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ABSTRACT

A number of sequential and parallel procedures for analyzing the response
of structural complexes, subjected to various drives, are briefly developed and
discussed. The impulse response vector operator is defined in terms of impuise
response operators, each associated with a unique path between the localized
position of a test drive and a localized position of observation. The drive is,
correspondingly, a vector and the response is the scalar product of the impulse
response operator and the drive vectors. A sequential procedure of subdividing a
structural complex into a number of coupled dynamic systems is stated. The
formalism is then stated in terms of matrices and vectors; e.g., the response is a
vector; each element represents the response of a specific dynamic system, the
impulse response operator is a matrix; the off-diagonal elements describe the
couplings between the dynamic systems, etc. If the dynamic systems are chosen so
that each, in isolation, can be described in terms of an eigen-imgedance operator,
then, in addition, a modal analysis can be applied to the muitiple dynamic systems
that compose the model of the structural complex. In the modal analysis, however,
the ranks of the impulse response matrix, the response vector, and the drive vector,
are swollen by the modal count, usually rendering the matrix equation for the
response unwieldy. The modal approach may be substituted by a wave approach.
In this parallel approach, the propagations in the dynamic systems are described by
impulse response operators that are commensurate with those pertaining to
boundlessly extrapolated dynamic systems. The finiteness of the dynamic systems
are accounted for by junction matrices; a junction defines the boundaries through
which dynamic systems interact either with each other (transmissions) or with self
(reflections). As in the modal approach, in th1s wave approach, the resuiting
formalism is, again, rather unwieldy. It is shown that considerable reductions and
simplifications are attained if the complex can be modeled by spatially one-
dimensional dynamic systems.
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INTRODUCTION
The analysis of the response of a driven complex structure is relevant not only to dealing
with acoustical problems, but also to dealing, among others, with optical, biological, and

economical problems. This generalization and encompassment of the solutions to the response of
structural complexes may have encouraged wider interest and contributed to the variety of
approaches to the analyses of these generic problems. In this paper the acoustical probiems are
implicitly epitomized.

The analysis of the response of a (structural) complex to various external drives is often
well nigh impossible. One must then resort to some reduction in the definitions and descriptions of
the complex and the external drive system to render the analysis manageable. A reduction is
usually achieved by modeling the complex and the external drive. The model is chosen so that the
analysis can be performed. Some modeling insists on details so that one-to-one correspondence
between the response of the model and the actual complex is substantially preserved. Measures
and devices (active and/or passive) that are instituted to control the response (or responses) may be
compatibly modeled. The elaborated model may then be exercised and the results substantially
related to the controlled complex. In such applications one may estimate the benefits of the
instituted controls also on the basis of one-to-one correspondence. On the other hand, some
modeling may insist merely on a phenomenological correspondence ; one may be satisfied then
merely with descriptions of the response that manifest a phenomenon (or phenomena) that is
common to the simplified model and the actual (structural) complex. Measures and devices
(passive and/or active) that may be instituted to control the phenomenon (or phenomena) may then
be examined on the elaborated model of the complex and phenomenologically related, by analogy,
to the controlled complex. In such applications one may not, however, demand precise estimate of
the benefits accrued from the institution of the controls; beneficial trends and inclinations is all that
can be expected. Moreover, not all phenomenon (or phenomena) can be accounted for in
simplified models and, therefore, caution should be exercised in any phenomenological
correspondence procedures. In this paper the complex is variously modeled in the milieu of




phenomenological correspondence. Moreover, it is not modeled with the intent of establishing a
particular description, but rather with the intent of exploring analytical techniques and procedures
that may be employed in deriving general phenomenological descriptions. Although this aim
renders the paper somewhat abstract, it is hoped that, nonetheless, it will be found useful by some
readers. Finally, the relationship is established between modeling that utilizes a multiple spatial
dimensionality of the actual complexes and modeling that relies solely on a single spatial
dimensionality. This is of significance to the modeling used in recent papers [1-5].

The basic description of the complex is cast in terms of an impulse response function
g(RI%’, t|t") so that the external drive Pe (X', t”), defined at the position {X’, t "}, will gsnerate a

response p (X, t) at the observation position {%, t}; i.e.,

o

S0
§xs ; dﬁ':l’ldx; .
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where § is a unit vector lying in the spatial coordinate x, and [§ 0] = [0 §] = 8gp .! The complex
is three-dimensional when sg = 3, two-dimensional when sy = 2, and one-dimensional when

so = 1. The impulse response function is pure if it is a functional only of the parameters and
quantities that describe the complex; it is independent of the drive Pe (%, t”) and the response

p (X, t). Situations may arise in which it may be convenient and instructive to express equation
(1a) in spaces other than {{, t}; e.g., in the {%, ®},{£, t}, and {£, ®} - spaces, where the

wavevector £ and the frequency @ are the Fourier conjugates of the spatial vector variable % and the

1The caret is used herein to indicate a vectorial representation. A caret over an index indicates a
"unit vector”; e.g., §in equation (la). A caret over avariable, e.g., Rin equation (la), indicates
that it may be multi-dimensional; each component is associated with a given normal direction. A
caret over a quantity, e.g., 8 in equation (8), indicates that it may be multi-path; each component is
associated with a given normal path. A "unit patli vector” is indicated by a caret over the index of
the path; e.g. Vin equation (8).




temporal variable t, respectively. The spaces of convenience may be chosen on the basis of the
external drive, the response, or both. For example, equation (1a) may be expressed in the forms

[ gt tod do’ 5. &0 =p ko) ,

(1b)

Jerait oty ad e p @) =5 (R w) , 1e)

[zt o0 & do’ 5 @00 =5 (R o) , 1d)

AR, K &' T &) =pRt) , ae)

[ 37k, teyat e p &y =B (k1) an

[Edik, mydk e’ P, 1) =3 (k1) ; 9*2““ “Q’l?dk; ' g
[edit, o0 d do' P, &, 0) =Pk ®) , (1h)

and so forth, where typically |
PR, m) = 2r)12 fdt p(}, t)exp(-Hwr) , s)
’5(&,:)-(2x)‘"°’”fdfp(ﬁ. t)exp kL) , 2b)

$Q1%, wlo”) = ! [ar] &’ expion g k1R, LIt expat’) 20)

Onemaychooseequaﬁon(lb)iftheexmaldrivehappenstobehighly1oea1imdinthcﬁequency

4




domain (steady state drive) and yet the response is desired in the temporal domain. On the other
hand, if the external drive happens to be highly localized in the temporal domain (transient drive)
and one desires the response in the frequency domain one may choose equation (1c). Further, if
the external drive is highly localized in the frequency domain and the response is desired also in
this domain, equation (1d) may be chosen. Other combinations, involving also the spatial and
wavenumber domains can be similarly classified. However, it may transpire that the form of the
impulse response function may dictate in part which of the spaces are to be conveniently (and/or
expeditiously, within a Fourier transformation,) chosen. For example, situations may arise in

which the impulse response function may be stationary in one and/or the other dependent variable;

c.g.,
gRI%, tIt)=Rry 12 gRI1%, t-t") Ga)
gRIR’, t]t") = @rySo/D gR-%', t[t') . (3b)
In such situations one finds that
ERIR, 0l0”)=FR(X, 0) 5(@-0") , 3c)

TRt U =3k tnsk-;

S0
s(ﬁ"ﬁ)‘:l}s(ﬁs-ﬁs) ’ (d)

respectively, where typically

gRIX, @) = 2n) 12 fdt (X%, ©)exp(-iaT) Ge)

From equations (1) and (3) it is apparent that stationarity results in substantial simplifications. It

reduces, in the Fourier transform domain that corresponds to that in which the stationarity is




present, an integral operator to an algebraic factor. The availability of such a reduction may dictate
the choice of the space of convenience just discussed. Finally, it is convenient, for the most part,

to deal with the impulse response integral operator rather than with the impulse response function.
The impulse response operator h (X |
g(R1%’, tit’) in the form

DNe

X’, tt") is related to the impulse response function

R, t1t) = | g QIR L1ty drdtreeee -

c.g-

BRI, ) p @) = [ g RIR, ) a &' pe R @)

where pe (X’,t"), in equation (4b), is an arbitrary, but well behaved, function of the dependent
vector variable {X", t’} Invariably, except for a few simple structural complexes, the direct
derivation of the impulse response functions or operators are difficult and cumbersome. One must
then resort to modeling procedures that will give the derivation a chance. In this paper a number of
analytical approaches, designed to derive the proper impulse response functions or operators of
complex structures, are considered.
Itmaybeuseﬁxl,atthisearlystage,tomakeaprecisofthesmryofﬂxepaper. In this way
some idea as to where the paper goes will be related before the multitude of equations and the maze
of notations take over. The response of a (structural) complex that is excited by an external drive is
formulated in terms of an impulse response function and/or operator. The operator is an integral
operator that spans the spatial and the temporal extents of the complex and the external drive. This
formalism is depicted in equations (1) through (4). As just stated, rarely is the complex and the
drive sufficiently simple that they can be reasonably represented in single forms. Itis, therefore,
proposed to model the complex and the drive so that the description can be decomposed. The
decomposition is in reference to unique and significant paths yielding components through which




the response can be estimated by a superposition. The hope is that the analysis in terms of these
paths may lead to a set of simpler impulse response operators. A vectorial arrangement of the set,
with a corresponding set of drives, may render the formalism simpler in certain applications. A
more drastic step in the analysis is then taken. The complex is modeled in terms of elemental
constituents — — dynamic systems, each of which is amenable to a reasonable description. The
premise is that the impulse response operator associated with each dynamic system may be
reasonably derived. The drive is similarly modeled in terms of elemental constituents, each
assigned to a dynamic system. The formalism, as expected, is cast in matrix form: The complex is
described in terms of an impulse response matrix operator, the external drive in terms of a
compatible vector, and the response is then a vector; each element, in the response vector, is the
response of a specific dynamic system. A major difficulty in this analytical modeling is the
multiplicity of descriptions required and the requirement for the description of the interactions
(couplings) among the dynamic systems. Nonetheless, this modeling technique is central to the
paper. This modeling technique is of particular appeal in those situations in which the generic and
phenomenological properties of the response of a collection of dynamic systems that interact may
be more significant than the precise evaluation of that response. Nonetheless, to this point in the
development of the analysis, the modeling of the complex in terms of coupled dynamic systems is
formally stated and the resulting equation for the response is thus of limited practical utility. The
impotence of the equation is evidenced, for example, by its insensitivity to the spatial
dimensionality of the dynamic systems. To infuse some practicality into the analysis just
developed, two major approaches are taken: 1. the modal approach, 2. the wave approach.
There are situations in which the modal and wave approaches can be readily related. The
Sommerfield Watson transformation constitute such a relationship [6,7]. However, in this paper,
the relationship is not a paramount topic. Rather, in the paper, the modal and the wave analytical
procedures are considered as parallel, but distinct, approaches to the analysis of the response of
models that cast the essential characteristics of the complex in terms of coupled dynamic systems,
as was just formally recounted.




1. In the modal approach the couplings are expressed in terms of coupling impedance
operators that are compatible with the impedance operators of the individual isolated dynamic
systems. The latter impedance operators are chosen to be eigen-operators so that each defines a set
of eigenfunctions and a corresponding set of eigen-values. The sets of eigenfunctions enable one
to suppress the spatial dependence of the matrix equation for the response vector, thereby
rendering this an equation of temporal dependence only. The spatial dependence of the response
can be recovered if the modal matrix equation for the temporal portion of the response is resolved
and the eigenfunctions are explicitly known. It emerges, however, that the modal matrix equation
for the temporal portion of the response is of higher rank, by the modal count, than the original
equation. Ii appears, therefore, that the modal approach is useful when the modal count is low and
the eigenfunctions are xnown. Usually, however, the increase in rank and the general difficulty of
specifying the eigenfunctions for most dynamic systems, makes the modal approach impractical,
unless statistical measures are brought to bear.

2. In the wave approach the model is defined in terms of extrapolated matrix propagators,
terminal position vectors, and junction matrices. A propagator, for a given dynamic system, is
defined in terms of propagation in which back-scatterings, from regions outside the insitu
boundaries, are eliminated by an appropriate spatial extrapolations of the dynamic system. The
terminal position vectors define the positions of the boundaries of the dynamic systems. The
junction matrices define the boundary conditions and the couplings among the dynamic systems at
and across these boundaries. It emerges, from the derivation of the matrix equation for the
response in this format, that the spatial dimensionality of the dynamic systems has a considerable
influence on the wave formalism. The interactions via the various paths at the various terminal
positions and across the various boundaries lead to summations (and when appropriate
integrations) galore; so much so, that the formalism appears too hopelessly interwoven and
entangled to be processed by computers of reasonable capacities, today a useful measure for the
practic lity of a formalism. However, dramatic simplification in this cumbersomeness of the
formalism results when the dynamic systems are one-dimensional. Further meaningful




simplification occurs if the dynamic systems are basic - — the propagation in the dynamic systems
is described by exponential-like propagators. The response of those complexes that may be
modeled by a collection of coupled basic one-dimensional dynamic systems is, therefore,
illustrated and is now readily formulated {1-5].

Finally, it is proper to mention the comprehensive review by Hodges and Woodhouse on
the theories of noise and vibration transmission in complex structures [8]. In this review many
aspects of the subject matter covered herein are discussed. Indeed, much of the material and
references presented in this review are relevant to this paper. The discussion of the applicability of
the formalism of the acoustical response of complex structures to various other areas of physics, is
of particular interest. However, the intended purposes and methodologies of the review do not
overlap those intended and developed in this paper.

MULTI-PATHS

One may recognize that the response at { X, t} may be contributed to by a number of possible paths
and that each path is not only describable by an independent impuise response operator, but that
only a portion of the drive may participate in contributing a response via this path. The complex is
then modeled by a number of paths as is sketched in Figure 1. With the aid of such modeling one
may state that for each path the equation for the response mimics equation (1) so that

BY (RIR’, t1t) pew (R, 1) =PV (R, 1) )

where v designates a unique path. [cf. equation (4).] It is helpful and instructive, as the theoretical
development proceeds, to exemplify and contrast the derived equations with those pertaining to a
simple model. Therefore, the derived equations will be followed immediately by the
corresponding equations that are appropriate for the simple model of the complex. The simple
model may also be employed to render the equations more explicit. Brief references to this
procedure will be made at the appropriate locations in the text. Thus, to begin this procedure, if the




traversal of a path may be specified merely by a time delay 1V, the impuse response operator
hY (X| R, t|t") in equation (5) may be expressed more explicitly in the form

B (RIR,t1t) = BVRIR, YA () (62)

where BV(% ] %", t |t’) plays a secondary role and is functionally reasonable and available, A (1) is
a temporal operator defined by

N N
AMIO=ft-1; [AG =425 . (7a)

the path v is assumed unique, the subscript and superscript (v) identifies the path, 1V designates the
clapsed time (retarded time); the time taken by a response induced at X’ to transfer, via path v, and
arrive at X, and finally, f is an arbitrary, but well behaved, function of time. The elapsed time 1V is
a function of & and #” and is independent of the temporal variables; T = ¥ (| £”) but not

A, Ar

(X', t|t"). A basic example of the impulse response operator in which hY (%1 %’, t|t*) is
more explicitly stated is

hY (RIR, 1) = B (R(R, tt) A
B @18, ) = Bv@lx) 8%e-1) ;

BRIl rGIta..; B =fse-tyar... )

where B¥ (| %) is independent of the temporal variables, and
o, ., R T S
§7-t) @)= (®) ; T8 (ta1=ta) =8 (tNu1 ~t0) 7b)

[cf. equation (4).] To cast equation (5) in the format of equation (1) one needs to construct the

impulse response operator and the drive in vectorial forms; i.e.,

ﬁ(ﬁli',m'):; R IR LYY .

10




66(2’: t’) =§%Peo(£" t’) [06] =[6<"] =8ve , )

where again the caret atop a quantity signifies its vectorial nature.!2 [cf. equations (1a) and (1g).]
For the simple model, equation (8a) assumes the form

AN A, NS TV A R vid
h(xlx,tlt)-§h(x|x,tlt)A(‘t WV o, (8b)
The grand equation for the response is then derived from equations (1), (4), (8), and (9) in the

form

IR, ) fe®, t)]=pR ) ;. PR H=ZpR 1) . (10)
It is noted that a path is defined either in terms of components in the impulse response operator, in
the drive, or in both. Although not exactly in this format, equations (5) and (10) have proved
useful in handling problems relating to structural response. Problems relating to propagations at
sea have made greater use of such decompositions than structural vibrations have. The reason for
the limited deployment of this formalism in solving problems related to structural vibrations, stems
from the difficulty and cumbersomeness that often still remains in the description of the partial
impulse response operator h¥(X | X, t | t") — —the impulse response operator describing the transfer
via a single unique path; path v. This statement holds true even for the partial impulse response
operator of models that are simple. [The simplicity of these models may arise because they
represent simple practical structural complexes and not necessarily because they represent
excessively simplified complexes.) Much of the progress made has been linked with statistical
measures designed to perform the summation over the paths; ¢.g., by ensemble averaging. In

2Paths (and, when approapriate, positions at junctions) are cast in terms of sums over discrete
values. However, in principle these sums may be continuous so that the summations may be
appropriately replaced, in part or in whole, by integrations. This transition from the discrete to the
consinuous may be interpreted from ray, via beam, to wave descriptions. In this sense, in the tex,
the reference to wave propagation is more akin with ray propagation.

11
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these cases the partial impulse response operators need not be precisely defined and described.
Averaging of this kind has been applied with some success to limited and simplified situations in
structural vibrations; e.g. References 9 and 10. On the other hand, averaging of this kind has been
traditionally quite acceptable in solving problems relating to propagations at sea; ¢.g. References 11
and 12. On a typical basis, statistical measures may yield from equation (10) a simplified

equation (1). However, in this paper, rather than investigate the restrictions that are impesed on,
and explore the advantages that are accrued from the resulting equation, one may inquire whether
alternate and/or further analytical decompositions exist from which more profound benefits may be
attained.

MULTI-DYNAMIC SYSTEMS

One may attempt to subdivide the complex into a number of coupled dynamic systems as is
sketched in Figure 2. [cf. Figure 1.] A contrived model may then be constructed in which the
dynamic systems are rendered uncoupled. The uncoupling of the dynamic systems may be
instituted, for example, by artificially isolating or extrapolating the dynamic systems. In this
contrived model each dynamic system admits to an impulse response function that is hopefully
reasonable to describe. The equation for the response of the contrived model of the complex, in
which the dynamic systems are rendered, artificially if necessary, uncoupled, may be cast in the

form
he R IR 1) pe X, ) =pu(R, 1)
(11a)
where
80 S0
R={%}; R={R]}; {=28xy; dR=Tdx,; , 12)

12




hy(R IR, t1t) = (ho Ryl %], t1t) &)
(13a)

A
Rt ={pa(X;, )} ;  pu@®,t) = {py(Rj, 0} .
Pe(X {pa(xi, 1)} 5 pu(X Py (X, )} (148
Pei (X], t’) is the drive applied at positions { X{, t’} to the (i)th dynamic system,
huj(ijlf‘&}»tIt')istheimpnlseresponseopemorofmeuncoupled(i)ﬂ:dynmicsystem,md
Puj (ﬁj.t)isthemponseatposiﬁon {ﬁj, t} in the (j)th dynamic system. In component form
equation (11a) is

hoi(Rj| &7, 1) pei( 4], ") = py(Rj,t) . (15a)

It is noted that the dynamic systems need not span the same spatial dimensionality. Thus, £; may
be of different spatial dimensionality than that of &; with i# j.

The insitu model of the complex must account for the various couplings that may exist
between the multiple dynamic systems. Indeed, the specification of the couplings is crucial in this
modeling. It is proposed that, in turn, the modeling may reveal the manner in which the couplings
need be specified. This interaction between the modeling and the specification of the couplings is
essential to the success of this formalism. (It is to be understood that in the specification of the
couplings are included deviations in the boundary conditions under which equation (11a) is stated.
Therefore, the specification of the couplings may cause changes in the definitions of some dynamic
systems without, necessarily, causing changes in the fact that they are uncoupled; i.e., some
dynamic systems may be uncoupled in the insitu model.] Taking account of the couplings, one
may formally state the equation for the response in the matrix form

BRIR,th) pe X, t)=p R, 1) , (11b)

-~

or equivalently in the component form
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Z (R &t 1) pa (R, ) = py(Ry,0) (15b)

where

BRIRL ) = (b Gl&, 1))
(13b)

peR" 1) ={pa &, 1t} i p&.v) = {p &, 0} . (14b)
[cf. equations (11a), (15a), (13a), and (14a), respectively.] In these equations, the impuise
response operator hj; (;] %], t |t’) is the “transfer operator” from the drive position at {%;, t’ }
in the (i)th dynamic system to the observation position at {Xj, t} in the (j)th dynamic system,
Pei (X}, t°) is the external drive at {%], t’} on the (i)th dynamic system, and p; (X} , t) is the
response at {%;, t} in the (j)th dynamic system due to all the external drives in the various
dynamic systems. One may also cast equation (11b) in the more decomposed form

R(RIZ, 1) pe(R',t') =p(R,1) ,

(11c)
where the (external) drive matrix and the response matrix are defined
PR )= (P (R, )8k) 5 PR, )= (ps(R,0))
(14c)
respectively. In component form equation (11c) reads
By (51 47, ¢ 1) pei (37,1 = P (R, ) . (15¢)

{cf. equations (15a) and (15b).] It is obvious that when the dynamic systems are artificially
rendered more and more uncoupled, in the prescribed manner, the result is

h(RIR,t1t) = he(RIR"t]t")
(16)
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The inverse of equation (16) is more difficult and cumbersome to establish. Not only off diagonal
clements appear, rather than disappear, but the diagonal elements undergo changes. Therefore, the
establishment of the uncoupled impulse response matrix operator ‘.1"(’3"3" t|t") may not imply a
direct and an immediate step in the process of deriving the impulse response matrix operator

h (g | g ’, t|t"). Nonetheless, situations may arise in which such an establishment may constitute a
first step in the process of deriving h;eg., h, may be considered the zeroth order approximation to
h. In this context modeling the complex in terms of multiple dynamic systems necessitates
specifying the couplings among the dynamic systems in a manner that is compatible with the
definition of the contrived model of uncoupled dynamic systems.

The derivation of the impulse response matrix operator h (£ [, t [t") for the subdivided
complex can be achieved by a number of different approaches. Invariably in these approaches
further analytical decompositions are instituted. Are these further analytical decompositions of help
in reducing the difficulty and cumbersomeness of ascertaining the response of structural complexes
excited by complex external driving systems? Two distinct approaches are subsequently

discussed, and comments are made with respect to the answer to this question.

MODAL APPROACH

An analytical decomposition that is widely familiar is the modal analysis. A model in
which the multiple dynamic systems are rendered uncoupled by isolation is amenable, by its very
structure, to modal analysis. Indeed, the isolated dynamic systems in the complex are conveniently
chosen in a manner that make them, individually and collectively, suitable to a modal analysis.

The model is sketched in Figure 3. [cf. Figure 1 and 2.} The equation for the response is then
typified by equation (11a). It is assumed that each appropriately isolated dynamic system is
characterized by an impedance operator. The impedance operator zj (X;, t) is the inverse of the
impulse response operator hj ({; | &7, t [t”) of the (jth dynamic system. [cf. equation (13a).] It
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is further assumed that the chosen impedance operators are eigen-impedance operators. It is noted
that the definition of the eigen-impedance operators is not unique; there are usually a number of
ways in which the dynamic systems in the complex may be isolated. A convenient set of eigen-
impendance operators is then selected to define the model of the complex. Each eigen-impedance
operator defines a closed (complete) set of orthogonal (normal) eigenfunctions and a corresponding
set of eigen-values. The modal (eigen-) equations for the response, the closure, and orthogorality

are expressed by
Zi(Rj, 1) bju(Rj) = Zialt) Ga(R;) , (17a)
¥ tn(R) (X)) = 8K - 1)) ; a7
[ 03 4% () = Bum 170

respectively, where z; (%, t) designates the eigen-impedance operator, ®jn(X;) designates an
eigenfunction, and z,(t) designates an eigen-value for the (j)th dynamic system, n (and m) is the
modal (eigen-) index, and

A Ay so ’
Strictly the modal index need be cast in terms of a vector. That is, the index n (and m) in the
S0
equations in this section need be replaced by the vector index fi (and ), whexeﬁ--sﬂl $n,. Since

the modal approach is widely familiar, such, and other, details in the modal approach are not
dwelled upon in this paper. From equations (11), (14), and (17) one may state and readily obtain

Pa(R, t') = F Peim(t”) dim(R]) ;
pi(Rj ,t) = F Pinl®) ®u(%)) (19a)

where
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peim(t”) = | pei(R}, t) d8] ¢ @)

Pin(t) = jpjn(ﬁj: t) dﬁj ¢jn(£j) ’ (19b)

The insitu model is now constructed by introducing the couplings among the dynamic systems.
The couplings are compatibly defined in terms of coupling impedances. An impedance matrix
equation for the response may then be defined in the form

N
o

pR,)=peR,t) 5 PR ={pRp0)} i pek ) =pei(Rp 0) ;

2= (2% 0 8- k1%, v & [ 54— ki)

(20)
where z; (ﬁj. t) is as defined in equation (17) and z;ji (fj IJ?; » t) is the coupling impedance, this
impedance describes the coupling between the (i)th and the (j)th dynamic systems. (It is noted that
to render the dynamic systems isolated; equation (16), one merely removes the coupling
impedances; or more generally, one renders z diagonal.] Transforming equation (20) into the
modal domain and making use of the orthogonality of the eigenfunctions yields

z(t) p(t) = pe(®) ,

la)
pe(t)) = {...?ﬁ(t')...} ; Pei(t’) = {p,im(t’)} H
p(t) = {po-}: po = {m®)} . 222)
z = (2o®) 8 Sam - Zum®)) (22b)
where zj,,(t)isdcﬁnedinequation (17a) and
Zoim(®) = | 08 48 zu(Ri1%;, ) 4] (X)) 23a)
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or equivalently
zi (X1, 1) = T 3 0o (X)) Zjnim(®) dim(R]) . (23b)

The quantity z;n(t) is the coupling eigen-value describing the modal coupling between the (m)th
mode in the (i)th dynamic system and the (n)th mode in the (§)th dynamic system. In this
description, z;,, is the self-coupling eigen-value; it is these eigen-values that modify the diagonal
elements when couplings are introduced. Equation (21) may be inverted so that the equation for
the response is expressed in terms of the impulse response matrix operator h that is associated with

Z. The inverted equation, in matrix form, is

p()=R(tIY) p(t); h(tI) =] gtirar -

h(tlt) = (hum(t1t)) 5 g(t1E) = (gaim (tIt)

(21b)
or equivalently, in component form, is
¥ Z bjoim(® 1t Peim(®’) = Prut)
it 1) = | gim@t 1 dt"-o. a1 :
where
ginim(t 1) = [ o) @by g%y 1% 1) R o)) ada)
ar equivalently
GiR1%, t1t)=F F #a(Rp) gaim®It) dm(K]) (24b)

(cf. equations (15b) and (23).] The inversion of equation (21a) into equation (21b), and to that
matter, vice versa, is greatly facilitated if the dynamic systems and the couplings among them
remain unchanged with time — the dynamic systems and the couplings among them are
temporarily stationary. That is, Z(t) is pure differential operator in the temporal domain and
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g (tit’) = (2r)"12 g (t =t’). [cf. equation (3a).] Assuming this temporal stationarity and
performing Fourier transformations with respect to the temporal variable on equations (21a),
(21b), (23), and (24) yield

2(0) (@) =Be(®) ;  2(®) = (Znim (@)

(25a)

Bo)=g(m)pe(0) ; B(o)=[2(m]? ,
= = (25b)
ZiR IR, 0) =T T 6i0(R)) Znim(®) dim(R]) | 23¢)
BRI, @) =T F 03n(R) Zjoim(®) dm(R]) , 24c)

respectively, where P(®), Be( ®), and § (©) are the Fourier transforms of p(t), pe(t), and
(2x)’ 12 =g“(t-t') , respectively, and Z(®) is the Fourier eigen-value matrix of the temporal matrix
operator Z(t); namely,

z(1) ((27)12 exp (i0t) 85 Bam) = 2(0) ((2%)V2 exp (i0t) 8y Bom) - 26)

It is noted that the inversion from equation (25a) into equation (25b), and vice versa, is algebraic.
The simplicity of the inversion, in the frequency domain, when a temporal stationarity prevails, is
thus clearly demonstrated. However, as equation (25a) indicates, the formalism just discussed is
predicated not only on the intimate knowledge of the impedance operators that describe the isolated
dynamic systems, but also on knowledge of the coupling impedance operators. Such knowledge
is rarely available. In this connection it may be noted that the eigenfunctions need not be directly
defined by an actual impedance operator. For example, eigenfunctions that are geometrically
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defined are quite acceptable in deriving the equations in this section. However, the geometry, like
the spatial dependence of the eigen-impedance operators, needs to remain stationary with respect to
the temporal variable. Using artificial eigenfunctions is not without penalty, it renders the modal
quantities and parameters also artificial and, therefore, not physically interpretable.

Comparing equation (15) with equation (21) it is observed that the spatial dependence is
stripped off by the modal procedure; a simplification indeed, however, at some expense. The rank
of the matrix h is swelled from that of 2, defined in equation (13), by the number of modes within
the complex. Even in simple complexes, such swelling may be quite substantial and equation (21)
and (25) may, thus, become unwieldy. In addition, seldom is knowledge of the natural
eigenfunctions readily available, even in these simple complexes. Means to reduce the rank of
equation (21) and (25) may prove essential and the requirement for knowledge of the
eigenfunctions (and the eigen-values of the coupling impedance operators) may need relaxation.
Again, statistical means may have to be devised to induce such a reduction and to suppress the
need to know detail forms of the eigenfunctions of the isolated dynamic systems and the eigen-
values that specify the couplings among the dynamic systems of the complex. The statistical
energy analysis (SEA) is one such a device [13, 14]. The rendering of SEA from equation (21)
and/or (25) lies, however, beyond the scope of this paper.

WAVE APPROACH

Another approach to an analytical decomposition is a wave propagation approach. This
approach is nct new; it has been employed in the vibrational analysis of complex structures [8].
Indeed, in part, this approach is employed in Section IL. In this paper, however, an atterpt is
made to systematize this approach and finally recover and extend some recent work by the authors
(4,5]. Equations (5) and (11) are considered basic. In this approach the dynamic systems in the
contrived model are rendered uncoupled by extrapolation. An uncoupled dynamic system in the
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complex is chosen so that a propagation mode can be assigned to it; namely, were the (j)th dynamic
system extrapolated boundlessly, the propagating path v in it can be defined in terms of the
propagator function hyy; (%j|%/,t | t') so that a comresponding external drive Pevj (%], t') would
induce a response pY..,-(ﬁj » t) at the position { Xj, t } on the extrapolated dynamic system . The

analytical expression for this process is

b @13, 1) pei(R] L 1) = PLi(Rj, 1) . @n

[cf. equations (5) and (15a).] Again, were the path of propagation a simple path, in equation (27)

h%i (%; | %; , t|t’) assumes the more explicit form

v A A n TV A1 " AY
hnj(lexj:tlt)-hq(xﬂxj,tlt)A) ’ (28)

Af = A(T)) (29)

where the quantity 7; designates the time taken by a response induced at ﬁ; to transfer, via path v
on the extrapolated dynamic system, and arrive at %j; g} = ;& %}) . [cf. equation (5)
through (7).] The extrapolation is considered proper provided it is instituted in a manner that
would avoid back-scattering, from regions outside, into regions occupied by the actual dynamic
system. It is noted that the extrapolation is not unique; there are several ways in which it can be
instituted. However, an extrapolation of this kind is essential and central to the wave approach
here proposed. Equation (27) for the multitude of dynamic systems may be stated in the matrix

form
W@ IR 1) pev(R, 1) = PL(R, 1)
- (30a)

where
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hL@IR ) = (Rl Ri1R5 e 1) &)
(la)

PR 1) = {pev R, 10} 5 pLAR,t) = {pY R, 00} .
~ ~ (32)
In the wave approach, equation (30) is equivalent to that of the generic expression specified in
equation (11a). [The prescribed “extrapolation” in the wave approach plays the role of the
“isolation" in the modal approach discussed in the preceding section. These two prescriptions are
designed to derive equation (11a) in forms that are fundamental to each of the two approaches.]
From equations (27), (28), and (32) one obtains

BL(R1R, 1) A@Y) pev @' t) = pU(R,1) .

(30b)
where
BL@jIR 1) = (@18t 1) &)
(31b)
N g . v v v v v
A =4(2%) ; AE) = (&) &) ;5 4 =AG)) ; ¥ ={2}} .
G33)

[cf. equations (5), (7), (11), and (29).] The matrix operator e can accommodate a vector
dependent variable because it is, by definition, a diagonal matrix. The vectorial form of the elapsed
time t" is simpler and, therefore, more convenient than its diagonal matrix 1" counterpart would
be. [cf. equations (11b) and (11c).] In the wave approach the couplings are compatibly defined in
terms of a set of junctions. The junctions define the insitu boundaries and the interconnections

among the dynamic systems. A terminal position at a boundary (a junction) in the (j)th dynamic




designated ﬁ.j. A terminal position vector may then be defined

g. = {ﬁij} M (34)
The set of the terminal position vectors define the extents and the boundaries of the dynamic
systems in the complex. To complete the definition of the model of the complex it is necessary to
define the junction matrices
T = (Tiei) -

(35a)
The junction matrix element T,‘,'g,-i defines the conversion, partially or totally, of an incident wave
propagating in path G, on a junction at the terminal position Rp; in the (i)th dynamic system, into a
wave that emerges and propagates, in path v, away from the junction at the initial position Xy; in
the (j)th dynamic system, see Figure 4b. The conversion is ac . u... anied also by a temporal
integral operation. Stating the process just disc. .ssed more explicitly, with minimal loss in
generality, one may cast3

) Als YR 18

2»& |
-

Tos = Ye(x
(35b)

where it is assumed that the spatial and temporal operative properties of the junction matrix can be
separated; ﬁ\g is a temporal integral operator and y® is a spatial integral operator

3With certain modifications and extensions in the formalism, one may azcount for situations in
which the external drives may be placed also within the juncrions. Such modifications and
extensions were introduced in Reference 2. However, such considerations lie beyond the scope of
the presen: paper.
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Mo @117 (™) = A O £

Y RelfM) = PR8N &5 7= ()
(36a)

where é‘g (0) is merely an algebraic matrix factor, f, and f are arbitrary, but weil behaved,
functions of the (dummy) temporal variables t” and t'”, respectively, and y b and Vi are algebraic
matrices in the (Qummy) spatial vector variables X and £ ** and the terminal position vectors

g » and gk To exhibit the properties of the junction matrix even more explicitly, the simple model
is used yet again. For this model the junction matrix is d=fined in the form

T (gt - 5 A5 8
(35¢)
where
L\;‘k, = A‘{:,ji (t}’,f,,-i) 8m) »
(36b)
A:gji(f't'fsji) = Aveii(® ACg;)
50! = I S(t” - ti") dat” ... R (36C)
Be- 387 -20- (67 -8 %)
§Ob=j é(gb"g") dg’,"" . d%”=(d£3' 811) ,
(36d)

A\t’xksji (0) and t‘é‘éji are merely algebraic factors. As equation (36c) makes clear, the elements of §§§
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define a set of simple time delays that are imposed on the appropriate waves as they traverse the

junctions.

At this stage, it is instructive to note in passing, a differential feature between the initial
models for the wave and the modal formalisms. In the wave approach the intial model is defined in
terms of properly extrapolated dynamic systems; these dynamic systems are uncoupled. A proper
extrapolation is achieved by manipulating the model so that the junction matrices vanish; e.g.,
rendering the é‘g's, in equations (35b) and (35c¢), identically zero. On the other hand, in the
modal approach the initial model is defined in terms of properly isolated dynamic systems; these
dynamic systems are uncoupled. A proper isolation is achieved by manipulating the model so that
the nondiagonal elements in the junction matrices vanish; ¢.g., rendering the Abe's, in equations
(35b) and (35c¢), diagonal matrices.

Reiterating then, the model of the complex is defined in terms of the propagator matrix 2‘.’. ,
the terminal position vector 1, and, finally, the junction matrix TyS . Analogous to equations (5)
and (11), and with the help of Figure 4 and equations (30) and (32), one may formally cast the
equation for the response vector PY (X, t) that is solely in path v - - the partial response vector - -
in the matrix form

[BY 185111 PR’ 0] =p¥ @R\ )

(37
where the partial impulse response matrix operator is of the form!
* 12,110 = LG IRty
+ZZT he RIR”,t1)TE AOR"IR, 1)
kb O = ~ o~ -~ - ~ o~
(38a)

and the external drive vector is of the form!




BeR 1) =L 0peo(fi) s O=(Gi8) .

(39)

[cf. equations (8) through (10).] With the aid of equation (35b), the partial impulse response
matrix operator may be stated in the more informative but abbreviated form

hY = hty+ T Bl yi Ave YO O

(38b)

It is of interest to note that equation (382 & b) is amenable to interpretation in a manner that is
commonly employed in structural acoustics; namely, the division of the response into direct and
reverberant parts. Of course, there are a number of different ways of defining and cutting this
division. In establishing equation (382 & b), however, a division is already suggested. The direct
part is to be associated with that part of the response that occurs prior to interactions with any of
the junctions. Once the response is contaminated by interactions with a junction, it is portioned to
the reverberant response. Reverberation in this context pertains to the initial and subsequent
interactions of waves with the junctions of the complex. [Commonly, however, reverberation is
reserved to situations in which large multiplicity of this kind of interactions are present; in fact,
large enough so that the initial interactions become insignificant.] It is clear that the direct part of
the response is associated with the first term on the right of equation (382 & b). This term is
dubbed the direct term in the impulse response matrix operator. It is equally clear that the other
terms are associated with the reverberant part of the response. These terms are dubbed the
reverberant terms in the impulse response matrix operator. The division is then unambiguous and,
as can be readily recognized and verified, remains so throughout the wave approach to the
derivation of the impulse response operators. The corresponding equations, to equations (38a) and
(38b), for the simple model are
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bR 18, t1t) = BLR 1R, 1) a@") v
- - - -~

+IT T RLQAIR™.t1e") A Ts Be)IR i)

b
¢ (38c)
Avg v v vk o0b c
BY=Buy+ X BeBi oo 870°
BY=B% 47 : Abe= (A (0) 4 (voe) 87)
(389)

respectively. [cf. equations (35¢c) and (36b) through (36d).] The notations are chosen so that the
reduction of equation (38a) to that of equation (38b) may be instituted without confusion; e.g.,
note the cyclic form in Tog with 6 — b — k — v; see Figure 4b. In this connection, situations
may arise in which the junction matrix Tps may be a priori of simpler form. For example, one
may find that the terminal position gb of incidence and the terminal position :3; of departure are
the same; e.g., as depicted in Figure 4c. Then T3S ~ T3 Sxv ; Too ® Too. The summation in
equation (38), and in subsequent equations, may then be accordingly and a priori condensed. It
may also be noted that the summation over the terminal positions; e.g., in equation (38), implies
discreteness. If the discreteness is found to be inappropriate, the summation may, in part or in
whole, be replaced by the appropriate integration.2 It may be proposed, at this stage, that the -

following notations be recorded for subsequent use
Ab= A@h) = (ACh)8) i Ty = T xglxe) ;
Au= ALY = (AT8) ¢ tlj= Txalx) ;

Aw= A(Tw) = (A()8i) ¢ Thej= T (xaj | xpy) -
(40)

Equation (38) appears impure in the sense thatanumbaofﬁ"'s show in the reverberant
terms of the expression for fi. Means need be devised to purify equation (38). For this purpose
equation (38b) is manipulated to construct the relationship
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B ytft-y® ht g (T AT y* 828

- -~
(41a)
where
By =[1-(Z &%) (2 AT)Z 80 T o]
= "= kg =7 g b ~To = (422)
AR =y S e A D= (B )
(43a)

and, again, note the cyclic forxninz_}g"‘,k with 6 — b — k = v — ¢ ; see Figure 4. Substituting
equation (41a) in equation (38b) yields

(44a)
where

(45a)

Themverbmtminequaﬁm(M)mdMypm,md.ﬁuefm,soisﬁv. Thus, the
construction of the Bg's, stated in equation (41a), achieved their designed purpose. The
construction of the matrix B is central to the reverberant part of the response. Whenever a set of
parameters in this matrix renders (the magnitude of) its eigenlike value small compared with unity,
the reverberant response is high. A highly reverberant response is potentially indicated if the
eigenlﬂcvaluesofgg are small and numerous. Indeed the potential necessity for the existence of
suchsmalleigcnlikevalueshgs,pmmpteditsconsmcﬁm. In the frequency domain, a set of
parameters that yield high reverberant response, as just prescribed, is dubbed a set of "resonance™
parameters. A common example of a parameter in this set is the resonance frequency. Itis
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expected that invariably the contributing terms to the reverberation in the response wil! harbor the
matrix factors 1_38 that are the inverse of the .I-)S' s. [cf. equations (44a) and (45a).] It is noted that
thcmauixggisamnponlomxorasggé or, equivalcntly,{_\:?is. In the spatial domain this
operator is neuter. This statement is clarified noting thatzo" E?. y1 is not a spatial matrix operator.
Since B is a temporal matrix operator 5o is, of course, D§. Hov:ever, whereas B} is a proper
operator, its inverse 98 may need special attention when manipulated. Nonetheless, the

expression for the impulse response matrix fi¥ is pure in the sense that it is a functional purely and
solely of the properties of the dynamic systems and the couplings among them; namely, of the
he's,%,'s, and Ths's . Again,- making use of the simple model yields, for equations (41a) through
(43a), the corresponding equations

B3 h- 8" g (ZARI B LY

(41b)
BE=[1-(Z &%) ( A) T80l 8t0]
- = fef ™ heg =6 7 b =00 = (42b)
AR = 8% BS B A% Bio=(ro B
(43b)

respectively. Substituting equation (41b) in equation (38¢) one obtains for the simple model

A - v v vk b Ob. o
hv= bl y+(F BnBeAu) D3 {3705 o

bof. Oc § . v - v v
FEADE LY By,
(44b)
where
b - @y
(45b)

As in equation (45a), it is noted that the matrix BY in equation (45b), is a temporal operator as Aty
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is. Like its counterpart in equation (45a), in the spatial domain this operator is neuter. This
statement is clarified noting thatﬁm’ 132 §fi$ obviously not a spatial matrix operator.

Once equation (44) is derived, thegmndequationforthemsponsevectorg(g, t) of the
complex may be stated in terms of the impulse response matrix! -

A A
h(RI1R,t1t) = BYRIR, 1)

h(RIR, 1) = TZ (LA IR, 1)y Swo+ BYRIR, D S

(46)
and the external drive vector!
Pe(X,t) =2 S pea(®’t) .
(39)
in the form
RRIR e @ t)]=p &)
47

[ct. equations (8) through (10).] The expression for the impulse response matrix operator h in
the second of equation (46) is of some interest. The double summation in b is introduced 1o
accommodate the detail form of the drive Pe= Z SPeo. The first term in the curly brackets is the
direct term and the second term describes the reverberant terms in the impulse response matrix
operator. The direct term in the impulse response matrix operator is always readily distinguishable
from the reverberant terms; equation (46) is a prime example of this statement. [cf. equation (38).]

Equation (47) is expressed in the temporal domain and is suitable, if not essential, to
ascertaining the response of a complex to transient external drive systems - - external drives that are
localized in the temparal domain. Inserting equation (44) in equation (47) results, even in models
ofshnplemcmnlcomplem,inmequﬂmﬁmismmbmmanddifﬁaﬂtwinm Some
mlicfmybedaivedifthecomphxamnmnwdmbemﬁmnyinthewmpomldomﬁn. This
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kind of stationarity is imposed on the complex by assuming that the dynamic systems and the
couplings among them remain unchanged with the passage of time; i.c.,

by (R IR’ tit) = 2r) 12 hL (R1R), t=t) ;

é:{ (tnltrn) = (21:)-1,2 e:é (t”— t"') .
(48a)
[cf. equations (36a) and (38a).] In the simple model the conditions of stationarity are more
stringently imposed; namely,

hY (X127 t1t) = 2r) 12 RE (R71%, t-t) A (DY) ;

Ave = (Aves (0 A (5 8™)

(48b)
and the Abe;i (0)'s and the T3K;i's are merely algebraic factors. [cf. equations (36b) and (38c).)
Substituting equation (48) in equations (42), (44), and then in equation (46), helps, to be sure, but
the formalism still remains cumbersome and difficult. Further relief may be derived if, in addition,
the equation for the response is Fourier transformed from the temporal domain into the frequency
domain. The equation in the Fourier domain is usually more suitable for ascertaining the response
for "steady state” drives and for complexes that are stationary with respect to the temporal domain.

IMPULSE RESPONSE OPERATORS IN THE FREQUENCY DOMAIN

To this point the analytical procedures and developments were conducted in the
{£.t }-space. Is there any advantage in transforming the equations derived in the preceding
section into other related spaces; e.g., by a Fourier transformation? It was argued in the
introduction that such a transformation, into a specified domain, may be advantageous when the
complex is stationary with respect to the variables that define this domain. In this section, only a
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tempoaral stationarity is considered. If the dynamic systems and the couplings among them remain
unchanged with the passage of time, as defined and stated in equation (48), then under these
conditions equation (30) may be recast, by a Fourier transformation, in the frequency domain

h‘c’o(glg’s m) Eev(£'o m) = E:(gv ® ) ’

(49a)
or in the abbreviated form
hi (@) pev (®) = P (@) ,
(49b)
where
hLR IR, ©) » @r)12 bl IR, 1-1") expl-i0(-1)] ,
(502)
Peo (S, ®) = @112 [at’ peo (R, 1) expl-iot’)
~ ~ (51a)
VR,0) = (2x)12 ) atpl (X,t —iot) .
pL. o) = xy12 [ar pt 4, 1) exp-iot) st

[cf. equation (1).] Itis also noted that the arrows, replacing the equality signs, indicate that the
quantities are related by Fourier transformations. However, unlike the notational procedure
adapted in equations (1) through (3), the letterings remain the same. This, together with the
reduction of equation (49a) to equation (49b), is instituted to keep the notations, which are already
unwieldly, to a minimum. The relief in transforming from the time domain into the frequency
domain is achieved mainly because the temporal operators in the temporally stationary formalism
are eigen-operators with respect to the Fourier eigenfunction (2%)-12 exp (ioot). Therefore, in the
frequency domain these temporal operators are simply replaced by their eigen-values. These eigen-
values are merely algebraic factors. This replacement is particularly explicit in the formalism of the
simpie model. For the simple model, equation (50a) can be cast in the form
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hLA IR ©) - BL Q185 1-1) 8 () @02 exp [ -iwt-1)] 3
hLR 1%, 0) = AL R4 o) Vo) =hl @) ;
AT V(o))
ol e epion] = 0 | (@R exp o]
FIAG),) FIV())

V(1) = (exp it} )8;) = (Viot)s;) .
(50b)

where F is an arbitrary, but well behaved, functional of the dependent quantity. Imposing the
temporal stationarity, stated in equation (48), on equations (42) and (43), one obtains

e&h
B@-[1-G @) (F AT 3 F &l

(52)
where for the more genera! model
AE @) = Wy (@) AL () ;
AL @) - @Ry AL (" -t") expl-io(”~1")] ;
hler = Y% ha(@) yr
-~ ~ (533)
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and for the simple model

AT (@) = hSy(@) AL (@)
AL @ = (AL O V@) 3 VEiE) = expiondy) ;
by (@) = By(@) V@1l ;i Blr(@) = 8" BL@) 3 ;

V(o1 = (expiofy) &) = (Vg ) -
(53b)

[cf. equation (40).] As expected and anticipated, equation (53b) is more explicit and simpler than
equation (53a). Imposing the temporal stationarity, stated in equation (48), on equations (44a) and

(44b) yields

f¥(@ =1l y+ I bL(© yk Abo(@ DE @)

respectively, where

frai@g+ X AT y™ o &},
(542)
fv(@) = bL(@ v+ 2 BL(®) Bx Abo(@) DB()
{B"i@eg+Z AZ @ 8% bi () £}
) (54b)
Db(a) = [BS@)]™ .
(55)

[cf. equation (45).] It is noted that the matrix §8 (w), unlike g‘& in equation (42), is merely an

algebraic matrix factor, and therefore so is D (w). Consequently, in the frequency domain, the




impulse response matrix  (w) is of simpler structure than it s in the temporal domain. Again, the
direct term l_;‘.’., v in the impulse response matrix operator, in equation (53 a&b), is clearly
distinguishable from the reverberant terms. Moreover, it emerges that the grand equation for the
responsevectorg(g, ©®) of a model that is temporally stationary is, as expected, algebraic in the
frequency domain

(56)
where
h(RI2 0= bR}, o ;
ER12, o) =ZZ {hlRI2,0)Y 8w+ bY(RIR @) g}
57)
ﬁe(g': m) = % gpeo(g', 0)) ’
(58)

are the impulse response matrix and the external drive vector, respectively, expressed in the
frequency domain. [cf. equations (39), (46), and (47).]

The relief, expected from the stationarity of the complex in the temporal domain and the
Fourier transformation of equation (47), is materialized in equation (56). Nonetheless, as indicated
by equations (53) and (54), substantial cumbersomeness and difficulty still remain in equation (56).
This stems, as it does in equation (47), from the multi-spatial dimensionality of the complex. How
much relief may then be reasonably gained by restricting the model of the compliex to a composition
of coupled one-dimensional dynamic systems?
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COUPLED ONE-DIMENSIONAL DYNAMIC SYSTEMS

As argued in the introduction, if an impulse response operator is stationary in a given
dependent variable, it can be rendered, by a Fourier transformation, algebraic in this variable.
Then, by focusing on a single value of the Fourier conjugate of the variable, the equation for the
response is effectively reduced in the dimensionality of this variable [3,4]. Thus, if the complex is
stationary with respect to %, in the spatial domain & = {x, X2}, the equation for the response can
be reduced, as just specified, to account for a model of a complex composed of spatially one-
dimensional dynamic systems, where conveniently X1 = X, and the reduced equation is specified at
a specific value of 122; 1’22 being the Fourier conjugate of X,. In this paper, for the sake of brevity,
this one-dimensionality of the dynamic systems is imposed directly on equations (42) through (44)
and on equations (51) through (53). The reference to the other spatial dimensionalities, if present,
is simply suppressed and omitted in the Fourier transform. The authors previously presented, in
References 4 and S, an analogeous analysis of the response of a model composed of multiple
coupled one-dimensional dynamic systems. In these previous considerations, however, the one-
dimensionality of the dynamic systems is imposed a priori. In the first reference, the analysis is
conducted a priori in the {X, ®}-space. In the second, and the more recent reference, the analysis
is conducted a priori in the {x, t}-space. In this way the relationship between subsequent
considerations, in this section, and the previous considerations, in References 4 and 5, can be
established with the insights that such a comparison may provide to the modeling and the
formalism.

A complex consisting of one-dimensional dynamic systems is sketched in Figure 5. The
complex is appropriately defined in terms of just two junctions, junction r and junction q (1-5].
Thus, the model is specified in terms of two propagator matrices, two terminal vectors, and two

junction matrices. For the more general model, the propagator matrices are in the forms
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h&xix’ t1t) = (hS (i t1t) &) 5 x={x} ;

Xs —)l X xlj->xj , a=rorq ,
=

(59a)
and for the simple model in the forms
R Ix,tt) = ha&ix’t1t) AE®)
B ix’tt) = (Balxjlx;, tt)8;)
i ix)={gxix} = {§} . (59b)
The two terminal position vectors are specified in the forms
Xa = {Xgj} ; @=r0rQ , (60)

These terminal position vectors are common to the more general and the simple models. The two
Jjunction matrices for the more general model assume the forms

Ig = ébk §bc éou q" évc) Ia ’
Ia::s (i"-ia)éa IE (ia-.x_”')di'”"' :

Ao = (Agji) ; @ =rorq ;

Ao 0"Jt") fe ™) = Aa O T (0%) ,
(61a)

and for the simple model they assume the forms
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Tos = Svk Sbo Sou (I~ 8vo) Ta
Ta =§(£_5¢)£¢J8 (Ra-2)dx"-- ;

Ao = (Auji (Taji) 5m) i Agji (Toji) = Aqgji (0) A (Taji) -
(61b)

[cf. equations (30) through (36).] Substituting equation (59) and (61) in equations (42), (46), and
(44) yields

Bo=[1-AF AB]l; Do= @Bo! ;

(62)
§=§q ﬁa M ﬁ“-(&&d—hg’) a+1~1%E ’

(63)
he = b2 3p Ap Dp Aa 87 B2
h=hE s As Dy 87 B0

(64)

respectively. It is noted that the matrix quantities Aq and A} are temporal operators and, therefore,
s0 is By and, consequently, so is Dg. In this sense equations (62) and (64) cannot be manipulated
cavalierly; commutations and expansion procedures must be carefully viewed and performed.
Equations (59), (61), and (62) through (64) are the equations for the response of the model of a
complex composed of one-dimensional dynamic systems. Compared with equations (35), (36),
and (41) through (44) for the multi-dimensional dynamic systems, the reduction achieved in
equations (59), and (61) through (64) is dramatic. Moreover, it is noted that the spatial operative
properties of the junction matrices in equations (59a) and (61a) and those in equations (59b) and
(61b) are identical; a further and considerable simplification indeed. The difference in the junction
matrices described in these two sets of equations lies entirely in the temporal domain, but the one in
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equation (59b) and (61b) are by far the simpler. Finally, it is observed, from equations (63) and
(64), that the impulse response matrix operator § , for the model composed of coupled one-
dimensional dynamic systems, harbors six (6) distinct terms: two (2) direct terms;

2?, x,0=r and q, and four (4) reverberant terms; 23 o and 2'; E, a =rand q. Although the
impulse response matrix operator for the one-dimensional model is significantly simpler, some
further simplification in the model is still required to attain reasonable descriptions. The first in this
process is to bring to bear the temporal stationarity onto the one-dimensional model. Thus,
imposing the stationarity in the temporal domain on the one-dimensional mode] recasts equation
(48a) in the form

he (x1xtit)= Qo) 12 he (x|, t-t") ;

l-}a (t”lt”') = (21{)‘“2 1-\“ (t”~ tn') ,

(65a)
and for the simple model, equation (48b) yields
E?. (x1x’tit") = 2r)12 Eﬁ (x'lx, t=t) Az
Ao = (Aqji(0) Alto) Sm) ,
(65b)

and the Ay (0)'s and the 74's are algebraic factors. Substituting equations (65a) and (65b) in
equations (62) through (64) yields further simplification. However, the significant simplification
is attained when the resulting equations are transformed into the frequency domain. Such Fourier

transformation yields
Ba(@) = [I-Af(@) AE@)] ;:  Dua@) = [Ba(@)]” ;

25 = 8% bl Ba Aal@) = g8 (xpixa, @) Aa() ,
(66)
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A= i@ ; B2 = BE @+ hg @) e +hF@)B ,
) )

h&(w) = h&(@) 8p Ap(w) Dy(e) Ab@) 8™ hE(w);

h§ (@) = h3() 85 As(@) D@ 8% 1 (@) .
(68)

respectively, where for the general model
8P (xp1x0, @) = @m)12 8% hP(x|x’,t~1") Bq exp [-iw(t-1)]

Aa (@) = 2r)2 Ag(t”= t™) exp [~ia(t”-t")] .
(69a)

and for the simple model

82 xp /%0 @) = Eh(xp1%0 @) Viwzp) ;

=B ~1/2 0 ~8 ’ ’ : , .
£ (xplXa, @) = @M 87 h (x1%/,1-1") Baexp[~i0(t-t")] ;
Z(coz:a) = (exp [ i 7 (xg; Ixe)) 85)

Ac(@) = (Ai @V (@Te)) :  V(0To) = exp(~io Tap) .

(69b)
wlmg.’.(m)and gi(m)mmmmmmmmmMmasmwimmimpme
response operators h&(w) and hE.(w), respectively. [cf. equations (4) and (40).] Comparing
equations (66) through (69) with equations (50) through (54), again, reveals the considerable
simplification attained in modeling the complex in terms of coupled one-dimensional dynamic
systems. However, to make ready contact with the formalisms developed and used in Reference 5
and References 1 and 2, further simplifying assumptions need to be imposed on the one-
dimensional model of the complex.




BASIC COUPLED ONE-DIMENSIONAL DYNAMIC SYSTEMS

Using equations (65b) and assuming the coupled one-dimensional dynamic systems to be
basic, one may explicitly define and impose

@ry12 B (x 1z’ t~t) = Bo(x1x) 8"a-1) ;

A2 = U (x-x) ALY+ Bxlx) = UM(Gx-x)

= {CH Ix-x1F i Cf=CEa-in®)! ;

U (x-x) = (UPy-x) 8i) ;U (x-x) = Ul(xj ~ X)) sign (kg - xp)] 5
a=rorq ; PB=rorq ; a=p, (70)

where C§; is a temporally independent speed of propagation toward junction o and 7' is the loss
factor associated with this propagation in the (j)th dynamic system [3]. (cf. equations (6b) and
(59).) Consulting equation (41), and using equations (62), (65b), and (70), one obtains

By = [1-A§ ARl Do=(Ba)? ;: A™(1%p)mA(tSy ;

A% = A(Th) A i Thy={(CH Ixg-xayl}

)
Moreover, from equations (63), (64), (65b), and (70) one obtains
bt w [ {14% (5™ + iz a+ g ix) B} ax’ 8-t
) ) (72)

g5 x1x) = A% Ap Dy 2%eh) Aa 8728

5120 = £ 2 Do 25
(73)




where Dy, in equation (73), is as stated in equation (71), and 23y, Typ, and Tog, are deduced from
equation (40). Equations (39), (47), (63), and (71) through (73) are employed in Reference 5 to
exemplify ﬁxenatureoftheresponsevectorg(gg, t) of a model of a complex composed of multiple
coupled basic one-dimensional dynamic systems. In this reference, however, the one-
dimensionality of the basic dynamic systems was assumed a priori.

Using equations (69b) and assuming the coupled one-dimensional dynamic systems to be
basic, one may explicitly define

hexix, @) =h%RxIx) ; V(@1 = U™@x-x) VI ;
2 ={(Crix-x{1} . (74)
[cf. equation (6b).] From equations (66) and (69b ) one obtains
Ba(®) = [1-Af(@) AS(®)] ; Du(@)=[Ba@)]’
AR@) = Vpo Aa(®) i Vp, = (exp (Hioth,) &) = (VS )By) -
(75)

[cf. equations (40) and (71).] Moreover, from equations (67), (68), (69b), and (74) one obtains

ﬁ“‘mﬁj {[Z“(ms")+z;(£l§',m)]g+g;(§|§'.m)g} dx’.-. ,

a6)
82.0x1x’ @) = Vi Ap@) Dy(@ Voo Aale) Vo ;
g3&Ix\ @ = Vi As@ Dy Yy .

)
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Y“* - Y“*(msu) = (U;’* (x; -x}) exp (-im‘tjj)sji) ,
Vis = V- @up) = (Uf" (x - xgy) exp (- i 0Tg)8ji)
Ve = V(@38 = (U} (xa = ) exp (- i0Ta)5)

Vab = V™" (@zgp) = (U (xoj - xpy) exp (- i0Top;)851)
(78)

[cf. equation (40).] Equations (56), (58), (67), and (75) through (77) are identical, except for
minor notational differences, with the equations derived, in References 2 and 4, for the impulse
response matrix operators and/or functions. In these references, however, the one-dimensionality
of the basic dynamic systems was assumed a priori. It may be pointed out that in the frequency
domain, temporally stationary models of complexes composed of one-dimensional dynamic
systems can be treated with relative ease, even if these dynamic systems are not basic. Thus, for
example C¥', in equation (74), may be assumed to be frequency dependent, rendering, in turn, £%
frequency dependent. Also, more complex propagation, such as may occur in a model that befits
cylindrical geometry, may be treated in the frequency domain more readily than in the temporal
domain [4]. However, in these instances one needs to return to the more general equations; the
equations for the simple mode] cannot quite handle such situations. Nonetheless, the formalism:
herein stands ready, with some increase in cumbersomeness, to accommodate even these deviant
situations. This increase in cumbersomeness is miniscule compared with that introduced by
increase in dimensionality. As is clearly demonstrated in the wave approach just discussed:
increase the dimensionality and the task is increased by much more than a linear proportionality.
This leads to a few final remarks. The modal formalism appears less dependent on the spatial
dimensionality of the dynamic systems; see Section IV. Of course this is misleading. The spatial
dependence of the formalism is removed and stored away in terms of sets of eigenfunctions.
However, the eigenfunctions are strongly influenced by the spatial dimensionality of the dynamic
systems. Indeed, making the eigenfunctions for all the dynamic systems available for storage is
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the greater part of the solution to the spatial dependence of the response of these dynamic systems.
The availability and the storage of the eigenfunctions introduce severe limitations on the versatility
of the modal formalism. An eigenfunction is usually fixed in the format of “standing waves"
which gives it quasi-symmetric properties with respect to the spatial dependence. If the response
does not follow spatial patterns that can be described by a few of the eigenfunctions, the
cumbersomeness of the description may become forbidding. Indeed, for a lopsided response,
such as may be caused by excessive damping, significant disparity in the junctions, substantial
rectification in the propagation in some of the dynamic systems, etc., the modal formalism may be
overtaxed. For example, try and describe the direct part of the response with the modal formalism!
On the other hand, the wave formalism does not suffer this "locked-in" limitation; e.g., the direct
part of the response is readily determined! However, the spatial dependence in the wave formalism
is built piece-by-piece. Therefore, the formalism is cluttered with the spatial dependences. A
reduction in the spatial dimensionality of the dynamic systems is communicated directly and
dramatically to the wave formalism. Thus, although the two formalisms are formally
complimentary, they may also be supplementary. That is, in addition to furnishing the same
information, they may also reveal different, yet useful, information in trying to resolve a problem
in which the issue is the response of an externally driven compiex.




{x’,t’}

Fig. 1. Schematics of a complex on which are shown two typ:ca.l paths; path v and path G,
from the locahzed external drive positions at {%’, '} to the localized observation

posmonat{x, t}.

(r)th
g

r

Fig. 2. Schematics of a complex subdivided into (three) dynamic systems. The g; is the self-
impuise response function of the (j)th dynamic system and g;; is the coupling impulse
response function between the (i) and the (j)th dynamic systems.
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Fig. 3. Schematics of a complex modeled by coupled (three) dynamic systems. The z; is the self
impedance operator of the (j)th dynamic system and z;; is the coupling impedance operator
between the (i)th and the (j)th dynamic systems. The self impedance operator z; defines a
set of eigenfunctions ¢;, and a set of corresponding eigen-values z,.




{'ii’t'i} (i)th

Fig. 4. Schematics of a complex subdmded into (three) dynamic systems. Propagation is
initiated in path o at the position Riin thc (i)th dynamic system. The propagation via this
path reachu the boundary at posmon Rbie A component of the propagation enter the (j)th
d system at the position xk, and propagates in path n to the observation position

X in the (j)th dynamic system. [The latter propagation may continue until it reaches and
is incident on the position xc, ]

Fig. 4c. Incident position &,; and exit position Ry are coincident.
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Fig. 5. Schematics of a complex modeled in terms of multiple one-dimensional dynamic systems.
Two junctions are necessary; junction r and q. These junctions are defined by the terminal
posiﬁonsiaandbythcjuncﬁonmatric&éa;a=randa=q.
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