
'AVF Control Number: AVF-VSR-AFNOR-88-17

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 881121A1.10009
Alsys

AlsyCOMP_034, Version 4.1
Multitech 1100

Completion of On-Site Testing:
21 November 1988

N

Prepared By:
AFNOR

N Tour Europe
CCedex 7

F-92080 Paris la Defense

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

DTICIELECTEi
% AY 17. 19MD

..DIS..UId.. ITA]
Appjrovod for public rdew.s.

Dititributlon UnhoIlmU

eECU417Y CLASS FICATIOAs Of TmIS PAG[(When Dots Enftrd)

REPORT DOCUME NTAT ION PAGE RZAD VNM :-%rOS

1. REPRT NUBERIZ. CQVT ACCESS1IOM no, 3. mEC!pLeoVS CATALOG MUME

4. 77LL(ondabrtel 15 TYPE Of REPOR1 & flAOD COVt.RLZ

Ada Compiler Validation Summary Report:&isy5 , 21 Nov. 1988 to 21 Nov. 1989
AlsyC0IVG34, Version 4.1, Multitech '1100 (Host &Target) *PR0EGG.MOiULR

881121A1.100096.PRRMNI6
EO UBR

?. 4JTMR~jJS. 5OSTRACT at GRANl ML6A(j

AF!N0R, Paris, Prance.I

9. PERtFORMING C*GANMIATION AND ADORES$ 10. PRO~UEE1I ROJECT. TAsI
LA V ORX UNIT NU*M5LMS

AVNOR,, Paris, prance.

13. CONTROLLING OVFICE NANE A* A9MRESS Ila ALPORI DATE
Ada Joint Program Of fice
United States De artment of Defense
Washington* DC 20301-3081

14. MONITORING AGEN4CY IIA44L & ADORLSS(lkfvfft,,fl fromflCoEIt'04i ffice) 25. SECURITY CLASS(f ,s'vV
tVhCLASSTFIED

AFNOR, Paris, France. 1 0.. ~CSP1CAW~k/0%AAD1NG
N/A

15. 0ZS R1IUTION STATEMENT W 0f9APopoff)

Approved for public release; distribution unlimited.

17. OISIRBj1IOh STATEMENT (0fAe&bsT~saetr'c~enirof14x20 tdfforqn:f'oQM qponv

UNCLASSIFIED

3.SU#PIAMEbTARV NOTES

Ada Programing language, Ada Com~ie aiainSzur eot d
Compilet Xalidation Capability, ACVC, Vaiato Tetag d
Validation office# AVOP Ada Validation T lityon ATestng AdahpIL.T
181SA, Ada Joint Program office, Ajpo aiiy ~tAS/.LSD

AJlsys, AlsyCOMP 034, Version 4.1, Paris L eesHlieh10 ne neatv
- 386/hz release 1.04 (Host & Target). ACVC& 1.10. Muttc 10 ner-~-racjv

5D 1473 acrTIok of 3 Nov swj~o BSL

SIU 3OZLF.sg.01 TN EL.ASSrFMD
-UCUM I1T CLASSIFICATION OFTZ AE(0hRfft,.

Ada Compiler Validation Summary Report:

Compiler Name: AlsyCOMP_034, Version 4.1

Certificate Number: 881121A1.10009

Host: Nultitech 1100 under Interactive 386/ix release 1.04

(Unix system V.3)

Target: Multitech 1100 under Interactive 386/ix release 1.04
(Unix system V.3)

Testing Completed 21 November 1988 Using ACVC 1.10

This report has been reviewed and is approved.

AFNOR
Fabrice Garnier de Labareyre
Tour Europe
Cedex 7
F-92080 Paris la DMfense

Ada Vilidation Otganization

. Dr. John F. Kfamer

Institute for Defense Analyses
Alexandria VA 22311 AcoemsiOn 7o?

NTIS GRAI

DTIC T
Unanounced 0
Justifioation

Ada Joint Program Office

Dr. John Solomond By
Director Di trlutiOr t /

Department of Defense Availability Codes
Washington DC 20301 Avail -andior"

Dist SpeG 181

2

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 5
1.2 USE OF THIS VALIDATION SUMMARY REPORT 5
1.3 REFERENCES 6
1.4 DEFINITION OF TERMS 6
1.5 ACVC TEST CLASSES 7

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 9
2.2 IMPLEMENTATION CHARACTERISTICS. 10

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 15,
3.2 SUMMARY OF TEST RESULTS BY CLASS 15
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 16
3.4 WITHDRAWN TESTS16
3.5 INAPPLICABLE TESTS 16
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 19
3.7 ADDITIONAL TESTING INFORMATION 20
3.7.1 Prevalidation20
3.7.2 Test Method20
3.7.3 Test Site21

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B TEST PARAMETERS

APPENDIX C WITHDRAWN TESTS

APPENDIX D APPENDIX F OF THE Ada STANDARD

3

OFFICE OF THE DIRECTOR OF .

-DEFENSE RESEARCH AND ENGINEERING........

WASHINGTON. OC 20301 .7. .

* MEMORkANDUM F'OR Director, Directorate of Dat base Services,
Defense Logistics Ageny

SUBJECT: Technology Screen n-g of Unclassified/Unlimited Reports
/ .- v

Your letter of 2 February 1990 to the Commander, Air Force' \
-. Systems - Command, Air Force Aeronautical Laboratory, 4~

Wright -Patterson Air Force Base stated that the Ada Validati.on
Summary report for Meridian Software Systems, Inc. contained
-technical data that should be denied public disclosure according to
DoD-Directive 5230.25S .-..-.--

- - We do not agree with this opinion that the contents of this
particular Ada Validation Summary-Report -or the contents -Of _-the

-~several hundred of such reports produced each year to-document-the
-conformity testing results of Ada compilers. '--- Ada -is -not -Used
.exclusively for fiilitary-applications. -The language is an ANSI
M ilitary Standard, a Federal Information Processing Standard, and

* an -International Standards Organization standard-----Compilers are
tested for conformity to the standard as the-basis for obtaining an
Ada Joint Program Of fice certif icate of conformity. -The results of6

-- histesingare documented -in - a standard -.f orm -in --all __ Ada-
-Validation Summary Reports which the compiler vendor agrees -to make -

7,public as part of his contract with the testi.ng facility. -7.

-- On 18 December 1985,-.the-Commerce Department*-issued -Part/
379 Technical Data of the Export Administration specifically
listing Ada Program'iing Support Environments (including compilers)
as items controlled by the Commerce Department.- The AJPO complies
with Department of Commerce :export control' regulations. when
Defense Technical information Center receives an Ada Validation

---Summary-Report, which may be produced by any of the-five U.S. and
European Ada Validation Facilities, the content should be made

7- available to the public. :~~-j . -

*-. .. if you have any further questions, please feel f ree to~ contact_-----
the irdersigned at (202) 694-0209. .j~Z.-.: K-

John P. Solomond
t Director -- *

Ada Joint Program .Office'

INTRODUCTION

CHAPTER 1

INTRODUCTION

This Validation Summary Report 112R+ describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-
STD-1815A. This report explains all technical terms used within it
and thoroughly reports the results of testing this compiler using the
Ada Compiler Validation Capability (ACVC) An Ada compiler must be
implemented according to the Ada Standard, and any implementation-
dependent features must conform to the requirements of the Ada
Standard. The Ada Standard must be implemented in its entirety, and
nothing can be implemented that is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard,
it must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.

The information in this report is derived from the test results
produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an
Ada compiler and evaluating the results. The purpose of validating is
to ensure conformity of the compiler to"the Ada Standard by testing
that the compiler properly implements legal language constructs and
that it identifies and rejects illega language constructs. The
testing also identifies behavior that is-implementation-dependent but
permitted by the Ada Standard. Six clashes of tests are used. These
tests are designed to perform checks at/ compile time, at link time,
and during execution. /

4

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on
an Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by
the compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported
by the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is
allowed by the Ada Standard

Testing of this compiler was conducted under the direction of the
AVF according to procedures established by the Ada Joint Program
Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 21 November 1988 at Alsys Inc. in
Waltham, USA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the
United States, this is provided in accordance with the "Freedom of
Information Act"(5 U.S.C.#552). The results of this validation apply
only to the computers, operating systems, and compiler versions
identified in this report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented.
Copies of this report are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

AFNOR
Tour Europe
cedex 7
F-92080 Paris la Defense

5

INTRODUCTION

Questions regarding this report or the validation test results should
be directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language, ANSI/MIL-
STD-1815A, February 1983, and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide,
SofTech, Inc., December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of
Ada programs that tests the conformity of an Ada
compiler to the Ada programming language.

Ada Commentary An Ada Commentary contains all information relevant
to the point addressed by a comment on the Ada
Standard. These comments are given a unique
identification number having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible
for conducting compiler validations according to
procedures contained in the Ada Compiler Validation
Procedures and Guidelines.

AVO The Ada Validation Organization. The AVO has
oversight authority over all AVF practices for the
purpose of maintaining a uniform process for
validation of Ada compilers. The AVO provides
administrative and technical support for Ada
validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,

6

INTRODUCTION

including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the compiler generates a
result that demonstrates nonconformity to the Ada
Standard.

Host The computer on which the compiler resides.

Inapplicable test An ACVC test that uses features of the language
that a compiler is not required to support or may
legitimately support in a way other than the one
expected by the test.

Passed test An ACVC test for which a compiler generates the
expected result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity
regarding a particular feature or a combination of
features to the Ada Standard. In the context of this
report, the term is used to designate a single test,
which may comprise one or more files.

Withdrawn test An ACVC test found to be incorrect and not used to
check conformity to the Ada Standard. A test may be
incorrect because it has an invalid test objective,
fails to meet its test objective, cr contains illegal
or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce compilation
or link errors.

Class A tests check that legal Ada programs can be successfully
compiled and executed. There are no explicit program components in a
Class A test to check semantics. For example, a Class A test checks
that reserved words of another language (other than those already
reserved in the Ada language) are not treated as reserved words by an
Ada compiler. A Class A test is passed if no errors are detected at
compile time and the program executes to produce a PASSED message.

7

INTRODUCTION

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that
every syntax or semantic error in the test is detected. A Class B
test is passed if every illegal construct that it contains is
detected by the compiler. I

Class C tests check that legal Ada programs can be correctly compiled
and executed. Each Class C test is self-checking and produces a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when
it is executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a
compiler by the Ada Standard for some parameters--for example, the
number of identifiers permitted in a compilation or the number of
units in a library--a compiler may refuse to compile a Class D test
and still be a conforming compiler. Therefore, if a Class D test
fails to compile because the capacity of the compiler is exceeded,
the test is classified as inapplicable. If a Class D test compiles
successfully, it is self-checking and produces a PASSED or FAILED
message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is compiled and executed. However,
the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during
compilation. Therefore, a Class E test is passed by a compiler if it
is compiled successfully and executes to produce a PASSED message, or
if it is rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure CHECKJILE,
support the self-checking features of the executable tests. The
package REPORT provides the mechanism by which executable tests
report PASSED, FAILED, or NOT APPLICABLE results. It also provides a
set of identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The procedure CHECK FILE is used to check the contents of text files
written by some of the Class C tests for chapter 14 of the Ada
Standard. The operation of REPORT and CHECKFILE is checked by a set
of executable tests. These tests produce messages that are examined

8

INTRODUCTION

to verify that the units are operating correctly. If these units are
not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are
intended to ensure that the tests are reasonably portable without
modification. For example, the tests make use of only the basic set
of 55 characters, contain lines with a maximum length of 72
characters, use small numeric values, and place features that may not
be supported by all implementations in separate tests. However, some
tests contain values that require the test to be customized according
to implementation-specific values--for example, an illegal file name.
A list of the values used for this validation is provided in Appendix
C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is
inapplicable to the implementation. The applicability of a test to an
implementation is considered each time the implementation is
validated. A test that is inapplicable for one validation is not
necessarily inapplicable for a subsequent validation. Any test that
was determined to contain an illegal language construct or an
erroneous language construct is withdrawn from the ACVC and,
therefore, is not used in testing a compiler. The tests withdrawn at
the time of this validation are given in Appendix D.

9

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGUP':ION TESTED

The candidate compilation system for this validation was tested under
the following configuration:

Compiler: AlsyCOMP_034, Version 4.1

ACVC Version: 1.10

Certificate Number: 881121A1.10009

Host Computer:

Machine: Multitech 1100

Operating System: Unix
Interactive 386/ix release 1.04
(Unix V.3)

Memory Size: 9 Mb

Configuration information
monochrome display and adapter
machine 1: 40 Mb hard disk
machine 2: 100 Mb hard disk

80387 mathematic
co-processor

Target Computer:

Machine: Multitech 1100

Operating System: Unix
Interactive 386/ix release 1.04
(Unix V.3)

Memory Size: 9 Mb

10

CONFIGURATION INFORMATION

Configuration information
monochrome display and adapter
machine 1: 40 Mb hard disk
machine 2: 100 Mb hard disk

80387 mathematic
co-processor

Communications Network: Micom board for connexion to a Vax
for file transfer

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the
behavior of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

Capacities.

The compiler correctly processes a compilation containing
723 variables in the same declarative part. (See test
D29002K.)

The compiler correctly processe a test containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005E..G (3 tests).)

Predefined types.

This implementation supports the additional predefined
types SHORTINTEGER, SHORTSHORT INTEGER, LONGFLOAT in
the package STANDARD. (See tests B86001T..Z (7 tests).)

11

CONFIGURATION INFORMATION

Based literals.

An implementation is allowed raise NUMERICERROR or
CONSTRAINTERROR when a value exceeds SYSTEM.MAXINT . This
implementation raises CONSTRAINTERROR during execution.
(See test E24201A.)

Expression evaluation.

Apparently no default initialization expressions for record
components are evaluated before any value is checked to
belong to a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision.
This implementation uses all extra bits for extra range.
(See test C35903A.)

Apparently NUMERIC-ERROR is raised when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

Apparently NUMERIC ERROR is raised when a literal operand
in a fixed-point comparison or membership test is outside
the range of the base type. (See test C45252A.)

Apparently underflow is gradual. See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round
to even. (See tests C46012A..Z.)

The method used for rounding to longest integer is
apparently round to even. (See tests C46012A..Z.)

The method used for rounding to integer in static universal
real expressions is apparently round to even. (See test
C4AO14A.)

Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINTERROR for an array having a 'LENGTH that exceeds

12

CONFIGURATION INFORMATION

STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with
more than SYSTEM.MAXINT components raises NUMERICERROR
sometimes, CONSTRAINTERROR sometimes. (See test C36003A.)

CONSTRAINTERROR is raised when 'LENGTH is applied to an
array type with INTEGER'LAST + 2 components. (See test
C36202A.)

CONSTRAINT_.ERROR is raised when an array type with
SYSTEM.MAXINT + 2 components is declared. (See test
C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding
INTEGER'LAST raises no exception. (See test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises CONSTRAINTERROR when the
length of a dimension is calculated and exceeds
INTEGER'LAST. array objects are sliced. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERICERROR or CONSTRAINTERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises no exception. (See test E52103Y.)

In assigning one-dimensional array types, the expression
appears to be evaluated in its entirety before
CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. (See test C52013A.)

In assigning two-dimensional array types, the expression
does not appear to be evaluated in its entirety before
CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. (See test C52013A.)

Discriminated types.

In assigning record types with discriminants, the
expression appears to be evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. (See test C52013A.)

13

CONFIGURATION INFORMATION

Aggregates.

In the evaluation of a multi-dimensional aggregate, all
choices appear to be evaluated before checking against the
index type. (See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINTERROR is raised
if a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

Pragmas.

The pragma INLINE is supported for functions or procedures,
but not functions called inside a package specification.
(See tests LA3OO4A..B, EA3004C..D, and CA3004E..F.)

Pragma PACK is not supported for records. (See test
ED1D04A.)

Generics.

Generic specifications and bodies can be compiled in
separate compilations. (See tests CA012A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

Generic subprogram declarations and bodies can be compiled
in separate compilations. (See tests CA1012A and CA2009F.)

Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CAI012A.)

Generic non-library subprogram bodies can be compiled in
separate compilations from their stubs. (See test CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

Generic library package specifications and bodies can be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

14

CONFIGURATION INFORMATION

Generic non-library package bodies as subunits can be
compiled in separate compilations. (See test CA2009C.)

Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

Input and output.

The package SEQUENTIALIO can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C,
EE2201D, and EE2201E.)

The package DIRECT_10 can not be instantiated with
pnconstrained array types and record types with
discriminants without defaults. (See tests AE2101H,
EE2401D, and EE2401G.)

Modes INFILE and OUTFILE are supported for SEQUENTIAL_IO,
but not CREATE in mode INIFILE. (See tests CE2102D..E,
CE2102N, and CE2102P.)

Modes INFILE, OUT FILE, and INOUTFILE are supported for
DIRECT_10, but not CREATE in mode INFILE. (See tests
CE2102F, CE2102I..J, CE2102R, CE2102T, and CE2102V.)

Modes INFILE and OUTFILE are supported for text files,
but not CREATE in mode INFILE. (See tests CE3102E and
CE3102I..K.)

RESET from OUTFILE to INFILE only and DELETE operations
are supported for SEQUENTIALIO. (See tests CE2102G and
CE2102X.)

RESET except from INFILE to INOUTFILE or to OUTFILE and
DELETE operations are supported for DIRECT_IO. (See tests
CE2102K and CE2102Y.)

RESET and DELETE operations are supported for text files.
(See tests CE3102F..G, CE3104C, CE3110A, and CE3114A.)

Overwriting to a sequential file truncates to the last
element written. (See test CE2208B.)

Temporary sequential files are given names and deleted
when closed. (See test CE2108A.)

Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

15

CONFIGURATION INFORMATION

Temporary text files are given names and deleted when
closed. (See test CE3112A.)

More than one internal file can be associated with each
external file for sequential files when reading only (See
tests CE2107A..E, CE2102L, CE2110B, and CE2111D.)

More than one internal file can be associated with each
external file for direct files when reading only (See tests
CE2107F..I, CE2110D and CE2111H.)

More than one internal file can be associated with each
external file for text files when reading only. (See tests
CE3111A..E, CE3114B, and CE3115A.)

16

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 36 tests had been withdrawn because of test errors. The AVF
determined that 387 tests were inapplicable to this implementation.
All inapplicable tests were processed during validation testing
except for 201 executable tests that use floating-point precision
exceeding that supported by the implementation. Modifications to the
code, processing, or grading for 5, tests were required to
successfully demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

_A B C D E L

Passed 129 1130 1940 17 31 46 3294

Inapplicable 0 8 371 0 2 0 387

Withdrawn 1 2 33 0 0 0 36

TOTAL 130 1140 2350 17 34 46 3717

17

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 199 577 545 245 172 99 161 332 131 36 252 259 280 3292

Inappl 14 72 135 3 0 0 5 1 0 0 0 116 41 387

Wdrn 0 1 0 0 0 0 0 1 0 0 1 29 4 36

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 36 tests were withdrawn from ACVC Version.1.10 at the
time of this validation:

A39005G B97102E BC3009B CD2A62D CD2A63A CD2A63B CD2A63C
CD2A63D CD2A66A CD2A66B CD2A66C CD2A66D CD2A73A CD2A73B
CD2A73C CD2A73D CD2A76A CD2A76B "CD2A76C CD2A76D CD2A81G
CD2A83G CD2A84N CD2A84M CD50110 CD2B15C CD7205C CD5007B
CD7105A CD7203B CD7204B CD7205D CE2107I CE3111C CE3301A
CE3411B
See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to
support. Others may depend on the result of another test that is
either inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time i validation is attempted. A
test that is inapplicable for one validation attempt is not
necessarily inapplicable for a subsequent attempt. For this
validation attempt, 387 tests were inapplicable for the reasons
indicated:

The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
System.Max_Digits:

C24113L..Y C35705L..Y C35706L..Y C35707L..Y C35708L..Y
C35802L..Z C45241L..Y C45321L..Y C45421L..Y C45521L..Z
C45524L..Z C45621L..Z C45641L..Y C46012L..Z

18

TEST INFORMATION

C35702A and B86001T are not applicable because this
implementation supports no predefined type ShortFloat.

C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of System.Max Mantissa is less than 32.

The following 16 tests are not applicable because tffis
implementation does not support a predefined type LONGINTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55BO7A B55B09C B86001W
CD71O1F

C86001F, is not applicable because recompilation of Package
SYSTEM is not allowed.

B86001Y is not applicable because this implementation supports
no predefined fixed-point type other than Duration.

B8600lZ is not applicable because this implementation supports
no predefined floating-point type with a name other than Float,
LongFloat, or ShortFloat.

B91001H is not applicable because address clause for entries is
not supported by this implementation.

CD1009C, CD2A41A..B, CD2A41E, CD2A42A..B, CD2A42E..F, CD2A42I..J
are not applicable because size clause on float is not supported
by this implementation.

CD1C04B, CDlCO4E, CD4051A..D are not applicable because
representation clause on derived records or derived tasks is not
supported by this implementation.

CDIC03C, CD2A83A..C, CD2A83E, CD2A84B..I, CD2A84K..L, CD2B1B
are not applicable because storage size clause on collection of
unconstrained object is not supported.

CDlC04A, CD2A-21C..D, CD2A22C..D, CD2A22G..H, CD2A31C..D,
CD2A32C..D, CD2A32G..H, CD2A41C..D, CD2A42C..D, CD2A42G..H,
CD2A51C..D, CD2A52C..D, CD2A52G..H, CD2A53D, CD2A54D,
CD2A54H are not applicable because size clause for derived
private type is not supported by this implementation.

CD2A61A..D,F,H,I,J,K,L, CD2A62A..C, CD2A71A..D, CD2A72A..D,
CD2A74A..D, CD2A75A..D are not applicable because of the way
this implementation allocates storage space for one component,
size specification clause for an array type or for a record type

19

TEST INFORMATION

requires compression of the storage space needed for all the
components (without gaps).

CD4041A is not applicable because alignment "at mod 8" is not
supported by this implementation.

BD5006D is not applicable because address clause for packages is
not supported by this implementation.

CD5O1B,D,F,H,L,N,R, CD5Ol2C,D,G,H,L, CD5013B,D,F,H,L,N,R,
CD5014U,W are not applicable because address clause for a
constant is not supported by this implementation.

CD5012J, CD5013S, CD5014S are not applicable because address
clause for a task is not supported by this implementation.

CE2102E is inapplicable because this implementation supports
create with outfile mode for SEQUENTIALIO.

CE2102F is inapplicable because this implementation supports
create with inoutfile mode for DIRECTIO.

CE2102J is inapplicable because this implementation supports
create with out-file mode for DIRECTIO.

CE2102N is inapplicable because this implementation supports
open with infile mode for SEQUENTIALIO.

CE21020 is inapplicable because this implementation supports
RESET with infile mode for SEQUENTIALIO.

CE2102P is inapplicable because this implementation supports
open with outfile mode for SEQUENTIALIO.

CE2102Q is inapplicable because this implementation supports
RESET with outfile mode for SEQUENTIAL 10.

CE2102R is inapplicable because this implementation supports
open with inout-file mode for DIRECTIO.

CE2102S is inapplicable because this implementation supports
RESET with inoutfile mode for DIRECTIO.

CE2102T is inapplicable because this implementation supports
open with in-file mode for DIRECTIO.

CE2102U is inapplicable because this implementation 3upports
RESET with infile mode for DIRECTIO.

20

TEST INFORMATION

CE2102V is inapplicable because this implementation supports
open with outfile mode for DIRECTIO.

CE2102W is inapplicable because this implementation supports
RESET with outfile mode for DIRECTIO.

. CE2105A is not applicable because create with mode infile is
not supported by this implementation for SEQUENTIALIO.

CE2105B is inapplicable because CREATE with INFILE mode is not
supported for direct access files.

CE2107B..E (4 tests), CE2107L, and CE2110B are not applicable
because multiple internal files cannot be associated with the
same external file when one or more files is writing for
sequential files. The proper exception is raised when multiple
access is attempted.

CE2107G..H (2 tests), CE2110D, and CE2111H are not applicable
because multiple internal files cannot be associated with the
same external file when one or more files is writing for direct
files. The proper exception is raised when multiple access is
attempted.

CE2111C,D are not applicable because reseting from in_file to
outfile mode for sequential files is not supported by this
implementation.

EE2401D and EE2401G are not applicable because USEERROR is
raised when the create of an instantiation of DIRECTIO

with unconstrained type is-called.

CE2401H is not applicable because create with inout file mode
for unconstrained records with default discriminants is not
supported by this implementation.

CE3102F is inapplicable because this implementation supports
reset for text files, for outfile, infile and from outfile to
infile mode.

CE3102G is inapplicable because this implementation supports
deletion of an external file for text files.

CE31021 is inapplicable because this implementation supports
create with out-file mode for text files.

CE3102J is inapplicable because this implementation supports
open with in-file mode for text files.

21

TEST INFORMATION

CE3102K is inapplicable because this implementation supports
open with outfile mode for text files.

CE3109A is inapplicable because text file create with infile
mode is not supported and raises USE_ERROR.

CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A are not
applicable because multiple internal files cannot be associated
with the same external file when one or more files is writing
for text files. The proper exception is raised when multiple
access is attempted.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default
size of a collection; splitting a Class B test into subtests so that
all errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that wasn't
anticipated by the test (such as raising one exception instead of
another).

Modifications were required for 51 tests.

The test EA3004D when run as it is, the implementation fails to
detect an error on line 27 of test file EA3004D6M (line 115 of "cat
-n ea3004d*"). This is because the pragma INLINE has no effect when
its object is within a package specification. However, the results of
running the test as it is does not. confirm that the pragma had no
effect, only that the package was not made obsolete. By re-ordering
the compilations so that the two subprograms are compiled after file
D5 (the re-compilation of the "with"ed package that makes the various
earlier units obsolete), we create a test that shows that indeed
pragma INLINE has no effect when applied to a subprogram that is
called within a package specification: the test then executes and
produces the expected NOTAPPLICABLE result (as though INLINE were
not supported at all). The re-ordering of EA3OO4D test files is
0-1-4-5-2-3-6.

The following 30 tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:
B23004A B24007A B24009A B25002A B26005A B27005A B28003A
B32202A B32202B B32202C B33001A B36307A B37004A B49003A
B49005A B61012A B62001B B74304B B74304C B74401F B74401R
B91004A B95032A B95069A B95069B BA1101B2 BA11O1B4 BC2001D

22

TEST INFORMATION

BC3009A BC3009C BD5005B

The following 21 tests were split in order to show that the compiler
was able to find the representation clause indicated by the comment
--N/A =>ERROR :

CD2A61A CD2A61B CD2A61F CD2A61I CD2A61J CD2A62A CD2A62B
CD2A71A CD2A71B CD2A72A CD2A72B CD2A75A CD2A75B CD2A84B
CD2A84C CD2A84D CD2A84E CD2A84F CD2AA4G CD2A84H CD2A84I

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10
produced by the AlsyCOMP 034 was submitted to the AVF by the
applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the AlsyCOMP_034 using ACVC Version 1.10 was conducted
on-site by a validation team from the AVF. The configuration
consisted of a Multitech 1100 operating under Interactive 386/ix
release 1.04 (Unix system V.3).

A tape containing all tests was taken on-site by the validation team
for processing. Tests that make use of implementation-specific values
were customized by Alsys after loading of the tape.

The contents of the tape were not loaded directly onto the host
computer. They were loaded on a VAX/VMS machine and transferred via a
network to the Multitech 1100. This is the reason why prevalidation
tests were used for the the validation. Those tests were loaded by
Alsys from a magnetic tape containing all tests provided by the AVF.
Customization was done by Alsys. All the tests were checked at
prevalidation time.

Integrity of the validation tests was made by checking that no
modification of the test occured after the time the prevalidation
results were transferred on disquettes for submission to the AVF.
This check was performed by verifying that the date of creation (or
last modification) of the test files was earlier than the

23

TEST INFORMATION

prevalidation date. After validation was performed, 80 source tests
were selected by the AVF and checked for integrity.

The full set of tests was compiled, linked, and all executable tests
were run on the Multitech 1100. Results were printed from the from
the host computer.

The compiler was tested u-ing command scripts provided by Alsys and
revieweA by the validatir; team. The compiler was tested using all
default option settings except for the following:

OPTION / SWITCH EFFECT

CALLS=INLINE The pragma INLINE are taken into account

Tests were compiled, linked, and executed (as appropriate) using a
single computer. Test output, compilation listings, and job logs were
captured on disquettes and archived at the AVF. The listings examined
on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Alsys, Inc. in Waltham, USA and was completed
on 21 November 1988.

Storage error occured during processing of executable tests.
Compilation of tests were restarted from the begining of the chapter.

24

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

Alsys has submitted the following Deciaration of
Conformance concerning the AlsyCOMP 034.

25

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor: Alsys

Ada Validation Facility: AFNOR, Tour Europe Cedex 7,
F-92080 Paris la Defense

Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: AlsyCOMP_034 Version 4.1

Host Architecture ISA: Multitech 1100
OS&VER #: Interactive 386/ix release 1.04 (Unix

system V.3)

Target Architecture ISA: Multitech 1100
OS&VER #: Interactive 386/ix release 1.04 (Unix

system V.3)

Implementor's Declaration

I, the undersigned, representing Alsys, have implemented no deliberate
extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the
compiler(s) listed in this declaration. I declare that Alsys is the
owner of record of the Ada language compiler(s) listed above and, as
such, is responsible for maintaining said compiler(s) in conformance
to ANSI/MIL-STD-1815A. All certificates and registrations for Ada
language compiler(s) listed in this declaration shall be made only in
the owner's corporate name.

Date
Alsys
Mike Blanchette
Vice President and Director of Engineering

26

DECLARATION OF CONFORMANCE

Owner's Declaration

I, the undersigned, representing Alsys, take full responsibility for
implementation and maintenance of the Ada compiler(s) listed above,
and agree to the public disclosure of the final Validation Summary
Report. I further agree to continue to comply with the Ada trademark
policy, as defined by the Ada Joint Program Office. I declare that all
of the Ada language compilers listed, and their host/target
performance, are in compliance with the Ada Language Standard
ANSI/MIL-STD-1815A.

Date
Alsys
Mike Blanchette
Vice President and Director of Enginecring

27

TEST PARAMETERS

APPENDIX B

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

Name and Meaning Value

$ACC_SIZE 32
An integer literal whose value
is the number of bits sufficient
to hold aiy value of an access
type.

$BIG_IDI (254 * 'A') & '1'
Identifier the size of the
maximum input line length
with varying last character.

$BIG_ID2 (254 * 'A) & '2'
Identifier the size of the
maximum input line length
with varying last character.

$BIG_ID3 (126 * 'A') & '3' & (128 * 'A')
Identifier the size of the
maximum input line length
with varying middle character.

$BIG_ID4 (126 * 'A') & '4' & (128 * 'A')
Identifier the size of the
maximum input line length
with varying middle character.

28

TEST PARAMETERS

Name and Meaning Value

SBIG_INTLIT (252 * '0') & '298'
An integer literal of value
298 with enough leading zeroes
so that it is the size of the
maximum line length.

$BIGREALLIT (250 * '0') & '690.0'
A universal real literal of
value 690.0 with enough
leading zeroes to be the size
of the maximum line length.

$BIG_STRINGI logo & (127 * 'A') &
A string literal which when
catenated with BIGSTRING2
yields the image of BIGIDI.

$BIG_STRING2 ." & (127 * 'A') & "i"'
A string literal which when
catenated to the end of
BIGSTRING1 yields the image
of BIGIDl.

$BLANKS (235 * '

A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT_.LAST 214783647.
A universal integer literal whose
value is TEXTIO.COUNT'LAST.

$DEFAULTMEMSIZE 655360
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULTSTORUNIT 8
An integer literal whose value
is SYSTEM.STORAGEUNIT.

$DEFAULTSYSNAME I_80X86
The value of the constant
SYSTEM.SYSTEMNAME.

$DELTADOC 2#1.0#E-31
A real literal whose value is
SYSTEM.FINEDELTA.

29

TEST PARAMETERS

Name and Meaning Value

SFIELD..LAST 255
A universal integer literal whose
value is TEXTIO.FIELD'LAST.

$FIXEDNAME NOSUCHFIXEDTYPE
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT NAME NOSUCHTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORTFLOAT, or
LONGFLOAT.

$GREATERTHANDURATION 2_097_151.999_023_437_51
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

SGREATERTHAN-DURATIONBASELAST 3_000_000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGH..PRIORITY 10
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

SILLEGALEXTERNALFILENAME ILLEGAL\!$%^&*()/_+"
An external file name which
contains invalid characters.

SILLEGAL EXTERNAL FILE._NAME2 !$V&*()?I)(*&\
An external file name which
is too long.

$INTEGER FIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

SINTEGERLAST 32767
A universal integer literal
whose value is INTEGER'LAST.

30

TEST PARAMETERS

Name and Meaning Value

SINTEGERLASTPLUS_1 32768
A universal integer literal
whose value is INTEGER'LAST + 1.

SLESS_THANDURATION -2_097_152.5
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESSTHANDURATIONBASEFIRST -3000_000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$LOWPRIORITY 1
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSADOC 31
An integer-literal whose value
is SYSTEM.MAXMANTISSA.

$MAXDIGITS 15
Maximum digits supported for
floating-point types.

$MAX_INLEN 255
Maximum input line length
permitted by the implementation.

$MAXINT 2147483647
A universal integer literal
whose value is SYSTEM.MAXINT.

SMAXINTPLUS_1 2147483648
A universal integer literal
whose value is SYSTEM.AXINT+I.

SMAX LEN INTBASEDLITERAL '42:' & (250 * '0') & '11:'
A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

31

TEST PARAMETERS

Name and Meaning Value

SMAXLENREALBASEDLITERAL '16:' & (248 * '0') & 'F.E:'
A universal real based literal
whose value is 16: F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAX_STRINGLITERAL fi"l & (253 * 'A') &
A string literal of size
MAX IN LEN, including the quote
characters.

SMININT -2147483648
A universal integer literal
whose value is SYSTEM.MININT.

SMINTASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
NULL;" as the only statement in
its body.

SNAME NOSUCHTYPE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT_INTEGER,
LONGFLOAT, or LONGINTEGER.

SNAME_LIST I_80X86
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

SNEG BASEDINT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit falls
in the sign bit position of the
representation for SYSTEM.MAXINT.

SNEWMEMSIZE 655360
An integer literal whose value
is a permitted argument for
pragma memorysize, other than
DEFAULTMEMSIZE. If there is
no other value, then use
DEFAULTMEMSIZE.

32

TEST PARAMETERS

Name and Meaning Value

SNEW_STORUNIT 8
An integer literal whose value
is a permitted argument for
pragma storage unit, other than
DEFAULTSTOR UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

SNEWSYSNAME I80X86
A value of the type SYSTEM.NAME,
other than $DEFAULTSYSNAME. If
there is only one value of that
type, then use that value.

$TASK_SIZE ' 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one inout
parameter.

STICK 1.0/18.2
A real literal whose value is
SYSTEM.TICK.

33

WITHDRAWN TESTS

APPENDIX C

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 36 tests had been withdrawn at the
time of validation testing for the reasons indicated. A reference of
the form AI-ddddd is to an Ada Commentary.

A39005G This test unreasonably expects a component clause to
pack an array component into a minimum size (line 30).

B97102E This test contains an unitended illegality: a select
statement contains a null statement at the place of a
selective wait alternative (line 31).

BC3009B This test wrongly expects that circular instantiations
will be detected in several compilation units even
though none of the units is illegal with respect to the
units it depends on; by AI-00256, the illegality need
not be< detected until execution is attempted (line 95).

CD2A62D This test wrongly requires that an array object's size
be no greater than 10 although its subtype's size was
specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D (16 tests] These tests
wrongly attempt to check the size of objects of a
derived type (for which a 'SIZE length clause is given)
by passing them to a derived subprogram (which
implicitly converts them to the parent type (Ada
standard 3.4:14)). Additionally, they use the 'SIZE
length clause and attribute, whose interpretation is
considered problematic by the WG9 ARG.

CD2A81G, CD2AS3G, CD2A84N & M, & CD50110 These tests assume that
dependent tasks will terminate while the main program
executes a loop that simply tests for task termination;
this is not the case, and the main program may loop
indefinitely (lines 74, 85, 86 & 96, 86 & 96, and 58,
resp.).

CD2B15C & CD7205C These tests expect that a 'STORAGE-SIZE length
clause provides precise control over the number of
designated objects in a collection; the Ada standard
13.2:15 allows that such control must not be expected.

34

WITHDRAWN TESTS

CD5007B This test wrongly expects an implicitly declared
subprogram to be at the address that is specified for an
unrelated subprogram (line 303).

CD7105A This test requires that successive calls to
CALENDAR.CLOCK change by at least SYSTEM.TICK; however,
by Commentary AI-00201, it is only the expected
frequency of change that must be at least SYSTEM.TICK--
particular instances of change may be less (line 29).

CD7203B, & CD7204B These tests use the 'SIZE length clause and
attribute, whose interpretation is considered
problematic by the WG9 ARG.

CD7205D This test checks an invalid test objective: it treats
the specification of storage to be reserved for a task's
activation as though it were like the specification of
storage for a collection.

CE2107I This test requires that objects of two similar scalar
types be distinguished when read from a file--DATA ERROR
is expected to be raised by an attempt to read one
object as of the other type. However, it is not clear
exactly how the Ada standard 14.2.4:4 is to be
interpreted; thus, this test objective is not considered
valid. (line 90).

CE3111C This test requires certain behavior, when two files are
associated with the same external file, that is not
required by the Ada standard.

CE3301A This test contains several calls to END OF LINE &
END OF PAGE that have no parameter: these calls were
intended to specify a file, not to refer to
STANDARD_INPUT (lines 103, 107, 118, 132, & 136).

CE3411B This test requires that a text file's column number be
set to COUNT'LAST in order to check that LAYOUTERROR is
raised by a subsequent PUT operation. But the former
operation will generally raise an exception due to a
lack of available disk space, and the test would thus
encumber validation testing.

35

APPENDIX F OF THE Ada STANDARD

APPENDIX D

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the AlsyCOMP_016, Version
4.1, are described in the following sections, which discuss topics in
Appendix F of the Ada Standard. Implementation-specific portions of
the package STANDARD are also included in this appendix.

package STANDARD is

type SHORTSHORTINTEGER is range -128 .. 127;

type SHORTINTEGER is range -32768 .. 32_767;

type INTEGER is range -2_147_483_648 .. 2_147_483_647;

type FLOAT is digits 6 range
-2#1.11_1111_1111_1111_11111111#E+127

2#1.111_1111_1111_1111_1111_1111#E+127;

type LONGFLOAT is digits 15 range
-2#I.III III#EI023

2#1.1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_11#EI023;

type DURATION is delta 0.001 range -2097152.0 .. +2097152.0;

end STANDARD;

36

Copyright 1988 by Alsys

All rights reserved. No part of this document may be reproduced in
any form or by any means without permission in writing from Alsys.

Printed: November 1988

Alsys reserves the right to make changes in specifications and other information
contained in this publication without prior notice. Consult Alsys to determine whether
such changes have been made.

Alsys, AdaWorld AdaProbe, AdaXref, AdaReformat, and AdaMake are registered trademarks of Alsys.
Unix is a registered trademark of AT&T.
386/ix is a registered trademark of Interactive Systems Corporation.
Microsoft is a registered trademark of Microsoft Corporation.
IBM, PC AT and PS/2 are registered trademarks of International Business Machines Corporation.
INTEL is a registered trademark of Intel Corporation.

TABLE OF CONTENTS

APPENDIX F 1

1 Implementation-Dependent Pragmas 2
1.1 INLINE 2
1.2 INTERFACE 2
1.3 INTERFACENAME 2
1.4 INDENT 3
1.5 Other Pragmas 4

2 Implementation-Dependent Attributes 4

3 Specification of the package SYSTEM 4

4 Restrictions on Representation Clauses 7
4.1 Enumeration Types 8
4.2 Integer Types 10
4.3 Floating Point Types 12
4.4 Fixed Point Types 13
4.5 Access Types 15
4.6. Task -Types 16
4.7 Array Types 17
4.8 Record Types 20

4.8.1 RECORD SIZE 25
4.8.2 VARIANT INDEX 25
4.8.3 ARRAYDESCRIPTOR 26
4.8.4 RECORDDESCRIPTOR 27

5 Conventions for Implementation-Generated Names 28

6 Address Clauses 28
6.1 Address Clauses for Objects 28
6.2 Address Clauses for Program Units 29
6.3 Address Clauses for Entr:.s 29

Table of Contents

7 Restrictions on Unchecked Conversions 29

8 Input-Output Packages 29
8.1 Introduction 29
8.2 The FORM Parameter 30

9 Characteristics of Numeric Types 37
9.1 Integer Types 37
9.2 Floating Point Type Attributes 37
9.3 Attributes of Type DURATION 38

10 Other Implementation-Dependent Characteristics 38
10.1 Use of the Floating-Point Coprocessor (80287, 80387) 38
10.2 Characteristics of the Heap 39
10.3 Characteristics of Tasks 39
10.4 Definition of a Main Subprogram 40
10.5 Ordering of Compilation Units 40

11 Limitations 40
11.1 Compiler Limitations 40
11.2 Hardware Related Limitations 40

INDEX 41

Alsys 386 Unix Ada Compiler. Appendix F. Version 4.2

APPENDIX F

Implementation - Dependent Characteristics

This appendix summarizes the implementation-dependent characteristics of the Alsys 386
Unix Ada Compiler. This appendix is a required part of the Reference Manual for the
Ada Programming Language (called the RM in this appendix).

The sections of this appendix are as follows:

1. The form, allowed places, and effect of every implementation-dependent
pragma.

2. The name and the type of every implementation-dependent Li:ibute.

3. The specification of the package SYSTEM.

4. The list of all restrictions on representation clauses.

5. The conventions used for any implementation-generated name denoting im-
plementation-dependent components.

6. The interpret 4' n of expressions that appear in address clauses, including
those for inter.-ts.

7. Any restrictions on unchecked conversions.

8. Any implementation-dependent characteristics of the input-output packages.

9. Characteristics of numeric types.

10. Other implementation-dependent characteristics.

11. Compiler limitations.

The name Alsys Runtime Executive Programs or simply Runtime Executive refers to the
runtime library routines provided for all Ada programs. These routines implement the
Ada heap, exceptions, tasking control, and other utility functions.

General systems programming notes are given in another document, the Application De-
veloper's Guide (for example, parameter passing conventions needed for interface with
assembly routines).

Appendix F. Implementation- Dependent Characteristics 1

1 Implementation-Dependent Pragmas

1.1 INLINE

Pragma INLINE is fully supported; however, it is not possible to inline INLINE a
subprogram in a declarative part.

1.2 INTERFACE

Ada programs can interface with subprograms written in Assembler and other languages
through the use of the predefined pragma INTERFACE and the implementation-defined
pragma INTERFACENAME.

Pragma INTERFACE specifies the name of an interfaced subprogram and the name of
the programming language for which parameter passing conventions will be generated.
Pragma INTERFACE takes the form specified in the RM:

pragma INTERFACE (languagename, subprogramname);

where,

" languagename is ASSEMBLER, ADA, or C.

" subprogram name is the name used within the Ada program to refer to the
interfaced subprogram.

The only language names accepted by pragma INTERFACE are ASSEMBLER, ADA and
C. The full implementation requirements for writing pragma INTERFACE subprograms
are described in the Application Developer's Guide.

The language name used in the pragma INTERFACE does not have to have any re-
lationship to the language actually used to write the interfaced subprogram. It is used
only to tell the Compiler how to generate subprogram calls; that is, what kind of
parameter passing techniques to use. The programmer can interface Ada programs with
subroutines written in any other (compiled) language by understanding the mechanisms
used for parameter passing by the Alsys 386 Unix Ada Compiler and the corresponding
mechanisms of the chosen external language.

1.3 INTERFACENAME

Pragma INTERFACE NAME associates the name of the interfaced subprogram with
the external name of the interfaced subprogram. If pragma INTERFACENAME is not
used, then the two names are assumed to be identical. This pragma takes the form:

pragma INTERFACENAME (subprogramname, stringliteral);

2 Alsys 386 Unix Ada Compiler. Appendix F. Version 4.2

where,

" subprogram name is the name used within the Ada program to refer to the
interfaced subprogram.

" stringliteral is the name by which the interfaced subprogram is referred to
at link time.

The pragma INTERFACENAME is used to identify routines in other languages that
are not named with legal Ada identifiers. Ada identifiers can only contain letters, dig-
its, or underscores, whereas the Unix Linker allows external names to contain other
characters, for example, the dollar sign ($) or commercial at sign (@). These characters
can be specified in the stringliteral argument of the pragma INTERFACE-NAME.

The pragma INTERFACE_NAME is allowed at the same places of an Ada program as
the pragma INTERFACE. (Location restrictions can be found in section 13.9 of the
RM.) However, the pragma INTERFACE NAME must always occur after the pragma
INTERFACE declaration for the interfaced subprogram.

The string literal of the pragma INTERFACE_NAME is passed through unchanged to
the 386 Unix object file. (The 386 UNIX tools usually ignore the case of external
identifiers. However recent versions of the Microsoft Linkers have options to treat
external identifiers in a case-sensitive manner.) The maximum length of the
stringliteral is 40 characters. This limit is not checked by the Compiler, but the string
is truncated by the Binder to meet the Intel object module format standard. Certain 386
UNIX tools have smaller limits.

The Runtime Executive contains several external identifiers. All such identifiers begin
with either the string "ADA@" or the string "ADAS@". Accordingly, names prefixed by
"ADA@" or "ADAS@" should be avoided by the user.

Example

package SAMPLE-DATA is
function SAMPLE-DEVICE (X: INTEGER) return INTEGER;
function PROCESS SAMPLE (X: INTEGER) return INTEGER;

private

pragme INTERFACE (ASSEMBLER, SAMPLEDEVICE);

prage INTERFACE (ADA, PROCESS_SAMPLE);
pragm INTERFACE NAME (SAMPLE-DEVICE, "EVIOSGET SAMPLE");

end SAMPLE DATA;

1.4 INDENT

Pragma INDENT is only used with AdaReformat. AdaReformat is the Alsys reformatter

which offers the functionalities of a pretty-printer in an Ada environment.

The pragm;- is placed in the source file and interpreted by the Reformatter.

pragma INDENT(OFF);

Appendix F, Implementation- Dependent Characteristics 3

causes AdaReformat not to modify the source lines after this pragma.

pragma INDENT(ON);

causes AdaReformat to resume its action after this pragma.

1.5 Other Pragmas

Pragmas IMPROVE and PACK are discussed in detail in the section on representation
clauses and records (Chapter 5).

Pragma PRIORITY is accepted with the range of priorities running from 1 to 10 (see the
definition of the predefined package SYSTEM in Section 3). Undefined priority (no
pragma PRIORITY) is treated as though it were less than any defined priority value.

In addition to pragma SUPPRESS, it is possible to suppress all checks in a given compi-
lation by the use of the Compiler option CHECKS.

2 Implementation-Dependent Attributes

P'ISARRAY For a prefix P that denotes any type or subtype, this at-
tribute yields the value TRUE if P in an array type or
an array subtype; otherwise, it yields the value FALSE.

P'RECORD DESCRIPTOR These attributes are used to control the.representa
P-ARRAY _DESCRIPTOR tion of implicit components of a record, see section

4.8

3 Specification of the package SYSTEM

The implementation dos not allow the recompilation of package SYSTEM.

package SYSTEM is

-- • (1) Required Definitions. •

type NAME is (;_80x86);

SYSTEM NAME constant NAME :: !_80x86;

STORAGE-UNIT constant :z 8;

MEMORY-SIZE constant := 640 * 1024;

4 Alsys 386 Unix Ada Compiler. Appendix F. Version 4.2

-- System-Dependent Named Numbers:

M[NI NT : constant :z -(2 **31);
MAXINT : constant : 2**31 - 1;
MAX-DIGITS : constant := 15;

MAXMANTISSA : constant := 31;
FINE-DELTA : constant := 2#1.0#E-31;

-- For the high-resoLution timer, the clock resolution is

-- 1.0 / 1024.0.
TICK : constant :z 1.0 / 18.2;

-- Other System-Dependent DecLarations:

subtype PRIORITY is INTEGER range 1 .. 10;

The type ADDRESS is, in fact, implemented as a

-- 386 bit offset,

type ADDRESS is private;

NULLADDRESS: constant ADDRESS := nulL;

* (2) MACHINE TYPE CONVERSIONS '

-- If the word / double-word operations below are used on
-- ADDRESS, then As4W yields the segment and LSW yields the

offset.

-- In the operations below, a BYTETYPE is any simple type
-- implemented on 8-bits (for example, SHORTSMORTINTEGER), a WORD-TYPE is

-- any simple type impiemented on 16-bits (for example, SHORT INTEGER), and

-- a DOUBLE WORDTYPE is any simple type implemented on
-- 32-bits (for example, INTEGER, FLOAT, ADDRESS).

-- Byte <== Word conversions:

-- Get the most significant byte:

generic &

type BYTETYPE is private;

type WORDTYPE is private;
function MS3 (W: WORD-TYPE) return BYTE-TYPE;

-- Get the least significant byte:

generic-

type BYTETYPE is private;

type WORDTYPE is private;

function LSB (W: WORD TYPE) return BYTE-TYPE;

Appendix F. Implementation- Dependent Characteristics

Compose a word from two bytes:

generic

type BYTE TYPE is private;

type WORD_TYPE is private;

function WORD (NSB, LS8: BYTE-TYPE) return WORD TYPE;

-- Word --z' Doubte-Word conversions:

-- Get the most significant word:

generic

type WORD-TYPE is private;

type DOUBLEWORDTYPE is private;

function NSW (W: DOUBLE WORD TYPE) return WORDTYPE;

-- Get the Least significant word:

generic

type WORDTYPE is private;
type DOUBLEWORDTYPE is private;

function LSW(W: DOUBLEWORDTYPE) return WORD TYPE;

-- Compose a DATA double word from two words.
generic

type WORD-TYPE is private;
-- The following type must be a data type

-- (for example, LONG INTEGER):
type DATA.DOUBLEWORD is private;

function DOUBLE WORD (MSW, LSW: WORO_TYPE)

return DATA. OUBLE WORD;

-- Compose a REFERENCE double word from two words.

generic

type WORD-TYPE is private;
-- The foLlowing type must be a reference type

-- (for example, access or ADDRESS):

type REF.DOUBLE WORD is private;
function REFERENCE (SEGMENT, OFFSET: WORD TYPE)

return REF.OOUBLE WORD;

..- * (3) OPERATIONS ON ADDRESS *

-- You can get an address via 'ADDRESS attribute or by
-- instantiating the function REFERENCE, above, with

-- appropriate types.

Some addresses are used by the Compiler. For example,

-- the display is located at the low end of the DS segment,

and addresses SS:O through SS:128 hold the task control

6 Alsys 386 Unix Ada Compiler, Appendix F. Version 4.2

-- block and other information. writing into these areas

will have unpredictable results.

Note that no operations are defined to get the values of

the segment registers, but if it is necessary an

-- interfaced function can be written.

generic

type OBJECT is private;

function FETCHFROM ADDRESS (FROM: ADDRESS) return OBJECT;

generic

type OBJECT is private;

procedure ASSIGNTO.ADDRESS (OBJ: OBJECT; TO: ADDRESS);

private

end SYSTEM;

4 Restrictions on Representation Clauses

This section explains how objects are represented and allocated by the Alsys 386 Unix
Ada compiler and how it is possible to control this using representation clauses.

The representation of an object is closely connected with its type. For this reason this
section addresses successively the representation of enumeration, integer, floating point,
fixed point, access, task, array and record types. For each class of type the
representation of the corresponding objects is described.

Except in the case of array and record types, the description for each class of type is
independent of the others. To understand the representation of an array type it is
necessary to understand first the representation of its components. The same rule applies
to record types.

Apart from implementation defined pragmas, Ada provides three means to control the
size of objects:

" a (predefined) pragma PACK, applicable to array types

" a record representation clause

" a size specification

For each class of types the effect of a size specification is described. Interference
between size specifications, packing and record representation clauses is described under
array and record types.

Representation clauses on derived record, or derived tasks are not supported.

Appendix F. Implementation- Dependent Characteristics 7

Size representation clauses on types derived from private types are not supported when
the derived type is declared outside the private part of the defining package.

4.1 Enumeration Types

Internal codes of enumeration literals

When no enumeration representation clause applies to an enumeration type, the internal
code associated with an enumeration literal is the position number of the enumeration
literal. Then, for an enumeration type with n elements, the internal codes are the
integers 0, 1, 2, .. , n-I.

An enumeration representation clause can be provided to specify the value of each
internal code as described in RM 13.3. The Alsys compiler fully implements enumeration
representation clauses.

As internal codes must be machine integers the internal codes provided by an
enumeration representation clause must be in the range -231 .. 231- I.

Encoding of enumeration values

An enumeration value is always represented by its internal code in the program
generated by the compiler.

Minimum size of an enumeration subtype

The minimum size of an enumeration subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M
are the values of the internal codes associated with the first and last enumeration values
of the subtype, then its minimum size L is determined as follows. For m >= 0, L is the
smallest positive integer such that M <- 2L'-. For m < 0, L is the smallest positive
integer such that -2 L-1 <- m and M <= 2 L -1_ 1

.

type COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW);
-- The minimum size of COLOR is 3 bits.

subtype BLACKANDWHITE is COLOR range BLACK .. WHITE;
-- The minimum size of BLACKANDWHITE is 2 bits.

subtype BLACK OR WHITE is BLACK ANDWHITE range X .. X;
-- Assuming that X is not static, the minimum size of BLACKORWHITE is
-- 2 bits (the same as the minimum size of its type mark
BLACKANDWHITE).

8 Alsys 386 Unix Ada Compiler, Appendix F. Version 4.2

Size of an enumeration subtype

When no size specification is applied to an enumeration type or first named subtype, the
objects of that type or first named subtype are represented as signed machine integers.
The machine provides 8, 16 and 32 bit integers, and the compiler selects automatically
the smallest signed machine integer which can hold each of the internal codes of the
enumeration type (or subtype). The size of the enumeration type and of any of its
subtypes is thus 8, 16 or 32 bits.

When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause. The same rule applies to
a first named subtype. The size specification must of course specify a value greater than
or equal to the minimum size of the type or subtype to which it applies:

type EXTENDED is
(-- The usual ASCII characters.

NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, SI,
DLE, DC 1, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FS, GS, RS, US,

, , IT, %, &,T , (•1 •) * , 1 + 1 ,, -, 9 .9 , 1 / 9 ,
909, 11', 121, 93', '41, 5: , 6', 7 ,
'89, 199, ,, 9 .I, =l ... I > , 9?'.,

'@•, 'A', 'B', 'C', D', 'E', 'F', 'G','II, IF, 'K', 9L1, M', N', lot,
'PI, IQ,, 9R9, IS9, "F', VU9, IV,, 'W',
'X', $Y9, IZ', '[', T\, T], 'A', 1-1,
" ', a', 'b ', 'c', 'd , 'e', 'f', 1'9 1
'ht, 'i', il', V , 1% 'm', In', o0,

9 P" 9 % r tI l , IV , W %
,

'x', 'yI Y zT, '{ 1 '], T}' 1-1, DEL,
-- Extended characters
LEFTARROW,
RIGHT ARROW,
UPPERARROW,
LOWER ARROW,
UPPER LEFTCORNER,
UPPER RIGHT CORNER,
LOWERRIGHTCORNER,
LOWERLEFTCORNER

for EXTENDED'SIZE use 8;
-- The size of type EXTENDED will be one byte. Its objects will be represented
-- as unsigned 8 bit integers.

The Alsys compiler fully implements size specifications. Nevertheless, as enumeration
values are coded using integers, the specified lergth cannot be greater than 32 bits.

Appendix F, Implementation- Dependent Characteristics 9

Size of the objects of an enumeration subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an enumeration subtype has the same size as its subtype.

4.2 Integer Types

Predefined integer types

There are three predefined integer types in the Alsys implementation for 180x86
machines:

type SHORT SHORT INTEGER is range -2**07 .. 2*07-1;
type SHORT INTEGER is range -2"'15 .. 2**15-1;
type INTEGER is range -2'31 .. 2**31-1;

Selection of the parent of an integer type

An integer type declared by a declaration of the form:

type T is range L .. R;

is implicitly derived from a predefined integer type. The compiler automatically selects
the predefined integer type whose range is the smallest that contains the values L to R
inclusive.

Encoding of integer values

Binary code is used to represent integer values. Negative numbers are represented using
two's complement.

Minimum size of an integer subtype

The minimum size of an integer subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M
are the lower and upper bounds of the subtype, then its minimum size L is determined
as follows. For m >= 0, L is the smallest positive integer such that M <= 2 L_ - . For
m < 0, L is the smallest positive integer that - 2 L-1 <- m and M <- 2L ' - .

10 Alsys 386 Unix Ada Compiler, Appendix F. Version 4.2

subtype S is INTEGER range 0 .. 7;
-- The minimum size of S is 3 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of
-- D is 3 bits (the same as the minimum size of its type mark S).

Size of an integer subtype

The sizes of the predefined integer types SHORT SHORTINTEGER,
SHORTINTEGER and INTEGER are respectively 8, 16 and 32 bits.

When no size specification is applied to an integer type or to its first named subtype (if
any), its size and the size of any of its subtypes is the size of the predefined type from
which it derives, directly or indirectly. For example:

type S is range 80 .. 100;
-- S is derived from SHORTSHORTINTEGER, its size is 8 bits.

type J is range 0 .. 255;
-- J is derived from SHORTINTEGER, its size is 16 bits.

type N is new J range 80 .. 100;
-- N is indirectly derived from SHORTINTEGER, its size is 16 bits.

When a size specification is applied to an integer type, this integer type and each of its
subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type S is range 80 .. 100;
for S'SIZE use 32;
-- S is derived from SHORTINTEGER, but its size is 32 bits
-- because of the size specification.

type J is range 0 .. 255;
for J'SIZE use 8;
-- J is derived from INTEGER, but its size is 8 bits because
-- of the size specification.

type N is new J range 80 .. 100;
-- N is indirectly derived from INTEGER, but its size is 8 bits
-- because N inherits the size specification of J.

Size b the objects of an integer subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an integer subtype has the same size as its subtype.

Appendix F. Implementation-Dependent Characteristics 11

4.3 Floating Point Types

Predefined floating point types

There are two predefined floating point types in the Alsys implementation for 180x86
machines:

type FLOAT Is
digits 6 range -(2.0 - 2.0**(-23))*2.0"*127 .. (2.0 - 2.0**(-23))*2.0**127;

type LONGFLOAT is
digits 15 range -(2.0 - 2.0"*(-51))'2.0*l023 .. (2.0 - 2.0**(-51))*2.0**1023;

Selection of the parent of a floating point type

A floating point type declared by a declaration of the form:

type T is digits D [range L .. RJ;

is implicitly derived from a predefined floating point type. The compiler automatically
selects the smallest predefined floating point type whose number of digits is greater than
or equal to D and which contains the values L to R inclusive.

Encoding of floating point values

In the program generated by the compiler, floating point values are represented using
the IEEE standard formats.for single and double floats.

The values of the predefined type FLOAT are represented using the single float format.
The values of the predefined type LONGFLOAT are represented using the double
float format. The values of any other floating point type are represented in the same
way as the values of the predefined type from which it derives, directly or indirectly.

Minimum size of a floating point subtype

The minimum size of a floating point subtype is 32 bits if its base type is FLOAT or a
type derived from FLOAT; it is 64 bits if its base type is LONGFLOAT or a type
derived from LONGFLOAT.

Size of a floating point subtype

The sizes of the predefined floating point types FLOAT and LONGFLOAT are
respectively 32 and 64 bits.

The size of a floating point type and the size of any of its subtypes is the size of the
predefined type from which it derives directly or indirectly.

12 Alsys 386 Unix Ada Compiler. Appendix F. Version 4.2

The only size that can be specified for a floating point type or first named subtype
using a size specification is its usual size (32 or 64 bits).

Size of the objects of a floating point subtype

An object of a floating point subtype has the same size as its subtype.

4.4 Fixed Point Types

Small of a fixed point type

If no specification of small applies to a fixed point type, then the value of small is
determined by the value of delta as defined by RM 3.5.9.

A specification of small can be used to impose a value of small. The value of small is
required to be a power of two.

Predefined fixed point types

To implement fixed point types, the Alsys compiler for 180x86 machines uses a set of
anonymous predefined types of the form:

type SHORT FIXED is delta D range (-2.0**07-1)*S .. 2.0"*07"S;
for SHORT FIXED'SMALL use S;

type FIXED is delta D range (-2.0**15-I)*S .. 2.0*15"S;
for FIXED'SMALL use S;

type LONG FIXED is delta D range (-2.0**31-1)*S .. 2.0"'31"S;
for LONG_FIXED'SMALL use S;

where D is any real value and S any power of two less than or equal to D.

Selection of the parent of a fixed point type

A fixed point type declared by a declaration of the form:

type T is delta D range L .. R;

possibly with a small specification:

for T'SMALL use S;

is implicitly derived from a predefined fixed point type. The compiler automatically
selects the predefined fixed point type whose small and delta are the same as the small
and delta of T and whose range is the shortest that includes the values L to R inclusive.

Appendix F. Implementation- Dependent Characteristics 13

Encoding of fixed point values

In the program generated by the compiler, a safe value V of a fixed point subtype F is
represented as the integer

V / F'BASE'SMALL

Minimum size of a fixed point subtype

The minimum size of a fixed point subtype is the minimum number of binary digits that
is necessary for representing the values of the range of the subtype using the small of
the base type.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, s and S
being the bounds of the subtype, if i and I are the integer representations of m and M,
the smallest and the greatest model numbers of the base type such that s < m and M < S,
then the minimum size L is determined as follows. For i >= 0, L is the smallest positive
integer such that I <- 2 L_ 1 . For i < 0, L is the smallest positive integer such that
-2L' - 1 <= i and I <= 2L'-1.

type F is delta 2.0 range 0.0 .. 500.0;
-- The minimum size of F is 8 bits.

subtype S is F delta 16.0 range 0.0 .. 250.0;
-- The minimum size of S is 7 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of D is 7 bits
-- (the same as the minimum size of its type mark S).

Size of a fixed point subtype

The sizes of the predefined fixed point types SHORTF!XED, FIXED and
LONGFIXED are respectively 8, 16 and 32 bits.

When no size specification is applied to a fixed point type or to its first named subtype,
its size and the size of any of its subtypes is the size of the predefined type from which
it derives directly or indirectly. For example:

type S is delta 0.01 range 0.8 .. 1.0;
-- S is derived from an 8 bit predefined fixed type, its size is 8 bits.

type F is delta 0.01 range 0.0 .. 2.0;
-- F is derived from a 16 bit predefined fixed type, its size is 16 bits.

type N is new F range 0.8 .. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, its size is 16 bits.

14 Alsys 386 Unix Ada Compiler. Appendix F. Version 4.2

When a size specification is applied to a fixed point type, this fixed point type and each
of its subtypes has the qize specified by the length clause. The same rule applies to a
first named subtype. The size specification must of course specify a value greater than
or equal to the minimum size of the type or subtype to which it applies:

type S is delta 0.01 range 0.8 .. 1.0;
for S'SIZE use 32;
-- S is derived from an 8 bit predefined fixed type, but its size is 32 bits
-- because of the size specification.

type F is delta 0.01 range 0.0 .. 2.0;
for F'SIZE use 8;
-- F is derived from a 16 bit predefined fixed type, but its size is 8 bits
-- because of the size specification.

type N is new F range 0.8 .. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, but its size is
-- 8 bits because N inherits the size specification of F.

The Alsys compiler fully implements size specifications. Nevertheless, as fixed point
objects are represented using machine integers, the specified length cannot be greater
than 32 bits.

Size of the objects of a fixed point subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of a fixed point type has the same size as its subtype.

4.5 Access Types

Collection Size

As described in RM 13.2, a specification of collection size can be provided in order to
reserve storage space for the collection of an access type.

When no STORAGE _SIZE specification applies to an access type, no storage space is
reserved for its collection, and the value of the attribute STORAGE SIZE is then 0.

STORAGESIZE clause on collections of unconstrained objects is not supported by the

implementation.

Encoding of access values.

Access values are machine addresses.

Appendix F. Implementation-Dependent Characteristics 1S

Minimum size of an access subtype

The minimum size of an access subtype is 32 bits.

Size of an access subtype

The size of an access subtype is 32 bits, the same as its minimum size.

The only size that can be specified for an access type using a size specification is its
usual size (32 bits).

Size of an object of an access subtype

An object of an access subtype has the same size as its subtype, thus an object of an
access subtype is always 32 bits long.

4.6 Task Types

Storage for a task activation

When no length clause is used to specify the storage space to be reserved for a task
activation, the storage space indicated at bind time is used for this activation.

As described in RM 13.2, a length clause can be used to specify the storage space for
the activation of each of the tasks of a given type. In this case the value indicated at
bind time is ignored for this task type, and the length clause is obeyed.

It is not allowed to apply such a length clause to a derived type. The same storage space
is reserved for the activation of a task of a derived type as for the activation of a task
of the parent type.

Encoding of task values

Encoding of a task value is not described here.

Minimum size of a task subtype

The minimum size of a task subtype is 32 bits.

Size of a task subtype

The size of a task subtype is 32 bits, the same as its minimum'size.

A size specification has no effect on a task type. The only size that can be specified
using such a length clause is its minimum size.

16 Alsys 386 Unix Ada Compiler, Appendix F. Version 4.2

Size of the objects of a task subtype

An object of a task subtype has the same size as its subtype. Thus an object of a task
subtype is always 32 bits long.

4.7 Array Types

Layout of an array

Each array is allocated in a contiguous area of storage units. All the components have
the same size. A gap may exist between two consecutive components (and after the last
one). All the gaps have the same size.

Component Gap Component Gap Ccmponent Gap

Components

If the array is not packed, the size of the components is the size of the subtype of the
components:

type A is array (I .. 8) of BOOLEAN;
-- The size of the components of A is the size of the type BOOLEAN: 8 bits.

type DECIMAL _DIGIT is range 0 .. 9;
for DECIMALDIGIT'SIZE use 4;
type BINARY CODED DECIMAL is

array (INTEGER range <>) of DECIMAL_DIGIT;
-- The size of the type DECIMAL._DIGIT is 4 bits. Thus in an array of
-- type BINARY__CODEDDECIMAL each component will be represented on
-- 4 bits as in the usual BCD representation.

If the array is packed and its components are neither records nor arrays, the size of the
components is the minimum size of the subtype of the components:

type A is array (I .. 8) of BOOLEAN;
pragma PACK(A);
-- The size of the components of A is the minimum size of the type BOOLEAN:
-- 1 bit.

type DECIMAL_DIGIT is range 0 .. 9;
for DECIMALDIGIT'SIZE use 32;
type BINARY CODEDDECIMAL is

array (IN'TEGER range <>) of DECIMAL_DIGIT;
pragma PACK(BINARY CODEDDECIMAL);
-- The size of the type DECIMAL_ DIGIT is 32 bits, but, as

Appendix F. Implementation- Dependent Characteristics 17

-= BINARYCODED__DECIMAL is packed, each component of an array of this
=- type will be represented on 4 bits as in the usual BCD representation.

Packing the array has no effect on the size of the components when the components are
records or arrays.

Gaps

If the components are records or arrays, no size specification applies to the subtype of
the components and the array is not packed, then the compiler may choose a
representation with a gap after each component; the aim of the insertion of such gaps is
to optimize access to the array components and to their subcomponents. The size of the
gap is chosen so that the relative displacement of consecutive components is a multiple
of the alignment of the subtype of the components. This strategy allows each component
and subcomponent to have an address consistent with the alignment of its subtype:

type R is
record

K : SHORTINTEGER; -- SHORTINTEGER is even byte aligned.
B: BOOLEAN; -- BOOLEAN is byte aligned.

end record;
-- Record type R is even byte aligned. Its size is 24 bits.

type A Is array (1 .. 10).of R;
-- A gap of one byte is inserted after each component in order to respect the
-- alignment of type R. The size of an array of type A will be 320 bits.

Component Gap Component Gap Component Gap

Array of type A: each subcomponent K has an even offset.

If a size specification applies to the subtype of the components or if the array is packed,
no gaps are inserted:

type R is
record

K: SHORT INTEGER;
B: BOOLEAN;

end record;

type A is array (I .. 10) of R;
pragma PACK(A);
-- There is no gap in an 3rray of type A because
-- A is packed.

18 Alsys 386 Unix Ada Compiler, Appendix F. Version 4.2

-- The size of an object of type A will be 240 bits.

type NR is new R;
for NR'SIZE use 24;

type B is array (1 .. 10) of NR;
- There is no gap in an array of type B because

-- NR has a size specification.
-- The size of an object of type B will be 240 bits.

ll1iJ w.
Component Component

Array of type A or B: a subcomponent K can have an odd offset.

Size of an array subtype

The size of an array subtype is obtained by multiplying the number of its components
by the sum of the size of the components and the size of the gaps (if any). If the
subtype is unconstrained, the maximum number of components is considered.

The size of an array subtype cannot be computed at compile time

" if it has non-static constraints or is an unconstrained array type with non-
static index subtypes (because the number of components can then only be
determined at run time).

" if the components are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static (because the size of
the components and the size of the gaps can then only be determined at run
time).

As has been indicated above, the effect of a pragma PACK on an array type is to
suppress the gaps and to reduce the size of the components. The consequence of packing
an array type is thus to reduce its size.

If the components of an array are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static, the compiler ignores any
pragma PACK applied to the array type but issues a warning message. Apart from this
limitation, array packing is fully implemented by the Alsys compiler.

A size specification applied to an array type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout oL an array is as expected by
the application.

Appendix F. Implementation-Dependent Characteristics 19

Size of the objects of an array subtype

The size of an object of an array subtype is always equal to the size of the subtype of
the object.

4.8 Record Types

Layout of a record

Each record is allocated in a contiguous area of storage units. The size of a record
component depends on its type. Gaps may exist between some components.

The positions and the sizes of the components of a record type object can be controlled
using a record representation clause as described in RM 13.4. In the Als~s
implementation for 180x86 machines there is no restriction on the position that can be
specified for a component of a record. If a component is not a record or an array, its
size can be any size from the minimum size to the size of its subtype. If a component is
a recoid or an array, its size must be the size of its subtype:

type INTERRUPTMASK is array (0.. 2) of BOOLEAN;
pragma PACK(INTERRUPTMASK);
-- The size of INTERRUPT-MASK is 3 bits.

type CONDITION CODE is 0 .. 1;
-- The size of CONDITIONCODE is 8 bits, its minimum size is I bit.

type STATUSBIT is new BOOLEAN;
for STATUS BIT'SIZE use 1;
-- The size and the minimum size of STATUSBIT are I bit.

SYSTEM : constant := 0;
USER : constant :- 1;

type STATUS REGISTER is
record

T: STATUSBIT; -- Trace
S: STATUSBIT; -- Supervisor
I: INTERRUPTMASK; -- Interrupt mask
X : CONDITION_CODE; -- Extend
N : CONDITIONCODE; -- Negative
Z: CONDITION CODE; -- Zero
V : CONDITIONCODE; -- Overflow
C : CONDITIONCODE; -- Carry

end record;

for STATUS REGISTER use
record at mod 2;

T at SYSTEM range 0 .. 0;
S at SYSTEM range 2 .. 2;
I at SYSTEM range 5 .. 7;

20 Alsys 386 Unix Ada Compiler. Appendix F. Version 4.2

X at USER range 3 .. 3;
N at USER range 4 .. 4;
Z at USER range 5 .. 5;
V at USER range 6 .. 6;
C at USER range 7 .. 7;

end record;

A record representation clause need not specify the position and the size for every

component.

Pragma PACK has no effect on records.

If no component clause applies to a component of a record, its size is the size of its
subtype. Its position is chosen by the compiler so as to optimize access to the
components of the record: the offset of the component is chosen as a multiple of 8 bits
if the objects of the component subtype are usually byte aligned, but a multiple of 16
bits if these objects are usually even byte aligned. Moreover, the compiler chooses the
position of the component so as to reduce the number of gaps and thus the size of the
record objects.

Because of these optimizations, there is no connection between the order of the
components in a record type declaration and the positions chosen by the compiler for
the components in a record object.

Indirect components

If the offset of a component cannot be computed at compile time, this offset is stored in
the record objects at run time and used to access the component. Such a component is
said to be indirect while other components are said to be direct.

Beginning of the record

Compile time offset
DIRECT

Compile time offset
OFFSET

Run time offset

INOIRECT

Appendix F. Implementation- Dependent Characteristics 21

A direct and an indirect component

If a record component is a record or an array, the size of its subtype may be evaluated
at run time and may even depend on the discriminants of the record. We will call these
components dynamic components:

type DEVICE is (SCREEN, PRINTER);

type COLOR Is (GREEN, RED, BLUE);

type SERIES is array (POSITIVE range <>) of INTEGER;

type GRAPH (L: NATURAL) is
record

X : SERIES(I .. L); -- The size of X depends on L
Y: SERIES(I .. L); -- The size of Y depends on L

end record;

Q: POSITIVE;

type PICTURE (N: NATURAL; D: DEVICE) is
record

F: GRAPH(N); =- The size of F depends on N
S: GRAPH(Q); -- The size of S depends on Q
case D is

when SCREEN =>
C: COLOR;

when PRINTER :>
Bull;

end case;
end record;

Any component placed after a dynamic component has an offset which cannot be
evaluated at compile time and is thus indirect. In order to minimize the number of
indirect components, the compiler groups the dynamic components together and places
them at the end of the record:

D = SCREEN D: PRINTER
Nz2 NzI

- Beginning of the record -
S OFFSET S OFFSET

CompiLe time offsets
F OFFSET OFFSET

0 N

22 Alsys 386 Unix Ada Compiler. Appendix F. Version 4.2

Run tieoffsetsi**,*: F

S - S

oI
- S

The record type PICTURE: F and S are placed at the end of the record

Because of this approach, the only indirect components are dynamic components. But
not all dynamic components are necessarily indirect if there are dynamic components in
a component list which is not followed by a variant part, then exactly one dynamic
component of this list is a' direct component because its offset can be computed at
compilation time (the only dynamic components that are direct components are in this
8situation):

Appendix F. Implementation- Dependent Characteristics 23

Beginning of the record
Y OFFSET

Compile time offset
L

Compile time offset

X Size dependent on discriminant L

Run time offset

Y Size dependent on discriminant L

The record type GRAPH: the dynamic component X is a direct component.

The offset of an indirect component is always expressed in storage units.

The space reserved for the offset of an indirect component must be large enough to
store the size of any value of the record type (the maximum potential offset). The
compiler evaluates an upper bound MS of this size and treats an offset as a component
having an anonymous integer type whose range is 0 .. MS.

If C is the name of an indirect component, then the offset of this component can be
denoted in a component clause by the implementation generated name C'OFFSET.

Implicit components

In some circumstances, access to an object of a record type or to its components involves
computing information which only depends on the discriminant values. To avoid useless
recomputation the compiler stores this information in the record objects, updates it
when the values of the discriminants are modified and uses it when the objects or its
components are accessed. This information is stored in special components called implicit
components.

An implicit component may contain information which is used when the record object
or several of its components are accessed. In this case the component will be included in
any record object (the implicit component is considered to be declared before any
variant part in the record type declaration). There can be two components of this kind;
one is called RECORDSIZE and the other VARIANTINDEX.

On the other hand an implicit component may be used to access a given record
component. In that case the implicit component exists whenever the record component
exists (the implicit component is considered to be declared at the same place as the
record component). Components of this kind are called ARRAYDESCRIPTORs or
RECORDDESCRIPTORs.

24 Alsys 386 Unix Ada Compiler. Appendix F. Version 4.2

4.8.1 RECORDSIZE

This implicit component is created by the compiler when the record type has a variant
part and its discriminants are defaulted. It contains the size of the storage space
necessary to store the current value of the record object (note that the storage
effectively allocated for the record object may be more than this).

The value of a RECORDSIZE component may denote a number of bits or a number of
storage units. In general it denotes a number of storage units, but if any component
clause specifies that a component of the record type has an offset or a size which cannot
be expressed using storage units, then the value designates a number of bits.

The implicit component RECORDSIZE must be large enough to store the maximum
size of any value of the record type. The compiler evaluates an upper bound MS of this
size and then considers the ifiplicit component as having an anonymous integer type
whose range is 0 .. MS.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'RECORDSIZE.

4.8.2 VARIANTINDEX

This implicit component is created by the compiler when the record type has a variant
part. It indicates the set of components that are present in a record value. It is used
when a discriminant check is to be done.
Component lists that do not contain a variant part are numbered. These numbers are the

possible values of the implicit component VARIANTINDEX.

type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION (KIND: VEHICLE := CAR) is
record

SPEED: INTEGER;
case KIND is

when AIRCRAFT I CAR =>
WHEELS: INTEGER;
case KIND is

when AIRCRAFT I> --

WINGSPAN: INTEGER;
when others => -- 2

null;
end case;

when BOAT => -- 3
STEAM : BOOLEAN;

when ROCKET => -- 4
STAGES: INTEGER;

end case;
end record;

Appendix F, Implementation- Dependent Characteristics 25

The value of the variant index indicates the set of components that are present in a
record value:

Variant Index Set

1 (KIND, SPEED, WHEELS, WINGSPAN)
2 (KIND, SPEED, WHEELS)
3 (KIND, SPEED, STEAM)
4 (KIND, SPEED, STAGES)

A comparison between the variant index of a record value and the bounds of an interval
is enough to check that a given component is present in the value:

Component Intervat

KIND **
SPEED -

WHEELS 1 .. 2
WINGSPAN 1 .. 1
STEAM 3 .. 3
STAGES 4 .. 4

The implicit component VARIANT_INDEX must be large enough to store the number
V of component lists that don't contain variant parts. The compiler treats this implicit
component as having an anonymous integer type whose range is I .. V.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'VARIANTINDEX.

4.8.3 ARRAYDESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous array subtype that depends on a discriminant
of the record. It contains information about the component subtype.

The structure of an implicit component of kind ARRAY DESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in
specifying the location of a component of this kind using a component clause, he can
obtain the size of the component using the ASSEMBLY parameter in the COMPILE
command.

The compiler treats an implicit component of the kind ARRAY DESCRIPTOR as
having an anonymous array type. If C is the name of the record component whose
subtype is described by the array descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C'ARRAYDESCRIPTOR.

26 Alsys 386 Unix Ada Compiler, Appendix F. Version 4.2

4.S.4 RECORDDESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous record subtype that depends on a
discriminant of the record. It contains information about the component subtype.

The structure of an implicit component of kind RECORD DESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in
specifying the location of a component of this kind using a component clause, he can
obtain the size of the component using the ASSEMBLY parameter in the COMPILE
command.

The compiler treats an implicit component of the kind RECORD DESCRIPTOR as
having an anonymous array type. If C is the name of the record component whose
subtype is described by the record descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C'RECORDDESCRIPTOR.

Suppression of implicit components

The Alsys implementation provides the capability of suppressing the implicit components
RECORD SIZE and/or VARIANTINDEX from a record type. This can be done using
an implementation defined pragma called IMPROVE. The syntax of this pragma is as
follows:

pragma IMPROVE (TIME I SPACE , [ON =>] simple_name);

The first argument specifies whether TIME or SPACE is the primary criterion for the
choice of the representation of the record type that is denoted by the second argument.

If TIME is specified, the compiler inserts implicit components as described above. If on
the other hand SPACE is specified, the compiler only inserts a VARIANTINDEX or a
RECORDSIZE.

component if this component appears in a record representation clause that applies to the
record type. A record representation clause can thus be used to keep one implicit
component while suppressing the other.

A pragma IMPROVE that applies to a given record type can occur anywhere that a
representation clause is allowed for this type.

Size of a record subtype

Unless a component clause specifies that a component of a record type has an offset or a
size which cannot be expressed using storage units, the size of a record subtype is
rounded up to a whole number of storage units.

The size of a constrained record subtype is obtained by adding the sizes of its
components and the sizes of its gaps (if any). This size is not computed at compile time

Appendix F. Implementation-Dependent Characteristics 27

" when the record subtype has non-static constraints,

" when a component is an array or a record and its size is not computed at
compile time.

The size of an unconstrained record subtype is obtained by adding the sizes of the
components and the sizes of the gaps (if any) of its largest variant. If the size of a
component or of a gap cannot be evaluated exactly at compile time an upper bound of
this size is used by the compiler to compute the subtype size.

A size specification applied to a record type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of a record is as expected by
the application.

Size of an object of a record subtype

An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this
size is less than or equal to 8 kb. If the size of the subtype is greater than this, the
object has the size necessary to store its currtitt value; storage space is allocated and
released as the discriminants of the record change.

5 Conventions for Implementation-Generated Names

The Alsys 386 Unix Ada Compiler may add fields to record objects and have descriptors
in memory for record or array objects. These fields are not accessible to the user
through any implementation-generated name or attribute.

The following predefined packages are reserved to Alsys and cannot be recompiled in
Version 4.2:

ALSYSADARUNTIME

ALSYSBASIC 10

ALSYSBASIC_D IRECT[1O

ALSYS .GAS ICSEQUENT I AL 10

6 Address Clauses

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as described in RM
13.5. When such a clause applies to an object no storage is allocated for it in the
program generated by the compiler. The program accesses the object using the address
specified in the clause.

28 Alsys 386 Unix Ada Compiler, Appendix F. Version 4.2

An address clause is not allowed for task objects, for unconstrained records whose size is
greater than 8 kb., or for a constant.

6.2 Addre-is Clauses for Program Units

Address clauses for program units are not implemented in the current version of the
compiler.

6.3 Address Clauses for Entries

Address clauses for entries are not implemented in the current version of the compiler.

7 Restrictions on Unchecked Conversions

Unchecked conversions are allowed between any types. It is the programmer's re-
sponsibility to determine if the desired effect is achieved.

8 Input-Output Packages

In this part of the Appendix the implementation-specific aspects of the input-output
system are described.

8.1 Introduction

In Ada, input-output operations (10) are considered to be performed on objects of a
certain file type rather than being performed directly on external files. An external file
is anything external to the program that can produce a value to be read or receive a
value to be written. Values transferred for a given file must be all of one type.

Generally, in Ada documentation, the term file refers to an object of a certain file type,
whereas a physical manifestation is known as an external file. An external file is
characterized by

" Its NAME, which is a string defining a legal path name under the current
version of the operating system.

" Its FORM, which gives implementation-dependent information on file
characteristics.

Both the NAME and the FORM appear explicitly as parameters of the Ada CREATE
and OPEN procedures. Though a file is an object of a certain file type, ultimately the
object has to correspond, to an external file. Both CREATE and OPEN associate a
NAME of an external file (of a certain FORM) with a program file object.

Ada 10 operations are provided by means of standard packages (141.

Appendix F, Implementation- Dependent Characteristics 29

SEQUENTIAL_10 A generic package for sequential files of a single element

type.

DIRECT_0 A generic package for direct (random) access files.

TEXTIO A generic package for human readable (text, ASCII) files.

IOEXCEPTIONS A package which defines the exceptions needed by the
above three packages.

The generic package LOWLEVEL_10 is not implemented in this version.

The upper bound for index values in DIRECT_10 and for line, column and page
numbers in TEXTIO is given by

COUNT'LAST = 2**31 -1

The upper bound for field widths in TEXT_10 is given by

FIELD'LAST = 255

8.2 The FORM Parameter

The FORM parameter of both the CREATE and OPEN procedures in Ada specifies the
characteristics of the external file involved.

The CREATE procedure establishes a new external'file, of a given NAME and FORM,
and associates it with a specified program file object. The external file is created (and
the file object set) with a specified (or default) file mode. If the external file already
exists, the file will be erased. The exception USEERROR is raised if the file mode is
INFILE.

Example:

CREATE(F, OUTFILE, "MYFILE",
FORM =>
"WORLD => READ, OWNER => READWRITE");

The OPEN procedure associates an existing external file, of a given NAME and FORM,
with a specified program file object. The procedure also sets the current file mode. If
there is an inadmissible change of mode, then the Ada exception USE-ERROR is
raised.

The FORM parameter is a string, formed from a list of attributes, with attributes
separated by commas (,). The string is not case sensitive (so that, for example, HERE
and here are treated alike). (FORM attributes are distinct from Ada attributes.) The
attributes specify:

30 Alsys 386 Unix Ada Compiler. Appendix F, Version 4.2

" File protection

" File sharing

" File structure

" Buffering

" Appending

" Blocking

" Terminal input

The general form of each attribute is a keyword followed by => and then a qualifier.
The arrow and qualifier may sometimes be omitted. The format for an attribute specifier
is thus either of

KEYWORD

KEYWORD -> QUALIFIER

We will discuss each attribute in turn.

File Protection

These attributes are only meaningful for a call to the CREATE procedure.

File protection involves two independent classifications. The first classification is related
to who may access the file and is specified by the keywords:

OWNER Only the owner of the directory may access this file.

GROUP Only the members of a predefined group of users may
access this file.

WORLD Any user may access this file.

For each type of user who may access a file there are various access rights, and this
forms the basis for the second classification. In general, there are four types of access
right, specified by the qualifiers:

READ The user may read from the external file.

WRITE The user may write to the external file.

EXECUTE The user may execute programs stored in the external file.

Appendix F. Implementation-Dependent Characteristics 31

NONE The user has no access rights to the external file. (This
access right negates any prior privileges.)

More than one access right may be relevant for a particular file, in which case the
qualifiers are linked with underscores (_).

For example, suppose that the WORLD may execute a program in an external file, but
only the OWNER may modify the file.

WORLD -. >

EXECUTE,
OWNER =

READWRITE _EXECUTE,

Repetition of the same qualifier within the attributes is illegal:

WORLD ->
EXECUTEEXECUTE. -- NOT legal

but repetition of the entire attribute is allowed:

WORLD =.>

EXECUTE,
WORLD ->

EXECUTE, -- Legal

File Sharing

An external file can be shared, which means associated simultaneously with several
logical file objects created by the OPEN and CREATE procedures.

The file sharing attribute may restrict or suppress this capability by specifying one of
the following access modes:

NOTSHARED
Exclusive access - no other logical file may be associated
with the external file

SHARED => READERS
Only logical files opened with mode IN are allowed

SHARED => SINGLEWRITER
Only logical files opened with mode IN and at most one
with mode INOUT or OUT are allowed

SHARED .> INY
No restriction

32 Alsys 386 Unix Ada Compiler, Appendix F, Version 4.2

The exception USE ERROR is raised if, for an external file already associated with an
Ada file object

- a further OPEN or CREATE specifies a file sharing attribute different from
the current one

- a further OPEN, CREATE or RESET violates the conditions imposed by the
current file sharing attribute.

The restrictions imposed by the file sharing attribute disappear when the last logical file
object linked to the external file is closed.

The file sharing attribute provides control over multiple accesses within the program to
a given external file.

This control does not extend to the whole system.

The default value for the file sharing attribute is SHARED => ANY

File Structure

(a) Text Files

There is no FORM parameter to define the structure of text files.

A text file consists of a sequence of bytes holding the ASCII codes of characters.

The representation of Ada-terminators depends on the file's mode (IN or OUT) and
whether it is associated with a terminal device or a mass-storage file:

- Mass-storage files

end of line: ASCII.LF
end of page: ASCII.LF ASCII.FF
end of file: ASCII.LF ASCII.EOT

- Terminal device with mode IN

end of line: ASCII.LF
end of page: ASCII.LF ASCII.FF
end of file: ASCII.LF ASCII.FF

Appendix F, Implementation- Dependent Characteristics 33

- Terminal device with mode OUT

end of line: ASCII.LF
end of page: ASCI.FF
end of file: ASCII.EOT

(b) Binary Files

Two FORM attributes, RECORDSIZE and RECORDUNIT, control the structure of
binary files.

A binary file can be viewed as a sequence (sequential access) or a set (direct access) of

consecutive RECORDS.

The structure of such a record is:

(HEADER] OBJECT [UNUSEDPART]

and it is formed from up to three items:

- an OBJECT with the exact binary representation of the Ada object in the
executable program, possibly including an object descriptor

- a HEADER consisting of two fields (each of 32 bits):
- the length of the object in bytes
- the length of the descriptor in bytes

- an UNUSEDPART of variable size to permit full control of the record's
size

The HEADER is implemented only if the actual parameter of the instantiation of the 10
package is unconstrained.

The file structure attributes take the form:

RECORDSIZE=> size-in bytes

RECORDUNIT -> sizeinbytes

Their meaning depends on the object's type (constrained or not) and the file access
mode (sequential or direct access):

a) If the object's type is constrained:

- The RECORDUNIT attribute is illegal

- If the RECORD SIZE attribute is omitted, no UNUSED PART will
be implemented: the default RECORDSIZE is the object's size

34 Alsys 386 Unix Ad,; Compiler. Appendix F, Version 4.2

If present, the RECORD SIZE attribute must specify a record size
greater than or equal to the object's size, otherwise the exception
USEERROR will be raised

b) If the object's type is unconstrained and the file access mode is direct:

- The RECORDUNIT attribute is illegal

- The RECORD SIZE attribute has no default value, and if it is not
specified, a USE__ERROR will be raised

- An attempt to input or output an object larger than the given
RECORDSIZE will raise the exception DATAERROR

c) If the object's type is unconstrained and the file access mode is sequential:

- The RECORDSIZE attribute is illegal

- The default value of the RECORDUNIT attribute is I (byte)

- The record size will be the smallest multiple of the specified (or
default) RECORD _UNIT that holds the object and its length. This is
the only case where records of a file may have different sizes.

Buffering

The buffer size can be specified by the attribute

BUFFERSIZE -> size-in.bytes

The default value for BUFFER SIZE is 0 (which means no buffering) for terminal
devices; it is 1 sector for disk files.

Appending

Only to be used with the procedure OPEN, the format of this attribute is simply

APPEND

and it means that any output will be placed at the end of the named external file.

In normal circumstances, when an external file is opened, an index is set which points to
the beginning of the file. If the APPEND attribute is present for a sequential or for a
text file, then data transfer will commence at the end of the file. For a direct access
file, the value of the index is set to one more than the number of records in the external
file.

This attribute is not applicable to terminal devices.

Appendix F. Implementation- Dependent Characteristics 35

Blocking

This attribute has two alternative forms:

BLOCKING.

or

NONBLOCKING.

This attribute specifies the 10 system behavior desired at any moment that a request for
data transfer cannot be fulfilled. The stoppage may be due, for example, to the
unavailability of data, or to the unavailability of the external file device.

NONBLOCKING

If this attribute is set, then the task that ordered the data transfer is suspended -
meaning that other tasks can execute. The suspended task is kept in a 'ready' state,
together with other tasks in a ready state at the same priority level (that is, it is
rescheduled).

When the suspended task is next scheduled, the data transfer request is reactivated.
If ready, the transfer is activated, otherwise th't reschedulirg is repeated. Control
returns to the user program after completion of the data transfer.

BLOCKING

In this case the task waits until the data transfer is complete, and all other tasks
are suspended (or 'blocked'). The system is busy waiting.

The default for this attribute depends on the actual program: it is BLOCKING for
programs without task declarations and NONBLOCKING for. a program containing
tasks.

Terminal input

This attribute takes one of two alternative forms:

TERMINALINPUT -. > LINES.

TERMINALINPUT -. > CHARACTERS,

Terminal input is normally processed in units of a line at a time, where a line is
delimited by a special character. A process attempting to read from the terminal as an
external file will be suspended until a complete line has been typed. At that time, the
outstanding read call (and possibly also later calls) will be satisfied.

36 Alsys 386 Unix Ada Compiler, Appendix F. Version 4.2

The first option specifies line-at-a-time data transfer, which is the default case.

The second option means that data transfer is character by character, and so a complete
line does not have to be entered before the read request can be satisfied. For this option
the BUFFERSIZE must be zero.

The TERMINALINPUT attribute is only applicable to terminal devices.

9 Characteristics of Numeric Types

9.1 Integer Types

The ranges of values for integer types declared in package STANDARD are as follows:

SHORTSHORTINTEGER -128 .. 127 - 2**7 - 1

SHORT-INTEGER -32768 .. 32767 -- 2*15 - 1

INTEGER -2147483648 .. 2147483647 -- 2**31 - 1

For the packages DIRECT10 and TEXT_10, the range of values for types COUNT
and POSITIVECOUNT are as follows:

COUNT 0 .. 2147483647 -- 2*31 1

POSITIVE COUNT 1 .. 21474083647 - 2**31 - 1

For the package TEXT_10, the range of values for the type FIELD is as follows:

FIELD 0.. 255 "" 2**8 1

9.2 Floating Point Type Attributes

FLOAT LONG_FLOAT

DIGITS 6 15

MANTISSA 21 51

EMAX 84 204

EPSILON 9.53674E-07 8.88178E-16

LARGE 1.93428E+25 2.57110E+61

SAFEEMAX 125 1021

SAFE SMALL 1.17549E-38 2.22507E-308

Appendix F. Implementation-Dependent Characteristics 37

SAFE-LARGE 4.25353E+37 2.24712E+307

FIRST -3.40282E+38 -1.79769E+308

LAST 3.40282E+38 1.79769E+308

MACHINE-RADIX 2 2

MACHINEEMAX 128 1024

MACHINE EMIN -125 -1021

MACHINER(JNDS true true

MACHINE OVERFLOWS fats* false

SIZE 32 64

9.3 Attributes of Type DUiATION

DURATION'DELTA 0.001

DURATION'SMALL 0.0009765625 (= 2**("10))

DURATIONIFIRST -2097152.0

DURATION'LAST 2097151.999

DURATION'LARGE same as DURATION'LAST

10 Other Implementation-Dependent Characteristics

10.1 Use of the Floating-Point Coprocessor (80287, 80387)

The Alsys 386 Unix Ada Compiler generates instructions to use the floating point copro-
cessor for all floating point operations (but, of course, not for operations involving only
universalreal).

A floating point coprocessor, 80287 or 80387, is required for the execution of programs
that use arithmetic on floating point values. The coprocessor is needed if the
FLOAT_10 or FIXED_10 packages of TEXT_10 are used.

The Runtime Executive will detect the absence of the floating point coprocessor if it is
required by a program and will raise NUMERICERROR.

38 Alsys 386 Unix Ada Compiler, Appendix F, Version 4.2

10.2 Characteristics of the Heap

UNCHECKED DEALLOCATION is implemented for all Ada access objects except
access objects to tasks. Use of UNCHECKEDDEALLOCATION on a task object will
lead to unpredictable results.

All objects whose visibility is linked to a subprogram, task body, or block have their
storage reclaimed at exit.

The maximum size of the heap is limited only by available memory. This includes the
amount of physical memory (RAM) and the amount of virtual memory (hard disk swap
space).

All objects created by allocators go into the heap. Also, portions of the Runtime Execu-
tive representation of task objects, including the task stacks, are allocated in the heap.

10.3 Characteristics of Tasks

The default task stack size is 1K bytes (32K bytes for the environment task), but by
using the Binder option STACK.TASK the size for all task stacks in a program may be
set to a size from IK bytes to 64K bytes.

Normal priority rules are followed for preemption, where PRIORITY values are in the
range I .. 10. A task with undefined priority (no pragma PRIORITY) is considered to
be lower than priority 1.

The minimum timeable delay is 1.0/1000. seconds. This is the finest resolution provided

by 386 UNIX.

The maximum number of active tasks is restricted only by memory usage.

The accepter of a rendezvous executes the accept body code in its own stack. Ren-
dezvous with an empty accept body (for synchronization) does not cause a context
switch.

The main program waits for completion of all tasks dependent upon library packages
before terminating.

Abnormal completion of an aborted task takes place immediately, except when the ab-
normal task is the caller of an entry that is engaged in a rendezvous, or if it is in the
process of activating some tasks. Any such task becomes abnormally completed as soon
as the state in question is exited.

The message

GLOBAL BLOCKING SITUATION DETECTED

is printed to STANDARD OUTPUT when theRuntime Executivedetects that no further
progress is possible for any task in the program. The execution of the program is then
abandoned.

Appendix F, Implementation- Dependent Characteristics 39

10.4 Definition of a Main Subprogram

A library unit can be used as a main subprogram if and only if it is a procedure that is
not generic and that has no formal parameters.

10.5 Ordering of Compilation Units

The Alsys 386 Unix Ada Compiler imposes no additional ordering constraints on com-
pilations beyond those required by the language.

11 Limitations

11.1 Compiler Limitations

" The maximum identifier length is 255 characters.

" The maximum line length is 255 characters.

" The maximum number of unique identifiers per compilation unit is 2500.

11.2 Hardware Related Limitations

" The maximum size of the generated code for a single compilation unit is
65535 bytes.

" The maximum size of a single array or record object is 65522 bytes. The
maximum size of a static record is 4096 bytes.

" The maximum size of a single stack frame is 32766 bytes, including the data
for inner package subunits unnested to the parent frame.

" The maximum amount of data in the global data area is 65535 bytes, in-
cluding compiler generated data that goes into the GDA (about 8 bytes per
compilation unit plus 4 bytes per externally visible subprogram).

" The maximum amount of data in the heap is limited only by available mem-
ory, real and virtual.

40 Alsys 386 Unix Ada Compiler. Appendix F Vcrsion 4.2

____ A

INDEX

80287 38 GLOBAL BLOCKING SITUATION
80387 38 DETECTED 39

Hardware limitations
Abnormal completion 39 maximum amount of data in the
Aborted task 39 global data area 40
Allocators 39 maximum data in the heap 40
Application Developer's Guide 2 maximum size of a single array or
Array objects 28 record object 40
Array subtype 4 maximum size of a single stack frame
Array type 4 40
ASSIGN TO ADDRESS 7 maximum size of the generated code
Attributes of type DURATION 38 40

Binder 39 Hardware related limitations 40
Heap 39

Ch acteristics of tasks 39
Compiler limitations 40 Implementation generated names 28

maximum identifier length 40 INTEGER 37
maximum line length 40 Integer types 37
maximum number of compilation Intel object module format 3

units 40 INTERFACE 2, 3
maximum number of unique INTERFACENAME 2, 3

identifiers 40
COUNT 37 LARGE 37

LAST 38
DIGITS 37 Library unit 40
DIRECT 10 37 Limitations 40
DURATION'DELTA 38
DURATION'FIRST 38 MACHINE EMAX 38
DURATION'LARGE 38 MACHINE EMIN 38
DURATION'LAST 38 MACHINE MANTISSA 38
DURATION'SMALL 38 MACHINE OVERFLOWS 38

MACHINE RADIX 38
EMAX 37 MACHINEROUNDS 38
Empty accept body 39 Main program 39
EPSILON 37 Main subprogram 40

MANTISSA 37
FETCH _FROMADDRESS 7 Maximum amount of data in the glgbal
FIELD 37 data area 40
FIRST 38 Maximum data in the heap 40
FIXED _O 38 Maximum identifier length 40
FLOAT_ 10 38 Maximum line length 40
Floating point coprocessor 38 Maximum number of compilation units
Floating point operations 38 40
Fkating point type attributes 37 Maximum number of unique identifiers

40

Index 41

Maximum size of a single array or
record object 40

Maximum size of a single stack frame
40

Maximum size of the generated code 40
Microsoft Linkers 3
Minimum timeable delay 39

Number of active tasks 39
NUMERICERROR 38

Ordering of compilation units 40

P'IS ARRAY 4
Parameter passing I
POSITIVE COUNT 37
Pragma IMPROVE 4
Pragma INDENT 3
Pragma INTERFACE 2, 3
Pragma INTERFACENAME 2, 3
Pragma PACK 4
Pragma PRIORITY 4, 39
Pragma SUPPRESS 4
Predefined packages 28
PRIORITY 4, 39

Record objects 28
Rendezvous 39
Runtime Executive 1, 3, 38, 39

SAFE EMAX 37
SAFE LARGE 38
SAFE SMALL 37
SHORT INTEGER 37
SHORT SHORTINTEGER 37
SIZE 38
STANDARD OUTPUT 39
Storage reclamation at exit 39
SUPPRESS 4
SYSTEM 4

Task stack size 39
Task stacks 39
Tasks

characteristics of 39
TEXT 10 37

Unchecked conversions 29
UNCHECKEDDEALLOCATI'N 39
Universal real 38
Unix Linker 3

42 Alsys 386 Unix Ada Compiler, Appendix F. Version 4.2

