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19. Abstract N )

In the last several years there has been a remarkable amount of work in
probability on infinitely dimensional spaces, iii particular on nuclear spaces.
Although the most of work has been done in nuclear spaces, some of the
basic theorems (for instance, Itd’s regularization theorem), are given in a
much more general context of multi-Hilbertian spaces.

In this paper we study topological properties of multi-Hilbertian spaces
and their duals, hoping that this will serve as an introduction to a study
of probability problems on these spaces. We tried to clearly distinguish
properties that are consequences of nuclearity from those that hold on non-
nuclear spaces.

In section 5, we propose a non-standard completion theorem, removing
the condition of "compatibility” of norms, a condition that seems to be
overlooked in most probability papers in this area. Also, we give a detailed
account on open, bounded and compact sets. Elaborated proofs are left
for appendices, and, as a result, appendices occupy a considerable space.
This is mostly due to results related to seminorms that we wanted to make
rigorous.

The results that are given in this paper are selected with a purpose to
serve as a basis for probability investigation; the topology alone was not the
aim. As a continuation of this work, we plan to investigate o— algebras
and probability measures, and weak convergence of measures in a general
context of multi-Hilbertian spaces. Also, we plan to investigate examples of
interest in applications.
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Abstract

In the last several years there has been a remarkable amount of work in
probability on infinitely dimensional spaces, in particular on nuclear spaces.
Although the most of work has been done in nuclear spaces, some of the
basic theorems (for instance, It6’s regularization theorem), are given in a
much more general context of multi-Hilbertian spaces.

In this paper we study topological properties of multi-Hilbertian spaces
and their duals, hoping that this will serve as an introduction to a study
of probability problems on these spaces. We tried to clearly distinguish
properties that are consequences of nuclearity from those that hold on non-
nuclear spaces. a o

In section 5, w;/ propose a nof—stamdard completion theorem, removing
the condition of "compatibility” of norms, a condition that seems to be
overlooked in most probability papers in this area. Also, we give a detailed
account on open, bounded and compact sets. Elaborated proofs are left
for appendices, and, as a result, appendices occupy a considerable space.
This is mostly due to results related to seminorms that we wanted to make
rigorous.
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0 Introduction

In the last several years there has been a remarkable amount of work in
probability on infinitely dimensional spaces, in particular on nuclear spaces.
Although the most of work has been done in nuclear spaces, some of the
basic theorems (for instance, It6’s regularization theorem), are given in a
much more general context of multi-Hilbertian spaces.

In this paper we study topological properties of multi-Hilbertian spaces
and their duals, hoping that this will serve as an introduction to a study
of probability problems on these spaces. We tried to clearly distinguish
properties that are consequences of nuclearity from those that hold on non-
nuclear spaces.

In section 5, we propose a non-standard completion theorem, removing
the condition of "compatibility” of norms, a condition that seems to be
overlooked in most probability papers in this area. Also, we give a detailed
account on open, bounded and compact sets. Elaborated proofs are left
for appendices, and, as a result, appendices occupy a considerable space.
This is mostly due to results related to seminorms that we wanted to make
rigorous.

The results that are given in this paper are selected with a purpose to
serve as a basis for probability investigation; the topology alone was not the
aim. As a continuation of this work, we plan to investigate o— algebras
and probability measures, and weak convergence of measures in a general
context of multi-Hilbertian spaces. Also, we plan to investigate examples of
interest in applications.




1 Seminorms

Let E be a real vector space. Unless stated otherwise, it will be assumed
that all vector spaces are defined over the field of real numbers.

1. Definition. A real valued function p defined on E is called a semi-
norm if for all z,z1,2; € F and all a € R:
(t) p(z)20
(ii) p(az) = |a|p(z)
(111) p(z1+ z2) < p(21) + p(z2)
(tv) p(z) > 0 for some z € E.

2. Definition. A seminorm on FE is called a Hilbertian seminorm if, for
all 21,z € E :

PX(z1 + 72) + P21 — 72) = 2(p*(z1) + P(22))

For a Hilbertian seminorm p , define

We1,22) = 10721 + 22) = P ~ 22))

3. Definition. A seminorm p is called separable if there is a countable
set D C E such that

(Vz € E)(Ve > 0)(3d € D)p(z — d) < ¢,

i.e., if the set D is p — dense in E.

4. Remark. It can be shown that p(-,-) satisfies axioms of an inner
product, except that p(z,z) can be 0 even if z # 0. It is important to
remark that Cauchy-Schwartz inequality p(z,,z2) < p(z1)p(z2) holds for
seminorms. Using this inequality it can be shown that p(z, — ) — 0 and
p(yn—y) — 0 together imply p(z,,yn) — p(z,y). More details on seminorms

are given in Appendix A.




2 Operators on Hilbert spaces

1. Definition. Let H;, H2 be separable Hilbert spaces with norms |||
and ||.||z , inner products (-); and (-); and orthonormal bases {e,} and {k,}
respectively. Let A be a linear map H; — Hz. We define the following
classes of operators:

A is a compact operator if

Az = tn(z,en)hn, (1)

where t,, | 0 . -
A is a Hilbert-Schmidt operator(HS) if (1) holds with 3"t2 < oo.
A is a nuclear operator if (1) holds with 3¢, < . (t, > 0).

2. Remark. For a compact operator A the image A(S) of the unit
sphere of H, is a relatively compact set in Ho.

3. Definition. Let A be an operator A : H — H. Then

A is a trace class operator if J_|(Aen,e,)| < 00, for any ON basis {e,}
in H.

A* is the adjoint mapping of A if (Az,y) = (z,A*y) for all z,y € H.

A is a self-adjoint operator if A* = A.

A is positive if A is self-adjoint and Y a;a;{zi,z;) > 0, for any set of
complex numbers {a;} .

4. Theorem. Let A,B be operators H — H. Then:

(1) If A and B are HS operators, then AB is a nuclear operator.

(#) If A is a compact positive operator, then A is nuclear if and only if
it is a trace class operator.

(27) If A is a nuclear operator, then A* is also nuclear. The same holds
true for HS property.

(tv) If A is a positive nuclear operator, then there exists a positive S
operator A/2 | such that (41/?)2 = 4.

(v) A positive compact operator A can be represented as

Az = Z ta(z,€n)en,

where {e,} are eigenvectors and ¢, are eigenvalues of A.

Let A be an operator H, — Hj.

(vi) A is HS if and only if 3, ||Aen||? < 0o and it is nuclear if and only
if 3, |(Aen,€,)2] < oo, where {e,} is an orthonormal base in H,. These




properties hold for one orthonormal base if and only if they hold for every
orthonormal base in H».

(vii) A is a compact operator if and only if the image of every bounded
set in H, is a compact set in H,.

Proof: See Gelfand and Vilenkin, ch.1.

5. Lemma. If p is a Hilbertian seminorm on a Hilbert spa.ce H, con-
tinuous with respect to the norm || - || on H , then p(z) = ||Az|| , for some
continuous linear operator A.

Proof: Assume first that p is a norm. Define the inner product p(z,y)
, as in the Definition 2. For any fixed z € H , p(z,-) is a continuous linear
functional on H ; therefore , by Riesz representation theorem, p(z,y) =
(z0,y) . Define an operator ¢ , by ¢(z) = zo (z € H) . By properties of
an inner product p(-,-) , @ is a positive linear operator; let A = ¢©'/2. Then
p(z,y) = (Az, Ay) and the assertion follows.

3 Definition of Multi-Hilbertian spaces

The family of all separable Hilbertian seminorms will be denoted by HSN
1. Lemma. If pe HSN then cp€ HSN(c > 0).

2. Lemma. Ifpy,...,pn € HSN, then p€ HSN, where p is defined
by

p(z) = (PP(z) + ... P2 ()2 & \n/ pi(z) (1)

i=1

Proof: Only the triangle inequality needs to be proved. Using Minkow-
ski inequality, we have:

- pHz + ¥V < O (pH(=) + p2(y))'/?

(P N+ (3 pR(w)/? (2)
p(z) + p(y)-

p(z +y)

IA

3. Definition. If p,g € HSN, we write p < ¢ if p(z) < ¢g(z) for some
ce€ Ryandallz e E.




4. Let E, = (E,p), i.e. E with the topology defined by a seminorm
p. Let ker(p)={z € E|p(z) = 0} Then E,/ker(p) removes the defficiency
of seminorms and becomes a normed space with an inner product p(-,-).
It may not be a Hilbert space, as it need not be complete. Let E, be the
completion of E/ker(p) with respect to p ; it can be identified with the union
of E and all limit points of Cauchy sequences in E. E, is a Hilbert space.
If p < ¢ then the identity mapping

ipg: Eq — E, (3)
is continuous, by ¢(z) < € = p(¢(z)) = p(z) < €/c. Let us extend it to

ipq : Eq/ker(q) — Ep/ker(p)

by .
ipq(z + ker(q)) = z + ker(p) (4)

Let us show that the mapping defined by (4) is well defined, i.e.

Y1,¥2 € = + ker(q) = y1,¥2 € T + ker(p) (5)

Indeed, 31,y € z + ker(q) < q(y1 —y:) = 0and g(yn —2) = 0 =
Pyi —y2) =0and g(yh —z) =0 < y,y2 € z + ker(p), where in the
last step we used the fact that p < ¢q. Note that the mapping (4) is not
invertible, by p(x —y) =04 q(z - y) = 0.

Let us now go through completion. Suppose z € E,. Then there is a
sequence z, € E,/ker(q),q(z, — ) — 0. So, {z.} is a ¢-Cauchy sequence.
thus

¢(zm —z,) =0 (m,n — o)

Therefore:

p(ip.q(-rm) —1p4(24)) — 0

and iy q(z,) is a p-Cauchy sequence. So, there is an y € E,. such that
p-lim i, o(z,) = y. Define i, o(z) = y. Now the mapping i, , is extended to

ipg: Eq — E, (6)

This is clearly a linear continuous mapping.
For z € Eg, let us define p(z) = p(ip,z). On E,,p is only a semi-
norm,whereas ¢ is a norm on the same space, as we have seen.




5. Definition. Let p,q be Hilbertian semi-norms.We say that p <gs ¢
if p<gandipg: Fy — E, is a HS operator.

6. Lemma. Suppose that {e,} is an orthonormal base in E,. Then
p <ys q if and only if p < ¢ and

sz(ip,q(en)) <0 (7)

Proof: By 2.4(vi).

T.Lemma. Suppose that p <gys ¢. Then the quantity defined by (7)
does not depend on the choice of an orthonormal base {e,} and depends
only on p and gq.

Proof: See Appendix A.

8. Definition. Let Il = {p,};es be a family of HSN (separable Hilber-
tian semi-norms) on E such that

(Vz,ye E: z#y)(BpeM)p(z—y) #0 (8)

Define the topology 7 by a basis of neighborhoods of 0:

{z€ E|pi(z) <€1y...,0n(T) < €n} (n€ N,p1,...,pn €1I)

Topology 7 is called a multi-Hilbertian topology(determined by II).

The space E with the topology T determined by II is called a multi-
Hilbertian space. In this situation, we will use notation (E,r,I1) or (E. 7).

To avoid trivial cases, we will assume that II contains at least countably
many topologically non-equivalent seminorms.

9. Lemma. If v is a multi-Hilbertian topology determined by a family
I1, then it is also determined by a family I’ defined by:

n
'={qlqg=\ pinenN}
i=1

Proof: We have to show that neighborhood bases of 0 are equal . Let
U be an element of neigborhood basis of 0 generated by II :

-]




U={z € E|m(z) <e1,...,pn(z) < €n}
Then U C V,where

V={z€E|pX(z)+...+Pi(z) < ne?} (¢ = max{e?,...,e2})

i.e.,
V=1{zeE| \/p)<evn)
=1
Suppose that V' is a neighborhood of 0 in II":

ny ny
V= {2: € E| \/pl.‘(.’t) < Elyenny VPk,'(x) < Ek}.

i=1 =1

Then V C U, where

U={z€E|m(z)<er,...,pe(z) < €k}
Therefore, both II and II’ generate the same topology 7.

10. Remark. In the view of Lemma 9, we may assume (when we
need it) that 7 is determined by a directed system of seminorms. If IT is a
countable set, then then we may assume :

H={p1,p2,...} (p1<p2<...)

In any multi-Hilbertian space we may also assume (without loss of gen-
erality) the following:

n
If p1,...,pn € II,then there is a pg € II such that \/ Pi < po-
=1
The latter asssumption is a techical requirement that will be useful later.
By Lemma 9, it does not affect the topological structure of 7.

11. Remark. Notation p = V., pi is due to the fact that the p-
topology on E is coarser (weaker) than any topology which is finer (stronger)
than any of p; . Let us prove this fact:




Suppose that ¢ is a topology finer than any of topologies determined by
pi(i=1,...,n). So,forevery i = 1,...,n : If a set 4 is p;-open, then A is
Yp-open. Suppose now that A is a p-open set. For every z € A there is an
€ > 0 such that

{ylp(z-y)<e} C A

Therefore,

W= (| pi(z - v) < £/v/A) C 4.

1=1

W is an intersection of sets in p; topologies, so W C 1, thus A is open
in %, which shows that p- topology is weaker than ¢. If p; < p2 < ...pn ,
seminorms p = V[, and pn generate the same topology and so E, = Ep,,.

12. Definition. We say that a set B C E is bounded if for every p € 1I,
the set of real numbers {p(z)|z € B} is bounded. Thus, B is (7-) bounded
if and only if it is bounded for every p € II and if and only if for every
neighborhood U of 0 thereis a A € R such that AB C U.

13. Theorem. (Properties of (E,T).)

(¢) (E,7) is a locally convex linear topological space , and E,, is a locally
convex linear topological space for every p € II.

(1) zo — z if and only if p(zo — ) = 0 forall p € 11

(i17) Npen ker(p) = 0.

(iv) (E,7) is a Hausdorff space.

(v) If a set A is open in at least one p € II th~n it is open in 7. (Le.. T
is stronger than any p-topology.)

(vi) If a set B is compact in r-topology then it is compact in every
p-topology (but not necessarily closed in p—topology, because P is only a
seminorm.

Proof: (i) follows from the convexity of the set {z|p(z) < ¢}. The proof
of (it) is easy. (1i1) can be proved using the condition in Definition 8: for
every £ € E,z # 0 there is a p € Il such that p(z) # 0 ; thus (#i). (iv)
follows from (ii7) and the fact that Ker(p) is a r-closed set for every p ; this
shows the closedness of {0} and thus the Hausdorff property. To prove (v) it
suffices to remark that, by Definition 8, any set {z|p(z) < <} is an element
of neighborhood basis of T topology. (vi) follows directly from (v).




4 Dual spaces

1.Definition. Let (E,7) be a multi-Hilbertian space. We say that a linear
functional F defined on E is r-continuous if

To - = F(z4) = F(z)

(a is a net). The set of all continuous linear functionals on (£, 7) is denoted
by E' or E.. If F € E., then F evaluated at z € F is denoted by (F, z).

2.Lemma. (F,z) separates points in both £ and E’.

Proof: If F} # F3, then there is an ¢ € E such that (Fy,z) # (F3,z).
Conversely, suppose z; # z7 and (F,z,) = (F,z;) forall F € E’. Then by a
Hahn-Banach theorem (appendix D.5) we conclude that z; —z; = 0, which
is false.

3.Definition. The strong topology on E’ is determined by seminorms

“F[[B = suprB‘(F’z)(v

where B is a bounded set in E.
We say that a subset A of E’ is bounded (or strongly bounded) if it is
bounded in all seminorms ||F||p.

4. Definition. The weak-* (or w-*) topology on E' is determined by
seminorms

IFllz = [(Fy2)| (2 € E)

We say that a subset A of E' is weakly bounded if for every r € FE.
suprea [(F, z)| < co.

5. Definition. The weak topology on E is determined by seminorms
lzl[F = [(F,z)|

We say that a subset B of E is weakly bounded if for every F € E’.
supsep [(F, )| < oo.

6. Remark. A set B is weakly bounded if and only if it is strongly
bounded (appendix D.8).
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7. Definition. Let E} denote the topological dual of E with respect to
the seminorm p; i.e., E,, contains all linear functionals on E satisfying

P(Za—2)> 0= F(zq—2)—> 0

8. Lemma. E; is a Hilbert space with the norm

P(F)= sup |(F,z)|
p(z)<1

Proof: In appendix C it is proved that E is isomorphic and isometric
to the dual space of E,, which is a Hilbert space.

9. Lemma. Let (E,7,II) be a multi-Hilbertian space . Then

E'=JE
pell

Proof: (a) Let F € E; for some fixed p. Suppose that z, — z in 7.
Then p(z, — z) — 0, and thus, (F,z,) — (F,z);s0 F € E'.

(b) In this part of the proof, we assume that II is directed (in the sense
of Remark 3.10). Let F' € E., i.e., F is continuous with respect to 7. Then
by continuity at 0, we have:

(Ve > 0)IV)(Vz e V) | (Fyz)| < €,

where V, = {z | pi,(z) < €1,...,pi,(2) < ep}. If p € TI, such that
p < Vi1 Pin, then:

(Ve > 0)(36 > 0)(Ipe M)(Vz € E)(p(z) < 6§ = |(F,z)| < ¢) (1)
Now, take ¢ = 1 and let p;, 6; be asin (1).Then we have:
(Ve e E)pr1(z) < 6 = |(F,z)l < 1 (2)
Then (2) implies:

(Vne N)Vz € E)pi(z) < é/n = pi(nz) < é§=>|(Fnz)| <c¢
= |(F,z)] <¢/n.

Therefore, F is continuous with respect to py, i.e , F € E, .

11




The following two lemmas are easy to prove.

10. Lemma. If p < ¢ then 9<7 and E, C E;.

11. Lemma. If p < ¢ then every ?I‘-open set is also a ;-open set; so the
g-topology induced on Ej is coarser than P-topology.

12. Remark. On each E; there are four different topologies that can
be considered. These are:

a) Strong topology of E!
b) Weak-* topology of E.
c) 5-topology
d) All E-topologies with p < ¢.
In Lemma 9, a relation between c) and d) is given. For simplicity, let us

assume that p < ¢q. Then, if Kp, K, are unit balls in p and g respectively,
we have for every z € E:

Mz} CBC Ky C K,y

for some A € R and some bounded set B C E. Therefore,

weak-* topology is weaker than
strong topology is weaker than
a-topology is weaker than
;-topology.

If the topology is not explicitly specified, we will always assume that E,

is equipped with p- topology and E. with strong topology.

13. Lemma. All four topologies mentioned in 10. are Hausdorfl topolo-
gies.

Proof: Since by lemma 2,the weak-* topology is Hausdorff, it follows
that all other (stronger) topologies are Hausdorff.

14. Lemma. If U is an open set in the strong topology of E’ then V=
U N E, is an open set in the 5-topology of E.

12




Proof: Let U be an open set in the strong topology of E;. If U = 0,
then it is also open in E;,. If not, let F be any element of U. By F' € U and
U being open, there is a strong open neighborhood of F' contained in U:

Or={G| sup|{(F-G,z)|<e}CU,
r€B
where B is a bounded set. Let
sup p(z) = 7
reB
Then A
B, = {z|p(z) < n} D B,

and therefore,

Ur ={G|sup (F-G,z)|<e}COrCU
z€By,

This shows that V' is open in ;-topology, because, if F' € Ey, then

Ur = {G| P (F-G) < ¢/n} C B,
However, E; is not open in E7 as the next lemma shows.

15. Lemma. Let U be any non-empty subset of E;,. Then it is not
open in E.

Proof: If U C E,’, and U open in E. then a translation of U, call it Up ,
which contains 0 is also open in E.. From appendix D.1, it follows that Up
contains an absorbing set, i.e.

(VF € E')(3X # 0)AF € Uy

which is possible if and only if E}, = E] and this case is excluded. (See
definition 3.8.)

16. Lemma. Every closed P —ball in E, is closed in w — * and in the
strong topology of E..
Proof: Let N
B={FeE, | p(F)<r}

Suppose F, € B, Fy, — F in the w — * topology. So, for every z € E.
(Fayz) — (F,z). Therefore, for every fixed r with p(z) < 1 there is a
sequence (Fy,,z) — (F,z). By [(Fy,z)| < r we have [(F,z)| < r.so F € B.

13




17. Lemma. A set A € E} is an open set in the w —  topology of E,
if and only if A = U N E,, for some w — * open set in E;.

Proof: Suppose A € E;, is an open set in the w — » topology of E;. For
any F € A, there is a set

Ur={G € E; | (F - G,z1)| < e1,...(F = G,z3)| < ea},

such that Ur C A. Therefore,

A= WrNE)=( UnNE,

FeA Fea

Let U = UpeaUr. Then U is an open set in the w — * topology of E! and
A=UNE,.

Conversely, let U be an open set in the w — * topology of E.. Then it is
easy to see that U N Ej, is w-* open in Ej.

18. Lemma. (i) Any bounded set in E; is bounded in E7.
(1) Any compact set in Ej is compact in EJ.
Proof: (i) Let A C E] be bounded. Then

(3N > 0)(VFe A)P(F)< N

Let B be any bounded set in E. Then B C {p(z) < M}, for some positive
M ; so we have:

(VFe A) sup (Fyz)l< N > sup |[(F,Mz)|<MN
p(z)<1 p(Mz)<M

= sup [(F,z) < MN
p(z)<M

=> sup|{F,z)] < MN
z€B
= |[[Flls < MN,

so A is bounded in E..

(#1) Suppose A" C E, is compact in p- topology. Then let U, be any
collection of strongly T-open sets that covers K'. By lemma 14, U, N E,isa

collection of ;-open sets that covers i ; by p- compactness, there is a finite
subcover U; N E}’,,...,U,l n E;, ; thus Uy, ..., Uy, is a finite cover of I\,
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19. Lemma. Let B, = {F]| P (F) £ r}, for some r > 0 and p € II.
Then B, is a w-* compact set and the w-* topology on it is metrizable.
Proof: By Banach-Alaoglu theorem (Appendix D).

5 Countably Hilbert spaces. Baire category ar-
gument

1. Definition. Multi-hilbertian space E with the r - topology determined
by countably many seminorms py,...,pn,... is called a countably Hilbert

space .
In the spirit of Remark 3.10., we will assume that

P1<P2<...<Pn<Prtt--- (1)

In a countably Hilbert space, define

d(z,, — = 9-n pn(-’tl -3:2) 9
(z1,22) HZ::I T+ pu(zr = 23) (2)

In the situation described above, we will use the notation (E,7,II,d) ,
sometimes abbreviated to (E,r,d) , (E,II,d) and so on.

2. Remark. It is easy to see that d satisfies all axioms of distance.
Besides, d(z;,z2) = 0 if and only if pp(z, — z2) = 0 for all n, which (by
Definition 3.8) implies z; = z,. So, d is a metric and (FE,d) is a metric
space. Note that d(zy,z2) < 1 for all z,,2z; € E.

3. Remark. In E we define r-topology as in Definition 3.8. Note
that in countably Hilbert spaces, r-topology has a countable neighborhood
basis, i.e, satisfies the first axiom of countability. Thus, all questions of
convergence can be viewed via sequences. The same is true for the topology
defined by d. Our first task is to prove the following

4. Lemma. The topology defined by the metric d coincides with the 7
- topology defined in 3.8.
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Proof: By Remark 3., it suffices to show
d T
Tpn =T < Ty > 7T
By Theorem 3.13(ii), it amounts to showing
Tn L = (Vk)p(zn — 2) — 0,

which follows immediately from (2).

Note that this result implies that every d-ball contains a pi- ball for some
k.

5. Lemma. A countably Hilbert space (E, 7) is separable in 7 - topol-

ogy. .
Proof: By separability of seminorms.

6. Remark. By lemma 4.10 we have E, C E,, C ..., and by lemma
4.9, E; = U;E, . In the following two lemmas we will give two separability
results on E.

7.Lemma. The dual E, of a countably Hilbert space is separable in the
strong topology (and therefore is separable in the w-* topology too).
Proof: All spaces E;," are py, - separable. So, there are dense sets

dll,d12 g v in E;,l
dgl,dgz y oo in E;,2

Let D be the union of all d;; above. Let F € E;. Fix a neighborhood of
F:

Ve = {GI|F - Gll < e},
where B is a bounded set in E. Since F € E] , we have that F' € £} for
some pn. So, for some n > 0, B C {z|p.(z) < n} = B,, , and

Ve 3 {G] sup |(F ~G,2)l} = {G| P(F - G) < '}
z€ Pn
But the latter set contains elements from the dense set D, and this ends the

proof.
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8. Lemma. Let (E,r,II) be a countably Hilbert space. Let B be any
setin F. Foran r € R, let

A={FeE | :ggl(F,z)l <r}

Ap={F € E; | sup|(Fz)| < ).
T€E

Then there is a countable set {yx} € B such that

A= ({FeE | ()l <1}
k=1

A= ({F e B | KRw)l <)
k=1

Proof: By separability, there is a countable dense set D = {z3} C B,
such that

(Vi € N)(¥n € N)(Vz € B)(3i € N) pj(z — 233) < ;1; (3)
Let
A = NN N{FeE | Ry <r)
j=1n=1i=1
= ({FeE | |(Fy)l<r) (4)

*
1]
—

where {y;} obtained from {z].} by renumeration. Then clearly A C A°.
To show the converse, suppose F' € A®. Then there is a ¢ € II, such that
F € E;. Let z be an arbitrary point in B. Then by (3), there is a sequence
z, € D, such tha q(z, — ) — 0, by continuity we have (F.z,) — (F, z),
and this implies F' € A. For A, we may use the same D as in (3), or a
simpler choice of Dy = {z7} € B such that

(Vn € N)(Vz € B)(3i € N) p(z — 27) <

S fe

. (5)
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9. Remark. In 3.4. we have defined E, to be the completion of
E [ker(p) with respect to p. But, also E can be completed with respect to
p, by taking

E} = { {2z} | 2 is a p — Cauchy sequence in E}
with a seminorm p on E‘; defined by
p({z-}) = lim p(zn).

Note that we are not taking equivalence classes with respect to p, so we

obtain a seminormed space. We will call E" a seminormed completion of E.
As seminorms are increasing, all p;— Ca.uchy sequences are p;— Cauchy

for i < j, and, consequently, E’ D E’ On the biggest space E’ define

e, () = & i e —te) ©

Then on each E‘; introduce an equivalence relation by

{xﬂ} ~ {yn} — d({xn}v{yn}) =0

The collection of equivalence classes will be denoted by E? >/ ker(d). It is
easy to see that E’ ./ ker(d) D E" / ker(d) for ¢ < j, and if we define

ﬂ E3, [ ker(d) = (ﬂ E3,)/ ker(d) (7)

1=1

then d becomes a metric on E°.
More details and a discussion are presented in appendix B.

10. Theorem. (Completion of a countably Hilbert space.) Let (E.II,d)
be a countably Hilbert space. Then there is an isometric and isomorphic,
1-1 mapping 7 of E onto a dense linear subspace of a complete countably
Hilbert space (E?*,I1,d), where E* is defined by (7).

(E,d) is a complete metric space if and only if

©(E) = E? (

(9]
~—

If (8) holds, we will write E = E?*,

18




Proof: a) We will first show that d, defined by (6) is a metric on E*,
and that (E°,d) is a complete metric space.

Elements of E* are (equivalence classes of ) sequences that are p;—Cauchy
for all i. For any such sequence z,, lim, p;(zn) exists and is finite. So, (6)

becomes
21

d({zn}, {¥n}) = 3_

=1

1 lim, pi(Zn — Yn) (9)
20 1 4 limp pi(Zn = yn)

If d({Zn}, {¥n}) = O, then sequences {z,} and {y,} belong to a same equiv-
alence class in E°. Therefore, d is a metric on E*. Suppose that Zx = {zn}x
is a d—Cauchy sequence in E*( more precisely, {z,}x is a Cauchy sequence
of equivalence classes in E®). Then for each fixed k, Z is an equivalence
class of E* that contains the following Cauchy sequence of E:

Tk 1y k221 Thom---
and we have
d(z; — Ix) = nlirgo d(zjn — Thkn) — 0 as j,k — oo. (10)
For each fixed k, choose n; such that
d(zkm = Tkn,) < % if m > ny, (11)

which is possible because, for each fixed k, the sequence {Zk.n}n is Cauchy
in E. Define z to be the equivalence class in E* that contains the following
sequence :

zl'n,,zgm,...,zk'nk (12)

Then # is indeed in E* because, for m > max(n;j, ng):
dzjm, ~ Tkny) S ATjin, = Tjm) + ATjm = Thm) + d(Thim = T )-
Letting m — oo and then j,k — oo and using (10) and (11) we get
d(zjn, — Tkn,) — 0 asj,k— oo,

and so, (12)is a Cauchy sequence in E.
For any fixed & we have

& —

d(&p - 2) = lim d(Zkn = Zkn,) <

Therefore, d(Zx — #) — 0, which shows that E* is a complete space.

19




For every p € I and {z,} € E*, we may define
p({zn}) = lim p(z,).

So, d({za},{yn}) — 0 if and only if p({zn} — {ya}) — O for every p € II.
Note that p need not be a norm on E* even if it is a norm on E.

b) Let us define a mapping 7 : E — E* by
7(z) = {z,z,...,2,...} + ker(d) (13)
Then n(E) is a linear subspace of E*. 7 is an isomorphism by
m(az + By) = an(z) + Bn(y).

From (9) it follows

(@7 = 3 g7~ a,y), (14
i=1 ¢

so T is an isometry.

From (13) and (14) it follows that 7 is an 1-1 mapping.

Finally, let us show that x(E) is dense in E*. Let {z,} + ker(d) € E>.
Then {z,} is a d—Cauchy sequence in E, so 7(z,) is a d—Cauchy sequence
in #(E), and, as n — oo we have:

d(n(zn) - {2a}) = 0.

c) If (8) holds, then E is complete, because, as shown in a), E* is
complete. Conversely, let (E,d) be a complete space. Let 7 be defined by
(13). We need to show that £° C n(E). To this end, let y = {z,)} +ker(d) €
E*. Then, as shown in b), 7(z,) — y. By completeness of E, thereisa = € E
such that z, — z. By uniqueness of a limit, we have that y = 7(z) € n(E),
which had to be proved.

11. Lemma. Let (E,7,II) be a complete countably Hilbert space , or
only a countably Hilbert space , but 7 determined by norms. Then A C E
is a compact set in E if and only if it is compact in every p-topology.
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Proof: ”Only if” part follows from Theorem 3.13(vi). So, suppose that
A is compact in every p-topology . Let us first consider the case of a com-
plete countably Hilbert space. For a given sequence {z,} , there is a p; -
convergent subsequence zy 5 such that

p(zim—n)—0,

for some y; € E. Now take z;, as a sequence , to obtain a p;-convergent
subsequence

p2(z2n — y2) = 0.

In this way , we obtain subsequences zx, and a sequence yi , such that
Pi(Zkn — k) = 0 as n — 0 (15)

and {Zk,} is a subsequence of {zx_1 .}, for k = ¥,2,.... So, the sequence
{Zn,n} is a Cauchy sequence for every fixed py, i.e,

pk(xn,n = Im,m) — 0 asn,m —

By completeness, z, , is a convergent sequence in (E,7), and by compact-
ness in py, it has a limit in A.

If p, are norms,then from (15) and Corollary 17 of appendix B, we
conclude that y; = y2 = ... = y ; so pe(zpn — y) — 0 and this ends the
proof.

12. Remark. In the proof of the next lemma, we will use some results
from appendix B. As the proof relies on Baire category theorem, the next
lemma is often referred to as a Baire category argument.

13. Definition. A positive function V : E — R, is called a G-function
if the set G = {z € E|u(z) < n} is closed for every n = 1,2.....

14. Lemma. Let (E,7,II,d) be a complete countably Hilbert space.
Let B be an open d—ball in E :

B={z€ E|du,z)<a} forsomeue€ E,a€ R.

For an arbitrary index set I , let {V;},cp be a family of functions £ — R,
such that




(1) V;is a G — function for every i € I,

(1) Vi(z +y) < Vi(z) + Vi(y) for all z,y € E,

(i42) Vi(az) = |a|Vi(z) for all z € E,a € R,

(tv) For every z € B, the set {Vi(z)|: € I} is bounded.

Then for each ¢ € I , V; is a continuous function on E , and there is a
p € I and a constant @ > 0 such that foreveryt€ [ and z € E :

Vi(z) < Op(x)

[Vi(z) - Vi(y)| < bp(z - )
Proof: By (i) , (iv) and Corollary 21 of Appendix B, there are: p €
H,z€e E,r>0,M > 0, such that
| p(z-2) < 1= Vi(z) < M. (16)

Therefore, for every z € E,z # (6, we have:

zr

Vi(-z4+ —=) < M.

=

In particular, (16) implies |Vi(z)] < M. Then by (ii) we conclude that
zr zr

;(‘;5)=Vi(——2+2)52M’

Vil p(z

and by (7ii) we have

V@) < pla) 2 = dpla) (17)

for every z € E and 8 = 2M/r.
To show continuity, note that by (if) and (17):

[Vi(z) - Vi(y)| < Vi(z — y) < Op(z — y).

15. Remark. Consider the following conditions:

(1") (VM > 0)(3M, > 0)(Vz,y € E) Vi(z) S M AVi(y) < M = Vi(z + y) < M,
(iit") (3k € Ry )(Vz € E)(Va € R)Vi(az) = |a|*Vi(z).
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If (#i7) is replaced by (#4i’) then the conclusion of the theorem 12 is

2Mp*(z
[Vi(z) - Vi(y)l < —fk—() —0 asp(z -y) — 0,
so V; is a continuous function.
If, in addition, (it) is replaced by (ii’), we can still conclude the conti-
nuity at 0:
Mlp"(x)

Vilg) S — 5 — — 0 as p(z) — 0.

16. Lemma. Let (E,7,II,d) be a complete countably Hilbert space,
and let A € E/ be a weakly bounded set, i.e, for any fixed z € E:

sup |[(F,z)| < o0. (18)
FeA

Then there is a p € II such that A C E;, and the set A is strongly bounded
in A, i.e, for any bounded set B € E:

sup ||F||B < oo.
FeA

Proof: By continuity of F, a mapping ¢ — |(F,z)| is a G-function,
and assumptions of lemma 14 are fulfilled, so [(F,z)| < 8p(z), for some
8 > 0,p € I and all F € A4; therefore A C E/, with P (F) < 8 for F € A.
Strong boundness follows then from lemma 4.14(i).

17. Corollary. A set A C E., where E! is the dual of a complete
countably Hilbert space (E,r,II) is strongly bounded if and only if A € E,,

for some p € Il and the set {; (F)| F € A} is bounded.
Proof: Straightforward from lemma 16 and its proof.

18. Lemma. Let E/ be the dual of a complete countably Hilbert space
(E,r,11,d). Suppose that F,, is a sequence in E. such that for every r € E
the sequence (F},, z) of real numbers converges to some real number. Then

(1) There is an F € E7 such that F, — F in the w-* topology of E7.

(1) There is a p € II, such that F' € E, and F,, € E, forall n > 1.

Proof: Let f(z) = limp—~oo(Fn,z). Then by assumption, f is well de-
fined and finite for all z € E. Since E is a complete metric space, it follows
from Banach-Steinhaus theorem (appendix D.3) that f(z) = {F, ) for some
F e E, Let A={F F,F,...}. Then, A is weakly bounded set, so by
lemma 16 and corollary 17, there is a p € Il such that F,, F € E,’J.
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19. Remark. From lemma 18, we can conclude that if F;, — F in the
strong topology of E7, then Fy,, F € E,, for some p € II. However, this does

not imply P (Fn = F) — G. For this conclusion, we will need an additional
assumption that will be made in the next section.

20. Remark. For a countably Hilbert space, define its second dual E!
as a set of all linear functionals ¢ defined on E. that are continuous with
respect to the strong topology on E..

If E = E7, (in the sense of usual identification by means of a bicontinuous
bijection), the space E is called reflezive. It is always true that £ C E”.

21. Theorem. A complete countably Hilbert space (E,7,II,d) is re-
flexive.
Proof: For a ¢ € E7 and a bounded set A C E7, define

llella = sup [{w, F)|. (19)
FeA
For an z € E define ¢ € E by
(¢, F) = (F,z). (20)
Then
llolla = sup [(F, z)l. (21)
FeA

Let us show that the mapping = : ' — EZ, n(z) = ¢, with ¢ defined as

in (21) is continuous with r: spect to topology on EY determined by norms

(19). By corollary 17, A C E; for some p € II and p (F) < M for some
M > 0. Using the duality in Iiibo-t spaces. we have (appendix D.10):

1
sup |[(F,z)] < sup I(F»I)I=X4—p(z), (22)
Fea P(F)<M

and the continuity of ¢ follows from (21) and (22).

We shall now show that m has an inverse which is also continuous. For
every p € II, Ep is a Hilbert space and E; its dual. By duality in Hilbert
spaces, every ¢ € E;’ is determined uniquely by_an z € E,. So. it follows that
for every ¢ € E there is a (not unique) z € Ej/ ker(d), such that (. F)=
(F,z) for all F € Ej,. Therefore, all functionals on Ej are completely
determined by elements of E;D/ker(d). All functionals on E,, are completely
determined by elements of E /ker(d)etc. Since E} =D E, , we sce that
all func_tionals on E; = UE, are completely determined by elements of
E =nE; [ker(d).
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So, 7 is a 1-1 map with #(E) = EY. Let us show now that 7~1 is a
continuous mapping. Observe that, for

A={F€E. | p(F)< M)} (23)
we have
sup [(F, z)| = p(z). (24)
FeA

So, if oo — 0 in the topology determined by (19), then, in particular,
lealla — 0, with A as specified in (23), and by (21) and (24) we have
7~1(¢a) = C in T—topology.

The above proof shows that there is a bijection and isomorphism = :
E; — EY, such that E; and E/ have the same topological structure. There-
fore, we may identify E? withE,.

22. Remark. On a countably Hilbert space, as mentioned in remark 3,
the strong topology satisfies the first axiom of countability. Moreover, since
it is a metric space, compact sets can be characterised as those in which
every sequence has a convergent subsequence.

However, the weak topology on E does not satisfy the first countability
axiom, that is, does not have a countable neighborhood basis. Also, neither
the strong nor the w-* topology on E! can be defined with a countable
neighborhood basis.

Therefore, sequences cannot be used as a convenient replacement for
nets.

6 I(7) topology and nuclear spaces

1.Definition.Let E be a multi-Hilbertian space with a topology r deter-
mined by a family II of Hilbertian seminorms. Let P; be the family of all
seminorms that are <pyg to some seminorm in Il .i.e:

Pr={q€ HSN|(3p€eIl) g <ys p}
The I(7) topology is the topology determined by P; (in the sense of 3.8).

In the next lemma we will use the results stated in section 2.
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2.Lemma. Let (H,}|}-||) be a Hilbert space. Let 7,7y, 7N, S be topologies
determined by || - ||, Py, Pn, Ps respectively , where

Py = {plp(z) = ||Az||, A is a Hilbert — Schmidt}
Py = {plp(z) = (A:z:,:c)l/2 , A is positive nuclear}
Ps = {plp(z)= (Al',.l‘)l/2 , A is positive , compact , trace class}

Then g =y =S5=I(t)C.

Proof: I(r) = 7y : Let {e;} be an orthonormal base in H. Let p € Py.
Then T p%(e;) = 3 ||Ae;||? < oo. Besides, p(z) < ||az]| - ||z|l ; so p <ms || -]l
and p € P;. Conversely , if p € Py then p(z) = ||Az|| for some continuous
linear operator A ; by 3" p?(e;) < oo we have that A is a Hilbert- Schmidt
operator.

Ty = 7~ : Let A be a Hilbert-Schmidt operator. Let p(z) = ||AX]|.
Then p*(z) = (Az,AX|| = (A*Az,z). A*A is a positive nuclear operator as
a product of two Hilbert-Scmidt operators. Conversely , let A be a posi-
tive (thus a self-adjoint) nuclear operator. Then A'/2 is a positive Hilbert-
Schmidt operator and p(z) = {Az,z)Y/? = (41?2, AM?z) = || AV %) .

r~n = S follows from Theorem 2.4.

11 C 7 follows from p(z) < ¢||z|| for some ¢ > 0.

3.Remark. Lemma 2 gives different ways of obtaining the I(7) topology
in a Hilbert space;this is applicable in a multi-Hilbertian space in an obvious
manner,because Py in a multi-Hilbertian space is the union of corresponding
families of seminorms in Hilbert spaces.

The last statement of Lemma 2 implies that I(7) is a Hausdorff topology.
Note that P; need not be a subset of II.

Throughout this section, we will make use of the fact (proved in appendix
A) that for every q € II there is a g—orthonormal base {e;} in E ( rather
than in E,). This enables us to drop i, in lemma 3.6. So. p <ys ¢ if and
only if " p?(e;) < oo for any g—orthonormal base {e;} in E.

In the next lemma we will give a construction of seminorms that deter-
mine I(7) and this will show that the P; in multi-Hilbertian spaces is not
an empty set.

4.Lemma. For every q € Il there is a p € HSN so that p <ys q.
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Proof: Let {e,} be an orthonormal base in E,. Let ¢;,i = 1,2,... bea
sequence of real numbers such that 3" ¢? < 00. Define p by

P(z) =) clg¥(z,e)
i=1
Then p*(e;) = ¢? and therefore 3 p*(e;) converges. Also , p(z) < Mq(z) ,
where M = sup; ¢;. Thus, p <gs q.

5. Definition. A countably Ililbert space (E,7,II,d) is a nuclear space
ifI(r) =171 ,ie,if

(Vpe M)(Ige M)(p< gA Y_p*(e:) < o),

=1

for a q-orthonormal base {e;} .

6. Theorem. Let (E,r,II) be a complete nuclear space. A set AC E
is compact if and only if it is bounded and closed.

Proof: It suffices to prove ”if” part only. Let A be a bounded and closed
set in E. Let p € II be fixed, and let p <ggs ¢q. Then there are p— and ¢-
orthonormal bases in E, denote them by {e;} and {f;} respectively. By
assumption, q(z) < M for all = € A; so using theorem 3 of appendix A, we
have:

]

21’2(”&') Z‘:Pz(ZQ(r,fj)fj’ei)

_ };(Z;(I,fj)mfj»ei))?

;iqz(r,fj)zp2(fj,ei)

MiZPz(fj,le)

Aliil’?(fj,ei) = M3 p'(f;) < oo
i j

]

IN

IN

il

This shows that the series 3, p%(z,e;) converges uniformly for z € A. By
corollary 7 of appendix A, A is relatively compact with respect to p— con-
vergence, for every p € II. Then,using completeness and r—closedness of A,
it can be proved that it is 7—compact, similarly to the proof of lemma 5.11.




7. Remark. From the proof of lemma 6, we can conclude that nuclear
spaces have the following property: For any p € II there is a ¢ € II such
that any ¢-bounded set is a p—relatively compact set.

It is not only in nuclear spaces that every bounded and closed set is
compact. A complete countably Hilbert space with this structure of compact
sets will be called perfect space. In fact, every complete countably Hilbert
space with aforementioned property is perfect.In the next lemma, we give
another sufficient condition for a space to be perfect.

8. Lemma. Let (E, r,II) be a complete countably Hilbert space. Sup-
pose that for every bounded sequence z,, € E, and for each p € II there is a
p—Cauchy subsequence z,,. Then E is a perfect space.

Proof: Let p; < p2 < ... be seminorms in II. Let z, be a sequence
in a bounded and closed set A. By assumption, there are infinitely many
subsequences {z;;}; such that {z;;}; is a subsequence of {z;_;}; and
{zi;}; is a pj—Cauchy sequence. Then {z, .}, is a Cauchy sequence in all
p € II; by completeness it converges to some z € E, and by closedness of A,
z € A.

9. Lemma. Let (E,,1I,d) be a perfect space. Then
(1) Strong and weak sequential convergence coincide on E.
(i) Strong and w-* sequential convergence coincide on E..

Proof: (i) Let z, — 0in the weak topology on E. Then (F, z,) — 0 for
all F € E7. Therefore, the set {z,} is weakly bounded, and so is strongly
bounded (appendix D.8). So, the sequence {z,} belongs to a compact set .

Suppose that, for some p € II, p(z,) does not converge to zero. Then,
there is a subsequence, say z,, such that p(z,/) > ¢ for some ¢ > 0. By com-
pactness, there is a convergent subsequence z,» of z,,/, by weak convergence,
p(zpr) — 0; but p(z,») > €, which is a contradiction.
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(i1) Suppose that F, — 0 in the w-* topology on E’. Then the sequence
{F.} is weakly bounded; by lemma 5.16, it is also strongly bounded, and
so, for every n > 1 and every bounded closed set B C E:

sup |[(Fn,z)| £ Mp (1)
z€B

Suppose now that F,, does not converge to 0 in the strong topology. Then
there is a closed bounded (therefore compact) set B C E and a sequence
{zn'} € B, such that for some ¢ > 0:

|(Fn’a$n’)| 2E€ (2)

By compactness, we may assume that =, is a convergent sequence, z,» — ¢
in the strong topology of E. Then, as in the proof of theorem 5.21, we have:

sup [(F,z, — zo)| € ep(zn — Zo)
Fea

for any bounded set A C E’, some ¢ > 0 and some p € II. If we take
A = {Fu}, we have (Fys,z, — z9) — 0, and by assumption, {Fy/,z¢) — 0,
so (Fp,z,) — 0, which is a contradiction to (2).

10. Lemma. Let (E,r,II) be a complete nuclear space. Let {F,} be a
sequence in E/. Then F, — F in the strong or w-* topology if and only if
there is a p € II such that F, Fy, Fy,... € E} and P (F, - F) — 0.

Proof: By lemma 9 and remark 5.18, if F,, — F then all F, and F
belong to some space E!,r € II. By remark 7, thereisa p € II, r <gys p,
such that the p—unit ball B, is compact in r—topology. We will now prove

that P (Fa = F) — 0. If not, then there is a subsequence F,s and a sequence
T, such that z,, € B, and

|(Fn’_Fszn’)|253 ('3)

for some € > 0. By compactness, we may assame that r(z, — z¢) — 0 for
some zo € B,. Then we have:

I(Fn’—szn’)l I(Fn’—szn'-I0)|+l(Fn’—F’z0)|
T (Fo = F)r(z — 20) + [{Fa — F, 20|

— 0,

IN IA

which is a contradiction to (3).




Appendix

A Orthogonalization in (E, 1)

In this section we will consider certain questions related to the existance of
an orthonormal base with respect to a fixed seminorm. We will also derive
a necessary and sufficient condition for a linear functional to be continuous
with respect to a given seminorm. Although some proofs might appear to
be unecessary elaborated , it is important to understand specific techniques
one has to employ while dealing with seminorms.

We will use the same notation as in the main body of the text. Let us
first consider a space E, , topologized by one seminorm p. Denote by 7 the
cannonical mapping E, — E,/ ker(p), defined by =(z) = z + ker(p) = z~,
where z* stands for the equivalence class relative to z.

1. Lemma. If D is a dense set in E, , then D* = {n(d),d € D} is
dense in E,/ker(p) and also in E,,.

Proof: Let z* € E,/ ker(p) and let ¢ > 0. Choose z € #~!(z*). Since D
is dense in E, , thereis a d € D so that p(z — d) < €. Let v(d) = d*. Then
p(z* —d*) = p(z —d) < ¢ ; so D* is dense in E,/ker(p). To show densness
in E, , note that if z} is a (Cauchy) sequence that converges to z*, and if
we choose d,, such that p(z; — d}) < 1/n then we have d} — z*.

2. Remark. By separability of p and Lemma 1, there is a countable
dense set D* = {dj,d3,...} in E,/ker(p). Let z} be the first non-zero
element in the sequence D*, let z3 be the first d7 which is not in the closed
subspace spanned by zj ,etc...,let z;, be the first d which is not in the
closed subspace spaned by {z},z3,...,z5} (the idea is to remove dependent
d}’s from the sequence). Therefore,

span{d},d3,...,d;,... } = span{z},z3,...,25,... }
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As D* is dense in E,/ ker(p) we have (a bar denotes the closure):

E, = span{dyj,d;,...,d;,,... } = span{z],z3,...,20,... }

Now let us apply the Gramm-Schmidt orthonormalization, starting from
z1,3,... to obtain

i
ej = ) byzi j=12,... (1)
k=1

From the above construction it follows that d} is either 0 or z}, d3 is either
0 orzjorz;,...,in general, d;, € {0,z},23,...2%} , which by means of
inverting equation (1) gives

]
d} = E a;ier (2)
k=1

Let us now show that {e]} is a complete orthonormal base in E,. Indeed,
if there is an y € E, such that p(y, e;) = 0 for every j, then by (2) we also
have p(y,d;-_ = 0 for every j, which by denseness of d; gives p(y, f) = 0 for
every f € E, ; in particular p(y,y) = 0, and so y = 0.

From above considerations it follows that E, is a Hilbert space with a
complete orthonormal base {e},e3,... }. Then for every f € E, we have

f=3 pf.€)e
()= p(f.€)

Now, getting down to E,/ ker(p) and then to E, we can state the following:

3. Theorem. There is a countable set {e;,ez,... } C E (Orthonormal
base for E) and a p-dense set {d;,d2,... } C E such that

plei,e;) = 65 ij=12,...
J
dj = Zajkek + j,
k=1
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where r; are elements in ker(p). For every » € E :

T = ip(z,e,-)e,- + r(z),

=1

with the convergent series in the following sense:

li}lnp(z-Zp(z,e;)e,-) =0

=1

and r(z) is an element in ker(p), depending on z. The following equality
holds for every z € E:

pz(z) = sz(z’ 6.‘)
=1

4.Theorem. Let p and ¢ be Hilbertian seminorms on E such that
p < q.Let {e;} be any g-orthonormal base in E (in the sense of theorem 3).
Then

E p’(e;) does not depend on a choice of {e;} {3)
=1
Y p(ei) =sup ) pP(ea,) (4)
i=1 a =1

Proof: Let {e,} and { f} be g-orthonormal bases in the sense of theorem
3. It suffices to prove (3) under the assumption 2, p%(e;) < oo. Then by
theorem 3 we have:

N
limq(f; - Y aije;) =0 (ai; = q(fise;)) (5)

i=1

N
limg(e; ~ Y bjifi)=0 (bsi = q(ej, fi)) (6)

i=1

and, therefore

a;; = bj; (7)

Let us recall that g(a—a,) — 0 and q(b-b,) — 0implies q(a,b)—q(a,,b,) —
0 (see Remark 1.4), and by p < q and the triangle inequality , this implies
pla,b) — p(an,b,) — 0. Therefore, using (5), (6), (7) and orthonormality .
we have:
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N N
q(ej er) = liAI,M(ijiﬁ,ijifi)

=1 =1
N
= liI{,anjibkf q(fi, fi)
=1
N
= llhflngbjibki
N
= li}\llng;aijaik =0 if j #k, (8)
and
N
lig/n doali=1. (9)
~
Further,
N N
P(f) = plfiufi)= lijglp(z aijei, 3 aikex)
i=1 k=1
N
= 1i1{,n Za?jl’2(ej) + lingn Z a;ja;xp(e;,ex)
J=1 I#k
After summation,we obtain:
M M N M
YA = lilgl S alp(e) + lil{,n YD aijaip(e;,ex)
=1 i=13=1 i=1 j#k
N M M
= lim Y (X ak)p(e) + lim >0 aijai)plejex)
j=1 i=1 j#k i=1

Letting m — oo, using (9), (8) and the dominated convergence theorem we

obtain - -
Y () =Y P,
i=1 =1

which had to be proved. Let us remark that the dominated convergence
theorem could be used here, because of the following inequalities:

M M M
1Y aiiail < Q" la DAY lanl?)? <1
i=1 i=1

=1
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| " pleires)] < (P (e) V(D pPer))? < o0
k

i#k Jj

Let us show (4). From the construction of orthonormal base it follows
that for any finite orthonormal system {e;,es,...,e,} there is an orthonor-
mal base {fi, f2,...} (in the sense of theorem 3) that contains the given
system. Therefore,

ipz(ei) < i?z(fi) = R,

=1 =1
and the quantity R does not depend on a choice of {f;}, by (3).Therefore,
) .
sup )_p*(ea;) < R
a =1
On the other hand, the reverse inequality holds by the definition of R, and
(4) is proved.

5. Remark. Suppose that, under assumptions of theorem 4,
o
Z P*(e;) < oo.
=1
Then define
[ o]
HS(p,q) = D _P*(ei),

=1

C(p,q) = sup {p(z)}.

q(z)<1

The following holds:
C(p,q) < HS(p,q),

C(p,r) < C(p,q)C(q, 1),
HS(p,r) < C(p,q)HS(q, 1),
HS(p,r) < HS(p,q)C(q, 7).

This shows that the relation <yg is transitive and also

P<HSq<XTr=>p<ysr

and similar variations. For a proof of these statements see 1t3(198:4).
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8. Lemma. Let A be a bounded subset of a separable Hilbert space H,
with a norm ||-||, the corresponding inner product (-,-) and the orthonormal
base {e;}, such that

(Ve > 0)(IN)(Vz € A) f:(:::,e.-)2 <eg (10)
=N

(i.e, Y.(z,e;)? converges uniformly on A). Then A is a relatively compact
set.

Proof: Let ¢x be a sequence of positive numbers such that Y &x < ©
and let N be the corresponding sequence of natural numbers according to
(10). Let us define seminorms pi(z) by

Ne-1

pi(z) = Y (z,e)

=1

Let z,, be a sequence in A. By a finite-dimensional result , there is a sequence
Z1,n such that py(z1,n — 1) — 0. Taking this subsequence as a sequence ,
and repeating this procedure , we get

Pk(Tkn —2k) — 0 asn—-0, k=1,2,...

and zy , is a subsequence of zx_; ,. By pr > px—1 We have pp_y(zp—24-1) =
0. Further,

lzk = zk1l® € PE_1(Tk = The1) + €61 = €k—1)

and by Y &; < oo we conclude that z; is a Cauchy sequence and thus , for
SOMme Too , ||Tk — Too|] = 0 as £ — oco. Then we have

lznn — %o||2 < 2ljzan - xk”2 + ||z ~ -7500“2)
< 2Api(ann — k) + €k + |lak - Too||?),

so, letting n — 0o and then k — oo, we conclude that ||z, — z| — 0.

7. Corollary. If A is a subset of F, bounded in p—seminorm, and if
(10) holds with (-,) replaced with p(-,-), then A is a relatively compact set
in E with respect to p—topology.

Proof: Let 7 be a natural mapping from E to Ep, w(z) = z + ker(p).
Then 7(A) is a bounded set in a separable Hilbert space Ep; by previous
lemma, it is relatively compact in E,, therefore, A is relatively compact in

E.
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B Seminorm completion

We will first consider here some questions related to the theorem 5.10, then
give a usefull convergence lemma 15, and finally (theorem 21) prove a Baire
category result. All statements in this part, that involve only one semi-
norm, hold in a general multi-Hilbertian space (not necessarily a countably
Hilbert).

1. Let (E,7,II,d) be a countably Hilbert space. We define a seminorm
completion E_; as follows:
Let E;, be the set of all p— Cauchy sequences {z,} on E , with

{zn} + {gn} = {2zn + ¥n}

a{z,} = {az,} (a€R)
and a seminorm
p({za}) = lim p(z.)

The limes above exists, because p(z,) is a Cauchy sequence in R. We will
show that EJ is a complete space with the norm as introduced above.
Let Z; = {zt o}« be a Cauchy sequence in E;. That mears

nl_x_.ngo P(Tjn —Tkn) — 0 as jk— .
For each fixed k, choose n; such that

1
P ZThom — Thp, ) < % if m > ng.

Let Z = {Z1ny,.-.+Zkin,---}. Then Z € E;, because for m > max(n;.ny):

p(zjvﬂ; - Tkn,) < p(zj,ﬂ, - zj.m) +2(T5m = Thom) + P(Thom — Thony)
— 0 asjk— o0,

and, for a fixed k :

| —

p(Zk = Z) = lim p(zkn = Thn,) < -

.

>

So, p(Zx — Z) — 0 as k — oo , and the completeness is proved.
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Let us define a map 7 : E — EJ by

m(z) = {z,2,...,2,...} (1)

It is clear that v(az+8y) = an(z)+87(y), for a, 8 € R, and p(7(z)) = p(z),
so m is an isomorphism and an isometry. Let us show that n(E) is dense in
E:.
P _
An arbitrary element {z;} in E is a limit of a sequence {z}n , with
{z}n = {Zn,Znye e 1 Tny. - -}
Actually,
p({}a — (zi}) = Jim pzn ~ 21)
—00
and

Jim p({z}n — {zk}) = limlimp(zn — 24) = 0,

because {z;} is a Cauchy sequence. Therefore, we have proved

2. Theorem. The mapping 7 as defined by (1) is a 1-1 isometrical
and isomorphical mapping of Ey, onto a dense linear subspace of the space
E; whose elements are all p— Cauchy sequences in E.

3. Remark. An obvious danger of an uncautious use of E; is in the
fact that E is only a seminormed space, even if p is a norm.
Let us define a semi-metric d on E] by

e i) = LT s
Then d({zn},{yn}) = 0 if and only if for all p; € II:
Jim pi(z — yn) = 0.
So, an equivalence relation can be defined in E’; by

{xn} ~ {yn} — d({zn}a{yn}) =0

The set of all such equivalence classes, equipped by the topology of E; will
be denoted by E,/ker(d). A class corresponding to each z € E consists of
a single element, because d is a metric on E. Therefore,
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4. Lemma. There is a 1-1, isometrical and isomorphical mapping of
E, onto a dense linear subspace of E;/ ker(d).

5. A usual way of completion of E with respect to p is similar to the
previous procedure, except that one first takes F/ker(p) and then defines
an equivalence relation in the set of all p— Cauchy sequences of E/ ker(p),
by

{zn + ker(p)} ~ {yn + ker(p)} <= lim p(zn —yn) = 0.
New elements obtained in this way should be actually denoted by {z, +
ker(p)} + ker(p), but it is customary to use the notation {z, + ker(p)}.

Denote the set of all such equivalence classes by E,. Proceeding in an
identical way as in the case of £, one can prove the following

6. Lemma. There is a 1-1, isometrical and isomorphical mapping of
E [ ker(p) to a dense subspace of a space E,, whose elements are equivalence
classes of all p— Cauchy sequences in E/ ker(p).

7. Let us define on E; :

ker(p) = { {zn} € E; Ip({z4}) = 0}.

Let E;/ ker(p) be the set of all equivalence classes with respect to ker(p).
Observe the following:

Two Cauchy sequences {z,} and {y,} belong to a same class if and only
if limp p(25n — yn) = 0.

Two elements z,y € E, regarded as Cauchy sequences (by mapping (1))
belong to a same class in E;/ ker(p) if and only if p(z — y) = 0.

Let us define =, : E;/ ker(p) — E, by:

7I'a({;"‘n} + ker(p)) = {In + keT(P)}- (2

—~—

By the observations above, we have:

8. Lemma. The mapping ,, defined by (2)is an isomorphic, isometric.
1-1 mapping of E,/ker(p) onto Ey, so we may write

E;/ker(p) = E,.
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9. Since p({zn} — {yn}) = 0 if d({zn},{yn}) = 0, we have that
(E',’,/ker(d))/ ker(p) = E;/ ker(p), and therefore, (E;/ker(d))/ ker(p) = E,,

10. Let us now consider two seminorms p,q on E, such that p < gq.
Since every ¢— Cauchy sequence is also a p— Cauchy sequence, we have that
Eg C E; and also E7/ker(d) C E;/ ker(d). So, the identity injection

is a 1-1 continuous mapping.
The ”1-1” property fails to hold in the case of the map

tpg : Eq— Ep,

as we pointed out in 3.4. Even if p, ¢ are norms, ¢, ; may not be 1-1 because
two or more classes in E may be mapped in a same class in E,; i.e, two
Cauchy sequences may converge to the same limit in the p—seminorm, but
to different limits in the g—seminorm. If this occurs, we cannot write E C
E,, which is important if we want to define N;E,, as in the theorem 5 10
(there is no a common space in which all E,, can be embedded). To avoid
such a difficulty, it is suggested (Gelfand and Shilov, section 2.2.) that a
compatibility of p and ¢ should be required. We will now show that our
construction by means of seminorm completion yields the same result as the
classical one in a special case of compatible norms.

11. Definition. If p,q(p < ¢) are norms on E, we say that they are
compatible if any g—Cauchy sequence {z,} that converges to 0 in p—norm,
also converges to 0 in g—norm.

12. Theorem. Let (E,7,II,d) be a countably Hilbert space, with
Il = {pi}$2,, where for every i < j, p; and p; are compatible norms. Then

() E;,/ ker(d) = ) Ep, (3)
1=1

Proof: Elements of the set on the left hand side of (3) are equivalence
classes of Cauchy sequences in E, defined in such a way that two Cauchy
sequences I,y belong to a same class if and only if d(z, — y») — 0. By
E';l C E;; C ..., sequences in the intersection are Cauchy in all p;, and so
they are d—Cauchy sequences.
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Elements of the set on the right hand side of (3) are also equivalence
classes with respect to ker(p), i.e, two d—Cauchy sequences belong to the
same class if and only if p;(z, - y,) — 0.

The compatibility of norms is, indeed, equivalent to ker(d) = ker(p;) in
the space of all Cauchy sequences; that is , if z; is a d—Cauchy sequence
and p(zy) — 0 then d(z;) — 0.

Therefore, (3) is proved.

13. Corollary. Under assumptions of theorem 12, E is a complete
metric space if and only if
E=()E,,.
i

Proof: Follows from (3) and theorem 5.10.

14. Remark. Let us give a simple model to understand seminorms:
Let E = R3 and for u € £, v = (z,y,2) let p1(u) = |z| , p2(u) = |y| .
p3(u) = |z]. Then topology 7 on E (Euclidean topology) can be thought of
as being determined by p;,p2, p3 , because

Up = 4 <= pi(un —u) — 0 fori=1,2,3.

We have that ker(p;) is yOz plane, and similarly for p; and p3.
Let up = (1+ 2,2+ 1,3+ L) Let v; = (1,0,0) , v2 = (0,2,0) ,
vz = (0,0,2). Then

P1
Uy, — N

Uy ﬂ* (%]
Un p—lv v3
All three limit points are different , but we can choose v = (1.2.3) .
such that u, — v in all three seminorms. A natural question one can ask is
does it work this way in general. A partial answer is given by the following
lemma.

15. Lemma. Let E be a topological vector space with seminorms p.¢
defined on E. Suppose that p(z, — zp) — 0 and g(z, —z4) = 0,as n — x
, where r,,z,,r, € E . Then there exists an z¢ in the completion Eof £
with respect to pV g such that p(z, — zo) = q(z — z0) = 0.
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Proof: From p(z, — 2,) — 0 and ¢(z, — zo) — 0 we conclude that
T, is both p— and ¢— Cauchy sequence. Therefore, z, is p V ¢g— Cauchy
sequence , and there is zo € E such that (pVq)(zn,~zo) — 0, which implies
p(zn — z0) — 0 and g(zn — zo) — 0. Thus, p(z, — z0) = ¢(zy — z0) = 0,
which had to be proved.

16. Remark. The assertion of lemma 15 holds regardless of the way of
compietion (seminorm or norm completion).

17. Corollary. If p and ¢ are norms then p(z, — z,) — 0 and ¢(z, —
z,) — 0 imply z, = z,.

Proof: By lemma 15, these assumptions imply p(z,—z0) = ¢(z,—z¢) =
0, and this implies z, = z¢ = z,.

18. Lemma.. Let (E,7,II,d) be a complete countably Hilbert space
with seminorms p; < p; < .... Suppose that pi(z, - y;) 2= 0asn — o0,
for all i. Then there is an yo € E such that p;(y; — yo) = 0 for all i.

Proof: For a fixed i and m > i we have:

Pi(l‘n-ym)SPm(rn—ym)—*O as n — o0.

Using the assumption pi(zn —yi) — 0, we have pi(ym, — ym,) = 0if my, my >
i.Thus, ym is a Cauchy sequence ; by completeness, there is yo = lim, y,n-
Then

Pi(¥i — %) £ Pi(Y%i — Yym) + Pi(ym — %) - 0 asm — oo

19. Remark. In 5.13 we defined a G-function as a map V : E — Ry,
such that for every n € N, the set G = {z € E|V(z) < n} is closed. A
typical example of a G-function is a positive function V' that satisfy

z, — z = imV(z,) > V(z) (4)

A function that satisfy (4) with lim is called a lower semicontinuous func-
tion.The next theorem and also lemma 5.14 are usually stated in terms of
lower semicontinuous functions and taking the whole space E instead of a
ball B as below.

20. Theorem. Let (E,d) be a complete metric space and let I be an
arbitrary index set. Let {U;};c; be a familly of G-functions. Let B C F
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be an open d-ball (B = {z € E | d(u,z) < a}, for some u € E, a € R).
Suppose that for each z € B, the set {Ui(z) | : € E} is bounded. Then
there is a ball

B.(2) = {z € Eld(z,z) < r}

and a positive constant M such that
(Vz € B,(2))(Vie I) Ui(z) < M.

Proof: Let
Gin = {z € E|Ui(z) < n}.

Since U; are G-functions, G, is a closed set for every i and n. Let

Fo=()Gin n=1,2,....
el
Then F, is a closed set, and by assumption, U,F,, O B,so N, FS C B°.
Since B is an open ball, N, FY is not dense in E; therefore, by Baire theorem

(appendix D.11), there is a set F§, which is not dense in E, so there is a
ball in E that belongs to Fas which had to be proved.

21. Corollary Let (E,7,II,d) be a complete countably Hilbert space.
Then under assumptions of Theorem 20, there is a seminorm p € II , a ball
B = {z € E|p(z - 2) < r} and a constant M > 0 such that U;(z) < M for
allze€ Bandall:e€l.

Proof: By Lemma 5.4, every d-ball contains a p-ball, and the assertion
follows directly from Theorem 20.

C Linear functionals

In the next part of the text we will consider linear functionals on a multi-
Hilbertian space (E, 7,II). Although Ej is a Hilbert space, and every F € E.
belongs to a E;,, we cannot a priori make full use of Hilbert space theory
due to the following facts:

() F is defined only on E.

(i) E need not be complete with respect to p,

(i17) p is, in general, a seminorm.
Fortunately enough, this is not a serious nuisance. The only real difference
that above facts make is contained in the requirement (8) of corollary 2
below.
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Let us remark that F is a linear functional with respect to a seminorm
p, if and only if (appendix D.2) :

P(F) sup [(Fz)| < oo (1)
p(z)<1

1. Theorem. Let F be a linear functional (not necessarily continuous)
on E. Then for every p € II:

52 (F)= sup |(F,:z:)|2 = sup Z(F, eo,.)z, (2)

p(z)<1 o =1

where sup goes over all finite p-orthonormal sets a= {eq,,€a,,---+€an} € E.
If F is continuous with respect to p then

5 (F)= S (Fe? < oo, 3)

=1

where {e;} is a p-orthonormal base as in theorem A.3.

Proof: It suffices to give a proof for F # 0. Let us first show that
for every £ € E,p(z) < 1, there is an element zo € E — ker(p) such that
(F,z)* < (F,z0)? and p(zo) = 1.

If z € E - ker(p), take zo = z/p(z). If z € ker(p) and (F,z) = 0,
then for zo take any element in E — ker(p) with p(z0) = 1. If z € ker(p)
and (F,z) = M > 0, then let y € E - ker(p) such that (F,y) > 0 and
p(y) = 1. (To show that such an y exists, it is enough to show that there
is a z € E ~ ker(p) with (F,z) # 0. If such z does not exists, then there
must be an w € ker(p) such that (F,w) # 0. Then w + z ¢ ker(p) and
(Fyz + y) # 0, which is a contradiction.) Now take zo = = + y to obtain
p(zo0) = p(y) = 1 and (F,z¢) = (F,z) + (F,y) > M by construction. In the
case (F,z) < 0 we replace z with —z and apply the above proof. Therefore,
we have just proved

(Vz : p(z) < 1)(320 € E — ker(p), p(zo) = 1)((F.2)* < (F,z0)?)

But every zo with p{(xg) = 1 can be a member of some orthonormal set;
therefore, for every z such that p(z) < 1 we have

(F,z)% < sup Z(F, €a,)?

=1
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and

~2
P (F)= sup (F z)? < supz F,ea,)? (4)
p(z)X1 =1

To show the converse inequality, let & = (€q4,,€4,,---,€q,) be a fixed or-
thonormal system.Define

k=1 (F) o )€o,
(Tk=r(F ea, )2)1/2

To =

Then p(z4) =1 and

n

(Fyz4)? = Z(F, €a, )

k=1
This shows that for every o

n

;2 (F) 2 Z(F’ eﬂk>2

k=1
and, therefore,

B (F)> sup 3 (F, ea,)? (5)
* =1

Inequalities (4) and (5) together give the desired equality (3).
For the second part, note that if F is continuous with respect to p, then

;(F)<ooa.nd

(F,2)l = [(F,—=)|p(z) < sup [(F,z)|p(z
( ) p(z)<1

= P(F)p(z)

So, we have for z = 32, p(z,€;) e; +

[(F,z) - (FZp(z: e e,|<p(F p(x—z;uxe,

i=1

and by theorem A.3,the righthand side above tends to 0 as n — oo . Hence
we have:

KR = lim ((F, ) p(z,e) e
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lim | p(z,e)(F,ei)]
=1

(izﬂ(z, 6,’))1/2 (zn:(F, ei)2)1/2
i=1 =

= (3P P (F ),
i=1

=1

IN

~2
so we conclude that P (F) < Y%, (F, &)
Now to show the converse inequality , let

. = Lim(Fee
" (TR (F )2

Then p(z,) = 1 and (F,z,) = 30, (F, e;)?,50 letting n — oo we obtain

5 (F) 2 S(Frei).
1=1

2. Corollary Let F be a linear functional defined on E. Then F € E,
if and only if

sup Z(F,ec,,')2 < 00, (6)
X =1
and if and only if the following two conditions are both satisfied:
Z(F,e,')2 < oo, (7)

=1
where {e;} is a p-orthonormal base as in theorem A.3, and
(Vz € E) (p(z) =0 = (F,z) = 0). (%)

Proof: The condition (6) follows directly from the previous theorem
and (1), as well as the necessity of (7) and (8). So, let us assume that
(7) and (8) hold. Then let z, be a p-null sequence in E, i.e. z, — 0 in
p-seminorm. By Theorem 3 we have

In = Zainei + 7y (P(”n) = 0)»
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and using (7) and (8), we have:

(Fiza)? = (Ea;n(F,e,-))z
(et (D _(F e)?)
P*(2)(Q(F e)?) = 0,

IA

which ends the proof.

3. Remark. Let us note that (6) is not a consequence of (7) without
(8): Suppose that (7) holds, and there is a zo € ker(p), (F,z0) = K # 0.
Define another p~orthonormal base by f; = e; + zo. Then 3 (F, f;)? = o0,
and (6) is clearly violated. As an actual example, take the space of all
real valued bounded functions with a seminorm p(f) = |f(0)| and a linear
functional F defined by (F, f) = f(1).

4. Theorem. Let (E,7,II) be a multi-Hilbertian space, Suppose that
a metric d is defined by means of countably many seminorms in II, and let
p € II be one of these seminorms. Then

E, = (E;) = (E;/ ker(d)) & (E,), (9)

where X = Y means that there is an isometrical and isomorphic mapping
between X and Y, which is 1-1 and onto.
Proof: We shall firstly prove

(Ep/ ker(p)) = E, (10)
and
(Ep/ ker(p)) = (Ep/ ker(p)), (11)

so these two relations will lead to E] = (Ep)'.To prove (10),let « : E, —
(Ep/ kex(p)) be defined by n(F) = F, , (Fr,z + ker(p)) = (F.z). This
mapping is well defined because , by the continuity of F it follows that
p(z —y) = 0 = (F,z) = (F,y). Further, it is obviously 1-1 map and onto.
By m(aF + BG) = ar(F) + fr(G), it is an isomorphic map. Finally . it is
an isometry by

sup |(Fv‘t)| = sup |(F,,1:+ker(p))l.
p(r)<1 p(z+ker(p))<1
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(11) is a consequence of a more general relation: If X is a dense subspace
of a semi-normed vector space Y, then X’ 2 Y’. Namely, by Hahn-Banach
theorem (see appendix D.4), every linear functional F defined on X can
be extended to Y; by denseness of X in Y, this extension is unique and
preserves the norm of F.

The rest of (9) can be proved in a similar way, using theorem B.2 and
lemmas B.4 and B.8.

D References

In addition to listing bibliographical items, we state the results that we used
in this paper.

1. In a topological vector space X, every neighborhood U of zero has
the following property:

(Vz € X)3reR)(Az e V)
(Tréves, theorem 3.1]

2. Let E be a topological vector space with a seminorm p. Let F be a
linear functional on E. Then F is continuous if and only if

sup [(F,z) < o0
p(z)<1

[Yosida, 1.6.1]

Proofs of following 6 statements can be found in Rudin (theorems 2.8,
3.3, 3.4, 3.15, 3.16, 3.18).

3. (Banach-Steinhaus) Let (E,d) be a complete metric space and let F),
be a sequence of linear continuous functionals defined on E, such that

f(z) = lim (Fu,z)
exists for every z € E. Then f is a continuous linear functional on E.

4. (Hahn-Banach) Suppose M is a subspace of a vector space E, and p
is a seminorm on E. Let f be a lineear functional on M such that

I(f,2)] < cp(x) (z e M)
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Then f can be extended to a linear functional F on E that satisfies
(F,z) = (f,z) (z € M)
I(F,z)| < ep(z) (z € E)

5. (Hahn-Banach) Let A and B be disjoint nonempty convex sets in a
Hausdorff topological vector space E. If A is open, then there is a linear
continuous functional F, defined on E, such that

(F,z) < a < (F,y),
for every z € A,y € B and some a € R.

6. (Banach-Alaoglu) Let V be a neighborhood of 0 in a topological
vector space E and let

K={FekFE'||(F,z) <1forevery z € V}.
Then K is a w-* compact set.

7. Let E be a separable topological vector space, and let k" € E’ be a
w-* compact set. Then K is metrizable in the w-* topology.

8. Let E be a locally convex topological vector space. We say that
the set B € E is (strongly) bounded if, for any neighborhood U of 0 there
isa A € R such that AB C U. We say that B is weakly bounded if for any
F € E', the set {(F,z) [ z € B} is bounded.

Any set B C E is (strongly) bounded if and only if it is weakly bounded.

The following two results are taken from Yosida (IIL.6).
9. (Riesz) Let H be a Hilbert space with an inner product p(-,-) and the

norm p(-), and let F be a continuous linear functional on H. Then there is
a uniquelly determined y € H such that for every z € I,

(F,z) = p(y, 7)
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10.  Under the assumptions of previous lemma, if for a continuous
linear functional F

P(F)= sup |(Fz),
p(z)<1

then for every z € H:

p(z) = sup |(F,z)|
P(F)<1

11. (Baire category theorem) If E is a complete metric space, then the
intersection of every countable collection of dense open subsets of E is dense
in E.

(Rudin, theorem 2.2]
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