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TRAPEZOIDAL MONTE CARLO INTEGRATION*

ELIAS MASRYt aAND STAMATIS CAMBANIS?

Abstract. The approximation of weighted integrals of random processes by the trapezoidal rule based
on an ordered random sample is considered. For processes that are once mean-square continuously
differentiable and for weight functions that are twice continuously differentiable, it is shown that the rate
of convergence of the mean-square integral approximation error is precisely n ™%, and the asymptotic constant
is also determined.

Key words. Monte Carlo integration of random processes, trapezoidal rule, rate of quadratic-mean
convergence

AMS(MOS) subject classifications. 65D30, 60G12, 65U05, 62G0S

1. Introduction, results, and discussion. The simplest Monte Carlo method for
approximating the integral

(1.1) l(f)=j f(r) dt
(4]

of a (square integrable) function f over a finite interval, uses n independent samples
U,,- -+, U, from a uniform distribution over the unit interval and forms the average
estimate

(12) 1.0 =% z £U.

J,, is an unbiased estimator of I: EJ,(f) = I(f), and, in view of the strong law of large
numbers, it is consistent, i.e., as the sample size n increases to infinity, J,(f) tends to
I(f) with probability one, i.e., for almost every realization of {U,};.,. The variance
or mean-square error of J,(f) is

(13) ELN -L(NF = {167 -U DT

and thus tends to zero at the rate of n™'. As the constant I(f?) - I’(f) is strictly positive
for all functions f which are not almost everywhere constant, no improvement in the
rate of convergence is to be expected from any smoothness assumptions on f.

Yakowitz, Krimmel, and Szidarovszky [9] proposed improving the convergence
rate in (1.3) of the crude Monte Carlo method by using quadrature formulas instead
of the simple averaging in (1.2). They specifically studied the trapezoidal rule, based
on the ordered sample 1,,20<1t,,<f,,<---<1#&1¢, ., obtained from the indepen-
dent, uniformly distributed samples U,, U,, - - -, U,, which is given by

(1.4a) I..(f)=% >:o LA (i) + £ Ctnras) oo = tos)
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226 ELIAS MASRY AND STAMATIS CAMBANIS

and uses n+2 sample points, the n random samples, and the fixed-interval endpoints.
Since the trapezoidal rule can be written in the form

(l°4b) In(f)=%{tn.l (0)+i (tn,i+l_tn,i—l)f(rn,l)+(1— n,n)f(l)}

it can be considered as a weighted Monte Carlo rule with random weights. When f
has continuous second derivative they proved that

cf)
(15 U -1(NPsEL

n

for some constant C(f) and all n=1, and they provided simulation evidence that the
convergence rate of the mean-square error is in fact n~*,

In this paper, we consider weighted integrals of random processes and establish
the rate of convergence and asymptotic constant for the trapezoidal rule (1.4a) based
on an ordered random sample. As a consequence, the rate of convergence and
asymptotic constant for integrals of nonrandom functions are also determined.

Throughout X ={X(t, w), 0=1t=1} is a second-order random process with mean
zero, EX (1) =0, and covariance function R(t, s)=E{X(t)X(s)}, defined on some
probability space. We assume, with no further notice, that

(i) The random process X and the random sample { U;} are mutually independent,
and

(ii) X(t, @) is jointly measurable in ¢t and w.

The first assumption simplifies the task of computing expected values and is quite
natural as the randomness of the sampling mechanism is generally in no way dependent
on or related to the randomness of the stochastic integrand. The second assumption
enables us to integrate with respect to ¢ for almost every fixed path w and to obtain
as a result of the integration a random variable, whose expectation may therefore be
computed. This is a minimal regularity assumption on the process X; when X is
mean-square continuous, as we will shortly assume, it always has a jointly measurable
version. Following standard practice, we delete the probability variable w and write
X (t) for X (1, w) (just as we write t,, and U, for the random variables t, ;(w) and U(w)).

We first derive under general conditions an explicit expression for the mean-square

error in the approximation of the random integral:

I(fX)=I A X(e) dt

[}

by the trapezoidal rule based on ordered random samples:
l n
L(fX) ’"5 ’Eo () X (8,)+ £( nis1) X (L i 1)) (i1 = tay)

This expression can be used to evaluate finite sample size performance.
THEOREM 1. If [y R(1, 1)f*(¢) dt <o, then for all n= 1 we have

E(I1(/X)- L(X)P

(1.6a) _ R(0,0)/%(0)+ R(1, 1)f*(1) + R(0, £(0)f(1)
- 2An+1)(n+2)
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-—— =

(1.6b) +L {R(, NF()f()+ R(0, 1 - n)f(0)f(1 - 1)}

_ 4\n+t 2, _ .
.{_(1 t) LwH3n=2 ”“—-n+lt"+£t""}dt
2(n+1) 4(n+1) 2 4

3 n—-1
2(n+1) 2(n+1)

(1.6¢) +Il R(1, t)f’(t){ [t"*‘+(1—1)"+‘]—%[t"+(1—t)"]} dt

(1.6d) +” R(1, s)f(6)f(s)
Ost<s<l

-{%[r"+(1 -—s)"]—%(s—t)"+% n(n—-1)(1-s+)"?2

——— v ———

i —%nz(l-s+t)""+i(n—2)(n+3)(1—s+t)"}dtds.
Using the expression of the mean-square error in (1.6), we now show that when
the function f has two continuous derivatives and the process X has one quadratic-mean
derivative which is mean-square continuous, then the rate of convergence of the
mean-square integral approximation error is precisely n™*; and we also determine the
asymptotic constant.
THEOREM 2. If f(t) has continuous second derivative on [0,1] and R(t, s) has
continuous mixed partial derivatives R (1, s) of order 2,0=i+j=2, on the unit square
[0, 11x[0, 1] and of order 3, i+j =3, off its diagonal, then

. C(f, R)+o0(1)
(1.7) EUUX) = LUX = m+2)(nt3)(nt )’

The asymptotic constant in (1.7) is given by
2C(f; R) =3R(0, 0)£(0)’+5R(1, 1)f'(1)* = R(0, 1)£(0)f(1)
+R"(0, 0)£(0)£(0) + R™(1, (1) (1) - R*(0, 1)£(0)f'(1)
(1.8a) — R0, 1)f(0)f(1)+3R>%(1, 1)£*(1) - 3R*°(0, 0)£ *(0)
+2R"(0,0)£%(0) - R™(1, 1)f%(1) - R™'(0, Df(0)f(1) L

+3 j [R"\(t, 1) =2R*°(¢, )1 f()f (t) dt -3 Jl R*°(t—, )f*(¢) dt.
0 0

-

Y R e A A s o

By putting in Theorem 2, R(¢, s)=1, we obtain the pre ise rate conjectured in
[9] for the integral approximation of nonrandom func::on- plus of course the
asymptotic constant. i
COROLLARY. If f has continuous second derivative on [0, 1] then

LF) =, (©O)F+0(1) 4

——— s, e — - -

(1.92) ELI(N) - LY =4(n+ D(n+2)(n+3)(n+4)
. Thus,
(1.9b) 'l'ig_g n*ELI(f)- L(NP=ir)-f O

It is interesting to note that the asymptotic constant in (1.9b) for the trapezoidal rule
with random samples has the same functional form as the classical asymptotic constant
for the trapezoidal rule with equally-spaced samples [7, Thm. 3.3], but is larger by a
factor of 36.
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228 ELIAS MASRY AND STAMATIS CAMBANIS

Returning to the general case of Theorem 2, we note that the assumption of
continuous mixed partial derivatives of R of order up to 2 on [0, 1)’ is equivalent to
the assumption that X has onc mean-square continuous quadratic-mean denvalive.
The additional assumption of differentiability of order 3 off the diagonal is weak, and
is always satisfied, e.g., when X is stationary, has rational spectral density, and exactly
one quadratic-mean derivative.

The expression of C(J, R) in (1.8a) is not symmetric and cannot be symmetrized
under the conditions of Theorem 2. If R(¢, s) has continuous mixed partial derivatives
of order 3 throughout the unit square (rather than merely off its diagonal) then the
asymptotic constant in (1.8a) takes the following simple and symmetric form:

(1.10) Coymlf, R)={M"(0,0)+ M"'(1, 1) -2M"'(0, 1)},

where M(¢, s)=f(t)R(1, s)f(s). The expression within braces in (1.10) equals
E[(fX)(1)=(£X)'(0)}, where prime denotes quadratic-mean derivative. Thus under
the slightly more stringent assumption of continuous mixed partial derivatives of order
3 on the unit square we obtain

E[(fX)(1)=(fX)(0)] +o(1)
4n+1)(n+2)(n+3)(n+4)

(1.11) E[I(fX)-1L,(UX)) =

This expression is the stochastic analogue of the nonrandom case in (1.9a) and it holds
even though X is not assumed to have a second quadratic-mean derivative. It is clear
from (1.11) that in general the asymptotic constant is positive and no faster rate of
convergence can be achieved by requiring any further smoothness of f or of R. Under
the conditions of Theorem 2, the asymptotic constant differs from its symmetric
expression by the following:

C(f,R)=C,n(/, R)+%U [R"'(1, ) =2R*°(t, () (1) dt
(1.8b) 01 '
-5[R'-'(t,r)-zkz-"(:,r)f’(:)]a-j R""(r-—,r)f’(t)dl].

(1]

When the random process X is stationary, i.e., R(1, s) = R(t - s), then the general
form (1.8a) of the asymptotic constant simplifies to

2C.(£ R) =3 ROLFO 451 = ROSFOF (1) + RDLAOS (1) - FOf]
(1.12) =2 RUOLAO)+ D]+ RSOF(1) ~3R"(0-) j I
=2 ELUX)()- (X YO -3R"(0-) I s

When instead of using in the trapezoidal rule (1.4a) ordered random samples, we
use equidistant samples ¢, =i/(n+1), i=0, 1,-:-,n+1, then it has been shown in
(2, App. B] that for stationary processes, under the assumptions of Theorem 2, we have

E[’(fX)—I,,(fX)]2=£e_dQ_;_:§‘)+_°£_1_Z

- e m— ——

—— e ——




e

TRAPEZOIDAL MONTE CARLO INTEGRATION 229

where

Ca(/iR) =%{% RO)LS(0)*+£(1’1= RO (0)/(1)+ R(LAOS (1) - £(0)f(1)]

__l_ " 2 2 " __l_ meey_ I 2
5 ROLSAO+S(D]+R (l)f(O)f(l)} 360 R (0 )Lf

or

=1 = XV +——T—R"0-11 [ f2<L
Cea(f,R)= 144 E[(fXY(1)-(fX)'(0)] +360[ R"(0-)] L f <3 Ca(f, R).

It follows that (C,/ C.q)"*> (36)"/*=2.45 and thus, asymptotically, at least two-and-a-
half times more random samples are required than equidistant samples for the same
accuracy measured in mean-square error. It is of course quite natural that equidistant
samples provide a superior approximation than ordered random samples with the same
average distance.

The analysis carried out here suggests that kth-order quadrature rules based on
ordered random samples should have mean-square error with rate of convergence
n~2**" when acting on nonrandom functions with continuous (k + 1)st derivative, or
random processes with (essentially) mean-square continuous kth quadratic-mean
derivative, or on their products. (The trapezoidal rule considered here and in [9] is a
first-order quadrature rule.)

It should be finally mentioned that, for integrals of nonrandom functions, Haber
has developed a stratified Monte Carlo rule with rate n~* [3]; a stratified and sym-
metrized Monte Carlo rule with rate n > [4]; and certain stratified stochastic quadrature
formulas with rate n”'~?* when approximating the integral of a nonrandom function
f with continuous kth derivative [5]. For weighted integrals of random processes, a
simple Monte Carlo rule with rate n™' and a stratified Monte Carlo rule with rate n~*
have been developed by Schoenfelder [6] (see also [1]).

Example. We illustrate by an example the finite sample size performance of the
trapezoidal rule with random sampling. We consider the stationary process X (t) with
correlation function

R(0)=(1+p|1]) e

where g > 0. Note that R(0) =1 and that X has precisely one quadratic-mean deriva-
tive. For simplicity we take f(tr) =1 so that the random integral to be estimated is
I(X)=[; X (1) dt and its estimate is I,(X) of (1.4a). The variance o of I(X) is given

by
o*=E[I(X)P= ” R =%(2-%+(1+%) e"’).

Using Theorem 1, we find after some algebra that the mean-square error is given by

ELI(X)-I(X)F= _l{(n+3)(n’+4n2+n+2)

2 282
+n‘+4n’+6n’+9n +2+n‘+4n’+5n’—4n~4}
B(n+1) 2(n+1)(n+2)

-

bbbl




230 ELIAS MASRY AND STAMATIS CAMBANIS

1 _,,{ B 2n+S (n+3)’}
+-e + +

2 (n+1)(n+2) (n+1)(n+2) B(n+l)
(1.13)

+%a(u,B) {(n+2)—-;-(n+3)"}

+%a(n-— 1,-B)ne? {B(n+ )+(3n°+6n+5)

+%(3n’+l2n’+l3n+10)

+-ﬁlz-(n+3)(n"+4nz+n+2)}

for n=1, where
1

a(n, B)= I e P*x" dx,
0
For n =0, the mean-square error can be computed directly yielding

- 2 1_6 —a[é B.S i]
ELI(X)~ IX) =3+ | 345+ 2o s |

The asymptotic constant C, (1, R) is given by
2
G, R ={1+68+(B-1) e} &
Let m=2, 3, - - be the (true) sample size, m = n+2, with corresponding mean-
square error mse (m) = E[I(X)—I,_,(X )J>. The fractional mean-square error is then
given by mse (m)/ a2
In selecting appropriate values of B for numerical display of the finite sample
size performance, the behavior of the fractional error mse (0)/ o? (based only on the
endpoints X (0) and X (1)) as a function of B was investigated. It is seen from Table
1 that for values 8 =1 the fractional mean-square error is too small so that I,(X)
already provides a fairly accurate approximation of I(X). We select therefore two

TABLE 1
The fractional error mse (0)/o? and the asymptotic
constant C,(1, R) as functions of B.

B mse (0)/ o - Cu(L,R)
0.2 2.3624x 107 3.09x1072
0.4 1.686 x1073 0.24

1 1.929 %1072 3.5

2 9.862x 1072 26.27

3 0.225 85.95

4 0.377 200.44

5 0.5376 387.84

6 0.698 666.22

7 0.854 1053.6

8 1.0058 1568.08

9 1152 2227.54

10 1.295 3050.02

e AN At e o T
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TRAPEZOIDAL MONTE CARLO INTEGRATION 231

values 8 =3 and 8 = 5 corresponding to moderate values of mse (0)/ o. The asymptotic
constant C,(1, R) is monotonically increasing with 8 and is asymptotically equal to
38° for large B. Table 1 provides a few typical values.

In Fig. 1 the fractional mean-square error mse (m)/ o is plotted as a function of
the sample size m=2, - - - | 26, for 8 =3 and B =5. It is seen that for the smaller value
of B =3, the fractional error is considerably smaller for each sample size m. This can
be explained by the less rapid decay of R(t) and hence the larger correlation, on the
average, between consecutive samples so that I, (X) provides a better estimate of I(X)
in this case. The closeness of the fractional mean-square error to its asymptotic value,

Cu(1, R)/ &’
(m-1)ym(m+1)(m+2)’

is displayed in Fig. 2 for parameter B = 3. Note that the asymptotic value overestimates
the true error for all sample sizes m in the plotted range. Naturally the discrepancy
between the two values diminishes as m increases. To see more clearly the convergence
of the scaled mean-square error (m—1)m(m+1)(m+2) mse (m) to the asymptotic
constant C, (1, R) as m increases, we display in Fig. 3 the values of these two quantities
for m=2,--.,26 with the chosen values of B as parameter. Again for the smaller
B =3 the discrepancy between these two quantities is smaller for each m=2,---,26
than for B8 =5.

2. The mean-square error. In this section we derive the exact expression of the
mean-square error given in Theorem 1.

Since the trapezoidal rule approximation I, to the integral I is based on the
ordered samples ¢,,<?,,<---<{t,, obtained from n independent uniformly dis-
tributed samples on (0, 1), we need certain properties of the order statistics from the
uniform distribution, which we summarize first. For brevity we will write t, for t,;.

mse (m)/ o’ ~

N 5
E i \ T
m O- 1 3 3
o E 3
E f
a|°,‘ s 4
s 0.01 E
L}) ]
=2 3
3 \ 4
g

S 0.001 T~
8 g=3 3

0'000 1 L L 1 'l 3 L (] 1 1 L [ 1
0 10 20 30

Sample Size

FiG. 1. Fractional mean-square error mse (m)/ o* as a function of the sample size m.
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0.1

-
T T ooy 1 rrymm
/ )
//
.
-4
E
.
.

t 1 at18

Fractional Mean—Square Error

0.01} z :
s \ asymptotic 3 ‘
A ) |
0.001 < 3
%ﬁ\k 3
0.000 1 1 1 I 1 1 1 1 L L 1 1 1
1] 10 20 30

Sample Size

F1G. 2. Exact and asympiotic fractional mean-square error as functions of the sample size (B =3).

400 L] L T 1 L T 1 L ¥ 1 T L
[ T-C~C-T-F-T-T-ToTo e ]
- B=5, asymptotic constant .
5 I ]
g 300 — -
[ L e
g = -
o - -
@ 200 |- ] i
o E .
‘. ] z !
- B - ; :
® 100 ] | |
i R i i f
A i ] 5
0 L]
30 !

Sample Size | B

F1G. 3. Scaled mean-square error (m — 1)m(m+1)(m +2) mse (m) as a function of the sample size m.
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The joint distribution of order statistics is an ordered multivariate Dirichlet
distribution; see Wilks [8, §§ 8.7.5 and 8.7.7]. Specifically, the ordered samples 1, ,
t 4k B+ Ky +k,, (Where the k;’s are positive integers with k, + k,+- - - + k,, = n) have
joint probability density function denoted by px, .« +ks. ks +-- 4k, (Xis X2, * 4 Xm) and
given by

IF'(n+1)
I(ky) - Tk, )[(n+1-k—---—k,)
)T = x )T (K X)) T (LX) TR
for 0<x,<x,<---<x,<1 and zero elsewhere. We will make explicit use of the
following expressions. '

The smallest- and largest-order statistics ¢, and f, have densities
(2.1 p(x)=n(1-x)"",  px)=nx""", 0<x<l,
and joint density
(2.2) Pa(xy)=n(n-1)(y-x)"?  0O0<x<y<l.

Two consecutive order statistics t; and ¢, (1=i=n-1) have joint density

xi—l (l_y)n—l—i
(i-1)! (n—1-i)!’
We will need the value of their sum

n— n— k n-2-k

(2.4) g: Piiri{% y)=n! k:)% ((lr,:};—)_,()!= n(n=1)(1-y+x)"">
Three consecutive order statistics &, t;., ;x> (1 =i=n-2) have joint density
X1 (1~ z)n—2—|'
(i—-1)! (n=2-i)1°

(2.3) Pii+1(x, y)=n! 0<x<y<l

Piivri+2%, y,2) =n! O<x<y<z<l,

and their sum will be used:
n-2 n-2 xk (l _Z)n——J-k
L =n! hadi SN2
(2-5) ig] Pn,.+|.,+2(X,)’, Z) n.k=0k! (n—3—k)!

We will also use the following two trivariate densities
(y _x)i—2 (l _ z)n—l—i
(i-2)! (n-1-i)’

)n—z—i

=n(n—-1)(n=-2)(1-z+x)"" .

Priivi(%, y,z)=n! O<x<y<z<l, 2=isn-1,

i-1

x (z—y
i-1N! (n=2-0)°

Pf,i+|.n(x,y,2)=n!( 0<x<y<z<l, 1=is=n-2,

and their sums

n—1

(2.6) E:z Priiri(x ¥, 2)=n(n—-1)(n-2)(1-z+y "‘x)"_a,
n-2

(2.7 L Pusiaxp,2)=n(n=1)(n=2)(z -y +x)"7%

Finally two pairs of consecutive order statistics #;, #,+;, ¥, ;4 '(1 <i+l<j<n)
have joint density
xi—-l (z_y)j—i—z (1_w)n—l—j
i-N(j-i=2)! (n—-1-j)"

Pusr (X 9, 2, W)=n!( O<x<y<z<w<l.

T e e bt i an e
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We will need their double sum

#-3 -l -3yt n—.l»-l(z_y)k (l__w)nfl—:—k
! —_—

Eu-%zp"“"“”(x %2 w)=nt z: (i-1! k).:-'o k! (n-3-i-k)!
n-3 il (l_w+z_y)n—3—i

(28) =M LoDl (no3i)!

=a(n-1)}(n-2)(n-3)1-w+z—y+x)"™*

Proof of Theorem 1. The expectation in E[I(fX)-I,(fX)}? is with respect to
both the random samples {#,};., and the random process {X (1}, 0=r=1} which are
mutually independent. Performing first the expectation with respect to the random
process X(t) we find, with M(1, s) = f(£)R(s, s)f(s),

E[I(fX)-L(fX))= E{J I M(1,s) dids
0

[}

n 1
-z J (M, )+ M1, 6,,)] de- (G- 6)

i=0Jo

(2.9) +

s
NM:

[M(t,, L)+ M6, )+ M, )

I

i=0j

+M (b, )t — 6 (G — tj)}-

The interchange of expectation and integration is justified from

1 2 1 1
E{I ()X ()| dt} = L L IF(OS(SE{|X ()X (5)|} dt ds

§{J. LF()|RY*(t, 1) dt} <

since
EXIX ()X (s)} = E{X*()}E{X*(s)} = R(8, )R(s, 5).

The more restrictive condition [, f2(f)R(t, t) dt < will be needed for the finiteness
of the expected value with respect to the random samples and the further interchange
of expectation and integration. As this is plain from the following expressions, it will
not be discussed further.

To facilitate the computation of the expected value with respect to the random
sampling points ¢, - - -, t,, we split the double summation in (2.9) into its diagonal
part, the part corresponding to the two immediate parallels to the diagonal and the
rest; which in view of the symmetry of M (¢, s) can be written as

n
$I=73 +2 Z (j=i+1)+2 Z s .

i=0j=0 i=j=0 i=0 j=i+2

Omitting for simplicity the terms in brackets, which are evident from (2.9), we write
the mean-square error in the form

(2.10) E[I(fX)—I,.(fX)]2=I J M(t, s) drds
0 JO
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n 1

(2A) -3 EI [--]dr Ay,
i=0 0
1 n

(éAz) +— 2 E[---JAnAg
4;,7-0
ln—l

(éAs) +'2' 'Z:O E[' : '](j=i+1)At.'Ati+1
ln—z n

(24,) +3 T T E[--Jandy,
220 j=i+2

with Af; = t;,;, — ;. We now evaluate separately the cross term A,, the diagonal term
A,, the second diagonal term A;, and the off-diagonal term A,, all clearly identified
on the left margin in (2.10).

The cross term A,. Since t,=0 and t,,, =1, we isolate the first and last terms in
the sum ¥|_,, and write

1
—A,=EI [{M(r0)+ M(¢t,t,))]dt- 1,
0

+"1il E J‘ [M(t, )+ M(t, t,,. )] dt- (i, 1;)

]

+E J [M(t,t,)+M(t,1)])dt- (1—1,)
0

=j de‘1 dt[M(t,0)+M(1, x))xp(x)
[¢] 1]

0

+ IJ dx dy J di[M(1, x)+ M(1, y)](y—X){EI Piisi(X, y)}
O<x<y<l i=

+j dr J di{M(t, y)+ M, DI —y)p.(»).

V] ]

We now use the expressions in (2.1) and (2.2) to write:

1 1
—A,=nJ‘ drj dx [M(1,0)+M(1, x)]x(1—x)"""

0 0

1
+n(n—1) j dt J’J' dxdy[M(t,x)+M(t, y)I(y —x)(1 —-y+x)"7?
0 O<x<y<}

1 H
+n[ dtJ' dy[M (1, y) + M{t, D)1= )y

[

and then we evaluate all inner integrals that can be computed to obtain

1 1 1
_A‘=_1_J M(t,O)dH"nJ‘ I Mt x)x(1—x)""" dtdx
n+1), 0o Jo

1 1 1 xn—l xn
+n(n—1){j0 L M(t,x)[n(n__l)—n_l+—n-] dt dx

] 1 1 _(l‘y)"—l (1_y)n
+IojoM(t’y)[n(n—l) n-1 ' ]dtdy}

J‘l 1 , l rl
+ M 1-y)y" ' dedy +—
n OJ; (L y)(1-y)y tdy nt i),

M(t, 1) dt

b g e
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Rearranging the terms we put A, in its final form:

A,=—-—I——J [M(x,1)+M(0,1-x)] dx
n+1J,

(2.11) e
‘I J M(x,y){2-y"—(1—y)"} dx dy.
0 0

The diagonal term A,. We proceed as for A,. We first separate the terms with
tr=0and t,,,=1,
4A,=E{[M(0,0)+2M(0, ,)+ M(t,, ,)1}}
n—1
+ Y E{{IM(5, ) +2M (1, i)+ Mty 60) )0 — )%}
i=1

+ E{[M(t,, 1,) +2M(1,, 1)+ M(1,1)](1 —1,)%}

and then using (2.1) and (2.3) we obtain
[M(0,0)+2M(0, x)+ M(x, x)]x*(1—x)""" dx

4A2=nJ‘

]

+n(n—1)” [M(x, x)+2M(x, y)+M(y, y)]
OQ<x<y<l

(y=xY(1—y+x)""2dxdy

1
+n J. [M(y, y)+2M(y, 1)+ M1, 1)](1 - y)*y""" dy.
0

We now evaluate all inner integrals that can be computed and regroup terms to reach

the final expression
__M(O:O)+M(lv I) _'_' ! n—1
A,= AntD(n+2) +2L [M(x,1)+M(0,1-x)](1-x)*x"""dx
' 1 n n+1 n+ l n n
(2.12) +I M(u,u){n+l+2(n+1)[u +(1~u) l]—-2-[u +(1—-u) ]} du

0
1
+5n(n—1)” M(x, y)(y~x)(1-y+x)"*dxdy.
O<x<y<l

The second diagonal term A,. We first split off the sum Z,f:(,' the first and last terms

involving t,=0and ¢,,,=1,
2A;=E{[M(0, ;) + M(0, 1)+ M(t,, 1)+ M(t,, £)]6,(1,— 1))}

R TN

n-2
+ ¥ E{[M(t;, t)) + M(t, ti2) + M (8, i)+ M4y, ii2)]

(e — 6t~ )}
+E{[M(t,,_|, ’n)+M(‘n~|, 1)+M(tm ’n)+M(’m l)](’n - 'n-l)(l - tn)}-
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Next we use the values of the bivariate densities p,, and p, ,,. from (2.3) and the
sum of the consecutive bivariate densities in (2.5) and write

2A3=n(n—1)”0_ N '[M(O,x)+M(0.y)+M(X,X)+M(.\'.,V)]
cx(y=x)1-y)" " dxdy
+n(n=1)(n-2) J‘J’L o [M(x,y)+M(x,2)+M(y, y)+ M(y, 2)]
| (y=x)Nz—-y)1-z+x)" *dxdyd:
+"("_1)J’L<‘<v l[M(x,y)+M(X.l)+M(y,y)+M(y.l)]

(y—=x)(1-y)x" " dxdy.

We again evaluate all inner integrals which can be computed and regroup terms to
derive the following expression, after considerable algebra,

1 2
AJ=%n(n—l)J0 [M(x,l)+M(0,l—x)]x"'2(l—x)[ (x n -6-(l—x)]d

L 2 _ n+1
+2(n+l) L M(u, u)(1-u (1—u)""")du
(2.13)

1 1 1 n-1
+§ n(n—1) ”:KKM M(x,y)(y—x){—n—_l[x"‘ +(1-y)"]

- 2
+%(n—2)(y—x)2(1 —y+x)"‘3+n—_—l(1 —y+x)""} dx dy.

The off-diagonal term A,. We first isolate the terms involving the points 1, =0 and
t,+1 =1 by splitting the double sum into

n-3 n-1

Z Z —(1—01—")+Z(1-0)+Z(1—n)+2 P

i=0 j=i+2 i=1 j=i+2

We thus write A, as

As=E{[M(0,1,)+ MO, 1)+ M(1,,1,)+M(1t,,1)]t,(1—1,)}

+"§_: E{{M(0, t;)+ M(0, ;,)) + M(1,, )+ M(¢,, t;.)]0,(41 = 4)}

j=2

+ Z E{{M(t;, t,) + M(t;, )+ M(t;sy, t.) + M1y, D)1= 6)(1 = 1,)}
i=1
n-3 n-1

+Y Y E{IM(,4)+M(1,1,,)

i=1 j=i+2

+M (s, )+ MUy, 4010 = 6)(44 -4)}

:
;
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In calculating the expectation we use for the first term the value of p, ., from (2.2), for
the second term the sum in (2.6), for the third term the sum in (2.7), and for the fourth
term the sum in (2.8), and obtain

2A4=n(n—l)J'j0 4 '[M(O,y)+M(0.l)+M(x,y)+M(x,l)]
o cx(1=y)y-x)""dxdy
+n(n—1)(n—2)IIL _'[M(o,y)+M(o.z)+M(x,y)+M(x.z)]
T cx(z=x)(1-z+y-x)""dxdyd:
+n(n—l)(n—2)“’L "rl[M(x,2)+M(x.l)+M(y.z)+M(,v.l)]
- “(y=x)1-z)z-y+x)" *dxdyd:z
+n(n—1)(n—2)(n—3)J'I”‘“_ “’_‘I[M(x.zHM(x. w)+M(y,z)

+M(y, w)(y-x)(w=z)(1~w+z—y+x)"* dxdy d: dw.

Now we evaluate all inner integrals that can be computed and we regroup similar
terms. After extensive but routine calculations we find

-['f Moy 1"
A'-L L Mix ) dxdyt o+ 2 ), (MO )+ M1 =)

O PRV
P [x"+(1-x) ]+n+l[x +(1-x)"""+x(1-x)

(2'14a) l x"—z xn—l n nel
X X
+ynln= 1)("_2)[_3(n—-2)+n—l T l)]} dx
+-;-n(n—l)jf M(x, y)A(x, y) dxdy
O<x<y<l
where
A(x,y)=x(1—y)(y-x)"-2+x{z D (-0
-2
+(1 —y)""]+::_1 [(y=-x)""'+(1 -y)""]]
n—1t —_
+(1 —y){Z i_ " —}’[(y—x)"'2+x"'2]+%_—?[(y—x)"_'+x"_']}

(218) +2["+(1=x)"+(1=y+0) )L [¥" + (1= 3)"+ (= x)"]
2
n—1
-1
+x"Zy(1-y+x)+(1-p)"(1-x)1-y+x)+(y—x)"(1-x)y
{(1 —y+x)" (1-p+x)"' (-y+x)"? @ —y+x)"*’}
3n n-1 n—-2 3(n-3)

D' +(1-x)""+(1-y+x)"""]

[x" ' +(1=-y)""+(y-x)""]

1
+5(n -2)(n-3)
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We now substitute in (2.10) the expressions for A, to A, we derived in (2.11) to

(2.14), and after grouping similar terms and some algebra we arrive at the expression
in (1.6). 0

3. The rate of comvergence. In this section we determine the rate of convergence
to zero of the mean-square error given in Theorem 2.

We will use the following expression for the integral for a function F with L (Z1)
continuous derivatives:

1 L (_l)l»l (_l)L ]
3.1 J F(x)x"dx= ¥ ~n F' 1)+ T J Fl(x)x" "t dx
sy (1]

o

where n is a positive integer and
(3.2) n"=(n+1)-- - (n+).

Expression (3.1) is obtained by repecated integration by parts or use of Taylor's
expansion for F(x) about the point 1.

We will also use the following version of the approximation of a function by a
delta sequence (whose proof is standard).

LEMMA. Let F(x) and {K,(x)},., be Borel functions defined on [0,1). If F is
bounded and (left) continuous at | and if the kernels K, satisfy the following conditions:

(i) jK,.(x)dx=l Jor all n,

[\]

1
(ii) J' [Ka(x)|dx=C <00 forall n,

[+]

1-8
(iii) lim J iK,(x)]dx=0 forallde(0,1),
n-+x 0

then
, .
(3.3) lim J- F(x)K,(x) dx=F(1-).
n->x 0
In particular, when F is as in the lemma we have
)
(3.4a) lim (n+l)j F(x)x"dx=F(1-),
n-00 o
1
(3.4b) lim (n+l)(n+2)I F(x)x"(1-x)dx=F(1-),
n-»oo o
]
(3.4¢) lim %(n+l)(n+2)(n+3) j F(x)x"(1-x)*dx = F(1-).
n-»o o

Proof of Theorem 2. We proceed by determining first more detailed expressions
in inverse powers of n for each of the integral terms in (1.6), which are then combined
to produce the rate of convergence of the mean-square error. We denote by B, the
first integral (1.6b), by B, the second integral (1.6¢c) and by B, the third double integral
(1.6d). For convenience we set M(x, y) =f(x)R(x, y)f(y).

M A o B e ot et T T
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The sectional integral B,. Putting F(x)= M(x, 1)+ M(0,1-x) and using (3.1)
with L =2 (and changing variables to y = 1 —x for the final term) we obtain after some
algebra

Bl = F(o) F(l) F,(0)+F’(l) 1 j Fn(l_x)xn+3 dx

T2 (@) 4 (3 3) " 5.03)
2n n 2n 2n 2n Jo

' " (n2+3n -2)x"*3 x"+2 X"
+L F (x){4(n+1)(n +2)(n +3)-2(n+2)+4("“)} o

It is easily checked that the polynomials k,(x) within braces in the last integral are
positive on (0, 1), with

1

1
J k,(x) dx =
0
and that the kernels K,(x)=2n"k,(x) satisfy the conditions of the lemma. It then
follows from (3.3) and (3.4a) that

F(0)+2F(1) F'(1)-F'(0) F"(1)-F"(0)
I TE) + 2n® + 2n'Y

B,= +o(n™),

and using the form of F to express the coefficients in terms of M we find

B, = —#{M(O, 0)+M(1,1)+M(0,1)}
(3.5) +5"(—,) (M1, 1) - M9(0,0) ~ M"9(0, 1)+ M®'(0, 1)}

+ﬁ {M*°(0,0)+ M>°(1, 1) - M2%(0, 1) — M®2(0, 1)} + o(n~*).

The diagonal integral B,. The integral B, may be written in the form

2

1 1
I M(u, u) du+J’ {M(u,u)+ M(1—u,1—u)}

T2n+1) ), 0
"_l +1 1 n}

- nt_Z by

{2(n+1)“ ki

Since F(u)= M(u, u)+ M(1—u, 1 —u) has two continuous derivatives we obtain from
(3.1) with L =2, applied to the second term,

J-I M(u, u) du-—i F(l)——z— F'(1)
g n? n

B,=
z 2(n+1) Jo

1 ., n __1 . un+2
+L F (u){zn(,, u ”-—2"(2)} du.

The polynomials k,(u) within braces in the last integral are negative on (0, 1) with

! 5
L k»(u)d“='-m.
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and it is easily checked that the kernels K, = (2/5)n‘*'k, satisfy the conditions of the
lemma. It then follows from (3.3) that
3 J" 3F(1) 2F(1) SF'(1)

T2mwn Jo MU W M T T

2 +0(n_4),

and using the form of F we obtain

3 M 3
=D ,[, M (u, u) du - {M(0,0)+ M(1, 1)}

(3.6) +%{M'-0(1, 1)~ M0, 0)}

—;'% M>°(0,0)+ M>°(1, 1)+ M"(0,0)+ M"'(1, 1)} + o(n”*).

The double integral B;. In the expression of B; in (1.6d), by changing variables
appropriately in each of the six double integral terms and grouping separately the first
three and the last three terms, we can write B, in the following form:

1 1
B,= L {%J' BBM(x, y)+3M(1-x,1-p)+M(y—x,y)] dy}x"dx

1 X
(3.7 +J {I M(x—y,l—y)dy}{i(n—Z)(n+3)x"—%nzx""+%n(n—l)x""2}dx

0 ]

1 1
4 J F(x)x"dx+ I G(x)g,(x) dx
0 0

with the obvious identification for F, G, and g,. Since f is assumed to have only two
continuous derivatives, so do F and G. We therefore use first (3.1) with L=2 and
then identify those terms in F”, G” which are not differentiable for separate treatment.
We first obtain (after some algebra)

B I S RSV

apers M,
)]
—_
—
-
m
—_
—
~
|-

1
B, = + ey L F"(x)x"*? dx
(3.8)

3G am (... {(n—Z)(n+3) a2 M piry L }
—2(n+1)+ D +LG(x) an® X 2("_H)x +4x dx.

Evaluating 2F(1) -3G(1) and G'(1) - F'(1), and denoting by A,(x) the polynomial in :
braces in the last integral, we have

§ 1
? B3=——3—j M(u,u)du+%{2M(0,0)+2M(l,1)+§ M(0, 1)}
[ 2(n+1) J n 3
(3.9) - .
+-n—(2-; J F'(x)x"*? dx+I G"(x)h,(x) dx. g
(4] 0
From the definition of F and G in (3.7) we evaluate their second derivatives after 1

which we separate those terms which are not differentiable. We thus write
F"=F|+F2, G”=G|+Gz

i where )
o (3.10a) Fi(x)=-3M"(x,x)~M"(1-x,1-x)]1-{M*'(0, x) - M"°(0, x)],
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1
(3.10b) Fy(x) =% I {3M*°(x, ) +3IM*°(1 - x, 1 - y)+ M*°(y - x, y)} dy,
(3.11a) Gy(x)=-M*'(0,1-x)+M"°0,1-x),
(3.11b) Gi(x)= Jx M*(x -y, 1-y) dy,
(V]

and F,, G, are differentiable, while F,, G, are not. Proceeding as before, using (3.1)
with L =1, we obtain

1 1
Bs, é# I Fy(x)x"*? dx+j G\(x)h,(x) dx

0 0

Fl 1 ! n+
3.12) = n‘(:))_pj‘o Fi(x)x"*? dx
l ’ ( _2)(n+3) n+ n n+ l n+
+G(l)x{0}—jo G,(x){ . an® x 3—2n‘2’x 2+4(n+l)x '} dx.

It is easily checked that the polynomials k,(x) within braces in the last integral are
positive on (0, 1) with
1
3
J:) k,(x) dx = ®
and that the kernels K,(x)=(2/3)n"k,(x) satisfy the assumptions of the Lemma.
Thus from (3.3) and (3.4a) we have

B.. = F() Fi(1) 3Gi(1)
TG T @ T @

Evaluating F,(1) and 2F}(1)+3Gi(1) from (3.10a) and (3.11a) we finally find

+o(n™%).

B, =55 (9[M'°(0,0)~ M'(1, )]+ M'(0, 1) - M**(0, 1)}

(3.13) +ﬁ f9M*°(1,1)+6M>°(0,0) + M*3*(0, 1)

+9M"'(1,1)+12M"(0,0) - M"(0, 1)} + o(n ™).
To complete the evaluation of B; in (3.9) we need to evaluate

1

1 ]
33,24"@ I Fy(x)x"*? dx + J'o Gy(x)ha(x) dx.

(1}

While F, and G, are not differentiable, when M (1, s) = f(t)R(¢, s)f(s) is substituted
in (3.10b), (3.11b), some of the terms in the resulting expressions are differentiable
and we first deal with these. We thus decompose F, and G, into

F,=F,,+F,,, G,=G,,+ G,
where

F(x) =% I {61'(x)R(x, y)f(y)+6f'(1-x)R(1 —x,1-y)f(1-y)

(3.140) +2f'(y —x)R"(y = x, y)f(») +3f(x)R**(x, y)f (»)
+3f(1-x)R*°(1-x,1-y)f(1~-y)
+f(y = x)R**(y — x, )f(y)} dy,

A e W T A

——
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(3.14b) Fap(x)=3 j BRI+ 3 (1= )R- %, 1-y)f(1-)
+1"(y = x)R(y ~x, y)f(y)} dy,
(3.15a) Gz.x(x)=Lx 2 (x=y)R"™(x =y, 1~ y)f(1-y)
+f(x=y)R**(x~y, 1 =y)f(1-y)} dy,
(3.15b) Gay(x)= J':f"(x—y)R(X'-y, 1-y)f(1-y) dy.

As F,, and G,, are differentiable, the term
B,,, An—fz-, Ll Fy (x)x" 2 dx+ L\ G, (x)h,(x) dx
can be evaluated by using (3.1) with L=1 to obtain
B, = (3) F,Q(1) - f,) J.' F,(x)x"** dx + G,,(1) x {0} - Ll 5.4(x)k,(x) dx

with the same polynomials k,(x) as in (3.12). It then follows as for B, that

F(l)F(l) 3G (1-) -
By, = ;:3) :'(I-n - 22':(4) +o(n™*)

and evaluating F,,(1)(=0) and 2F},(1)+3G3,(1-) from (3.14a) and (3.15a) we obtain

B; .= u){ 6R"°(1, 1)f(1)f'(1)+2R"°(0, 1)f"(0)f(1)

+3R*(1, 1)f (1) + R*%(0, DS(0)f(1)

(3.16) v 20 ,
-3 J' [2R"O(u, u)f(u)f"(u) + 3R> (u, u)f(u)f'(u)

+ R*(u—, u)f*(u)) du} +o(n™%.

To complete the evaluation of B;, we finally need to evaluate
1 1 1

By, ,4 D J- Fz,z(x)x"+2 dx+J Gja(x)h,(x) dx
0 0

where F,; and G, , are given in (3.14b) and (3.15b) and h,, is the polynomial in braces
in (3.8). Substituting F, , and G, , and isolating the nondifferentiable factor f” we can
write it in the form:

B;,,= I f"(x)x"+2{j R(x, y)f(y) d}’} dx

2n PYNT))

23(2)j ff(a- x)x"ﬂ{J‘ R(l—x,l—y)f(l-y)dy} dx

2,,(2)J. f”(“){J-u R(u, v)f(v)(v—u)"*? dv} du

+J' f"(u){j R(u, v)f(v)h,(1+u—-1v) dv} du.
1] u

i e\
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We denote the four terms by T, i=1, 2, 3, 4, and the corresponding functions in
braces by H;. For the first two terms we use the Taylor expansion about 1,

H(x)=H(1)~ H'(1)(1 - x)+:H"(¢,)(1 - x)’

where the intermediate point t, belongs to (x, 1) and depends continuously on x. We
thus find

3

7}+'7} 2n (2]

{ HS(I)jlf"(X)x"+z(l—X) dx+%J STOOH(6,)x™2(1- %) dx
o 0
—Hé(l)j S'(E=x)x"**(1-x) dx

+3 f £(1- ) Hi(1,)x" (1= x)’ dx}
and from (3.4b), (3.4c) we obtain
T+ T = (- Hi)(1) ~ HYOS O+ o(n ™9+ 0(n™)
and finally

(3.17) T, + Ty=5— {R(1, )f(1)f"(1) + R(0, 0)f(0)f"(0)} + o(n™*).

2“‘

For the third term, T, we first integrate by parts the expression of H; to write it in
the form

Hy(u) = — RGw DAL =)= — I D.[R(w, 0)f(0))(v—u)"** do

where D, denotes partial derivative with respect to v, and substitute in T;:

T;= I S"(u)R(u, 1)(1 - u)"" du

1
—2n‘3)

Since the integrand of the double integral is bounded and ff,_, (v—u)*dudv=
[(k+1)(k+2)]"", the double integral is O(n~*) and thus by (3.4a) we obtain

” S"(u)D,[R(u, v)f(0)}(v~u)"** dv.
O<u<p<i

(3.18) T, = S ORQ, D+ o(n™).

For the fourth term T, we likewise first integrate by parts the inner integrand H,.
Noting that h, = k; where k, is the polynomial within braces in the integral in (3.12),
we obtain by integrating by parts

1

H(u) =I R(u,1+u-2z)f(1+u—2z)ki(z) dz

= R(u, u)f(u)k,(1)— R(u, 1)f(1)k,(u)

]
—I D.fR(u, 1 +u—-2)f(1+u—-2z))k,(z) dz
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Since k,(1)=0, and as was pointed out following (3.12), (2/3)n'*'k, satisfies the
assumptions of the Lemma, we obtain by (3.3),

(3.19) . .
r.='—f {f"(z)R(z, 1)/(1)+f S D[R, 1+ u=2)f(1+u=-2)] du}kn(z> dz

1
=—5%{f"(1>k(1,1)f<1)-j J LR G w0+ R, )1 )] | + 0.
(1]

Putting together the expressions in (3.17) to (3.19), we find

Bia=sm { 3R(0, 0)£(0)f"(0) + R(0, 1)f"(0)f(1)
(3.20)

0

+3 I S )[R (1, w)f(u) + R(u, u)f"(u)] du} +o(n™").

Now from (3.9), (3.13), (3.16), and (3.20), we derive the final expression for B;:

3 ! 1 1
B;= ETCrST L M(u, u) du+;m{2M(O, 0)+2M(1, 1)+§ Mo, 1)}

4 OIM'(0,0) = M'S(1, )]+ M0, 1) = M*(0, 1)

+ {6M2'°(0, 0)+9M>°(1,1)+ M®¥0, 1)+ 12M"'(0, 0)

2n®
(3.21)

+9M™(1, 1) = M™'(0, 1) +3R(0, 0)f(0)f"(0) + R(0, 1)f"(0)f(1)
+6R"(1, Df(1)f'(1)+2R"°(0, 1)f'(0)f (1) +3R*°(1, 1)f*(1)

+R*(0, )f(0)f(1)+3 J Lf"Rf' = f"R"f =3f'R*f 1(u, u) du
0

1
-3 J R*(u—, u)f*(u) du} +o(n*.
0

The rate of convergence. Substituting the expressions (3.5), (3.6), (3.21) of B,, B-,
B, into the expression (1.6) of the mean-square error, we find that all lower-order
terms cancel and we obtain (1.7), where the constant C(f, R) is readily identified from
the coefficients of (n“)™" in (3.5), (3.6), and (3.21). In addition to expressing M in
terms of f and R in the coefficient of (n¥)™" in (3.21), we also use the following
expressions for some of the integrals involved, which follow by integration by parts:

L Lf"Rf " u, u) du=%{[f’Rf'](1. 1) -[/"Rf')(0, 0)}-J0 LFR™Y1 N (u, u) du,
L [f"RYf)N(u, u) du=[f'R" ()1, 1) -[f'R"f1(0,0)

—I L (R*f+R"'f+ R"°f"))(u, u) du.
0

The resulting expression of the asymptotic constant C(/f, R) is given in (1.8). This
completes the proof of Theorem 2. ]
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The asymptotic constant. The expression of C(f, R) given in (1.8a) cannot be
symmetrized any further under the current assumptions (note the lack of symmetry in

the constant terms involving R'! and in the integrals). However, if R(f, s) is further .

assumed to have continuous mixed partial derivatives of order 3 throughout the unit
square (rather than off its diagonal—as has so far been assumed), then by integrating
by parts we find (using the obvious shorthand)

(322) Jl (Rl.l _2R2.0)ﬂ1 =% [(Rl.l __2R2,0)f2](|)+ J'| RJ.OfZ
0 0

and thus the integral terms in C(f, R) can be evaluated. This produces the following
symmetric expression:

2C,,m(f; R)=3R(0,0)1'(0)*+3R(1, 1)f(1)* = R(0, 1)f'(0)f*(1)
+ R0, 0)£(0)£'(0)+ R"(1, 1)f(1)f"(1)
~ R0, 1)£(0)f'(1) — R*'(0, 1)f"(0)f(1)
+3R"(0,0)%(0) +3R™'(1, 1)f*(1) - R"'(0, 1)£(0)f(1).

It is easily checked that this can be written as in (1.10), so that under these slightly
more stringent assumptions, which fall short of guaranteeing two quadratic-mean
derivatives for X, we have (1.11). In view of (3.22) and (3.23), the general form of the
asymptotic constant in (1.8a) can be written as in (1.8b).

(3.23)
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