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1. Introduction

Cirrus is a semi-automated data analysis and model formation system. Like Dendral and other

systems (Lindsay, Buchanan, Feigenbaum & Lederberg, 1980), it is given a half-order model,

which is a model that is so general that it is useless by itself. Cirrus specializes the half-order

model to fit a given data set. As with Dendral, Cirrus assumes that the data is noisy, so a perfect

fit is not expected. The resulting model should nonetheless be an accurate postdiction of the

given data, as well as an accurate predictor of future data.

Cirrus analyzes protocol data. For Cirrus, a protocol is assumed to be a sequence of

operator applications, and the entity producing the protocol is assumed to be an expert doing

routine problem solving. In many task domains, there is good evidence that human experts have

acquired a large set of procedures, and that routine problems are solved by selecting a procedure

and executing it (VanLehn, in press; Chi, Glaser & Rees, 1982). However, the execution process

is not as simple as that used to execute procedures in computer programs. Humans exhibit a

great deal of flexibility in how they apply their procedures (VanLehn & Ball, 1987). One type

of flexibility is that subjects will often permute the order of a sequence of actions on different

occasions. Sometimes they might do A then B then C, and on other occasions, they might

do B then C then A. This flexibility in action ordering is presently a source of some mystery

in cognitive psychology. Aq a first step towards understanding the flexibility of expertise, it

seems helpful to have an accurate descr', t, A of the conditions under which each permutation

is observed. Cirrus was designed to yield exactly such a description.

The half-order theory given to Cirrus is a non-deterministic procedure. The procedure can

be executed, even in its original underspecified form, by an agenda-based interpreter. The basic
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cycle consists of (1) selecting and removing 3 task from the agenda, (2) executing it, ,',

cause creation of new subtasks, and (3) putting the new subtasks, if any, on the agenda.

represented as the name of an operator concatenated to a list of arguments. Some ope rs are

primitive, in that executing them causes a state change in the problem state. The other c -rators,

called macro-operators, do not make state-changes, but instead create new subtasks.

The key step in the execution cycle is the first one, where a task is selected from the agenda.

The half-order theory includes no information on how to do this selection. It is the job of Cirrus

to induce it. The induced information is called a scheduling strategy.

Hand analysis of a number of protocols has shown that selection of a task from the agenda

is partially a function of the problem state (VanLehn & Ball, 1987). Thus, the first version of

Cirrus, Cirrus-I, represented a scheduling strategy as a classifier. Given a problem state, the

classifier outputs an operator name. This is the operator that should be chosen from the agenda.

The induction problem is thus a standard one: given a set of input-output pairs, each consisting

of a state and an operator, induce a function that reproduces this I/O behavior. The function

should be defined over all its range, so that it makes predictions about the future. Of course, the

induction algorithm must be biased, with the usual tradeoffs of parsimony and accuracy in the

induced classifier. Cirrus-I used a modified version of 1/D3 as its induction algorithm (Quinlan,

,14 1r
198P). The classifiers it induced were n-ary decision trees whose leaves bore the name of the

opffit'to be ou~iut by the classifer. For the protocols that were us" to pilot-test Cirrus, a

typical classification problem involved an I/O table of about 200 pairs (VanLehn & Garlick,

1987). Problem states (the input halves of the pairs) were represented by attribute value vectors

with about 50 attributes. Operators (the output halves of the pairs) numbered about 12.

This approach proved to have several fatal flaws, which are discussed below. A number of
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other classification algorithms were tried in place of 1D3, with poor results.

Eventually, we discovered that actually making the induction problem harder made it solv-

able. Instead of inducing a function that maps problem states into a small finite set of operator

names, the new version of Cirrus, Cirrus-U, induces a partial order that can be used to sort the

agenda. More specifically, it induces a set of constraints, where a constraint A>B means that

task A is preferred over task B whenever both are on the agenda. There are two kinds of c on-

straints, conditional and unconditional. A conditional constraint depends on the problem state

and an unconditional constraint does not. Thus, an unconditional constraint, A>B, means that

A is always preferred to B. A conditional constraint, A>B when X, means that A is preferred

to B only when condition X is true of the problem state. Conditional constraints are needed

because some subjects' agenda choices depend on the problem state, as mentioned earlier. Thus,

a scheduling strategy consists of a set of constraints, some of which may be conditional. It is the

job of Cirrus-il to induce such a scheduling strategy given a protocol. This induction problem

appears more difficult (which is why we did such a thorough exploration of the classification

approach before taking this approach), but it turns out to run faster and produce better results

than the classification approach.

Given this representation of a scheduling strategy, the model interpreter chooses an item

from the agenda by first testing the conditions on the conditional constraints in order to assemble

a Mt oftpplicabl-constraints. Ir then walks down the agenda, selecting -he task or tasks that are

maximal according to the applicable constraints. Since the set of applicable constraints changes

slowly, a version of the RETE algorithm (Forgy, 1982) is used to speed up agenda selection.'

The scheduling strategy induced by Cirrus-fl is accurate just to the extent that (1) it always finds

'This technique may be applicable to other agenda-based problem solvers, such as blackboard architectures.
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that just one task is maximal according to the constraints, and (2) that task is in fact the one

that the subject chose.

The solution used in Cirrus-4I may have wide applicability, because the problem faced by

Cirrus seems a rather common one, after one strips away all the application-specific details. The

problem is to induce a function of two arguments, call them X and Y, such that the output of

the function is always a member of the set Y. This is like a function whose range is given to it

as an argument. Many application problems might correspond to this one, or could be made to

correspond to this one fairly easily. For instance, suppose mnat the problem is to induce a one-

argument classifier, F(X), and them exists some reliable, fast approximation to F, call it G(X),

which produces a set of classes such that F(X) is guaranteed to be in the output set. That is, G

can only eliminate some of the possible outputs, rather than determine the output of F precisely.

Given this fast, reliable, but crude approximation to F, one can convert the original problem into

the problem of inducting a function H of two arguments, where the second argument provides

a set from which the output comes. Then F(X) = H(X,G(X)). Thus, traditional classification

techniques can be used to induce G, and the techniques employed by Cirrus can be used to

induce H.

Given this conceptualization of the problem, it is simple to see the advantage of the Cirrus-II

approach over others. The Cirrus-I approach is to simplify the problem by ignoring Y. A brute-

foree ramediation;f its ills would attempt to induce a classifier of both-arguments; this approach

was considered and rejected for reasons discussed below. The Cirrus-II approach simplifies the

problem by decomposing the target function F(X,Y) into Sort(S(X),Y), where S(X) is a function

that produces information used by a fixed, well-defined sorting function that selects a member

of Y for output. Our experience is that this approach produces more accurate fits to the data
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and more easily understood models.

This paper first describes the representations of Cirrus in more detail and some specifics

about the protocols that we have been using to pilot-test the system. It then presents the problems

that Cirrus-I had, and the solution used by Cirrus-IH. Results from our computational experiments

are presented next, followed by plans for further extensions and tests of the system.

2. Procedure Representation

Cirrus assumes that the procedural knowledge used by the students is hierarchical and conditional

in nature. See Table 1 for the description of a subtraction procedure in this format. The rule-like

entities stand for macro-operators, which reduce a task (left side of arrow) to subtasks (on the

right side of arrow). Conditionality is notated to the right of the subtasks.

The appropriateness and adequacy of various control regimes are discussed in detail in

(VanLehn & Garlick, 1987) and (VanLehn & Ball, 1987); an agenda-based control strategy was

chosen as the strategy that is parsimonious (in that it makes the least number of assumptions)

and yet is still adequate to account for the data. As an illustration of this control regime, Figure

&A
1 shows ;he execution trace of the subtraction procedure of Table 1.

In order to be able to use an agenda-based control strategy with the subtraction task-subtask

hierarchy knowledge, we need to have information about the correct operator to choose from

an bgela, given"'he state of the agenda and the external problem stae. This is the learning

problem which is addressed by Cirrus.
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3. Cirrus' Learning Task

Essentially, what Cirrus needs to learn are concepts that specify which task to choose from

an agenda, given a particular external problem state, a particular agenda state, and a particular

history of previously applied operators. This state information, which we call the total state, is

represented as a set of attribute-value pairs.

For example, consider the subtraction problem, worked by Paul, in Figure 1, which consiz"

of the execution trace of the problem, the action-sequence protocol, and the agenda trace. T-.

first phase of Cirrus involves plan recognition; it does this by treating the subtraction knowledge

in Table 1 as a context-free grammar, and parses the protocol as if it were a string which had been

produced by this grammar. The output of this stage is a parse tree (see Figure 2) which is also a

task-subtask representation of the problem solution; the leaves consist of the primitive operator

applications present in the original protocol, and the interior nodes represent the application of

macro-operators.

The task-subtask tree is then traversed in an order which obeys certain conventions discussed

in (VanLehn & Garlick, 1987), that incorporate the by-now standard hypothesis that people

ordinarily expand goal trees depth-first rather than breadth-first (Newell & Simon, 1972). The

output of this phase is a sequence of pairs, each pair consisting of the task which was chosen from

the agenda (the name of the tree node which was traversed), and the attribute-value representation

of the total state at that instant.

Cirrus now has all the information necessary to begin inducing sche!duling concepts. It

is at this point that the major difference between Cirrus-I and Cirrus-1f occurs. In order to

facilitate the explanation of this, we will initially discuss the solution used by Cirrus-I, and

discuss its functionality and limitations. Then, we will go on to discuss a solution which turns

6



an unmanageable machine learning problem into one that can be attacked fairly easily and was

implemented as Cirrus-II.

3.1. Flaws in Cirrus-I

The scheduling strategy induced by Cirrus-I was represented as a decision tree. The internal

nodes of the tree consist of attribute tests on the total state. Each leaf of the tree contains an

operator's name which indicates the task to be chosen from the agenda.

The problem of inducing the decision tree can be considered as a classification problem.

Each operator is equivalent to a different concept or class; a given total state can be said to

be in the class corresponding to the operator that was actually chosen from the agenda at that

time. A modified version of Quinlan's ID3 algorithm (Quinlan, 1986) is used to perform the

classification task. A diagram of Paul's decision tree appears in (VanLehn & Garlick, 1987).

The major drawback inherent in representing the scheduling information this way is that it

outputs operator names and not tasks (a task is an operator name plus arguments). This is a

problem because it is possible for the same operator to appear on the agenda multiple times in

different tasks. For example, when a "borrow-across-zero" operation is undertaken, the Add/10

operator will appear at least twice on the agenda. The scheduling knowledge as outlined above

would arrive at a decision to choose Add/10 from the agenda, but then be stuck because it would

not knoX which Add/10 to choose.

A brute-force solution is to induce classifiers that treat distinct tasks as distinct classes.

This approach does not work well because it creates classes that are too specialized, and thus

do not allow the induced classifier to adequately schedule agenda states that it was not trained

on. For instance, the classifier may output a task that is not on the current agenda, even though

it appeared on the agenda of similar total states during training. We considered four separate
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modifications, each one adding extra structure to allow task relationships to be expressed. We

also tried replacing ID3 with the noise-handling version of Mitchell's candidate-elimination

algorithm (Mitchell, 1978). None of these approaches worked well (see Kowalski & VanLehn,

in preparation).

Another drawback of Cirrus-I is that it produced large decision trees, ranging in size from

30 to 50 nodes in number, and extending to depths of 7 or 8. Besides being computationally

expensive to produce, large trees resulted in limited readability, making it difficult to recover

any sense of the overall strategy that the subject was using. It also meant that noise points

which occurred in the protocol data extended their influence throughout various parts of the tree,

decreasing understandability by an even greater degree.

3.2. Cirrus-II's Solution

Cirrus-fl was designed to overcome these problems. Scheduling information is represented

as relative order relationships between pairs of tasks that take column argument relations into

account. Ordering relationships are called constraints. Examples of constraints are: "Diff >

Add/10 when they are in the same column", "Decr > Diff when Decr is in a column left-

adjacent to the column in which Diff is located ", etc.

The original pairs produced by the tre-walking phase can now be used to generate con-

cepti ora differet type. For example, suppose that the agenda contatns the following tasks:

SublCol 2, Diffl, Add/101, ScratchMark2 , Decr 2
2; suppose further that the chosen task was

ScratchMark2 , and that the attribute-value representation of the problem state is AV. Instead

of forming the pair <ScratchMark - AV>, a number of pairs are formed. Each pair in the set

represents a single constraint which must have held in order for the given task to have been

2Coluns ae nunmbemd fom right to left and subscripts indicate wguments (columns) of the tasks
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chosen. For example, the following constraints (among others) hold during this particular cAse:

"ScratchMark > SUBICOL: same-column" "ScratchMark > Diff: left-adjacent". If there

are N + 1 tasks on the agenda, and one is chosen, then more than N constraints are produced,

bec se there are multiple ways to characterize relationships between the arguments of two tasks.

At this point, it would seem that we have a classification task again; each constraint that

is possible in the representational vocabulary corresponds to a distinct class. However, a given

total state will usually be a member of many different classes. So, the classification problem has

now become one of classifying a given problem state into a set of non-disjoint classes. This is

a non-trivial problem, especially corsidering the total number of classes (approximately 1000)

and tl-.- added difficulty of noise being present in the protocols.

We now introduce the concept of complementary constraints. A pair of complementary

constraints would be a pair such as "Decr > Diff: left-adjacent" and "Diff > Decr: right-

adjacent". So, if Diff1 and Decr 2 were on the agenda, the first constraint would vote to have

Decr 2 chosen from the agenda, and the second would vote to have Diff1 chosen. In the instances

where the first constraint is applicable, the second constraint is necessarily violated, and vice

versa.

Hand analysis (VanLehn & Ball, 1987) indicated that the scheduling strategy of a given

student can be represented by a set of constraints such that the majority of the constraints are

never violate& Iifact, in the case-of Paul, about 250 from the possib-le 1000 constraints were

relevant, and of these, only 14 are violated. These 14 occur in 7 complementary pairs: either

one or the other of the constraints in a complementary pair will apply in a given situation,

but not both. We can now recast the classification problem above as a small series of simple

discrimination problems. It is only necessary to consider each relevant complementary pair, and

9
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use an induction algorithm to induce the necessary conditions for the application of one or the

other. ID3 is used to perform this function.

Cirrus-fl produces multiple decision trees, instead of just one, as produced by Cirrus-I. On

our pilot data sets, these decision trees range in size from 3 to 15 nodes, and extend to depths of

4 or 5. As a result of the reduced size, the trees are more readable, and more readily integrated

into an overall strategy for a subject. This readability allows the occurence of noise in the

protocols to be localized to a small number of decision trees for each student, thus allowing

the presence of noise to be made explicit to the experimenter, and not allowing it to cloud the

overall results. For those decision trees based on non-noisy data, the trees are smaller (3 to 8

nodes, depth of 2 to 4).

4. Results

Cirrus-II is fully implemented, including the model interpreter. The results obtained have been

almost perfect: Cirrus-II correctly models each student at every choice point, except for one

ambiguous point in the protocol of one student. Furthermore, the classification trees produced

have been very helpful in the formulation of strategies to describe each student's behavior. In

comparison, when these same protocols were analyzed by hand (VanLehn and Ball, 1987), up

to one-third of the choice points were left undetermined. So, not only does Cirrus-IH do the

job it was designed to do, it outperforms the human analysts ,n its ability to fully recreate the

students' protocols.

Another experiment is to show both Cirrus and the human analysts only the first halves of

each subject's protocol. They produce models, and the models' fits are evaluated against the

second halves of each protocoL We have not yet performed this experiment, because the human

10



analysts are too familiar with our pilot data. We are in the process of obtaining more data (see

below).

5. Further Work

There are some areas of Cirrus-fl which require further work. These include allowing the

theorist greater flexibility in using an attribute-value representation by making it possible to

assign weights to attributes, consistent with the importance which the theorist wishes to attach

to them. We also have some ideas about integrating the knowledge in the separate decision trees

to form coherent overall strategies automatically. Cirrus-Hl will soon have the ability to induce

the macro-operator conditions, and will almost certainly use ID3 for this task.

While it is certainly the case that subjects working subtraction problems cannot be compared

directly to experts working in a knowledge-rich problem domain, one of the most exciting areas of

further research with Cirrus will involve testing the system's ability to analyze experts performing

more complicated tasks. A preliminary study has been done in this area, using action-sequence

protocols generated by experts in a somewhat richer mathematical domain. Protocols were

collected from expert subjects working with Sketch, an intelligent tutoring system (Trowbridge,

Larkin & Scheftic, 1987). Their task was to transform the graphs of basic transcendental

functions appropriately to produce a graph which was the correct representation of a given

equation. Initial risults are very promising.
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13
4 4

Protocol: ScratchMark2 Add/11 DMITI Decr 2 DWf2

Initial agenda: f{Subi}
{Sub2 Subicoll)
{Sub2 Regroup, Difl)
{Sub2 From2 Add/10, Difl)
{Sub2 Scratchmark2 Dec, 2 Add/10, Dill,)
f{Sub 2 Decr2 Add/1o, Difl)
{Sub2 Decr2 DiII,)
{Sub2 Decr2}
{Sub2)

Final agenda {

Figure 1: Paul's problem #4, his protocol, and the agenda trace
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Macro-operators

1 Subt Subicoll Subl 1  Column i + I is not blank
2 Sub, - Sublco1  Column i + 1 is blank
3 Sublcolt - Show/Topt Bottom of column i is blank
4 Sublcol! -+ Diff! Top of column i > bottom of column i
5 Sub1coli -- Regroup, Diff, Top of column i < bottom of column i
6 Regroup, - From!i Add/10, True
7 From, -- ScratchMark Decri Top of column i 0
8 From, -- Regroup, Froml Top of column i - 0

Primitive Operators

ShowTop, Copy top of column i into the answer slot of column i
Diff, Take the diffference in column i and write it in the answer slot
Add/101 Add 10 to the top of column i
ScratchMarkj Put a slash through the top digit of column i
Decri Decrement the top digit of column i

Table 1: Operators for subtraction (VanLehn & Garlick, 1987)

I

Figure 2: The parse tree for Paul's problem #4 (Van/ehn & Garlick, 1987)
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