”y

TRy . s
Ll Fj

O

S
=0
~

Efficient Specialization
of Relational Concepts

Technical Report PCG-9
Kurt VanLehn
Depantments ot Psychology and Computer Science

Carnegie-Mellon University N e
Pmsburgn PA 15217 US.A. R

—— e e

v 2arnid

-““‘:\"77 ’,) »

Approvedforpublicrel ~§'
S ?,Cét'.‘.'?"mstribuﬁon Unnmited' ?W?n‘ j-

2 ke 23 Eaoe Ll 4
T & L] mdwe a4 2% 43 ,(38
3 nfu A &aunumt*uu’. ey e ‘

Unlvers |

R VNP

arnegne_

PRI Tk

1

Efficient Specialization
of Relational Concepts

Technical Report PCG-9
Kurt VanLehn
Departments of Psychology and Computer Science

Carnegie-Mellon University
Pittsburgh, PA 15217 U.S.A.

1 July 1987

Running Head: Specialization of Relationai Concepts

Acknowledgments

This research was supported by the Information Sciences Division, Office of the Naval
Research, under contract number N00014-86-K-0678. Reproduction in whole or in part is
permitted for any purpose of the United States Government. Approved for public release.
distribution uniimited.

Unclassified . -)
mm
REPORT DOCUMENTATION PAGE T
la. SECURITY CLASSIFICATION 1. RESTRICTIVE MARKINGS

{ ey gy
TSECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY QOF REPQAT

Approved for public release;

25, DECLASSIFICATION / DOWNGRADING SCHEDULE Distribution uynlimited
"% PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBEA(S)
PCG-9 Same as Performing Organization
S NAME OF PERFORMINT CRCANIZATION [6b. ?;s‘l':: ’s‘m:?,. 7a ;A;ﬂ: ?:a rf'"m;'"f ::c::m;:::naio
Carnegle-Mellon University Office of Navel Research (Code’ 1133)
6. ADORESS (City, State, snd 2P Code) T8 AOORESS (City, State, end 1P Code)

800 N. Quincy St.
Arlington, VA 22217-5000

——

Departments of Psychology and Computer Scien
Pittsburgh, PA 15213

8a. NAME OF FUNDING / SPONSORING 80 QFFICE SYMBOL [9 PROCUREMENT iINSTRUMENT 10ENTIFICATION NUMBER
ORGANIZATION (If appiicadie)
, . NO00l4-86-K-0678

Same as Monicorin& Oraanlzatlon

8c. ADORESS (City, State, ang 2P Coae) 10 SOURCE OF SUNDING NUMBERS p40000SUb20L/ /-%-86
PR0GRAM PROJECT TASK WORK uNtT
ELEMENT NO NO NO ACCESSION NO

N/A N/A N/A N/A

11 TITLE (Inciude Secunty Classification)
Efficient Specialization of Relational Concepts

12 PERSONAL AUTHOR(S)
Kurt Vanlehn

13a. TYPE OF EPQRT 13b T'ME COVERED 14 QATE QF REPQRT .rear, Month, Oay) [S. prE COUNT
Technical snom 86SeplS ro 91SeplS 87 July 1
‘G SUPPLEVIENTARY NOTATION
‘/‘ e ;,’,- P
/q-'r YENVT Al il e -
R CQasati CO0ES N\ a SUBLECT TERMS (Continue on reverse if necessary ana dentiry Dy dDiock NumMoer)
FELD GROW? Su8-GROUP “Machine learning, artificial intelligence, version
spaces, concept induction, /{7l .

'3 ABSTRACT (Continue on reverse if necessary and dentify By block number)

See reverse side.

20 JISTRIBUTION/ AVAILABILITY OF ABSTRACT : 21 ABSTRACT SECLRITY CLASSIFICATION
CuncLassisieounumITED KJ samE as aeT Coarc useas
ey ey
112 NAME OF IESPONSIOLE 'NOIVIOUAL 220 PH (Area C
Alan Meyrowicr Sf) 888‘2‘5& @ Code) | dc 5(: SYMBOL
_ -l
00 $ORM 1473, 8a mar 83 APR edition may be used until exhausted. RITY " £ ThIS PA

All other eaitions are obsolete.
Unclas.ifi.d

Abstract

This research note presents an aigorithm for a common induction problem, the specialization of
overly general concepts. A concept is too general when it matches a negative example. The
particular case addressed here assumes that concepts are represented as conjunctions of
predicates, that specialization is performed by conjoining predicates to the overly general concept,
and that the resulting specializations are to be as general as possible. It is shown that the problem
is simple if the concept representation language is propositional, but NP-complete if the language
is first-order (i.e., relational). Nonetheless, there exists an algorithm, based on manipulation of bit

vectors, that provides good average-case performance. |~ . . __\
P N B
;
ot e

Cory
INSPECTED
4

1
{

This research note presents an adequately efficient algorithm for a common type of induction
problem, the specialization of overly generai concepts. A concept is too general when it matches a
negative example. This problem is tairly common in inductive concept formation. For instance.
when updating the G set of a version space (Mitchell, 1982), if the current example is negative and
some of the elements of the G set match it, then the first step of the update-G process is to
specialize those concepts. In algorithms, such as D3 (Quinlan, 1986), that represent concepts as
decision trees, extending a node of the tree is specialization of the concept expressed by the

branch of the tree ascending from that node to the root.

This note concerns the special case wherein concepts are represented as a conjunction of
atomic predicates. Much work in concept formation has used such conjunctive representations. It
is also assumed that specialization is limited to conjoining predicates to the overly general concept; ‘
Although there are several other ways to specialize concepts, this is one of the most common
ones. For instance, it is the only form of specialization aliowed in 1D3. Lastly, it is assumed that
the induction algorithm should produce concepts that are as general as possible. Again, this is a'

common assumption in machine leaming wark.

If the representation is further restricted so that the predicates have no arguments, then the
representation is equivalent to a feature set or an attribute-value vector. For this propositional case,
there are several well-know aigorithms for solving the specialization problem. An easy one to
describe is the problem of updating a version space where both concepts and examples are
represented as sets of features, and matching is implemented by set inclusion. The algorithm takes
three arguments: the overly geeral concept, C.: the negative example, N: and a third concept, P,
which is a member of the S set of the version space. The algorithm simply takes each feature in
the set ditference P-N, and creates a new concept by adding it to C. The algorithm returns this set
of concaptes each of which specializes € (i.e., it is a superset of C) and fails to- match N (i.e., it is
not a subset of N). The basic idea of this algorithm appears in the other propositional aigorithms as
well, with the modification that the source, P, of pesitive features may not be a member of the S set
but may instead be a positive example (as in Langley's (1987) discrimination algorithm) or even the

whole vocabulary of predicates (as in 103).

The basic idea of the proposition aigorithms is to find a set of ditferences between P and N,

and add each to C. Because the new concepts are required to be as general as possible, only

——-_f

However, when the algorthm is extended to relational representations (i.e., conjunctions of
predicates with variables) a minimal difference between P and N is not necessarily a single

relation, but in some cases can be a small conjunction of relations. For instance, consider the

following situation, where numbers represent objects and letters are variables:

N= P(1,2) & Q(2,1)
S= Py, x) & Q(x,y) & P(x,y)

The minimal differences between P and N are subconcepts of P that do not match N.

there are seven such subconcepts, and only three fail to match N:

1. Py, x) Matches under the substitution (x/2,
2. Q(x,y) Matches under the substitution (x/2,
3. Pix.y) Matches under the substitution (x/1,
4. Ply,x) & Q(x,y) Matches under the substitution {x/2,
S. Ply.,x) & P(x.y) No match
6. P(x,y) & Q(x.y) No match
7. P(y.x) & Q(x,y) & P(x,y) No match.

Given some overly general concept C that matches N, any of the last three could be conjoined to C
in order to specialize it. However, the last subconcept is not a minimal difference, because it
properly includes other subconcepts that do not match N (i.e., subconcepts £ and 6), so only
subconcepts 5 and 6 should be added to C. This produces two new maximally general concepts.

assuming that C was maximalily general before N was received. The main point of this example is

*minimal” differences between P and N are added to C. if the representation is propositional, then

minimal cifferences are always exactly one predicate, and never a conjunction of predicates.

In this case,

y/1}
y/1l}
y/2}
y/1}

that the smallest concepts that serve {0 specialize C are conjunctions of two predicates.

Incidentally, conjoining a subconcept to C can be nontrivial. For instance, it C is p (u, v)
Q(v,u), then conjoining P (x,y) & Q(x,y) to it should yield both p(u, v)

Q(u,v) andP(u,v) & P(v,u) & Q(v,u). Fortunately, this problem is similar to the Update-S

problem, and nearly the same aigorithm can be used for it.

A direst, but inetficient way to generate minimal differences between P and N is to search for
them by chaining together predicates that share variables. At one time, the procedure-learning
program Sierra (VanLehn, 1987) used this technique for updating its version spaces. It often took
30 hours or more just to handle a few negative examples. With some help from Johan de Kleer, a

much faster algorithm was invented. Now Sierra completes the same calculations in a minute or

two.

Q(v,a)

The key idea is to convert the problem of finding minimai differences into a sat covenng
problem. The first step is to enumerate all substitutions of objects in N for variables in P. For
example, it there were S variables in P and 7 objects in N, then there are either 75 possible
substitutions when distinct variables can be bound to the same object, or 7°6°5°4°3 substitutions
when distinct variables must be bound to distinct objects.’ Having enumerated the substitutions,
each predicate in P is assigned a bit vector. The bit vector has one bit for each substitution. If the
predicate is in N under a given substitution, then the bit is zero. if the predicate is notin N, then the
bit is one. If any predicate has a bit vector that is all ones, then it is not in N under any substitution,
so it is @ minimal difference between P and N. Assuming there are no Such predicates, the

algorithm must to find a small set of predicates such that the union of their bit vectors is all ones.

Attaching bit vectors to predicates converts the minimal difference problem into a well-known
problem, the set covering problem: Given a target set and a collection of subsets of i, find a cover
for the target set, where a cover is a set of subsets such that the union of those subsets equals the
target set. There are several different versions of the set covering problems, dependiﬁg on the
kind of cover desired. An irredundant cover is a cover that is not properly included in any other
cover (i.e., noue of its subsets is redundailt in that it can be removed from the cover with0ut'
affecting the cover's equality to the target set). Irredundant covers correspond to minimal
diffezences between P and N, which in turn are the ditferences that lead to maximally general
specializations of C. So for most applications, the covering algorithm desired will be one that finds
irredundant covers. Another possibility is an algorithm for catculating minimal covers, which are
covers with the fewest number of elerﬁents. This would cause the specialization algorithm to

generate some, but not necessarily all, of the maximally general concepts.

The most straightforward way to generate irredundant covers is breadth-first search.
Howeyer,_this approgeh is very space -inefficient. Sierra uses an aigorithm-.from Wells (1971,
section 6.4.3), which is based on depth-first search. The trick is to prune the search whenever
adding a new subset o the cover causes the cover to become redundant. Well's algorithm is

presented in table 1. The second clause of the Cond impiements the search pruning.

'Sierra’s concept representation enforces additional constraints that reduces the number of substitutions still further. This
reduction is crucial, because Sierra's concepts usually had between 10 and 50 variables. In retrospect. the same reduction
could be achieved more sleganty by assigning types 1o variables and objects, then enumerating only substitutions that
paired objects and variables of the same type.

Table 1: An aigorithm for finding irredundant covers

(Defun FindCover (Cover Covered Duplicates Usable)
(And Usable
(Lat
{(Candidate (Car Usable))
(NewCover (Cons Candidate Cover))
(NewCovered (Union Covered (BitVector Candidate)))
(NewDuplicates
(Union Duplicates (Intersect Covered (BitVector Candidate)))
(NewUsable (Cdr Usable))
(Cond
((For X in NewCover thereis
(SubsetP (BitVector X) NewDuplicates))
(FindCover Cover Covered Duplicates NewUsable))
((TotalSetP NewCovered)
(Cons NewCover
(FindCover Cover Covered Duplicates NewUsable))
(T
(Append
(FindCover NewCover NewCovered NewDuplicates NewUsable)
(FindCover Cover Covered Duplicates NewUsable))))))))

FindCover returns a list of irredundant covers. Cover is a list of predicates paired with their bit
vectors. Covered is the bit vector for the current coverage of the cover. Duplicates is the bit vector
for the substitutions that are covered twice by members of the cover. Usable is a list of potentiat
candidates for adding to the cover.

Table 2 presents estimates for the time and space complexity of this depth-first algorithm,
the breadth-first algorithm, and the algorithm based on chaining through variables. Nete that all the
aigorithms are exponential. This is inevitable, because set covering is an NP-complete problem
(Aho, Hopcroft & Uliman, 1974, theorem 10.2.9). However, the exponents tends to be smali in

typical applications. For Sierra, p and n are usually about 100, and m is usuaily 1 or 2.

Table 2: Complexity estimates for three minimal difference algorithms

Algorttrim ol Time Space T~
Depth-first (plogp)™ plogp

Breadth-tirst pm p™

Chaining p™nY p™

Where: p is the number of predicates in P, n is the number of predicates in N, m is the average
number of predicates in a minimal difference, and v is the average number of variables in a minimal
difference.

As mentioned eartier, this algorithm was used with success as part of a version space
maintenance module. It would be equally useful in machine learning programs, such as AQ11
{(Michalski & Larson, 1978), that employ version-space-iike techniques as components. It would
probably be useful for programs, such as 103 (Quinian, 1986) and PRISM (Langiey, 1987), that
induce decision trees. All these programs were initially developed with propositional concept
representations. The algorithm described above extends them for use with relational concept

representations.

References

Aho, A.V., Hopcroft, J.E. & Uliman, J.0. (1974). The Design and Analysis of Computer Algorithms.
Reading, MA: Addison-Wesley.

Langley, P. (1987). A general theory of discrimination learning. In Klahr, D., Langley, P. &
Neches, R. (Ed.), Production System Models of Learning and Development. Cambridge.
MA: MIT Press.

Michalski, R.S. & Larson, J.B. (1978). Selection of most representative training examples and
incremental generation of VL1 hypotheses: the underlying methodology and the description
of programs ESEL and AQ11 (Technical Repont 867). Computer Science Department,
University of lliinois.

Mitchell, T.M. (1982). Generalization as search. Artificial Intelligence, 18, 203-226.

Quinlan, J. R. (1986). The effect of noise on concept learning. In R. S. Michalski, J. G. Carbonell,
& T. M. Mitchell (Ed.), Machine Learning: An Artificial Intelligence Approach. Volume II. Los
Altos, CA: Morgan Kaufman.

VanLehn, K. (1987). Learning one subprocedure per lesson. Artificial Intelligence, 31(1), 1-40.

Wells, M.B. (1971). Elements of Combinatorial Computing. New York, NY: Pergamon Press.

1,
i

