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Abstract
A
Newton methods for large-scale minimization subject to linear equality con-

straints are discussed. For large-scale problems, it may be prohibitively expen-
sive to reduce the problem to an unconstrained problem in the null space of
the constraint matrix. We investigate computational schemes that enable the
computation of descent directions and directions of negative curvature without
the need to know the null-space matrix. The schemes are based on factorizing
a sparse symmetric indefinite matrix. Three different methods are proposed
for computing the desired directions. Convergence properties for the different
methods are established. 7 .
( \{g.’é—’

Keywords: Linear equality-constrained minimization, negative curvature,
modified Newton method, symmetric indefinite factorization, large-scale mini-
mization, linesearch method.

1. Introduction S
"k‘::?h:;‘
We consider methods for finding a local minimizer of the problem N . ,
inimize z
minimiz f(z) 1.1) ton Por
subject to Az = b, GRARI
\B

where A is an m x n matrix and f € C%. We are interested in the case when n and .nced a

possibly m are large and when second derivatives of f are available. It is assumed -cation
that A is a sparse matrix of full row rank. We also assume that an initial feasible ————————
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2 Newton methods for linear equality-constrained minimization

point zg is known and that the level set S(zo) = {z : f(z) < f(40), Az = b} is
compact.

If (1.1) is solved by Newton’s method, the step p from the current iterate z may
be defined as p = Zp;, where

ZTH Zp, = -27g. (1.2)

The columns of the matrix Z form a basis for the null space of A, H denotes the
Hessian matrix V2f(z) and g denotes the gradient Vf(z). We shall refer to the
matrix ZTHZ as the reduced Hessian and the vector ZTg as the reduced gradient.
A mathematically equivalent way to obtain p is to solve the equation

(2 )(2)=(3)

We shall refer to the matrix on the left-hand side of (1.3) as the KK T-matriz and
denote it by K.

Given p, the next iterate is obtained as z + p. If Newton’s method converges
to a solution of (1.1) and the reduced Hessian is positive definite and Lipschitz
continuous, convergence occurs at a quadratic rate. However, Newton’s method
may not converge from every starting point, and in the neighborhood of a saddle-
point or a local maximizer, a sequence of iterates generated by Newton’s method
may converge to such a point. Consequently, if a method that generates a sequence
of improving estimates is required, some modification is needed. If ZTH Z is positive
definite, p is a feasible descent direction, i.e., a direction p such that pTg < 0 and
Ap = 0. In this case, the objective function value at z + p may not be reduced
but a step along p may be found that yields the next improved iterate. If ZTHZ is
not positive definite, the Newton direction may not be a direction along which the
objective function decreases.

Modifications of Newton’s method suitable for iterates where the Newton step
does not yield a sufficient decrease of the objective function exist. The methods
can be divided into two types, trust-region methods and linesearch methods. See
Moré and Sorensen [MS84] and Dennis and Schnabel [DS89)] for a discussions of
these different types of method. We focus on linesearch methods in this paper
and in order to simplify the notation, we shall refer to modifications of Newton’s
method of linesearch type as modified Newton methods. Such methods involve the
computation of a feasible descent direct'»n s and, if the reduced Hessian has at least
one negative eigenvalue, a feasible d ~ct+n of negative curvature d. A direction d is
said to be a feasible direction of negati~ urvature if dTHd < 0 and Ad = 0. If sisa
direction of sufficient descent and d is a direction of sufficient negative curvature, the
convergence of a modified Newton method for linear equality-constrained problems
follows from known results on modified Newton methods, see for example Fiacco
and McCormick [FM68], Gill and Murray [GM74), McCormick [McC77], Fletcher
and Freeman [FF77], Mukai and Polak [MP78], Kaniel and Dax [KD79], Moré and
Sorensen [MS79], Goldfarb [Gol80] and Forsgren et al. [FGM89b]. We require
the computed directions s and d to be feasible, i.e., As = 0 and Ad = 0. If the
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reduced Hessian is known and has at least one negative eigenvalue, a direction v such
that ¥TZTH Zv < 0 may be obtained using techniques for unconstrained problems.
Consequently, d = Zv is a feasible direction of negative curvature. Similarly, a
positive-definite modification of ZTH Z enables the computation of a feasible descent
direction. Feasibility is therefore not an issue if the reduced Hessian is known,
whereas it is not immediately apparent how to satisfy As = 0 and Ad = 0 when
utilizing K.

Although equations (1.2) and (1.3) are mathematically equivalent, they differ
in the amount of work required to obtain the search direction p. To obtain p from
(1.2), the reduced Hessian is required. A matrix Z may be obtained by forming
the LU-factorization of A, see Gill et al. [GMSW87a). Even if Z is sparse, the
matrix ZTHZ may be completely dense, and the amount of work required to form
ZTH Z explicitly may be prohibitive, see Gill et al. [GMSWS85]. To obtain p from
(1.3), the KKT-matrix is required. If H and A are sparse, they yield a sparse K.
Consequently, if equations involving K are solved, it is possible to take advantage
of the sparsity of the problem.

The goal of the methods described in this paper is to compute search directions
directly from equations involving the KKT-matrix K or a modified KKT-matrix. We
prefer to use the identical method to compute the Newton direction from (1.3) that
we would use if it was known in advance that ZTH Z was positive definite. Also, a
method for which there exists an efficient implementation for a large sparse matrix A
is desired. Accordingly, we consider the LBLT-factorization, described in Section 3.
Such a factorization computes IITK IT = LBLT, where I is a permutation matrix, L
is a unit lower-triangular matrix and B is a symmetric block-diagonal matrix whose
diagonal blocks are of size 1 x 1 or 2x 2. The permutations are performed in order to
obtain a matrix L that is sparse and well-conditioned. For unconstrained problems,
the matrices K and H are identical. In this case, Moré and Sorensen [MS79] have
shown how to compute a descent direction and a direction of negative curvature,
whenever they exist, from L and B. We describe a pivoting strategy in the LBLT.
factorization of K, so that the ability to compute a feasible descent direction and
a feasible direction of negative curvature is achieved by a single factorization of
K, analogous to the method of Moré and Sorensen. The computed directions are
shown to satisfy conditions needed to apply known convergence results for modified
Newton methods, which state that limit points of a generated sequence of iterates
satisfy the second-order necessary optimality conditions.

The abovementioned pivoting strategy sufficient for computing both a descent
direction and a direction of negative curvature is then shown to be necessary in order
to guarantee the ability to obtain the directions from a single factorization of K.
Two other methods for computing search directions are described that do not require
this pivoting strategy. One method always generates a descent direction, whereas
the other method generates a search direction that is either a descent direction
aud/or a direction of negative curvature. Applying known convergence results for
modified Newton methods, limit points of a generated sequence of iterates using
these methods satisfy the first-order necessary optimality conditions. The main
purpose of introducing two additional methods is that the computation of the search
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direction is likely to be cheaper than in the method motivated by convergence to a
“second-order” point. The intent is that the three methods may be mixed to obtain
a more efficient method.

2. Basics

2.1. Terminology

Throughout the paper, the Hessian V%f(z) and gradient Vf(z) are evaluated at
points z € §(zo). Given an arbitrary point in §(zo), H denotes the Hessian and g
the gradient at such a point. The set of KKT-matrices for which H is evaluated at
some point in 5(z¢) is denoted by K. All KKT-matrices considered belong to K. For
an iterative sequence {z;}2, a subscript k is included, so that Hy = V?f(z) and
gk = Vf(zk). Also, for vectors and matrices, the norm used is always the Euclidean
vector norm and the corresponding induced matrix norm. The vector e; denotes
the i-th unit vector of the appropriate dimension. In a number of lemmas matrices
of zero dimension may arise. In such circumstances, there is no loss of generality if
we make the assumption that matrices of zero dimension have unit eigenvalues and
norm zero.

2.2. The inertia of a matrix

Let M be any symmetric matrix. We denote by i,(M), in(M) and i.(M) respectively
the (nonnegative) numbers of positive, negative and zero eigenvalues of M. The
inertia of M—denoted by In(M)—is the associated integer triple (ip,in,%;). The
following lemma states an important relationship between the inertia of the KKT-
matrix K and the reduced Hessian ZTH Z,

Lemma 2.1. If rank(A) = r, and Z is a matriz whose columns form a basis for
the null space of A, then In(K) = In(ZTHZ) + (r,r,m —r).

Proof. See Gould [Gou85, Lemma 3.4] g

This Jemma implies that K is singular only if ZTHZ is singular or A is rank
deficient. In this paper, we assume that A has full row rank, so that singularity of
K always means singularity of ZTHZ. The following lemma shows that if A has

full row rank, there is a uniform relationship between the nonsingularity of K and
ZTHZ.

Lemma 2.2. Assume that rank(A) = m, and let Z denote a matriz whose columns
form a basis for the null space of A. For a given positive constant ¢, there ezists
a positive constant c; such that for any KKT-matriz K € K having its smallest
singular value greater than c;, the smallest singular value of ZTHZ is greater than
C.

Proof. If A has full row rank, Lemma 2.1 implies that K is nonsingular if and only if
ZTH Z is nonsingular. For a symmetric matrix, the singular values are the absolute
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values of the eigenvalues. The norm of K is bounded, since S(zo) is compact. The
result follows by observing that the eigenvalues of K and ZTH Z vary continuously
with H. @

3. The LBL™-factorization

3.1. The factorization

An efficient method for solving equations involving symmetric indefinite matrices is
to use the factorization
n7k1 = LBLY, (3.1)

where IT is a permutation matrix that represents column interchanges in K, L is a
unit lower-triangular matrix, B is a symmetric block-diagonal matrix whose blocks
are of size 1 x 1 or 2 x 2. The 2 x 2 blocks are always nonsingular with one positive
and one negative eigenvalue. We shall refer to this factorization as the LBLT.
factorization. Various algorithms for computing the factors have been proposed, see
Bunch and Parlett [BP71] and Bunch and Kaufman [BK77].

Forming the LB LT factorization may be viewed as a step-wise procedure that
repeatedly computes Schur complements of decreasing dimension. If K is partitioned

as T
K:(T N ) (3.2)
N G

and T is nonsingular, the Schur complement of T in K will be denoted by K/T,
and is defined as
K|/T =G - NT7INT,

The matrix K/T will be referred to as “the” Schur complement when the matrix
T is clear from the context. By convention, we define the Schur complement as K
when T has dimension zero. Given the partition from (3.2), the identity

T NT\ _ I 0\(T o I T-'NT (3.3)
N G ) \NT!' I 0 K/T 0 I ‘

holds. In the first step of the fartorization, the matrix T isa 1 x 1 or 2 x 2 principal
submatrix of K. Symmetric row and column interchanges may be necessary in order
to obtain a T that is suitable as pivot. The elimination step yields one or two rows of
LT as (I T-'NT)and a diagonal block of B of size 1x 1 or 2x2 from T. In the next
step, the process is repeated for the Schur complement K/T. Eventually the Schur
complement has dimension zero, and the algorithm terminates with permutation
matrix /T, unit lower-triangular matrix L and block-diagonal matrix B. Algorithms
differ in the way the pivot is chosen. In this paper we do not elaborate on which
algorithm to use, except to assume the algorithm yields a bounded ||L||. We shall
refer to this algorithm as an algorithm that performs a regular L B L™-factorization.
Since L is a unit lower-triangular matrix, if the norm of L is bounded then the norm
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of L~! is also bounded. Consequently, it follows from (3.1) that K is arbitrarily
close to a singular matrix if and only if B is arbitrarily close to a singular matrix.
In our applications, the inertia of K is required. This inertia is readily available if
B is known, since Sylvester’s law of inertia yields In(K) = In(B), see [GV89, page
416).

3.2. Computational considerations

When K is sparse, the LBLT -factorization of K may be carried out in two steps.
First, in the analyze phase, a symbolic factorization based on the nonzero elements
in K is performed. This symbolic factorization yields an ordering of the rows and
columns that attempts to minimize the number of nonzeros in L. Then, in the
numerical phase, the factors are computed, attempting to maintain the ordering
given by the analyze phase. However, for numerical reasons, it may be necessary to
perform additional permutations in the numerical phase. Consequently, the permu-
tation matrix /7 in (3.1) is the combination of the ordering from the analyze phase
and the additional permutations from the numerical phase. In a modified Newton
method, where a sequence of K-matrices is factorized, the analyze phase need only
be performed once, since the positions of the nonzero elements in the Hessian remain
the same. A robust and efficient routine that performs such a two-step factorization
is the Harwell routine MA27, see Duff and Reid [DR82] [DR83]. (MA27 may use
2 x 2 pivots that are not indefinite. To fit the discussion here, such a pivot may be
viewed equivalent to two consecutive 1 X 1 pivots.)

3.3. Definition of pivot types

The matrix B consists of diagonal blocks of size 1 x 1 or 2 x 2, where the 2 x 2-blocks
are indefinite. These diagonal blocks are the pivots defined by the factorization
algorithm. It is of importance to distinguish between different types of block.

A 1 x 1-block is defined to be of type H* if it is positive, and if the element in
the same position in JITK IT is a diagonal element of H. Similarly, 1 x 1-blocks are
defined to be of type H~ and H° if they satisfy the same position requirements as
the blocks of type H*, but are negative or zero, respectively. We denote by n},, nj
and nY, respectively, the number of such 1 x 1-blocks.

A 1 x 1-block is defined to be of type A* if it is positive, and if the element in
the same position in ITK IT is a diagonal element of the zero-part of K. Similarly,
1 x 1-blocks are defined to be of type A~ and A° if they satisfy the same position
requirements as the blocks of type A*, but are negative or zero, respectively. We
denote by n}, n; and n respectively, the number of such 1-x 1-blocks.

A 2x 2-block is defined to be of type HH if the elements in JTITK IT with the same
position are elements of H. We denote by nyy the number of such 2 x 2-blocks.

A 2 x 2-block is defined to be of type AA if the elements in ITK IT with the
same position are elements of the zero-part of K. We denote by n,, the number of
such 2 x 2-blocks.

A 2 x 2-block is defined to be of type HA if the elements in JITK IT with the
same position consist of one diagonal element from H, one diagonal element froia
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the zero-part of K and two elements from A.

3.4. Applications in unconstrained minimization

For unconstrained problems, Moré and Sorensen [MS79] have shown how to com-
pute a descent direction s and a direction of negative curvature d, whenever such
directions exist, using the LB LT-factorization of the Hessian H, given by ITTHII =
LBLT. The descent direction s satisfies the equation TLBLTIITs = —g, where B
is a positive-definite modification of B. If H is sufficiently positive definite, then
B = B and s is the Newton search direction. If H is not positive definite, B is
obtained as B = B + D, where D is a block-diagonal matrix with the same block
structure as B, and D has rank equal to the number of nonpositive eigenvalues of
H. If H has at least one negative eigenvalue, the direction of negative curvature,
d, satisfies the equation LTITTd = +\/=Xin(B)v, where v is an eigenvector of unit
norm corresponding to Amin(B), the smallest eigenvalue of B. The sign is chosen so
that g7d < 0. For details, see Moré and Sorensen [MS79).

Similarly, in the linear equality-constrained case, a feasible descent direction,
(assuming such a direction exists), may be obtained by solving ‘

(5 o) ()=():

where H is a modification of H such that ZTHZ is positive definite. Utilizing the
idea of More and Sorensen [MS79] from the unccnstrained case, we may try to use
the LB LT factorization of K to modify blocks of B of type H-, H® and HH, yielding
a matrix B such that LBLT has n positive eigenvalues and m negative eigenvalues.
The following lemma shows that there is a sufficient number of blocks of type H -,
H® and HH to create such a matrix B.

Lemma 3.1. If In(K) = (ip,in,1,), whereis +i, —m >0, then n; +n, + nyy >
iﬂ + iz - m.

Proof. Assume the contrary, that ny; 4+ n$, + nyy < i, + i, — m. The dimensions
of H and A imply

nh+ng 4+l +2ngytnga=n (3.5a)

nt+n;+n+n4,+2n,, = m. (3.5b)

If In(K) = (ip,in,1;), we get

NG+ ngptagatnltn, =14 (3.6a)
Rp+ gy +nyatn,+n, =1y (3.6b)
ny + 1% = i,. (3.6¢)

Adding (3.6b) and (3.6c) we obtain ny, + n; + nss + n% > m, contradicting (3.5b).
Thus n; + n% + nyy < in +i; — m cannot hold. 1§
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However, although there are sufficiently many block elements of type H-, H® and
HH , if no additional conditions are imposed on IT, the ordering may be insufficient
to guarantee that only the H-part of K is altered when a block element of type
H-, H° or HH is modified. Consequently, if an equation involving LB L7 is solved,
there is no straightforward analogous way of obtaining a descent direction s such
that As = 0. As an example, consider

2 0
H=((2) (2)) and A=(2 1), sothat K=7 0 -2 1
2 1 0
If IT is the identity matrix, we obtain
1 0 O 2 0 o0
L=10 1 0 and B=|0 -2 0
1 -1 1 0 0 -3

The matrix B has n}, = n; = n; = 1. Analogous to the unconstrained case, we
make the second diagonal element of B positive by adding a positive number d2;.
However, the matrix LBLT will differ from LBLT in the A-part and the zero-part,
since

2 0 2 0 0 O
LB+D)IT=|0 -2 1 |+dn|0 1 -3
2 1 0 o -1 1

Because of the lower triangular structure of L, if a diagonal block of B is altered, the
modification may alter elements of the permuted K with greater row and column
numbers. Consequently, if there are rows of A with greater row numbers, there is a
danger of altering parts of K other than the H-part.

It may appear that, by analogy with the unconstrained case, a feasible direction
of negative curvature may be obtained by solving the equation LTIITy = v, where
v is an eigenvector of B corresponding to a negative eigenvalue of a block of type
H- or HH. (Note that such a vector v always exists if the reduced Hessian has
at least one negative eigenvalue, since Lemma 2.1 implies that X has more than
m negative eigenvalues. Consequently, since there are at most m block elements of
type A-, HA and AA, there must exist a block element of type H~ or HH for K
to have more that m negative eigenvalues.) The vector d is then defined as the first
n components of u. However, the ordering of the rows and columns of K given by
IT may be insufficient to guarantee that Ad = 0. In our example matrix, we obtain
d=(01)Tfor v=(0 1 0)7, and consequently Ad =1 # 0.

Conn and Gould [CG84] have proposed an algorithm for finding feasible direc-
tions of negative curvature based on the LBLT-factorization of K. In addition to
the original factorization, the algorithm requires the factorization of a “triangular-
like” matrix of dimension m x m. In this paper, we adopt a different view and
investigate what pivoting strategy is necessary and sufficient to obtain the desired
search directions in a single factorization of K, using L and B in an analogous way
to the approach of Moré and Sorensen [MS79) for the unconstrained case.
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4. Sufficient Pivot Conditions

If K is factorized using a regular LB LT -factorization, the permutations are per-
formed in order to obtain sparsity of the factors and boundedness of ||L||. In the
example given in Section 3.4, it was shown that these permutations may be insuffi-
cient for computing a feasible descent direction and a feasible direction of negative
curvature. In this section, we investigate what conditions may be imposed on the
pivots in order to ensure the ability to compute these directions, using L and B,
whenever the directions exist.

Upon completion of the the factorization of K, we have computed a permutation
matrix IT, a lower-triangular matrix L and a block-diagonal matrix B such that
LBLT = ITKIT. We will consider a specific step in the factorization. Therefore
the permutation matrix IT is partitioned as

n=(m m), (4.1)

where the matrix IIITK II, is the principal submatrix of K for which the factors
have been computed. Consequently, IIITKIIl = LIIBIL{I, where Ly; and B; are
the leading principal submatrices of L and B, respectively. Note that at this step
of the factorization, the matrix /T, has not yet been determined.

The matrix I{K I, is a principal submatrix of K, and we introduce a permu-
tation /7 for which

Hy He Al AL
Hy Hy A, AD

Ik =

The matrix /7 and the partition of JTTK IT are such that if we define Ky, as

Hu A1T1
Ky = , 4.2
1 ( Ay 0 (4.2)

the matrix HITKIII is a permuted version of K;;. The matrix K;; is a principal
submatrix of K such that Ay, is an ny X n, principal submatrix of H, and A;; is
an n; X m; submatrix oi A. To simplify the notation, we say that K,; contains n,
rows of H and m; rcws of A.

Since ITTKIT, denotes the part of K that has been factorized at a particular
step, its size increases from step to step. We say that JIJK IT, and the associated
K,y are ezpanded when one step in the factorization is performed. For example, if
in one step of the factorization, a pivot of type HA is selected, the size of ITTK IT,
and K, is increased by two and both n; and m, are increased by one.

It is shown in this section, that by selecting sufficiently nonsingular pivots of type
H*, A- and HA, until the corresponding K contains all rows of A, the ability to
compute a feasible descent direction and a feasible direction of negative curvature is
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achieved. A matrix K;; created in such a way will prove crucial for the computation
of descent directions and directions of negative curvature.

Properties of IITK IT, that we want to describe are also properties of K1;. In
particular, the eigenvalues of K;; and IIITK II, are identical. We consider Ky
since its properties are easier to describe. The following lemma gives an explicit
representation of K 1'11.

Lemma 4.1. If K11 is nonsingular, then

-1 - = - - -
g - [ Hu ALY _( 2(ZTHu2)7'2T Y
1 An O YT -YTH,,Y )’

where Z is an orthonormal matriz whose columns form a basis for the null space of
Ay, and the matriz Y satisfies the matriz equation

A O -A I
where A = YTH,,Y. If Ay, is square, the matriz Z(ZTHllz)'IZT i8 to be inter-
preted as a zero matriz of dimension my; X my.

Proof. Direct substitution in (4.3) shows that A =_}-’TH1_117. Lemma 2.1 shows
that nonsingularity of K, yields nonsingularity of ZTH;;Z. Thus, it remains to

verify that
Hu AT Z(ZTHw2)'2T\ (1 (4.4)
An 0 YT “\o0 /)’ '

This holds if and only if Hy; Z_(ZTHl} Z_)'_l ZT AT YT = 1. If Ay is square, then_Y =
A7}, and (4.4) holds for Z(ZTH,,Z)~'ZT = 0. Otherwise, (4.3) gives ZTH,,Y = 0
and it follows that

Al s 1 , zT
( YT) ( BuZ(ZTHu2)' 27+ ALYT ) = ( o7 ) (4.5)

The proof is now completed by showing that ( ZY ) is nonsingular. Assume that

Zv, + Yv, = 0. Premultiplication by Ay yields v, = 0. Since the columns of Z are
linearly independent, v, = 0. §

The following lemma shows that when IIITK IT, has inertia (n,,m,,0), a row in
NTK I/ MITK T, corresponding to a row of A cannot be almost linearly dependent
on the other rows of ITKIT/ITTK IT, unless A is almost rank-deficient.

Lemma 4.2. For given positive constants ¢; and M, let K be any KKT-matriz
in K with a principal submatriz K,y such that In(K11) = (n1,m1,0), where the
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smallest singular value of K, is greater than c¢;. Define a matriz S, which is a
permuted version of the Schur complement ITK IT/ITTK IT,, in partitioned form as

-1
( S Sz ) _ ( Hy AD )_( Hy Al ) ( Hy Al ) ( Hy, A} )
S21 S22 Az O Az O An 0 Az 0

If my < m, there erists a positive constant cz, such that if

€

- elSye; < M and (4.6a)
lefSall < Ve, (4.6b)
for some 1, then
> A An
—eTAn Y ef < e2v/e, 4.7
||( €; A1 i ) Ay Ag Il < 2\/- (4.7)

where Y is defined in (4.8) and € is any nonnegative scalar.

Proof. Assume that m; < m and that there is an ¢ such that (4.6a) and (4.6b)
hold for some nonnegative e. Utilizing the notation of Lemma 4.1 we okttain

Su = Hyz - HnZ(ZTHn2) ' ZTHyy — ALY TH12 — HaY Az + ALY TH Y Ay,
S12 = AL, - HnZ(ZTH\ 2) 1 ZTAT, — AT, YTAL

Sn = Ay — AnZ(ZTHu2) ' ZTH; — AnY Ara

Sy = -Azlz.(Z-THuZ_)_IZ-TAgI.

The definition of S;2 yields
—C,TSQQC.' = e?Azlz(ZTHIIZ)‘lZTAgIe;.

If the smallest singular value of K, is greater than a positive constant ¢; and
In(Ky1) = (ny,my,0), Lemmas 2.1 and 2.2 guarantee that ZTH,;Z is positive
definite with its smallest eigenvalue greater than a positive constant. By the assumed
compactness of $(zg), the elements in Hy; are bounded in magnitude. Consequently,
there exists a positive constant ¢;, such that

€ . -
53t 2 ~ciSnei 2 &l ZTA e, (48)

where the left-hand inequality follows from the assumption that (4.6a) holds. Using
the definition of S3; we obtain

C?Agz - C?Aﬂ?.‘hz = 6?521 + €?A21Z(ZTH112)—1ZTH12.

It follows from this equation, (4.6b), (4.8), the nonsingularity of K, and the bound-
edness of |H|| that there exists a positive constant &z, such that

lleTA22 ~ eTANY Al < E2v/e. (4.9)
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The identities A;Y = I and Al e; = AT, (A1 AT)) A1 AL e; + ZZTAT e; yield
eTAnY A1 = eTAz — eTAn Z27 + €TA Z227Y An.
Utilizing (4.8) we obtain
lle¥Az1 — eTAnY Ayy|| < &3V, (4.10)

for some positive constant ¢3. Consequently, (4.9) and (4.10) yield the existence of
a positive constant c;, such that

”( —C'-TAQI? C‘T) ( All Az ) " < 62\/2'

A A2
1

In the following lemma we use the full-rank assumption on A and Lemma 4.2 to
show that if K1; has exactly m; (m; < m) negative eigenvalues and has its smallest
singular value greater than a positive constant, it is always possible to expand K7y
so that m; is increased by one.

Lemma 4.3. For a given positive constant c;, let K be any KKT-matriz in K with
a principal submatriz Ky, such that In(K,,) = (nq,m;,0), where the smoilest sin-
gular value of Ky, is greater than c¢,. Assume that the factorization of II,TK 11,
18 known, and that the next pivot is to be chosen from the Schur complement
NTKN/IIKI,. If my < m, there ezists a positive constant ca such that there
is a pivot in ITK 1T/ ITTK IT 1 of type A~ or HA whose determinant is less than —c3.

Proof. Let c; be a given positive constant, and K any KKT-matrix in K with
a principal submatrix K;; such that In(Ky;) = (n1,m;,0), where the smallest
singular value of K, is greater than ¢;. Using the terminology of Lemma 4.2, if Ky,
has inertia (ny,m;,0) and the smallest singular value greater than ¢;, Lemma 4.1
and the definition of S guarantee the existence of a constant M such that ||S]| < M.
Let e7(S21  S22) be a row of § corresponding to a row of A and let [ denote the
corresponding row number of A. Since A has full row rank, there exists a positive
constant ¢ such that

lleFA - Ea,e Al >¢ (4.11)

J#

for all scalars a;. Given ¢; and M, let ¢, denote the constant from Lemma 4.2. Let
€ denote the positive constant defined by ¢,/ = /2. For this choice of , at least
one of

- € TS0e; > W and (4.12a)
llefSall > v, (4.12b)

must hold, since if (4.12a) and (4.12b) do not hold, Lemma 4.2 implies that there
exist a;-s such that

llefA = )" a;elAl| < 2Vt (4.13)
J#
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which contradicts (4.11). It is now shown that if (4.12a) holds, there exists a pivot
of type A~ and if (4.12a) does not hold but (4.12b) holds there exists a suitable
pivot of type HA. Assume that (4.12a) holds. Then e7S5ze; is a pivot of type A~
whose determinant is less than —€/(2Mn). Assume that (4.12b) holds but (4.12a)
does not hold. If (4.12b) holds, it must hold that n — n; > 0, since the length of the
row vector e.TSm is n — n;. Moreover, there must exist a j such that

€
leTSa1ej] >

. 4.
e (4.14)

For this j, let P denote the 2 x 2 matrix defined as

p= ( e}'Sue,- eJTSme,- )
e,-TSzlej e,TSgge,-

By assumption, (4.12a) does not hold and consequently, since e,-TSne,' <0, it holds
that |elS2.¢;| < &/(2Mn). This assumption and the inequality leJTSue,-l < M yield

€
det(P) < o— - leTSae;l.
It follows from (4.14) that |eS2;¢;| > \/€/n, and consequently
€
< ——,
det(P) < ™

The determinant of P is negative, and therefore P must have one positive and one
negative eigenvalue. Consequently, P is a pivot of type HA whose determinant is
less than a negative constant. Therefore, there exists a positive constant ¢3 for which
there is a pivot of type A~ or HA whose determinant is less than ~c3. 8

Based on this lemma, the factorization algorithm is stated in Algorithm 4.1.
Initially, the matrix K;; has dimension zero, and for such a matrix the assumptions
of Lemma 4.3 hold. It follows from Lemma 4.3 that there exists a constant pivot
tolerance tol so that there is a pivot P of type H*, A~ or HA for which |det(P)| >
tol. K, is expanded using this pivot. This process is repeated until K;; contains
all rows of A. When Ki; contains all rows of A it is considered the “final” k-
matrix, and the remaining Schur complement is factorized using a regular LBLT.
factorization. -

In order to show that this algorithm is well defined, it is essential to show that
the required properties of K, are maintained when K}, is expanded. The following
lemma shows that this is true.

Lemma 4.4. For a given positive constant ¢y, let K be any KK T-matriz in K with
a principal submatriz Ky, such that In(K,,) = (n1,m,,0) and the smallest singular
value of K11 is greater than c,. Assume that the factorization of IITK I, is known,
and that the nezt pivot P is of type H*, A~ or HA and has | det(P)| > c3, where c3
is a positive constant. Then, there erists a positive constant cq4 such that if Ky is
ezpanded using P as pivot, the ezpanded K, has tnertia (n,,m,,0) and its smallest
singular value is greater than c4.
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Algorithm 4.1. A factorization of K.

tol — pivot tolerance;
repeat
ez — pivot P of type H*, A~ or HA exists with |det(P)| > tol;
if ez then
pivot — P;
else
Set tol to the largest value for which a pivot P of type H*, A~ or
HA exists with | det(P)| = tol;
pivot — P;
end if
Expand K, using P as pivot;
Update m,; and n;;
until m;y =m
Factorize the remainder of K using a regular LB LT-algorithm;

Proof. If K;; is expanded using a pivot P of type H*, A~ or HA, the expanded
matrix still has inertia (n;,m;,0). The existence of ¢4 remains to be established.
Let K;; denote the expanded K;;-matrix. Since the smallest singular value of K;;
is greater than c;, there must exist a positive constant ¢; such that |det(Ky)| > .
It follows from (3.3) that det(K11) = det(K;;)det(P). If |det(P)| > cs, it follows
that | det(K11)| > éc3. Consequently, since the norm of K is bounded, there exists
a positive constant c4 such that the smallest singular value of K;; is greater than
Cq. [ |

This lemma shows that, since A has full row rank, a Kj;-matrix with inertia
(n1,m;,0) and the smallest singular value greater than a positive constant, may be
expanded until it contains all rows of A and has m negative eigenvalues. Moreover,
the smallest singular value of the final K7;-matrix is bounded away from zero. Note
also that the pivot tolerance tol is bounded away from zero by a constant, since it
is greater than a positive constant for each step in the expansion of Kjy;.

If it is required that only sufficiently nonsingular pivots of type H*, A~ and HA
are utilized, until a matrix IIITK II, containing all rows of A is created, this will
impose other permutations than the ones provided in a regular algorithm for the
LB LT factorization. Consequently, it is essential that the boundedness of the norm
of the L-matrix is maintained. Since the pivots of the associated B;-matrix all have
singular values bounded away from zero by a constant, the following lemma shows
that the boundedness of the norm of L is maintained.

Lemma 4.5. Assume that I]K I, = Ly; B, L7}, with its smallest singular value
greater than a positive constant. Furthermore, assume that |[Ly,|| and ||Ly|| are
bounded by a constant. If K1 is ezpanded by a pivot that has the absolute value of
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its determinant bounded away from zero by a positive constant, then the ezpanded
L,y and Ly still have norm bounded by a constant.

Proof. Let P denote the pivot. Since K and (/I7KT,)~" have bounded norm, it
follows that the norm of TTK IT/IITK 11, is bounded. Consequently, the norm of P
is bounded by a constant. Ifin addition, the determinant of P is bounded away from
zero by a constant in absolute value, the norm of P-! is bounded by a constant.
Therefore, the expanded column or columns of Lj; are bounded in norm, since it
follows from (3.3) that they are formed by postmultiplying one or two columns of
NTKm/ITKI, by P~Y. &

When a matrix K, that contains all rows of A has been created by accepting
pivots of type H*, A~ and HA, as described in Algorithm 4.1, it is considered the
final Ky;-matrix. For the rest of this section, the matrix K; is assumed to be such
a final Ki;-matrix. The factors from the factorization described in Algorithm 4.1
are also assumed to be known. For this final K,-matrix, the partition of IT from
(4.1) is used. This partition induces a partition of L, B and IITK IT as

nIkm nIxkm, | \ Lan Ly 0 B, o L% )’ '
If K, contains all rows of A, all blocks in B; correspond to pivots of type H*,
H~ or HH. This means that modifications of B, only alter the H-part of K. If the

factorization of K given in Algorithm 4.1 is known, the following theorem shows
how to obtain a feasible descent direction.

Theorem 4.1. Let K be any KKT-matriz in K. Assume that the LBLT. factori-
zation of K given in Algorithm 4.1 is known. Assume that the eigenvalue decompo-
sition of By is known, as B, = UAUT. For a positive tolerance cror, let the i-th
diagonal element of the matriz A, denoted by X;, be defined using the i-th diagonal
element of A, denoted by \;, as \; = max{|X|,croL}, and let B; = UAUT. Let
By = By and let B denote the matriz consisting of the diagonal blocks B, and B,.
Let z = (8T uDT, where s is an n-vector and u is an m-vector, be defined as z = 113,
where % satisfies the equation

LBLT: = nT( "g ) .

Then, s = Zu for some u, and there ezist positive constants ¢ and c;, such that
-9"Zu > &1|| 271> and ||Z7g|| 2 collull.

Proof. Since the matrix Ky, has its smallest singular value greater than a pos-
itive constant, the compactness of S(zo) and the boundedness of |L~!| guaran-
tee that ||B;|| is bounded by a constant. Consequently, B; is a bounded block-
diagonal matrix whose smallest eigenvalue is greater than cror. Consequently, since
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In(B,) = (n3,m,0) and the norm of L is bounded, the matrix LBLT has inertia
(n,m,0) and all singular values bounded away from zero by a constant. Since all
rows of A are contained in K);, the modification of B, only alters H. Consequently,

7 T
LBLT=11T( H A )n,
A 0

where H is a modification of H, and z satisfies the equation

H AT s\ (-9
A 0 sp) \ 0)’
from which it follows that s = Zu for some u satisfying

u=—(2THZ) 2. (4.16)

Utilizing the boundedness of ||H||, premultiplication by g7Z in (4.16) yields the
existence of a positive constant c;, such that —g7Zu > ¢;||Z%g||?>. Lemmas 2.1 and
2.2 imply that ZTH Z has its smallest eigenvalue greater than a positive constant.
Consequently, utilizing norm properties and the boundedness of ||(ZTH Z)~!||, (4.16)
guarantees the existence of a positive constant c;, such that c;ljul| < [|Z%g|. ®

Note that the direction s computed in Theorem 4.1 is the Newton direction
whenever B, is sufficiently positive definite, i.e., when the reduced Hessian is suf-
ficiently positive definite. Only if the reduced Hessian is not sufficiently positive
definite is the matrix B different from B.

If K11 is nonsingular, contains all rows of A and has m negative eigenvalues, but
K has more than m negative eigenvalues, there exist feasible directions of negative
curvature. Moreover, since In(K) = In(IITK11,) + In(ITK I/ ITK IT,), it must
hold that TTK IT/IITK 1, has at least one negative eigenvalue, and consequently
B, must have at least one negative eigenvalue. Because of the structure of B,, the
smallest eigenvalue of B, and its corresponding eigenvector are readily available.
The following theorem shows that the factors from the LBLT-factorization of K
given in Algorithm 4.1 enable the computation of a feasible direction of negative
curvature. ’

Theorem 4.2. Let K be any KK T-matriz in K with more than m negative eigen-
values. Assume that the LB LT-factorization of K given in Algorithm 4.1 is known.
Let w = (dT 70T, where d is an n-vector and x is an m-vector, be defined as
w = [T, where 1 satisfies the equation

LT L% Wy | . 0
(5 8)(2)- (). e

where uy is an eigenvector of unit norm corresponding to Aymin(B2), the smallest
eigenvalue of By, and the sign is chosen so that g7d < 0. Then, d satisfies d = Zv
for some vector v which is bounded in norm, and there ezists a positive constant c
such that

vIZTHZv < —c N2, (Z2TH 2).
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Proof. From (4.17) and the definition of w we obtain

0
Kw = £/ Amin(B2) T ( LosBya, ) . (4.18)

Since K); contains all rows of A, (4.18) yields Ad = 0. Consequently, d = Zv for
some v and it follows from (4.17) that

vIZTH Zv = wTKw = —)%,.(B,). (4.19)

The boundedness of ||L|| and the identity L2 B,LY, = ITKIT/IITK I, guarantee
the existence of a positive constant c;, such that

Amin(B2) < e Amin(TTK I/ TTK IT,) < 0. (4.20)

Since K;; has inertia (n;,m,0), it contains a nonsingular m X m submatrix Ap
of A. Without loss of generality, we may assume that the partition of A is such
that A = ( Ap Ay ), where Ay is the remaining submatrix of A. Let Z be a
reduced-gradient-type null-space matrix generated by Ap defined as

z=( A4
I

Properties of TTK IT [T IT K11, are independent of the pivoting order in which K;; is
created. Without loss of generality, assume that Ky, was created by first factorizing
the 2m x 2m principal submatrix of K containing Ap. Then, with appropriate
substitution in the definition of S in Lemma 4.2, it follows that ZTH Z is a permuted
version of the Schur complement of this 2m X 2m principal submatrix in 17K IT.
Moreover, the 2m x 2m principal submatrix has inertia (m,m,0), and since the
inertia of (ITKIT/NTK,) is (n1,m,0), it must hold that when the 2m x 2m
principal submatrix has been processed, the remaining n; — m pivots until Ky, has
been processed are all positive. Hence, [FGM89b, Lemma 3.3] implies that

Amin(TTK I/ OTK ) < Amin(ZTH Z) < 0. (4.21)

Since there exist only a finite number of nonsingular m X m submatrices of A, it
may be asserted that there exists a positive constant c;, such that

Amin(ZTH Z) < e2)min(ZTHZ) < 0. (4.22)

Combining (4.19), (4.20), (4.21) and (4.22), there exists a positive constant ¢, such
that
vIZTHZv < —c dmin(ZTH Z)2.

Since L is unit lower-triangular, boundedness of || L]| implies boundedness of ||L7!||.
Since all block-diagonal elements in B; have norm greater than a positive constant,
|| B2|| is bounded. Consequently, (4.17) and the definition of v guarantee that the
norm of v is bounded. 8
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The strategy for choosing pivots given in this section allows the construction of
a nonsingular principal submatrix of K that contains all rows of A and has exactly
m negative eigenvalues. This strategy only permits pivots of type H*, A~ and HA
until all rows of A have been processed. However, as the following lemma shows, if
the full Hessian is sufficiently positive definite, the pivot strategy described in this
section is of no impact at all, since all pivots in such circumstances are of type H*,
A~ and HA.

Lemma 4.8. If H is positive definite and A has full row rank, then the only pivots
that occur in an LBLT-factorization of K are of type H*, A~ or HA.

Proof. Since K is nonsingular, no pivots of type H® or A° are used. The positive
definiteness of H implies that any principal submatrix of H is positive definite.
Consequently, any nonsingular principal submatrix K3, has inertia (ny,m;,0). This
property cannot hold if pivots of type H~, A*, HH or AA are used. §

The conclusion of the lemma does not hold if the Hessian is not positive definite.
Consequently, the strategy described in this section may require permutations in
addition to those required for a regular LBLT-algorithm. For example, a pivot of
type H~ would not be accepted unless all rows of A have been processed. From
the point of view of sparsity, these additional permutations are undesirable since we
wish to minimize the change to the ordering determined by the analyze phase.

One possible scheme for choosing the pivots of type H*, A~ and HA is to use m
pivots of type HA. Such a scheme has been proposed by Gill et al. [GMSW87b] in
the context of large-scale quadratic programming. They name the HA pivot a tile
and refer to this scheme as tiling.

Finally, if the problem is unconstrained, the matrix K equals H, and the pivot
strategy described in this section equals the strategy of a regular L BLT-factorization,
since if A does not exist, all rows of A are processed at the very first step of the
factorization. The computed directions are then equivalent to those computed by
Moré and Sorensen [MS79].

5. Necessary Pivot Conditions

In the previous section it was shown that a sufficient condition for the computation
of a descent direction and a direction of negative curvature is to use pivots of type
H*, A~ and HA until all rows of A have been processed. This scheme creates a
principal submatrix IIITKII1 which contains all rows of A, has inertia (n,,m,0) and
its smallest singular value is greater than a positive constant. However, it may also
be necessary to obtain such a principal submatrix in order to compute a feasible
descent direction and a feasible direction of negative curvature as in the scheme
of Moré and Sorensen [MS79]). In the example of Section 3.4, since IT = I, the
only principal submatrix obtained in the factorization that contains all rows of A
is K itself. If a block of type A=, AA or A° is modified then the zero-part of K is
altered and the subsequent search direction is not feasible. Hence, in the example
of Section 3.4, the only part of B that may be modified is the second element.
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However, it was shown that such a modification altered both the A-part and the
zero-part of K. Similarly, when computing the direction of negative curvature using
an eigenvector of B as a right-hand side vector, only eigenvectors corresponding to
blocks of type H~ and HH may be used. Again, the example of Section 3.4 shows
that solving for the eigenvector corresponding to the second element of B does not
yield a feasible descent direction.

It was shown in Section 4 that a sufficient condition for obtaining a nonsingular
principal submatrix containing all rows of A with m negative eigenvalues was to
use pivots of type H*, A~ and HA until all rows of A had been processed. Such
a scheme may appear unduly restrictive. However, in this section it is shown that
these conditions are also necessary in order to guarantee the ability to obtain such a
principal submatrix in a single factorization. We utilize the notation of Section 4 and
let ITK IT, denote a leading principal submatrix of /7 TK 11, for which the factors
Ly; and B; are known. Also, to simplify the notation, the related matrix K;; from
(4.2) is used.

The following two lemmas show that unless the inertia of ITK I, is kept equal
to (ny1, my,0) until all rows of A have been processed, it may happen that no non-
singular principal submatrix with m negative eigenvalues, containing K;; and all
rows of A, exists. Consequently, the results from Section 4 are not applicable and
there is no guarantee that we are able to compute descent directions and directions
of negative curvature as described in Section 4.

Lemma 5.1. Let M denote an m xn matriz of full row rank, where m < n. Assume
that a partition of M is given such that

M,
where M, has full row rank. Given a nonzerc vector z such that Myz = 0, M, may
be such that Mz = 0.

Proof. If z # 0 and M,z = 0, it follows that the rows of M; are orthogonal to z.
The null space of zT has dimension n -- 1. Consequently, if m < n, the rows of M,
may be orthogonal toz. 1

Lemma 5.2. Assume that n > m. If In(Kyy) = (n, —t,m; +1,0), wheret > 0, the
matriz A may be such that any nonsingular principal submatriz of K, containing
K1 and all rows of A, has more than m negative eigenvalues, independently of Hy,,
H21 and Hn.

Proof. If t > 0, Lemma 2.1 implies that there exists a nonzero vector p; such that
p{Hupl < 0 and Ay ypr = 0. If n > m, Lemma 5.1 shows that 4,2, A3; and A,
may be such that A2;py = 0 in which case

Ay Ap Py _ 0 and
A1 Agg 0 0
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T Hll H 12 P T
P 0 =p H P1 < 0.
( 1 ) ( H21 H22 ) ( 0 17 un

Consequently, Lemma 2.1 implies that K has more than m negative eigenvalues. If
any nonsingular principal submatrix of K containing Ky; and all rows of A is con-
sidered, by extending the vector p, with the appropriate number of zero elements, it
follows that such a principal submatrix has more than m negative eigenvalues. This
property depends only on the matrices A and Ki;, and therefore it is independent
of the matrices Hyz, Hg; and Ho2. 1

The following example illustrates that even when the reduced Hessian is positive
semidefinite, if it is singular, then it may be necessary to maintain a Ky; with the
number of negative eigenvalues equal to m; for Theorem 4.1 to apply. Let

H:(gg) and A=(10), (5.1)

for which the reduced Hessian is zero. If the corresponding K-matrix is factorized,
the first pivot must be either of type HA or HH. If an element of type HH is chosen
as first pivot, it is not possible to obtain a nonsingular principal submatrix of K,
containing this pivot and having as many negative eigenvalues as it contains rows of
A. Consequently, Theorem 4.1 does not apply. For this situation, when the reduced
Hessian is positive semidefinite and singular, Conn and Gould [CG84] have shown
how to compute a descent direction from a single factorization of K. That scheme
is not considered here, since it has not been shown that the descent direction given
by that scheme satisfies the conditions of Theorem 4.1. In practice, however, the
scheme of Conn and Gould [CG84] may be a viable alternative.

On the other hand, it is of interest to detect as early as possible, if K has inertia
different from (n,m,0). However, the next lemma shows that given any nonsingular
principal submatrix K;; with no more than m negative eigenvalues, it may hold
that K is nonsingular and has m negative eigenvalues.

Lemma 5.3. If In(Ky1) = (nq — t,my + t,0), where m; +t < m, it may hold that
In(K) = (n,m,0).

Proof. If In(Ky;) = (ny — t,mq + t,0), where m; + ¢t < m, it may hold that
K1) can be expanded with all rows of H so that In(Ky;) = (n — {,m; +1,0), where
m;+t < my+% < m. Consequently, if we let Z denote a matrix whose columns form
an orthonormal basis for the null space of the rows of A contained in the expanded
K11, Lemma 2.1 yields In(ZTHZ) = (n — m; ~ 1,1,0). Let v;, i = 1,...,n — m,,
denote orthonormal eigenvectors corresponding to eigenvalues \; of ZTHZ, where
the eigenvectors are sorted so that A; < \;4;. If the remaining rows of 4 equal
vIZT,i=1,...,m — m, then A has full row rank and p?Hp > 0 for all p # 0 such
that Ap = 0. Consequently, Lemma 2.1 yields In(K) = (n,m,0). 1
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6. A Sufficient Pivoting Method

If the sufficient pivot conditions described in Section 4 are applied when factoriz-
ing K, descent directions and directions of negative curvature may be computed as
described in Theorems 4.1 and 4.2. In particular, the computed directions satisfy
sufficiency requirements for applying known results for unconstrained minimiza-
tion. In this section we review two different methods and apply them to our linear
equality-constrained problem. The first method is a curvilinear linesearch method
and the second is a regular linesearch method. In the discussion, at a particular
iterate k, the methods use a feasible descent direction s; and a feasible direction of
negative curvature di. The direction dj always satisfies djg, < 0. If no feasible de-
scent direction exists, sj is to be interpreted as a zero vector. Similarly, if no feasible
direction of negative curvature exists, di is to be interpreted as a zero vector.

6.1. A curvilinear linesearch method

In the method for unconstrained minimization suggested by Moré and Sorensen
[MS79], the next iterate zx4; is determined by searching along an arc emanating
from z, defined by the univariate function

#r(a) = f(zk + a®s + ady), (6.1)

where s; is a descent direction and dy is a direction of negative curvature. In this
subsection, it is assumed that s; is computed as in Theorem 4.1. It is also assumed
that di is computed as in Theorem 4.2 whenever ZTHZ has at least one negative
eigenvalue. If ZTH) Z has no negative eigenvalues, then dj = 0.

Let u € (0,1), 7 € [g,1) and 8 > 0 denote preassigned constants. The scalar
ai € (0, 5] is determined in such a way as to attempt to satisfy

ér(ar) < ¢k(0) + 3pgt(0)al and (6.2a)
brlak) > 1(64(0) + $i(0)a). (6.2b)

In practice, condition (6.2b) is not always satisfied by ai. For a complete discussion
on how to generate a; we refer to the original paper of Moré and Sorensen [MS79].
The next iterate zy4, is defined as

Tk+l1 = Tk + aZsk + ardg. {6.3)

The vectors si and di are both feasible, and we may write sy = Zux and
dir = Zv; for some vectors ux and vi. Consequently, utilizing u, and v, the
problem is unconstrained. The following lemma shows that u; and v, satisfy the
requirements of Moré and Sorensen [MS79)].

Lemma 68.1. Let {zx}32, denote an infinite sequence of points in S(z¢). For each
such point z,, assume that s; is computed as in Theorem 4.1 and assume that d; is
computed as in Theorem 4.2 whenever ZTH, Z has at least one negative eigenvalue,




22 Newton methods for linear equality-constrained minimization

and that d;, = 0 otherwise. Then, it holds that sy = Zu; for some u; and dy = Zv;
for some vy such that

gZ'Zuk — 0 implies ZTgk —+0 and up—0

and
vIZTH, Zv, — 0 implies A\, — 0 and dy — 0,

where \; is the minimum of zero and Myn(ZTH Z).

Proof. Theorem 4.1 implies that s; = Zu; for some u;. Assume that gEZuk — 0.
Theorem 4.1 implies that Z7g, — 0 and ux — 0.

Theorem 4.2 implies that dy = Zv, for some vi. If Apin(ZTH,Z) > 0 for some
k, then v = 0. Consequently, without loss of generality, it may be assumed that
Amin(ZTHZ) < 0 for all k. Assume that v{ZTHka,c — 0. Theorem 4.2 implies
that Amin(ZTHyZ) — 0. Using the assumed boundedness of ||L||, it follows from
(4.17) and (4.19) that there exists a positive constant ¢ such that

“ka” < E(—vaTHkak)I/".

Hence, since the columns of Z are linearly independent, vaTHka;, — 0 implies
that vy - 0, as required. §

Consequently, using Lemma 6.1, the results of Moré and Sorensen [MS79] may
be applied directly.

Theorem 6.1. (Moré and Sorensen [MS79]) If an infinite sequence {zi}3e, is
generated as defined in (6.83), any limit point T satisfies

ZTVf(£) =0 and Aun(ZTV*(2)Z) > 0.

Proof. See Moré and Sorensen [MS79, Theorem 6.2]. §

6.2. A regular linesearch method

The method proposed by Forsgren et al. [FGM89b] is a method that uses regular
linesearch at all iterates. In order to modify this unconstrained method to a method
for linear equality-constrained problems utilizing the L BL-factorization, a positive
constant ¢ is given and the direction of negative curvature d is computed as in The-
orem 4.2, but d;. = 0 if (ﬂ,;H,,dk > —¢. Note that d{dek is available without needing
to compute d, since Theorem 4.2 yields dfHydi = —A2; (B2). The direction s is
assumed to be computed as in Theorem 4.1.

At iteration k, the search direction p; is defined to be a linear combination of
the descent direction s; and the direction of negative curvature di, as

Pk = Sk + Prdy,
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where the scalar §; is zero if dy = 0, and it is chosen so that p{Hkpk < dZdek
otherwise. We refer to Forsgren et al. [FGM89b] for details.

Let u and 7 denote preassigned constants such that u € (0,3) and v € (0,1).
Given zx and aj € [@min, ®max), Where amin and amax are positive constants, the
number i is defined to be the smallest nonnegative integer ¢ such that

f(zk+ v arpr) < f(zk) + p7'ongipe if de=0; (6.42)
) . 24212 )
faw+ v'aupi) < f(2x) + wr'onglp + ELEpTHp, if di #0. (6.4b)

The next iterate zx4; is defined as
Tip1 = Tk + Y akps. (6.5)

With s; and di computed from Theorems 4.1 and 4.2, p; satisfies Apy = 0 and
we may write p, = Zuv; for some v,. The analogy with the unconstrained case
is clearer if this representation is used. The convergence of this linesearch follows
from the convergence analysis of Kaniel and Dax [KD79]. The reduced gradient is
zero the smallest eigenvalue of the reduced Hessian is greater than a small negative
number at all limit points.

Theorem 6.2. If an infinite sequence {z;}52, is generated as defined in (6.5), any
limit point  satisfies

ZWf(£)=0 and Amin(ZTV(£)Z) > —cV/e,
where ¢ is a positive constant.

Proof. Since p{Hkpk < d{dek < —¢ whenever dx # 0, it follows from the
convergence analysis of Kaniel and Dax [KD79] that there must exist a finite [
such that dx = 0 for all £k > I. Moreover, it follows from the convergence anal-
ysis of Kaniel and Dax [KD79] that Theorem 4.1 gives a py = Zu, such that
limg—oo ZTgx = 0. Theorem 4.2 guarantees the existence of a positive constant
¢ such that Apin(ZTHLZ) > —cy/€ for all k > I. The result now follows from the
continuity of V2f. g

7. Artificial Constraints

In Section 4 we discussed what conditions may be imposed upon the pivots in
order to ensure the ability to compute descent directions and directions of negative
curvature from a single factorization of K. An alternative strategy for yielding a
descent direction or a direction of negative curvature would be to factorize K using
a regular LBLT.factorization, and from the inertia of B deduce the inertia of the
reduced Hessian. If the reduced Hessian has at least one negative eigenvalue, an
artificial constraint may be added to A, so that the number of positive eigenvalues
of K is increased by one, and consequently the number of negative eigenvalues of the
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reduced Hessian is reduced by one. An artificial constraint is a temporary additional
constraint, that is not specified in the original problem. The only requirement for
an artificial constraint is linear independence from the original constraints and other
artificial constraints. Artificial constraints do not restrict the feasible region, since
they are only introduced at a particular iterate, and may be removed from the
problem at any iterate. If a scheme for adding artificial constraints is known, a
positive definite reduced Hessian could be obtained by adding a sufficient number
of such constraints. Unless the dimension of the reduced Hessian has been reduced
to zero, a descent direction can be obtained. A method for computing a direction of
negative curvature for a positive-definite reduced Hessian in the presence of artificial
constraints has been proposed by Forsgren et al. [FGM89a].

However, as the following lemma shows, to find an artificial constraint that re-
duces the number of negative eigenvalues of the reduced Hessian by one is equivalent
to finding a direction of negative curvature in the null space of A. Consider the case
when a nonsingular KKT-matrix

T
K= H A
A 0
is given, where K has more than m negative eigenvalues. The question of finding
an additional artificial constraint @ such that

H AT a
E=] 4 0 o
aT 0 0

Las one more positive eigenvalue than K is equivalent to finding a direction of neg-
ative curvature for the reduced Hessian corresponding to K. The precise statement
is given in the following lemma, and uses the solution of the equation

H AT
PA-(%]. (7.1)
A 0 m 0
Lemma 7.1. If In(K) = In(K) + (1,0,0), then p from (7.1) is a direction such
that Ap = 0 and pTI_Ip < 0. Conversely, if q is a direction such that Aq = 0 and
qTHq < 0, then In(K) = In(K) + (1,0,0) fora = Hq.

Proof. Assume that In(K) = In(K)+ (1,0,0). Let wT = (aT 0) and let u7 = (p7

uT). It follows that
5 K w
K =

and that u solves the equation Ku = w. Sylvester’s law of inertia implies that
wTK ~'w < 0. Using the identity Ku = w, it follows that «TKu < 0. Consequently,
(7.1) yields pTHp = uTKu < 0 and Ap = 0.
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Assume that ¢ is a vector such that Aq = 0 and ¢THq < 0. Let uT = (
and w = Ku. We get wTK~'w = ¢"Hq < 0. If a = Hg, it follows that wT
0). Sylvester’s law of inertia implies that In(K) = In(K) + (1,0,0). &

qT 0)

(

Consequently, the ability to add an artificial constraint is linked with the ability
to compute a direction of negative curvature in the null space of A. As an example,
consider the case when no constraints exist, and H = I — eeT, where e is an n-vector
with all components one. This matrix has one negative eigenvalue and n —1 positive
eigenvalues. If less than n artificial bounds are added to H, the corresponding
K-matrix will have a reduced Hessian that is not positive definite. However, if
the single artificial constraint e is added, the corresponding reduced Hessian is
positive definite. Consequently, although there exist artificial constraints to add,
we do not know how to compute them directly. Conn and Gould [CG84] have
given a computational scheme for obtaining a direction of negative curvature from
the LBLT-factors of K. However, this scheme requires the solution of a system of
equations with an m x m “triangular-like” matrix.

8. A Descent Method

If no attempt is made to avoid altering t..c n h T-n.atrix when the reduced Hessian
is positive definite, we may corsicer an algorithm that yields a descent direction
in a single factorization. When forming the factors, pivots corresponding to ele-
ments of H are modified, if necessary, so that the principal submatrix factorized at
each step is nonsingular and ha:c 2s ma.y positive eigenvalues as it contains rows
of H. This modification corresponds to adding to the diagonal of H, and may be
expressed as a positive semidefinite diagonal matrix D of the same dimension as H.
If the pivots are modified so that the factorized principal submatrix has its small-
est singular value bounded away from zero by a constant, this yields a correction
matrix D with bounded norm such that ZT(H + D)Z is positive definite and has
its smallest eigenvalue bounded away from zero by a constant. Such a correction
can be computed in a single factorization and requires only the permutations of a
regular LB LT-algorithm. However, in this method, the correction matrix [) may be
substantial even if the reduced Hessian is positive definite. Therefore, there is no
guarantee that this method has the same rate of convergence as Newton’s method.
For example, if the original ordering of K is used in the factorization, this method
will modify H so that H + D is positive definite. Consequently, if ZTH Z is posi-
tive definite, but not H, the KKT-matrix is modified unnecessarily. On the other
hand, if initially m pivots of type HA are chosen, H will be modified only if the
reduced Hessian is not sufficiently positive definite. However, the ordering of the
latter case is such that the second-order method described in Section 6 would not
require additional permutations.

Given the modified K-matrix, a descent direction p may be obtained by solving

the equation
T —
H+D 4 PY\_(9). 8.1)
A 0 —p 0
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Upon termination of the factorization algorithm described in this section, the
LB LT factors of the left-hand side matrix of (8.1) are known, and the search direc-
tion p may be obtained from these factors. Since ZT(H + D)Z is positive definite
with bounded norm and smallest eigenvalue greater than a positive constant, the
search direction p from (8.1) is a sufficient descent direction. Utilizing some inex-
act linesearch procedure, for example the ones described in Section 6 for the case
d = 0, it follows that the reduced gradient is zero at all limit points of a generated
sequence.

9. A Delta-Method

Assume that for a fix positive constant §, a search direction p is computed at each
iteration from the equation

()= () e
A 0 —u 0

where D is a positive semidefinite matrix with bounded norm and the sign of the
right-hand side vector is chosen so that g7p < 0. The matrix D has all elements
zero when the reduced Hessian is sufficiently positive definite. Nonzero elements
in D arise for two reasons. Firstly, to ensure that the smallest singular value of
the left-hand side matrix of (9.1) is bounded away from zero. Secondly, if having
formed an initial factorization there are more than m negative eigenvalues, we may
alter B, where possible, to reduce the number of negative eigenvalues. The constant
6 may be chosen numerically small, for example in the order of the square-root of
the machine precision. Ideally, the ordering in the factorization of the modified K-
matrix, where 67 is added to H, may then be kept to whatever is satisfactory for
preserving sparsity. However, as was pointed out by the example (5.1), the Schur
complement may be singular, and there may be no rows of H left, so equation (9.1)
cannot be guaranteed to be solved using a single factorization. However, if it is
determined that a single factorization is impossible, by refactorizing, utilizing the
factorization method described in Section 8 , we may always guarantee a positive
semidefinite correction matrix D such that the left-hand side matrix of (9.1) is
sufficiently removed from a singular matrix. In practice, we may hope that a small
value of § would not impact the rate of convergence compared with Newtons method
in the neighborhood of a local minimizer where the reduced Hessian is positive
definite. Moreover, it may be expected that the event that a single factorization is
impossible, due to singularity arising when factorizing the left-hand side matrix of
(9.1), is rare.

The following lemma shows that unless ZTg = 0, the search direction from (9.1)
is a nontrivial descent direction or a nontrivial direction of negative curvature.

Lemma 9.1. The vector p from (9.1) satisfies p = Zv for some v. It holds that
vTZTg < 0 and at least one of the following conditions is satisfied:

vTZTg < —%vTZTZv (9.2a)
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vIZTHZv < —-;-vTZTZv. (9.2b)
Proof. Since Ap = 0 it follows that p = Zv for some v. The sign of p is always
chosen so that v72Tg < 0. Utilizing (9.1) we obtain
vIZTHZv < —vT2%g — §v72TZv — v72TD Zv. (9.3)
Assume that (9.2a) does not hold. Since D is positive semidefinite, (9.3) yields
vIZTHZv < —gvTZTZv,
and consequently (9.2b) holds. 1
If the same linesearch as for the method of Section 6.2 is applied, we can show
that the reduced gradient is zero at all limit points. Let x and 7 denote preassigned
constants such that u € (0,3) and v € (0,1). Given z; and o € [Omin, @max], Where

Qin and amax are positive constants, the number ¢ is defined to be the smallest
nonnegative integer ¢ such that

f(ze+ Y awpi) < f(zi) + B7 2 gips if(9.2a)holds; (9.4a)
] ) 2,22 )
f(zk + Y oupr) < f(zi) + pr'onglpe + BT %% 72 piH,p otherwise.  (9.4b)

The next iterate x4, is defined as
The1 = Tk + 7‘*akpk. (9.5)

Since pj satisfies Ap, = 0, we may write p, = Zv, for some v;. The analogy
with the unconstrained case is clearer if this representation is used.

Theorem 9.1. If an infinite sequence {zi}52, is generated as defined in (9.5), any
limit point £ satisfies ZTVf(z) = 0.

Proof. Consider a sequence {z4}22,. Assume that there for some positive constant
¢ exists an infinite subsequence {z;}re, such that ||Z7gi|] > € for all k € J. The
matrix on the left-hand side of (9.1) has its norm bounded by a constant, and
consequently there exists a positive constant ¢y such that ||vk|| > ¢; for all k¥ € J.
It follows from Lemma 9.1 and the convergence analysis of Kaniel and Dax [KD79]
that there exists a finite I such that (9.2a) holds for all k£ € J such that k > I. Since
(9.2a) holds for all k € J such that k£ > I, it follows from the convergence analysis
of Kaniel and Dax [KD79] that there exists a finite I such that ||Z7g.|| < € for all
k € J such that k > I. Consequently, limk—o ZTgr = 0, as required. @

However, since the search direction is zero whenever ZTg = 0, it follows that no
stronger result than convergence to a first-order point is possible with this method. A
slightly modified method may be obtained by letting é be variable, i.e., define a value
5; at the k-th iteration. If, at the k-th iteration, the initial LB LT-factorization has
more than m negative eigenvalues, then §x4, > 6k, in order to reduce the amount
of negative curvature in the null space of A. Otherwise, 64y < 6. If {24},
converges to a solution where Z7H Z is positive definite, then &, may be reduced so
that lim,_.o, 6 = 0, ensuring that the asymptotic rate of convergence is identical
to that of Newton’s method.
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10. Discussion

The pivot strategy discussed in Section 4 is more restrictive than a regular LBLT
factorization, since it only allows pivots of type H*, A~ and HA until all rows of
A have been processed. Consequently, if an initial ordering is given by the analyze
phase, this pivot strategy is likely to change the ordering more than a regular LBLT.
factorization. To attempt to maintain sparsity of the factors, it is desirable to
reduce the number of additional pivots required in the numerical phase. In some
circumstances it may be possible to accept pivots of other type than H*, A~ and
HA. Tt was shown in Section 3.4 that modifying a diagonal element of B of type
H- or HH may alter the A-part and the zero-part of K. However, the only altered
elements correspond to nonzeros in the outer product created by the corresponding
column or columns of L. It is a simple matter to check if these nonzeros of L
correspond to rows of A. If they do not, the particular H~ or HH pivot can be
accepted even if the number of negative eigenvalues of Ky, exceeds m, by doing so.
When K is sparse, it may be a common event that the nonzeros do not correspond
to rows of A once a significant portion of the rows of A have been processed. If
the nonzeros do not correspond to rows of A, the reduced Hessian has at least one
negative eigenvalue, and we can still obtain a feasible direction of negative curvature.

Another scheme is to accept any pivot a regular LB LT factorization would ac-
cept, keeping track of restart points where K;; has inertia (n;,m,,0) and is suffi-
ciently nonsingular. If it turns out that K has inertia (n, m,0), the reduced Hessian
is positive definite, and the Newton direction is a descent direction. Otherwise,
when forming the factorization, let K;; denote the part of K that is factorized
when it is discovered from the Schur-complement that the inertia of K is different
from (n,m,0). If Kq; contains all rows of A, has inertia (n,,m,0) and is sufficiently
nonsingular, the results of Section 4 apply. If not all rows of A have yet been pro-
cessed, an attempt may be made to find pivots of type H* and A*, in order to
form a K, that is sufficiently nonsingular, contains all rows of A and has m nega-
tive eigenvalues. If this attempt is successful, Theorems 4.1 and 4.2 apply, and the
desired directions may be computed. If the attempt is not successful, part of K1,
from the latest restart point, may be refactorized, imposing the pivoting strategy of
Section 4.

If the number of positive eigenvalues in the reduced Hessian is large compared
to the number of negative eigenvalues, we expect the number of pivots of type
H- and HH to be low. Consequently, if the rows of A are processed early in the
factorization, there is a high likelihood that these pivots will occur only after all
rows of A have been processed. A new version of MA27 (MA47) allows 2 x 2 pivots
in the analyze phase, see Duff et al. [DGR*89]. Moreover, these pivots, which
in our case would be HA pivots, are preferred over 1 x 1 pivots. We expect this
scheme to make the difference between the additional permutation requirements
of the scheme of Section 4 and the additional permutations required by a regular
L B LT factorization smaller, since in many instances the conditions of Section 4 will
be fulfilled automatically.

It may also be observed, that the ability to compute a direction of negative
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curvature is only required if the reduced gradient is small in norm. The methods
described in Sections 8 and 9 may be applied whenever the norm of the reduced
gradient is sufficiently positive. Only at points where the reduced gradient has
small norm and the reduced Hessian is not positive definite is it necessary to apply
the strategy of Section 4.

As was discussed in Section 7, to add a suitable artificial constraint is equivalent
to generating a feasible direction of negative curvature. It can be shown that an
artificial constraint that is linearly independent of the constraints in A may be
found by one solve with K utilizing a suitable right-hand side. If this artificial
constraint increases the number of positive eigenvalues of K by one, a direction of
negative curvature may be computed as described in Lemma 7.1. Although this is
not guaranteed to be the case, in practice, it may be a viable strategy.
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