.11 details the cell division
process. Cell n shrinks in size requiring new connectivity (ICELL, and NEIB pointers). The
scheme numbers the three new cells counterclockwise M + 1 through M + 3. These new cells
are "connected” to the appropriate nodes (1—9) by appending the ICELL pointer. All nodes
then reconnect to their surrounding cells by updating the NEIB pointer, completing the pro-

Cess.

Before Division After Division

FIGURE 4.11
Cell division and pointer updating.

Note the simplicity of this scheme. The updated ICELL pointer has three additional
entries and no vacancies. The NEIB and GEOM pointers extend by the number of new nodes

with a minimum of complexity.

References 7, 33 and 34 offer more elaborate treatments of the cell division process.
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4.5 Cell Interfaces

Coarse Interface .
Cells: w4 "Cets L Fine Cells

FIGURE 4.12
Interface in computational mesh.

Grid refinement and adaptation introduce internal boundaries between cells of different
size. Figure 4.12 depicts such an interface; Here, only one column of cells actually differs
from those considered in the previous chapter. The integration scheme holds equally well on
the fine cells at the right and the coarse cells to the left of A and B. Each of these has exactly
four nodes. However, cells bordering on the embedded region (A and B) always contain at
least one hanging node and require special treatment. To gain insight into the scheme's

behavior near such boundaries, examine the two situations depicted below.
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FIGURE 4.13
Comparison of interface cells with cells of a uniform grid.
Consider the model convective equation
Ui+ Fx=0. (4.4)

with the cell and flux changes for any cell defined by
AU ={F,, - F,)zx—'

and
AF = FyAU

Here the subscripts w and e represent average quantities on the west and east faces of any cell.

Since this is essentially a 1-D equation discretized on a 2-D grid, properties remain
constant along vertical lines. Now examine the difference between nodes / in Parts I and II of

Figure 4.13.

Although node [ receives four changes from its surrounding cells in both cases, the two
pictures are not equivalent. Since Ni's scheme is simply central differencing (on cartesian
grids), we expect a stretching error in the mesh of Case II. To demonstrate this, examine the
changes to node / for Case I and Case II, 83U ) and 8U) )y .
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Case I:
By Equation (3.9):

SU,, = L[AUC— A AR ] aUc [1 -

U, =
Uy, =
U, =

AUp

4
AUE

Al

4

),
|1+
[1 + f;';Fu,]

Fu

(4.5)

Recalling the governing Equation (4.4), and considering i-D convection only, notice that

since all cells are identical, SUg = 8Ujp = 8Uj,= 8Ujf .

Also, the lack of variation in the

vertical direction makes the changes at node i from B and C equivalent to those from C and D at

l.

For the first case, the total change to node ! is the sum of the contributions from the four

surrounding cells. Assuming a constant CFL number defined by
At oF

gives Equation (4.6).

SU ) = 8Ul)cupuper = -i{(AUc + AUp)1 - CFL) + (AU + AUg)1 + CFL)]

Case II:

CFL = ———

AxoU

Again, using Equation (3.9) gives:

su,c=92U£ 1-ALpy,
SU,,,=A4ﬂ 1 —:T:Fu,,
8U, =228 1+ A py,
8U, = ég’—" 1+,

where 8Uj; = 8Ujy and 8U)c = SUp.
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Summing gives the total change at node [ across the interface.

8Uih = 8Uikcopsgon = H(BUc + AUDY1 - CFL) + (AUG + AUR)1 + CFL}] “3)

We may now compare the changes at node ! between the two cases. Since Cells C and D are

identical in both cases, Equations (4.6) and (4.8) combine into
SU Jp=58U)+ Q*::—FL)[—(AUF + AUE) + (AUG + AUy)] “49)

The term in brackets represents the error resulting from the stretched difference stencil in the
second case. Notice that this first order error disappears when AUr = AUg and AUg = AUy ;

i.e. when the difference stencil is ot stretched.

Having exarnined the expected error due to grid stretching across interfaces, we may now
take up the issue of hanging nodes on these boundaries. Referring again to Figure (4.13), no-
tice that cell G contains a hanging node i on its eastern face. As an interface node, i must
suffer from the same stretching error as [. However, we hope to avoid any additional error
caused by distributing incorrectly from cell G to node i. The scheme should treat nodes i and {

identically.

With these thoughts in mind, the net change to node i in Case II becomes:
Uiy = 8Upscoc = SUilp + 8U)c + (kU + kBUY)g

= -}(AUB + AUGXI —CFL) +¥;'(ku+ kl)(l + CFL) (4.10)

ky and k; weight the contributions to the upper and lower nodes on the eastern face in order to

apply them directly to i. For example if k, = k; = 1/3 Equation (4.10) would distribute the av-
erage of 8Uy; and 8Ujg 1o i.

In the first case
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SU')i = SU")B + SU,k + SU,)A + SU")F
= i{(AUB +AUc)1 - CFL) + (AU, + AUF)1 + CFL)]

4.11)
and substituting this expression into (4.10) for dU;); gives (4.12).
80U ) = 8Uh + LAl + ki) - (U + AU @12

However, since properties vary in x only, AU4 = AUF = AUE and AUg = AU}, giving:

SU;}(] = SU,')I +&—f&){—(AUp+AUE)+ AUglk, + k)] 4.13)
Treating nodes i and / identically requires that the change at i equal the change at /. Corhparing
(4.13) with that for node /jj and recalling that 3U;); = 3U)); leads to:

AUglky + ki) = (AUG + AUy)
But, since AUG = AUy,
AUg(k, + ki) = 2AUg
or ky+ k=2 (4.14)

Since no reason exists favoring either node u or

ky =k =1 4.15)

. u
This result implies that the mid-face node i SI.V.
should receive the sum of the changes dis- ; —tw" +8U

[}

tributed to the vertices of the face. Figure
4.14 displays this interface treatment pictori- 5N
ally. ® ]

FIGURE 4.14

Distribution to mid-face node

It is worth noting that this result contrasts that presented by Dannenhoffer (7) where he

suggested k, = k; =1/2. More recently, Kallinderis (18) examined several interface treatments
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showing Equation (4.15) to be not only conservative, but also a time accurate interface

treatment.

Actually, the case of ky = k; =1/2 bears special attention. If F varies linearly and Fy is
constant, the cell change in a large cell like G would be exactly twice that of a small cell (E, F,

etc.). Re-examining Eq.(4.13) now reveals:

CFL)
SUp=8U)+ “*T[-musa. + AUimw(ky + ki) @.16)

but since AULarge is twice AUsmair, the bracket vanishes. &y =k =1/, exactly corrects for the
grid stretching error in this special case. By re-weighting the difference stencil, it removes the
inaccuracy at node i. Unfortunately, it is not so easy to counteract the stretching effects at u or
[ resulting in an non-uniform treatment of the interface before reaching the steady state. Notice
also, that this fortuitous canceling within the bracket ‘of Eq. (4.16) occurs only under the

special conditions of Fy= Const and linear variation of F.

Conservation vs. Accuracy

As noted earlier, the interface treatment described in the preceding section is conservative,
but the stretched difference stencil leads to a first order error as noted after Eq. (4.9). Itis
reasonable to look for an interface treatment which is both conservative and accurate.
Kallinderis examines this question at length and discovers that the second difference smoothing
induces a first order mass flow error in accurate treatments (18, pp.145). Since the shock layer
may be thought of as a control volume, any induced mass flow from non-conservation will
create an error in shock stand-off distance. Thus we opt for conservation over accuracy to

preserve shock location and shape.
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4.6 Integration Scheme on Interface Cells

The cell in Figure 4.14 contains a hanging node on its eastern face. Failure to include
information from this node when computing the flux integral around such a cell will obviously
result in a conservation error across that face. Such an error is unacceptable, as emphasized in

the last section.

The integration scheme of Chapter 3 (or those in Appendix A) accommodates this
hanging node. With the distribution algorithm already discussed, only the calculation of cell

changes requires attention.

Consider the more general cell of Figure 4.15. When computing the flux integral

Equation (3.13) the flux through the east face may be split into two parts.

N
u#
s

f¢=§de— Gdx
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(4.17)

FIGURE 4.15
General interface cell.

Here the first bracket tracks the flux through face 1 while the second follows flux through face
2. Since all divided cells have straight faces, massaging Equation (4.17) results in the

parabolic form below.

fo=|[Eret Z0et Bsthyye —ygp)- (Gt 28+ Gty xsg] o
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Implementation

If the mid-face node is equal to the average of its comer nodes, Equation (4.18) reduces
exactly to Eq. (3.14). This property suggests a general interface treatment for interface cells.
When the solver first examines an interface cell, it creates virtual nodes at the midpoint of each
face not already containing a real node. By averaging corner values of F, G and W at these
virtual nodes, cells with hanging nodes on any (or all) faces may be treated by a single
integration formula - one that expects nodes on all faces. This approach avoids the expensive
logic statements and repetitive subroutines required to treat all possible combinations of
hanging nodes separately. Moreover, interface cells may be treated with no decision statements

whatsoever by defining a pointer to locate which faces of any cell contain real midface nodes.

In 2-D cartesian coordinates, the first-order cell change for a cell with real or virtual

nodes on all faces is:
] {Eﬁiz—:‘zﬂm}(ym- Yse)- ‘%igﬁi(—;‘q {xng ~ x56)
Fyw + 2Fn + FNg _ _[GNw +2GnN + GNE _
AU = AW - % i 2F4 )bww YNE) ( 4 )(XNW XN
< sw + ,4W + F"W)(ysw—yNw) . (Gsw+ ZS,W + G"w)(xsw— ww)
i (E&tzﬁ_sﬂ:ﬂ)()’ss ~ Yswg) - Qﬂi}—‘j‘—t‘ii'l)(xm —xsw) | (4.19)
Efficiency

Despite the expense of defining an additional pointer and creating virtual nodes, the result
is less machine code than the decision statements and subroutines they replace. Also, since
nodal placements change only during adaptation, this pointer updates only during adaptation
steps — at negligible cost. This general treatment is much simpler to code, and since interface
cells are only a small fraction of the total cell count, minor savings gained by more elaborate

treatments appear difficult to justify.

81




5. Unstructured Shock Fitting

In many situations it is reasonable to take the bow shock as the upstream boundary.
"Fitting" the shock in this manner forces the computational domain to be coincident witn the
disturbed physical domain. The shock's position is unknown a priori, and its final position
depends upon the physics within the shock layer and the geometry. This underscores the
importance of formulating the governing equations in strong conservation law form, and

treating interfaces conservatively.

In practice, most blunt body flows lend themselves to bow shock fitting. Nevertheless,
at some altitude the Knudsen number becomes sufficiently large to prohibit accurate modeling
with a discontinuous treatment of the shock boundary. Nominal shock thickness estimates
are between five and seven mean free paths thick. For example, at an altitude of 78 km in the
standard atmosphere, the Knudsen number based on freestream conditions and a one meter
nose is 0.0028. The shock is approximately 0.01 R, thick. Taking this as a rough upper limit
for the assumption of a discontinuous shock, we wish to examine other assumptions behind
the current modeling. The sustained flight corridor of Figure 1.1 shows that airbreathing flight
at upper altitudes requires Mach numbers large enough to invalidate the relatively simple
chemical model described in the second chapter. The assumptions within the gas model break

down before the shock thickness is appreciable. Thus, for the class of sustained flight
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problems correctly treated by the gas model, the bow shocks are thin enough to warrant shock

fitting.

Many early shock fitting approaches relied on a time dependent technique developed by
Moretti (27). This approach casts the governing equations in characteristic variables to solve
the compatibility equation along characteristic lines. Matching the results with those from the
moving shock Rankine - Hugoniot relations determines a unique shock speed and results in a

time-accurate procedure.

Such an approach suffers from two drawbacks in the context of real gas problems solved
on unstructured finite volume meshes. The Reiinann invariants do not remain constant through
the entropy gradients downstream of a curved shock. In perfect gases, this problem alone is
not limiting since one may always place nodes close enough to the shock that it "appears” lo-
cally planar. However, in chemically excited flows, the rapidly relaxing region just behind the
bow shock is strongiy non-isentropic along streamlines. The closer the cells lie to the shock,
the steeper the chemical gradients and the more severe this situation becomes. Secondly, it is
not clear that explicit forms of the characteristic variables and compatibility equation exist for

general equations of state.

Blottner and Larson (3) recently proposed a shock fitting technique that avoids those
problems. The next section discusses their basic technique applied to ncnequilibrium flow.

While much simpler in both concept and implcrmentation, the technique is not ime accurate.
mp cp p q

Despite the fact that the flows under consideration are out of equilibrium, the frozen
shock Rankine - Hugoniot relations still apply. The translational mode equilibrates much
faster than chemical modes. Typically the shock builds in fewer than ten collisions, while
thousarids occur before the chemistry reaches equilibrium. Thus, for the present gas model, it
is reasonable to treat the classical shock as a sharp, frozen discontinuity, while still permitting

nonequilibrium chemistry.
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5.1 Perfect Gas Shock Fitting

After first integrating the entire domain, shock boundary nodes receive suggested
changes from their neighboring cells. The shock fitting scheme corrects the state vector at such
points consistent with the appropriate moving shock Rankine - .Hugoniot relations and moves
the shock in response to the developing interior solution. The interior nodes then undergo a re-

mapping between the upgraded shock location and body surface.

Beginning with the Rankine - Hugoniot shock jump relations, this sections develops the
shock fitting technique with an eye toward implementation. For some known freestream
normal Mach number component, the normal shock equations determine the state vector U
downstream of the discontinuity. However, if the shock is moving, one must first find its
speed before computing U (Figure 5.1). In a reference frame moving with the shock, the
shock "sees" a relative freestream Mach number whose normal component is Mg, which
results from the vector subtraction of the absolute normal Mach number, M., and the non-
dimensional shock speed, b,. Mp,, is defined as the normal freestream Mach number in the
body's frame of reference - with no relative shock motion. Figures 5.1 and 5.2 define these

quantities pictorially.

Mg, =Mn. by (5.1)
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FIGURE 5.1 FIGURE 5.2
Definition of normal relative Mach number. Definition of absolute normal Mach number.

To determine Mg, we employ the solution from the most recent integration step. Pre-
sumably, this step produced changes at the shock nodes resulting from the arrival of waves
which propagate throughout the domain. Over the course of convergence this information ul-

timately determines the shock stand-off distance.

The same information provides an indication of shock speed. For example, at the shock
node 1, the ratio of the downstream temperature T to the freestream temperature 7. could be
interpreted as resulting from some shock. Such a temperature ratio indicates a "shock” of
specific strength, with a specific associated Mach number. In this way, T1/Te defines a
specific relative Mach number. However, the basis of shock strength need not be temperature
ratio. Ratios of p, e, p, etc. also determine equally valid relative Mach numbers. It is this

non-uniqueness that makes time-accurate re-formulation of this procedure unclear.
°

Since density is a state variable, the density ratio, P1/pe.., Was used to determine Mg, in
the present work. However, exploratory investigations using pressure or temperature ratios

displayed negligible differences in convergence behavior.

The value of Mg, then determines all properties "just behind” the shock through the

shock jump relations and equation of state. The updated solution vector applies to a moving
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shock and to the steady state as the shock speed vanishes. Rewriting (5.1) for the shock
speed:

bn = Mn.—~ M, (5.2)

Cormplete Equagions
Figure 5.2 describes the situation in a 2-D or axisymmetric domain. Here, note that the

outward normal, n, does not necessarily correspond with the { direction, indicating that this

formulation includes non-orthogonal coordinates. The density ratio after the integration step

determines Mg, from the shock jump relations.

-1
M3, =222 + 1) - (r-1)
P1 (5.3)

If the shock were stationary with respect to the body, the absolute normal Mach number M,
would be: (in a reference frame attached to the body)

M, =M.2
3 (5.4)

The assumed density ratio and relative Mach number now completely specify conditions behind

the shock. The x and y velocity components are:

u=PL=PS) ol
P=Mp.8¢c (5.5)

(p1 ~ D)
N = ———C, + V..
! p"MRugCC C’

and the local speed is V2 = u2 + v2. Here gg; corrects for any non-orthogonality of the local

& ( transformation. From vector calculus

8cc ™V ‘xz + C} (5.6)
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Since the shock is assumed frozen, the equation of state for a mixture of perfect gases deter-

mines the temperature downstream of the shock.

T, = p1 -
R (£
P ). 5.7)

The energy expression from (Eq. 2.8) completes the state vector behind the shock.

Note that the state vector along the shock is consistent with a moving shock, and A, will

vary until the shock stops moving. At that time, h, takes on its freestream value.

In a time Ar, the shock moves a distance Ax, 4y in accordance with its normal shock

speed from Equation (5.2).
_ ox
Ax) = -Atb,.Eg (4

_ d
Ay, = 'Atbnféggg

(5.8)

In these equations, the node time step is simply an average of the time steps from the two

neighboring cells (e.g. in Figure 5.2 At; = Ar4 + Atg).

5.2 Equilibrium Shock Fitting

As an upper limit for finite rate chemistry, equilibrium provides a convenient basis for
comparison with very rapid chemistry. Given this motivation, we now develop a separate
method for fitting equilibrium shocks. The discussion revolves around a specific equilibrium

gas model, but applies to any gas in chemical equilibrium.
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For simplicity, consider the reaction Az + M < 2A + M as described by Lighthill's ideal
dissociating gas model. In equilibrium, the shock jumps are accompanied by changes in ¥
across the shock. For Lighthill's model,

=4ta
3 (5.9)

Here a is the degree of dissociation (36, pp.159-161). Thus the ratio of specific heats
depends upon the degree of dissociation. However, simply changing ¥ in the perfect gas
Rankine - Hugoniot relations neglects the a6y energy absorbed in dissociation (see for
example Eq. 2.6). Obviously, the resulting shock would not preserve stagnation enthalpy, and

would violate energy conservation.

Ruling out the use of closed form shock jump relations leaves the need to perform
equilibrium normal shock calculations and then find the correct shock speed.
Mechanics

Referring again to Figure 5.1, the flowfield solution from the previous iteration provides
a pressure jump across the shock, P1/p... Using the equation of state with an assumed value of
o gives the density just downstream of the shock.

= P1
PRI (1 +an) (5.10)

Conservation of momentum through the discontinuity results in an expression for the relative

normal velocity at 1 (36, pp. 179).

U2 - iyl (pl "F‘".)
R. by N
Pe(p1 — Pesy (5.11)

Energy conservation determines a corresponding value of enthalpy behind the shock.

2
o]
2 (5.12)
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Recalling the enthalpy expression for the ideal dissociating gas:
h= RAg[(4 +all + ae.,]

Re-arranging, expresses the temperature downstream of the shock as a function of enthalpy

and mass fraction.

h
T = L - a 94]
(4 + on)[Ra, (5.13)
and this temperature permits a better estimate of the atomic mass fraction at 1.
a=£+ 2+ where k=_=&c'9‘/r
2 P (5.14)

However, (5.13) assumed the previous value of &, and we must now compute a new
temperature consistent with the mass frﬁction determined by (5.14). Iteration between Equa-
tions (5.13) and (5.14) determines a unique mass fraction and temperature. Then (5.10) pro-
vides a consistent value of the density ratio across the shock and (5.11) yields an improved

shock speed.

This doubly iterative process initially may appear computationally expensive. However,
itis applied only to shock points, and the net cost remains small. After obtaining a converged
relative Mach number, the shock speed and subsequent motion follow as in the previous

section.

Some N Equilibrium Shock Fitt

The method described above is not elegant. One possible alternative might make use of
the fact that thermodynamic equilibrium minimizes the Gibbs free energy. Sctting up the

minimization problem permits the use of LaGrange multipliers constrained by the existing
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pressure or density jump. Certainly extending the model to include mulﬁplé coupled reactions
(NO present) with many reaction paths would demand a more elaborate approach.

As a final comment, the stiff transcendental function in Equation (5.14) results in extreme
sensitivity of a to small changes in T. Specifically, & tends to oscillate between 0.0 and 1.0,
hampering convergence of this inner iteration. A simple fix is to reduce changes in a by
approximately 70%, thus decreasing changes to T, and resulting in a more tractable

convergence behavior.

5.3 Moving Unstructured Meshes

A moving inflow boundary implies that the grid must redistribute itself to properly track
the shock's motion. For structured grid calculations, this merits relatively little attention.

However, in the realm of the current unstructured domain, more care is required.

The grid redistribution requires knowledge of shock position and information about a
particular node's history in the grid (stretching or skewing). Since all previous discussions
involve current cell information only, such global location requests do not fit within the

framework of an unstructured scheme.




body x

FIGURE 5.3
Reference points for moving nodes on the base (original) grid.

The endpoint pointer fixes all nodal locations with respect to any set of four reference
nodes. The pointer's six elements store reference node numbers as well as x and y position
with respect to these references. Referring to the nodes on the unadapted mesh of Figure 5.3,

the pointer fills as follows.
ENDPT(1,c) = body node # (a)
ENDPT(2,c) = body node # (b)
ENDPT(3,¢) % x of total distance ab measured from a
ENDPT(4,c) = %Yy of total distance ab measured from a
ENDPT(S,c) = body node # (a)
ENDPT(6,c) = body node # (b)

These definitions locate original grid nodes by their position along lines of constant £. Since it

is based upon the original grid, this pointer preserves any curvature or clustering of grid lines.

After each adaptation, every new cell must have faces matching those of its neighbors
across cell interfaces. Failure to keep these faces linear results in higher order conservation
errors across the interface when integrating adjacent cells. Unfortunately, referring mid-face
nodes to shock and body points does not insure linear cell faces as the grid moves, and we

seck an alternative solution.
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Figure 5.4 examines this situation in more detail. If midface and central nodes rely on
body and shock locations, there is no guarantee that linear interfaces will be preserved. To
avoid this problem, the endpoint pointer positions new nodes by the corers of their supercells.
For the example shown in the sketch, all new nodes should rely on the corner nodes of the
original Cell A . Specifically, for new nodes created from the division of Cell A, the ENDPT
pointer entries 1, 2, 5, and 6 will refer to corner node data for the original Cell A. Using these
reference points, each midface node remains half way between the corners, falling exactly on
the interface. Through this more general use of the pointer, the re-mapping algorithm can treat
new nodes exactly as original nodes, efficiently creating a new grid without any decision
statements (and minimizing computational effort). Finally, note that this pointer permits
remapping grids with any number of embedded levels, while simultaneously maintaining all

cell interfaces as straight lines.

\ANA B
B g )
c )
L. Initial adapted mesh II. Incorrect redistribution I1. Correct redistribution
FIGURE 5.4

Preservation of linear interfaces in an unstructured domain with multiple Icvels of adaptive embedding.

5.4 Behavior of Shock Fit Solutions

As an initial condition, all points within the domain (Fig 3.14, including shock points)
might contain freestream values. In this case, no shock discontinuity exists, and the initial

conditions exactly satisfy the governing equations at all points not on the body. With
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freestream values, all shock points span a density ratio Ph/p_ = 1.0 and the shock degenerates
to an acoustic wave. Confirming this, Equation (5.3) predicts a relative normal Mach number
of unity, and (5.5) through (5.6) predict the same for the velocity ratio, temperature ratio and

pressure ratio at all shock points and the "shock” moves inward at a non-dimensional speed b,

of M- 1.
N
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FIGURE S.§

A typical history of stand-off distance with iterstion, converged from a uniform freestream initial
condition. (Mach 5 frozen flow over a axisymmetric nose.)

During the first time step, the explicit solver transmits knowledge of the body to adjacent
cells one removed from this boundary. Meanwhile, the shock continues progressing towards
the body at a speed M — 1. On a grid with M lines between the shock and body, the shock
will not respond to the body's presence for M time steps. This behavior is a direct result of the
explicit algorithm, and results in a time lag between the shock and the developing solution.
Moreover, it creates a feedback loop wherein the shock's position and shape determine

propertics within the domain, but the shock cannot respond immediately to these changing
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properties. In this respect, the problem resembles an elliptic calculation (albeit one with an
internal time lag).

Figure 5.5 shows a typical history of shock motion recorded while converging a Mach 5
solution from freestream conditions. Initially, the shock resides some distance from the body
and moves toward it as described above. Then, as pressure waves cross the layer, the Rankine
- Hugoniot jumps build, slowing the shock before reversing its motion altogether. The shock
backs away from the body and eventually comes to rest at some final stand-off distance deter-

mined by the interior solution.

Although this example of shock adjustment was computed from a special (freestream)
initial condition, the shock’s behavior results more generally from wave propagation in the
explicit shock fit domain. In practice, the shock adjusts its position in a similar manner to all

disturbances (changes in freestream conditions, chemistry, etc.).

Since adaptation selectively adds cells to the domain, it changes the wave propagation
speed through various regions of the domain (in physical space). As a result, adapting during
the initial gross shock motion may disrupt the shock's shape enough to destabilize the solution.

Simply delaying until the stand-off distance stabilizes avoids this shortcoming.
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III PRESENTATION AND DISCUSSION
OF RESULTS

A DEC Microvax 3200, nominally rated at 3 Million Instructions Per Second (MIPS), provided
processing support for all test cases in this work.

6. Physical Phenomena in High Temperature Flows
Over Simple Geometries

The gas model and adaptive integration scheme discussed in Parts I and II led to the
development of a series of adaptive hypersonic CFD codes. These codes permit computation
of inviscid and viscous, chemically reacting flow over 2-D and axisymmetric bodies. The
additonal development of a 2-D identicai equilibrium Euler solver provided a datum for flows

demonstrating very small departure from équilibrium.

After a brief validation study, focus turns to the question of using adaptation to resolve
physical behavior within the reacting shock layer. Both inviscid and viscous results support a
fundamental discussion of chemical length scale behavior within the shock layer. Finally, as
we consider flows with higher Mach numbers, interest broadens to coupled and uncoupled
multiple reacting mixtures, examining both the formation and impact of NO within a gas cap,
and the degree of coupling between reactions. These insights form a basis for then evaluating

the effectiveness of adaptive grid embedding in hypersonic shock layers in Chapter 7.

6.1 Basic Examples and Algorithm Verification

Before looking at the detailed physics and flow phenomena within the shock layer,
validation studies were completed to lend credibility to both the basic algorithm and gas model.

This section outlines three such studies, designed to verify different aspects of the solution
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algorithm, First is a classic perfect gas test case, which demonstrates both the accuracy and
conservation of the Lax-Wendroff algorithm and unstructured shock fitting procedure. A more
rigorous test »-.amines the adaptation methodology and gas model behavior in severe reacting
flows. A final example evaluates the effectiveness of the present method in tracking multiple

reaction paths and coupled reactions in a multi-reaction mixture.

Perfect Gas Test Cases
Figure 6.1 displays the traditional variation of stand-off distance with Mach number for a

2-D cylinder exposed to a crossflow and an axisymmetric hemispherical cylinder test case.
Reference 22 provided the comparison curves, and the data show numerical experiments at

Mach 3, 5, 7.5 7nd 10 in a y¥= 1.4 perfect gas.

10.0:
8.07:::
6.04...

4.04.

Free Stream Mach Number

FIGURE 6.1
Compsrison of shock Stand-off with Reference 22.

These data appear to deviate slightly from the reference curves at high Mach numbers.
This discrepancy arises as a direct result of the half excited vibrational state in the present mod-

eling. The normal shock relations predict a density jump across the shock of
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Pan__(rt DMZ
P= (y-1)M2+2 6.1)

This ratio asymptotically approaches 6 at large Mach number for perfect air with y=1.4. Since
the flow behind the shock is subsonic in the stagnation region, the density ratio will not in-
crease much as the flow comes to rest at the stagnation point, and density throughout the region
remains relatively constant. For the present gas model with its half-excited vibrational state,
kinetic theory predicts a frozen ratio of specific heats of 4/3 in the absence of dissociation,
which leads to a limiting density ratio of 7. With approximately the same mass flux entering a
shock layer, the shock in 4/3 test cases should be roughly 16% closer to the body in the limit of
infinite freestream Mach number. At finite Mach numbers, however, Equation (6.1) predicts
slightly less pronounced effects due to 7. Close examination of the figure reveals that at higher
Mach numbers, the calculated stand-off distance approaches this proper infinite Mach number
limit. For example, at Mach 10, the axisymmetric code predicts a shock location 13% closer to

the body than the extrapolated y=1.4 result.

A second classical result predicts the shape and position of the sonic line within the shock
layer (13). Figure 6.2 displays the sonic lines for 2-D and axisymmetric calculations. Both

pictures depict Mach 5 flow of the same y=4/; perfect gas.

The sonic line in the 2-D flow shown on the left clearly demonstrates the high curvature
associated with sonic line behavior above Mach 2 in 2-D supersonic blunt body flows, and
displays the expected acute angle with the body's surface. In the axisymmetric case, the sonic
line takes on the steeply raked profile characteristic of 3-D blunt body flows. The third
dimension provides an additional direction for the flow to expand, and this, combined with the
thinner shock layer, tends to flatten the profile. As is typical of freestream Mach numbers |

greater than 3, the angle between the body and sonic line is obtuse.
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While primarily qualitative evidence, the behavior of the sonic line does demonstrate the
Lax-Wendroff scheme's ability to model the physics between the shock and body - even in the
stagnation region. The predicted shock stand-off distances lend credence to both the shock fit-

ting implementation and the schemes mass conservation properties.

= £

FIGURE 6.2 Two-Dimensional

Computed Mach contours of Mach § frozen flow over 2-D and axisymmetric clculnly blunted
bodies showing location of of the sonic line.

Dissociating Ni

While effective from the standpoint of understanding and completeness, these
comparisons tend to be primarily qualitative. Essentially, the above results demonstrate that the
shock fit, Lax-Wendroff technique may be applied to supersonic flows, but do not rigorously
verify the technique's accuracy, nor do such perfect gas computations demonstrate anything
about the real gas model. Therefore, we now compare the current method with both

experimental and computational results published by M. N. Macrossan (25).

The case provides a very stringent test of the scheme's ability to model high temperature
flows. Table 6.1 details the freestream conditions for both the experiment and computation. In
both situations, hot nitrogen flows at approximately Mach 5 past a 15° blunted wedge. The

computational conditions were chosen to match momentum flux through the shock and
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stagnation enthalpy with those for the experiment. Notice that test conditions are "nominal”

and Macrossan estimates a possible 2-7% measurement uncertainty (25).

Several attributes make this an excellent test case. First, the flow over much of the blunt
wedge is in a state of small departure from equilibrium. The chemical length scale behind the
shock is much smaller than the physical dimensions of the body. Using properties behind a
frozen normal shock for the freestream conditions, the chemical relaxation length is slightly
over 0.003 R,. In terms of the Damkohler number defined at the end of the first chapter, ¥is
greater than 36,000. Clearly, we expect very rapid chemical relaxarion near the shock. More-
over, the large dissociation energy of nitrogen will strongly couple these chemical effects to
other flow parameters through the shock layer. This very strong coupling, combined with the
very rapid dissociation provides a severe test of the gas model since over 40% of the stagnation

enthalpy is absorbed by dissociation within the first 5% of the shock layer.

TABLE 6.1
Conditions for comparison to dissociating nizogen test case (from Reference 25).

Real shock tunnel Computation with I
nominal conditions uilibrium freestream
Uoo (M/s) 6.36 x 103 6.31 x 103
Poo (K8/m3) 4.41 x 10-2 4.45 x 10-2
T K) 4415 5570
0 (&22) 0.094 (frozen) 0.064
M- 4.55 4.09
R, (mm) 5.0 491

In addition to the stiffness arising from the disparate time scales involved, this case
demonstrates the behavior of the gas model in flows with small regions where temperatures
exceed 9,000 K. Normal shock calculations predict temperature ratios of about 4 across the
shock. Since the freestream temperature is approximately 5,000 K, the temperature
immediately behind the shock is in excess of that allowed with the present model. However,

the rapid chemical relaxation in fact quickly absorbs much of this energy and drops the
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temperature radically. Most of the flow remains within the range of applicability of the half-

excited assumption.

Finally, capturing the relaxation near the bow shock required three levels of embedding
and placed interface cells in the stagnation region. This demonstrates the ability of the adapta-
tion to resolve flow features, while preserving conservation across interfaces. Since the shock
layer may be thought of as a control volume, any error in conservation will create an error in

stand-off distance.

FIGURE 6.3

Density ratio comparison with shock tube experiment and calculstion of Macrossan (25) at conditions of Table 6.1.
Current method shown in lower half.

Figure 6.3 compares density contours computed with the present model with those from
both experiment and computations performed by Macrossan. Both agree quite closely. The
figure on the left contains experimental results above and results from the adaptive computation

at nominal shock tunnel conditions below. The comparison on the right displays Macrossan's
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solution for the "equivalent equilibrium freestream™ above a result from the current method. In
Table 6.1 it is interesting to note that reference (25) intended these results to demonstrate that
the "equivalent” conditions gave identical results as the experiment, and considered the

flowfield at the right virtually identical to that at the left.

While the comparison with the calculation is in rather good agreement, the comparison
with experiment differs slightly. The density in the flow varies from roughly 10 to 2 and the
present solution shifts the 2.5 and 3.0 contours by approximately 0.25p... This points to a
discrepancy of approximately 2.5%. However, its worth remembering that the freestream
conditions held an uncertainty of approximately 5%, and therefore the comparison is within

experimental error.

FIGURE 6.4
Adsptive computational grid with 1640 nodes for dissociating nizogen flow over a circularly
blunted 15° wedge at "equivalent” conditions (Table 6.1).

As evidence of the adaptive scheme's ability to detect and resolve flow features, consider
Figure 6.4. Here, the final adapted grid for the "equivalent" conditions (Table 6.1) case clearly
shows the relaxation zone and expansion fan in the flowfield. With three levels of adaptive re-
finement, the final grid contains 1640 nodes or slightly more than half the 3000 nodes used by
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the DSMC calculation of the reference. The RMS momentum residual was converged two or-
ders of magnitude between adaptations. The adaptation threshold, Tadaps Was set at 0.35 based
upon examination of the first adaptation map and held at this level for the remaining two adap-

tations.

The source did not estimate the Reynolds number or other viscous parameters in the hot
nitrogen test gas. A rough estimate is that Reynolds number is on the order of 105. The
interferograms presented in Reference 25 seem to confirm such a high value since the boundary

layer remains quite thin.

Reaction Couli { Multiple Reaction Pat
We now focus on the behavior of the mixture model and thermodynamics as presented

in Chapter 2. Comparison of the current gas model is made with two other models described
by Candler (5) and an experiment of a sphere fired in air at 5280™/; performed by Lobb (24).
Candler’s gas models include both a single- and six-tem;;eranne models. The latter includes
translational temperature, four vibrational temperatures (N2, O2, NO, NO*), and an electron
temperature. The reference has demonstrated that the six-temperature model predicts the
sphere's stand-off distance and shock shape to within experimental accuracy, and therefore

comparison is made directly to the six-temperature model.

To begin, examine the stand-off distance implied by the present and Ref. 5 density ratio
distributions along the stagnation streamline in Figure 6.5. Table 6.2 details assumed

freestream conditions.
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TABLE 6.2
Conditions for spherical test case of Reference (5) for multiple reaction comparison.

Uoo (/s)
5280

‘ In figure 6.5, the gas flows from left to right and the stagnation point is at /s = 0.0. The
present computations were inviscid and, as expected, the shock stand-off distance differs by
about 5% due to the thickness of the boundary layer (~10%) at this low Reynolds number.
Note that the shock fitting in the present method results in a discontinuous shock (as would be
expected at these conditions). The error in stand-off distance arises difcctly from the cool ther-
mal boundary layer of the viscous calculations. There, nearly constant pressure and lower
temperature force density to increase rapidly, bringing the shock closer to the body. In the
inviscid portion of the flowfield, the present model does agree within plotting accuracy for the
more claborate models.
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FIGURE 6.5
Stagnation streamline profiles of density ratio of current method and computations of
Candler (5) at conditions in Table 6.2.
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Figures 6.6a and 6.6b show further details along the stagnation streamline. The
temperature profiles display especially interesting behavior. Since both Ref. 5 models use
shock capturing, neither resolves the temperature peak across the shock. Those results for the
six-temperature model imply that vibration remains unexcited across the translational shock,
supporting the hypothesis of a frozen shock, and that significant vibrational nonequilibrium
exists throughout much of the shock layer. If frozen, the temperature peak for y= 1.4 should
be approximately 14,000 K. The present ¥=4/; model has a peak temperature of 11,500 K
just downstream of the shock. The one-temperature model (5) allows vibration to absorb
energy through the captured shock, and resuits in a 10,000 K peak behind the shock. As
chemical reactions proceed, the curves decay. Both singlé temperature models decay rather
quickly as dissociating O7 soaks up translational energy. The multitemperature model decay is

less rapid since its dissociation rate is linked to both vibrational and translational temperature.
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Stagnation streamline profiles of ter-nerature and species mass fraction of current method and computations of Candler
(5) at conditions in Table 6.2. '

This effect also explains the delay (of nearly 0.15) experienced before the onset of O2
dissociation for the six-temperature model (Fig.6.6b). Although the "shock” stands at 0.1 R,

O, hesitates until 0.09 R, before dissociation commences. Candler ascribes this behavior to
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nonequilibrium within the vibrational modes. Otherwise, the figure demonstrates expected
behavior of 02 and NO throughout the shock layer. Nevertheless, the precise levels of NO
disagree amongst the models and the inviscid axisymmetric code used in this comparison

naturally tracks none of the behavior in the wall boundary layer.

To summarize, although the current modeling differs in prediction of the absolute species
concentration levels, it demonstrates the technique's ability to model reaction coupling, with

very reasonable prediction of the gas dynamic variables.

Note that the temperature scale in Figure 6.6a reads in Kelvin. The majority of this shock
layer is above, or near, the 9,000 K limit indicated by the derivation in Chapter 2. Despite
this, the predicted level of NO molecules remains comparable to those from the other models.

6.2 Effects of Length Scale Behavior

The temperature relaxation seen in Figure 6.6 characterizes nonequilibrium shock layer
calculations. The ratio of the chemical relaxation length to a relevant physical reference length,
A/Lyef, is a most important parameter in the description of nonequilibrium situations. Such
parameters characterize the relative importance of the chemical modeling and determine the
distance required for the temperature to decay, or, equivalently, for the density to increase. As

a direct result, the shock layer thickness depends strongly upon the degree of nonequilibrium.

Virtually throughout the shock layer the flow is out of equilibrium. However, as the
velocity approaches zero at the stagnation point the associated convective time scale increases
without limit. Since the chemical time scale remains finite, local equilibrium is achieved at the

stagnation point in the steady state. At all points in the field the Law of Mass Action
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determines a local equilibrium concentration , c., which "drives"” the actual concentration c .

Thus, the local concentration must reach the local equilibrium concentration at the stagnation

point.

In terms of a simple Landau-Teller type model for the chemical source term W,

W = Ce—C
Tchem (6.2)
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o

FIGURE 6.7
Schematic of generalized concentration and source term behavior along the stagnation streamline in inviscid flow.

In Equation (6.2) the degree of nonequilibrium governs the magnitude of the source term.
Figure 6.7 contains a schematic of the stagnation streamline process in terms of the ¢ and W

behavior.

The stagnation point is at the right of both plots (x/8= 0.0). Since the shock itself is
frozen, initially a large difference can exist between ¢ and ¢,. In region 1, the flow is far out
of equilibrium and 7 chem is very small, making W large. Thus, the concentration adjusts
rapidly as dissociation soaks up internal energy. As this process lowers the temperature, the
exponent in the forward reaction term (Eq. 2.33) decreases rgpidly, changing W in region 2
by several orders of magnitude. As Tchem increases, W decreases at approximately the same

rate, (Eq. 6.2), and the progress of ¢ toward its goal of ¢, is slowed.

The rising density in the flow approaching the stagnation point increases the number of

particle collisions, thus elevating the importance of the backward rate term in the source term
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expression. The competition between backward and forward terms as they equalize drives W

to zero, and ¢ approaches ¢, .
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FIGURE 6.8

Stagnation streamline profiles of atom mass fraction and Jocal equilibrium mass fraction for the blunted wedge detailed
in Table 6.1 with chemical rate retarded two orders of magnitude.

Figure 6.8 contains a computed result for a blunted wedge. The behavior along the
stagnation streamline and its continuation along the body's surface is shown. Conditions for
this case match the comparison with computation detailed in Table 6.1, but here the chemical

rate was retarded by two orders of magnitude to emphasize nonequilibrium behavior.

The figure illustrates aspects discussed after Fig. 6.7, and in particular, the final approach
to equilibrium just before the flow stagnates at x/R, = 0. The species equations do not solve
the Law of Mass Action directly, but rather, imply a steady state solution when the source
terms vanish at the stagnation point . Since c, at the stagnation point comes from a direct
solution of the Law of Mass Action, it is an independent check of the overall validity of the

solution to the governing equations. A slight discrepancy in stagnation point concentration
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results from the presence of numerical dissipation and disappears in the limit of either infinite

resolution or zero smoothing.
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Symmetry plane profile of the logarithm of the source term normalized by that just behind

the frozen shock for the blunted wedge detailed in Table 6.1 with chamical rate retarded two
orders of magnitude. .

As the flow expands around the nose, the density drops rapidly, reducing the collision
rate and effectively freezing out the chemistry. In this region, W remains small in part

because contributions from both the forward and backward terms remain relatively small.

Consistent with the source term remaining small compared with its post shock value, the
chemical time scale remains quite large. The concentration tends toward its local equilibrium
value very slowly and would achieve it only far downstream. ¢

Effects of Dissociation E .

As the symmetry plane flow dissociates downstream of the normal shock, the growth of
the dissociation energy, a6p, portion of the internal energy implies a relatively decreasing T.

The appearance of 6p within the exponential factor of the source's forward reaction suggests
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that for some net reaction rate and associated chemical length scale, the 8p role is crucial to
the extent of chemical length scale changes throughout the shock layer. For large 6p the
a6p contribution to the internal energy expression may dictate a large temperature change for a
small change in concentration. The source term will then "feel" this temperature change after
being selectively amplified through the exponential in the forward rate term. This mechanism
produces radical changes in chemical time scale, Eq. (6.2). Moreover, since only a small

change in ¢ produced these changes, ¢ may remain far out of equilibrium.

Examine, for example, Figure 6.9 which shows the normalized source term along the
symmetry plane on a logarithmic scale for the same case as Figure 6.8. Despite the fact that
over the first five points downstream of the shock the concentration change is only about 20%
( Fig 6.8), the source term changes by an order of magnitude. That is, Tchem changes by
approximately an order of magnitude. This implies a much longer relaxation length, and

although the flow remains far from equilibrium, the progress of ¢ toward c, slows radically.

Of course, there always exists some overall chemical rate or Damkoéhler number large
enough to eliminate such effects, but calculations along the sustained flight corridor suggest
that this phenomenon remains important - especially in the case of dissociating nitrogen at low
levels of dissociation. Dissociating N2 absorbs nearly twice the energy of dissociating O», re-

sulting in much stronger coupling between chemical and gas dynamical variables.

As ¢ slows in its progrcss toward equilibrium the temperature changes more slowly,
decreasing the rate at which W changes and preventing the rapid adjustment of ¢ toward c,.
Finally, as the convective time scale rises in the stagnation region, the finite chemical time scale
becomes small by comparison, producing a small "boundary layer" region of rapid adjustment

as the concentration equilibrates with c.. This effect often appears as the "tail" shown in region

3 of the schematic in Figure 6.7, and again displayed in the computation of 6.8. Since it is so




intimately related with length scale behavior, the effect is seen most clearly in flows with large

6p parameters.

Eff f Reaction R I h Scale Behavi

The dissociation rate governs the rate of change of the chemical relaxation length
throughout the gas, and the non-dimensional reaction rate parameter sets the magnitude of this
scale. The previous discussion can be generalized to include a wide class of nonequilibrium

problems ranging from nearly frozen to nearly equilibrium.

The sketch in Figure 6.10 shows example distributions of concentration and
corresponding local equilibrium concentration for blunt body flows with Damkéhler numbers
from ¥ — 0 (frozen) to ¥ — oo (equilibrium ). If the flow is very nearly frozen, @, the
shock layer experiences little to no dissociation upstream of the stagnation point, where it must
eventually adjust to equilibrium. Curves @Vand © exemplify typical profiles found in flows
for ¥ of approximately 0.1 and 10 respectively. Numerical calculations at these conditions are
shown later. Finally, @ traces the concentration behavior of flows very nearly in equilibrium.
Here the infinitesimal chemical length scale permits very rapid convergence of ¢ and c, and
these remain equilibrated until the flow reaches the stagnation point. If sufficiently near to
identical equilibrium, these distributions will remain indistinguishable throughout the
expansion. Since the stagnation region is normalized by the stand-off distance &, this sketch
does not show how the shock layer thickness increases for more nearly frozen cases. Over the
body surface, the exact local equilibrium concentration will depend on the precise values of
other flow variables. However, these profiles will all display the same qualitative behavior,

and the sketch presents only one curve downstream of the stagnation point.
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FIGURE 6.10
Mass fraction profiles and local equilibrium mass fractions for reacting flows ranging from near frozen to near
equilibrium.

m ilibrium

Figure 6.11 shows the behavior of the wedge example presented earlier (Table 6.1 and

Figure 6.3) in comparison to the experiment in Reference 25. Despite the near equilibrium

nature of the flow along the symmetry plane, the length sc.’e changes enough by the stagnation

point to freeze out over the expansion and wedge surface. Notice that the upward climb of ¢,

toward c results from an increase in temperature as .¥ atoms 5.0wly recombine and result in a

slow drop in c. Capturing the initial transient in a simulation with this severe a discrepancy

between chemical and convective length scales requires very high resolution near the shock.-

The example illustrates the need for extreme caution before awarding identical equilibrium

procedures to flows with high dissociation energies. Here we see that even in extremely high

Damkohler number flows, the chemical length scale may change enough to freeze out

appreciably.
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Stagnation streamline mass fraction and local equilibrium for circularly blunted 15° wedge.
(See also Table 6.1 and Figure 6.3). '

Curve @ in 6.10 demonstrates near-singular behavior as the frozen concentration
through the shock layer rapidly advances toward equilibrium at the stagnation point. Inviscid
calculadon§ demonstrate this behavior since the surface streamtube remains quite hot. Realistic
viscous computations and real flows, however, maintain a relatively cool thermal boundary
layer immediately adjacent to the surface which removes this singularity. As atoms re-combine
in the cool layer just removed from the surface, the actual concentration and local equilibrium
tend toward zero dissociation. Of course, wall catalytic effects modify this behavior at elevated
wall temperatures. The present examples maintain a wall temperature of 1,500 K, cold enough

to keep catalytic effects miniscule.

Figure 6.12 details this behavigr for two cases which correspond to @ and @ in Figure
6.10. In the figure on the left, ¥ = 10, while at the right ‘¥ = 0.1. Both cases correspond to

Mach 12 flight in the standard atmosphere at 60 km altitude, and the viscous examples use Re
= 6500, Pr = 0.72, and Sc = 0.5.
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FIGURE 6.12
Mass fraction and local equilibrium mass fraction profiles along the symmetry plane for viscous and inviscid flows at

60 km altitude in STD atmosphere. ¥ = 10 (left), ¥ = 0.1 (right), Re =6500, Pr = 0.72, Sc = 0.5.

It is interesting to note that the local equilibrium concentration does not lead the actual concen-
tration to zero in the stagnation region for the viscous examples. Behavior in this region stems
from heat conduction and other viscous effects. The viscous terms on the right side of the
governing equations (Eq. 1.9) act as additional sources and the simple source term model in
Equation (6.1) neglects these complex terms altogether. In fact, non-zero behavior stands as
evidence that these terms contribute in this region. Moreover, the fact that the viscous profiles
trace the inviscid curves almost precisely through the inviscid portion of the field suggests that
mass diffusion, heat transfer, and shear terms remain comparatively small through this portion

of the field.

For purposes of comparison, the horizontal scales in Fig. 6.12 were normalized by
stand-off distance. This normalization masks the fact that the thick boundary layer in the

viscous cases actually displaced the shock by ~7%.
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6.3 Coupled Reacting Systems

When multiple reactions occur in a gas mixture, the problem of a disparate chemical and
convective length scale becomes one of many disparate length scales. The degree of coupling
between reactions in such a system depends largely on two factors. First, the relative amounts
of energy absorbed or produced by a reaction contribute directly to the overall internal energy
of the system and directly affect thermodynamic properties. For example, as one reaction
proceeds, it may absorb so much internal energy that some other reactions freeze out.
Secondly, the relative scales of the processes affect reaction coupling. If one reaction proceeds
much more rapidly than another, the fast reaction may reach its equilibrium concentration long

before the other reaction has begun to affect the internal energy of the gas.

Formation of NO within the ShockI

In reacting air systems, such coupling effects are very clearly demonstrated upon
examination of the formation of NO throughout the shock layer. As an example, re-consider
the axisymmetric multi-reaction test case presented in Section 6.1 (Table 6.2, Figs. 6.4 and
6.5). Since the shock layer is in vibrational nonequilibrium, the detailed concentration levels of
mixture components are incorrect by the standard of more accurate chemical modeling.

Nevertheless, the species behavior in this comparison agrees reasonably well.

Figure 6.13 provides profiles of N, O, NO, and O3 along the stagnation streamline. At
conditions just behind the shock the characteristic relaxation length for molecular oxygen
dissociation is about 0.01R,, while that for nitrogen is approximately 0.5R,. This 50-fold

disparity is a measure of the degree of coupling between the two dominant reactions.
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Symmetry plane profiles of species mass fraction for O, 0, NO, and N for the case detailed in Table 6.2 (also
see Figs. 6.5 & 6.6).

The ecarlier plot of equilibrium constants in Figure 1.3 provided an indication of the
relative importance of the forward and backward terms in the reaction rate expressions for the
five reactions considered here. Of course, in view of the actual chemical nonequilibrium, Fig.
1.3 only provides an approximate guide to the source term's behavior. As the flow in Fig.
6.13 crosses the Mach 15 normal shock, oxygen rapidly dissociates, creating an abundance of
free oxygen atoms. These atoms, in turn, activate the exchange reactions which proceed at
rates slightly faster than that of O production. However, the competition between these
reactions, mentioned in the closing paragraphs of Chapter 1, slows the net production of NO to
about ‘/wm that of O3 dissociation. At these post-shock temperatures, the first exchange reac-
tion (O + Nz &> N + NO) proceeds faster than the NO, robbing the exchange reaction (NO + O
&> N + 07). Itis this mechanism which is responsible for the initial production of NO behind

the shock.

As the temperature decreases to ~8,000 K inside the shock layer, this competition results
in almost exact cancellation of the NO produced and destroyed by the shuffle reactions. Thus

the only mechanism left for altering NO concentration is the NO dissociation reaction. At
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these temperatures, the forward rate term dominates, breaking up NO molecules at a rate
slightly faster than that of nitrogen dissociation. This effect results in the decline of NO con-

centration approaching the stagnation point.

The remainder of the shock layer is shown in Figure 6.14 for mass fraction contours of

NO at the left and isotherms on the right.

\ g

FIGURE 6.14
Contours of NO mass fraction, and temperature ratio computed for the case detailed in Table 6.2
(also see Figs. 6.5 & 6.6).

The temperature field holds two important functions in this discussion. First, for any point in
the field, it determines values of the equilibrium constants for the reactions, giving an indica-
tion of what local equilibrium condition the species concentrations seek. Secondly, the temper-
ature provides an indication of the overall magnitude of the source terms, and therefore the

relevant chemical length scale at any point in the field.

As the flow expands out of the hot stagnation region, the temperature decreases rapidly,
slowing the progress of all reactions toward their respective equilibrium conditionsa.Since
nitrogen dissociation has the slowest chemical rate, it is the first to freeze out. Immediately
afterward, the nitric oxide dissociation reaction follows suit. With the dissociative reaction
turned off, the exchange reactions exclusively determine the concentration of NO in the shock

layer, and since their individual rates are so high, these reactions continue to be active, even in
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the rapidly freezing flow over the body's shoulder. The imbalance of these reactions continues
to drive the concentration of NO upward through most of the expansion fan. This interesting
point also was documented by Park (30), and is a direct result of the fact that the first
exchange reaction (O + N3 & N + NO) still produces more NO than the other consumes.
However, as the temperature continues to drop, this situation reverses itself, resulting not only
in a decrease in NO, but also O formation (by the same reaction). As oxygen molecules
continue to deplete the supply of free oxygen atoms, NO does not have the opportunity to re-
form. Of course, all of these processes take place over much expanded lengths, since on
reaching the shoulder of the body the expanding, cooling flow has changed the chemical length
and time scales by several orders of magnitude.
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7. Effectiveness of Adaptive Grid Embedding in
Hypersonic Flows

The test cases and investigation demonstrate the feasibility of applying the adaptive
methodology to hypersonic reacting flows. In evéluatingthe effectiveness of this procedure,
several aspects require consideration. A comparison of such mechanical points as computation
time and memory savings afforded by the present technique are of interest, as are the resolution
requirements of some of the physical phenomena captured in embedded regions of the flow

field and possible improvements in the implementation of the technique itself.

7.1 Enhancement of Computational Efficiency

Since the purpose of the final grid is to resolve all length scales in the domain, the
computational savings associated with any flow field depend heavily on the number of length
scales involved. Figure 7.1 contains a highly adapted grid resulting from a Mach 16, 2-D
simulation at conditions 45 km aloft in the standard atmosphere. The conditions were modified
to enhance oxygen dissociation by artificially freezing the nitrogen and nitric oxide dissociation
reactions (Py, = Pvo = 0). The body size is such that the characteristic length for oxygen
dissociation just downstream of the normal shock is only 0.001 Ry and virtually all of the

molecules dissociate within 1% of the nose radius.
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FIGURE 7.1
Adapted grid with four levels of embedding and 1550 nodes for conditions described in text.

Although somewhat contrived, this case provides a good demonstration of the capabilities
of the embedded mesh procedure. Moreover, examining the time savings after each level of

embedding provides a realistic estimate of the savings for a wide range of chemical rates.

Table 7.1 lists the computation times required for the original coarse grid, final adapted
grid, and four globally embedded grids. Notice that at the two highest levels of global mesh
refinement, estimated simulation times became sufficiently long that actual tests were

precluded.

The final adaptive grid resolved the chemical relaxation with four levels of embedding,
and the computation cost proved to be 8.6 times that of the coarse grid baseline case.
Resolving the rapid decay on a globally fine mesh would require the same four embeddings,

but ata computational cost exceeding 250 times the baseline computation.
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TABLE 7.1
Computing time comparisons for adaptive and globally refined meshes for conditions of Figure 7.1.

Mesh # of Nomalized
Dimensions nodes | Computer Time
Original Coarse Grid 10x 20 200 1.0
Adapted (4-level) Unstructured | 1550 8.6
Entire mesh (1 level embedded) 19x 39 741 4.7
Entire mesh (2 levels embedded) 37x77 2849 17.9
Entire mesh (3 levels embedded) 74 x 153 11322 70.8*
Entire mesh (4 levels embedded) 143 x 305 | 43617 274.7*

*Estimated due to computing resource limitations

Such comparisons, however, are somewhat optimistic. Obviously, a globally fine grid
would provide exceptional detail throughout the field, while the adaptive solution only provides
resolution comparable to the scale of the flow features in particular regions. Moreover, given
an initial solution on a coarse grid to identify flow featﬁres, one could conceivably apply more
traditional grid control on a structured mesh providing adequate resolution of the relaxation
layer with far fewer than the 44,000 nodes required by the globally refined mesh. The net time
for computing a solution with such a procedure, however, is not clear. The final grid would
not place nodes as accurately as the adaptive grid, and would certainly contain more nodes.
The time required to set up such a grid is difficult to estimate quantitatively. Finally, since such
a comparison is so intimately related to the chemical relaxation length, it would be all but

meaningless as an indication of typical adaptive savings.

As a better measure of the savings associated with adaptation, consider the examples put
forth earlier. Reference 25 computed the blunt wedge case on 3000 nodes to provide the
resolution shown in Figure 6.3. However, that figure makes clear that the current adaptive
technique provides superior resolution with just over half the computational nodes. The coarse
base grid for this case contained 300 nodes and was chosen to provide adequate resolution of
frozen flow features. The adaptive solution required 5.7 times the computation effort of the

coarse grid solution to converge (S orders of magnitude in RMS momentum residual).
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The axisymmetric sphere results, discussed extensively in Section 6.3 (Figs. 6.12,
6.13), present further evidence of the cost associated with adaptive hypersonic solutions. The
final grid for this case contained 1300 nodes, and required three levels of embedding and 5.3

times the computing time of the original 200 node mesh.

These results typify the experience gained over the course of this investigation. Shock
fit, reacting hypersonic flow fields over simple geometries usually require 5 - 6 times the
computational effort of a coarse base grid solution. In this context, a "coarse grid" is one
which clearly shows frozen flow features, but whose resolution is only about half of that
required for engineering computations. The coarse base grids referred to in the preceding two
paragraphs exemplify these qualities. As the example in Figure 7.1 suggests, flows with larger
disparity between chemical and body Iength scales typically require more computational time,
while those more nearly fro7- . _quire less. Remember that frozen calculations to engineering
precision take about 4 ti.a~ . more effort to compute than the coarse base grid referred to by this
comparison (see the "entire mesh [1 level embedded]” entry in Table 7.1). Thus, the time
required for a: adaptive blunt body reacting flow field is approximately 1.5 times that needed

for a frozen solution (using globally refined meshes) of comparable accuracy.

This is an extremely important point, with respect to the effectiveness of the adaptive
method. The example shown in Figure 7.2 makes this point even clearer. At the left, the fig-
ure shows temperature ratio contours for inviscid Mach 12 frozen flow over an axisymmetric
body. The grid required 800 nodes to adequately resolve the frozen, inviscid features, and

since frozen, contains only one length scale.

The right of Figure 7.2 shows an adapted case computed in uncoupled (NO absent)
reacting air at the same Mach number. At 30 km altitude in the standard atmosphere, a nose
radius of 0.0318 m produces a characteristic chemical relaxation length of approximately

0.01 R, behind the normal shock. This second length scale greatly increases the resolution
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requirements of the numerical procedure. Nevertheless, two levels of adaptive embedding
produced results with resolution comparable to that of the frozen case. The final adapted grid
contains 1341 nodes and resolves both the chemical and body length scales. Here the adaptive,
nonequilibrium solution required a 1.6 times greater computation time than a frozen simulation

over the same geometry - despite the multiple length scales in the real gas case.

FIGURE 7.2
Contours of temperature ratio for inviscid Mach 12 flow for frozen flow (left), and reacting flow (right).

7.2 Adaptive Resolution of Physical Phenomena

Most algorithms capture shocks in the interior of a computational domain. This process
usually results in a smearing out of the physical disturbances over several nodes. Consider,
for example, the shock captured solutions of Reference 5 presented in the first section of
Chapter 6 (Figs. 6.5, 6.6). There, shock capturing has rounded off the density and
temperature jumps across the bow shock. Obviously, an increase in grid resolution near the
discontinuity would result in sharper shock jumps, but without a priori knowledge of shock

positions, this would be expected to be an expensive process.
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Shock Tri | Nonequilibi

Imagine a flow field with a captured shock in a hypersonic flow. Since the calculation
may need to be performed at several angles of attack, and since chemical effects will alter shock
shape, exact shock positions may not be found prior to computati'ons. However, at hypersonic
stagnation enthalpies, any shocks may trigger chemical reactions. Since these reactions

determine the downstream gas composition, the relaxation layer requires adequate resolution.

Now, re-examine the shock captured density and temperature profiles in Figures 6.5 and
6.6a. The relaxation zone is an order of magnitude wider than the shock smearing, but for ar-
bitrary shock conditions, this will not always be the case. Consider a scramjet engine inlet, in
which each captured, reflected shock will increase the static temperature, decreasing the
relaxation length until the relaxation zone may reside entirely within the captured shock. Such
a situation would obviously be detrimental to accurate predictions of downstream
concentrations and flow properties. References 33 and 34 contain an examination of adaptive
solutions through such geometries and demonstrate the adaptive scheme's ability to separate the

chemical relaxation from the translational shock.

A second example of such shock-induced nonequilibrium effects occurs in trans-
atmospheric or re-entry flight. In this regime, the translational temperature behind the bow
shock will be high enough to incite ionization before dissociation and vibration are able to
decrease this extreme temperature. Accurate prediction of the electron density in the gas cap
therefore depends wholly upon the temperature spike resolved after the translational shock but
before nonequilibrium thermo-chemical processes erode this temperature. Again, the multiple

length scales of these processes ideally suit such problems to adaptive computations.
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7.3 Recommendations for Improving the Adaptive Technique

The examples and test cases in Chapter 6 demonstrate the adaptive scheme's ability to
locate and resolve flow features. In the current implementation, the codes' suggested
adaptation patterns almost always enclose the detected feature, placing cell interfaces in
relatively benign portions of the flow outside the critical area. This section suggests
enhancements to the basic adaptation methodology based on experience with the existing

codes.

Directional Embeddi

Figure 7.3 displays two examples of directional embedding. Even in complex
hypersonic flow fields, flow features often align with the body and coarse grid orientation.
Directional embedding takes advantage of this alignment to increase solution resolution while
still avoiding the creation of unnecessary cells and nodes. For example, upon examination of
the adapted grids presented in earlier chapters, it becomes clear that many of the features
discussed are largely one dimensional. Both the chemical relaxation zone and boundary layer
remain primarily grid aligned and would benefit from such directional adaptation. Kallinderis
(17) investigated this subject in some detail and claims a reduction in computational effort of
approximately two (over an adaptive solution without directional embedding) as a result of the

fewer cells and nodes created with this method of cell division.

Incorporation of directional embedding into the current algorithm requires relatively few
changes. The feature detection algorithm would then store differences in both directions for
each cell. Then the algorithm for cell creation and pointer updating must reflect the

unidirectional nature of the embedding.
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FIGURE 7.3
Cell subdivisions for directional embedding.

Adaption Parameters
Figure 7.4 shows a typical adapted grid for a 2-D reacting viscous calculation (Re =

6500). This grid shows embedded regions primarily near the shock and body, capturing both
the relaxation layer and boundary layer respectively.
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FIGURE 7.4
Adapted grid for a 2-D reacting viscous calculation and total velocity vectors for same calculation.

The current use of density and concentration differences as adaptive parameters stems
from expectations of inviscid flow field features. In viscous hypersonic problems however,
ths thermal gradients near the wall give rise to density gradients via the equation of state.
Thus, density differences retain their utility in detecting such boundary layer behavior.

However it is the thermal boundary layer that these differences indicate (see velocity field hin
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Fig. 7.4), and clearly, density differences are not appropriate for general shear layers.
Reference 17 has made use of both velocity gradients or shear stresses as logical adaptive

parameters to identify such a feature.
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Summary and Conclusions

The application of adaptive grid embedding to hypersonic flows was motivated by the
scales associated with nonequilibrium, high temperature gases that must be modeled for such
fields. The adaptive technique permitted numerical simulation of nonequilibrium chemically
reacting flows with only 1.5 to 2 times the computational effort of comparably resolved frozen
flows. Example calculatior.s were completed for two dimensional, inviscid, flows and
extensions to both axisymmetric and viscous flow. In all cases the algorithms provided a
means of computing and analyzing complex, reacting, hypervelocity flows over simple

geometries such as blunted wedges and cones.

The primary contributions of this work relate to both the development of the numerical

algorithm and some details of physical phenomena that adaptive gridding makes clearer.

N . 1 Algorithm Devel

This work extended the explicit Lax-Wendroff technique developed by Ni (29) to
hypersonic calculations on an unstructured grid. The axisymmetric computational results are
believed to demonstrate the first extension of Ni's two-dimensional algorithm to circular

cylindrical coordinates.

In addition to enhancements of the integration scheme, the nonequilibrium shock-fit
domain necessitated several major modifications of the original adaptive method (6). For

example, shock fitting required re-mapping of the unstructured computational grid at each time

127




step. The simple, effective technique presented in Section 5.3 accomplishes this task on
unstructured domains with any number of embedded levels while preserving conservation
across mesh interfaces. A lesser contribution to the adaptive methodology was the introduction
of a feature detection algorithm capable of triggering mesh reﬁnément dependent upon an

arbitrary number of nonequilibrium and flow variables.

Gas Dynamics

A mixture gas model was developed based on the assumption of a half-excited vibrational
state for diatomic molecules. This model included N2, 02, NO, N, and O, and its development
required the identification of a characteristic density for dissociation of NO molecules. Section

2.2 detailed the formulation of this parameter. Figure 2.2 supports the hypothesis of ppyo =

const. required by the dissociative reaction model.

Both the two-dimensional and axisymrhetric flow solvers were validated through perfect
gas, dissociating gas and multiple reaction comparisons and an investigation of hypersonic
flow over blunted cones and wedges for the spectrum of reactions varying from near frozen to
near equilibrium. Examination of chemical and convective time and length scales in the
domain, provided insight into the character of inviscid and viscous reacting flows under widely

varying conditions of nonequilibrium.

Of special note is the interplay between dissociative and exchange reactions in
nonequilibrium, high temperature air and the role of the chemical length scale in reaction
coupling. For example, increases in the concentration of NO off the symmetry plane are
linked directly to the effects of length scale and reaction coupling. Finally, some viscous
investigations demonstrated that these same concepts retained their importance in viscous
hypersonic flows. However, in regions dominated by diffusion processes, the local

equilibrium concentration must share its "driver" role.
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Conclusions

Unstructured, adaptive, embedded gridding has been applied to hypersonic, blunt body,
nonequilibrium, CFD problems. The high temperature gas mixture was described by
Lighthill's dissociating gas model which was extended to include five species and multiply
coupled reaction paths in both viscous and inviscid flows. The Lax-Wendroff numerical algo-
rithm was extended to include shock fitting and adaptation on general, unstructured, moving

(adjusting) grids.

Comparisons with experiment and computation provided validation for both the explicit
real-gas algorithm and unstructured shock fitting procedure for perfect gas, dissociating gas,
and multiple reaction cases. The dissociating gas model demonstrated good agreement with
shock tunnel experiment and computafional results of Reference 19, and reasonable prediction

of gas dynamic variables in flows with coupled reactions.

A detailed study of basic nonequilibrium flow phenomena has been completed for
freestream Mach numbers from 5 to 15 over blunted cones and wedges. These flows
demonstrated degrees of nonequilibrium ranging from nearly frozen to near equilibrium.
Adaptation proved useful in examining behavior along the stagnation streamline, especially in
cases displaying a small departure from equilibrium. Here, adaptation was shown to be
particularly useful in capturing the steep chemical gradients which appear within the shock

layer.

Grid adaptation appears to be a cost-effective way of computing high resolution solutions
to hypersonic, finite rate, real-gas problems. The computational effort required for an adap-
tively refined nonequilibrium solution was shown to be only 1.5 to 2 times that required for an

equivalently resolved frozen flow solution for the same configuration. This compares favor-
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ably with the 40-50 times that may be required for a solution on a globally refined mesh

capable of resolving the chemical relaxation.
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APPENDIX A

Integration Formulae

A.1 Non-Orthogonal Two-Dimensional Coordinates

Cell Change (refer 1o Fig 3.3)

AUc=AWc-—

+ Fk;Fj,()'k ¥i) - ‘ )(xk xj)

|+ (%‘)(y - ) - (ﬂ;—*-)(xz —x1) |

+(EitFly, )-(GtCt), —x)

F;Fky_ y)- (G+G,)( _x)

Ac =é—[(xk - xiY; - y1) - (xj — xi)ve ~ i)

Distribution Formulae (refer to Fig. 3.4)

SU(;)‘- = -}-.AUC - Afc - Age + %AWC]

5Uc)j

8UC)k =

A

= -i- AUc + Afc - Agc + 7AWC

)
74w

‘1‘- AUc + Afc + Age + -2—AWC

8Uc), = HAUC - Ac + Agc+ %iAwC]

where
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and

Time Step

Afe = %(AFCAyl — AGcAX!)

InA6,0SCFL<1.

Additionally,

(A.9)
Agc = %(AG(;AX"‘ — AFcAym)
c
Ax‘=1-(x1+xk-x,-+xj)
2
A)”=%(yz+yk—)’i+)‘j)
Ax"'=%-(xk+xj-x,+x.-)
Aym=%()‘k+)’j—}’l+)’i) (A.5)
. Ac Ac
At =(CFL ,
( )mu{luAy'- vAx! + aAl| ludy™ — vAx™ + aAm| (A.6)
Al =V(ax'f + (ay'f,  Am=(&xmP + (ay"P (A7)
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A.2 Non-Orthogonal Axisymmetric Coordinates

r,y‘

FIGURE A.1 :
A general cell in circular cylindrical coordinates.

Referring to the above sketch of a general cell in an axisymmetric domain, the inviscid gov-
eming equations in circular cylindrical coordinates become:
oU ,oF  19rG)_y

R (A.8)
where
- ] [ ]
pu pv -0 -
[ p ] put+p puv 0
pu 2 p
pv puv pvi+p £ .
U= e (,F={ule+p) |, G=|vie+p) [, W= o
o piu piv W; .
L Ps J : :
L Psé L PsV L W,
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Cell Change
r,-+r,'F-+F, . G'+G1 .
{ +T(—‘——)(r.—rz)—(‘T)(x. -x:)]

At 2 2
AUc=AMWe—-— ) ;
TA : F,

|, et Fk+ ’)(fk—r,-)- G¢+G)(Xk x})]

+n 42-7} :(FI ';Fk)(rl —ry)- Gl_;__k.)(xl - xk)]

(A.9)
where,

’i=i—(r,-+rj+rk+n) (A.10)

Distribution Formulae
’ At
§Uc); = HAUC - Afc; - Agc; + TAWC]
SUC). = 1-{AUC + A, - Age. + ét—AW(;]
i~ 4 j i3
SUc)k =34 AUc + Afc, + Age, + %AWc]

8Uc)l = }{{AUC - A, + Agc,+ ét-AWc]

2 (A.1D)

with
Afc, =

e

AFcAy‘—%AGch‘), and n = (ijk,/)

(A.12)
A7
= A—-(;;AGch"' — AFcAy™)

(9]

Along the axis of symmetry, the governing equations become

oU L oF LAG)_w
o ox or (A.13)
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The cell change for cells along this axis has no contribution from the face on the axis, and this

equation leads to Agc, = 0 when n lies along axis of symmetry. These two changes com-

pletely account for the singularity in the coordinate system at 7 = 0.

A.3 Viscous Formulation in Two-Dimensions

Bu...b% ....c |C

r
' t
]
!
]

FIGURE A.2
Primary and Secondary cells for viscous integration.

After first distributing the inviscid changes to each node (via Eq.A.3), the algorithm
computes nodal changes from the viscous terms R and S in the governing equations (Eq.1.9).
The formulation of these changes is naturally more complex, since these dissipative terms rely
upon second derivatives. As with the inviscid changes, contributions from all cells
surrounding a node complete the difference stencil for these terms. The Lax-Wendroﬂ' scheme
relies upon the second order changes of the inviscid integration for stability. Fortunately this
requirement does not extend to the viscous terms and no Jacobians of R or S need be

computed (18). However, this omission reduces the time accuracy of the scheme to first order.
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Following the notation in Figure A.2 the viscous change to any node in the computational mesh
is

+[+ REAYE + REAYT) [+ Sy AxB + S5 Ax])
+[+ R¢ &yt + RpAYD)-[+ St axt + spaxp)]
+[- R§AYR - REAYE) -[- S§AXE - SEAxE]
+[- R3AY, - RpaYE]-[- S3Axh - sjaxh) (A.14)

AUvisc

|

In (1.14), the superscripts on R and S refer to cell faces and the area, A, is the area of the pri-

mary cell in Figure A.2.

In the integration scheme, however, we sweep through the cells and determine
contributions to each node. Thus Equation A.14 needs to be re-expressed in terms of
contributions from any cell to its four corner nodes.

Viscous distribution formulae
(AUsiscow = S21(+ R* Ayt — R¥Aym)~(+ 5*Ax! - % Ax]
(AU,ischow = i‘i[(ef R Ayl + R¥Aym)—(+ SPAx + S*Axm)]
(AU yische = 41(- R*Ay! + Reym) ~ (- SnAx! + Seaxm]

(AUviche = 51~ R?8y1 ~ ReAym) (- §°Ax1 - 5¢Axm) (A.15)

The terms in the R and S vectors in this equation contain first derivative terms like (4y)c4 which

must be split into contributions from the cells involved.
u + ZIE{UO'UC -y0')+ Ucyse - yc') + Uo(yo - yuc)l

ox Yp') + -
U U Y - \ U '
i +J_{ 0()’0 D) 0()'44 YO) + bDbD )d“)] (A.16)
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This formulation stresses the contributions from each cell C and D in the composition of the

first derivatives,

Reference 18 contains a thorough explanation of the viscous integration scheme for non-

reacting flow in general two dimensional coordinates.
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APPENDIX B

Jacobian Matrices

B.1 Perfect Gas

In a calorically perfect gas with ratio of specific heats ¥y

Y p
ho = +Mu? +v2
°Ty-1p %{u V) (B.1)

relates the stagnation enthalpy to the local gas properties.

In this case the derivatives of pressure with respect to elements of the state vector are

simple and expressions for and AF and AG are )
[ (Apu)
AF = —a—E-AU= u{Apu) + WlpAu) + AP

U v(apu) + pAv)
| hlApu)+ dpAh,) |

d9G (A (‘)Spv\?(PAu) |
u +

AG “a’ﬁ)"” =| y(apv) + o) + AP

| hdApv) + YpAh,) |

(B.2)

where

(pAu) = (Apu) - u(Ap)
(pAv) =(Apv) - YAp) (B.3)

(AP)=(y- l){(Ae)‘%[ ::m;: 3?353 “

(pAho) = (Ae) +(AP) - ho(Ap)

(B.4)
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L 4

B.2 Nonequilibrium Mixture Gas Model

For the nonequilibrium mixture gas model developed by Chapter 2 the pressure at any

point in the field is

| — U2+U2]
= -1)[U -Re-2_73
p=(r¥ 4 S0, B.5)

Where U, represents the nth element of the state vector and % and 5 are defined by

M‘) 5—( )+4(m +54 4. 6

3 m4 ms

_L+__L o T S
2m1 2my '"3 m4 - ms

-
+ %‘-(Ul - UrCfracimy + U7% + Us)

and O = + %{Ul - UiCfracamz + U7;n"1§-+ Us)

I + (U1 -U1) | (B.6)

with
_h

C, =
Facl = 2 + fama

a_J2
a2 = Fmy + fama (B.7)

and for air f = 0.79 and f 3 = 0.21.

143




Derivatives of Pressure

%’;—ubf 1)

s =-1)

-a%‘;';=m 1)

5%%= (v—lm%+ml§2-
:TPG' —-(v- 1)9‘3,‘;’ + ’”zi g
- Vfon- 22
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-ag-ua-‘-=(l—0ﬁ¢1ml)%l+(l-0ﬁ¢czmz s +%‘;’-
96 _6p,
oUs ™4
96 _6p,
aqé ms
6p, &) _6n,
807 " 2\my " my )" my (B.9)
Jacobian Matrices
B 0 1 0 0 0 0 0 ]
o Ui 2U o o p P I Op
U, U% aUz U dUs dUs dUg dUn
LU 91 L 9 0 0o o
U12 Uy U
oF _ hy ah,, dho ,; o 1 Bho (, Dby ;O
aw-| Yag, +he Vg Urggs Y25o, Yt Vs,
_UsUy Qﬁ- o o % o o
Ulz Uy U
_UsU; Us v
o 7 0 0 0 7 0
1
13 1%} 23
i 02 7 0 0 0 0 v |
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B 0 0 1 0 0 0 0 ]
_Us Us U 0 0 0 0
U2 U,y Uy
1
P U W U, W @
ol U% U, Ui doUs dU, aUs U U,
3G _ ah, oh, .. 9k, dh, .. dh, .. Oh, .. dh,
-l Yy Ysm, Yam t Ussp, Yssw. Yan, Vs,
_UsUs Us Uy
s 7 0 o F o0 o
1
_UgUs Ug U
- U 0 0 0 U, 0
1
_Uius U Us
i U% Uy 0 0 0 0 U,
(B.11)

Since Wy is not required for either stability or spacial accuracy this matrix is not computed.
This reduces the scheme's time accuracy to first order (34).
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