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ABSTRACT
A number of sequential and parallel procedures for analyzing the response

of structural complexes, subjected to various drives, are briefly developed and
discussed. The impulse response vector operator is defined in terms of impulse
response operators, each associated with a unique path between the localized
position of a test drive and a localized position of observation. The drive is,
correspondingly, a vector and the response is the scalar product of the impulse
response operator and the drive vectors. A sequential procedure of subdividing a
structural complex into a number of coupled dynamic systems is stated. The
formalism is then stated in terms of matrices and vectors; e.g., the response is a
vector, each element represents the response of a specific dynamic system, the
impulse response operator is a matrix; the off-diagonal elements describe the
couplings between the dynamic systems, etc. If the dynamic systems are chosen so
that each, in isolation, can be described in terms of an eigen-impedance operator,
then, in addition, a modal analysis can be applied to the multiple dynamic systems
that compose the model of the structural complex. In the modal analysis, however,
the ranks of the impulse response matrix, the response vector, and the drive vector,
are swollen by the modal count, usually rendering the matrix equation for the
response unwieldy. The modal approach may be substituted by a wave approach.
In this parallel approach, the propagations in the dynamic systems are described by
impulse response operators that are commensurate with those pertaining to
boundlessly extrapolated dynamic systems. The finiteness of the dynamic systems
are accounted for by junction matrices; a junction defines the boundaries through
which dynamic systems interact either with each other (transmissions) or with self
(reflections). As in the modal approach, in this wave approach, the resulting
formalism is, again, rather unwieldy. It is shown that considerable reductions and
simplifications are attained if the complex can be modeled by spatially one-
dimensional dynamic systems.
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INTRODUCTION

The analysis of the response of a driven complex structure is relevant not only to dealing

with acoustical problems, but also to dealing, among others, with optical, biological, and

economical problems. This generalization and encompassment of the solutions to the response of

structural complexes may have encouraged wider interest and contributed to the variety of

approaches to the analyses of these generic problems. In this paper the acoustical problems are

implicitly epitomized.

The analysis of the response of a (structural) complex to various external drives is often

well nigh impossible. One must then resort to some reduction in the definitions and descriptions of

the complex and the external drive system to render the analysis manageable. A reduction is

usually achieved by modeling the complex and the external drive. The model is chosen so that the

analysis can be performed. Some modeling insists on details so that one-to-one correspondence

between the response of the model and the actual complex is substantially pesved Measures

and devices (active and/or passive) that are instituted to control the response (or responses) may be

compatibly modeled. The elaborated model may then be exercised and the results substantially

related to the controlled complex. In such applications one may estimate the benefits of the

instituted controls also on the basis of one-to-one correspondence. On the other hand, some

modeling may insist merely on a phenomenological correspondence ; one may be satisfied then

merely with descriptions of the response that manifest a phenomenon (or phenomena) that is

common to the simplified model and the actual (structural) complex. Measures and devices

(passive and/or active) that may be instituted to control the phenomenon (or phenomena) may then

be examined on the elaborated model of the complex and phenomenologically related, by analogy,

to the controlled complex. In such applications one may not, however, demand precise estimate of

the benefits accrued from the institution of the controls; beneficial trends and inclinations is all that

can be expected. Moreover, not all phenomenon (or phenomena) can be accounted for in

simplified models and, therefore, caution should be exercised in any phenomenological

corzespondence procedures. In this paper the complex is variously modeled in the milieu of
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phenomenological correspondence. Moreover, it is not modeled with the intent of establishing a

particular description, but rather with the intent of exploring analytical techniques and procedures

that may be employed in deriving general phenomenological descriptions. Although this aim

renders the paper somewhat abstract, it is hoped that, nonetheless, it will be found useful by some

readers. Finally, the relationship is established between modeling that utilizes a multiple spatial

dimensionality of the actual complexes and modeling that relies solely on a single spatial

dimensionality. This is of significance to the modeling used in recent papers [1-5].

The basic description of the complex is cast in terms of an impulse response function

t It') so that the external drive P (', t" ), defined at the position {x', t'}, will gt.Aerate a

response p (x, t) at the observation position { X, t}: i.e.,

so SO
, A , AA A S

f g(AIA' )dxA=:p.t d ',t')=p( ,t) x= ' s ," =d dx, (la)

where s is a unit vector lying in the spatial coordinate x. and[ A] = []= 8.1 The complex

is three-dimensional when so = 3, two-dimensional when so = 2, and one-dimensional when

so = 1. The impulse response function is pure if it is a functional only of the parameters and

quantities that describe the complex; it is independent of the drive pe (A', t,) and the response

p (X, t ). Situations may arise in which it may be convenient and instructive to express equation

(la) in spaces other than {x, t}; e.g., in the {x, co},{, tQ, and {(., o)} - spaces, where the

wavevector and the frequency o are the Fourier conjugates of the spatial vector variable x and the

1The caret is used herein to indicate a vectorial representation. A caret over an index indicates a
A."unit vector"; e.g., in equation (]a). A caret over a variable, e.g., x in equation (1a), indicaes

that it may be multi-dimensional; each component is associated with a given normal direction. A

caret over a quantity, e.g., ' in equation (8), indicates that it may be multi-path; each component is

associated with a given normal path. A "unit path vector" is indicated by a caret over the index of

the path; e.g. v in equation (8).
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tempral variable t, respectively. The spaces of convenience may be chosen on the basis of the

external drive, the response, or both. For example, equation (la) may be expressed in the forms

p-I g ,t t10)dk dW If , ~ $ - P _ ) ((b)

gtl , A,')d AP'e

jg(xl, )d" do)" Pe(,0C') (,C) )9 (Id)

1," kAl :, t It,)> &dt, .('tj = (AC t), 1

f ? kiI , t I t) dk' dt'k,
f (A t t') A, ( , A ,t oA Ss

(1h)

and so forth, where typically

(x, ) - (2r) - 2 Jdt p(k, t)exp(-imt) (2a)

M(,t)-=(2z) "(so / 2) jdx p(, te x ), (2b)

j(iI (', lo') - (279 - ) d7 J dt'exp(-iat)g(I ', tlt')exp(ic't') (2c)

One may choose equation (lb) if the external drive happens to be highly localiZed in the freuency
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domain (steady state drive) and yet the response is desired in the temporal domain. On the other

hand, if the external drive happens to be highly localized in the temporal domain (transient drive)

and one desires the response in the frequency domain one may choose equation (1c). Further, if

the external drive is highly localized in the frequency domain and the response is desired also in

this domain, equation (ld) may be chosen. Other combinations, involving also the spatial and

wavenumber domains can be similarly classified. However, it may transpire that the form of the

impulse response function may dictate in part which of the spaces are to be conveniently (and/or

expeditiously, within a Fourier transformation,) chosen. For example, situations may arise in

which the impulse response function may be stationary in one and/or the other dependent variable;

e.g.,

(A A, ( % t ,g(-I,' tt') = (2x)- I " g(ix ' t-X (3a)

(A AA A
g( x{', t t') =(2nc)-(so /2) g(x ^ , It) (b

In such situations one finds that

j(x I, Co ) = (A Ij', co) 8(Co-w') (3c)
M( k, tic') = (ti r) O60 '

(3d)

respectively, where typically

(L, ) = (2t)-1/2 d'c ,( Il A, C) exp(-iCoC) (3e)

From equations (1) and (3) it is apparent that stationarity results in substantial simplifications. It

reduces, in the Fourier transform domain that corresponds to that in which the stationarity is
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present, an integral operator to an algebraic factor. The availability of such a reduction may dictate

the choice of the space of convenience just discussed. Finally, it is convenient, for the most part,

to deal with the impulse response integral operator rather than with the impulse response function.

The impulse response operator h (A I A% t ft') is zelated to the impulse response function

g(Al I' A% t') in the form

h(A tI ' A, f g (A IA% t It,)da, dt* ....
h x Xtlt X x(4a)

e.g.,

h( X',tl t' 1t I ,' =  g ,tt') d2'dt'lN(',' (4b)

where Pe (x',t ', in equation (4b), is an arbitrary, but well behaved, function of the dependent

vector variable [A', t'} Invariably, except for a few simple structural complexes, the direct

derivation of the impulse response functions or operators are difficult and cumbersome. One must

then resort to modeling procedures that will give the derivation a chance. In this paper a number of

analytical approaches, designed to derive the proper impulse response functions or operators of

complex structures, are considered.

it may be useful, at this early stage, to make a precis of the story of the paper. In this way

some idea as to where the paper goes will be related before the multitude of equations and the maze

of notations take over. The response of a (structural) complex that is excited by an external drive is

formulated in terms of an impulse response function and/or operator. The operat is an integral

operator that spans the spatial and the temporal extents of the complex and the external drive. This

formalism is depicted in equations (1) through (4). As just stated, rarely is the complex and the

drive sufficiently simple that they can be reasonably represented in single forms. It is, therefore,

proposed to model the complex and the drive so that the description can be decomposed. The

decompomtion is in referenc to unique and significant paths yielding components through which

6



the response can be estimated by a superposition. The hope is that the analysis in terms of these

paths may lead to a set of simpler impulse response operators. A vectorial arrangement of the set,

with a corresponding set of drives, may render the formalism simpler in certain applications. A

more drastic step in the analysis is then taken. The complex is modeled in terms of elemental

constituents - - dynamic systems, each of which is amenable to a reasonable description. The

premise is that the impulse response operator associated with each dynamic system may be

reasonably derived. The drive is similarly modeled in terms of elemental constituents, each

assigned to a dynamic system. The formalism, as expected, is cast in matrix form: The complex is

described in terms of an impulse response matrix operator, the external drive in terms of a

compatible vector, and the response is then a vector, each element, in the response vector, is the

response of a specific dynamic system. A major difficulty in this analytical modeling is the

multiplicity of descriptions required and the requirement for the description of the interactions

(couplings) among the dynamic systems. Nonetheless, this modeling technique is central to the

paper. This modeling technique is of particular appeal in those situations in which the generic and

phenomenological properties of the response of a collection of dynamic systems that interact may

be more significant than the precise evaluation of that response. Nonetheless, to this point in the

development of the analysis, the modeling of the complex in terms of coupled dynamic systems is

formally stated and the resulting equation for the response is thus of limited practical utility. The

impotence of the equation is evidenced, for example, by its insensitivity to the spatial

dimensionality of the dynamic systems. To infuse some practicality into the analysis just

developed, two major approaches are talen: 1. the modal approach, 2. the wave approach.

There are situations in which the modal and wave approaches can be readily related. The

Sommerfield Watson transformation constitute such a relationship [6,71. However, in this paper,

the relationship is not a paramount topic. Rather, in the paper, the modal and the wave analytical

procedures are considered as parallel, but distinct, approaches to the analysis of the response of

models that cast the essential characteristics of the complex in terms of coupled dynamic systems,

as was just formally recounted.
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1. In the modal approach the couplings are expressed in terms of coupling impedance

operatrs that are compatible with the impedance operators of the individual isolated dynamic

systems. The latter impedance operators are chosen to be eigen-operators so that each defines a set

of eigenfunctions and a corresponding set of eigen-values. The sets of eigenfunctions enable one

to suppress the spatial dependence of the matrix equation for the response vector, thereby

rendering this an equation of temporal dependence only. The spatial dependence of the response

can be recovered if the modal matrix equation for the temporal portion of the response is resolved

and the eigenfunctions are explicitly known. It emerges, however, that the modal matrix equation

for the temporal portion of the response is of higher rank, by the modal count, than the original

equation. It appears, therefore, that the modal approach is useful when the modal count is low and

the eigenfunctions are imown. Usually, however, the increase in rank and the general difficulty of

specifying the eigenfunctions for most dynamic systems, makes the modal approach impractical,

unless statistical measures are brought to bear.

2. In the wave approach the model is defined in terms of extrapolated matrix propagators,

terminal position vectors, and junction matrices. A propagator, for a given dynamic system, is

defined in terms of propagation in which back-scatterings, from regions outside the insitu

boundaries, are eliminated by an appropriate spatial extrapolations of the dynamic system. The

terminal position vectors define the positions of the boundaries of the dynamic systems. The

junction matrices define the boundary conditions and the couplings among the dynamic systems at

and across these boundaries. It emerges, from the derivation of the matrix equation for the

response in this format, that the spatial dinensionality of the dynamic systems has a considerable

influence on the wave formalism. The interactions via the various paths at the various terminal

positions and across the various boundaries lead to summations (and when appropriate

integrations) galore; so much so, that the formalism appears too hopelessly interwoven and

entangled to be processed by computers of reasonable capacities, today a usefid measure for the

practic -lity of a formalism. However, dramatic simplification in this cumbersomeness of the

formalism results when the dynamic systems art one-dimensional Further meaningful



simplification occurs if the dynamic systems are basic - - the propagation in the dynamic systems

is described by exonential-like propagators. The response of those complexes that may be

modeled by a collection of coupled basic one-dimensional dynamic systems is, therefore,

illustrated and is now readily formulated [1-51.

Finally, it is proper to mention the comprehensive review by Hodges and Woodhouse on

the theories of noise and vibration transmission in complex structures [8]. In this review many

aspects of the subject matter covered herein are discussed. Indeed, much of the materia and

references presented in this review are relevant to this paper. The discussion of the applicability of

the formalism of the acoustical response of complex structures to various other areas of physics, is

of particular interest. However, the intended purposes and methodologies of the review do not

overlap those intended and developed in this paper.

MULTI-PATHS

One may recognize that the response at { x, :1 may be contributed to by a number of possible paths

and that each path is not only describable by an independent impulse response op-rator, but that

only a portion of the drive may participate in contributing a response via this path. The complex is

then modeled by a number of paths as is sketched in Figure 1. With the aid of such modeling one

may state that for each path the equation for the response mimics equation (1) so that

h A A p t I t ) p y ( A , t ) _ p " ( A ' t ) ,( )hv ( I Xx x(5)

where v designates a unique path. (cf. equation (4).] It is helpful and instructive, as the theoretical

development proceeds, to exemplify and contrast the derived equations with those pertaining to a

simple modeL Therefore, the derived equations will be followed immediately by the

corresponding equations that are appropriate for the simple model of the complex. The simple

model may also be employed to render the equations more explicit. Brief references to this

procedure will be made at the appropriate locations in the text. Thus, to begin this procedure, if the
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traversal of a path may be specified merely by a time delay tv, the impuse response operator

hV (A I, t It') in equation (5) may be expressed more explicitly in the form

hV (A I A%, t It) I _ V (A I A%, t It,),& (,CV) ,(6a)

where Rv( I ', t t') plays a secondary role and is functionally reasonable and available, A (c) is

a temporal operator defined by

N N
A(r) f (t) _ f (t- _,) ; A ('90) - A (7-T)

oU (7ta)

the path v is assumed unique, the subscript and superscript (v) identifies the path, v designates the

elapsed time (retarded time); the time takn by a response induced at to transfer, via path v, and

arrive at x, and finally, f is an arbitrary, but well behaved, function of time. The elapsed time ' is

afunction ofx and x" and is independent of the temporal variables; v =y v X (x ')bunot

xV([ X, t It'). A basic example of the impulse response operatorin whichh'( ', tt')is

mote explicitly stated is

hv(I .tIt') - P (Al, A,tlt) &(,V)

lV (XI ',tlt') - hv(xI') 8x (t-t')
;V(AIA,)_ f r' ( Aj t ) d ,' . . . ; e0 fi(t_t,)dt,..

x x x ... (b)

wherV(ti £') is independent of the temporlvariables, and
N et a

0 ft-t') f(t')=f(t) ; 8 (tD+ -tu) - 8(tN.l-t)

[cf. equation (4).] To cast equation (5) in the format of equation (1) one needs to construct the

impulse response operator and the drive in vectorial forms; i.e.,

h(x I tIt') - yE hX ( ' Vtt' ((8a)

10



A .A t') tC)F (9)

where again the caret atop a quantity signifies its vectorial nature. 1,2 [cf. equations (la) and (1g).]

For the simple model, equation (8a) assumes the form
^A

h(xlxI t It') =I5" h(X t it') A(tcV)v
V (8b)

The grand equation for the response is then derived from equations (1), (4), (8), and (9) in the

form
[A (XA I A', t I t,) Ap(A,, t,)] = p( t, t) ;p(XA, t) =.v pV(A, t)

V (10)

It is noted that a path is defined either in terms of components in the impulse response operator, in

the drive, or in both. Although not exactly in this format, equations (5) and (10) have proved

useful in handling problems relating to structural response. Problems relating to propagations at

sea have made greater use of such decompositions than structural vibrations have. The reason for

the limited deployment of this formalism in solving problems related to structural vibrations, stems

from the difficulty and cumbersomeness that often still remains in the description of the partial

impulse response operator hv( I ', t I t") - -the impulse response operator describing the transfer

via a single unique path; path v. This statement holds true even for the partial impulse response

operator of models that are simple. [The simplicity of these models may arise because they

represent simple practical structural complexes and not necessarily because they represent

excessively simplified complexes.] Much of the progress made has been linked with statistical

measures designed to perform the summation over the paths; e.g., by ensemble averaging. In

2paths (and, when approapriate, positions atjunctions) are cast in terms of swns over discret

values. However, in principle these sums may be continuous so that the swnmatons may be

appropriately replaced, in part or in whole, by integraions. This transition from the discrete to the

continuous may be interpreted from ray, via beam, to wave descriptions. In this sense, in the text,

the reference to wave propagation is more akin with ray propagation.
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these cases the partial impulse response operators need not be precisely defined and described.

Averaging of this kind has been applied with some success to limited and simplified situations in

structural vibrations; e.g. References 9 and 10. On the other hand, averaging of this kind has been

traditionally quite acceptable in solving problems relating to propagations at sea; e.g. References 11

and 12. On a typical basis, statistical measures may yield from equation (10) a simplified

equation (1). However, in this paper, rather than investigate the restrictions that are impe on,

and explore the advantages that are accrued from the resulting equation, one may inquire whether

altenate and/or further analytical decompositions exist from which more profound benefits may be

attained.-

MULTI-DYNAMIC SYSTEMS

One may attempt to subdivide the complex into a number of coupled dynamic systems as is

sketched in Figure 2. [cf. Figure 1.] A contrived model may then be constructed in which the

dynamic systems are rendered uncoupled. The uncoupling of the dynamic systems may be

instituted, for example, by artificially isolating or extrapolating the dynamic systems. In this

contrived model each dynamic system admits to an impulse response function that is hopefy

reasonable to describe. The equation for the response of the contrived model of the complex, in

which the dynamic systems are rendered, artificially if necessary, uncoupled, may be cast in the

form

(h1a)

where

~l jI ~ xj tjdi~j, d 1 ~d (12)

12



tA tI,) _ (h~jC $j t I,' t,) .
m

(13a)

A
APe('t)~e(jt A; p(A ,t) _ {Pu(Ajt} 4

Pei (Ax; t') is the drive applied at positions f x, t' }to the (i)th dynamic systm,

h Xj ( j , t It') is the imple response operator of the uncoupled (j)th dynamic system, and

Nj ( j, t) is the response at position { j, t } in the O)th dynamic system In component form

equation (11a) is

h jtj 1', t It) Pej( Xt,)- _pj( j ,t) (15a)

It is noted that the dynamic systems need not span the same spatial dimensionality. Thus, 2j may

be of different spatial d i ty than that of i with i j.

The insitu model of the complex must account for the various couplings that may exist

between the multiple dynamic systems. Indeed, the specification of the couplings is crcial in this

modeling. It is proposed that, in turn, the modeling may reveal the manner in which the couplings

need be specified. This interaction between the modeling and the specification of the couplings is

essential to the success of this formalism. [It is to be understood that in the specification of the

couplings are included deviations in the boundary conditions under which equation ( l1a) is stated.

Therefcae, the specification of the couplings may cause changes in the definitions of some dynamic

systems without, necessarily, causing changes in the fact that they are uncoupled; Le., some

dynamic systems may be uncoupled in the insitu model.] Taking account of the couplings, one

may formally state the equation for the response in the matrix form

( I XA, t It') PC (XA, , (X, t0 (11b)

or equivalently in the component form
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1:hji(A I A, t t,)lN ( At t,), A t)
i 'j ' ' (15b)

where

h(A A',t It,) -(hji (AIAi , t I t,))

(13b)

E("t)} ;t- {pj (j ,t)}(I (14b)

[cf. equations (11a), (15a), (13a), and (14a), respectively.] In these equations, the impulse

responseoperatorhji (jIA,t It') is the "transfer operaor" from the drive position at({j, t')
in the (i)th dynamic system to the observation Position at { Aj, t } in the ()th dyac sm,

Pei ( ,t') is the external drive at { V] I' on the (i)th dynamic system, and pj (Xish

response at t I in the (j)th dynamic system due to all the external drives in the various

dynamic systems. One may also cast equation ( 11b) in the more decomposed form
A I A,, t , P 11

h(XXtt) P(.,t') - p (x~t 0

(11c)

wher the (external) dnve matrix and the response matrix are defined

pe(A..,t')(Pe( AA,t')t) ; t-
(14c)

respectively. In component form equation (11c) reads

hj ( j I A;' t I t,) N ( A;, t,) _ Pj (Aj t ) (150)

(cf. equations (15a) and (15b).] It is obvious that when the dynamic systems are artificially

rendered more and more uncoupled, in the prescribed manner, the result is

14



The inverse of equation (16) is mome difficult and cumbersome to establish. Not only off diagonal

elements appear, rather than disappear, but the diagonal elements undergo changes. Therefore, the

establishment of the uncoupled impulse response matrix operator h u( X^IX', t It') may not imply a

direct and an immediate step in the process of deriving the impulse response matrix operato

h (, I _', t I t'). Nonetheless, situations may arise in which such an establishment may constitute a

first step in the process of deriving h; e.g., h. may be considered the zeroth order approximation to

h. In this context modeling the complex in terms of multiple dynamic systems necessitates

specifying the couplings among the dynamic systems in a manner that is compatible with the

definition of the contrived model of uncoupled dynamic systems.

The derivation of the impulse response matrix operator h (A1 "~ t It') for the subdivided

complex can be achieved by a number of different approaches. Invariably in these approaches

further analytical decompositions are instituted. Are these further analytical decompositions of help

in reducing the difficulty and cumbersomeness of ascertaining the response of structural complexes

excited by complex external driving systems? Two distinct approaches are subsequently

discussed, and comments are made with respect to the answer to this question.

MODAL APPROACH

An analytical decomposition that is widely familiar is the modal analysis. A model in

which the multiple dynamic systems are rendered uncoupled by isolation is amenable, by its very

structure, to modal analysis. Indeed, the isolated dynamic systems in the complex are conveniently

chosen in a manner that make them, individually and collectively, suitable to a modal analysis.

The model is sketched in Figure 3. [cf. Figure I and 2.] The equation for the response is then

typified by equation (1 la). It is assumed that each appropriately isolated dynamic system is

charatred by an impedance operator. The impedance operator zj ( j, t) is the inverse of the

impulse response operator huj (2j I 2, t I t') of the (j)th dynamic system. (cf. equation (13a).] It

15



is further assumed that the chosen impedance operators are eigen-impedance operators. It is noted

that the definition of the eigen-impedance operators is not unique; there are usually a number of

ways in which the dynamic systems in the complex may be isolated. A convenient set of eigen-

impendance operators is then selected to define the model of the complex. Each eigen-impedance

operawr defines a closed (complete) set of orthogonal (normal) eigenfunctions and a corresponding

set of eigen-values. The modal (eigen-) equations for the response, the closure, and orthogorality

are expressed by

zj(xj 0)*in() - Xji)*n~j (17a)

tn ,j) (xj ) =( j (17b)

f 40j(AX0d~j jj (17c)

respectively, where z ( j, t) designates the eigen-impedance operator, Oin( j) deignates an

eigenfunction, and z,(t) designates an eigen-value for the (j)th dynamic system, n (and m) is the

modal (eigen-) index, and

A A; so
8(i (xs, - x~) 18

Strictly the modal dexneed be cast in terms of a vector. That is, the index n (and m) in the
soequations in this section need be replaced by the vectoindex (and ), where - E gn,. Since

the modal approach is widely familiar, such, and other, details in the modal approach are not

dwelled upon in this paper. From equations (11), (14), and (17) one may state and readily obtain

pj(Aj, t) - pja(t) *ju(j) , (19a)

where
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^e(" A, A')
peim (t') f Pei(Xi, t') dXi Oim(Xi)

pjn(t) , I pjn( j t) d jn(j) , (19b)

The insitu model is now consructed. by introducing the couplings among the dynamic systems.

The couplings are compatibly defined in terms of coupling impedances. An impedance matrix

equation for the response may then be defined in the form
Zp(A,t)pe(A,t) ; p(At) - {pj(Aj,t)} ; pe(kt)-Pej(A t)

Z_= (Z €A , t) 8 , f "" '"" I' .1'M - X i  8 X di"'.

(20)

where zj (A , t) is as defnedin equation (17) andZji (AjIx ,t)s th coupling impedance, tis

impedance describes the coupling between the (i)th and the (j)th dynamic systems. [It is noted that

to render the dynamic systems isolated; equation (16), one merely removes the coupling

i mpedances; or more generally, one renders z diagonal.] Transforming equation (20) into the

modal domain and making use of the orthogonality of the cigenfunctions yields

(21a)

POWt) I {...pc~'. P} I N (t') - {Peim(t')}

p(t) - {...P(t) ...} ; I,) - {pj(t)( ,

_z- (zjn(t) ji 8nm - 71nm(t)) , (22b)

where z,(t) is defined in equation (17a) and

Zjnim(t) - i Xj)()dj j zjixjI, t) dxi xti(x ) (23a)

17



or equivalently

zjit., t) = *jn(Aj) Zjnim(t) Oi n() (23b)

The quantity zj(t) is the coupling eigen-value describing the modal coupling between the (m)th

mode in the (i)th dynamic system and the (n)th mode in the (j)th dynamic system. In this

description, zjj, is the self-coupling eigen-value; it is these eigen-values that modify the diagonal

elements when couplings are introduced. Equation (21) may be inverted so that the equation for

the response is expressed in terms of the impulse response matrix operator that is associated with

z. The inverted equation, in matrix form, is

_P(t)= h(tit') P90') ; h(tlt')=J - tt)tf..

h_(t [t')-=(hjniw(t [t')) ; g(t It') "(gJnim (t It')),
= (21b)

or equivalently, in component form, is

: hiim(t It') Peint') - Pn(t)
hjnim(t I t ') - f gin(t ! t0 dt'.. (21c)

where

ginim(t 0t' f Oi Xiu j d Xi g i( t') dxi i (24a)

or equivalently
gji (A I A', t I t,)_ = jn( j ) gjnim(t it,) OIlM(A I ) 4)

(cf. equations (15b) and (23).] The inversion of equation (21a) into equation (21b), and to that

matter, vice versa, is greatly facilitated if the dynamic systems and the couplings among them

remain unchanged with time - the dynamic systems and the couplings among them are

temporarily stationary. That is, z (t) is pure differential operator in the temporal domain and
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g (t I t') (2ic)- L g (t - t'). [ct. equation (3a).] Assuming this temnqal stationarity and
performing Fourier uansformations with respect to the temporal variable on equations (21a),

(21b), (23), and (24) yield

(25a)

- = (25b)

j(j I ,O)-~ *jn(A ) jiM(C) 4 m, ) 2c

respectively, wheref ND), Ne(a)) and I(co) e: teFouriertransforms of p(t), pe(t), and

(2g)-1 s(t- t'), respectively, and I(C) is the Fourier eigen-value matrix of the temporal matrix

operator t); namely,

(t) ((2)'1 xp (iCot) jiI) =(co) ((27)' 2  Xp (iCOt) ji 8M) (26)

It is noted that the inversion from equation (25a) into equation (25b), and vice versa, is algebraic.

The simplicity of the inversion, in the frequency domain, when a temporal stationarity prevails, is

thus clearly demonstrated. However, as equation (25a) indicates, the formalism just discussed is

pedicated not only on the intimate knowledge of the impedance operatos that describe the isolated

dynamic systems, but also on knowledge of the coupling impedance operators. Such knowledge

is rarely available. In this connection it may be noted that the eigenfunctions need not be directly

defined by an actual impedance operator. For example, eigenfunctions that are geometrically
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defined are quite acceptable in deriving the equations in this section. However, the geometry, like

the spatial dependence of the eigen-impedance operators, needs to remain stationary with respect to

the temporal variable. Using artificial eigenfunctions is not without penalty, it renders the modal

quantities and parameters also artificial and, therefore, not physically interpretable.

Comparing equation (15) with equation (21) it is observed that the spatial dependence is

stripped off by the modal procedure; a simplification indeed, however, at some expense. The rank

of the matrix h is swelled from that of h, defined in equation (13), by the number of modes within

the complex. Even in simple complexes, such swelling may be quite substantial and equation (21)

and (25) may, thus, become unwieldy. In addition, seldom is knowledge of the natural

eigenfunctions readily available, even in these simple complexes. Means to reduce the rank of

equation (21) and (25) may prove essential and the requirement for knowledge of the

eigenfunctions (and the eigen-values of the coupling impedance operators) may need relaxation.

Again, statistical means may have to be devised to induce such a reduction and to suppress the

need to know detail forms of the eigenfunctions of the isolated dynamic systems and the eigen-

values that specify the couplings among the dynamic systems of the complex. The statistical

energy analysis (SEA) is one such a device [ 13, 14]. The rendering of SEA from equation (21)

and/or (25) lies, however, beyond the scope of this paper.

WAVE APPROACH

Another approach to an analytical decomposition is a wave propagation approach. This

approach is not new; it has been employed in the vibrational analysis of complex structures [8].

ndeed, in part, this approach is employed in Section IL In this paper, however, an attempt is

made to systematize this approach and finally recover and extend some recent work by the authors

(4,5]. Equations (5) and (11) are considered basic. In this approach the dynamic systems in the

contrived model are rendered uncoupled by extrapolation. An uncoupled dynamic system in the
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complex is chosen so that a propagation mode can be assigned to it; namely, were the (j)th dynamic

system extrapolated boundlessly, the propagating path v in it can be defined in terms of the
A,,

propagator function b.j ( j , t t') so that a corresponding external drive Pevj (x t') would

induce a responsep ( j, t) atthe position{[ 3 , t ) on the extrapolated dynamic system. The

analytical expression for this process is
A t )A =

h;j(Xj Ix Al, tit.*) PeSvj(A1 , t') = pV j(Aj ) .( 7

[cf. equations (5) and (15a).] Again, were the path of propagation a simple path, in equation (27)

hZj( i , t It') assumes the more explicit form

h (A~~~~ A. i, iA A: t • )&h(jjt)-hjxjl, t .. Xi x, (28)

Sj' E &(jj)(29.)
A'

where the quantity ijv designates the time taken by a response induced at xj to transfer, via path v

on the exu'polateddn ic system, and arriveat j; = (j I . (f. equaion (S)

through (7).] The extrapolation is considered proper provided it is instituted in a manner that

would avoid back-scattering, from regions outside, into regions occupied by the actual dynamic

system. It is noted that the extrapolation is not unique; there are several ways in which it can be

instituted. However, an extrapolation of this kind is essential and central to the wave approach

here proposed. Equation (27) for the multitude of dynamic systems may be stated in the matrix

form

_,(xl,A At It,) pV( ,) -- p ( A., t)

(30a)

where
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(3la)

i pPw (Aj t)t)
~( (32)

In the wave approach, equation (30) is equivalent to that of the generic expression specified in

equation (1 la). (The prescribed "extrapolation" in the wave approach plays the role of the

"isolation" in the modal approach discussed in the preceding section. These two prescriptions are

designed to derive equation (1 la) in forms that are fundamental to each of the two approaches.J

From equations (27), (28), and (32) one obtains

h I(g, t It) (X V) p gt) p(A t)

(30b)

where

h=-V(lj[j~t t') j ( j A, t [t,) ),

(31b)

N N

(33)

[cf. equations (5), (7), (11), and (29).] The matrix operator A can accommodate a vector

dependent variable because it is, by definition, a diagonal mauix. The vectorial form of the elapsed
time Tv is simpler and, therefore, more convenient than its diagonal matrix v counterpart would

be. [cf. equations (1 Ib) and (1 1c).] In the wave approach the couplings are compatibly defined in

terms of a set of junctions. The junctions define the insitu boundaries and the interconnections

among the dynamic systems. A tmninal position at a boundary (a junction) in the (j)th dynamic
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A

designated xaj. A terminal position vector may then be defined

A Axa ={3j. (34)

The set of the terminal position vectors define the extents and the boundaries of the dynamic

systems in the complex. To complete the definition of the model of the complex it is necessary to

define the junction matrices

T=(Tvkb)
(35a)

The junction matrix element T ji defines the conversion, partially or totally, of an incident wave

AA

propagating in path a, on a junction at the terminal position xbi in the (i)th dynamic system, into a

wave that emerges and propagates, in path v, away from the junction at the initial position

the (j)th dynamic system, see Figure 4b. The conversion is ar .. ,,anied also by a temporal

integral operation. Stating the process just disc, ssed more explicitly, with minimal loss in

generality, one may cast3

(35b)

where it is assumed that the spatial and temporal operative properties of the junction matrix can be

separated; A: is a temporal integral operator and yOb is a spatial integral operator
M

3With certain modifications and extensions in the formalism, one may acount for situations in
which the external drives may be placed also within the junctions. Such modifications and
extensions were introduced in Reference 2. However, such considerations lie beyond the scope of

the present paper.
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Aja (t"I t"') ft, (t"') A; (0) f(tr)
A I, )dA ..,=

(36a)

where A: (0) is merely an algebraic matrix factor, f. and f are arbitrary, but well behaved,

functions of the (dummy) temporal variables t' and t"', respectively, and yb and Yk are algebraic
matrices in the (dummy) spatial vector variables A" and A and the terminalp eo r

Sand ad positionv
A A
Xb and .k. To exhibit the properties of the junction matrix even more explicitly, the simple model

is used yet again. For this model the junction matrix is d-fined in the form

Tg ,v) O. k A: 60b,
Mba Ab 6

(35c)

where

M = vkO (.k) 80t)

(36b)

kv
i =ji) Abi(O) A@)

80t - f 8(t- t') dt'.-. , (36c)

!k x --xk ) L~ Xj _- k )

Ob°  f !( _eA-,)d" =di= b I' .... a A ,i SO

(36d)

A (0) and Ji are merely algebraic factors. As equation (36c) makes clear, the elements of t
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define a set of simple ime delays that ae imposed on the appropriate waves as they traverse the

junctions.

At this stage, it is instructive to note in passing, a differential feature between the initial

models for the wave and the modal formalisms. In the wave approach the intial model is defined in

terms of properly extrapolated dynamic systems; these dynamic systems are uncoupled. A proper

extrapolation is achieved by manipulating the model so that the junction matrices vanish; e.g.,

rendering the C's in equations (35b) and (35c), identically zero. On the other hand, in the

modal approach the initial model is defined in terms of properly isolated dynamic systems; these

dynamic systems are uncoupled. A proper isolation is achieved by manipulating the model so that
•vk,

the nondiagonal elements in the junction matrices vanish; e.g., rendering the eb." s, in equations

(35b) and (35c), diagonal matrices.

Reiterating then, the model of the complex is defined in terms of the propagator matrix h' ,

the terminal position vector i, and, finally, the junction matrix Tb. Analogous to equations (5)

and (11), and with the help of Figure 4 and equations (30) and (32), one may formally cast the

equation for the response vector p- (i, t) that is solely in path v - - the partial response vector - -

in the matrix form

[ v , ) t)] pv(,,t)

(37)

where the partial impulse response matrix operator is of the form1

EV ( I r t' - v.. x Ii' t It') V

k b a(38a)

and the external drive vector is of the form'
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A (A T^(t t) A_ (A

p , ) =Map. ,t); . j 8ji)
(39)

[c. equations (8) through (10).] With the aid of equation (35b), the partial impulse response

matrix operator may be stated in the more informative but abbreviated form

^ h~+ hyA yObh^
h v - hV,.v + 1: hv Y k Obhef

M kWmsm

(38b)

It is of interest to note that equation (38a & b) is amenable to inpretation in a manner that is

commonly employed in structural acoustics; namely, the division of the response into direct and

reverberant parts. Of course, there are a number of different ways of defining and cutting this

division. In establishing equation (38a & b), however, a division is already suggested. The direct

part is to be associated with that part of the response that occurs prior to interactions with any of

the junctions. Once the response is contaminated by interactions with a junction, it is portioned to

the reverberant response. Reverberation in this context pertains to the initial and subsequent

interactions of waves with the junctions of the complex. [Commonly, however, reverberation is

reserved to situations in which large multiplicity of this kind of interactions ae present; in fact,

large enough so that the initial interactions become insignificant.] It is clear that the direct part of

the response is associated with the first term on the right of equation (38a & b). This term is

dubbed the direct term in the impulse response matrix operator. It is equally clear that the other

terms are associated with the reverberant part of the response. These terms are dubbed the

reverberant terms in the impulse response marix operator. The division is then unambiguous and,

as can be readily recognized and verified, remains so throughout the wave approach to the

derivation of the impulse response operators. The corresponding equations, to equations (3a) and

(38b), for the simple model are
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kV(A I A t, .- I ) .(Al .A t It,) =g( ) V,

hZ.hA' AV A ( A ( A" XA),

+ E: i ,( lxx ,t It) &(,rv)T "t~I~~t
k b o bm

Ml kb t ft W 1

h. v . = = i4 (O) A (,bjj 8°)
-m t m s lm

(38d)

respectively. [cf. equations (35c) and (36b) through (36d).] The notations are chosen so that the

reduction of equation (38a) to that of equation (38b) may be instituted without confusion; e.g.,

not the cyclic form in nT v with a -- b --+ k -- v; see Figure 4b. In this connection, situations

may arise in which the junction matrix T may be a priori of simpler form. For example, one
may find that the terminal postion b of incidence and the rinal position &k of depare are

the same; e.g., as depicted in Figurt 4c. ThenT1bak-4T j 6 kb ;Tlb q The summation in

equation (38), and in subsequent equations, may then be accordingly and a priori condensed. It

may also be noted that the summation over the terminal positions; e.g., in equation (38), implies

discreteness. If the discreteness is found to be inappropriate, the summation may, in part or in

whole, be replaced by the appropriate integration.2 It may be proposed, at this stage, that the

following notations be recorded for subsequent use

AV&-- &(f/) - (A&(i/'j)ji) ; ej - 'r'(XjIX bj)

at - m(al) - (A('O,/)5ji) C - Tjv(xjlIxpl

Avab- A(fb) - (&(bj)8ji) ; 'vbj- 'j(XajIXbj)
(40)

Equation (38) appears impure in the sense that a number of to's show in the reverberant

terms of the expression for . Means need be devised to pri equation (38). For this purpose

equation (38b) is mipulated to construct the relationship
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yOb tOa. y Ob h. (T+ (I n t yO9 ht
I M

(41a)

where

baf e o h
ActI( A t;)( Z) eb Z 80

jb~m yOb h1?. yf of;

(43a)

and, again, note the cyclic form in AW with a -+-b k -v - c ; see Figure 4. Substituting

equation (41a) in equation (38b) yields

A v
hVm h. V.(Z h+ yk.,) . {yOb ha 0

(44a)

where

(45a)

The reverberant terms in equation (44a) ae clearly pure, and, therefore, so is tv. Thus, the

consution of the B's, stated in equation (41a), achieved heir designed purpose. The

conswction of the matrix B is mnd to the revaberan par of the response. Whenee a set of

jparapitPs in th matrix rendes (the magnitude o) its eigealik value small compared vt uniy,

thdw e be response is high A highly reverbe t response is poentally indicaed if the

eienllk valus of B1 are small and numous. Indeed the potential necessty for the emxience of

such small eigenlik values in D*, prompted its cm cton. In the frequency domain, a set of

parm sthat yield high reverbeat response, as just prescribed, is dubbed a set of "resonance"

pS. A common example of a paramet in this set is th resonance frequency. It is
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expected that invariably the contributing terms to the reverberaon in the response will harbor the

matrix factors 13 that are the inverse of the ID' s. [cf. equations (44a) and (45a).] It is noted that
mM

tM IS a temporal ra or, equivalently, ¢t is. In the spatial domain this

operator is neuter. This statement is clarified noting that yOb h,. y f is not a spatial matrix operator.

Since B4 is a tempmal matrix operator so is, of course, I*. However, whereas Bg is a proper

operator, its inverse 14 may need special attention when manipulated. Nonetheless, the
ft

expresion for the impulse response matrix 9v is pure in the sense that it is a functional purely and

solely of the praperdes of the dynamic systems and the couplings among them; namely, of the

h. ' s, 's, and 'ic' s. Again, making use of the simple model yields, for equations (41a) through

(43a), the conesponding equations

°"O - .8b h .of . .c

(41b)

- - f~ bc~(425)
bbt Obo. ° t h e; ( 4 2 b )

(43b)

respectively. Substituting equation (41b) in equation (38c) one obtains for the simple model

h V-I +(t hf!k 4) D* {8ebh. CF
U m kba M

(44b)

where

(45b)

As in equation (45a), it is noted that the matrix B in equation (45b), is a temporal operatr as e,
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is. LAe its counterpart in equation (45a), in the spatial domain this operator is neuter. This

stamnent is clarified noting that 5 0b hew 6f is obviously not a spatial matrix operator.

Once equation (44) is derived, the grand equation for the response vector p ( , t) of the

complex may be stated in terms of the impulse response matrix'

h( x~tt) T n hv Xt' x
M ,- V M ,

h (x t I') J V.( IX t to)I !a +hA,(AXAx, tit,) T}
M' V a Ms="=

(46)

and the external drive vector1

A .A, Ao

(39)

in the form

[AxAx,tlt,)A, (A# X')PC P xt).
A (47)

A

[cf. equations (8) through (10).) The expression for the impulse response matrix opetMr h in
A

te second of equation (46) is of some interest The double summation in h is introduced to

accommodate the detail form of the drive few Z Pc. The first term in t e curly bracets is the

direct ter and the second term describes the reverbant terms in the impulse response matrix

operator. The direct term in the impulse response matrix operator is always readily disinguishable

from the reverbenmt term; equation (46) is a Prime example of this statezent. [cf. equation (38).

Equation (47) is expressed in the teporal domain and is suitable, if not essential, to

ascertaining the response of a complex to transient external drive systems - - external drives that are

localized in the temporal domaij. Inserting equation (44) in equation (47) results, even in models

of simple structurl complexes, in an equation dt is cumbersome and difficult to interpret. Some

fadie May be delived if the complexe are asumed to be stationary in the temiporal domain. This
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kind of stationarity is imposed on the complex by assuming that the dynamic system and the

couplings among them remain unchanged with the passage of time; i.e.,

h.. ( Ix, ttIt') a (27c) - 112 hv (1 , -.

of (t- I t ' ') (2a)-1/2 A1 (t"- "

(48a)

[cf. equations (36a) and (38a).] In the simple model the conditions of stationarity are mom'

stringently imposed; namely,

.. (A It X40, Ih.(lxt It') at (27c) - 112  .(xxt-t')A(v
m mm

- (0)A (' ) (0))
(48b)

and the A~ (O)'s and the r' art merely algebraic factors. [cf. equations (36b) and (38c).

Substituting equation (48) in equations (42), (44), and then in equation (46), helps, to be sure, but

the formalism still renains cumbersome and difficult. Further r&ief may be derived if, in addition,

the equation for the response is Fourier transformed from the temporal domain into the fequency

domain. The equation in the Fourier domain is usually more suitable for ascertainmg the response

for "steady state" drives and for complexes that are stationary with respect to the tmporal domain.

IMPULSE RESPONSE OPERATORS IN THE FREOUENCY DOMAIN

To this point the analytical procedures and were conducted in the
{ , t )-space. Is there any advantage in transforming the equations derived in the preceding

section into other related spaces; e.g., by a Fourier tsfomaion? It was argued in the

intoduction that such a transfomation into a specified domain, may be advantageous when the

complex is stationary with respect to the variables that de this domain. In this section, only a
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temporal stationarity is considered. If the dynamic systems and the couplings among them remain

unchanged with the passage of time, as defined and stated in equation (48), then unde these

conditions equation (30) may be recast by a Fourier transformation, in the frequency domain

(49a)

or in the abbreviated form

hv. (co) pev (co) = p. (wD)

(49b)

where

(50a)

PM(A W) -. (21CyL 2 Jdt'pwa(., t') exp(-icot') ( a

pv(X . ) -+ (2 x)-112 &ci _

[cf. equation (1).) It is also noted that the mrows, replacing the equality signs, indicate that the

quantities are related by Fourier transformations. However, unlike the notational procedure

adapted in equations (1) txgh (3), the leucerings remain the same. This, together with the

reduction of equation (49a) to equation (49b), is instituted to keep the notations, which are already

unwieldlly, to a minimum.- The reWe in transforming ftrm the time domain into the frequency

domain is achieved mainly because the temporal opeators in the temporally stationary formalism

am eigen-operators with respect to the Fourier eigenf.unctI I (2xy I& exp (imt). Therefore, in the

frequency domain thes temporal operaors are simply replaced by their eigen-values. These eigen-

values are merel algebraic factors. This replacement is particularly explicit in the formalism of the

simple model. For the simple model, equation (50a) can be cast in the form
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(A, n I A,, RV. Ij II A, t I2C, CV i 0)(

.(XlXe ). hV( Il,t-t') A (v) (2i)" 2 exp [-ico(t-t')];
M M

,hv .x . o)D) =,~.(jIj, co) V Cf.(Wo)

[ ( 2 ,x) 2 (i O ) ] = [ ( 2 ) - 1 N ]
F[A( 'j)]F[V (CD'Cj)1 J

V(CDTV) = (exp(-icOvt j) = (V(WCej)8ji)

(50b)

where F is an arbitrary, but wel behaved, functional of the dependent quantity. Imposing the

temporal stationarity, stated in equation (48), on equations (42) and (43), one obtains

Se4 hC4 b~ mZ m;O (52)

where for the more gener 1 mc.el

A(co) h h (co) A.(o

A (co) -*(2c)
112 'Of (t"-_t"') eip -i o (t" - tl")];

hf- yOb h*.(o) yf

(53a)
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and for the simple model

Ae-(co) he h.(CO) A'(0)

4 (CO)=(Aj (0) V(wt'Ce~f 1)) ; V(00C'c j) = exp (-i O'C14 )

h..bf(0)= hbf(€O) V(COf) ; Rbf(CO) 8 0b f

40bf) (exp(-iob) rj) (V(O4) SA)

(53b)

[cf. equation (40).] As expected and anticipated, equation (53b) is more explicit and simpler than

equation (53a). Imposing the temporal stationarity, stated in equation (48), on equations (44a) and

(44b) yields

- -f~ - -(54a)

9v(co) - hv(w) v + X h.(CO) 8 k 4 (OD) 1.(Co)

M m kb m 5

ft f (54b)

respectively, where

(55)

[cf. equation (45).] It is noted that the matrix B (), unike Be in equation (42), is merely an

algebraic matix factor, and therefo.e so is D (co). Consequently, in the frequency domain, the
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impulse response ratrix f (to) is of simpler suuctre than it is in the temporal domain. Again, the

direct term h. v in the impulse response matrix operator, in equation (53 a&b), is clearly
M M

distinguishable from the reverberant terms. Moreover, it emerges that the grand equation for the

response vector p (, c) of a model that is temporally stationary is, as expected, algebraic in the

frequency domain

(A oX, 0)) p A, )) ,
(56)

where

M~ ~ ~ -~ -

(AI'A%) C ZO Z {.(AIA, CO) V (Axl,, CO) C}

V CFV M M

(57)

are the impulse response matrix and the external drive vector, respectively, expressed in the

frequency domain. [cf. equations (39), (46), and (47).]

The relief, expected from the stationarity of the complex in the temporal domain and the

Fower ansformation of equation (47), is matmialized in equation (56). Nonetheless, as indicated

by equations (53) and (54), substantial cumbersomeness and difficulty still remain in equation (56).

This stems, as it does in equation (47), from the multi-spatial dimensionality of the complex. How

much relief may then be reasonably gained by restricting the model of the complex to a composition

of coupled one-dinmensional dynamic systems?
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COUPLED ONE-DIMENSIONAL DYNAMIC SYSTEMS

As argued in the introduction, if an impulse response operator is stationary in a given

dependent variable, it can be rendered, by a Fourier transformation, algebraic in this variable.

Then, by focusing on a single value of the Fourier conjugate of the variable, the equation for the

response is effectively reduced in the dimensionality of this variable [3,4]. Thus, if the complex is

stationary with respect to A2 in the spatial domain A = {x, 2 },theequationfortheresponsecan

be reduced, as just specified, to account for a model of a complex composed of spatially one-

dimensional dynamic systems, where conveniently xi a x, and the reduced equation is specified at

specific value of k2; k2 being the Fourier conjugate of X2. In this paper, for the sake of brevity,

this one-dimensionality of the dynamic systems is imposed directly on equations (42) through (44)

and on equations (51) through (53). The reference to the other spatial dimensionalities, if present,

is simply suppressed and omitted in the Fourier transform. The authors previously presented, in

References 4 and 5, an analogeous analysis of the response of a model composed of multiple

coupled one-dimensional dynamic systems. In these previous considerations, however, the one-

dimensionality of the dynamic systems is imposed a priori. In the first reference, the analysis is

conducted a priori in the {x, wi-space. In the second, and the more recent reference, the analysis

is conducted a priori in the {x, ti-space. In this way the relationship between subsequent

considerations, in this section, and the previous considerations, in References 4 and 5, can be

established with the insights that such a comparison may provide to the modeling and the

formalism.

A complex consisting of one-dimensional dynamic systems is sketched in Figure 5. The

complex is appropriately defined in terms of just two junctions, junction r and junction q [1-5].

Thus, the model is specified in terms of two propagator matrices, two terminal vectors, and two

junction matrices. For the more general model, the propagator matrices are in the forms
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h (xlx',t t') = (i(xjIxj, t It')Sji) x x={xj}

xs -- x ; xlj-4xj ; cz=rorq
Sol (59a)

and for the simple model in the forms
•h.(xlx't It') = h (111',t It') A('r)

.a~~x't t') ,,(.(xi Ixi,t t I)

t(XI)=f{ t(xj]xP) ---- {'L't (59b)

The two terminal position vectors are specified in the forms

!, = {xajl ; x=rorq , (60)

These terminal position vectors are common to the more general and the simple models. The two

junction matrices for the more general model assume the forms

l 8 bk bbrSO !VC)la

T =- 8 (Ei-cL) Aa J 8. ) d ;

Ac, - (ctji) ; cc-rorq ;

Aa (t" I t"') fe (t") - Aa (0) f (t")
mM

(61a)

and for the simple model they assume the forms
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Tv = 8bk 8 0a QI- 8w,) Ta;

A 0 = (A mpi (Tag) SL) ; A aj1  ('rzji) = Aaii (0) ,& ('rcuj)(6 b(61b)

[cf. equations (30) through (36).] Substituting equation (59) and (61) in equations (42), (46), and

(44) yields

pa .= (B

(62)

- : - h°a1.ip

(63)

h h opAAh

(64)

respectively. It is noted that the matrix quantities Ac and A are temporal operators and, therefore,

so is Ba and, consequently, so is D0 . In this sense equations (62) and (64) cannot be manipulated

cavalierly; commutations and expansion procedures must be carefully viewed and performed.

Equations (59), (61), and (62) through (64) are the equations for the response of the model of a

complex composed of one-dimensional dynamic systems. Compared with equations (35), (36),

and (41) through (44) for the multi-dimensional dynamic systems, the reduction achieved in

equations (59), and (61) through (64) is dramatic. Moreover, it is noted that the spatial operative

properties of the junction matrices in equations (59a) and (61a) and those in equations (59b) and

(61b) are identical; a further and considerable simplification indeed. The difference in the junction

matrices described in these two sets of equations lies entirely in the temporal domain, but the one in
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equation (59b) and (61b) are by far the simpler. Finally, it is observed, from equations (63) and

(64), that the impulse response matrix operator fi, for the model composed of coupled one-

dimensional dynamic systems, harbors six (6) distinct terms: two (2) direct terms;
h1a. cx, a = r and q, and four (4) reverberant terms; ha a and h a =randq. Althoughthe

impulse response matrix operator for the one-dimensional model is significantly simpler, some

further simplification in the model is still required to attain reasonable descriptions. The first in this

process is to bring to bear the temporal stationarity onto the one-dimensional model Thus,

imposing the stationarity in the temporal domain on the one-dimensional model recasts equation

(48a) in the form

Aa (t"It") a (2z)-112 Am (t"- t"')

(65a)

and for the simple model, equation (48b) yields

h~a(xx',t It') a (2i) - 2 h?(x'It-t)A(2)

-- (j(0) & ('rji) 8t° )
(65b)

and the Au (0)'s and the rcL's are algebraic factors. Substituting equations (65a) and (65b) in
M M

equations (62) through (64) yields further simplification. However, the significant simplification

is attained when the resulting equations are transfomied into the frequency domain. Such Fourier

transformation yields

B0 (co) =[I - (co) A.6(,)] Da(co) -.[Ba(co)] •

h~) o~ h(m)~ 8. A0(Co) I=g- pI1Lc)A~o

(66)
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fi~w~rn ~ ~ NCO -ca [h(CO)+ h (cO)x+ h (CO) (7

-- - i p(co) ip(w) S(co)

ta(wo) = huA) p (o) Dp(co) 8' (o

(68)

respectively, where for the general model

g 0 (Ep co,)--+ (2x)- n 8 OP hNI 11 P, t -t, ) Sa exp[-oo(t-t')]

Aa (C) - (27c) - 12 Aa(t"- t") exp [-io(t"- t')]
(69a)

and for the simple model

p. n

h(!sx) E ' t-, ex . .- io ( d(O)]

g41(xpx~,co) -+ (27c)- 12 8 P
SM

C04

a(cO)= (Aji(O)V(wezajD) V(o~ji) =exp(-iw),CjD

(69b)

where g.(co) and jt(W) ame the impulse response functions that are associated with the impulse
IN M

response opertors ht,(c) and h?(arespectively. [cf. equations, (4) and (40).] Comparing

equations (66) through (69) with equations (50) through (54), again, reveals the considerable

simplicaon attained in modeling the comp1ex in terms of coupled one-d soa dynamic

systems. However, to make ready contact with the formalisms developed and used in Reference 5

and Rferences I and 2, further simplifying assumptions need to be imposed on the one-

diiensional model of the compleiL
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BASIC COUPLED ONE-DIMENSIONAL DYNAMIC SYSTEMS

Using equations (65b) and assuming the coupled one-dimensional dynamic systems to be

basic, one may explicitly define and impose

(21c)W (xIx, t -t') = a(x Ix') 8Ot (t-t')

A ('r) "U(x-xl' A(',r) ; P(WI-') a UT(--x')
{a5 C a4 a -inr

T+ (- =')=(tj '+(Xj-xp8ji) ; JU*"(xJ) U[(xj-x) sign (xj-xpj)]

cx-rorq ; A=rorq ; aCob (70)

where Cg, is a temporally independent speed of propagation toward junction cc and 11 is the loss

factor associated with this propagation in the (j)th dynamic system [3]. [cf. equations (6b) and

(59).] Consulting equation (41), and using equations (62), (65b), and (70), one obtains

B5 = [I-4A& ; -(B ; A

vs a) aa lo Im

(71)

Morver, from equations (63), (64), (65b), and (70) one obtains

-h {Aa~ + go( x P)i c+gs a x) d,' 8 0 (t-t')...
aia mo op a

(72)

!C' A5 4 (f) A. Dp Ac P

(73)
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where Dp, in equation (73), is as stated in equation (7 1), and :. ., .%p, and %'0, are deduced from

equation (40). Equations (39), (47), (63), and (71) through (73) are employed in Reference 5 to

exemplify the nature of the response vector p (E, t) of a model of a complex composed of multiple

coupled basic one-dimensional dynamic systems. In this reference, however, the one-

dimensionality of the basic dynamic systems was assumed a priori.

Using equations (69b) and assuming the coupled one-dimensional dynamic systems to be

basic, one may explicitly define

m +

[cf. equation (6b).] From equations (66) and (69b ) one obtains

.B()- i-.m(co) 4()J ;D.CO)

a (); P CL•-xp -ic ,) (V(M)8Jj)

(75)

[cf. equations (40) and (71).] Moreover, from equations (67), (68), (69b), and (74) one obtainsh'a(w) "4 {( VO Qo?) + --- I""]" + 4 (x ix',D)P} d' ''

(76)

- v1a A~p(w) Dp(0o) V' Q~ ~

-V.Ap(CO) Dp(OW) 7

where
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Va+ =V a (CcOt) - (Tj (j - Xj') exp (- icD'Cjj)&ji ) )

M M

Y " = Va+(0O) 1 )= (Taj (x - xp )exp (- i'Clfj)ji)

M M

.  UP) -(+ (Xaj - x (-) exp (-;j)8i

(78)

[cf. equation (40).] Equations (56), (58), (67), and (75) through (77) are identical, except for

minor notational differences, with the equations derived, in References 2 and 4, for the impulse

response matrix operators and/or functions. In these references, however, the one-dimensionality

of the basic dynamic systems was assumed a priori. It may be pointed out that in the frequency

domain, temporally stationary models of complexes composed of one-dimensional dynamic

systems can be treated with relative ease, even if these dynamic systems are not basic. Thus, for

example C, in equation (74), may be assumed to be frequency dependent, rendering, in turn, fa

frequency dependent. Also, more complex propagation, such as may occur in a model that befits

cylindrical geometry, may be treated in the frequency domain more readily than in the temporal

domain [4]. However, in these instances one needs to return to the moe general equations; the

equations for the simple model cannot quite handle such situations. Nonetheless, the formalism

herin stands ready, with some increase in cumbersomeness, to accommodate even these deviant

situations. This increase in cumbersomeness is miniscule compared with that introduced by

increase in dimensionality. As is clearly demonstrated in the wave approach just discussed:

increase the dimensionality and the task is increased by much more than a linear Ioportionality.

This leads to a few final remarks. The modal formalism appears less dependent on the spatial

dimensionality of the dynamic systems; see Section TV. Of course this is misleading. The spatial

dependence of the formalism is removed and stored away in terms of sets of eigenfunctions.

However, the eigenfunctions are strongly influenced by the spatial dimensionality of the dynamic

systems. Indeed, making the eigenfunctions for all the dynamic systems available for storage is
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the greater part of the solution to the spatial dependence of the response of these dynamic systems.

The availability and the storage of the eigenfunctions introduce severe limitations on the versatility

of the modal formalism. An eigenfunction is usually fixed in the format of "standing waves"

which gives it quasi-symmetric properties with respect to the spatial dependence. If the response

does not follow spatial patterns that can be described by a few of the eigenfunctions, the

cumbersomeness of the description may become forbidding. Indeed, for a lopsided response,

such as may be caused by excessive damping, significant disparity in the junctions, substantial

rectification in the propagation in some of the dynamic systems, etc., the modal formalism may be

overtaxed. For example, try and describe the direct part of the response with the modal formalism!

On the other hand, the wave formalism does not suffer this "locked-in" limitation; e.g., the direct

part of the response is readily determined! However, the spatial dependence in the wave formalism

is built piece-by-piece. Themfore, the formalism is cluttered with the spatial dependences. A

reduction in the spatial imensionality of the dynamic systems is communicated directly and

dramatically to the wave formalism. Thus, although the two formalisms are formally

compl , they may also be supplementary. That is, in addition to furnishing the same

information, they may also reveal different, yet useful, information in trying to resolve a problem

in which the issue is the response of an externally driven complex.



~Complex

Fig. 1. Schematics of a complex on which are shown two typical paths; path v and path a,Ae

from the localized external drive positions at I x, t'} to the localized observation
positionatX,t}

Fig. 2. Schematics of a complex subdivided into (three) dynamic systems. The g1 is the self-
impulse response function of the (j)th dynamic system and gji is the coupling impulse
response function between the (i) and the (j)th dynamic systems.
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z. zi

Z zzj
(Q)tlh (r)th ]

"'~ ~ O Zr r'Zk

z jr

Fig. 3. Schemaics of a complex modeled by coupled (three) dynamic systems. The z is the self
impedance operator of the (j)th dynamic system and zj is the coupling impedance operator
between the (i)th and the (j)th dynamic systems. The self impedance operator zj defines a
set of eigenfunctions Oj and a set of corresponding cigen-values zi.
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Fig. 4. Schematics of a complex subdivided into (three) dynamic sysems. Propagation isX " n the (i)th dynamic systm. The propagation via

inifia ~~~ ~ (~t inpt oa hepsonx

path reaches the bounday at position b. A component of the propagation enter the (j)th
d~nmic system at the position Xkj and propagates in path n to the observation position

xjin the (j)th dynamic system. [The latter propagation may continue until it reaches and
is incident on the position xc.]

(i)th

(v)

Fig. 4b. Incident position and ex posiiposition kj are not coincidtt.

4A

-- ~(i) (t

Fig. 4b. Incident position Abi and exit position Aj a e coincident.
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g (X A',t It')

L_.] q  " (;, t,,",,t'Aq A7tT 'r Ar

.4 48

Agr(A 1A1,t t,

Fig. 5. Schematics of a complex modeled in terms of multiple one-dimensional dynamic systems.
Two junctions are necessary; junction r and q. These junctions are defined by the terminal
positions 1mand by the junction matrices A; a = r and cc - q.
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