
AD- A222 390

WRDC-TR-90-3002

AN ADAPTIVE GRID ALGORITHM FOR NONEQUILIBRIUM HYPERSONIC FLOWS

Michael J. Aftosmis
Judson R. Baron

Massachusetts Institute of Technology
Department of Aeronautics and Astronautics
Cambridge, MA 02139

April 1990

Final Report for Period September 1987 - August 1989

Approved for public release; distribution is unlimited

DTIC'
ELECTE
MAY 23 1990

SCBD

FLIGHT DYNAMICS LABORATORY
WRIGHT RESEARCH AND DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553



NOTICE

When Government drawings, specifications, or other data are used for any pur-
pose other than in connection with a definitely Government-related procure-
ment, the United States Government incurs no responsibility or any obligation
whatsoever. The fact that the Government may have formulated or In any way
supplied the said drawings, specifications, or other data, is not to be re-
garded by implication, or otherwise in any manner construed, as licensing the
holder, or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This technical report has been reviewEd and is approved for publication.

ERVY D. MACH DENNIS SEDLOCK, Chief
rpace Engineer Aerodynamics and Airframe Branch

Computational Aerodynamics Group Aeromechanics Division
Aerodynamics and Airframe Branch

FOR THE COM1ANDER

*"i .qD"F.A'YgChief

AOmecbanic Dvs~on

ff/t Dynamics Laboratory

If your address has changed, if you wish to be removed from our mailing list,
or if the addressee is no longer employed by your organization, please notify
WRDC/FIMN, WPAFB OH 45433-6553 to help us maintain a current mailing list.

Copies of this report should not be returned unless it is required by security
consideratiois, contractual obligations, or notice on a specific document.



UNCLASS IFIED
SECURITY CLASSIFICATION OF THI AGE

REPORT DOCUMENTATION PAGE OMI?4N0070" in

Ia. REPORT SECURITY CLASSIFICATION Ilb. RESTRICTIVE MARKINGS

Fnclassified
2&. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION IAVAJLASIMUTY OF REPORT

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Approved for public. release;
distribution is unli-ited

4. PERFOIRMING ORGANIZATION REPORT NUMBER(S) 5. MIONITOIRIING ORGANIZATION REPORT NUMBER(S)

CFD-TEL-89-8 WRLDC-TR.-90-3002
6a. NAME OF PERFORMING ORGANIZATION I6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Dept. of Aero. and Astro. (if sapikable) Flight Dynaz.ca Laoratory (WRDCIFINM)
Massachusetts Institute of Tech. Wright Research and Development Center

6C. ADDRESS (City, State, anid ZIP Code) 7b. ADDRESS (Ck, Stage, A'd WVCcde)
Dept. of Aero. and Astro. Wright-Pattersion Afl OR 45433-6553
M.I.T.

Caubridse, M& 02139
11a. NAME OF FUNDING / SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applic11abfe)

I .F33615-87-C-3004
C. ADDRESS (City State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROECT TASK WORK UNIT
ELEMENT NO. NO. NO. CESSION NO0.

11 . TITL.E (Include SecunrtY Camficatin)6L 2 1301N6r3

AN ADAPTMV GM.T ALGORITm FOR NEQUIL33RIUM WKSICL FLQS
12. PERSONAL AUTHOARjS)

Michael J.AtaiJudson R. Baron

1 3a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT' (yeaw, h.OL ay) IS.* PAGE COUNT
Final IFROM Sept 87 To U8 9  1990, April I 156

16. SUPPLEMENTARY NOTATION

17. COSATI CODES is. SUBJECT TERMS (Candiue on rnwrin N nemeny and km* by block numnbed)
FIELD GROUP I SUB-GROUP Computational Fluid Dyumicue; Nonaquilibrium, Flow;

OL 91 1Hypersonic; Adaptive Grid
01 0z I

19. A8 TRACT (CWon*nue V* on'eee neceuauy and Idntty by block mAnibe)

k-*he use of unstructured. adaptive, embedded grids has been applied to hypersonic
nonequiflbrium CFD problems. Grid adaptation was accomplished by sub)-dividing com-
putational cells for 2-D and axisynimetric blunt body cofguzuons. The high tempermn gas
mixture was described by Lighthill's dissociating gas model which was extended to include

& multiple coupled reaction paths in both viscous and inviscid flows. Ni's finit volume Lax-
Wendroff scheme was used to integrate the governing equations. 7%s algorithm was extended
to include shock fitting and adaptation on general, unticmnd depeden gids.

The explicit real-gas algorithm and shock fitting procedure were validated by
comparisons with experimental and computational results for perfc gas, dissociating gas, and
multiple reaction cases. These comparisons also emphasized the importance of chemical length-
scale effects in predicting nonequilibrium gas behavior. Such effects wer linked not only to' (cont. on back)

20. DISTRIBUTION/# AVAILABILITY OF ABSTRACT 2 1. ABSTRAC SECURITY CLASSIFICATION ~ ,
(MUNCLASSIFIED/UNLIMITEO C3 SAME AS RPT C3 OTIC USERS UNCLASSFD

22a NAME OF RESPONSIBLE iNDIVIDUAL 22b. TELEPHONE (Include Aeva Coe 2.OFFICE SYMBOL-
K. Ia c h (513) 255-2455 WRDC/FIOA

DD Forrm 1473. JUN 86 PrVVIOU of (otons are :bsolte. SECURITY CLASSIFICATION OF rwiS PAGE
UNCLASSIFIED



19. Abstract (continued)

__-e'es 'concentration profiles throughout thi shocklayer,"but alioT0 rthe excess' prbdiction of
Nitric Oxide frequently reported off the symmetry plane in reacting air blunt body flows.

A detailed study of basic nonequilibrium flow phenomena has been completed for
freestream Mach numbers from 10 to 15 over blunted cones and wedges. These flows
demonstrated degrees of nonequilibrium ranging from nearly frozen to near equilibrium. In all
cases the adaptive procedure correctly located and resolved perfect gas and nonequilibrium
features.---Special attention was awarded to cases displaying a small departure from
equilibrium.\aekre 4 daptation was shown to be particularly u~eful in capturing the steep
chemical gradients which appear within the shock layer. ( -

Adaptation was shown to be a cost effective way oi computing high resolution solutions
to hypersonic, finite rate, real-gas problems. The computational effort required for an adap-
tively refined nonequilibrium solution was shown to be only 1.5 to 2 times that required for an
equivalently resolved frozen flow solution over the same configuration. This compares favor-
ably with the 40-50 times that may be required for a solution on globally refined mesh capable
of resolving the chemical relaxation.

Acoession For 0

NTIS GRA&I or
DIC TAB Q
Unannounced
Justification

By.
Dlatribut ion/

Availability Oodes
,Avai and/or

Dist Speca l

La

INSP, 
ID

T4



Contents

Introduction Pae
Motivation and Overview I

Organization 2

PART I Real Gas Dynamics 4

1 Some Elements of High Temperature Gas Dynamics 4

1.1 Conservation Equations for Chemically Reacting Viscous Flows 6

1.2 Chemical Effects in High Temperature Air 13

2 Modeling High Temperature Air 17

2.1 Thermodynamics of a Mixture of Ideal Dissociating Gases 17

2.2 Law of Mass Action 21

2.3 Finite Rate Expressions 27

2.4 Chemical Source Terms 31

2.5 Rate Constants 33

Part II An Adaptive Numerical Method 34
3 Numerical Integration of Governing Equations 34

3.1 Integration in One Dimension 35

3.2 Ni Scheme in Two Dimensions with Source Terms 37

3.3 Smoothing Formulation 42

3.4 Numerical and Physical Boundary Conditions 49

iii



TABLE OF CONTENTS (continues) EW

4 Adaptation and Unstructured Meshes 56

4.1 General Procedure 57

4.2 Detection of Flow Features 58

4.3 Unstructured Grids 68

4.4 Cell Division 70

4.5 Cell Interfaces 74

4.6 Integration Scheme on Interface Cells 79

5 Unstructured Shock Fitting 82

5.1 Perfect Gas Shock Fitting 84

5.2 Equilibrium Shock Fitting 87

5.3 Moving Unstructured Meshes 90

5.4 Behavior of Shock Fit Solutions 92

Part III Presentation and Discussion of Results 95

6 Physical Phenomena in High Temperature Flows Over
Simple Geometries 95

6.1 Basic Examples and Algorithm Verification 95

6.2 Effects of Length Scale Behavior 105

6.3 Coupled Reacting Systems 114

7 Effectiveness of Adaptive Grid Embedding in

Hypersonic Flows 118

7.1 Enhancement of Computational Efficiency 118

7.2 Adaptive Resolution of Physical Phenomena 122

7.3 Recommendations for Improving the Adaptive Technique 124

iv



TABLE OF CONTENTS (concluded) e~ga

Summary 127

Summary and Conclusions 127

Conclusions 129

Refernce 130

A Integration Formulae 133

A. I Non-Orthogonal Two Dimensional Coordinates 133

A.2 Non-Orthogonal Axisymmetric Coordinates 135

A.3 Viscous Formulation in Two-Dimensions 137

B Jacobian Matrices 141

B. 1 Perfect Gas 141

B.2 Nonequilibrium Mixture Gas Model 142

4v



Figures

Figure
1.1 Velocity - Altitude map with regions of modal excitation superimposed on it. (From

R ef. 20.) ........................................................................................................ 5

1.2 Composition of equilibrium air as a function of temperature at I atm pressure (1) ............... 13

1.3 Equilibrium constants for neutral species of air. (From Ref. 33.) ..................................... 15

2.1 Energy level comparison of equilibrium air between half-excited model and more
precise model of reference (14) (Reproduced from Ref. (31) ....................................... 18

2.2 Characteristic density,pD, for the three major diatomic molecules in high temperature

air ......................................................................... I ............................................ 26

3.1 A one-dimensional computational domain ................................................................... 35

3.2 A two-dimensional computational domain .................................................................. 37

3.3 A two-dimensional computational domain for integral formulation ................................... 39

3.4 Schematic of changes accumulated at the ith node in a two-dimensional domain .................. 41

3.5 Amplification factor of the Lax-Wendroff finite difference scheme. (From Ref. 2.) ......... 42

3.6 A one-dimensional computational domain smoothing formulation ................................... 43

3.7 A two-dimensional computational domain smoothing formulation .............................. 43

3.8 A one-dimensional computational domain for examining smoothing contributions .............. 44

3.9 Variation of property u showing degeneracy of smoothing operator near boundaries ............ 45

3.10 Stagnation streamline temperature behavior in a frozen flow ............................................ 47

3.11 Schematic of physical and computational space for a blunt body computation .................... 49

3.12 Edge cells in a node-based finite-volume scheme ........................................................... 50

3.13 Schematic of outflow boundary in blunt body flow showing location of the sonic
line ..................................................................................................................... 5 1

3.14 Flow tangency condition for inviscid simulations showing reorientation of the 4otal
velocity vector ................................................................................................. 52

3.15 No contribution to flux integral from surface face ......................................................... 54

vi



4.1 Some flow features in hypersonic, real-gas, blunt body flows. ............................................. 59

4.2 General undivided cell .............................................................................................. 61

4.3 An adaptation map based on two parameters ................................................................. 62

4.4 Adaptation map for Mach 5 flow showing polarization .................................................. 63

4.5 Behavior of a general adaptation map .......................................................................... 64

4.6 Adaptation based on different parameters ..................................................................... 65

4.7 Adapive sequence on a blunt nose .............................................................................. 67

4.8 General cell in unstructured domain ............................................................................ 69

4.9 Cell numbers surrounding a node .............................................................................. 69

4.10 Cell A tagged for division ......................................................................................... 72

4.11 Cell division and pointer updating .............................................................................. 73

4.12 Interface in computational mesh................................................................................ 74

4.13 Comparison of interface cells with cells of a uniform grid .............................................. 74

4.14 Distribution to mid-face node .................................................................................... 78

4.15 General interface cell ............................................................................................... 80

5.1 Definition of normal relative Mach number ................................................................. 85

5.2 Definition of absolute normal Mach number ................................................................ 85

5.3 Reference points for moving nodes on the base (original) grid .......................................... 90

5.4 Preservation of linear interfaces in an unstructured domain with multiple levels of
adaptive embedding ........................................................................................... 92

5.5 A typical history of stand-off distance with iteration, converged from a uniform,
freestream initial condition. (Mach 5 frozen flow over an axisymmetric nose.) .............. 93

6.1 Comparison of shock Stand-off with Reference 22 ......................................................... 96

6.2 Computed Mach contours of Mach 5 frozen flow over 2-D and axisymmetric
circularly blunted bodies showing location of the sonic line ...................................... 98

6.3 Density ratio comparison with shock tube experiment and calculation of Macrossan
(25) at conditions of Table 6.1. Current method shown in lower half. ............................ 100

6.4 Adaptive computational grid with 1640 nodes for dissociating Nitrogen flow over a
circularly blunted 15? wedge at "equivalent" conditions (Table 6.1) ................................ 101

vii



6.5 Stagnation streamline profiles of density ratio of current method and computations of
Candler (5) at conditions in Table 6.2 ....................................................................... 103

6.6 Stagnation streamline profiles of temperature and species mass fraction of current
method and computations of Candler (5) at conditions in Table 6.2 ................................ 104

6.7 Schematic of generalized concentration and source term behavior along the stagnation
streamline in inviscid flow ..................................................................................... 106

6.8 Stagnation streamline profiles of atom mass fraction and local equilibrium mass
fraction for the blunted wedge detailed in Table 6.1 with chemical rate retarded
two orders of magnitude ......................................................................................... 107

6.9 Symmetry plane profile of the logarithm of the source term normalized by that just
behind the frozen shock for the blunted wedge detailed in Table 6.1, with
chemical rate retarded two orders of magnitude ............................................................ 108

6.10 Mass fraction profiles and local equilibrium mass fractions for reacting flows ranging
from near frozen to near equilibrium ......................................................................... III

6.11 Mass fraction and local equilibrium mass fraction profiles along the symmetry plane
for viscous and inviscid flows at 60 km altitude in STD atmosphere. W= 10
(left), W = 0.01 (right), Re =6500, Pr = 0.72, Sc = 0.5 ............................................... 112

6.12 Symmetry plane profiles of species mass fractions for the case detailed in Table 6.2.
(also see Figs. 6.5 and 6.6) .................................................................................... 113

6.13 Symmetry plane profiles of species mass fraction for 02, 0, NO, and N for the case
detailed in Table 6.2 (also see Figs. 6.5 & 6.6) .......................................................... 115

6.14 Contours of NO mass fraction, and temperature ratio for the case detailed in Table 6.2
(also see Figs. 6.5 & 6.6) ...................................................................................... 116

7.1 Adapted grid with four levels of embedding and 1550 nodes for conditions described in
text .................................................................................................................... 119

7.2 Contours of temperature ratio for inviscid Mach 12 flow for frozen flow (left), and

reacting flow (right) .............................................................................................. 122

7.3 Cell subdivisions for directional embedding ..................................................................... 125

7.4 Adapted grid for a 2-D reacting viscous calculation and total velocity vectors for same
calculation .......................................................................................................... 125

A. I A general cell in circular cylindrical coordinates ................................................................ 135

A.2 Primary and Secondary cells for viscous integration .......................................................... 137

vnl



List of Tables

1-1 Scaling of Flow Variables and Properties used to Non-Dimensionalize the Governing
E quation ....................................................................................................................... 9

2-1 Characteristic Temperatures and Densities For Dissociation of the Major Molecular
Species in Equilibrium Air Below 9000 K ................................................................... 26

6-1 Conditions for Comparison to Dissociating Nitrogen Test Case (from Reference 25) ........... 99

6-2 Conditions for Spherical Test Case of Reference (5) for Multiple Reaction
C om parison ............................................................................................................... 102

7-1 Computing Time Comparisons for Adaptive and Globally Refined Meshes for
Conditions of Figure 7.1 ............................................................................................. 120

ix



Nomenclature

Symbols Greek Symbols
a Speed of sound a degree of dissociation

A C Adaptation parameter &0 Activation energy

C Concentration 0 Non-dimensional reaction rate
Dim Binary diffusion coefficient expression

E Internal energy per unit mass V Frozen ratio of specific heats

e Total internal energy per unit volume 77 temperature exponent

E Internal energy of an inert mixture K Boltzman's constant

F,G Inviscid flux vectors Are/ax Chemical relaxation length

h Enthalpy y1 First coefficient of dynamic viscosity

k Heat conduction coefficient OD Characteristic temperature for
M Mach number dissociation

mn Mass per mole of nth species PD Characteristic density for dissociation

Nn  Number of particles of type n a" Numerical smoothing coefficient

Nn Total number of elements with n type rj shear stress tensor

nuclei W Damkohler number

p pressure

q Heat flux vector Subscripts

Qn Partition function of nth species F Froz

R,S Viscous flux vectors

91 Universal gas constant (j ) SpeciesR n Nose radius (0)  Molecular species
Rn oseradus n Normal direction

s Total number of species ()0 Stagnation value
T T em perature ( )oSta on dition

Tadax Adaptation threshold ( o Freestream condition

U State Vector

u,v Cartesian velocity components

t Diffusion velocity vector Superscripts
V Total velocity vector ()* Non-dimensional quantity

X



INTRODUCTION

Motivation and Overview

The difficulty involved in experimentally validating NASP type high altitude/high Mach

number configurations has driven a large hypersonic CFD effort. The nonequilibrium real gas

effects and steep gradients found in this regime are characterized by multiple time and length

scales. Specifically, the relaxation lengths for such nonequilibrium processes often differ from

the convective length scale by several orders of magnitude, introducing both stiffness and

complexity into attempted analysis (1,31). Moreover, these nonequilibrium length scales may

change radically throughout the field. In terms of numerical simulation, these factors drive up

the cost of computation by grossly increasing the resolution requirements for acceptable

solutions (30,32).

In response to such needs, the technique of adaptive grid embedding locally refines the

computational mesh based on information from a developing solution (6,16,33). Triggered

by both gas dynamic and nonequilibrium variables, embedding increases the resolution of

flow features associated with these processes. In this way, the grid scale locally adapts to the

dominant physical scale within the gas. The technique ensures grid resolution comparable

with all important physical scales of the problem while still avoiding unnecessary resolution in

smoother regions of the flow.

Of course, in reacting blunt body flows, the chemical and convective lengths are not

the only scales in the flow. The bow shock adds a third type of length scale. However, since



this structure is on the order of the local mean free path, its scale is too disparate to attempt to

resolve. In fact, with the exception of transatmospheric problems, the bow shock may be

treated as a discontinuity. With this motivation, shock fining removes the shock from the

domain interior in the present work. The discontinuous shock assumption is consistent with a

continuum description of the flow, but breaks down in the large Knudsen number regime

characteristic of very high altitude flight (28).

From a computational standpoint, an adaptive embedding procedure requires

unstructured data storage and a compact computational stencil. In response to these

pressures, Ni's (29) node-based finite-volume scheme was chosen. Over the course of the

research the initial inviscid perfect gas scheme was extended to include chemical source terms,

viscous terms, and axisymmetric configurations.

Organization

This work is divided into three main parts. The first takes up high temperature gas

dynamics. After briefly discussing nonequilibrium and real gas phenomena in air, it develops

the governing equations and gas model used to describe chemically reacting high temperature

air. The model applies to both coupled and uncoupled reacting mixtures and degenerates to a

classical perfect gas when the chemistry is frozen. The final results of these discussions are

the chemical source terms for use in the governing equations.

In Part II, focus shifts to the adaptive numerical algorithm and its associated numerical

procedures. The integration scheme emphasizes the conservative nature of the governing

equations. Discussions of the embedded mesh procedure also stress this point, especially

with respect to the treatment of computational interfaces between embedded mesh levels. This
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Part closes with a presentation of shock fitting algorithms for both nonequilibrium and

equilibrium real gas models.

Part III contains the major results and conclusions. These discussions include

analysis of both fundamental physical phenomena in blunt body flows and an overall look at

the effectiveness of the adaptive procedure in a hypersonic environment. In examining the

physical process found in high temperature shock layers, the analysis emphasizes the im-

portance of length scales and their effect on the flow's behavior. Such investigations gave

experience with the adaptive method as an engineering tool, and they provided a firm basis for

evaluating the effectiveness of the embedded procedure.



I REAL GAS DYNAMICS

1. Some Elements of High Temperature Gas Dynamics

We briefly discuss some aspects of high temperature gas flows and present an

extended form of the conservation equations to model such flows. This permits close study

of the terms responsible for modeling the physics of gases at elevated temperatures. The

examination reveals the strengths and weaknesses in the present modeling, and provides

insight into which physical processes may be described within this framework.

Physical Processes

Nonequilibrium involves both the chemical composition and the internal energy

storage modes of the gas particles. In steady, air breathing flight within the Earth's

atmosphere, hypersonic vehicles experience both kinds of nonequilibrium. Figure 1.1 shows

the corridor for sustained flight with regions of thermo-chemical excitation superimposed

(20). Despite the somewhat approximate boundaries in the sketch, it is clear that these modes

affect nearly all flight at hypersonic Mach numbers.

Noncuilibrium Rate Processes

While excitation of internal modes is important, excitation alone does not imply a

relevant nonequilibrium process. In the context of flowing gases, nonequilibrium implies that

the time for an energy mode to equilibrate is an appreciable fraction of some time scale within

the flow. On average, chemical reactions require thousands of collisions between the re-

actants. These collisions occur over a finite time and distance. In general, the more efficient

4



energy transfer between internal modes of a particle implies less space and time to achieve

equilibrium. This observation often leads to a heavy particle temperature approximation (21).

The temperature characterizes a particle's internal energy by assuming thermal equilibrium

takes place instantaneously. That is, all internal modes remain in equilibrium with each other.

While valid throughout much of the flight corridor in Figure 1. 1, recent work by Candler (5),

Park (31), and others (4) suggests that the approximation breaks down near orbital

conditions.

AeroAssist
75 Evgerbment

SFlight
60- Corr idor ii.J ..

45-

30-

15 .. ... N*.* Apoll

15-- Vibrationa" Ozygen "" Nitroge •

excitaiox dwcato .. . iw

0 
0 - 1o -so

Mach Number
FIGURE 1.1
Velocity - Altitude map with regions of modal excitation superimposed on it. (From Ref. 20.)

At elevated Mach numbers and low densities, the vibrational temperature may take appreciable

time (and distance) to equilibrate with the translational-rotational temperature. This results in

thermal nonequilibrium within the different molecular species in heated regions of the shock

layer. In this context, "molecular species" refers mainly to nitrogen, since oxygen molecules

tend to dissociate before their vibrational and translational temperatures differ appreciably. It

is worth noting, however, that the stagnation enthalpy error produced by ignoring this tem-

perature difference is negligibly small for a wide class of problems. Thus, while multiple

vibrational temperatures remain important in re-entry or transatmospheric problems, a
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one-temperature model does accurately model a wide class of problems within the Earth's

atmosphere.

1.1 Conservation Equations for Chemically Reacting Viscous Flow

Many texts develop the conservation equations for chemically reacting viscous flows

(for example (36), (13)T (1)). This section first states this set and then discusses specific

modeling for terms within these relations.

Governing Equations in Conservative Form

Global conservation of mass and momentum simply account for mass and momentum

flux through a fluid without concern for any internal structure of the gas particles. The

description therefore remains unchanged from the classical Navier-Stokes or Euler

formulation. In full conservation form:

Continuity
tF + V(PV)ff o

~W+VopV)=O(1.1)

x Momentum
a() Z(PU2 + p) + aa=puv) + ka(y)

t ax 8Y ax

y Momentum (1.2)

C(pv) + a(puvp) + a(,ryx) +
at ax ay ax ay

Here, the shear stresses are
4

+

and the normal viscous stresses are

6



(A+ + Aarj- ay

=(A + 2,l'+ Aax

The Stokes hypothesis eliminates the second coefficient of viscosity by setting A =
3.

2 (2 u

Since the energy equation imposes a detailed balance of all energy fluxes, it must include an

explicit description of the diffusive energy flux arising from gradients in species

concentrations. However, collecting those effects within the heat flux term, q, the equation to

be couched in classical form.

e) + c-u(e +p)] + v (e + p)] -+ -qx) ++ -qy

hu Tx + vr, -4w y v yy -qy)
at ax ay ax (1.3)

Here e refers to the total internal energy per unit mass, and the stagnation enthalpy

becomes:
=e+p

P (1.4)

As mentioned, q includes both- the Fourier heat conduction term, and the diffusive

energy flux contributions. q = - VT + iC (1.5)

Here, U is the diffusion velocity of the ith component in the mixture. More

precisely, Ui measures the relative velocity of the ih species to the bulk velocity of the gas.

The diffusion velocity also contributes to the species conservation equations. These

relations trace the net production or destruction of each species in the mixture.

7



For the i h species:

a(Pi) + Aei!) + = i' + ~i
at ax ay ax ay (1.6)

The source term Wi contains the net reaction rate expression, and in general is a summation

over all reactions contributing to the net rate of change of any particular species.

Naturally, conservation of atomic nuclei and electrons prohibits the gross numbers of

particles of any species from changing.

=0 (1.7)

Additionally, global continuity forces the net diffusive flux of all individual species to

cancel.

S (1.8)

State Vector Form

The conservative form of the governing equations permits an arrangement more

amenable to numerical computation.
aU WF i) aR M3

+ - + a = a5 + T+ w(1.9)

Here

PU P

p pu2 +p PuV
Pu pulp pV2 +p
Pv

U e F= u(e-+p) G v(e+p)
Pi pU P

LPS

L pu J L pv

8



and

0 0 0
r., TrXY 0

TZY 0
R= (u + v., - qx) ,S- (u y + v y qy) ,W= 0

PApivi Wi

L PA J PsVs J L J

F and G are the inviscidflux vectors while R and S contain the viscous fluxes. Setting the

viscous flux vectors identically to zero results in the governing equations for chemically

reacting inviscid gas mixtures. W contains the chemical source terms for either case. Setting

this vector to zero degenerates the set of equations further and results in the Euler equations

for perfect gas modeling.

Normalization

Table 1.1 shows the scaling of flow variables and properties used to non-dimension-

alize the governing equations. The subscript ( )F refers to frozen conditions.
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TABLE 1.1
Scaling of flow variables and properties used to non-dimensionalize the governing equations.

Dimensional Reference -Nondimensional
variable quantity freestream value

p p. 1
u, V aF. MX., MY.

e p-.4. Dependent upon modeling
p p3../.

T T. I
t Rnlar.

Sp.. 1
k k.. 1

Dim Dim. 1
X Rn -
Y Rn -

Taking the frozen sound speed as a reference velocity conveniently rescales the freestream

flow velocity and Mach number to numerically equal values.

Non-Dimensionalization of Diffusion properties

Inserting this scaling into the governing equations permits a collection of all

dimensionless parameters within R, S, and W. Collecting these parameters into the non-

dimensional heat flux vector q and shear stress tensor 1 leaves the form of the governing

equation set (1.9) unchanged.

Defining the Reynolds, Prandtl, and Schmidt number (respectively) as

Res= parR ,ra cpA.P_Re= , Prrn k.

Sc =

permits ' to be expressed without dimension.

10



3 Re""
0

To 3Re 2 (v (1.10)

where, u* u* =-L and v* = .V
where, / *' aF. "

Since significant ionization occurs only at temperatures too high to simulate accurately

within the present single temperature framework, any charge separation predicted due to ionic

species must remain small. Given this, Fick's first law of diffusion relates the diffusion

velocity to species gradients.

Ui - - imVCi
Pi (1.11)

Collecting dimensional parameters in the energy equation returns a non-dimensional form

of this quantity. In cartesian form the diffusion velocities become:

= Re~c ?e~ac1 ,; - n; .~i
pY /(1.12)

With these quantities now known, we may write the non-dimensional heat flux vector.

q= '(prRVn. VT-X Re" ""c)

Breaking this vector into its cartesian components, q becomes;

11



Pr Re 1p. ax s Re Sc ax (1.13)

qy= -k aT- Phi~iaci)
PrRe7p. ay Re Sc ay

After developing a mixture gas model, the next chapter details the non-dimension-

alization of chemical source terms.

Modeling of Diffusion Peries

Precise modeling of diffusion properties requires details of the collision cross-sections

from kinetic theory (21, 36). However, the level of accuracy for the current modeling does

not warrant such details. Moreover, g and k should take into account mixture values in

reacting calculations, but such effects are of higher order, and are not crucial for

understanding the basic physics here.

Sutherland's law predicts pu to within 10% below 9000 K (10). All viscous

calculations presented later use this approximation.

_i T[. + 1104
" =p-[T+ 110.4(T.1) (1.14)

The definition of Prandd number relates thermal conductivity to viscosity.

. pi..

Pr.

A constant Prandtl number assumption provides a first approximation for the high

temperature transport property behavior,

N..Pr. (1.15)
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Unless otherwise stated, all viscous calculations assume that C/€p-_= 1.0.

Similarly, the definition of Sc provides a basis for evaluating Dim

=P-S -4D M Dim go
p..Sc D n P (1.16)

for constant Schmidt number modeling.

The Dege of Noneauilibrium

The earlier statement that nonequilibrium is relevant when relaxation occurs over an

"appreciable" distance was accurate, but not very quantitative. A clearer statement of the

degree of nonequilibrium relates the fluid and chemical time scales

Consider a steady state inviscid species equation. From Equation (1.6),

-Kpiu) fiW

ax 
(.17)

This may be non-dimensionalized as before with freestream conditions.

apiu" = Rwi,,j W , * 'W (1.18)
ax 0 PA

Here, W is a form of the Damkdhler number and relates the chemical reaction rate to

the bulk fluid motion. The reference reaction rate, Wider, was evaluated at conditions

downstream of a normal shock. As W increases, the chemical length scale shrinks until

identical equilibrium modeling describes the flow. Similarly as W approaches zero the flow

becomes progressively more frozen.
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1.3 Chemical Effects in High Temperature Air

With the governing equations for a general nonequilibrium chemically reacting gas

mixture completely outlined, we next exar'Te how they model a known system. Moreover,

the chemical composition of high temperature air will provide a datum by which to judge the

results of later computations. For equilibrium air, the species equations reduce to the

equivalent Law of Mass Action form.

0.8

N 2  N
0.6

0.4

o0
0.2

0.2.
2000 

4000

Temperature K

FIGURE 1.2
Composition of equili'iwum air a a ftnction of temperatme at I ann pressure (1).

Figure 1.2 illustrates the temperature dependence of the equilibrium mole fraction X for the

five major constituents of air. The mole fraction of the it species Xi is defined as the ratio of

the number of moles of i, Ni, to the total number of moles in the mixture N.

At atmospheric pressure, the system remains quiescent from a few degrees above

absolute zero to nearly 800 K. Over this range, rotation and translation are fully excited, and

14



the equipartition principle dictates that both modes participate in energy storage. At about

800 K, the vibrational mode begins to contribute to such storage, but overall energy levels are

insufficient to appeciably dissociate any of the vibrating molecules. Classically speaking, this

vibrational excitation alters the specific heat ratio - affecting such things as the relationship

between pressure and internal energy of a static gas.

At about 2000 K, these relatively benign effects change character. Molecular vibration

and collisions have now increased to the point where appreciable oxygen dissociates. Again

the specific heat ratio begins to change rapidly, except that now it varies more wildly, since

changes in temperature also bring about changes in composition.

By 4000 K, only trace amounts of 02 remain, and N2 begins to dissociate. This

process continues until essentially only atomic species survive above 9000 K. At such

temperatures, the equilibrium constants favor atoms, and the diatomic species which do form

exist only long enough to dissociate again. Above this temperature, additional thermal energy

can only be stored by breaking down the electronic bonds holding electrons to the atomic

nuclei.

One interesting feature is the bubble of NO appearing between 2000 and 6000 K. As

background, consider the five basic neutral species reactions in the air system (below

9000 K).

1. N2 +M = 2N+M

2. 0 2 +M = 20+M

3. NO+M N*N +O+ M

4. NO+O = N+0 2

5. O+N 2 € NO+N

15



The last two exchange reactions (or "shuffle" reactions) are responsible for creating

NO in the system. Atomic oxygen collides with nitrogen molecules, forming NO which

dissociates more slowly than it is produced, shifting the equilibrium composition upward.

LE+00

C .... M .-- 20 * M
I aa ,"' " *" " ""N2+Mc--2N M"" *° '"NO Mc--),N+O*M

b I 1LE.04 .,-"- *

n of 0,. ~ *- O N2c-- N NO

m /.£-06 .- -. - - -.

2000 4000 6000 8000 10000.12000 14000 16000 18000
T~Mp"aw K

FIGURE 1.3
Equilibrium constants for neutral species of air. (From Ref. 33.)

Figure 1.3 provides greater insight into the role of the exchange reactions. This shows the

equilibrium constants resulting from the ratio of the net forward to the backward rates of the

five reaction system. Note that at relatively lower temperatures, the shuffle reactions proceed

at rates orders of magnitude faster than the dissociation paths. At those temperatures, the

reverse rates tend to dominate both (4) and (5), and the NO produced by (4) reacts in (5),

tending to hold the overall level of NO nearly constant. Additionally, both reactions consume

atomic nitrogen, further depleting whatever trace amounts may exist.

Although completed at standard pressure, the composition plot (Fig 1.2) holds

qualitatively to quite low pressures. Lowering the pressure shifts the curves to the left,

raising the degree of dissociation at any fixed temperature. Finally, this figure provides some

reference state for the high temperature shock layers presented later.
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2. Modeling High Temperature Air

The gas model developed to describe high temperature reacting flow extends the concept

of a finite rate ideal dissociating gas (11, 23) to include both coupled and uncoupled systems.

While capable of predicting the essential physical phenomena, this model introduces a

minimum of algebraic complexity. Strictly speaking, it is reasonably accurate to 9000 K, and

presently includes only electrically neutral species. Nevertheless, Chapter 6 presents evidence

which demonstrates accurate modeling of flows where small portions of the shock layer

include much higher temperatures.

After examining mixture thermodynamics, attention turns to the formulation of chemical

source terms and details of the chemical modeling. Although the focus is on air chemistry, an

extension to general mixtures is straightforward.

2.1 Thermodynamics of a Mixture. of Ideal Dissociating Gases

The relationship between thermodynamic quantities in a system relies on the details of gas

behavior on a molecular scale. The primary simplifications in the present modeling concern

internal energy storage within molecular species. A single temperature characterizes all internal

modes since the vibrational mode follows Lighthill's "half excited" assumption. In 1983, Park

et al demonstrated that this assumption accurately predicts static enthalpy over the range of tern-

17



peratures where vibrational excitation is present (30). Figure 2.1 reproduces this work,

comparing the static enthalpy and vibrational energy of Lighthill's model with a more accurate

modeling (14). The indication is that only a small error exists over much of the shock layer.

10

8 
io10

6

h/RT / =I

4

-Rigorous Air Model (Hilsenrath, 1964)

- Half - Excited Model (Lighthill, 1957)
2

Vibrational Contribution

0I
2000 2500 3000 35-W 40) 5

Temperature (K)

FIGURE 2.1
Energy level comparison of equilibrium air between half-excited model and more precise
model of reference (14) (reproduced from ref. (31)).

Pressure

For ideal gas mixtures, Dalton's Law of Partial Pressures states that the total pressure is

the sum of the contributions of each component.

18



9t
S (2.1)

Here, the density of the ith species, pi, is related to the total density by

P = pi
S (2.2)

Since the law is purely mechanical, it remains unchanged in nonequilibrium flows.

Internal Energy and Enthalpy

The overall internal energy,E, for an inert mixture is the sum of the component internal

energies.

E E/
S

Here the tilde indicates that reactions are absent. The mixture enthalpy is

h=1 E +R
S P

making the total internal energy per unit volume of a mixture

e- u(E+---)p (2.3)

With this definition, the total enthalpy becomes

he+P

P (2.4)

If, however, the mixture is chemically reacting, the internal energy, E, must track the encrgy

absorbed during dissociation. That is:

(2.5)
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In which 8bj is the characteristic temperature for dissociation of the jt' molecular species.

Equation (2.5) implies that a mixture of only atoms will have zero energy at zero Kelvin.

While convenient for some applications, this datum is not unique. Moreover, since at low

temperatures air is virtually all molecules, we reset the datum to zero internal energy at absolute

zero and 100% molecules.

E=Ei+ x teD,(l- Cj)
J= ((2.6)

Enerxgy Storage

Expressions for the internal energy of each species, Ei, stem from the kinetic theory of

gases. Each species stores -RiT for each equilibrium degree of freedom.
3

ETrans = RA2T , EROt = RA2T, and Evib = RA2T

However, since the current model assumes vibration is only half excited, Evib= 2RA 2T.

In a system with atomic species, A, and molecular species, A2

Atomic Species: E = ETrans = 2 RAT

Molecular Species:E - ETrans + ERot + Evib = RA2 T + RA2T + I RA2T = 3 RA2T

For the specific mixture of the five major species in high temperature air N, 0, NO, N2, and

02 (species 1-5 respectively), thc internal energy becomes

2ml 2m2 m3 M M5 M3 M4 M±M3+4 m5
(2.7)

As a check, consider the special case of a symmetric dissociating gas, A2 ** 2A, with charac-

teristic temperature OD (i.e. with C2 = C3 = C5 = 0, c4 = 1 - ci, and m4 = 2mi),

E = RJI3T + cAeD)
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This is precisely Lighthilrs result for the same case (36).

Finally, the integration scheme uses the total internal energy per unit volume, based on

combining (2.3) and (2.7)

3 39T ( '+ I+ C3+ -9-+ C5)+9 D ~ D
=r2m12 M2 M3 I M5 (3 M4 M5|

M3 M(3l~4 4  M5) 2i J (2.8)

2.2 Law of Mass Action

The "half excited" assumption corresponds to certain behavior of the molecular partition

function. This is expected, since those functions statistically describe how the energy storage

modes of a particle behave. However, Lighthill's original work considered only symmetric

diatomic gases, and a model of the complete air system must extend the analysis to include

asymmetric particles such as NO.

For the general dissociation reaction, AB c A + B, the number densities measure

NAB a Total number of nuclei per unit volume (including those in both
atoms and molecules)

NA a Number of A atoms per unit volume

NB a Number of B atoms per unit volume

NAB a Number of AB molecules per unit volume

Within this present framework, the total number of nuclei remains constant.

2NAB + NA + NB = NAB (2.9)
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From statistical mechanics, the law of mass action for this general system relates the number

densities to the partition functions of each species and the change in zero point energy, AAD, of

the reaction.

NANB = Q e.&EI r
NAB QAB (2.10)

The change in zero point energy divided by Boltzman's constant, , is the characteristic tem-

perature for dissociation, referred to earlier as 8D.

We may now define the degree of dissociation as the ratio of particles of a particular type to the

total number of nuclei available.

aA a N.A - aB is N B

NAB NAB (2.11)

When combined with a statement of nuclei conservation,

NAB =(I - aA - a)A 22 (2.12)

we may define oAB as

aA5E(1aA-aB =2 a.~

NAB (2.13)

Note that in single reaction systems with stoichiometric coefficients, little distinction is usually

made between the degree of dissociation, a i, and the mass fractions, ci. However, if other

kinds of particles are present, the degree of dissociation differs from the mass fraction, as will

be detailed. For now, simply note that by definition aA + aB + AB = 1, but cA + cB + cAB

is not unity in the presence of other particles.

Repeating the law of mass action in terms of the degree of dissociation and the total

number of nuclei, NAB,

22



a.a_ = QAQB e-JT
aAB 2NABQ A  (2.14)

These nuclei have an average mass defined by

- (MA + ma)N AB +mANA + mBNB
NAB (2.15)

m' remains constant for any reaction at any specific time provided that the reactants exist at

stoichiometric ratios. Moreover, for any reaction in a multi-reaction system, we may define a

density, p', derived from the fraction of the mixture's density that is actually involved in any

specific reaction.

p'= ACA + CA + CAB) (2.16)

From these above two definitions,

NAB = -. 2
m (2.17)

and the law of mass action becomes

aAaB. m' QQe-1T
aAB 2p'V QAB (2.18)

Notice again that since aA, a, and aAB represent the degree of dissociation, this form applies

for systems containing other (possibly inert) reactions.

In the very special case of asymmetric dissociating reaction with no other species present

and reactants at stoichiometric ratios, Equation (2.18) becomes

a2__=3 m A)2d
1-a = [2V AJ~ p(2.19)
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The contents of the parenthesis on the right side have units of mass per volume. Moreover. for

nitrogen and oxygen systems, the ratio of partition functions remains remarkably constant

below 9000 K. By defining a characteristic density, PD , we may approximate this term with a

constant, thus avoiding the added complexity of evaluating partition functions. It is easy to

show (36, pp. 159) that this simplification is equivalent to the "half excited" assumption stated

earlier.

Characteristic Density of Asymmetric Molecules

Returning to the boxed Equation (2.18), we seek to define a characteristic density for this

asymmetric reaction. However, the form of (2.18) is unfortunate since m' will vary when

other reactions are present. Specifically, in a general mixture nothing insures that aA will

equal caB, and thus there is the possibility of an excess of particles which will remain inert.

Any attempt to define a PD parameter will result in a quantity which varies according to in'.

m'

In order to reexpress j-. examine the definition of p (2.16). Recall the mass fraction of

the ith species is the total mass of i divided by the total mass in the system,

miN i

p' p(cA + C + CAB), but ci -m- N, mNJ
S

where

Ni = mi mjNj
IS

Substituting for the mass fractions,

p= P (mANA + mBN' + mABNAB)

X mS NJ (2.20)

in a mixture with s components. The total number of nuclei in this system stems from

Equation (2.9):
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NAB-' B mjN' + m-1 miN' + m miN2
MA MA SM (2.21)

We now re-form the ratio 4 from (2.10) and (2.16).

A +_9+ mCA) (2.22)

Defining I- as the average mass per nucleus in AB molecules,

._ mA+ mB AO
2 2

and multiplying both the numerator and denominator of (2.22) by this quantity results in

(ma II (2.23)

-F is constant for any reaction irrespective of any other inert or active species present. Thus,

the variation has moved from m' into ", while simultaneously re-expressing the ratio of

(2.23) in terms of the (more common) mass fractions.

To demonstrate the value of this step, re-examine the law of mass action. Equation

(2.18) becomes:

aAB -p].2 j (2.24)

Following Lighthill, the term in the bracket may be defined as a characteristic density for disso-

ciation of AB, PDAB"

SQAQB

PLJ 2V QAB (2.25)

This form reduces identically to that presented by Lighthill in 1957 for a symmetric diatomic

gas.
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Figure 2.2 displays plots of Equation (2.25) for the major diatomic species in equilibrium

air below 9000 K. Reference 36 provided the values used in evaluation of the partition

functions.

*- Niura Oxide 0- Oxygen L Nit.oen

180.00

160.0

140.00 -

0120.0

2_ E

20.00I I
20.00

0 1000 2000 3000 4000 5000 6000 7000 8000 90M

Temperature K
FIGURE 2.2
Characteristic dersity.pD for the three major diatomic molecules in high temperature air.

Table 2.1 summarizes values of PD , and OD for N2 , 02, and NO.

TABLE 2.1
Characteristic temperatures and densities for dissociation of the major molecular species in equi-
librium air below 9000 K.

N2 02 NO
Characteristic Temp. (K) I113 000 59 500 75 500

Characteristic Density(kg/m3 )  130 000 150 000J 30 00
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2.3 Finite Rate Expressions

Sym tric Diatomic Gas

Freeman (11) approximated the general chemical rate expression by separating the law of

mass action into forward and backward components (37, pp. 232). For an ideal dissociating

gas with law of mass action

a2 ED -eIT
1- a p (2.26)

the rate of dissociation da/& is:

da = CTnp(1 - a)erT - a2l
dt PD J (2.27)

which describes the production of atoms. Notice that for symmetric diatomic gases with no

other species in the mixture, a = CA.

Mixture of Ideal Dissociating Gases

The law of mass action for asymmetric molecular dissociation with a half excited

vibrational state (2.24) may be re-written in terms of the characteristic density and degree of

dissociation.

all_ = P D e-Q/r
qAB P (2.28)

The analog of (2.27) is simply

daA AaB aABe' /r]dt [D(2.29)

which describes the production of AB molecules. Note that p = Ys pi as in (2.2).
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Equation (2.29) describes AB production as a function of the degree of dissociation

instead of mass fraction. Since the species equations express 1' in terms of the mass fraction,

(2.29) requires reformulation.

Recalling the definition of aAB from (2.13) and then substituting for Ni and NAB leads to

daAB = 1 dcAB
dt [cAB + +5-+1.)] dt

Re-arranging to express the mass fraction in terms of the degree of dissociation gives

dcAB .. P daAB
dt p dt (2.30)

after substituting for 7 from (2.23).

For the symmetric diatomic case E reduces to unity, CA + CB + cAB = 1, and mA = MB.p

Equation (2.30) collapses to the rate expression (2.27).

Finally, for the general dissociative reaction, AB 4-* A + B, in a mixture with many

components

cAB - CT?7n P aAaB - aABe'&
I PD J(2.31)

This simple form appears to rely on fortuitous cancellation and careful definition of p. How-

ever, by expressing the degree of dissociation in terms of mass fractions through the number

densities NM and total number of nuclei NAB, one may show

aAB = cAB, aA P.cA, and aB = rnpCBpMA p MB (2.32)

Substituting back into (2.31) expresses the rate of change of species mass fractions as direct

functions of these mass fractions of the reactants and products.
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d A = _mC~l- AAe 6 2dt C (i 8 ) (2.33)

Here, again, R is the average mass per atom in the AB molecule.

Elimination of Species Eouations

With the species production terms formulated, attention returns to the governing

equations. In general, as many species equations exist as species. However, for a system

with only two types of nuclei, conservation permits discarding two differential equations -

slightly reducing computational requirements and effort. In the present work, with the species

N, 0, NO, N2 and 02 numbered 1-5 (respectively), we elect to eliminate the last two species

based on conservation of atoms.

The simplification is a convenience. Moreover, since we presently consider only the air

system, the notation will refer to N and 0 directly, dropping the pretense of A and B.

Nitrogen nuclei: NN = 2NN2 + NN + NNO

Oxygen nuclei: No = 2N°2 + NO + NNO

Total number of nuclei: NNO = NN + No (2.34)

Differentiating and re-organizing these equations leads directly to the rate expressions for

molecular nitrogen and oxygen.

(dcN mN dcNo(=t -t --- dtb (2.35)
dcol = dc + moy dcNo)dt dt mNO dt!

In addition to the rate expressions, the concentrations of N2 and 02 need to be expressed as

functions of the other species. Taking air as 79% nitrogen and 21% oxygen by number (i.e.

NN = 0.79NNo, No= 0.21NNO) conservation of atomic nuclei yields

cN,- 0.79 cNo]M NLO = 0.79mN + O.lmo m0 (2.36)
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C02  0.21 _ o - CO
[0.79mN + 0.21mo cuo

Non-Dimensionalization of Rate Exvressions

Non-dimensionalization of the source expressions follows directly from the assumed

scaling (Table 1.1). In a mixture with only one reaction, the inviscid species conservation

equation in one dimension has the form

c -- +aiP([ F ]-[B] = (2.37)

in which [] and [B] are forward and backward (i.e.: dissociation and recombinaL ),I,

dimensionless expression terms, as in Eq. (2.33), and C = C//mi as shown in Ref. (36).

After rescaling this equation with the parameters in Table 1.1, the source term becomes:

-= [T?p2([ F]- B]] (2.38)

Here, the star denotes non-dimensional quantities and 0 is a non-dimensional rate parameter

defined by:

0i = Cf.T"rPref e  (2.39)
mi Ure1

The appearance of i in this expression is consistent with the reference mass appearing in the

forward and reverse terms. The generalization extends the classical definition of 0 to include

systems with multiple, coupled reactions.
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2.4 Chemical Source Terms

Reactions Considered

The chemical source terms for any particular species results from the summation of all

rate expressions contributing to that species. The primary neutral reactions occurring in air

below 9,000 K are:

1) N2 +M 4: 2N+M

2) O2 +M <- 20+M

3) NO+M t= N+O+M (2.40)

4) N2 +O - NO+ N
5) NO+O <* 0 2 +N

This system neglects ions of NO which may appear at such temperatures in small quantities.

These ions, and their associated free electrons, however, contribute primarily to charge

separation and electron densities within the shock layer, and are assumed to be of secondary

importance in the present study, which therefore includes only the neutral reactions listed

above.

Complete Rate Expressions

The rate expression for each reaction makes use of the species production terms of the

previous section (e.g. Eq. 2.35). The numerical subscripts on the properties in each of the

expressions below refer to the reactions numbered as in (2.40), and the subscript i refers to the

individual species in the mixture.

R1 €l'T '~i [  -9lT P C2
RIl= S2mi IC4e-"r PDc IP

R2 = 2m2 [c5e -D2 I P

R3 = [*-- jl - C41)

m3 Pt23M
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; 4Tj74p 2e9M 2'/ ji ~
R4 = • C4M 2 R+

R5=s1Tll5p2e'ebkC5T (-2ff5221 +r5= m5m1 +KCS & 2 1

These expressions for the non-dimensional rates of each reaction have been written without the

starred notation for clarity. Notice that the subscripts on 9D and PD refer to properties associ-

ated with each reaction and its Arrhenius rate expression. Both of the exchange reactions

contain the equilibrium constant Kc. Finally, R for each reaction retains its previous definition

as the average mass per nucleus of the reactants normalized by the atomic mass of atomic

hydrogen.

Source Terms

The source term, Wi, for any species follows upon summing the contributions from all

reaction rate expressions affecting that species.

W, = dp_ = m1 (-2R1 -R3 -R4 - R5)dt

W 2  = m 2(-2R2 - R3 + R4 + R5)

d 4dt (2.42)

W4 = d-4 = m 4(R1 + R4)dt

5  = m 5 (R2 - R5)
dt

As mentioned previously, Equation (2.35) eliminates the need for the last two source

expressions.
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2.5 Rate Constants

Unless specifically noted, all calculations completed for Part Ill use rate constants and

temperature exponents as presented in Reference 30.
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II AN ADAPTIVE NUMERICAL
METHOD

3. Numerical Integration of Governing Equations

Several levels of embedding removes all structure from a uniform initial mesh. Such

unstructured grids do not fit neatly into rectangular matrices and demand unstructured data

storage. A numerical integrator for such an environment should operate on a cell by cell basis,

dependent only upon information contained within a single cell. This effectively rules out most

implicit schemes and focuses attention on explicit integration schemes.

This need for a compact computational stencil resulted in the selection of Ni's (29) finite

volume formulation of the classic Lax-Wendroff, explicit, time marching scheme. Pervaiz (33)

extended this scheme to include chemical source terms in 1987 and Kallinderis and Baron (16)

recently formulated a consistent viscous integration extension. The algorithm stores the state

vector at cell vertices and integrates each cell independently, requiring only cell-based

information, and preserving second-order accuracy at computational nodes.

This chapter briefly describes inviscid integration on 2-D cartesian meshes and includes

notes concerning chemical source terms, smoothing, and boundary conditions. For complete-

ness and convenience, Appendix A contains the additional equations for 2-D non-orthogonal

curvilinear coordinates (Appendix A-I), axisymmetric non-orthogonal curvilinear coordinates

(Appendix A-2), and viscous integration in non-orthogontl 2-D curvilinear coordinates

(Appendix A-3).
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3.1 Integration in One Dimension

Consider the one-dimensional domain of

L R Figure 3.1. The I-D governing equation

system in strong conservation form is

FIGURE 3.1

A one-dimensional computational domain. Ut = -Fx + W (3.1)

and the change at node i occurring after At is

8Ui-Un+I-Un = [UtAt +Utt 2+(]At3  (3.2)

Dropping terms of third order and higher and substituting from Equation (3. 1) for U, provides

the second-order total change at node i based on contributions at the nth time level.

t2

8U1 = At(w - Fdr) + ---{wV(w - F,)- [FU(W - F.)],, (32 (3.3)

Equation (3.3) contains the Lax-Wendroff step and evaluates the second derivatives of the state

vector using the flux Jacobians Wu and Fu.

Ut, = WU/- (FuUt

The first and second terms in (3.3) contain the first- and second-order changes

to node i. Ni's primary contribution involved reinterpreting these terms based on cell-

centered values of the state, flux and source vectors. To see this, recognize that the source

vector at i is

WjMWL+ WR
2 . (3.4)

Here WL and WR represent cell centered values of W. Using central differencing

Fx = Fi+_ -F_ = +- (F+ 1 -Fj)+(Fi- Fi.1)
2Ax 2Ax 2Ax
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allows reexpressing the first parenthesis of (3.3) in terms of cell-centered values.

At(W - F,) = -(AUL + AUR)
2 (3.5)

Here AUL and AUL are the cell changes defined by:

AUL = WtAt-(Fi- i - FiAt

AUR WRAt-(Fi - Fi+1 1-

Similarly, we may recast the second-order term of (3.3) using these cell changes.

----{Wu(W - Fx)- [Fu(W - F) = " (W- (AUL + AUR) - [Fu(AUL + AUR)l}

Defining theflux change and source change vectors

AFLE FUAUL

AWL WUAUL

allows the second-order term of (3.3) to be expressed simply as

At[ AWL+ AWR + AFL-AFR ]T[ 2 AX (3.6)

Combining Equations (3.5) and (3.6) to form the total change at i then results in:

6th = 2AU + -4AF+! 2AW) + 2(AU - AF+2---AW) (3.7)

This form clearly shows the origin of contributions to node i from both adjacent cells.

This property makes Ni's scheme very attractive for use with unstructured meshes. Changes

to each node may be computed separately for each cell. Then all contributions to any node

simply may be summed according to Equation (3.7).

More precisely, with Equation (3.7) written as

2 4- u (3.8)
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the contributions to i from each cell

8ULi = (AU + AAF+ 2-AW)

SUR, = (AU - At-AF+ 2  (AW39i T(3.9)

may be computed on a cell-by-cell basis. These distribution formulae make use of cell center

and nodal information only, fulfilling the stated requirement for only cell-based information.

3.2 Ni Scheme in Two Dimensions with Source Terms

In two spatial dimensions, the integration scheme closely resembles the one-dimensional

formulation. The governing equations now contain a second flux vector as shown here.

Ut = --(Fx + GY)+ W (3.10)

An analysis comparable to that of the last section leads to corresponding nodal change formulae

and auxiliary equations. On uniform cartesian meshes, like that in Figure 3.2, the change at

node i is

- AUA + AAFA + AGA + TAWA)

Du +([AUB - AFB+ -AGB +! AWB)

A4 + (AUg - AAF- AGc +!!AWc
B AX Ay 2)

- - - +(AUD + AAFD- - 4LAGD +! AWD)

FIGURE 3.2
A two-dimensional computational domain.

where AFc- FuAUc
AGc = GuAUc (3.12)

AWc = WUAUc
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Rather than repeat the previous analysis to derive (3.11), we consider an equivalent finite

volume approach. This alternate derivation provides greater physical insight into the behavior

of the scheme. Here, we intend to examine the 2-D equations, and also show how the distribu-

tion formulae assemble the governing equations. The Lax-Wendroff scheme is second order

accurate in time and space. Ni's formulation (without dissipation) retains this order of accu-

racy at the nodes, despite the fact that each cell is computed separately. The advantage of this

property cannot be overstressed in the context of the present unstructured solver.

In Equation (3.9) the contribution to each node consists of primary changes from

neighboring cells plus or minus secondary corrections for the fluxes through cell boundaries.

In terms of a difference stencil at any node, it is clear that each cell on either side of a node

performs half of the standard central difference across that node and, when added together at

each node, these changes complete the stencil. As a result, in the steady state, AU for any

particular cell may be non-zero, provided it cancels exactly with the AU contribution from its

neighbor at the nodes.

In keeping with a cell-based approach, the differential governing equation (3.10) should

be replaced by its integral form.

f UtdA+f(Fx+Gy)dAffWdA

The divergence theorem changes the integral of flux vectors into a loop

integral over the cell's perimeter.

fJUdAc +fFdy -Gdx)=JWd~c

Letting U and W take on cell-averaged values rids the far left and right terms of their integral

signs. For some cell C on the mesh shown in Figure 3.3,

38



Ac G(3.13)

Over a short period of time At Equation (3.13) predicts the first order change in C.

AUCAtWC-Al (Fdy - Gdx)

Ac

This form displays the nature of the original conservation
D - equations. The first-order change in any cell results from the

average contributions of sources within the cell and the flux

A B through its boundaries. Expanding the surface integral using

the midpoint rule gives

FIGURE 33
A two-dimensional computational domain.

At~~~ Fj+ ) AGi + Gi j- i

A Uc=AtWc- F 2 .,t)- + 2 - Xk) (3.14)

Close examination reveals that this equation reduces exactly to the "cell changes" defined

after Equation (3.5). However, the physics exposed by the conservation law of (3.13) offers

strong motivation for defining AUc in such a way.

With this in mind, return to the differential Equation (3.10). Substituting the Lax-

Wendroff step from (3.2) into (3.10) results in

8Ui = AUr? + 2 (AWi-[AFil - [AGi],) (12 (3.15)

Here AU)i and AW)i are cell average quantities for cells A - D (Fig. 3.3)
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U)i -- (A|JA + AUD + AU¢+AU)
4

AW)i = ,(AWA + AWa + AWC +AWD)
4 - (3.16)

and the derivatives of the flux Jacobians are

[AFj1, (AF - AFA + AFC -AFD)

[GT=I(AGB-AGA +AGC-AGD)(.7
2t Ax Ax(3.17)

Back substituting Equations (3.16) and (3.17) into (3.15) results in

At At At
(AUA + AAFA+ AGA +2 'AWA)A A 2t

-+ (AUB~ - -! AFR + A4 AGB +! AWB)8UA -c AX A 2t

(AUC - -AFc- -AGc +-A-AWc

+ (AUD + AAFD- -AGD +!-WD) 3.8Ax wY (3.1t8)

which is exactly Equation (3.11).

Again, we see that each node receives a contribution from surrounding cells to complete

the differencing and preserve second-order accuracy at the nodes.

The sketch on the left of Figure 3.4 shows a schematic of the changes accumulated at

some node as described by (3.18).

The right side of this same figure presents the same information from a cell-based point

of view. Each cell distributes to its nodes and we may rewrite Equation (3.18) from this cell-

based perspective, giving the distribution formulae for the 2-D scheme.
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I k

FIGURE 3.4
Schematic of changes accumulated at the i1h node in a two-dimensional domain.

8uC)i= MUc - AFc- AGc +!AW]
l AVT AY C

8UC) = c + -!L,&Fc- AAGc +!!WC

8uc)k = AUC + AAFc+ A4 AGc + A ]
ATCw TA

C)= - -AFc+ -AGc + -AWcI (3.19)

Equation (3.19) implicitly assumes identical time steps for each of the cells. However,

for cells of similar size, local time stepping does not present a problem in steady state

calculations. The time-accurate work of Pervaiz (33) discusses these points in some detail.

In the preceding discussion AF, AG, and AW involve the product of the Jacobian

matrices and changes to the state vector. For finite rate reacting systems, these terms differ

from the original perfect gas modeling presented by Ni (29). Appendix B contains these

matrices for a calorically perfect gas (B-i), and the multiply-reacting, nonequilibrium gas

detailed in the previous section (B-2). For gas models with more elaborate modeling of

internal energy modes and energy transfer processes, these matrices may not always exist in

analytic form.
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3.3 Smoothing Formulation

Although the Euler equations dk- not include any dissipation, the Lax-Wendroff discrete

approximation does. The scheme's truncation error introduces fourth-order terms into the

modified PDEs capable of dissipating weak waves. Figure 3.5 displays this property through

a plot of the amplification factor of the finite difference Equations (2). While this behavior may

provide enough damping to attenuate weak waves, it can be insufficient for the steeper

gradients typically found in hypersonic calculations. Additionally, the central differenced

algorithm permits odd-even (sawtooth) waves to remain undetected and these waves must be

damped.

= 0.:5

= 0.25-

1.00 0.00 1.00

Amplification Factor IGI
FIGURE 3.S
Amplification factor of the Lax-Wendroff finite difference scheme. (From Ref. 2.)

Smoothing Formulation in One or Two Spatial Dimensions

Referring to the cells in Figure 3.6 and taking aGas the artificial dissipation coefficient, the

artificial dissipation at node i is

D i ~ -( ,,) .a l -I - 2 u i + u I~

Or, in terms of the average value of the property u in each cell
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A4 AB

Ox

FIGURE 3.6
A one-dimensional computational domain smoothing
formulation.

This formulation extends easily into two dimensions. Referring to Figure 3.7, the dissipation

vector at ij becomes

1

=a1+L)a n (UA -U j)+W, - U ij) D C
D C

+ (Uc - U j) + (U,, - U ij) (3.20) A B

FIGURE 3.7
A two-dimensional computational
domain smoothing formulation.

Defining

PE4T( +5-)

and the smoothing contribution to the node of any cell C as

Dc - (uc- U)

alters the two-dimensional net change to i (Eq. 3.11) as follows.

(AUA + !TAFA+ -yAGA+ A t WA+DA)

+(AUR- AFB+ YAGB + AW +DB)8Ui =1 4- 2

+(Au~ +~FD-~AGD+~AWDDD)(3.21)
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The shock fit approach removes the bow shock from the domain "interior," and virtually the

entire flowfield is smooth by comparison. Nevertheless, the "smooth" region is still strongly

nonlinear and requires stabilization throughout. Placing the discontinuity at the boundary of

the computational domain effectively removes the need for alternate smoothing levels near and

away from discontinuities.

Behavior of Dissipation in Governing Equations

Criticism of smoothing operators stems from the fact that they modify the original set of

equations. To assess how the second difference smoothing operator alters the actual system,

examine the change at any node i in a one-dimensional domain.

. " j ,: +8U i [U + A + AwB+ 0T
+ I(AUC - AFC +! AWc + ! U+I-i

FIGURE 3.8
A one-dimensional computational domain (3.22)
for examining smoothing contributions.

This is Equation (3.21) for a single dimension. The first bracket contains the change to i from

B and the second contributes the change from C. Decomposing this equation further results in

a modified form of the Lax-Wendroff step (Equation 3.3).

^2

BUi= At(W - Fx) + -(--Wu(W - Fx)- [Fu(W - Fx)] ) +'At (U) 6
(3.23)

Equations (3.3) an (3.23) differ only by the smoothing term on the extreme right of the latter

expression, forcing us to examine the magnitude of the error introduced by this term.

sui = [UtAt + U-] + (2s 2u (3.24)

Here operator notation has been used to highlight the second difference smoothing. Since the

smoothing adds a first-order error to the change at i, o must be kept small enough to avoid

changing the value of the state vector appreciably. Fortunately, in smooth regions, the second
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difference of U tends to vanish and the scheme retains its accuracy even for moderate values of

cr. Equation (3.24) also predicts the algorithm will contain the largest errors where flow

gradients change most rapidly. In practice ovaries from 0.1 to 1.0 for hypersonic calculations

and from about 0.02 to 0.1 for trar sonic and subsonic problems.

Behavior of Smoothing Near Boundaries

The form of Equation (3.22) demonstrates that the overall smoothing contribution to any

node results from taking the difference of two first differences. That is

(ui+1 - ui)-(ui -u.- i)= AuJ+Y2 -- A =i-2 -Ui - 2uj + u+I

Each cell contributes one first difference, forming the second difference when the changes from

both cells combine at any node.

\ B Consider the special case of a linearly varying

.I . property u across nodes ij, to k at the boundary.

I JSince the second difference measures curvature, it

should return a zero at any of these nodes. In

Uw particular, the smoothing contributions from cells A04,
GUk.and B to nodesj and k are:

FIGURE 3.9
Variation of property u showing degeneracy of
smoothing operator near boundaries.

at the interio nodej; Dj=DA+D- (3.25)

at the bound=~ nodek; D Bk+0 +0ct*0

Since the operator detects curvature and the line is straight, zero contributions are expected at

both nodes. However, only cell B contributes to the smoothing stencil at k, and a first

difference operator results. While the operator behaves correctly on interior points, it

degenerates along boundaries. Notice that the first difference operator appears as a direct result

of the boundary and is not related to the property variation.
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Generalizing, the modified governing equations take the following forms:

On interior nodes U,, + F4 + G1 = W + o(8CU + 82U)

Along = const. boundary Utt + F4 + G, = W + *C8 U + AqU) (3.26)

Along ?I= const. boundary Ut, + Fg+ G1= W + A4U +82U)

Obviously, the first differences along the boundaries will create severe errors in flows with

large spatial gradients. However, since the second difference operator measures curvature, it

will remain small in such fields - provided the gradients themselves do not change rapidly.

Additionally, while the second difference operator is purely dissipative, the first difference

behaves convectively, significantly changing the nature of the smoothing terms.

Not smoothing in a direction normal to the boundaries avoids this error. Dropping the

first difference terms on the right side of Equation (3.26) results in:

On interior nodes Utt+ Fg+Gf=W + o(8gu + 8u)

Along = Const. boundary U,, + Fg + G, = W + o(84U) (3.27)

Along 17= Const. boundary U,,+ FC+GfiW+ o81,U)

Stagnation Enthalpy Smoothing

Writing the equations as in (3.27) shows that the smoothing terms behave like source

terms in the governing equations. To minimize changing the physics of the problem, we

choose a to keep such "sources" small.

Without smoothing, the steady-state, inviscid energy equation holds stagnation enthalpy con-

stant. In one dimension

at u ' 0(3.28)
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In the steady state this becomes

Pu (h° ) -o

a (3.29)

Any additional terms violates this adiabatic statement. For a nonequilibrium system,

enthalpy is representative of many modes and an altered stagnation enthalpy may lead to

unrealistic solutions. For example, if a nonequilibrium mode absorbs only 1% of the total

enthalpy, and the error in stagnation enthalpy is 1%, that mode's behavior may be totally

incorrect. Although the net effect will be small (only 0.01 ho), the outcome may mask the true

physics of the problem. Since hypersonic flows are characteristically high enthalpy flows,

these observations can have serious implications.

Errors in stagnation enthalpy have other, more subtle, effects. Consider the schematic in

Figure 3.10. For a stagnated, frozen, perfect gas, all enthalpy must reside in random particle

motion, and constant stagnation enthalpy implies constant stagnation temperature. When the

flow enters the shock layer at point b, it very nearly stagnates behind the normal shock. The

post-shock temperature at b' jumps to within a few percent of To. In slowing isentropically to

the stagnation point c, T increases very little. However, this small variation is of primary

interest within the shock layer and even a small error in total enthalpy can appear large by

comparison.

To  ........
~T,h

body

T_

a b c

- 08 0
FIGURE 3.10
Stagnation streamline temperature behavior in a frozen flow.
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The one-dimensional energy equation with artificial smoothing terms

ae +a(puh0 ) - 0(6)
at a (3.30)

no longer implies constant ho. Instead, the balance forces total enthalpy to vary in space in

accord with the non-linearity of the total internal energy. The term is small but the preceding

discussion indicates the possible consequences. In practice, a o level of 0.1 has a noticeable

effect on ho in the domain downstream of the shock.

To prevent this, a second smoothing term Doi)i adds a correction to the internal energy at

i to counteract the error produced in (3.30). This correction forces h0o toward ho., tending to

hold ho constant throughout the domain. Specifically,

Oh.)i = uh.(ho_ - h05)e

ho. (3.31)

Here the subscript i denotes local quantities, /.ho is a stagnation enthalpy smoothing coefficient

and the ratio ei/ho, rescales the term for use in the energy equation. If ho = const = ho. this

correction vanishes. In other words, the term contributes only if the standard second differ-

ence smoothing violates the physics expressed by the energy equation. Adding this term to the

energy equation (only) results in the following change in total internal energy at any node i.

(AUA + tAFA+ -AGA + -AWA + DA + Dh.)ijAx Ay 2 '
"+(&UU -AF+ 4AAGB +! AWB + DB + Djj)
+AUC- -AFc- At AGc + -AWc + Dc +

+ (AUD + AjAFD- ~AGD +A!AWD +DD +Dh.)i)(.2

In practice a value of jPho two to three times larger than the overall smoothing coefficient p

suppresses total enthalpy variations to 0.1% or less. Use of such a large coefficient seems

reasonable since the term tends to restore the physics of the original governing equations.
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As a final comment on stagnation enthalpy smoothing, note that smoothing terms affect

all of the conservation equations. At any point in the field they effectively create mass sources,

momentum sources, etc.. Reference 7 shows that the second difference operator is globally

conservative for constant smoothing coefficients. Since the other conservation statements

(mass, momentum, species) are integral properties, the local sources and sinks globally cancel

due to the conservative nature of this smoothing formulation. On the other hand, stagnation

enthalpy is a point property, and while overall eneigy may be conserved, any source term will

be incorrect at a particular point.

3.4 Nunerical and Physical Boundary Conditions

A typical hypersonic shock layer maps from physical to computational space as shown

below (Figure 3.11). All flow in the domain passes through the shock ( ad) and, in the steady

state, must be balanced by the out flow across the shock layer ( cd). When the gas is assumed

inviscid, it slips tangentially over the body's surface.

Ooflow

Shncok o
In/lo I IBody

lSymmetry

FIGURE 3.11
Schematic of physical and computational space for blunt body computations.
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For symmetric two-dimensional problems, the natural symmetry plane allows calculation

of only half the domain. In the axisymmetric case, the stagnation streamline becomes the axis

of symmetry, again permitting this simplification.

Edge Cells in Finite Volume Schemes

Figure 3.11 contains four types of boundaries surrounding the computational mesh, and

all boundary nodes have physical cells on only one side. For cell vertex based schemes this

results in incomplete differencing across such nodes.

\\4 _ Consider the boundary cells A and B in the

\ A '\/ sketch shown to the left (Figure 3.12). The
A IB nodes i, j, and k receive corrections 8A and

'%/ I'% N N N N 8B from one side only. In other words,

S7 boundary nodes, such as these, receive only
AK B'

two corrections, while interior nodes receive

FIGURE 3.12 four.
Edge cells in a node-based finite-volume scheme.

From a finite difference standpoint, the spatial derivatives make use of a central difference

operator at all computational nodes. Normal to boundaries, this operator becomes one-sided

and requires special treatment.

To prevent this degeneracy, imagine a second set of cells A' and B' outside the physical

boundary. These fictitious cells complete the central difference taken normal to the boundary

and permit upgrading of these nodes. In this figure, cells A' and B' contribute a change 8A'

and 8B' toj providing it with a total of four changes - just like an interior node. In the event

no better estimate exists, setting W,' and 8B' equal to MA and 88 results in first order accuracy

(since this is equivalent to a forward or backward difference).
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Implementing this general treatment requires simply doubling the changes to each

boundary node. Each of the boundaries shown in Figure 3.11 presents a physical situation

which permits modification of this procedure to improve the accuracy of this procedure based

on knowledge of the physical boundary.

Inflow / Shock Boundary

The bow shock forms the inflow boundary of the domain. This confines the domain to

points within the shock layer and avoids introducing undisturbed cells. Chapter 5 describes the

shock fitting procedure in some detail.

Symmetry Plane Boundary

The symmetry plane presents precisely the situation shown in 3.13. The imaginary cells

A' and B' are simply mirror images of A and B. The boundary conditions for such nodes is

clear. Using the notation of Figure 3.12, the change at nodej is:

8Uj= 28UA)j + 28Uo)j (3.34)

Since it is also a streamline of the flow, the normal velocity vanishes identically. This

recognizes no flow across the boundary and prevents the growth of spurious error and

sawtooth oscillations.
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Outflow Boundar

Ouqlow

M=

a b
FIGURE 3.13
Schematic of outflow boundary in blunt body flow showing location of the sonic line.

Doubling the changes for the exit plane results in only first order accuracy across the

downstream boundary. However, for most configurations, the supersonic flow across this

plane does not permit the error to propagate upstream and corrupt the rest of the domain.

Solid Wall Boundary

Inviscid flow slips tangentially along the wall following the local surface inclination and

the body surface streamline. For low enthalpy flows, this boundary condition is easily imple-

mented. At each time step, one computes the total velocity at a body node, discarding the nor-

mal components. Alternatively, when integrating the cells along the solid wall boundary, one

may enforce a no-flux condition along the body surface. This prevents the face from con-

tributing to the flux integral. These simple treatments usually perform adequately. However,

the high-enthalpy flows presently under consideration require greater care.

In these flows - especially near the stagnation region - these treatments may lead to strong

transients during convergence, or extreme sensitivity to initial conditions. In reacting flows, or

gas models with multiple internal energy modes, any error in stagnation enthalpy may lead to
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non-physical solutions. Clearly, discarding the normal velocity component throws away

energy. To avoid such enthalpy errors, it is better to reorient the velocity vector at each node.

V

U U
FIGURE 3.14
Flow tangency condition for inviscid simulations showing reorientation of the total velocity
vector.

The velocity vector V consists of the current (time n) values of velocity plus changes to this

vector SV. After first computing this quantity at some surface node i,

IVd- FU+i, 2  (3.35)
with x and y components X2=i u + 28ui

ji =v + 28vi

rotate this vector to the local surface slope inclination angle to preserve translational energy.

= axax -ayax

' a + ag (3.36)

Finally, rescale the resulting vector to the same overall magnitude of the original velocity vec-

tor.

Ui = U IVA

V! = vi' IvA

S_1(3.37)

53



At first glance, forcing the velocity vectors tangential at each body iode may appear equivalent

to enforcing the no-flux condition on the surface. The nodal velocity will convect members of

the state vector parallel to the surface preventing these fluxes from contributing to the integral

performed upon each cell.

Certainly this is the case for both linear and parabolic bodies, but, upon more generally

shaped bodies, flow tangency at surface nodes may not entirely prevent contributions to the

flux integral. The cell's wall may not necessarily be at the same (algebraic mean) slope of the

comer nodes. While this is a higher order error, experience suggests that not enforcing a no-

flux boundary may degrade the initial convergence properties of the scheme.

Examine the integral expression for the changes to cell C.

AU)c = AtWc - Fdy -Gdx
Ac) (3.38)

The contribution to the loop integral over the south face is:

rPu 1 r Pv 1
n•V=0 pU2 +p Pu I

FAys - GAx = p uv Ays- pv +p Ax.
(Pe+P) [v(Pe+p)YLL AlJ AV 1 (3.39)

FIGURE 3.15
No contribution to flux integral from sufae face.
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Re-arranging yields

p 0

FAy,- GAx. =P (u,,-v,)+ -pa
ph.

A 0 (3.40)

But, no-flux implies n • V = 0 through the southern face.

n • V = (uAy - VAX,) = 0

So, uAY s - VAX, = 0 (3.41)

Equation (3.41) forces the entire first term on the right of (3.40) to zero leaving only the

pressure forces in the second and third elements of the flux integral to contribute to the integral.[0
FAys - GAxs= -p.1(

0 (3.42)

Applying Equation (3.42) during the integration step, reorienting the velocity vector by (3.37),

and doubling the changes to the other members of the state vector by (3.37) insures correct

boundary treatments and avoids most problems with initial transients.

55



4. Adaptation and Unstructured Meshes

The discrete equations only approximate the governing equations of inviscid, reacting,

supersonic flow. The Lax-Wendroff integration scheme neglects terms of third order and

above in both space and time. As a result, it may become necessary to increase the quality of

any given solution by increasing the grid's spatial resolution. However, since smooth and

slowly varying regions of the flow field contain little third order activity, refinement in those

areas adds little to the global accuracy of the solution. In more steeply varying regions,

however, the linear and second order terms in the FDE's do not permit adequate flexibility to

resolve the physics of compressible flows. As discussed previously, this situation results in

the largest numerical errors where the flow gradients vary the fastest. Unfortunately, it is

precisely such physical structures which often dominate a flow's behavior.

Grid adaptation attempts to resolve this disparity by either re-distributing or embedding

nodes to improve resolution of flow features. References 9, 35, and 7 contain discussions

comparing the relative merits of both approaches.

Originally developed by Dannenhoffer and Baron (6), the technique described here

refines a solution by embedding finer grids in response to flow features detected on coa, er

grids. While this method reliably detects these features, its real strength is the ability to embed

several grid levels in arbitrarily shaped regions during evolution of a solution.
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In a hypersonic shock layer, one expects large species gradients after a chemically excited

flow passes through a strong bow shock. In order to resolve these gradients, the chemical

relaxation length cannot be much smaller than about one percent of a local cell dimension. This

effect also was documented by Park (30) who described it in terms of the mesh Damk6hler

number. Such near equilibrium flows present significant computational difficulties due to the

small length scales. Although it is tempting to consider identical equilibrium modeling, the

rapidly varying chemical relaxation length demands a nonequilibrium calculation as the flow

continues through the shock layer. Dissociation, for example, absorbs much of the flow's en-

ergy and may change the chemical length scale by several orders of magnitude. In addition to

providing greater resolution of the relaxation zone, grid adaptation helps to resolve behavior

near internal shocks, expansion fans, sliplines etc..

Note that the bow shock forms the inflow boundary and the domain contains no

freestream cells. All computational cells lie in "disturbed" regions and contribute to the

solution. Thus, shock fitting performs a somewhat similar function as adaptation. Moreover,

since the blunt body domain is narrowest near the stagnation point, the shock layer shape

automatically clusters nodes near the nose during the initial grid generation phase. As a result

we expect a reasonably applicable coarse mesh, and the adaptation serves to tailor the grid by

further refining structures within the shock layer.

4.1 General Procedure

Adaptation greatly increases the quality of a given solution with modest additional

computational effort. The results published by Baron, Dannenhoffer, Kallinderis, Pervaiz and

Shapiro (6, 17, 33, and 34) demonstrate this quite clearly. Often, equally resolved solutions
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without embedding must use globally fine grids and are too expensive to compute, even to

benchmark a particular solution.

This added efficiency comes at the expense of coding effort. To some degree, the

perceived complexity of coding an unstructured, adaptive domain prevents the widespread use

of adaptive techniques. Here we describe a simple (but effective) adaptive algorithm.

Additionally, the final Section (4.5) stresses the ease of implementing adaptation routines in a

reasonably efficient manner.

The basic algorithm contains three steps:

i. Detection: Examination of the flowfield in search of flow features.

ii. Division: Dividing large cells into smaller cells to create new cells and
nodes.

iii. Pointer Updating: Absorption of new cells and nodes into the existing data

structure

While the procedure described here is similar to that presented by Dannenhoffer (6) and the

spatial adaptation by Pervaiz (33), the implementation is believed to be less complex than

either. As a result it lacks some of the subtler features of these previous works. Nevertheless,

it works well in practice.

4.2 Detection of Flow Features

Detecting features in a flowfield typically requires consideration of threshold values,

differences in computational space, and independent detection parameters. The suggested

scheme examines one or more independent properties throughout the domain and evaluates

either first or second differences. Then, after normalizing by a convenient rule, the algorithm

tags cells containing differences above a certain threshold for refinement.
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Feature detection is not a unique procedure, and while it is relatively simple to design a

system capable of trapping some given feature, designing a detector to trap all interesting or

important features is a much more difficult task. It is difficult to precisely define "interesting or

important." More importantly, most flow features do not have clearly defined "edges," making

threshold selection somewhat arbitrary.

Figure 4.1 indicates some of the expected flowfield structures. These features result

from both fluid dynamic and thermo-chemical phenomena and all exist to varying degrees in

most hypersonic flows. The inviscid Euler equations predict the entropy layer and expansion

fan in supersonic blunt body flows for gases with and without internal degrees of freedom.

The nonequilibrium features arise as a direct result of a real gas incorporating into the

governing equations.

Shock

Emp ,opy Noal Frosen
N c Flow

Body

21-- Nonequilibriwn Flow

M.>>1
. Stagnation Point (E.quilibrium).

FIGURE 4.1
Some flow features in hypersonic, real-gas, blunt body flows.
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Selection of Flowfield Indicators

In order to separate the gas dynamic and chemical features, we search for flow variables

which respond independently to fluid and nonequilibrium chemical structures. As an element

of gas flows through an expansion fan e.g., p, T and p all decrease monotonically. The

smooth behavior implies small second differences, indicating the benefits of first differences

for detection. First differences furnish a slope per cell. Over a typical blunt wedge, p, T and p

tend to be constant in both the stagnation region and along the flat body surface downstream of

the expansion fan, and differences for any one of the variables will correctly identify the

feature. T and p respond much the same to an entropy layer and either of those properties

would identify this feature. Reference 7 lists several gas dynamic features and evaluates

criteria for locating specific structures.

For the features in Figure 4.1 the choice of a best parameter to identify the fluid dynamic

structures is not crucial. Density was chosen since it is a state variable and mass must be

conserved. Moreover, since it is a primitive variable, integration yields a direct value without

auxiliary equations. As a result it is less prone to spurious errors than are calculated quantities

like pressure or temperature.

The choice of nonequilibrium parameters depends largely upon the internal modes

included in the gas model. In general, these modes act independently and on different physical

scales, and each requires its own independent parameter. For dissociating and vibrating gas

models, both species concentrations and vibrational temperature should be considered as

independent parameters. For cases where all nonequilibrium modes are chemical, the reaction

rates associated with production of different species vary greatly and result in different

reactions occurring in various parts of the domain. For such flows, differences in all

independent species indicate chemical behavior along the various reaction paths.
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Of course, the most important criteria that a flowfield indicator must satisfy is

independence. Since pressure, temperature, and density all respond to an expansion fan, any

one of them would identify the feature. Interrogating more than one is unnecessarily

expensive. However, through that same expansion fan, the chemistry will often tend to freeze

out and display little variation. Since it responds to an entirely different class of flow feature,

species concentration behaves as an independent parameter.

Since cells spanned by large differences (in computational space) divide as the adaptive

process continues, the procedure drives the solution toward uniform differences in

computational space. Embedding smooths out variations in computational space. The first and

second order terms preserved by the Lax-Wendroff differencing permit tracking of the

governing equations up to the second derivatives. This smoother domain, with its smaller

higher order derivatives lends itself to more accurate computation of the state vector.

The Mechanics of Detection

For a general cell considered by a feature detector, comer

nodes 2, 4, 6 and 8 always exist. The midface nodes 3, 5,

9 01 5 7, and 9 may exist if any adjacent cells are already divided.

The difference in the direction is

FIGURE 4.2 84ci c
General undivided cell.

where p is density and ci is a nonequilibrium parameter (i.e. mass fraction of the ith species).

Similarly the difference in q is

8 ci ci

A rational definition gives the overall change in any cell; e.g.
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These definitions could easily be biased toward 4 or 71 by altering the exponents under the

radicals.

The magnitudes of the differences are important primarily for comparison with other dif-

ferences, and should be normalized. Popular choices for reference levels include the statistical

mean, mode, or maximum value. Choosing the maximum value, Ap max and Acimax ,

conveniently bounds the variation of flowfield indices between zero and one. Obviously, the

reference choice is not unique and most parameters work equally well.

Adaptation Maps and Thresholds

After computing the refinement Ac,

parameters for each cell, it is helpful to

prepare a map as shown (Fig. 4.3). (The

magnitudes implied by the positive branch of

the radical in Equation (4.1) actually coliapse-- 1

Ap
the map to the 1st quadrant.) This example

shows a map for two parameters. In general, ,

such maps contain as many dimensions as
FIGURE 4.3

there are adaptation parameters. An adapta ion map baud on two pameers.

Cells containing little or no variation will cluster near the origin, while cells within or near fea-

tures plot lurther from the origin. Since the two parameters should be independent, we antici-

pate little activity along the 450 diagonal Aci = Ap. Clustering along such a line would indicate

a feature being tracked by both parameters, and thus parameters which do not respond

independently.

The adaptation parameter measures the distance from the origin to any point on the map,

62



AC = (Ap) 2 +(Ac,) 2  (4.2)

and the scheme marks a cell for division whenever AC is greater than some threshold, Tadapt.

For n adaptation parameters, AC becomes a radius in n dimensional space, and Eq.(4.2)

generalizes to

A C = J1(Ap) + (A cj23 (4.3)

Again, adjusting the exponents under the radical weights any parameter accordingly.

Figure 4.4 presents an example of an actual adaptation map computed for a relatively low

enthalpy Mach 5 flow with a simple dissociation reaction (A2 + M C 2A + M) and illustrates

many of the features discussed above.

Ac1

d

0.0 0&4 1.2

AAp,,a

FIGURE 4.4
Adapution map for Mach 5 flow showing polaization.

Since the plot exhibits considerable scatter, it is fair to say that differences in various

.:v-ons remained relatively benign with respect to one another. More precisely, the chemical
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and density gradients are distributed relatively evenly throughout the field and not confined to a

few isolated regions. Since nearly all cells have some species and density variation, it is clear

that the reactions in the domain did not occur over scales very disparate from the physical scale

of the body. For example, the dissociative activity did not occur solely adjacent to the shock.

The polarization of these data demonstrate that atom mass fraction and density are

responding independently as intended. This polarization cannot be overstressed and

demonstrates that each of the adaptive indices responds (independently) to its own type of flow

features.

r Figure 4.5 examines this behavior in more

A detail. Here a mock adaptation map shows
Ncneq all cells having AC Z 0.75 tagged for divi-

A c ma C sion. Cells in region A demonstrate such ex-

treme nonequilibrium that they will be

adapted regardless of their density behavior.

Typically, cells in this area lie in rapidly re-

01 1 laxing flow regions. Conversely, cells in D

Sshow large density differences, but little
FIGURE 4.5
Behavior of a general adaptaion map.

chemical activity. As the flow expands out of a stagnation region and around a body, the

density drops rapidly, making it difficult for various reactants to locate collision partners and

effectively turning off the chemistry. Indicative of rapid variation in both parameters, region B

contains few cells in practice. However, if the fluid dynamical parameters depend strongly on

the degree of nonequilibrium, cells may appear here. This often occurs in gases such as ni-

trogen where the dissociation energy may comprise a significant portion of the flow's total en-

thalpy. Chapter 7 details these effects more thoroughly. Finally, region C contains cells which
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adapt due to contributions from all indices. Note that an actual map (e.g. Fig. 4.4) contains no

cells in either region B or C.

To address the question of which cells adapt due to which parameters, consider the Fig

4.6 sequence below.

FIGURE 4.6
Adaptation baed on different paramnews

These figures contain grids for hot nitrogen flowing at Mach 5.66 over a blunt wedge.

Since the freestream is 2390 K, considerable chemical activity occurs. Using p as an adaptive

index captures the expansion fan and developing entropy layer, while concentration differences

identify the chemical relaxation. Due to the strong coupling as the flow tends toward

equilibrium at the stagnation point, both indices define this region.

Threshold Selection

Often great debate surrounds the topic of what constitutes a "feature." This may result in

elaborate schemes for threshold selection (see for example (7) and (33)). In practice, however,
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the question is not critical and a relatively broad range will adequately capture flow physics.

Different thresholds adapt different numbers of cells, but both can capture the feature

reasonably well and small changes in "good" threshold value should not radically alter the

adaptation pattern.

As an example, increasing or decreasing Talapt by 10% from the 0.75 level in Figure 4.4

would have little effect on the ultimate number of cells divided. However, if located within the

"crotch" in the map, slight changes in value would produce large changes in the size of adapted

regions. In fact, were Tadap reduced to below about 0.4, the arc would cut arbitrarily through

the data based on meaninglessly small differences in adaptive indices. The resulting embedded

grid would suffer not only from ragged interface patterns but also from problems with islands

and voids. Threshold values for shock fit problems typically range from 0.6 - 0.7 since the

shock fitting has eliminated freestream cells, while those for approaches that include freestrearn

cells are smaller by approximately a factor of two.

Figure 4.7 traces an adaptive sequence on a Mach 12 flow over a blunt wedge in air at an

altitude of 45 km. Oxygen dissociates noticeably but the stagnation enthalpy is insufficient

to dissociate appreciable amounts of nitrogen. These maps plot normalized differences in

oxygen mass fraction against normalized density differences. For this 2-D example, the body

size is such that the reaction completely relaxes in about 1% of the nose radius, producing very

stiff, near equilibrium, behavior near the shock.

The first part of the sequence (4.7a) shows the adaptation map for the original grid on the

left and the adaptation resulting from Tadapt = 0.65 on the right. Since the chemical behavior is

severe, only 1 row of cells extends along the vertical axis, these cells corresponding to the

string of data extending vertically on the map. Additionally, the scheme adapts cells containing

large density differences. By removing the extremum, this process effectively spreads out the

remaining pile of cells. After re-converging the solution two orders of magnitude, the adapta-
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tion map of 4.7b is essentially a close-up of the original map and reexamines the field after one
level of embedding. Notice that the shock cells still span the largest chemical gradients - i.e.

3/1

4.70

,oo CP4.7b Ga W 0

3a

2

3a

41a : W -a-I 
M

Figure 4.7

Adaptive sequence on a blunt nose.

the reaction is still buried within this first set of cells. The differences in density, however,

exhibit more scatter, are more evenly distributed across the abscissa, and a few cells still
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contain large differences. Subdividing this map with the same 0.65 threshold value results in

the grid to the right. Here we see two levels of embedding indicating the relaxation zone,

entropy layer and expansion fan.

Figure 4.7c depicts the map after converging on the doubly embedded grid. The cells

are now evenly distributed across the abscissa and none still contain extreme density

differences, demonstrating that the density varies smoothly in computational space. Only one

line of cells still contains severe chemical behavior, indicating that the majority of the relaxation

still spans only one cell. Notice, however, that this string of cells demonstrates little variation

in density. The adaptive process has separated the adaptive indices.

The last two plots (Figure 4.7c) show the adaptive map after a third adaptation. Here the

abscissa is completely diffuse and only shock cells contain large chemical gradients.

Examining the actual chem~cal behavior, we see that despite these large differences across the

first cell, the grid completely captures the chemical relaxation. Moreover, the initial linear

decay contains little if any third order truncation error making further adaption pointless (and

expensive).

4.3 Unstructured Grids

The mechanics of adaptation revolve around the use of unstructured grids. The addition

of adaptation to any unstructured solver is usually straightforward. An unstructured grid

should not be considered a 2-D net of cells, or even as nodes with typical i, j addresses.

Instead the grid is simply a collection of cells with some explicitly defined "connectivity"

relating the cells to the physical domain.

68



An unstructured solver operates on each cell 8

independently. This fact alone rules out most implicit

integration algorithms. Ni's (29) scheme works well 9

because the calculation proceeds on a cell by cell basis and 01
55

still provides second order spatiai accuracy at the nodes.

Moreover, the line integration is quite tolerant of misshapen-3 4

cells and retains its accuracy for reasonably large degrees of FIGURE 4.

skewing and stretching (7). General cell in unstrured domain.

Applying the integration scheme of the last chapter to the cell in Figure 4.8 requires:

i. Geometrical information describing size, shape, etc..

ii. The ability to locate neighboring cells for any node

iii. Knowledge of nodes which define the cell's boundaries.

Each node receives a unique node number in lieu of a more typical i, j address permitting a two

element geometrical pointer to locate each node in physical space.

GEOM(l, node number) = lst coordinate in physical space

GEOM(2, node number) = 2nd coordinate in physical space

Since the calculation proceeds cell-by-cell, we need to determine which cells surround any

node. The neighbor pointer contains four elements for each node

NEIB(l, node number) = SW cell number

NEIB(2, node number) = SE cell number 4 3

NEIB(3, node number) = NE cell number

NEIB(4, node number) = NW cell number 1 2

FIGURE 4.9
Call numbers surrounding a -ode.
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If the node is along a boundary, certain cells may not exist and this pointer receives a zero

value.

Once inside any cell, the cell pointer locates the nine nedes defining its boundaries (Fig.

4.8).

ICELL(I, node number) = Central node number
ICELL(2, node number) = SW node number
ICELL(3, node number) = S node number
ICELL(4, node number) = SE node number
ICELL(5, node number) = E node number
ICELL(6, node number) = NE node number
'ELL(7, node number) = N node number

ICELL(8, node number) = NW node number
ICELL(9, node number) = W node number

Again, if a node does not exist, its location in the cell pointer receives a zero.

These computational structures make clear the advantages of the integration scheme as pre-

sented in the previous chapter. By formulating "cell changes" and "distribution formulae," we

may apply this node-based scheme in a completely unstructured manner on general moving or

stationary grids.

In addition, other pointers can be defined for convenience. The overall system was

developed by Dannenhoffer and Baron (6) anti has been used with minor modifications by

(17), (33) and (34) among others.

4.4 Cell Division

Several authors discuss the process of cell division (7, 33, and 34) in some detail. In

general, these algorithms are tailored to a specific data structure and pointer system. After first
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describing the steps which all such algorithms must include, this section discusses the present

approach.

Cell division not only adds new cells and nodes to the data structure, but also changes

the global grid connectivity. Obviously the pointer system must account for these changes.

The matrices must absorb the new cells and nodes seamlessly, insuring that new cells require

no special treatment by the integrator.

The steps which all cell division algorithms must include are (Fig. 4.10):

a. Find cell number of the tagged cell

b. Find cell numbers of the 12 surrounding cells (zero if no cell exists)

c. Find node numbers of nodes 2-9 if they exist

d. Create new node at center (Fig. 4.10, node 1)

e. Create new nodes at the center of each face if they do not exist already

f. Update pointers of cell being divided to reflect new comer nodes and new size

g. Create four new cells by appending Cell pointer

h. Update neighbor pointers of nodes 1-9
i. Inform surrounding cell pointers of any new nodes

j. Find boundary location for new boundary nodes

k. For moving grids, specify position of new nodes relative to existing nodes

(see Chap. 5)

Since the state vector and auxiliary properties (p, T, ho, etc.) reside at nodal locations,

new nodes must be accompanied by initial guesses for these variables. Properties at new face

nodes take values equal to the average of the comer nodes, while properties at centre! nodes

take the simple average of all four comer nodes.
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FIGURE 4.10
Cell A tagged for division.

Naturally, new nodes which lie on boundaries require special attention. In addition to

finding the correct position of the new node (either from interrogation of the surface splines, or

from metrics of surrounding nodes) the boundary pointer must receive this new information.

By looping through the new nodes after division, it is relatively simple to update the pointer to

account for new boundary nodes.

Inplementation

Implementing these steps requires specific decisions about data structure, appending

pointers, preserving parent cell information, etc.. As a result, implementation differs with each

investigator.

By avoiding "holes" in the data structure where a cell "existed" before division and

placing new cells and nodes at the end of their respective pointers, the procedure described here

results in an adapted data structure indistinguishable from the original grid. Thus, the solver

never need know when it operates on an adapted cell. This permits sequential integration of

each cell without ever asking if a cell has been divided and without skipping over any vacancies
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in the pointer. While very attractive from the viewpoint of simplicity and elegance, this system

does not retain parent information and does exclude the possibility of applying a multigrid

accelerator.

For an arbitrary tagged cell n in a grid of M cells Figure 4.11 details the cell division

process. Cell n shrinks in size requiring new connectivity (ICELL, and NEIB pointers). The

scheme numbers the tu-ee new cells counterclockwise M + 1 through M + 3. These new cells

are "connected" to the appropriate nodes (1-9) by appending the ICELL pointer. All nodes

then reconnect to their surrounding cells by updating the NEIB pointer, completing the pro-

cess.

8 67 6

n m+3

n ........ .. .... 9 1.5

m+l m+2

312r 
31F

Before Division After Division

FIGURE 4.11
Cell division and pointer updating.

Note the simplicity of this scheme. The updated ICELL pointer has three additional

entries and no vacancies. The NEIB and GEOM pointers extend by the number of new nodes

with a minimum of complexity.

References 7, 33 and 34 offer more elaborate treatments of the cell division process.
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4.5 Cell Interfaces

A

B

Coarse Interface Fine Cells
Cells 4- Cells

FIGURE 4.12
Interface in comptafional mesh.

Grid refinement and adaptation introduce internal boundaries between cells of different

size. Figure 4.12 depicts such an interface. Here, only one column of cells actually differs

from those considered in the previous chapter. The integration scheme holds equally well on

the fine cells at the right and the coarse cells to the left of A and B. Each of these has exactly

four nodes. However, cells bordering on the embedded region (A and B) always contain at

least one hanging node and require special treatment. To gain insight into the scheme's

behavior near such boundaries, examine the two situations depicted below.
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FIGURE 4.13
Comparison of interface cells with cells of a uniform grid.

Consider the model convective equation

Ut + Fx = 0. (4.4)

with the cell and flux changes for any cell defined by

and
AF = FuAU.

Here the subscripts w and e represent average quantities on the west and east faces of any cell.

Since this is essentially a 1-D equation discretized on a 2-D grid, properties remain

constant along vertical lines. Now examine the difference between nodes I in Parts I and II of

Figure 4.13.

Although node I receives four changes from its surrounding cells in both cases, the two

pictures are not equivalent. Since Ni's scheme is simply central differencing (on cartesian

grids), we expect a stretching error in the mesh of Case H. To demonstrate this, examine the

changes to node I for Case I and Case I, 8Ut )I and 8UI )U.
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Case I:
By Equation (3.9):

8 u-IlC 1 AUc -r' Ac -AtF
IC 4L Ax C 4 -AFuC

8[i--- =-A I
4 [ I -!-Fu]4 1o=_.T-  _ A

Recalling the governing Equation (4.4), and considering i-D convection only, notice that

since all cells are identical, 8 UIE = 8U!F = 8UiA= 8UiF. Also, the lack of variation in the

vertical direction makes the changes at node i from B and C equivalent to those from C and D at

I.

For the first case, the total change to node 1 is the sum of the contributions from the four

surrounding cells. Assuming a constant CFL number defined by

CFLa txau

gives Equation (4.6).

a U)8 E+F = 4(Ac + AUDX I - CFL) + (LUp + AUEX1 + CFL)](4% (4.6)

Case II:
Again, using Equation (3.9) gives:

8U, = -qC I 1.AL.-F 1
4 AXc

4 = [l Fi (4.7)

where WG = 86 IH and 8&UC = 8Ut.
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Summing gives the total change at node I across the interface.

8U,) = U, +D.= 1 (AUC + AUDX1 - CFL) + (AUG + AUH X1 + CFL)]4(4.8)

We may now compare the changes at node 1 between the two cases. Since Cells C and D are

identical in both cases, Equations (4.6) and (4.8) combine into

8UtL = 8Ut + (I +C')[--AUF + AUE) + (AUG + AUH)] (49)

The term in brackets represents the error resulting from the stretched difference stencil in the

second case. Notice that this first order error disappears when AUF = AUG and AUE = AUH;

i.e. when the difference stencil is no stretched.

Having examined the expected error due to grid stretching across interfaces, we may now

take up the issue of hanging nodes on these boundaries. Referring again to Figure (4.13), no-

tice that cell G contains a hanging node i on its eastern face. As an interface node, i must

suffer from the same stretching error as 1. However, we hope to avoid any additional error

caused by distributing incorrectly from cell G to node i. The scheme should treat nodes i and I

identically.

With these thoughts in mind, the net change to node i in Case II becomes:

8 = 8Uj)., = 8 U), + 8U + (k8U+ k,8 U

AUG=(AUg+U AUGX I - CFL) + -k kXl + (4.10)

ku and kg weight the contributions to the upper and lower nodes on the eastern face in order to

apply them directly to i. For example if ku = k = 1/2 Equation (4.10) would distribute the av-

erage of 8UuG and SUIG to i.

In the first case
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suj) = SUJ, + u + + 8UJF

= 4-[(AUs + AUcXI -CFL) +(AUA + AUpX1 + CFL)]
4(4.11)

and substituting this expression into (4.10) for 8Ui)l gives (4.12).

8uj = 8uj) + + k)- (AUA + AU)] (4.12)

However, since properties vary in x only, AUA = AUF = AUE and AUG = AUH, giving:

8Uin = 8UA +( +4CR.)[_(AUF + AUE)+ AUG(ku + k,)] (4.13)

Treating nodes i and 1 identically requires that the change at i equal the change at . Comparing

(4.13) with that for node Il and recalling that 8U,)i = WUt) leads to:

AUG(ku + ki)= (AUG + AUh)

But, since AUG = AUH,

AUG(ku + kt) = 2AUG

or ku + k= 2 (4.14)

Since no reason exists favoring either node u or I

ku = ki =1 (4.15)

This result implies that the mid-face node i 8U.

should receive the um of the changes dis- 8U" + But
_ i

tributed to the vertices of the face. Figure

4.14 displays this interface treatment pictori-

ally.
FIGURE 4.14
Disattion to mid-fue node

It is worth noting that this result contrasts that presented by Dannenhoffer (7) where he

suggested ku = kt =1/2. More recently, Kallinderis (18) examined several interface treatments
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showing Equation (4.15) to be not only conservative, but also a time accurate interface

treatment.

Actually, the case of ku = kj =1/2 bears special attention. If F varies linearly and FU is

constant, the cell change in a large cell like G would be exactly twice that of a small cell (E, F,

etc.). Re-examining Eq.(4.13) now reveals:

+ CF)[2U0 + AU (k. + k1)]8u =8A+ 4 L a Ca (4.16)

but since AULa8, is twice AUs,,.u, the bracket vanishes. ku = ki =1/2 exactly corrects for the

grid stretching error in this special case. By re-weighting the difference stencil, it removes the

inaccuracy at node i. Unfortunately, it is not so easy to counteract the stretching effects at u or

I resulting in an non-uniform treatment of the interface before reaching the steady state. Notice

also, that this fortuitous canceling within the bracket of Eq. (4.16) occurs only under the

special conditions of Fu= Const and linear variation of F.

Conservation vs. Ac uacy

As noted earlier, the interface treatment described in the preceding section is conservative,

but the stretched difference stencil leads to a first order error as noted after Eq. (4.9). It is

reasonable to look for an interface treatment which is both conservative and accurate.

Kallinderis examines this question at length and discovers that the second difference smoothing

induces a first order mass flow error in accurate treatments (18, pp.145). Since the shock layer

may be thought of as a control volume, any induced mass flow from non-conservation will

create an error in shock stand-off distance. Thus we opt for conservation over accuracy to

preserve shock location and shape.
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4.6 Integration Scheme on Interface Cells

The cell in Figure 4.14 contains a hanging node on its eastern face. Failure to include

information from this node when computing the flux integral around such a cell will obviously

result in a conservation error across that face. Such an error is unacceptable, as emphasized in

the last section.

The integration scheme of Chapter 3 (or those in Appendix A) accommodates this

hanging node. With the distribution algorithm already discussed, only the calculation of cell

changes requires attention.

Consider the more general cell of Figure 4.15. When computing the flux integral

Equation (3.13) the flux through the east face may be split into two parts.

N

fe Fy- Gdx

A (FfE + FE), - EI GNE + GE)( E

S- (+ F-E)YE - YSE) 2(GE GSE)(XE - XSE)J (4.17)

FIGURE 4.15
General interface cell.

Here the first bracket tracks the flux through face 1 while the second follows flux through face

2. Since all divided cells have straight faces, massaging Equation (4.17) results in the

parabolic form below.

fe=[FNE+ 2FE+FSEyEJ-ysE).(GNE+ 2 GE+GSE)-xS)] (4.18)

4 4 (4.188
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Ilementat

If the mid-face node is equal to the average of its comer nodes, Equation (4.18) reduces

exactly to Eq. (3.14). This property suggests a general interface treatment for interface cells.

When the solver first examines an interface cell, it creates virtual nodes at the midpoint of each

face not already containing a real node. By averaging comer values of F, G and W at these

virtual nodes, cells with hanging nodes on any (or all) faces may be treated by a single

integration formula - one that expects nodes on all faces. This approach avoids the expensive

logic statements and repetitive subroutines required to treat all possible combinations of

hanging nodes separately. Moreover, interface cells may be treated with no decision statements

whatsoever by defining a pointer to locate which faces of any cell contain real midface nodes.

In 2-D cartesian coordinates, the first-order cell change for a cell with real or virtual

nodes on all faces is:

- YSE) (XE - XSE)

(Fw + 2FN + FNE)frV YE) GNw + Wi + GN)(XNW XNMAk=AW At4 14
AC(sw+2Fw + FNWL[s + G X 4'4 4-yNw) 4

( Fs~ + 2 Fs + Fsw)~ ( s +2 5  G w(x
4 4-(4.19)

Despite the expense of defining an additional pointer and creating virtual nodes, the result

is less machine code than the decision statements and subroutines they replace. Also, since

nodal placements change only during adaptation, this pointer updates only during adaptation

steps - at negligible cost. This general treatment is much simpler to code, and since interface

cells are only a small fraction of the total cell count, minor savings gained by more elaborate

treatments appear difficult to justify.
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5. Unstructured Shock Fitting

In many situations it is reasonable to take the bow shock as the upstream boundary.

"Fitting" the shock in this manner forces the computational domain to be coinciclnt witn the

disturbed physical domain. The shock's position is unknown a priori, and its final position

depends upon the physics within the shock layer and the geometry. This underscores the

importance of formulating the governing equations in strong conservation law form, and

treating interfaces conservatively.

In practice, most blunt body flows lend themselves to bow shock fitting. Nevertheless,

at some altitude the Knudsen number becomes sufficiently large to prohibit accurate modeling

with a discontinuous treatment of the shock boundary. Nominal shock thickness estimates

are between five and seven mean free paths thick. For example, at an altitude of 78 km in the

standard atmosphere, the Knudsen number based on freestream conditions and a one meter

nose is 0.0028. The shock is approximately 0.01 Rn thick. Taking this as a rough upper limit

for the assumption of a discontinuous shock, we wish to examine other assumptions behind

the current modeling. The sustained flight corridor of Figure 1.1 shows that airbreathing flight

at upper altitudes requires Mach numbers large enough to invalidate the relatively simple

chemical model described in the second chapter. The assumptions within the gas model break

down before the shock thickness is appreciable. Thus, for the class of sustained flight
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problems correctly treated by the gas model, the bow shocks are thin enough to warrant shock

fitting.

Many early shock fitting approaches relied on a time dependent technique developed by

Moretti (27). This approach casts the governing equations in characteristic variables to solve

the compatibility equation along characteristic lines. Matching the results with those from the

moving shock Rankine - Hugoniot relations determines a unique shock speed and results in a

time-accurate procedure.

Such an approach suffers from two drawbacks in the context of real gas problems solved

on unstructured finite volume meshes. The Reimsan invariants do not remain constant through

the entropy gradients downstream of a curved shock. In perfect gases. this problem alone is

not limiting since one may always place nodes close enough to the shock that it "appears" lo-

cally planar. However, in chemically excited flows, the rapidly relaxing region just behind the

bow shock is strongly non-isentropic along streamlines. The closer the cells lie to the shock,

the steeper the chemical gradients and the more severe this situation becomes. Secondly, it is

not clear that explicit forms of the characteristic variables and compatibility equation exist for

general equations of state.

Blottner and Larson (3) recently proposed a shock fitting technique that avoids those

problems. The next section discusses their basic technique applied to ncnequilibrium flow.

While much simpler in both concept and implciveritation, the technique is not time accurate.

Despite the fact that the flows under consideration are out of equilibrium, the frozen

shock Rankine - Hugoniot relations still apply. The translational mode equilibrates much

faster than chemical modes. Typically the shock builds in fewer than ten collisions, while

thousands occur before the chemistry reaches equilibrium. Thus, for the present gas model, it

is reasonable to treat the classical shock as a sharp, frozen discontinuity, while still permitting

nonequilibrium chemistry.
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5.1 Perfect Gas Shock Fitting

After first integrating the entire domain, shock boundary nodes receive suggested

changes from their neighboring cells. The shock fitting scheme corrects the state vector at such

points consistent with the appropriate moving shock Rankine - Hugoniot relations and moves

the shock in response to the developing interior solution. The interior nodes then undergo a re-

mapping between the upgraded shock location and body surface.

Beginning with the Rankine - Hugoniot shock jump relations, this sections develops the

shock fitting technique with an eye toward implementation. For some known freestream

normal Mach number component, the normal shock equations determine the state vector U

downstream of the discontinuity. However, if the shock is moving, one must first find its

speed before computing U (Figure 5.1). In a reference frame moving with the shock, the

shock "sees" a relative freestream Mach number whose normal component is MR. which

results from the vector subtraction of the absolute normal Mach number, Mn., and the non-

dimensional shock speed, bn. Mn. is defined as the normal freestream Mach number in the

body's frame of reference - with no relative shock motion. Figures 5.1 and 5.2 define these

quantities pictorially.

MR. = Mn.-bn (5.1)
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FIGURE 5.1 FIGURE 5.2
Definition of normal relative Mach number. Definition of absolute normal Mach number.

To determine MRn we employ the solution from the most recent integration step. Pre-

sumably, this step produced changes at the shock nodes resulting from the arrival of waves

which propagate throughout the domain. Over the course of convergence this information ul-

timately determines the shock stand-off distance.

The same information provides an indication of shock speed. For example, at the shock

node 1, the ratio of the downstream temperature TI to the freestream temperature T.. could be

interpreted as resulting from some shock. Such a temperature ratio indicates a "shock" of

specific strength, with a specific associated Mach number. In this way, T1lT, defines a

specific relaive Mach number. However, the basis of shock strength need not be temperature

ratio. Ratios of p, e, p, etc. also determine equally valid relative Mach numbers. It is this

non-uniqueness that makes time-accurate re-formulation of this procedure unclear.
0

Since density is a state variable, the density ratio, Pl/p.,, was used to determine MRn in

the present work. However, exploratory investigations using pressure or temperature ratios

displayed negligible differences in convergence behavior.

The value of MR. then determines all properties "just behind" the shock through the

shock jump relations and equation of state. The updated solution vector applies to a moving
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shock and to the steady state as the shock speed vanishes. Rewriting (5.1) for the shock

bn = Mx.-MR. (5.2)

Cornnete EQ1uations

Figure 5.2 describes the situation in a 2-D or axisymmetric domain. Here, note that the

outward normal, n, does not necessarily correspond with the C direction, indicating that this

formulation includes non-orthogonal coordinates. The density ratio after the integration step

determines MR. from the shock jump relations.

lep, ( 1(5.3)

If the shock were stationary with respect to the body, the absolute normal Mach number MR,

would be: (in a reference frame attached to the body)

Mn- = M..y
ag (5.4)

The assumed density ratio and relative Mach number now completely specify conditions behind

the shock. The x and y velocity components are:

141=p--) (5.5)

V1 = (p-p-) C, + V.
p..MR.9gC

and the local speed is V2 = U2 + V2 . Here gC corrects for any non-orthogonality of the local

t ransformation. From vector calculus

6(5.6)
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Since the shock is assumed frozen, the equation of state for a mixture of perfect gases deter-

mines the temperature downstream of the shock.

TI = P1 l
P,

(5.7)

The energy expression from (Eq. 2.8) completes the state vector behind the shock.

Note that the state vector along the shock is consistent with a moving shock, and ho will

vary until the shock stops moving. At that time, ho takes on its freestream value.

In a time At, the shock moves a distance Ax, Ay in accordance with its normal shock

speed from Equation (5.2).

Ax = (5.8)

Ay= -Atbn2gg

In these equations, the node time step is simply an average of the time steps from the two

neighboring cells (e.g. in Figure 5.2 Ati = AtA + At8 ).

5.2 Equilibrium Shock Fitting

As an upper limit for finite rate chemistry, equilibrium provides a convenient basis for

comparison with very rapid chemistry. Given this motivation, we now develop a separate

method for fitting equilibrium shocks. The discussion revolves around a specific equilibrium

gas model, but applies to any gas in chemical equilibrium.
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For simplicity, consider the reaction A2 + M * 2A + M as described by Lighthil's ideal

dissociating gas model. In equilibrium, the shock jumps are accompanied by changes in y

across the shock. For Lighthill's model,

3 (5.9)

Here a is the degree of dissociation (36, pp.159-161). Thus the ratio of specific heats

depends upon the degree of dissociation. However, simply changing y in the perfect gas

Rankine - Hugoniot relations neglects the a~d energy absorbed in dissociation (see for

example Eq. 2.6). Obviously, the resulting shock would not preserve stagnation enthalpy, and

would violate energy conservation.

Ruling out the use of closed form shock jump relations leaves the need to perform

equilibrium normal shock calculations and then find the correct shock speed.

Mechanics

Referring again to Figure 5. 1, the flowfield solution from the previous iteration provides

a pressure jump across the shock, P/p... Using the equation of state with an assumed value of

al gives the density just downstream of the shock.

PI
P1 RA2T(1 + al) (5.10)

Conservation of momentum through the discontinuity results in an expression for the relative

normal velocity at 1 (36, pp. 179).

P. (PI- P-, (5.11)

Energy conservation determines a corresponding value of enthalpy behind the shock.

{ ((5.12)

88



Recalling the enthalpy expression for the ideal dissociating gas:

h = RA2[(4 + a)T + a O]

Re-arranging, expresses the temperature downstream of the shock as a function of enthalpy

and mass fraction.

(4 + al)[RA2  (5.13)

and this temperature permits a better estimate of the atomic mass fraction at 1.

a="k T +_4k where k aPde'°dI
2 p (5.14)

However, (5.13) assumed the previous value of a, and we must now compute a new

temperature consistent with the mass fraction determined by (5.14). Iteration between Equa-

tions (5.13) and (5.14) determines a unique mass fraction and temperature. Then (5.10) pro-

vides a consistent value of the density ratio across the shock and (5.11) yields an improved

shock speed.

This doubly iterative process initially may appear computationally expensive. However,

it is applied only to shock points, and the net cost remains small. After obtaining a converged

relative Mach number, tie shock speed and subsequent motion follow as in the previous

section.

Some Notes on Equilibrium Shock Fitting

The method described above is not elegant. One possible alternative might make use of

the fact that thermodynamic equilibrium minimizes the Gibbs free energy. Setting up the

minimization problem permits the use of LaGrange multipliers constrained by the existing
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pressure or density jump. Certainly extending the model to include multiple coupled reactions

(NO present) with many reaction paths would demand a more elaborate approach.

As a final comment, the stiff transcendental function in Equation (5.14) results in extreme

sensitivity of a to small changes in T. Specifically, a tends to oscillate between 0.0 and 1.0,

hampering convergence of this inner iteration. A simple fix is to reduce changes in a by

approximately 70%, thus decreasing changes to T, and resulting in a more tractable

convergence behavior.

5.3 Moving Unstructured Meshes

A moving inflow boundary implies that the grid must redistribute itself to properly track

the shock's motion. For structured grid calculations, this merits relatively little attention.

However, in the realm of the current unstructured domain, more care is required.

The grid redistribution requires knowledge of shock position and information about a

particular node's history in the grid (stretching or skewing). Since all previous discussions

involve current cell information only, such global location requests do not fit within the

framework of an unstructured scheme.
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FIGURE S.3
Reference points for moving nodes on the base (original) grid.

The endpoint pointer fixes all nodal locations with respect to any set of four reference

nodes. The pointer's six elements store reference node numbers as well as x and y position

with respect to these references. Referring to the nodes on the unadapted mesh of Figure 5.3,

the pointer fills as follows.
ENDPT( 1, c) = body node # (a)

ENDPT(2, c) = body node # (b)
ENDPT( 3, c ) = % x of total distance a measured from a

ENDPT( 4, c) = % y of otal distance i measured from a

ENDPT(5,c) = body node # (a)
ENDPT(6, c) = body node # (b)

These definitions locate original grid nodes by their position along lines of constant 4. Since it

is based upon the original grid, this pointer preserves any curvature or clustering of grid lines.

After each adaptation, every new cell must have faces matching those of its neighbors

across cell interfaces. Failure to keep these faces linear results in higher order conservation

errors across the interface when integrating adjacent cells. Unfortunately, referring mid-face

nodes to shock and body points does not insure linear cell faces as the grid moves, and we

seek an alternative solution.
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Figure 5.4 examines this situation in more detail. If midface and central nodes rely on

body and shock locations, there is no guarantee that linear interfaces will be preserved. To

avoid this problem, the endpoint pointer positions new nodes by the comers of their supercells.

For the example shown in the sketch, all new nodes should rely on the corner nodes of the

original Cell A. Specifically, for new nodes created from the division of Cell A, the ENDPT

pointer entries 1, 2, 5, and 6 will refer to comer node data for the original Cell A. Using these

reference points, each midface node remains half way between the comers, falling exactly on

the interface. Through this more general use of the pointer, the re-mapping algorithm can treat

new nodes exactly as original nodes, efficiently creating a new grid without any decision

statements (and minimizing computational effort). Finally, note that this pointer permits

remapping grids with any number of embedded levels, while simultaneously maintaining all

cell interfaces as straight lines.

Bc

1. Initial adapted mesh I. Incorrect redistribution 111. Correct redistribution

FIGURE S.4
Preservation of linear interfaces in an uistructured domain with multiple levels of adaptive embedding.

5.4 Behavior of Shock Fit Solutions

As an initial condition, all points within the domain (Fig 3.14, including shock points)

might contain freestream values. In this case, no shock discontinuity exists, and the initial

conditions exactly satisfy the governing equations at all points not on the body. With
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freestrean values, all shock points span a density ratio Psh/=.. 1.0 and the shock degenerates

to an acoustic wave. Confirming this, Equation (5.3) predicts a relative normal Mach number

of unity, and (5.5) through (5.6) predict the same for the velocity ratio, temperature ratio and

pressure ratio at all shock points and the "shock" moves inward at a non-dimensional speed b,

of M.- L.

40

~Shock Avemae

iSynvtry Man

0.0 1.0 2.0 3.0 4.O 5.0
Thouaani of Iteratiw

FIGURE S.5
A typical history of stand-off distance with iteration. converged from a uniform freestream initial
condition. (Mach 5 frozen flow over a axisynmeric nose.)

During the first time step, the explicit solver transmits knowledge of the body to adjacent

cells one removed from this boundary. Meanwhile, the shock continues progressing towards

the body at a speed M. - 1. On a grid with M lines between the shock and body, the shock

will not respond to the body's presence for M time steps. This behavior is a direct result of the

explicit algorithm, and results in a time lag between the shock and the developing solution.

Moreover, it creates a feedback loop wherein the shock's position and shape determine

properties within the domain, but the shock cannot respond immediately to these changing
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properties. In this respect, the problem resembles an elliptic calculation (albeit one with an

internal time lag).

Figure 5.5 shows a typical history of shock motion recorded while converging a Mach 5

solution from freestream conditions. Initially, the shock resides some distance from the body

and moves toward it as described above. Then, as pressure waves cross the layer, the Rankine

- Hugoniot jumps build, slowing the shock before reversing its motion altogether. The shock

backs away from the body and eventually comes to rest at some final stand-off distance deter-

mined by the interior solution.

Although this example of shock adjustment was computed from a special (freestream)

initial condition, the shock's behavior results more generally from wave propagation in the

explicit shock fit domain. In practice, the shock adjusts its position in a similar manner to all

disturbances (changes in freestream conditions, chemistry, etc.).

Since adaptation selectively adds cells to the domain, it changes the wave propagation

speed through various regions of the domain (in physical space). As a result, adapting during

the initial gross shock motion may disrupt the shock's shape enough to destabilize the solution.

Simply delaying until the stand-off distance stabilizes avoids this shortcoming.
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III PRESENTATION AND DISCUSSION
OF RESULTS

A DEC Microvax 3200, nominally rated at 3 Million Instructions Per Second (MIPS), provided
processing support for all test cases in this work.

6. Physical Phenomena in High Temperature Flows
Over Simple Geometries

The gas model and adaptive integration scheme discussed in Parts I and II led to the

development of a series of adaptive hypersonic CFD codes. These codes permit computation

of inviscid and viscous, chemically reacting flow over 2-D and axisymmetric bodies. The

additional development of a 2-D identical equilibrium Euler solver provided a datum for flows

demonstrating very small departure from equilibrium.

After a brief validation study, focus turns to the question of using adaptation to resolve

physical behavior within the reacting shock layer. Both inviscid and viscous results support a

fundamental discussion of chemical length. scale behavior within the shock layer. Finally, as

we consider flows with higher Mach numbers, interest broadens to coupled and uncoupled

multiple reacting mixtures, examining both the formation and impact of NO within a gas cap,

and the degree of coupling between reactions. These insights form a basis for then evaluating

the effectiveness of adaptive grid embedding in hypersonic shock layers in Chapter 7.

6.1 Basic Examples and Algorithm Verification

Before looking at the detailed physics and flow phenomena within the shock layer,

validation studies were completed to lend credibility to both the basic algorithm and gas model.

This section outlines three such studies, designed to verify different aspects of the solution
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algorithm. First is a classic perfect gas test case, which demonstrates both the accuracy and

conservation of the Lax-Wendroff algorithm and unstructured shock fitting procedure. A more

rigorous test - .amines the adaptation methodology and gas model behavior in severe reacting

flows. A final example evaluates the effectiveness of the present method in tracking multiple

reaction paths and coupled reactions in a multi-reaction mixture.

Perfect Gas Test Cases

Figure 6.1 displays the traditional variation of stand-off distance with Mach number for a

2-D cylinder exposed to a crossflow and an axisymmetric hemispherical cylinder test case.

Reference 22 provided the comparison curves, and the data show numerical experiments at

Mach 3, 5, 7.5 -ind 10 in a y= 1.4 perfect gas.
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20 . ...................................................

U Presuwtd
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0.8. . "''............. ...........
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0.4. ........ ........... ........... ...........

.... .......... .. ,

0.2..............................

0.1.~ f...............0.1- .
1.0 3.0 5.0 7.0 9.0

Fra 5Seam Mach Number
FIGURE 6.1
Comperison of shock Stand-off with Reference 22.

These data appear to deviate slightly from the reference curves at high Mach numbers.

This discrepancy arises as a direct result of the half excited vibrational state in the present mod-

eling. The normal shock relations predict a density jump across the shock of
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Psh (Y+ I)M!2
P- (Y- I)M! + 2 (6.0)

This ratio asymptotically approaches 6 at large Mach number for perfect air with y= 1.4. Since

the flow behind the shock is subsonic in the stagnation region, the density ratio will not in-

crease much as the flow comes to rest at the stagnation point, and density throughout the region

remains relatively constant. For the present gas model with its half-excited vibrational state,

kinetic theory predicts a frozen ratio of specific heats of 4/3 in the absence of dissociation,

which leads to a limiting density ratio of 7. With approximately the same mass flux entering a

shock layer, the shock in 4/3 test cases should be roughly 16% closer to the body in the limit of

infinite freestream Mach number. At finite Mach numbers, however, Equation (6.1) predicts

slightly less pronounced effects due to y. Close examination of the figure reveals that at higher

Mach numbers, the calculated stand-off distance approaches this proper infinite Mach number

limit. For example, at Mach 10, the axisymmetric code predicts a shock location 13% closer to

the body than the extrapolated y=1.4 result.

A second classical result predicts the shape and position of the sonic line within the shock

layer (13). Figure 6.2 displays the sonic lines for 2-D and axisymmetric calculations. Both

pictures depict Mach 5 flow of the same y= 4/3 perfect gas.

The sonic line in the 2-D flow shown on the left clearly demonstrates the high curvature

associated with sonic line behavior above Mach 2 in 2-D supersonic blunt body flows, and

displays the expected acute angle with the body's surface. In the axisymmetric case, the sonic

line takes on the steeply raked profile characteristic of 3-D blunt body flows. The third

dimension provides an additional direction for the flow to expand, and this, combined with the

thinner shock layer, tends to flatten the profile. As is typical of freestream Mach numbers

greater than 3, the angle between the body and sonic line is obtuse.
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While primarily qualitative evidence, the behavior of the sonic line does demonstrate the

Lax-Wendroff scheme's ability to model the physics between the shock and body - even in the

stagnation region. The predicted shock stand-off distances lend credence to both the shock fit-

ting implementation and the schemes mass conservation properties.

If tc - 0.25 Ift - 0.25

FIGURE 6.2 TwO-Din"siaal
Conputed Mach contours of Mach 5 frozen flow over 2-D ad axisynmauic circularly blunted
bodies showing location of of the sonic line.

Dissociatine Nitroeen

While effective from the standpoint of understanding and completeness, these

comparisons tend to be primarily qualitative. Essentially, the above results demonstrate that the

shock fit, Lax-Wendroff technique may be applied to supersonic flows, but do not rigorously

verify the technique's accuracy, nor do such perfect gas computations demonstrate anything

about the real gas model. Therefore, we now compare the current method with both

experimental and computational results published by M. N. Macrossan (25).

The case provides a very stringent test of the scheme's ability to model high temperature

flows. Table 6.1 details the freestream conditions for both the experiment and computation. In

both situations, hot nitrogen flows at approximately Mach 5 past a 150 blunted wedge. The

computational conditions were chosen to match momentum flux through the shock and
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stagnation enthalpy with those for the experiment. Notice that test conditions are "nominal"

and Macrossan estimates a possible 2-7% measurement uncertainty (25).

Several attributes make this an excellent test case. First, the flow over much of the blunt

wedge is in a state of small departure from equilibrium. The chemical length scale behind the

shock is much smaller than the physical dimensions of the body. Using properties behind a

frozen normal shock for the freestream conditions, the chemical relaxation length is slightly

over 0.003 R.. In terms of the Damkohler number defined at the end of the first chapter, IF is

greater than 36,000. Clearly, we expect very rapid chemical relaxation near the shock. More-

over, the large dissociation energy of nitrogen will strongly couple these chemical effects to

other flow parameters through the shock layer. This very strong coupling, combined with the

very rapid dissociation provides a severe test of the gas model since over 40% of the stagnation

enthalpy is absorbed by dissociation within the first 5% of the shock layer.

TABLE 6.1
Conditions for comparison to dissociating nitrogen test case (from Reference 25).

Real shock tunnel Computation with
nominal conditions equilibrium freestream

u. (m/s) 6.36 x 103  6.31 x 103

p. (kg/m3) 4.41 x 10-2 4.45 x 10-2

T. (K) 4415 5570
a.. ( ) 0.094 (frozen) 0.064

M. 4.55 4.09

Rn (mm) 5.0 4.91

In addition to the stiffness arising from the disparate time scales involved, this case

demonstrates the behavior of the gas model in flows with small regions where temperatures

exceed 9,000 K. Normal shock calculations predict temperature ratios of about 4 across the

shock. Since the freestream temperature is approximately 5,000 K, the temperature

immediately behind the shock is in excess of that allowed with the present model. However,

the rapid chemical relaxation in fact quickly absorbs much of this energy and drops the
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temperature radically. Most of the flow remains within the range of applicability of the half-

excited assumption.

Finally, capturing the relaxation near the bow shock required three levels of embedding

and placed interface cells in the stagnation region. This demonstrae the ability of the adapta-

tion to resolve flow features, while preserving conservation across interfaces. Since the shock

layer may be thought of as a control volume, any error in conservation will create an error in

stand-off distance.
Copsnwth Com ason with

1,A 3P..-
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FIGURE 6.3

Density ratio comparison with shock tube experiment and calculation of Macroman (25) as conditions of Table 6.1.
Current method shown in lower half.

Figure 6.3 compares density contours computed with the present model with those from

both experiment and computations performed by Macrossan. Both agree quite closely. The

figure on the left contains experimental results above and results from the adaptive computation

at nominal shock tunnel conditions below. The comparison on the right displays Macrossan's
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solution for the "equivalent equilibrium freestream" above a result from the current method. In

Table 6.1 it is interesting to note that reference (25) intended these results to demonstrate that

the "equivalent" conditions gave identical results as the experiment, and considered the

flowfield at the right virtually identical to that at the left.

While the comparison with the calculation is in rather good agreement, the comparison

with experiment differs slightly. The density in the flow varies from roughly 10 to 2 and the

present solution shifts the 2.5 and 3.0 contours by approximately 0.2 5p... This points to a

discrepancy of approximately 2.5%. However, its worth remembering that the freestream

conditions held an uncertainty of approximately 5%, and therefore the comparison is within

experimental error.

FIGURE 6.4
Adaptive computational grid with 1640 nodes for disociating nirogum flow over a circularly
blunted 15* wedge at "equivalent" conditions (Table 6.1).

As evidence of the adaptive scheme's ability to detect and resolve flow features, consider

Figure 6.4. Here, the final adapted grid for the "equivalent" conditions (Table 6.1) case clearly

shows the relaxation zone and expansion fan in the flowfield. With three levels of adaptive re-

finement, the final grid contains 1640 nodes or slightly more than half the 3000 nodes used by
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the DSMC calculation of the reference. The RMS momentum residual was converged two or-

ders of magnitude between adaptations. The adaptation threshold, ada was set at 0.35 based

upon examination of the first adaptation map and held at this level for the remaining two adap-

tations.

The source did not estimate the Reynolds number or other viscous parameters in the hot

nitrogen test gas. A rough estimate is that Reynolds number is on the order of 105. The

interferograms presented in Reference 25 seem to confirm such a high value since the boundary

layer remains quite thin.

Reaction Cmin and Mutijle Reaction Paths

We now focus on the behavior of the mixture model and thermodynamics as presented

in Chapter 2. Comparison of the current gas model is made with two other models described

by Candler (5) and an experiment of a sphere fired in air at 528O0m/s performed by Lobb (24).

Candler's gas models include both a single- and six-temperature models. The latter includes

translational temperature, four vibrational temperatures (N2, 02, NO, NO+), and an electron

temperature. The reference has demonstrated that the six-temperature model predicts the

sphere's stand-off distance and shock shape to within experimental accuracy, and therefore

comparison is made directly to the six-temperature modeL

To begin, examine the stand-off distance implied by the present and Ref. 5 density ratio

distributions along the stagnation streamline in Figure 6.5. Table 6.2 details assumed

freesweam conditions.
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TABLE 6.2
Conditio forbfrical test case of Reference (5) for mulIple reaction companion.

uo (m/s) To (K) p. (Pa) Rn (mm) M. Re W

5280 293 664 6.35 15.3 14600 59

In figure 6.5, the gas flows from left to right and the stagnation point is at '17/8 = 0.0. The

present computations were inviscid and, as expected, the shock stand-off distance differs by

about 5% due to the thickness of the boundary layer (-10%) at this low Reynolds number.

Note that the shock fitting in the present method results in a discontinuous shock (as would be

expected at these conditions). The error in stand-off distance arises directly from the cool ther-

mal boundary layer of the viscous calculations. There, nearly constant pressure and lower

temperature force density to increase rapidly, bringing the shock closer to the body. In the

inviscid portion of the flowfield, the present model does agree within plotting accuracy for the

more elaborate models.

40.
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FIGURE 6.
Stagnation streanline profiles of density ratio of current method and computations of
Cmdler (5) at conditions in Table 6.2.
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Figures 6.6a and 6.6b show further details along the stagnation streamline. The

temperature profiles display especially interesting behavior. Since both Ref. 5 models use

shock capturing, neither resolves the temperature peak across the shock. Those results for the

six-temperature model imply that vibration remains unexcited across the translational shock,

supporting the hypothesis of a frozen shock, and that significant vibrational nonequilibrium

exists throughout much of the shock layer. If frozen, the temperature peak for y= 1.4 should

be approximately 14,000 K. The present y= 4/3 model has a peak temperature of 11,500 K

just downstream of the shock. The one-temperature model (5) allows vibration to absorb

energy through the captured shock, and results in a 10,000 K peak behind the shock. As

chemical reactions proceed, the curves decay. Both single temperature models decay rather

quickly as dissociating 02 soaks up translational energy. The multitemperature model decay is

less rapid since its dissociation rate is linked to both vibrational and translational temperature.

- 6 Tempera Model 0.25

SI Temperatre Mo6 Taipature Model
e 0.0 1 Tempature Model

- aeo Model
0.15

010

0.1 O. 0.04 0.0

'V& Nmd DtannPmm Stq. Pug r^ Nommhd Mom=a F,. Su o

FIGURE 6.6a FIGURE 6.6b
Stagnaion streamline profiles of ter"7eratue and species mass fraction of curet method and computations of Candler
(5) at conditions in Table 6.2.

This effect also explains the delay (of nearly 0.18) experienced before the onset of 02

dissociation for the six-temperature model (Fig.6.6b). Although the "shock" stands at 0.1 Rn,

02 hesitates until 0.09 Rn before dissociation commences. Candler ascribes this behavior to
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nonequilibrium within the vibrational modes. Otherwise, the figure demonstrates expected

behavior of 02 and NO throughout the shock layer. Nevertheless, the precise levels of NO

disagree amongst the models and the inviscid axisymmetric code used in this comparison

naturally tracks none of the behavior in the wall boundary layer.

To summarize, although the current modeling differs in prediction of the absolute species

concentration levels, it demonstrates the technique's ability to model reaction coupling, with

very reasonable prediction of the gas dynamic variables.

Note that the temperature scale in Figure 6.6a reads in Kelvin. The majority of this shock

layer is above, or near, the 9,000 K limit indicated by the derivation in Chapter 2. Despite

this, the predicted level of NO molecules remains comparable to those from the other models.

6.2 Effects of Length Scale Behavior

The temperature relaxation seen in Figure 6.6 characterizes nonequilibrium shock layer

calculations. The ratio of the chemical relaxation length to a relevant physical reference length,

A/Lref is a most important parameter in the description of nonequilibrium situations. Such

parameters characterize the relative importance of the chemical modeling and determine the

distance required for the temperature to decay, or, equivalently, for the density to increase. As

a direct result, the shock layer thickness depends strongly upon the degree of nonequilibrium.

General Length and Time Scale Behavior in Inviscid Hypersonic Flows

Virtually throughout the shock layer the flow is out of equilibrium. However, as the

velocity approaches zero at the stagnation point the associated convective time scale increases

without limit. Since the chemical time scale remains finite, local equilibrium is achieved at the

stagnation point in the steady state. At all points in the field the Law of Mass Action
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determines a local equilibriwn concentration, ce, which "drives" the actual concentration c.

Thus, the local concentration must reach the local equilibrium concentration at the stagnation

point.

In terms of a simple Landau-Teller type model for the chemical source term IV,

W=ce-c
?cham (6.2)
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FIGURE 6.7
Schematic of generalized concentration and source term behavior along the stagnation streamline in inviscid flow.

In Equation (6.2) the degree of nonequilibrium governs the magnitude of the source term.

Figure 6.7 contains a schematic of the stagnation streamline process in terms of the c and W

behavior.

The stagnation point is at the right of both plots (x/8= 0.0). Since the shock itself is

frozen, initially a large difference can exist between c and ce. In region 1, the flow is far out

of equilibrium and r chem is very small, making W large. Thus, the concentration adjusts

rapidly as dissociation soaks up internal energy. As this process lowers the temperature, the

exponent in the forward reaction term (Eq. 2.33) decreases rapidly, changing W in region 2

by several orders of magnitude. As rchm increases, IW decreases at approximately the same

rate, (Eq. 6.2), and the progress of c toward its goal of ce is slowed.

The rising density in the flow approaching the stagnation point increases the number of

particle collisions, thus elevating the importance of the backward rate term in the source term
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expression. The competition between backward and forward terms as they equalize drives

to zero, and c approaches ce.
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FIGURE 6.8
Stagnation streamline profiles of atom mas fraction ai local equilibrium mass fmon for the blunted wedge detailed
in Table 6.1 with chemical rate retarded two orders of mapiwd&

Figure 6.8 contains a computed result for a blunted wedge. The behavior along the

stagnation streamline and its continuation along the body's surface is shown. Conditions for

this case match the comparison with computation detailed in Table 6.1, but here the chemical

rate was retarded by two orders of magnitude to emphasize nonequilibrium behavior.

The figure illustrates aspects discussed after Fig. 6.7, and in particular, the final approach

to equilibrium just before the flow stagnates at x/RR = 0. The species equations do not solve

the Law of Mass Action directly, but rather, imply a steady state solution when the source

terms vanish at the stagnation point. Since cc at the stagnation point comes from a direct

solution of the Law of Mass Action, it is an independent check of the overall validity of the

solution to the governing equations. A slight discrepancy in stagnation point concentration
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results from the presence of numerical dissipation and disappears in the limit of either infinite

resolution or zero smoothing.

CMM
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FIGURE 6.9 X
Symmetry plane prode of the logarithm of the source tam notmalized by that just behind
the frozen shock for the blunted wedge detailed in Table 6.1 with chanied mm retarded two
orders of magntude.

As the flow expands around the nose, the density drops rapidly, reducing the collision

rate and effectively freezing out the chemistry. In this region, W remains small in part

because contributions from both the forward and backward terms remain relatively small.

Consistent with the source term remaining small compared with its post shock value, the

chemical time scale remains quite large. Ile concentration tends toward its local equilibrium

value very slowly and would achieve it only far downstrem

Effects of Dissociation Energy

As the symmetry plane flow dissociates downstream of the normal shock, the growth of

the dissociation energy, aeOD, portion of the internal energy implies a relatively decreasing T".

The appearance of 6b within the exponential factor of the source's forward reaction suggests
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that for some net reaction rate and associated chemical length scale, the 0 D role is crucial to

the extent of chemical length scale changes throughout the shock layer. For large eD the

a8D contribution to the internal energy expression may dictate a large temperature change for a

small change in concentration. The source term will then "feel" this temperature change after

being selectively amplified through the exponential in the forward rate term. This mechanism

produces radical changes in chemical time scale, Eq. (6.2). Moreover, since only a small

change in c produced these changes, c may remain far out of equilibrium.

Examine, for example, Figure 6.9 which shows the normalized source term along the

symmetry plane on a logarithmic scale for the same case as Figure 6.8. Despite the fact that

over the first five points downstream of the shock the concentration change is only about 20%

( Fig 6.8), the source term changes by an order of magnitude. That is, 'rchem changes by

approximately an order of magnitude. This implies a much longer relaxation length, and

although the flow remains far from equilibrium, the progress of c toward Ce slows radically.

Of course, there always exists some overall chemical rate or Damk6hler number large

enough to eliminate such effects, but calculations along the sustained flight corridor suggest

that this phenomenon remains important - especially in the case of dissociating nitrogen at low

levels of dissociation. Dissociating N2 absorbs nearly twice the energy of dissociating 02, re-

sulting in much stronger coupling between chemical and gas dynamical variables.

As c slows in its progress toward equilibrium the temperature changes more slowly,

decreasing the rate at which W changes and preventing the rapid adjustment of c toward Ce.

Finally, as the convective time scale rises in the stagnation region, the finite chemical time scale

becomes small by comparison, producing a small "boundary layer" region of rapid adjustment

as the concentration equilibrates with ce. This effect often appears as the "tail" shown in region

3 of the schematic in Figure 6.7, and again displayed in the computation of 6.8. Since it is so
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intimately related with length scale behavior, the effect is seen most clearly in flows with large

O parameters.

Effects of Reaction Rate on Length Scale Behavior

The dissociation rate governs the rate of change of the chemical relaxation length

throughout the gas, and the non-dimensional reaction rate parameter sets the magnitude of this

scale. The previous discussion can be generalized to include a wide class of nonequilibrium

problems ranging from nearly frozen to nearly equilibrium.

The sketch in Figure 6.10 shows example distributions of concentration and

corresponding local equilibrium concentration for blunt body flows with Damk6hler numbers

from IF -+ 0 (frozen) to WP -+ oc (equilibrium). If the flow is very nearly frozen, a), the

shock layer experiences little to no dissociation upstream of the stagnation point, where it must

eventually adjust to equilibrium. Curves @ and C) exemplify typical profiles found in flows

for 'Pof approximately 0.1 and 10 respectively. Numerical calculations at these conditions are

shown later. Finally, (i traces the concentration behavior of flows very nearly in equilibrium.

Here the infinitesimal chemical length scale permits very rapid convergence of c and ce and

these remain equilibrated until the flow reaches the stagnation point. If sufficiently near to

identical equilibrium, these distributions will remain indistinguishable throughout the

expansion. Since the stagnation region is normalized by the stand-off distance , this sketch

does not show how the shock layer thickness increases for more nearly frozen cases. Over the

body surface, the exact local equilibrium concentration will depend on the precise values of

other flow variables. However, these profiles will all display the same qualitative behavior,

and the sketch presents only one curve downstream of the stagnation point.
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FIGURE 6.10
Mas fraction profiles and local equilibrium mass fractions for reacting flows ranging from near frozen to near
equilibrium.

Small Departures from Equilibrium

Figure 6.11 shows the behavior of the wedge example presented earlier (Table 6.1 and

Figure 6.3) in comparison to the experiment in Reference 25. Despite the near equilibrium

nature of the flow along the symmetry plane, the lengtl' scz-e changes enough by the stagnation

point to freeze out over the expansion and wedge surface. Notice that the upwardi climb of ce

toward c results from an increase in temperature as :i ato m s swly recombine and result in a

slow drop in c. Capturing the initial transient in a simulation with this severe a discrepancy

between chemical and convective length scales requires very high resolution near the shock.

The example illustrates the need for extreme caution before awarding identical equilibrium

procedures to flows with high dissociation energies. Here we see that even in extremely high

Damkbhler number flows, the chemical length scale may change enough to freeze out

appreciably.
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FIGURE 6.114

Stagnation streamline mass fraction and local equilibrium for circulaly bhutd 15' wedge.
(See also Table 6.1 and Figure 6.3).

Removal of Stagnation Singularity - Viscous Cases

Curve Q) in 6.10 demonstrates near-singular behavior as the frozen concentration

through the shock layer rapidly advances toward equilibrium at the stagnation point. Inviscid

calculations demonstrate this behavior since the surface streamtube remains quite hot. Realistic

viscous computations and real flows, however, maintain a relatively cool thermal boundary

layer immediately adjacent to the surface which removes this singularity. As atoms re-combine

in the cool layer just removed from the surface, the actual concentration and local equilibrium

tend toward zero dissociation. Of course, wall catalytic effects modify this behavior at elevated

wall temperatures. The present examples maintain a wall temperature of 1,500 K, cold enough

to keep catalytic effects miniscule.

Figure 6.12 details this behaviqr for two cases which correspond to Q and ( in Figure

6.10. In the figure on the left, W = 10, while at the right W = 0.1. Both cases correspond to

Mach 12 flight in the standard atmosphere at 60 km altitude, and the viscous examples use Re

= 6500, Pr = 0.72, and Sc = 0.5.
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FIGURE 6.12
Mass fraction and local equilibrium mass fraction profiles along the symmetry plane for viscous and inviscid flows at
60 kin altitude in STD atmosphere. V= 10 (left). WV= 0.1 (right). Re ,6500. Pr = 0.72. Sc = 0.5.

It is interesting to note that the local equilibrium concentration does not lead the actual concen-

tration to zero in the stagnation region for the viscous examples. Behavior in this region stems

from heat conduction and other viscous effects. The viscous terms on the right side of the

governing equations (Eq. 1.9) act as additional sources and the simple source term model in

Equation (6.1) neglects these complex terms altogether. In fact, non-zero behavior stands as

evidence that these terms contribute in this region. Moreover, the fact that the viscous profiles

trace the inviscid curves almost precisely through the inviscid portion of the field suggests that

mass diffusion, heat transfer, and shear terms remain comparatively small through this portion

of the field.

For purposes of comparison, the horizontal scales in Fig. 6.12 were normalized by

stand-off distance. This normalization masks the fact that the thick boundary layer in the

viscous cases actually displaced the shock by -7%.
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6.3 Coupled Reacting Systems

When multiple reactions occur in a gas mixture, the problem of a disparate chemical and

convective length scale becomes one of many disparate length scales. The degree of coupling

between reactions in such a system depends largely on two factors. First, the relative amounts

of energy absorbed or produced by a reaction contribute directly to the overall internal energy

of the system and directly affect thermodynamic properties. For example, as one reaction

proceeds, it may absorb so much internal energy that some other reactions freeze out.

Secondly, the relative scales of the processes affect reaction coupling. If one reaction proceeds

much more rapidly than another, the fast reaction may reach its equilibrium concentration long

before the other reaction has begun to affect the internal energy of the gas.

Formation of NO within the Shock Layer

In reacting air systems, such coupling effects are very clearly demonstrated upon

examination of the formation of NO throughout the shock layer. As an example, re-consider

the axisymmetric multi-reaction test case presented in Section 6.1 (Table 6.2, Figs. 6.4 and

6.5). Since the shock layer is in vibrational nonequilibrium, the detailed concentration levels of

mixture components are incorrect by the standard of more accurate chemical modeling.

Nevertheless, the species behavior in this comparison agrees reasonably well.

Figure 6.13 provides profiles of N, 0, NO, and 02 along the stagnation streamline. At

conditions just behind the shock the characteristic relaxation length for molecular oxygen

dissociation is about O.O1Rn, while that for nitrogen is approximately 0.5Rn. This 50-fold

disparity is a measure of the degree of coupling between the two dominant reactions.
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FIGURE 6.13 WR
Symmery plane prfles of species mass fracton for 0 2, O, NO, md N for the case detailed in Table 6.2 (also
see Figs. 6.5 & 6.6).

The earlier plot of equilibrium constants in Figure 1.3 provided an indication of the

relative importance of the forward and backward terms in the reaction rate expressions for the

five reactions considered here. Of course, in view of the actual chemical nonequilibrium, Fig.

1.3 only provides an approximate guide to the source term's behavior. As the flow in Fig.

6.13 crosses the Mach 15 normal shock, oxygen rapidly dissociates, creating an abundance of

free oxygen atoms. These atoms, in turn, activate the exchange reactions which proceed at

rates slightly faster than that of 0 production. However, the competition between these

reactions, mentioned in the closing paragraphs of Chapter 1, slows the net production of NO to

about I/10th that of 02 dissociation. At these post-shock temperatures, the first exchange reac-

tion (0 + N2 v N + NO) proceeds faster than the NO, robbing the exchange reaction (NO + 0

4 N + 02). It is this mechanism which is responsible for the initial production of NO behind

the shock.

As the temperature decreases to -8,000 K inside the shock layer, this competition results

in almost exact cancellation of the NO produced and destroyed by the shuffle reactions. Thus

the only mechanism left for altering NO concentration is the NO dissociation reaction. At
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these temperatures, the forward rate term dominates, breaking up NO molecules at a rate

slightly faster than that of nitrogen dissociation. This effect results in the decline of NO con-

centration approaching the stagnation point.

The remainder of the shock layer is shown in Figure 6.14 for mass fraction contours of

NO at the left and isotherms on the right.
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FIGURE 6.14
Contours of NO mass fraction. m1 temperature ratio computed for the cae detailed in Table 6.2
(also see Figs. 6.5 & 6.6).

The temperature field holds two important functions in this discussion. F'rst, for any point in

the field, it determines values of the equilibrium constants for the reactions, giving an indica-

tion of what local equilibrium condition the species concentrations seek. Secondly, the temper-

ature provides an indication of the overall magnitude of the source terms, and therefore the

relevant chemical length scale at any point in the field.

As the flow expands out of the hot stagnation region, the temperature decreases rapidly,

slowing the progress of all reactions toward their respective equilibrium conditions*.Since

nitrogen dissociation has the slowest chemical rate, it is the first to freeze out. Immediately

afterward, the nitric oxide dissociation reaction follows suit. With the dissociative reaction

turned off, the exchange reactions exclusively determine the concentration of NO in the shock

layer, and since their individual rates are so high, these reactions continue to be active, even in
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the rapidly freezing flow over the body's shoulder. The imbalance of these reactions continues

to drive the concentration of NO upward through most of the expansion fan. This interesting

point also was documented by Park (30), and is a direct result of the fact that the first

exchange reaction (0 + N2 ** N + NO) still produces more NO than the other consumes.

However, as the temperature continues to drop, this situation reverses itself, resulting not only

in a decrease in NO, but also 02 formation (by the same reaction). As oxygen molecules

continue to deplete the supply of free oxygen atoms, NO does not have the opportunity to re-

form. Of course, all of these processes take place over much expanded lengths, since on

reaching the shoulder of the body the expanding, cooling flow has changed the chemical length

and time scales by several orders of magnitude.
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7. Effectiveness of Adaptive Grid Embedding in
Hypersonic Flows

The test cases and investigation demonstrate the feasibility of applying the adaptive

methodology to hypersonic reacting flows. In evaluating-the effectiveness of this procedure,

several aspects require consideration. A comparison of such mechanical points as computation

time and memory savings afforded by the present technique are of interest, as are the resolution

requirements of some of the physical phenomena captured in embedded regions of the flow

field and possible improvements in the implementation of the technique itself.

7.1 Enhancement of Computational Efficiency

Since the purpose of the final grid is to resolve all length scales in the domain, the

computational savings associated with any flow field depend heavily on the number of length

scales involved. Figure 7.1 contains a highly adapted grid resulting from a Mach 16, 2-D

simulation at conditions 45 kn aloft in the standard atmosphere. The conditions were modified

to enhance oxygen dissociation by artificially freezing the nitrogen and nitric oxide dissociation

reactions ('OV2 = 4Ivo a 0). The body size is such that the characteristic length for oxygen

dissociation just downstream of the normal shock is only 0.001 RN and virtually all of the

molecules dissociate within 1% of the nose radius.
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FIGURE 7.1
Adaptd grid with four levels of embedding and 1550 nodes for conditom desribed in coiL

Although somewhat contrived, this case provides a good demonstration of the capabilities

of the embedded mesh procedure. Moreover, examining the time savings after each level of

embedding provides a realistic estimate of the savings for a wide range of chemical rates.

Table 7.1 lists the computation times required for the original coarse grid, final adapted

grid, and four globally embedded grids. Notice that at the two highest levels of global mesh

refinement, estimated simulation times became sufficiently long that actual tests were

precluded.

The final adaptive grid resolved the chemical relaxation with four levels of embedding,

and the computation cost proved to be 8.6 times that of the coarse grid baseline case.

Resolving the rapid decay on a globally fine mesh would require the same four embeddings,

but at a computational cost exceeding 250 times the baseline computation.
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TABLE 7.1
Computing time comparisons for adaptive and globally refrmed meshes for conditions of Figure 7.1.

Mesh # of Normalized
Dimensions nodes Computer Time

Original Coarse Grid 10 x 20 200 1.0

Adapted (4-level) Unstruolured 1550 8.6

Entire mesh (1 level embedded) 19 x 39 741 4.7

Entire mesh (2 levels embedded) 37 x 77 2849 17.9
Entire mesh (3 levels embedded) 74 x 153 11322 70.8*
Entire mesh (4 levels embedded) 143 x 305 43617 274.7*

*Estimated due to computing resource limitations

Such comparisons, however, are somewhat optimistic. Obviously, a globally fine grid

would provide exceptional detail throughout the field, while the adaptive solution only provides

resolution comparable to the scale of the flow features in particular regions. Moreover, given

an initial solution on a coarse grid to identify flow features, one could conceivably apply more

traditional grid control on a structured mesh providing adequate resolution of the relaxation

layer with far fewer than the 44,000 nodes required by the globally refined mesh. The net time

for computing a solution with such a procedure, however, is not clear. The final grid would

not place nodes as accurately as the adaptive grid, and would certainly contain more nodes.

The time required to set up such a grid is difficult to estimate quantitatively. Finally, since such

a comparison is so intimately related to the chemical relaxation length, it would be all but

meaningless as an indication of typical adaptive savings.

As a better measure of the savings associated with adaptation, consider the examples put

forth earlier. Reference 25 computed the blunt wedge case on 3000 nodes to provide the

resolution shown in Figure 6.3. However, that figure makes clear that the current adaptive

technique provides superior resolution with just over half the computational nodes. The coarse

base grid for this case contained 300 nodes and was chosen to provide adequate resolution of

frozen flow features. The adaptive solution required 5.7 times the computation effort of the

coarse grid solution to converge (5 orders of magnitude in RMS momentum residual).
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The axisymmetric sphere results, discussed extensively in Section 6.3 (Figs. 6.12,

6.13), present further evidence of the cost associated with adaptive hypersonic solutions. The

final grid for this case contained 1300 nodes, and required three levels of embedding and 5.3

times the computing time of the original 200 node mesh.

These results typify the experience gained over the course of this investigation. Shock

fit, reacting hypersonic flow fields over simple geometries usually require 5 - 6 times the

computational effort of a coarse base grid solution. In this context, a "coarse grid" is one

which clearly shows frozen flow features, but whose resolution is only about half of that

required for engineering computations. The coarse base grids referred to in the preceding two

paragraphs exemplify these qualities. As the example in Figure 7.1 suggests, flows with larger

disparity between chemical and body length scales typically require more computational time,

while those more nearly fro,- - quire less. Remember that frozen calculations to engineering

precision take about 4 t.n- more effort to compute than the coarse base grid referred to by this

comparison (see the "entire mesh [1 level embedded]" entry in Table 7.1). Thus, the time

required for a. adaptive blunt body reacting flow field is approximately 1.5 times that needed

for a ftzn solution (using globally refined meshes) of comparable accuracy.

This is an extremely important point, with respect to the effectiveness of the adaptive

method. The example shown in Figure 7.2 makes this point even clearer. At the left, the fig-

ure shows temperature ratio contours for inviscid Mach 12 frozen flow over an axisymmetric

body. The grid required 800 nodes to adequately resolve the frozen, inviscid features, and

since frozen, contains only one length scale.

The right of Figure 7.2 shows an adapted case computed in uncoupled (NO absent)

reacting air at the same Mach number. At 30 km altitude in the standard atmosphere, a nose

radius of 0.0318 rn produces a characteristic chemical relaxation length of approximately

0.01 RR behind the normal shock. This second length scale greatly increases the resolution
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requirements of the numerical procedure. Nevertheless, two levels of adaptive embedding

produced results with resolution comparable to that of the frozen case. The final adapted grid

contains 1341 nodes and resolves both the chemical and body length scales. Here the adaptive,

nonequilibrium solution required a 1.6 times greater computation time than a frozen simulation

over the same geometry - despite the multiple length scales in the real gas case.

T/T inc- 1.0 Tn inc- 1.0

FIGURE 1.2
Contours of temperature ratio for inviscid Mach 12 flow for frozmt flow (left), and reacting flow (right).

7.2 Adaptive Resolution of Physical Phenomena

Most algorithms capture shocks in the interior of a computational domain. This process

usually results in a smearing out of the physical disturbances over several nodes. Consider,

for example, the shock captured solutions of Reference 5 presented in the first section of

Chapter 6 (Figs. 6.5, 6.6). There, shock capturing has rounded off the density and

temperature jumps across the bow shock. Obviously, an increase in grid resolution near the

discontinuity would result in sharper shock jumps, but without a priori knowledge of shock

positions, this would be expected to be an expensive process.
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Shock Triggrd Nonuilibrium

Imagine a flow field with a captured shock in a hypersonic flow. Since the calculation

may need to be performed at several angles of attack, and since chemical effects will alter shock

shape, exact shock positions may not be found prior to computations. However, at hypersonic

stagnation enthalpies, any shocks may trigger chemical reactions. Since these reactions

determine the downstream gas composition, the relaxation layer requires adequate resolution.

Now, re-examine the shock captured density and temperature profiles in Figures 6.5 and

6.6a. The relaxation zone is an order of magnitude wider than the shock smearing, but for ar-

bitrary shock conditions, this will not always be the case. Consider a scramjet engine inlet, in

which each captured, reflected shock will increase the static temperature, decreasing the

relaxation length until the relaxation zone may reside entirely within the captured shock. Such

a situation would obviously be detrimental to accurate predictions of downstream

concentrations and flow properties. References 33 and 34 contain an examination of adaptive

solutions through such geometries and demonstrate the adaptive scheme's ability to separate the

chemical relaxation from the translational shock.

A second example of such shock-induced nonequilibrium effects occurs in trans-

atmospheric or re-entry flight. In this regime, the translational temperature behind the bow

shock will be high enough to incite ionization before dissociation and vibration are able to

decrease this extreme temperature. Accurate prediction of the electron density in the gas cap

therefore depends wholly upon the temperature spike resolved after the translational shock but

before nonequilibrium thermo-chemical processes erode this temperature. Again, the multiple

length scales of these processes ideally suit such problems to adaptive computations.
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7.3 Recommendations for Improving the Adaptive Technique

The examples and test cases in Chapter 6 demonstrate the adaptive scheme's ability to

locate and resolve flow features. In the current implementation, the codes' suggested

adaptation patterns almost always enclose the detected feature, placing cell interfaces in

relatively benign portions of the flow outside the critical area. This section suggests

enhancements to the basic adaptation methodology based on experience with the existing

codes.

Directional Embedding

Figure 7.3 displays two examples of directional embedding. Even in complex

hypersonic flow fields, flow features often align with the body and coarse grid orientation.

Directional embedding takes advantage of this alignment to increase solution resolution while

still avoiding the creation of unnecessary cells and nodes. For example, upon examination of

the adapted grids presented in earlier chapters, it becomes clear that many of the features

discussed are largely one dimensional. Both the chemical relaxation zone and boundary layer

remain primarily grid aligned and would benefit from such directional adaptation. Kallinderis

(17) investigated this subject in some detail and claims a reduction in computational effort of

approximately two (over an adaptive solution without directional embedding) as a result of the

fewer cells and nodes created with this method of cell division.

Incorporation of directional embedding into the current algorithm requires relatively few

changes. The feature detection algorithm would then store differences in both directions for

each cell. Then the algorithm for cell creation and pointer updating must reflect the

unidirectional nature of the embedding.
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FIGURE 7-3
Cell subdivisions for directional embedding.

Adaption Parameters

Figure 7.4 shows a typical adapted grid for a 2-D reacting viscous calculation (Re

6500). This grid shows embedded regions primarily near the shock and body, capturing both

the relaxation layer and boundary layer respectively.

FIGURE 7.4
Adapted grid for a 2-D reacting viscous calculation and total velocity vectors for same calculation.

The current use of density and concentration differences as adaptive parameters stems

from expectations of inviscid flow field features. In viscous hypersonic problems however,

the thermal gradients near the wall give rise to density gradients via the equation of state.

Thus, density differences retain their utility in detecting such boundary layer behavior.

However it is the thermal boundary layer that these differences indicate (see velocity field in
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Fig. 7.4), and clearly, density differences are not appropliate for general shear layers.

Reference 17 has made use of both velocity gradients or shear stresses as logical adaptive

parameters to identify such a feature.

1
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Summary and Conclusions

The application of adaptive grid embedding to hypersonic flows was motivated by the

scales associated with nonequilibrium, high temperature gases that must be modeled for such

fields. The adaptive technique permitted numerical simulation of nonequilibrium chemically

reacting flows with only 1.5 to 2 times the computational effort of comparably resolved frozen

flows. Example calculations were completed for two dimensional, inviscid, flows and

extensions to both axisymmetric and viscous flow. In all cases the algorithms provided a

means of computing and analyzing complex, reacting, hypervelocity flows over simple

geometries such as blunted wedges and cones.

The primary contributions of this work relate to both the development of the numerical

algorithm and some details of physical phenomena that adaptive gridding makes clearer.

Numerics and Aleofthm Development

This work extended the explicit Lax-Wendroff technique developed by Ni (29) to

hypersonic calculations on an unstructured grid. The axisymmetric computational results are

believed to demonstrate the first extension of Ni's two-dimensional algorithm to circular

cylindrical coordinates.

In addition to enhancements of the integration scheme, the nonequilibrium shock-fit

domain necessitated several major modifications of the original adaptive method (6). For

example, shock fitting required re-mapping of the unstructured computational grid at each time
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step. The simple, effective technique presented in Section 5.3 accomplishes this task on

unstructured domains with any number of embedded levels while preserving conservation

across mesh interfaces. A lesser contribution to the adaptive methodology was the introduction

of a feature detection algorithm capable of triggering mesh refinement dependent upon an

arbitrary number of nonequilibrium and flow variables.

A mixture gas model was developed based on the assumption of a half-excited vibrational

state for diatomic molecules. This model included N2, 02, NO, N, and 0, and its development

required the identification of a characteristic densiry for dissociation of NO molecules. Section

2.2 detailed the formulation of this parameter. Figure 2.2 supports the hypothesis of PDNO =

const. required by the dissociative reaction model.

Both the two-dimensional and axisymmetric flow solvers were validated through perfect

gas, dissociating gas and multiple reaction comparisons and an investigation of hypersonic

flow over blunted cones and wedges for the spectrum of reactions varying from near frozen to

near equilibrium. Examination of chemical and convective time and length scales in the

domain, provided insight into the character of inviscid and viscous reacting flows under widely

varying conditions of nonequilibrium.

Of special note is the interplay between dissociative and exchange reactions in

nonequilibrium, high temperature air and the role of the chemical length scale in reaction

coupling. For example, increases in the concentration of NO off the symmetry plane are

linked directly to the effects of length scale and reaction coupling. Finally, some viscous

investigations demonstrated that these same concepts retained their importance in viscous

hypersonic flows. However, in regions dominated by diffusion processes, the local

equilibrium concentration must share its "driver" role.
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Conclusions

Unstructured, adaptive, embedded gridding has been applied to hypersonic, blunt body,

nonequilibrium, CFD problems. The high temperature gas mixture was described by

Lighthill's dissociating gas model which was extended to include five species and multiply

coupled reaction paths in both viscous and inviscid flows. The Lax-Wendroff numerical algo-

rithm was extended to include shock fitting and adaptation on general, unstructured, moving

(adjusting) grids.

Comparisons with experiment and computation provided validation for both the explicit

real-gas algorithm and unstructured shock fitting procedure for perfect gas, dissociating gas,

and multiple reaction cases. The dissociating gas model demonstrated good agreement with

shock tunnel experiment and computational results of Reference 19, and reasonable prediction

of gas dynamic variables in flows with coupled reactions.

A detailed study of basic nonequilibrium flow phenomena has been completed for

freestream Mach numbers from 5 to 15 over blunted cones and wedges. These flows

demonstrated degrees of nonequilibrium ranging from nearly frozen to near equilibrium.

Adaptation proved useful in examining behavior along the stagnation streamline, especially in

cases displaying a small departure from equilibrium. Here, adaptation was shown to be

particularly useful in capturing the steep chemical gradients which appear within the shock

layer.

Grid adaptation appears to be a cost-effective way of computing high resolution solutions

to hypersonic, finite rate, real-gas problems. The computational effort required for an adap-

tively refined nonequilibrium solution was shown to be only 1.5 to 2 times that required for an

equivalently resolved frozen flow solution for the same configuration. This compares favor-
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ably with the 40-50 times that may be required for a solution on a globally refined mesh

capable of resolving the chemical relaxation.
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APPENDIX A

Integration Formulae

A.1 Non-Orthogonal Two-Dimensional Coordinates

Cell Change (refer to Fig 3.3)

+ (Fi + F1) A Yk('+Gk)(x - x)(A1

2 -2AUC -Agc

AU4 =t~ - {~ + - gc+

A~Ck + Fc+ Agk + GW,

Ac) =.-A4( - j A + Agc - X1Ak- l)2 (A.2)

whetrebdnFrua rfrt i.34

8Ucj A~ -Af -Ag134 ~c



Afc -Lm4Acy - AGcAxl)

(A.4)

Agc At (AGcAxm - AFCAym)

and

x'=2(1x, k - x5 + xj)

Ay 1 =~y + Yk - y1 + y,)

Ax"'= 'X + xj- x + xi)
2
2y jyt + y,-y,+yiA (A.5)

Time Step

At =(CFL) rr{ -Ac Ac am) A6
m i u _v Ax 1 + a A' I uAymo - v AxmI A A6

In A.6,O0:5CFL 5 1.

Additionally,

A= i(-xf+ (Ay')2 , Am =4 -Axm? 2 + (Aym)2  (A.7)
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A.2 Non-Orthogonal Axismmetric Coordinates

r, y
k

--P.dO

!x

FIGURE A.1
A geneal celi in circula cylindrical codinam.

Referring to the above sketch of a general cell in an axisymmetnic domain, the inviscid gov-

erning equations in circular cylindrical coordinates become:

a- + F + 1 (rG) =wax r ar(A.8)

where

pu pv 0Pu 0

p pu2 +p puv 0
pu p ,i2jp P
pv r

U e ,F= u(e+p) ,Gf v(e+p) ,W= 0
.. ipi U Pi V Wip_ :u pay

Pig

pu J L pv J LW
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Cell Change

+ ri + r (Fj + F4 1, r- rk) - (Gi + 'J i - X)J
I 22 1 (A9

Er i =*r r-krL)- (A.1O) -

+wiwo Formulae (r

=U M A C 2 Lfc 2 xgc +J1A

TuC k U + A Fc:F~ k rgc + GjC]

S~~~c)j 1 _ = _xU f,+Ac,+~W ](.1

4 ~(A. 10)

8 gC~i = ( AC~ 2 AC1m

SUC~ = A+ + Afck + Agk+A-w ]

)I = A 2AWC](A. 11)
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The cell change for cells along this axis has no contribution from the face on the axis, and this

equation leads to Agcn = 0 when n lies along axis of symmetry. These two changes com-

pletely account for the singularity in the coordinate system at r =0.

A.3 Viscous Formulation in Two-Dimensios

Pnmay Cell Secondary Cell

B,.----------- bc. CB,~ ..... .. c .C, .... ...... C'
I I

S I

0 :d 0 cd
* I

I S
I II
I II

"' D' da• ,l,,l.D

FIGURE A.2
Primary and Secondary cells for viscous integration.

After first distributing the inviscid changes to each node (via Eq.A.3), the algorithm

computes nodal changes from the viscous terms R and S in the governing equations (Eq. 1.9).

The formulation of these changes is naturally more complex, since these dissipative terms rely

upon second derivatives. As with the inviscid changes, contributions from all cells

surrounding a node complete the difference stencil for these terms. The Lax-Wendroff scheme

relies upon the second order changes of the inviscid integration for stability. Fortunately this

requirement does not extend to the viscous terms and no Jacobians of R or S need be

computed (18). However, this omission reduces the time accuracy of the scheme to first order.
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Following the notation in Figure A.2 the viscous change to any node in the computational mesh

is

DAT+ R~eAy~m] - [+ S; Ax,6 + S~eAx An]

+ j [+R Ayb +RSAyb]-[+S$A4 +SD Axb]

C A -+[- R Ay "- RwAy ']-[- SAx'- ScwAx1]

+[- R, Ay t -RsAy] R]-[ - Ax t - lsAxj]

In (1. 14), the superscripts on R and S refer to cell faces and the area, A, is the area of the pri-

mary cell in Figure A.2.

In the integration scheme, however, we sweep through the cells and determine

contributions to each node. Thus Equation A.14 needs to be re-expressed in terms of

contributions from any cell to its four comer nodes.

Viscous distribution formulae

(AU,sc6 = i(+ RoAy' - RwAym) - (+ SAxl - SwAx)]

(AU..c)w = AL-.(+ R-Ay' + RwAy.)-(+ S"RA + SwAxR)]

(AUqce = -I{-RRAy + R Aym) -(- SmtS,, + Se'xm)]

(AUijjjw = Lm4 (- R SAy t - ReAym) - (- SsAx - SeAxm)] (A.15)

The terms in the R and S vectors in this equation contain first derivative terms like (ux)cd which

must be split into contributions from the cells involved.

(6u) +- UO'(Yc- YO) + Uc(Y,, - YC') + UO(YO - yj]A1

+ -LUo.(YO.YD3) + UO(Yd-YO)+ UD(YD- Y)](AD I (A. 16)
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This formulation stresses the contributions from each cell C and D in the composition of the

first derivatives.

Reference 18 contains a thorough explanation of the viscous integration scheme for non-

reacting flow in general two dimensional coordinates.
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APPENDIX B

Jacobian Matrices

B.A Perfect Gas

In a calorically perfect gas with ratio of specific heats y

ho - + Pi(u2+ V2)0y-lp 2 (B.1)

relates the stagnation enthalpy to the local gas properties.

In this case the derivatives of pressure with respect to elements of the state vector are

simple and expressions for and AF and AG are

[ (Apu)
{AF= u(Apu) + 4pAu) + AP, = av = v(Apu) + uOAv)

h4(Apu) + u(pAho)
(B.2)

[ (Apv)(B2

AG = 1a.1AU= u(Apv) + Au)
v(Apv) + v( Av) + AP

h0(Apv) + s(pAho)

where

(pAu) = (Apu) - u(Ap)

(pAy) = (Apv) - v4Ap) (B.3)

and
e -) +u(Apu) + v(Apv)

( 1[ +u(pAu) + v(pAv) (B.4)

(pAh ) = (Ae) + (AP) - ho(Ap)
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B.2 Nonequilibrium Mixture Gas Model

For the nonequilibrium mixture gas model developed by Chapter 2 the pressure at any

point in the field is
Iu + u2

p--- t lU4 - -} -

2U (B.5)

Where Un represents the nth element of the state vector and 7 and 9 are defined by

11C.1 (S4 +_ + +

dtI !-12mL 2m2 m3 M4i4s_

+ L(UI - UCfrIml + U7 S-- + U5)

~" eM +5Ul -UlcfraM + U7T + U6)M3

+ M3u- ) (B.6)

with

.;a~l -- M.Cfrac +f2m2

M I ml+f2m2 (B.7)

and for airfl = 0.79 andf 2 = 0.21.
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Derivanves of Pressure

5- = r a 95u +

au2 -u41

=p 
(B.8)
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Whem

~~-=(I ~ Acrl~m)L - cfr0I,22)a MSM

aU5 M4

Wu6 m5

07 M3(B.9)

Jacobian Matrices

0 1 0 0 0 0 0

ap U2 2+-- P __ __ __

au1 u2 U, aU2  W3  Wu4  Wu5  Wu6  au7
U2U3  UI-l 0 0 0 0
u2 U1  U1

U2 ah U2 -o+ho-o U2 ahoU2 au5 au22h U2 aUsU 0u 02 03 04 W W
-UU U, U1

U7 2 0 0 0 0i
u2 U1  U1

II
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0 0 1 0 0 0 0
.J2zQ3 UU 0 0 0 0

UI U1  U1

p ap _2 I ap ap ap ap ap

au u2 u, aW4  au u6  7u

U4G , U 3  U3 +ho U3 aho ,aho U 3 U o U32-h
aU a 2 W"3 4  u 5  u 6  W7

USU ,0 0 !LU. 0 0
UI U1  U1

A~ 0 0 0 1
u U1  U

UU ,0 0 0 0 A
U2 U1 U1

(B.11)

Since WU is not required for either stability or spacial accuracy this matrix is not computed.

This reduces the scheme's time accuracy to first order (34).
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