B'ﬁc "iLE Br\})\.l AVF Control Number: AVF-VSR-347.0390
I Vi 89-09-20-ICC

AD-A222 387

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 891212W1.10204
Irvine Compiler Corporation
ICC Ada, 6.0.0
MicroVAX 2000 Host and
ICC Simulator for Intel iB80960MC executing on MicroVAX 2000 Target

Completion of On-Site Testing:
12 December 1989

Prepared By:
Ada Validation Facility
ASD/SCOL
Vright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office
United States Department of Defense
Vashington DC 20301-3081

DTIC

ELECTE
MAY.17.1990

By e e s -

OFFICE OF THE DIRECTOR OF
" . DEFENSE RESEARCH AND ENGINEERING

T WASHINGTON, DC 2030t
P ApPR 105

MEMORANDUM FOR Director, Directorate of Database Services,
Defense Logistics Agency

SUBJECT. Technology 5cre§?f////} Unclassified/Unlimited Reports

Your letter of'2 February 1930 to the Commander, Air Force

-Systems Command, Air Force Aeronautical Laboratory,

Wright-Patterson Air Force Base stated that the Ada Validation
Summary report for Meridian Software Systems, Inc. contained

technical data that should be denied publ;c disclosure according to

DoD Directive 5230.25

We do not agree with this opinion that the contents of this

-particular Ada Validation Summary Report or the contents of the

several hundred ¢of such reports produced each year to document the

. conformity testing results of Ada compilers. Ada is not used
.exclusively for military applications. The language is an ANSI

Military Standard, a Federal Information Processing Standard, and
an International Standards Organization standard. Compilers are
tested for conformity to the standard as the basis for obtaining an
Ada Joint Program Office certificate of conformity. The results of

 this testing are documented in a standard form in all Ada

//publlc as part of his contract with the testing facility.

Validation Summary Reports which the compiler vendor agrees to make

On 18 December 1985, the Commerce Department issued Part
379 Technical Data of the Export Administration specifically
listing Ada Programming Support Environments (including compilers)
as items controlled by the Commerce Department. The AJPO complies
with Department of Commerce export control regulations. When
Defense Technical Information Center receives an Ada Validation

. Summary Report, which may be produced by any of the five U.S. and

European Ada Validation Facilities, the content should be made
available to the public.

If you have any further questions, please feel free to contgct

‘the undersigned at (202) 694-0209.

John P. Solomond
Director)
Ada Joint Program Offijice

SR
.ﬂPL*’\
2

P.B8

r 195 ’9@ 11227 11T RESEARCH INST
.o REPORY DOCUMINTATION PAGE i sioie
t T 12, GOVT ACCESSION 0. [3. WICIPIEN1§ CATALOC Womz(R
s L
L nosubdtitie) 5. TYPL OF REPOR1 g PLajDd COVIALD
Summary Reportsicc ada, |12 pec. 1989 ro 12 Dec. 1990

ds Compiler Validation

.0, MicroVAX 2
-‘8986 exe 209 (§28t)VX§ '2[8803%%12%§ég§‘fg51£?§ﬁ}.1020 6. PLAFORMING "DAL. RLPORT MumiiR

MC executing on Mierd
7. QUTRDAy) 8. CONTRACT OR GRanT Bump{ng)
Wright2Patterson AFB
Dayton, OH, USA
§. PLRTORNINC ORGANTIATION AND ADDALSS 10, PROCAAS LLENINT, PA-TTCT TATC
ARLA S WORE VAT eMEing C |

Wright=Patterson AFB
Dayton, OH, USA

11. CONTRD.LTNG e 1T, RLPCAT O4TL
hey seint Brogrin Siffce” s
ate eparLnent © ense v
5301-3031 . ¢ Rotd

Washington, DC 2
T16. BONITOR hG GGIRCY WAN; B ADORLSS(I7giVerent from Controling DHuce) 15. SECUN] Ty CLASS (ofths repory
I UNCLASSIFIED
35s. uggmncnm-'oo«s:amu:.

Wright=Patterson AFB
Dayton, OH, USA

28, DISTRIBITION STATEMINT (of tha Report)
Approved for public release; distribution unlimited.

37, DISTRIB.VION SYATLWIN' (oftne adrramente-edmB ock 28 e Merent iom Repon)

URCLASSIFIED

10, SUPF.Emincasy NDUS

0. REYWORLS (Contnye DA reverse st A necesssn) ond wientify by block number)

Ada Pregrimzming language, Ada Compiles Validation Sumrary Report, A2

Corpiles Nalidation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL=8TD~-

1018A, Ada Joint Program Office, AJFO

5. ABSYAALT (Camimye BN reverse s ff Re(0sasty ONE ety by Bloté humber)
Irvine Compiler Corporation, ICC Ada, 6.0.0, Wright-Patterson AFB, MicroVAX 2000 under
VMS, Version 4.7 (Host) to ICC Simulator for Intel 1B0960MC executing on MicroVAX 2000

(bare machine) (Target), ACVC 1.10

LUD—’"' TATS 1037108 OF 3 40y 65 13 OBSO.UNE)
¥R /% D102-L1 0168801 \ ASSIFIE
SICURIYY CLASSISICAYION OF Yui$ PALL (WwhenDete Entered)

WO - V-V-Y - ¥V - V——"

Jor

Ada Compiler Validation Summary Report:

Compiler Name: ICC Ada, 6.0.0

Certificate Number: 891212W1.10204

Host: MicroVAX 2000 under
VMS, Version 4.7

Target: ICC Simulator for Intel i80960MC executing on MicroVAX 2000
bare machine

Testing Completed 12 December 1989 Using ACVC 1.10

Customer Agreement Number: 89-09-20-ICC

This report has been reviewed and is approved.

Ada Validation Facility

Steven P. Wilson

Technical Director

ASD/SCOL

Vright-Patterson AFB OH 45433-6503

Director, Compyter & Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

, Accession Fop ’

— L7

PN B el NTIS GRA&I #’
Ada Joint Program Office DTIC TAB g
Dr. John Solomond Unannounced O
Director Justification
Department of Defense
Vashington DC 20301 By

| Digtribution/

Availability Codes

]

Dist Special

B

CHAPTER

CHAPTER

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

WWwwwbwLwwiow w NN N = =t =

* e o o & o

NNSNSNOOUM W

[V R VSN L

N

W

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT .
USE OF THIS VALIDATION SUMMARY REPORT . ..
REFERENCES. . . « e e e e . o« e e
DEFINITION OF TERMS . e e e e e e e e
ACVC TEST CLASSES

CONFIGURATION INFORMATION

CONFIGURATION TESTED. . . e e e e e
IMPLEMENTATION CHARACTERISTICS .« o

TEST INFORMATION

TEST RESULTS. . . . e e
SUMMARY OF TEST RESULTS BY CLASS. .
SUMMARY OF TEST RESULTS BY CHAPTER.
WITHDRAWN TESTS « « « «
INAPPLICABLE TESTS. . .

TEST, PROCESSING, AND EVALUATION HODIFICATIONS.

ADDITIONAL TESTING INFORMATION. .

Prevalidation . .o s
Test Method « « « . .
Test Site « ¢« ¢ ¢« « +

DECLARATION OF CONFORMANCE
APPENDIX F CF THE Ada STANDARD
TEST PARAMETERS

VITHDRAWN TESTS

COMPILER OPTIONS AS SUPPLIED BY IRVINE

wuwuucr:wwww

|
WO NNANNN - =

—

CHAPTER 1

INTRODUCTION

N

This Validation Summary Report 9{¥SR4' describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability, €AGVC)o~ An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.-

ven though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.>

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results.™ The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

/
T ~ i
— < f ;=

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO0).
On-site testing was completed 12 December 1989 at Irvine CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. 1In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C.#552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or vwarrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Vashington DC 20301-3081

or from:
Ada Validation Facility

ASD/SCOL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 a n?_‘ISEO 652-1987.

2. Ada Compiler Validation Procedures, Version 2.0, Ada Joint Program
Office, May 1989.

3. Ada Compiler Validation Capability Implementers’ Guide, SofTech,

Inc., December 1986.

4. Ada Compiler Validation Capability User’s Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC

Ada
Commentary

Ada Standard
Applicant

AVF

AVO

Compiler

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.
The agency requesting validation.
The Ada Validation Facility. The AVF is responsible for

conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures.

The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

A processor for the Ada language. In the context of this

report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

1-3

INTRODUCTION
Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.
Host The computer on which the compiler resides.
Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.
Target The computer for which a compiler generates code.
Test A program that checks a compiler’s conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.
Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and 1illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the wvay in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation 1listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

1-4

INTRODUCTION

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result wvhen it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters-—-for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or PAILED message when it is compiled and executed.
Hovever, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be

1-5

INTRODUCTION

customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
vithdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested under the
following configuration:

Compiler: ICC Ada, 6.0.0

ACVC Version: 1.10

Certificate Number: 891212W1.10204

Host Computer:

Machine: MicroVAX 2000

Operating System: VMS
Version 4.7

Memory Size: 4 Megabytes

Target Computer:

Machine: ICC Simulator for Intel i80960MC
executing on MicroVAX 2000

Operating System: bare machine

Memory Size: 4 Megabytes

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other <classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing 1loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D6400SE..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
TINY INTEGER, SHORT_INTEGER, and SHORT_FLOAT in package
STANDARD. (See tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) None of the default initialization expressions for record
components are evaluated before any value 1is checked for
membership in a component’s subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision and
uses all extra bits for extra range. (See test C35903A.)

2-2

CONFIGURATION INFORMATION

(4) NUMERIC ERROR is raised when an integer literal operand in a
comparison or membership test is outside the range of the base
type. (See test C45232A.)

(5) No exception is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base
type. (See test C45252A.)

(6) Underflovw is not gradual. (See tests C45524A..Z7 (26 tests).)

Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round away from
zero. (See tests C46012A..2 (26 tests).)

(2) The method used for rounding to longest integer is round away
from zero. {(See tests C46012A..2 (26 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test C4A014A.)

. Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a ‘LENGTH that exceeds
STANDARD. INTEGER’ LAST and/or SYSTEM.MAX INT.

For this implementation:

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAX INT components raises no exception. (See test
C36003A.)

(2) CONSTRAINT ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components with each component
being a null array. (See test C36202A.)

(3) CONSTRAINT_ERROR is raised when 'LENGTH is applied to an array
type with SYSTEM.MAX INT + 2 components with each component
being a null array. (See test C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER’LAST

raises CONSTRAINT _ERROR when the array objects are declared.
(See test C52103X.)

2-3

CONFIGURATION INFORMATION

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER’LAST components raises CONSTRAINT ERROR when the array
objects are declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This impler ntation
raises CONSTRAINT ERROR when the array type is declared. (See
test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
vhen checking whether the expression’s subtype is compatible
with the target’s subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
vhen checking whether the expression’s subtype is compatible
with the target’s subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raised
vhen checking whether the expression’s subtype is compatible
with the target’s subtype. (See test C52013A.)

g. Aggregates.

h.

(1) In the evaluation of a multi-dimensional aggregate, index
subtype checks are made as choices are evaluated. (See tests
C43207A and C43207B.) _

(2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised before all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

Pragmas.
(1) The pragma INLINE is not supported for functions or

procedures. (See tests LA3004A..B (2 tests), EA3004C..D (2
tests), and CA3004E..F (2 tests).)

CONFIGURATION INFORMATION

i. Generics.

(1

(2)

Generic specifications and bodies can be compiled in separate
compilations. (See tests CA1012A, CA2009C, CA2009F, BC3204C,
and BC3205D.)

Generic wunit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

j. Input and output.

(1)

(2)

(3)

(4)

(3)

(6)

)

(8)

(9)

(10)

(11)

(12)

The package SEQUENTIAL I0 cannot be instantiated with
unconstrained array types or record types with discriminants
vithout defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT IO cannot be instantiated with
unconstrained array types or record types with discriminants
wvithout defaults. (See tests AE2101H, EE2401D, and EE2401G.)

Modes IN FILE and OUT_FILE are supported for SEQUENTIAL IO.
(See tests CE2102D..E (2 tests), CE2102N, and CE2102P.)

Modes IN FILE, OUT_FILE, and INOUT FILE are supported for
DIRECT IO. (See tests CE2102F, CE2102I..J (2 tests), CE2102R,
CE2102T, and CE2102V.)

Modes IN FILE and OUT FILE are supported for text files. (See
tests CE3102E and CE3102I..K (3 tests).)

RESET and DELETE operations are supported for SEQUENTIAL IO.
(See tests CE2102G and CE2102X.)

RESET and DELETE operations are supported for DIRECT_IO. (See
tests CE2102K and CEZ102Y.)

RESET and DELETE operations are supported for text files.
(See tests CE3102F..G (2 tests), CE3104C, CE31104A, and
CE3114A.)

Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

Temporary text files are given names and deleted when closed.
(See test CE3112A.)

2-5

(13)

(14)

(15)

CONFIGURATION INFORMATION

More than one internal file can be associated with each
external file for sequential files when writing or reading.
(See tests CE2107A..E (5 tests), CE2102L, CE2110B, and
CE2111D.)

More than one internal file can be associated with each
external file for direct files when writing or reading. (See
tests CE2107F..H (3 tests), CE2110D, and CE2111H.)

More than one internal file can be associated with each

external file for text files when writing or reading. (See
tests CE3111A..E (5 tests), CE3114B, and CE3115A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 442 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for 5 tests were required to successfully demonstrate the test objective.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 125 1132 1894 17 19 44 3231
Inapplicable 4 6 421 0 9 2 442
Vithdrawn 1 2 35 0 6 0 44
TOTAL 130 1140 2350 17 34 46 3717

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 569 545 244 172 99 160 332 131 36 252 211 282 3231
Inappl 14 80 135 4 0 0 6 0 6 0 0 158 39 442
Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44
TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 VITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of
this validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D
CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G
CD2A84M CD2A84N CD2B15C . CD2D11B CD50078 CD50110
ED7004B ED7005C ED7005D ED7006C ED7006D CD7105A
CD7203B CD7204B CD7205C CD7205D CE21071 CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 442 tests were inapplicable for the
reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)

3-2

b.

TEST INFORMATION

C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..2Z (15 tests)
C45524L..Z (15 tests) C45621L..2 (15 tests)
C45641L..Y (14 tests) C46012L..2Z (15 tests)

The following 12 tests are not applicable because this
implementation does not support an enumeration type with a
representation clause used as a generic actual parameter:

C35502J C35502N C35507J C35507N €35508J
C35508N CD2A21E CD2A22I CD2A22J CD2A23E
CD2A241 CD2A24J

C35702B and B86001U are not applicable because this implementation
supports no predefined type LONG_FLOAT.

. The following 30 tests are not applicable because this

implementation does not support an access type length clause:

A39005C C87B62B CD1009J CD1009R..S (2)
CD1C03C CD2A83A..C (3) CD2A83E..F (2) CD2A84B..I (8)
CD2A84K..L (2) ED2A86A CD2B11B..G (6) CD2B15B
CD2B16A

The following 21 tests are not applicable because this
implementation does not support a SMALL length clause for fixed
point types:

A39005E C87B62C CD1009L CD1CO3F
CD1C04C CD2AS3A..E (5) CD2AS4A..D (4) CD2AS4G..J (4)
ED2A56A CD2D11A CD2D13A

The following 16 tests are not applicable because this
implementation does not support a predefined type LONG_INTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55B07A B55B09C B86001W
CD7101F

C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of SYSTEM.MAX MANTISSA is less than 48.

C55B16A is not applicable because this implementation does not
support a negative value for an enumeration 1literal in an
enumeration representation clause.

. B86001Y 1is not applicable because this implementation supports no

predefined fixed-point type other than DURATION.
B86001Z 1is not applicable because this implementation supports no

predefined floating-point type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

3-3

TEST INFORMATION

LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F are not
applicable because this implementation does not support pragma
INLINE.

CD1009C, CD2A41A..B (2 tests), CD2A41E, and CD2A42A..J (10 tests)
are not applicable because this implementation does not support a
size clause on a floating point type less than the size of the
smallest predefined type.

CD1CO3H, CD1CO4E, ED1DO4A, and CD4051B are not applicable because
this implementation does not support out of order fields for
record representation clauses.

CD2A32I..J (2 tests) are not applicable because this
implementation does not support an integer type with a
representation clause used as a generic actual parameter.

. The following 14 tests are not applicable because this

implementation does not support a fixed point type with a
representation clause used as a generic actual parameter:

CD2AS1E CD2A521 CD3014A..B (2) CD3014D..E (2)
CD3015A..B (2) CD3015D..E (2) CD3015G CD3015I..J (2)
CD3015L

CD2A52G..H (2 tests), and CD2AS52J are not applicable because this
implementation does not support a fixed point type with a size
clause less than the smallest predefined fixed point type.

The following 32 tests are not applicable because this

" implementation does not support crossing 32-bit packing unit

boundaries in representation clauses:

CD2A61A..D (4) CD2A61F CD2A61K..L (2) CD2A62A..C (3)
CD2A64C..D (2) CD2A65A..D (4) CD2A71A..D (4) CD2A72A..D (4)
CD2A74A..D (4) CD2A75A..D (4)

CD2A61H. .J (3 tests) are not applicable because this
implementation does not support representation clauses with
implicit modification of storage requirements for component types.

CD2A64A..B (2 tests) are not applicable because this
implementation does not support length clauses on derived types.

. CD4051D is not applicable because this implementation does not

support a representation clause for a field in an unconstrained
variant record.

The following 29 tests are not applicable because this
implementation does not support an address clause for constant
objects:

CD5011B CD5011D CD5011F CD5011H CD5011L

3-4

aa.

ab.

ac.

ad.

ae.

af.

TEST INFORMATION

CD5011N CD5011R CD5012C CD5012D CD5012G
CD5012H CD5012L CD5013B CD5013D CD5013F
CD5013H CD5013L CD5013N CD5013R CD5014B
CD5014D CD5014F CD5014H CD5014J CD5014L
CD5014N CD5014R CD5014U CD5014W

AB2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL_IO with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT_IO with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

CE2102C, CE2102H, CE2103A..B (2 tests), CE3102B, CE3107A were
ruled not applicable by the AVO because this implementation uses a
"Virtual I/0" package to simulate a disk file. The VIRTUAL_IO
package does not have illegal filenames which cause these tests to
report failed or raise an unhandled exception.

CE2102D is 1inapplicable because this implementation supports
CREATE with IN_FILE mode for SEQUENTIAL_IO.

CE2102E is inapplicable because this implementation supports
CREATE with OUT_FILE mode for SEQUENTIAL_IO.

CE2102F 1is inapplicable because this implementation supports
CREATE with INOUT_FILE mode for DIRECT_IO.

CE2102I is inapplicable because this implementation supports
CREATE with IN_FILE mode for DIRECT_IO.

CE2102J 1is 4inapplicable because this implementation supports
CREATE with OUT_FILE mode for DIRECT_IO.

CE2102N is inapplicable because this implementation supports OPEN
vith IN_FILE mode for SEQUENTIAL_IO.

CE21020 is inapplicable because this implementation supports RESET
vith IN FILE mode for SEQUENTIAL_IO.

CE2102P 1is inapplicable because this implementation supports OPEN
vith OUT_FILE mode for SEQUENTIAL_IO.

CE2102Q is inapplicable because this implementation supports RESET
vith OUT_FILE mode for SEQUENTIAL_IO.

CE2102R 1is inapplicable because this implementation supports OPEN
vith INOUT_FILE mode for DIRECT_IO.

3-5

TEST INFORMATION

ai. CE2102S is inapplicable because this implementation supports RESET
wvith INOUT_FILE mode for DIRECT_IO.

aj. CE2102T is inapplicable because this implementation supports OPEN
vith IN FILE mode for DIRECT_IO.

ak. CE2102U is inapplicable because this implementation supports RESET
with IN_FILE mode for DIRECT_IO.

al. CE2102V is inapplicable because this implementation supports OPEN
wvith OUT_FILE mode for DIRECT_IO.

am. CE2102V is inapplicable because this implementation supports RESET
~ with OUT_FILE mode for DIRECT_IO.

an. CE2108B, CE2108D, CE2108F, CE2108H, CE3112B, CE3112D were ruled
not applicable by the AVO because this implemtation uses a
file-system simulated in RAM, so it is not possible for files to
exist between the execution of ACVC tests.

ao. CE3102E is inapplicable because this implementation supports
CREATE with IN FILE mode for text files.

ap. CE3102F is inapplicable because this implementation supports RESET
for text files.

ad. CE3102G is 1inapplicable because this implementatibn supports
~deletion of an external file for text files.

ar. CE3102I is inapplicable because this implementation supports
CREATE with OUT_FILE mode for text files.

as. CE3102J 1is inapplicable because this implementation supports OPEN
vith IN FILE mode for text files.

at. CE3102K is inapplicable because this implementation supports OPEN
with OUT_FILE mode for text files.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn’t anticipated by the test (such as raising
one exception instead of another).

3-6

TEST INFORMATION

Modifications were required for 5 tests.

The following tests were split because syntax errors at one point resulted
in the compiler not detecting other errors in the test:

B24009A B49003A B49005A B59001E

The following modifications were made to compensate for legitimate
implementation behavior:

a. In test CC1223A the expression "2**T/MANTISSA - 1" on line 262
causes an unexpected exception to be raised. The test was
modified, as approved by the AVO, to use a temporary variable to
re-order the association of operands in the expression
"(2%*(T'MANTISSA-1)-1 + 2%x*(T’MANTISSA-1))". The following
section of code results:

DECLARE -- NEW
TEMP: INTEGER := 2*%*(T’/MANTISSA-1)-1; -- NEW
BEGIN -- NEW

IF T'LARGE /=
(TEMP + 2%%(T’'MANTISSA-1)) * T (T’SMALL) THEN -- NEV
FAILED ("INCORRECT VALUE FOR " &
STR & "/LARGE");
END IF;
END; -- NEW

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the ICC Ada, 6.0.0 compiler was submitted to the AVF by the applicant
for review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3-7

TEST INFORMATION

3.7.2 Test Method

Testing of the ICC Ada, 6.0.0 compiler using ACVC Version 1.10 was
conducted on-site by a validation team from the AVF. The configuration in
which the testing was performed is described by the following designations
of hardvare and software components:

Host computer: MicroVAX 2000
Host operating system: VMS, Version 4.7
Target computer: ICC Simulator for Intel i80960MC

executing on MicroVAX 2000
Target operating system: Bare Machine
Compiler: ICC Ada, 6.0.0

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were not loaded directly onto the host
computer. The contents were first loaded on the computer using a 9-track
tape drive directly connected and then sent via Ethernet using ftp to the
host’s local disk.

. After the test files were loaded to disk, the full set of tests was
compiled, linked, and all executable tests were run by the ICC Simulator
for the Intel iB80960MC on the MicroVAX 2000. Results wvere printed by a
laser printer on a remote server connected by Ethernet.

The compiler was tested using command scripts provided by Irvine Compiler
Corporation and reviewed by the validation team. The compiler was tested
using all the following option settings. See Appendix E for a complete
listing of the compiler options for this implementation. The following
list of compiler options includes those options which were invoked by
default:

-1lib Specify which compilation library to use.
~stack check Enable stack overflow checks.
-numerTc_check Enable arithmetic overflow checks.
-elaboration_check Enable elaboration checks.

-advise Suppress advisory warnings.

-quiet Suppress compiler banners.

~-link Link the provided progranm.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-8

TEST INFORMATION

3.7.3 Test Site

Testing was conducted at Irvine CA and was completed on 12 December 1989.

3-9

s

APPENDIX A

DECLARATION OF CONFORMANCE

Irvine Compiler Corporation has submitted the follow.ag
Declaration of Conformance concerning the ICC Ada,
6.0.0 compiler.

A-1

DECLARATION OF CONFORMANCE
DECLARATION OF CONFORMANCE

Compiler Implementor: Irvine Compiler Corporation
Ada Vvalidation Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: ICC Ada Release: 6.0.0

Host Architecture ISA: MicroVAX 2000 OS&VER#: VMS, Version 4.7

Target Architecture ISA: ICC Simulator OS&VER#: bare machine
for Intel i80960MC executing on MicroVAX 2000

Implementor's Declaration

I, the undersigned, representing Irvine Compiler Corporation, have
implemented no deliberate extensions to the Ada Language Standard
ANSI/MIL-STD-18154 in the compiler(s) listed in this declaration. I
declare that Irvine Compiler Corporation is the owner of record of the Ada
language compiler(s) listed above and, as such, is responsible for
maintaining said compiler(s) in conformance to ANSI/MIL-STD-1815A. All
certificates and registrations for Ada language compiler(s) listed in this
declaration shall be made only in the owner's corporate name.

)

,.,/—QQA() Date:JG,nq,A—nf /172, (770

e Compiler Corporation
Dan Eilers, President

Owner's Declaration

I, the undersigned, representing Irvine Compiler Corporation, take full
responsibility for imptementation and maintenance of the Ada compiler(s)
listed above, and agree to the public disclosure of the final Validation
Summary Heport. I declare that all of the Ada language compilers listed,

and their host/target performance, are in compliance with the Ada Language
Standard ANSI/MIL-STD-1815A as measured by ACVC 1. 10.

g—

Date: Jo-n«,m l'7/ 1?70
Irvine Compiler Corporatiﬁfﬁ / .
Dan Zilers, President

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the ICC Ada, 6.0.0 compiler, as described in this
Appendix, are provided by Irvine Compiler Corporation. Unless specifically
noted otherwise, references in this Appendix are to compiler documentation
and not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type TINY_ INTEGER is range -128 .. 127;
type FLOAT is digits 15
range -1.2355820928895E+307 .. 1.2355820928895E+307;
type SHORT FLOAT is digits 6 range -2.12676E+37 .. 2.12676E+37;

type DURATION is delta 2.0**(-12) range -524287.0 .. 524287.0;

end STANDARD;

B-1

ICC Ada Version 6.0.0
Vax / VMS 4.7 to Intel i80960MC / Bare

Irvine Compiler Corporation
18021 Sky Park Circle, Suite L
Irvine, CA 92714
(714) 250-1366

December 5, 1989

1 ICC Ada Implementation

The Ada language definition leaves implementation of certain features to the
language implementor. This appendix describes the implementation-dependent
characteristics of ICC Ada.

2 Pragmas

The following predefined pragmas are implemented in ICC Ada as described by
the Ada Reference Manual:

Elaborate This pragma allows the user to modify the elaboration order of
compilation units.

List This pragma enables or disables writing to the output list file.

Pack Packing on arrays is implemented to the bit level. The current imple-
mentation packs records to the byte level. Slices of packed arrays are not
implemented, except boolean arrays.

Page This pragma ejects a new page in the output list file (if enabled).

Priority This pragma sets the priority of a task or main program. The range
of the subtype priority is 0..254.

B-2

The following predefined pragmas have been extended by ICC:

Interface This pragma is allowed to designate variables in addition to subpro-
grams. It is also allowed to have an optional third parameter which is
a string designating the name for the linker to use to reference the vari-
able or subprogram. The third parameter has the same effect as pragma
interface.name. '

Suppress In addition to suppressing the standard checks, ICC also permits
suppressing the following:

Exception_info Suppressing exception_info improves run-time perfor-
mance by reducing the amount of information maintained for mes-
sages that appear when exceptions are propagated out of the main
program or any task.

All_checks Suppressing all_checks suppresses all the standard checks
as well as exception_info.

The following predefined pragmas are currently not implemented by ICC:
Controlled, Inline, Memory._size, Optimize

Shared, Storage-unit, System_name

The following additional pragmas have been defined by ICC:

Compress This pragma reduces the storage required for discrete subtypes in
structures (arrays and records). Its single argument is the name of a
discrete subtype. It specifies that the subtype should be represented as
compactly as possible (regardless of the representation of the subtype’s
base type) when the subtype is used in a structured type. The storage
requirement for variables and parameters is not affected. This pragma
must appear prior to any reference to the named subtype.

Export This pragma is a3 complement to the predefined pragma interface. It
enables subprograms written in Ada to be called from other languages.
It takes 2 or 3 arguments. The first is the language to be called from,
the second is the subprogram name, and the third is an optional string
designating the actual subprogram name to be used by the linker. This
pragma must appear prior to the body of the designated subprogram.

Interface.Name This pragma takes a variable or subprogram name and a
string to be used by the linker to reference the variable or subprogram. It
has the same effect as the optional third parameter to pragma interface.

B-3

Interrupt.handler This pragma is used when writing procedures that will be

invoked as interrupt handlers (independent of the tasking runtime). It
does not have any parameters and must appear immediately within the
declarative part of a procedure. The presence of this pragma causes the
code generator to produce additional code on procedure entrance and exit
which preserves the values of all global registers. This pragma has no
other effect. This pragma is not implemented for all targets.

No.zero The single parameter to no-zero is the name of a record type. If the

Put,

named record type has “holes” between fields that are normally initialized
with zeroes, this pragma will suppress the clearing of the holes. If the
named record type has no “holes” this pragma has no effect. When zeroing
is disabled, comparisons (equality and non-equality) of the named type are
disallowed. The use of this pragma can significantly reduce initialization
time for record objects. The ICC Command Interpreter also has a flag
-no.zero which has the effect of implicitly applying pragma no_zero to
all record types declared in the file.

Put.line These pragmas take any number of arguments and write their
value to standard output at compile time when encountered by the com-
piler. The arguments may be expressions of any string, enumeration, or
integer type, whose value is known at compile time. Pragma put.line
adds a carriage return after printing all of its arguments. These pragmas
are often useful in conjunction with conditional compilation. They may
appear anywhere a pragma is allowed.

Unsigned.Literal This pragma applied to any 32-bit signed integer type af-

3

fects the interpretation of literals for such a type. Specifically literals
between 2**31 and 2**32 are represented as if the type was unsigned.
Operations on the type are unaffected. Note however that (with checking
suppressed), signed addition, subtraction, and multiplication are identical
to the corresponding unsigned operations. However, division and inequal-
ities are different and should be used with utmost caution. This pragma
is used for type address in package system.

Preprocessor Directives

ICC Ada incorporates an integrated preprocessor whose directives begin with
the keyword pragma. They are as follows:

If, Elsif, Else, End These preprocessor directives provide a conditional com-

pilation mechanism. The directives if and elsif take a boolean static ex-
pression as their single argument. If the expression evaluates to FALSE
then all text up to the next end, elsif or else directive is ignored. Oth-
erwise, the text is compiled normally. The usage of these directives is

B-4

identical to that of the similar Ada constructs. These directives may ap-
pear anywhere pragmas are allowed and can be nested to any depth.

Include This preprocessor directive provides a compile-time source file inclu-
sion mechanism. It is integrated with the library management system,
and the automatic recompilation facilities.

The results of the preprocessor pass, with the preprocessor directives deleted
and the appropriate source code included, may be output to a file at compile-
time.

4 Attributes

ICC Ada implements all of the predefined attributes, including the Representa-
tion Attributes described in section 13.7 of the Ada RM.
Limitations of the predefined attributes are:

Address This attribute cannot be used with a statement label or a task entry.

Storage_size Since ICC Ada does not allocate dynamic storage using “collec-
tions”, this attribute always returns a constanc value.

The implementation defined attributes for ICC Ada are:

Version, System, Target, CG_mode These attributes are used by ICC for
conditional compilation. The prefix must be a discrete type. The values
returned vary depending on the target architecture and operating system.

5 Input/Output Facilities

5.1

The implementation dependent specifications from TEXT-10 and DIRECT.IO
are:

type COUNT is range 0 .. integer’last;
subtype FIELD is INTEGER range 0 .. integer’last;

5.2 FORM Parameter

ICC Ada implements the FORM parameter to the procedures OPEN and CRE-
ATE in DIRECT.IO, SEQUENTIAL.IO, and TEXT.IO to perform a variety of
ancillary functions. The FORM parameter is a string literal containing parame-
ters in the style of named parameter notation. In general the FORM parameter
has the following format:

“fieldy => value, |, field, => value, |”

where field; => value; can be

OPTION => NORMAL
OPTION => APPEND
PAGE.MARKERS => TRUE
PAGE-MARKERS => FALSE

READ_INCOMPLETE => TRUE
READ.INCOMPLETE => FALSE
MASK => <9 character protection mask>

Each field is separated from its value with a “=>" and each field/value pair
is separated by a comma. Spaces may be added anywhere between tokens and
upper-case/lower-case is insignificant. For example:

create{ t, out_file, "list.data”,
"option => append, PAGE_MARKERS => FALSE, Mask => rvxrwx---");

The interpretation of the fields and their values is presented below.

OPTION Files may be OPENed for appendage. This causes data to be ap-
pended directly onto the end of an existing file. The default is NORMAL
which overwrites existing data. This field applies to OPEN in all three
standard I/O packages. It has no effect if applied to procedure CREATE.

PAGE.MARKERS If FALSE then all TEXT.IO routines dealing with page
terminators are disabled. They can be called, however they will not have
any effect. In addition the page terminator character (“L) is allowed to
be read with GET and GET.LINE. The default is TRUE which leaves
page terminators active. Disabling page terminators is particularly useful
when using TEXT_IO with an interactive device. For output files, dis-
abling page terminators will suppress the page terminator character that
is normally written at the end of the file.

READ_INCOMPLETE This field applies only to DIRECT_IO and SE-
QUENTIAL.IO and dictates what will be done with reads of incomplete
records. Normally, if a READ is attempted and there is not enough data
in the file for a complete record, then END_ERROR or DATA_ERROR
will be raised. By setting READ.INCOMPLETE to TRUE, an in-
complete record will be read successfully and the remaining bytes in
the record will be zeroed. Attempting a read after the last incomplete
record will raise END.ERROR. The SIZE function will reflect the fact
that there is one more record when the last record is incomplete and
READ.INCOMPLETE is TRUE.

B-6

MASK Set a protection mask to control access to a file. The mask is a stan-
dard nine character string notation used by Unix. The letters cannot be
rearranged or deleted so that the string is always exactly nine characters
long. This applies to CREATE in all three standard I/O packages. The
default is determined at runtime by the user’s environment settings.

The letters in the mask are used to define the Read, Write and eXecute
permissions for the User, Group and World respectively. Wherever the
appropriate letter exists, the corresponding privilege is granted. If a “-” is
used instead, then that privilege is denied. For example if mask were set
to “rw-rw----" then read and write privilege is granted to the file owner
and his/her group, but no world rights are given.

If a syntax error is encountered within the FORM parameter then the excep-
tion USE_LERROR is raised at the OPEN or CREATE call. Also, the standard
function TEXT.10.FORM returns the cutrent setting of the form fields, includ-
ing default values, as a single string.

6 Package System

Package SYSTEM is:

Package SYSTENM is
type name is (i80960MC);

-= Language Defined Constants

system_name : constant name := i8096QMC;

storage_unit: constant := 8; -~ Storage unit size in bits.
EemOYy_size : constant := 4_096 = 1_024; ~-= 4 Megabytes.

min_int : constant := -2s#31;

max_int : constant := 2¢s31-1;

-

max_digits : constant := 1§;
max_santissa: constant := 31;
fine_delta : constant :w 2.0s=(-31);

tick : constant := 1.0/4096.0; -- This is max for type DURATION.
type address is range min_int..max_int; -- Signed 32 bit range.
subtype priority is integer range 0..254; -~ 0 is default priority.

-~ Constants for the HEAPS package

bits_per_bau : constant := 8; -- Bits per basic machine unit.
max_alignsent: constant := 4; -- Maximum alignment required.
min_mem_block: constant := 1024; -- Minimum chunk request size.

=~ Constants for the HOST package

B-7

-=- HOST_CLOCK_RESOLUTION must be 8us for 16Mhz i80960 since the LDTIME
-=- instruction returns the time in CPU clock "ticks".

host_clock_resolution: constant := 8; -~ 8 microseconds (16Mhz clock)
base_date_correction: constant := 25_202; -- Unix base date is 1/1/1970.
pragma unsigned_literal(address); -- Allow unsigned literals.
null_address: constant address := 0; -- Value of type ADDRESS
== equal to NULL.
end SYSTEM;
7 Limits

Most data structures held within the ICC Ada compiler are dynamically allo-
cated, and hence have no inherent limit (other than available memory). Some
limitations are:

The maximum input line length is 254 characters.
The maximum number of tasks abortable by a single abort statement is 64.
Include files can be nested to a depth of 3.

The number of packages, subprograms, tasks, variables, aggregates, types or
labels which can appear in a compilation unit is unlimited.

The number of compilation units which can appear in one file is unlimited.
The number of statements per subprogram or block is unlimited.
Packages, tasks, subprograms and blocks can be nested to any depth.

There is no maximum number of compilation units per library, nor any maxi-
mum number of libraries per library system. :

8 Numeric Types

ICC Ada supports three predefined integer types:

“TINY.INTEGER -128..127 8 bits
SHORT.INTEGER -32768..32767 16 bits
INTEGER -2147483648..2147483647 32 bits

In addition, unsigned TINY and SHORT integer types can be defined by the
user via the SIZE representation clause. Storage requirements for types can
be reduced by using pragma pack and for subtypes by using the ICC pragma
compress.

Type float is available.

Attribute FLOAT value

size 64 bits

digits 15

first —1.12355820928895 F + 307
last +1.12355820928895F + 307

Type short_float is available.

Attribute | SHORT_FLOAT value
size 32 bits

digits 6

first —2.12876FE + 37

last +2.12676 E + 37

9 Tasks
The type DURATION is defined with the following characteristics:

Attribute | DURATION value
delta 2.44140625E — 04 sec
small 2.44140625E — 04 sec
first —524287.0 sec
last 524287.0 sec

The subtype SYSTEM.PRIORITY as defined provides the following range:

Attribute | PRIORITY value
first 0
last 254

Higher numbers correspond to higher priorities. If no priority is specified for a
task, PRIORITY'FIRST is assigned during task creation.

10 Representation Clauses

10.1 Type Representation Clauses

Many of the type representation clauses have been implemented. Their imple-
mentation is detailed in this section.

B-9

NOTE: Type conversions that involve representation changes are not imple-
mented. Representation clauses (and the PACK pragma) should be applied to
non-derived types only.

10.1.1 Length Clauses

The amount of storage to be associated with an entity is specified by means of a
length clause. The following is a list of length clauses and their implementation
status:

e The 'SIZE length clause is implemented, with restrictions. When applied
to integer range types this representation clause can be used to reduce
storage requirements and also to define types with unsigned representa-
tion. It is currently not possible to declare an unsigned 32-bit type in ICC
Ada. Enumeration, integer, or fixed-point types with length clauses are
not allowed as generic parameters. Length clauses are allowed for float
and fixed point types, however the storage requirements for these types
cannot be reduced below the smallest applicable predefined type available.

e The 'STORAGEL.SIZE length clause for task types is implemented. The
size specified is used to allocate both the task’s Task Information Block
(TIB) and its stack. For the i80960 the TIB is 1092 bytes long.

e The 'STORAGE_SIZE length clause for access types is not implemented.
e The 'SMALL length clause for fixed point types is not implemented.

10.1.2 Enumeration Representation Clauses

Enumeration representation clauses are implemented. However, enumerations
with representation clauses are not allowed as generic parameters. The use of
enumeration representation clauses can greatly increase the overhead associated
with their reference. In particular, FOR loops on such enumerations are very
expensive. The values associated with enumeration literals in an enumeration
representation clause must be non-negative. Representation clauses which define
the default representation (i.e. The first element is ordinal 0, the second 1, the
third 2, etc.) are detected and cause no additional overhead.

10.1.3 Record Representation Clauses

Record representation clauses are implemented for simple records. Records
containing discriminants and dynamic arrays may not be organized as expected
because of unexpected changes of representation. There are no implementation
generated names that can be used in record representation clauses. Qut of
order fields or offsets for record representation clause are not implemented.
Representation clauses for a field not in a constrained record variant are not
implemented.

10.2 Storage Algorithms

This section describes the default and packed representation of record and array
types.

10.2.1 Default Memory Allocation

ICC Ada allocates space for record fields in the order in which they are declared.
If the record is not packed, then the following rules are used to allocate offsets
for each field:

o For objects smaller than a byte, the size of the object is made one byte.

e Each field is assigned a byte offset according to the alignment requirements
of the target hardware. For the Intel 80960, the compiler’s default align-
ment rules require that byte sized objects be aligned to any byte address,
word sized objects be aligned on 2-byte boundaries and long sized objects
be aligned on 4-byte boundaries. Short.float and float objects are aligned
on 4-byte boundaries.

The default algorithm assigns a byte address to every field in the record.
Although this may waste memory storage, it provides for fast access to each
field within the record sinnce bit extraction operations are not needed.

Example: For the following code segment, f1 is allocated one byte although
it only requires 6 bits. Likewise, f3 is allocated one byte although it only requires
7 bits. F2 and f4 are allocated 2 bytes each to round them up to the nearest
natural integer size. Furthermore, since the Intel 80960 requires word-sized
objects to be aligned on even byte boundaries, the four fields end up using 8
bytes, leaving two odd addressed bytes unused. See figure 1.

type int6 is range 0..2#*6-1;

type int7 is range 0..2%s7-1;

type int9 is range 0..2¢*9-1; ek
type inti0 is range 0..2%+10-1;

for int6’size use 6; -- INT6 is unsigned 6-bit integer
for int7’size use 7; -- INT7 1is unsigned 7-bit integer
for int9’size use 9; -- INT9 is unsigned 9-bit integer
for int10’size use 10; -- INT10 is unsigned 10-bit integer
type sample_recl is
record

f1 : int6; -- 68 bit field

£2 : int10; -- 10 bit field

23 : int7; -- 7 bit field

£4 : int9; -- 9 Dbit field

B-11

byte 3 2 1 0

vord 0 | 12 unused £1 |
| |
byte 7 6 5 4
| | |
| ! | i
word 1 | 14 | unused | 13 |
] |

Figure 1. Memory Allocation for an Unpacked Record Structure

end record;

10.2.2 Packed Memory Allocation

When pragma Pack or a representation clause is used, the following rules are
always used to allocate memory:

e Structure types (arrays and records) are packed into 32-bit packing units.
The compiler packs each field of the type at the bit level into groups of
32-bits.

¢ Byte boundaries can be crossed (within packing units) but word bound-
aries cannot be crossed.

e When pragma pack or a length clause does not reduce the amount of
memory used, then the representation is not modified.

e Structure objects always start on a byte boundary.

e The objects are aligned in memory according to the hardware alignment
requirements.

e Neither pragma pack nor a representation clause will automatically modify
the storage requirements or allocation rules of a component type (in the
case of arrays or records) in an effort to reduce storage. The storage
requirements for each component type must be reduced explicitly.

B-12

I

| [i | |
| 12 | 11 |
I

Figure 2. Memory Allocation for a Packed Record Structure

byte 3 2 1 0
| } |
| | | | I
word 0 | unused { 13 | 12 [5
|] |] !
byte 7 6 5 4
|]]
|] | | |
word 1 | | | | t4 |
| |

Figure 3. Memory Allocation for a Packed Record Structure

If the record sample_recl in figure 1 is packed, then the entire record would
fit in one word as is illustrated in figure 2.

= Word Boundaries Not Crossed. When packed objects are allocated space
in memory, they are packed to 32 bit packing units. Since each field is being
packed into these word-sized units, byte boundaries within the word are ignored,
but fields are not allowed to cross between word boundaries.

Example: If a record is declared with four fields consisting of 6 bits, 10
bits, 8 bits, and 10 bits wide, the first three fields (totalling 24 bits) are allocated
contiguously in the first word (packing unit), leaving the remaining 8 bits in the
word unused. The fourth field will then use the first 10 bits of the next word.
See Figure 3.

In the above example, the amount of memory used is the same as when it
is unpacked. In such a situation, note that pragma Pack does not take effect,
and the memory is allocated according to default memory allocation algorithm
to maximize efficiency. See Figure 4 for an illustration.

byte 3 2 1 0

word 0 | £2 unused 11 |
| !
byte 77 6 5 4
| | |
] [| |
word 1 | 14] unused | 13 |
|]

Figure 4. Pragma Pack Ignored

Structure Objects Must Start on Byte Boundaries. Structure types
always start on byte boundaries, even if the structure can be represented in
fewer than 8 bits. If an array of records is declared as in the code segment
below, each array element is one byte, so the entire array uses 32 bits, regardless
of whether it is packed. See Figure 5 for an illustration.

Structures Are Aligned to Maximum Alignment of Their Components
Structure types (record and arrays) are always aligned to the maximum align-
ment requirement of their individual components. This is because the compiler
must always guarantee that the first byte of every structure is at a byte meet-
ing the alignment requirement of the largest field within the structure. (The
compiler assures that each offset within a record is correct for the alignment
requirement of each field. When the record is allocated in memory it must be
properly aligned so that each of its component fields are properly aligned.)

Structures Are Sized to a Multiple of Their Alignment. Structure
types (record and arrays) are always sized to a multiple of their alignment
requirement so that when arrays of structures are declared each element of the
array is guaranteed to be properly aligned.

For example, if a record is declared with two fields, a (32-bit) integer and a
byte, then the total size of the recotd will be 64-bits, not the expected 40-bits.
This is because the (default) alignment requirement for integers is 4-bytes. The
compiler will (by default) make the alignment requirement for the record 4-bytes
also. Since the alignment requirement for the record is 4-bytes its size must be
a multiple of 4-bytes, so it is rounded up to 64-bits.

B-14

type int4 is range 0..2+#4-1;
for int4’size use 4; -- INT4 is unsigned 4-bit integer

type sample_rec2 is
record
1 : int4; -- 4 bit tield
end record;

type sample_array is array(l..4) of sample_rec2;

byte 3 2 1 0
| |]
| | ! | | | | i |
word 0 | 1 £1 | I £1 | i £1 | | 1 |
| i | | i { | I l
| |] l
4 bits 4 bits 4 bits 4 bits
unused unused unused unused

Figure 5. Memory Allocation for an Array of Records

10.3 Address Clauses

Address clauses are implemented, but only for variables. Address clauses for
local variables using dynamic values are now implemented properly. Although
the LRM explicitly states that address clauses should not be used to overlay
objects, the use of a dynamic address can facilitate such a feature. Address
clauses are currently not implemented for subprograms, packages, tasks, entries,
constant objects, or statement labels.

11 Interface to Other Languages

Pragma interface allows Ada programs to interface with (i.e., call) subpro-
grams written in another language (e.g., assembly, C), and pragma export
allows programs written in another language to interface with programs writ-
ten in Ada. The accepted languages are: Builtin, Ada, C and Assembly. The
aliases Assembler and ASM can also be used instead of Assembly. The langauge
Builtin should be used with care-It is used by ICC for internally handled
operators.

12 Unchecked Type Conversion

The generic function Unchecked-conversion is implemented. In general,
unchecked. conversion can be used when the underlying representation of values
is similar.

Acceptable conversions are:

o Conversion of scalars. Unchecked-conversion can be used to change the
type of scalar values without restriction. In most circumstances the
unchecked conversion produces no additional code.

e Conversion of constrained structures. Constrained arrays and records are
represented as continguous areas of memory, and hence can be converted
using unchecked.conversion.

¢ Conversion of scalars to constrained structures. Scalar objects may be
converted to constrained structures with no additional overhead. If a
scalar value is converted to a structure an aggregate is first built to hold
the scalar value and its address is used as the address of the resulting
structure.

o Conversion from unconstrained arrays. Since it is not possible to declare
unconstrained array objects in Ada, conversion from unconstrained array
types poses no difficulties. The rules described above are used.

Although the Ada compiler does NOT produce errors for the following unchecked
conversions, they should be avoided since their results are not obvious:

e Conversion from discriminant records. Conversion from discriminant
records can cause unpredictable behavior because of underlying repre-
sentation changes. The unchecked_conversion will use the same rules as
described above for performing the copy, however the results of this op-
eration may not be what the user desires, since ICC Ada does not place
arrays constrained by the discriminant in-line with the other fields in a
discriminant record. In place of the array only a pointer is used and the
array is allocated dynamically off of the (compiler maintained) heap.

e Conversion to or from pointers to unconstrained arrays. Unconstrained
array pointers are implemented as special dope-vectors in ICC Ada. Con-
version to or from these dope-vector is not recommended.

e Conversion to or from any type or object declared in a generic. Generics
can cause hidden representation changes. Unchecked. conversions of any
object or type declared in a generic should be avoided.

ICC Ada does not require that the sizes of the parameters to an unchecked.conversion
be identical. The following rules are used when the source and target sizes differ:

o If the target type is constrained, then unchecked_conversion uses the size
of the farget type to determine the number of bytes to copy. The size of
the target type (in bytes) is determined by the Ada frontend and exactly
that many bytes are copied from the source address to the target address.
This can cause problems (e.g. memory faults) when the source object is
smaller than the target object. For example, using unchecked.conversion
to convert a character into an integer will cause 4 bytes to be copied
starting from the address of the character. The first byte copied will be
the value of the character, but the values of the remaining three bytes
cannot be predicted since they depend on values of variables or fields
immediately after the character in memory. If the source object is larger
than the target object then only the bytes that will fit in the target object
are copied from the source starting at the address of the first byte of the
source.

o Ifthe target type is an unconstrained discriminant record, then unchecked_conversion
uses the largest size possible for the record. Note that since ICC Ada does
not place arrays constrained by discriminants in-line with the rest of the
other fields in a record, this size may not be what the user expects.

13 Unchecked Storage Deallocation

Unchecked_deallocation is currently not implemented. For compatibility
purposes unchecked_deallocation can be instantiated in ICC Ada programs,
however calls will have no effect.

14 Machine Code Insertion

Machine code insertion is implemented, however, the package MACHINE.CODE
is not provided. Any record aggregate encountered by the ICC Ada frontend
in the context of a statement is accepted as a machine code insertion. The

interpretation of the aggregate is code generator specific.
For the 180960 Native Code Generator, the following machine code insertion
could be used to generate a breakpoint event using the fmark instruction.

procedure force_mark is

type assem is -~ Define a record containing a
record -~ single field, vhich is a string.
instruction: string(1..20); -- Make this string as long as is
end recorxd; -- necessary to hold instructions.
begin

-- Any record aggregate that appears in the context of a statement
-- is presumed to be an inline code insertion. Each byte of the
-- record aggregate is emitted (without modification) into the

-- output assembly file by the code generator. It makes most sense
-~ to declare a single string field, but any record can be used.

-= 12345678901234567890 -- 20 character ruler.
assem’ (instruction => " fmark "); == Inline insertion.
end;

The resulting body for this subprogram contains the single instruction
“flushreg” followed by a “ret”.

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
.name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

SACC_SIZE 96
An integer 1literal whose value
is the number of bits sufficient
to hold any value of an access
type.

SBIG_IDI (1..253 => 'A’, 254 => '1’)
An identifier the size of the
maximum input line length which
is identical to SBIG_ID2 except
for the last character.

$BIG_ID2 (1..253 => 'A’, 254 => '27)
An identifier the size of the
maximum input line length which
is identical to $BIG_ID1 except
for the last character.

SBIG_ID3 (1..126 => A7, 127 => '3,
An identifier the size of the 128..254 => ’A’)
maximum input line length which
is identical to SBIG_ID4 except
for a character near the middle.

c-1

TEST PARAMETERS

Name and Meaning

Value

$BIG_ID4
An 1identifier the size of the
maximum input line length whick
is identical to $BIG_ID3 except
for a character near the middle.

$BIG_INT LIT
An integer 1literal of value 298
with enough 1leading zeroes so
that it is the size of the
maximum line length.

SBIG_REAL LIT
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

SBIG_STRING1
A string 1literal which when
catenated with $BIG_STRING2
yields the image of $BIG_IDI1.

$BIG_STRING2

A string 1literal which when
catenated to the end of
$SBIG_STRINGl yields the image of
$BIG_ID1.

SBLANKS
A sequence of blanks twenty
characters 1less than the size

of the maximum line length.

SCOUNT_LAST
A universal integer
literal vhose value is

TEXT_I0.COUNT'LAST.

$DEFAULT_MEM SIZE
An integer literal whose value
is SYSTEM.MEMORY_ SIZE.

SDEFAULT_STOR_UNIT
An integer literal whose
is SYSTEM.STORAGE_UNIT.

value

(1..126 => ‘A’, 127 => 47,
128..254 => ’A’)

(1..251 => '0’, 252..254 => "298")

(1..249 => '0’, 250..254 => "690.0")

(1L => /", 2,.128 => 'A’, 129 => ')

(1 => ", 2,.127 2> "A’, 128 => "1/,
129 > ")

(1..234 => ' 1)

2147483647

4194304

TEST PARAMETERS

Name and Meaning Value
SDEFAULT_SYS_NAME i80960MC

The =~ value of the
SYSTEH.SYSTEH_NAHE.

constant

$DELTA_DOC
A real literal whose value
SYSTEH.FINE_DELTA.

is

SFIELD_LAST
A universal integer
literal vhose value is
TEXT_IO.FIELD’LAST.

SFIXED NAME
The name of a predefined
fixed-point type other than
DURATION.

SFLOAT_NAME
The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or
LONG_FLOAT.

SGREATER_THAN_ DURATION
A universal real 1literal that
lies between DURATION’BASE’LAST
and DURATION’LAST or any value
in the range of DURATION.

SGREATER THAN_DURATION BASE LAST
A universal real 1Iteral that is
greater than DURATION’BASE’LAST.

SHIGH_ PRIORITY
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

SILLEGAL_EXTERNAL_FILE NAME1
An external file name which
contains invalid characters.

SILLEGAL_EXTERNAL FILE NAME2
An external file name which
is too 1long.

SINTEGER_FIRST
A universal
whose value

integer literal

is INTEGER’FIRST.

0.0000000004656612873077392578125

2147483647

NO_SUCH_FIXED TYPE

NO_SUCH_TYPE

524287.5

10000000.0

254

/NODIRECTORY/FILENAME

/NODIRECTORY/THIS-FILE-NAME-IS-ILLEGAL

-2147483648

c-3

TEST PARAMETERS

Name and Meaning

Value

SINTEGER_LAST
A universal integer literal
vhose value is INTEGER'’LAST.

SINTEGER_LAST PLUS_1
A universal integer 1literal
wvhose value is INTEGER'LAST + 1.

SLESS_THAN DURATION
A~ universal real literal that
lies between DURATION’BASE’FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESS THAN DURATION BASE FIRST
A universal real literal that is
less than DURATION’BASE’FIRST.

$LOW_PRIORITY
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANTISSA_DOC
An integer literal whose value
is SYSTEM.MAX MANTISSA.

SMAX DIGITS
Maximum digits supported for
floating-point types.

$MAX IN LEN
MaxImum input line length
permitted by the implementation.

$MAX_INT
A universal integer 1literal
vhose value is SYSTEM.MAX INT.

SMAX INT_PLUS 1
A universal integer literal
vhose value is SYSTEM.MAX INT+l.

SMAX LEN_INT_BASED LITERAL
A universal integer based
literal whose value is 2#11%
with enough leading zeroes in
the mantissa to be $MAX IN LEN
long. -7

2147483647

2147483648

-524287.5

-10000000.0

31

15

254

2147483647

2147483648

(1..2 => "2:", 3..251 =>
252..254 => "11:")

C-4

IOI,

Name and Meaning

TEST PARAMETERS

Value

$MAX_LEN REAL BASED_LITERAL
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be $MAX IN LEN long.

$MAX STRING_ LITERAL
&2 string 1literal of size
SMAX IN LEN, including the quote
characters.

SMIN_INT
A universal integer 1literal
vhose value is SYSTEM.MIN INT.

SMIN TASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

SNAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT INTEGER,
LONG_FLOAT, or LONG_INTEGER.

SNAME_LIST
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEG_BASED_INT
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT. :

SNEW_MEM_SIZE
An integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than
SDEFAULT MEM _SIZE. If there is
no other value, then use
SDEFAULT_HEM_SIZE.

(1..3 => "16:", 4..250 => '0’,
251..254 => "F.E:")

(1 => "7, 2..253 => A7, 254 => '"')

-2147483648

32

TINY INTEGER

180960MC

164#FFFFFFFE$

4194304

- g

TEST PARAMETERS

Name and Meaning Value

$NEW_STOR_UNLT 8
An integer literal - whose value
is a permitted argument for
pragma STORAGE UNIT, other than
SDEFAULT STOR_UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGE_UNIT.

SNEVW_SYS NAME i80960MC
A value of the type SYSTEM.NAME,
other than $DEFAULT_SYS NAME. If
there is only one value of that
type, then use that value.

STASK_SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one ’IN OUT’
parameter.

STICK 0.000244140625

A real literal whose value is
SYSTEM.TICK.

C-6

APPENDIX D

VITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
Al-ddddd is to an Ada Commentary.

a. E28005C: This test expects that the string "-- TOP OF PAGE. --63" of
line 204 will appear at the top of the listing page due to a pragma
PAGE 1in line 203; but line 203 contains text that follows the pragma,
and it is this text that must appear at the top of the page.

b. A39005G: This test unreasonably expects a component clause to pack an
array component into a minimum size (line 30).

c. B97102E: This test contains an wunintended illegality: a select
statement contains a null statement at the place of a selective wait
alternative (line 31).

d. C97116A: This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation may use
interleaved execution in such a way that the evaluation of the guards
at lines 50 & 54 and the execution of task CHANGING OF THE GUARD
results in a call to REPORT.FAILED at one of lines 52 or 36. -

e. BC3009B: This test wrongly expects that circular instantiations will
be detected in several compilation units even though none of the units
is 1illegal with respect to the units it depends on; by AI-00256, the
illegality need not -be detected until execution is attempted (line
95).

f. CD2A62D: This test wrongly requires that an array object’s size be no
greater than 10 although its subtype’s size was specified to be 40
(line 137).

D-1

VITHDRAWN TESTS

. CD2A63A..D, CD2A66A..D, CD2A73A..D, and CD2A76A..D (16 tests): These

tests wrongly attempt to check the size of objects ci -~ lJe:r.ved type
(for which a 'SIZE length clause 1is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the ’'SIZE length
clause and attribute, whose interpretation is considered problematic
by the WG9 ARG.

CD2A81G, CD2A83G, CD2A84M..N, and CD50110 (5 tests): These tests
assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not
the case, and the main program may loop indefinitely (lines 74, 85,
86, 96, and 58, respectively).

. CD2B15C and CD7205C: These tests expect that a ‘STORAGE SIZE length

clause provides precise control over the number of designated objects
in a collection; the Ada standard 13.2:15 allows that such control
must not be expected.

. CD2D11B: This test gives a SMALL fepresentation clause for a derived

fixed-point type (at line 30) that defines a set of model numbers that
are not necessarily represented in the parent type; by Commentary
AI-00099, all model numbers of a derived fixed-point type must be
representable values of the parent type.

CD5007B: This test wrongly expects an implicitly declared subprogram
to be at the address that is specified for an unrelated subprogram
(line 303).

. ED7004B, ED7005C..D, and ED7006C..D (5 tests): These tests check

various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

CD7105A: This test requires that successive calls to CALENDAR.CLOCK
change by at least SYSTEM.TICK; however, by Commentary AI-00201, it is
only the expected frequency of change that must be at 1least
SYSTEM.TICK--particular instances of change may be less (line 29).

. CD7203B and CD7204B: These tests use the ’'SIZE length clause and

attribute, whose interpretation is considered problematic by the WG9
ARG.

. CD7205D: This test checks an invalid test objective: it treats the

specification of storage to be reserved for a task’s activation as
though it were like the specification of storage for a collection.

D-2

p'

VITHDRAWN TESTS

CE2107I: This test requires that objects of two similar scalar types
be distinguished when read from a file--DATA _ERROR is expected to be
raised by an attempt to read one object as of the other type.
Howvever, it 1is not clear exactly how the Ada standard 14.2.4:4 is to
be interpreted; thus, this test objective is not considered valid
(line 90).

CE311iC: This test requires certain behavior, when two files are
associated with the same external file, that is not required by the
Ada standard.

. CE3301A: This test contains several calls to END OF LINE and

END OF PAGE that have no parameter: these calls were intended to
specify a file, not to refer to STANDARD INPUT (lines 103, 107, 118,
132, and 136).

. CE3411B: This test requires that a text file’s column number be set to

COUNT'LAST in order to check that LAYOUT_ERROR is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack of available disk space, and the test
would thus encumber validation testing.

D-3

APPENDIX E

COMPILER OPTIONS AS SUPPLIED BY IRVINE

Compiler: ICC Ada, 6.0.0
ACVC Version: 1.10

The following is o list of ALL of the avsilsble compiler options;

{CC Flags
carguvents -args
~asm .
asm_ext <arg>
-asm_flag -asmf <arg>
-agm_name <arg>
-c
~cc_flag ~cct <arg>
-cc_nome <arg>
~coptimize -copt
oy
-display -disp
-0

-exe
- 'l._.l‘ <arg>

~help
~heipell -ell
~hide

-ignore_cfg -mo_cfg -nctfy
-ignore_env -no_eny -nenv

~keep_tempe -keep <arg>
-lib_ext <arg>
-library ~lib <arg>
-tist_merge -merge
«{cader_name <arg>
“»rg

“mrg_ext <arge>
*rmo_tero
“no_unique

-normsl -norm °n
.w"

~obj_ext <arg>
-ob[Tib <ar

o
-objlib_ftag -objlibf <arg>

-objlib_name <arg>
~odebuggar -odebug
~optimze -90t

Display ICC arguments

Stop at the assendly file

Set sssembly file extension

Explicitly odd flag for agsembler

Use <arg> s the assesbler

Stop at the C file

Explicitly add flag for € compiler

Use <arg> us the C compiler

Invoke € optimizer

Compile code for Ada debugger

Display exec calls .

Use new ‘duc’ fronterd/linker

Link non-Ada program .

Set executadle file extension

Liat avaflable flags

List ALL avaflable flags

Sucpress nuym? [CC subprocesses

lgrore config flags

jgnore envirorment flags

Stop at the jform file .

Save files with extensions in <arg>

set library file extension

Explicitly set compilation library
Invoke 1CC list merger

Use <arg> as the loader

Stop at the List merge file

Set list merge file extension .
Use locel directory for intermediate files
Use real file name for intermediate files
Compile with normai messages

Stop et the object file (default]

Set object file extension

Instail the object file in library <arg»
Explicitly add flag for cbject (ibrarian
Use <arg> as the object librarisn
Compile code for old Ada debugger
{nvoke ICC optimizer

-posticager flag -pstidf <argfxplicitly sdd post-flag for loader
-preloacer_Flag -preldf <erg> Explicitly add pre-flag for loacer

quiet g

rug cary

“ruNtime -run <arg»
~3ave

~save_TSIUS -save
~show_only -show
~syFbols -syms
*syntax _only -syntax
“teD T <aryg>
~vertose -v

Ada Fla
-ad'v?:e
*Cross_ret -cross

-elaboration_check -elad

-exception_fmfo -ex
-listing
=no_checes -mo
“no_wrad

“no_zers
-preprocess -pre
-rete

-steck _check

-trim

“worning -wern -w

1CC Code Generator Flags
-63381

-const_in_code
x cD -xcb

-extended_list -extend -exl

foa

-gprofile -gprof
*loc_infe

-rames

~rumeric check -mumchik
-prode_stack -prode
-profile -prof

‘reai

-relgtive

-static

Compile qu:etlz L.
Use <arg> as the rug name for binaries
Explicitly set runtime directery

Save tenporary files gereratea by pasl
Save all intermediate files

Show oniy, don’/t exec

Show current value of 1CCOD sywools
Syntax chegk only .

Use <arg> os a tesporsry directory
Compile with vertose messages

Swpress advisory warnings

Generate cross-reference file (.xrf)
Generate ELABORATION checking

Sucpress EXCEPTIONM_INFQ

Generate list file (.ls2)

Suporess ALL _CHECXS

S:Eress AtO-wracoing error messages
Aoty pragme NO_2ERO to all recoras
Generate commented preprocess file (.app)
Rate cooe efficiency

Generate stack checking code
Gererate triomed preprocess file (.app)
Suppress wernings

Generate inline 68531 code

flece cormtant aggreqates in CODE segment
Gemerate host detugger informetion
Generate extences code output
Generate inline fPA code

Generate runtime gorofiling
Generate extended locai informstion
Generate namelist file

Generate overflow detection cooe
Germerate stack probes

Generate runtime profiling

Use reelnames

Use relative branches (550 only)
Static fleg

E-2

1CC Preiinker Flsgs

«corpl ink <are Ade compile and Lirk <arg> into one file
-force_link Force link, even if dependency errofs

“link ~| <arg> Ada link compilation unit qrg; .
-no_trap Dan‘t establish trap handler for rumeric faults
~output -out -0 <arg? Meke executable file <arg>

-steck <arg> Allocate <arg> 8KB peges for user steck
-vs_debugger -vins_debug Link with VNS Debugger

™
]
w

