
DEPARTMENT OF THE ARMY
US ARMY RESEARCH INSTITUTE

5001 EISENHOWER AVENUE
ALEXANDRIA, VIRGINIA 223-5600

Itan Y To
ArM"INlON OF

PERI-BR
0)

JMEMORANDUM FOR Marketing and Publication

C SUBJECT: Certification and Transmittal of Firal Manuscript

1. The enclosed final manuscript is submitted.

a. Title: Problem Solving and Learning in a Natural Task Domain

b. First author: Janet Kolodner

c. Contributing author(s): Lawrence Barsalou

d. Field unit/tech area: Office of Basic Research

e. Present FU/TA/HQ office chief: Dr. Michael Kaplan

f. Project name:

2. Checklist has been completed.

3. It is to be published as a:

4. The DoD Distribution statement is: ELECTE
5. First-time-distribution list requested is: MAY 5 1990

Additional author copies requested: _ _

6 Encls MICHAEL KAPLAN
1. Package checklist Director, Basic Research
2. Peer review - 1
3. Report documentation page

(DD Form 1473) A
4. Table of contents "rL.T _1 ON --T£ - -

5. Body of the manuscript to, publc telea$I4
6. Reference list Appuprov

.;>. xa wul

PEER REVIEW
(Subject matter expert review)

Date Due:
Date Received: /
Date Returned:__

Reviewer (full name) Dr. Judith Orasanu

Organization Office of Basic Research

ManuscriptTte Problem Solving and Learning in a Natural Task Domain

Author or COR Janet Kolodner

I. RATINGS (extent to which criteria are met):

A. FOREWORD, EXECUTIVE SUMMARY (BRIEF): Are they clear? Are they
consistent with the contents? Are they directed to target readers or users? Do they
concisely highlight the Important findings?

No_ Moderately. Yes V Substantially _

B. INTRODUCTION, BACKGROUND. OBJECTIVES: Is the literature review relevant
to the research conducted (necessary and sufficient)? Is the statement of the problem
pertinent to the target audience? Is it clear? Is It supported by concrete data or
evidence?

No. Moderately- Yes._ Substantially-

C. APPROACH, METHOD: Is It appropriate? Was there a valid experimental design
and data collection plan? Are they competently described and were they competently
executed?

No. Moderately. Yes.. Substanially

D. RESULTS: Are they clearly presented? Is there appropriate use of tables and
figures? Were proper statistics used? Were they used correctly?

No. Moderately. Yes.. Substatialty_
E. DISCUSSION AND CONCLUSIONS: Do they follow from the data and literature
review? Are they comprehensible? Are conclusions and recommendations warranted
and usable by Intended audience?

No. Moderately. Yes . Substantally.

ARI Form 185, 20 Oct 88

Peer Review (cont)

II. Recommendations

_ Should not be published.

Return for reconsideration (e.g., reanalysis, additional data collection, or rewrite).
Should not be published as is. (Comments may be made In Section III or as an
enclosure.)

. Publish after minor revislons. (Comments may be made in Section III or as an
encillsure.)

P.Publish as Is.

My name may I may not appear on the Inside cover as reviewer.

Rev;'Wer's Signature"

Ill. Comments on any of the above ratings or recommendations. a*N

Accesion For I

NTIS CRA&
DTIC TAB 0
Uiadn;,o ivicd 0

By

Avdilabif;y Codes
Dist Avail Jxidlor

WIN-ca

PUBLUCATION CHECKUIST

Use for: Research Report. Technical Report, Research Product. Research Note, Special
Report, or book published by ARI.

Typeof document (circle one): RR TR RP S SP book

Submit an original and one copy of:

Documentation required for publication

_ 1. Certification DF. signed.

Peer review- I
_ 2a. Recommended changes made.

- 2b. Changes not made-reviewer's name not to be used.

Peer review- 2 (only one required for Research Note)
S Sa. Recommended changes made.

_ 3b. Changes not made-reviewer's name not to be used.

Letter(s) of permission to quote copyrighted material
4a. Required and submitted.

. /4b. Not required.

Sensitivity review
5a. Required and submitted.

7 5b. Not required.

Security review
Ga. Required and submitted.z 6b. Not required.

.67. DD Form 1473, completed.

Manuscript

Foreword
- Sa. 6.3 research.
_ 8b. Other research funding.

=,/Bc. Not required (Research Note).

Acknowledgment
9 Ba. Included.

21 9b. Not Included.

Executive summary
8Oa. Included.

T 0b. Not required (RN, RP, or book).

_. 11. Table of contents (with Usts of Tables and Figures).

ARI Form 188, 20 Oct 88

L°

Publication Checklist (cont)

Body of the manuscript

/12. Text of report (with Tables and Figures).
a. All pages are present and numbered properly.
b. Text Is print-ready copy.
c. Table of contents accurately Indicates configuration of document.

Z.13. Reference list (documents listed are cited In text).

Appendixes
_ 14a. Included (they are necessary explanatory Information).
- 14b. None prepared.

Signature of individual completing checklist

I i II

---~~ ~~ ~ ~ ~ - - - - S

....

UNCLA§SIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Apoved
REPORT DOCUMENTATION PAGE OMNo. 07N-OFU

ta. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE;
2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Georgia Institute of Technolog4 (f appicable) ARMY RESEARCH INSTITUTE

d OFFICE OF BASIC RESEARCH
6€. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (Ciy State, and ZIP Code)
School of Information and Computer Science 5001 EISENHOWER AVENUE
Atlanta, GA 30332 ALEXANDRIA, VA 22333-5600

Ba. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if appicable)

ARMY RESEARCH INSTITUTE PERI-BR MDA 903-86-C-173
Sc ADVfESS (ry, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

OFFICE OF BASIC RESEARCH PROGRAM PROJ611 TASK IWORK UNIT
5001 EISENHOWER AVENUE ELEMENT NO. NO. hJ. NO. ACCESSION NO.

ALEXANDRIA. VA 22333-5600 6.11.02.B 02B74F r
11. TITLE (nclude Security Classification)

Problem Solving and Learning in a Natural Task Domain

12. PERSONAL AUTHOR(S)

Janet Kolodner/Lawrence Barsalou
13a. TYPE OF REPORT 13b. TIME COVERED T14. DATE OF REPORT (YearMontDy) IS. PAGE COUNT
INTERIM IFROM 9/87 TO _9/88 1 1988 September 81

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necesary and identify by block number)
FIELD GROUP SUB-GROUP

ABSTRACT (Continue on reverse if necessary and identify by block number)
sed on work done in Year 1 of the contract analyzing protocols of students solving

diagnostic problems, work in Year 2 of the contract has taken two directions: the creation
of AI simulation models to explain several of the learning processes used by students and
the creation of an experimental tool and formulation of experiments to find out more about
how people learn during problem solving and instruction. This report is divided into two
sections. In the first section, the experimental tool and experiments are discussed. In
section two, beginning on page 27, some of the AI simulation models are presented. ,

/

20. DISTRIBUTION /AVAILABIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
ObNCLASSIFIEDIUNLIMITID D3 SAME AS RPT. C3 DTIC USERS UNCLASSIFIED

Us. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE Includoe Area Code) 22c. OFFICE SYMBOL
JUDITH ORASANU (202) 274-8722 PERI-IR

DD Form 1473, JUN 86 Prvious edtios are oAete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

Problem Solving and Learning in a Natural
Task Domain

Interim Report
September, 1988

MDA-903-86-C473

Janet Kolodner
Lawrence Barsalou

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, GA 30332

Abstract

Based on work done in Year 1 of the contract analyzing protocols of stu-
dents solving diagnostic problems, work in Year 2 of the contract has taken
two directions: the creation of AI simulation models to explain several of the
learning processes used by students and the creation of an experimental tool
and formulation of experiments to find out more about how people learn during
problem solving and instruction. This report is divided into two sections. In the
first section, the experimental tool and experiments are discussed. In section
two, beginning on page 27, some of the Al simulation models are presented.

1 Introduction

The goal of this three year project is to explain the details of some of the problem

solving and learning processes employed by novice problem solvers as they become

more expert. In particular, we are interested in the effects of individual problem
solving and learning experiences on later problem solving.

In year 1 of the project, we collected and analyzed protocols of students solving sev-
eral sequences of diagnostic problems in the domain of car mechanics. A theoretical

analysis of these protocols led us to several working hypotheses that we have based
our second-year work on.

We found three types of knowledge necessary for diagnosis.

" Qualitative reasoning rules provide knowledge about what system behav-
iors derive from other system behaviors or states.

" Symptom-fault rules provide associational knowledge that associates symp-
toms and other contextual factors with potential faults.

" Reasoning strategies provide meta-knowledge about what actions to take
in solving a problem.

In learning these three types of knowledge, a student learns two types of descriptive
knowledge about the device it is learning about: how the system works and how it
malfunctions. This is traditionally called the students mental model of the device.
The student also learns how to use that knowledge to solve problems or troubleshoot.

Based on these findings from the first year, second year work has gone in several
directions. From the psychology side, the year was spent on several tasks:

" building an instruction tool called MECH that can be used to run experiments
to find out more detail about what people are learning and what instructional
methods work best in teaching those things,

" continuing the theoretical analysis of the first year in an attempt to describe
it more rigorously, and in particular, to come up with a set of dimensions
useful for assessing observed learning,

" deriving experimental techniques and experiments that will allow us to rigor-
ously describe both the learning students do and the contexts in which they
do it.

MECH is an especially important part of the work done in year two of the contract.
As an experimental tool built to record the results of experiments in a teaching
environment, it has the potential to serve several functions:

* It provides a simulation environment for problem solving, including graphics
and help facilities. Thus, with the right knowledge in it, it could be used by
students to practice what they have learned without the need for the particular
device they have learned about being available.

2

" It provides an environment for teaching. It has facilities for providing feed-

back, for providing explanations to students, and for choosing problems to

work on. It could therefore be used as a teaching tool.

" It provides an environment for experimentation. It records key strokes and

keeps track of latency times. It also allows for different kinds of teach-

ing/learning situations to be set up, thus allowing an experimenter to evaluate
the differences between several different teaching strategies.

Work on the AI side of the project has also been in three areas:

* an in-depth investigation of learning by understanding explanations, a learning
process in which the student integrates what the teacher presents into his/her
current mental model,

" investigation of the case-based reasoning processes employed during learning,
and

" the creation of memory models that integrate the three different kinds of
knowledge problem solvers use and that support both learning processes that
we have been investigating.

Work in AI distinguishes itself from other work on machine learning by focussing on

the learning that happens in real situations in conjunction with a non-ideal teacher.
The description of work done in AI focuses on our investigation of learning by un-
derstanding explanations (LBUE), with description of the other two investigations
when necessary to explain LBUE processes.

The report has two sections. The first describes work done in psychology. The
second, beginning on page 27, describes work done in AL.

2 Learning and Instruction

Barsalou and Hale have focused their efforts on three projects. First, they devel-
oped a computer interface, MECH, for studying the learning and troubleshooting of

mental models. Second, from reviewing the literature and building MECH, they de-
veloped theoretical analyses for viewing the learning and troubleshooting of mental

models. Third, they mapped out a space of techniques for studying the learning and
troubleshooting mental models. Recently, they have begun using these techniques
in an experiment on learning, and they plan to perform additional experiments on

troubleshooting in the coming year. We discuss each of these projects next in turn.

3

2.1 The MECH Computer Interface for Learning and Trou-
bleshooting Mental Models

We spent the past year developing MECH, which is a computer interface for learn-
ing and troubleshooting mental models. MECH is currently set up for learning and
troubleshooting small gasoline engines. However, the program has been written so
it can support any kind of mental model (e.g., electronic circuits, power plants). Ac-
cording to our programmer, Mike Cox of Microspheres, few changes to the program
would be necessary to handle another model besides small gasoline engines. Instead
MECH is essentially a syntactic engine that can handle materials for any kind of
model. To present a different model, all that needs to be done is construct different
graphics and text files for MECH to process. This is no small task, given we spent
much time this year developing these files. It is well-known in the tutoring business
that the most of the effort in developing a tutor goes into coding expert knowledge,
and that is what we spent much time doing. However, the MECH program is also
quite extensive, given it has taken our programmer a year to construct it.

MECH has an extensive parameter structure, which allows flexibility in configuring
it for particular experiments. Parameter setting has been streamlined so that calling
a single parameter file suffices for setting all the parameters. MECH also allows
editing and saving new parameter files easily and quickly.

MECH consists of six modules that interact to support learning and troubleshooting
a mental model. They are:

1. HELP

2. MOVE

3. TUTOR

4. JOBS

5. TESTS

6. REPAIRS

The top-level menu provides access to these modules at any point. Nested menus
provide further options within these modules. We discuss these modules in turn.

4

2.1.1 HELP

The help facility contains instructions on how to use each module. The instructions
are sufficiently detailed so that someone having no experience with MECH could
completely learn how to use it. (Actually, these instructions don't describe how to
configure MECH for particular experiments, since we don't want subjects having
access to configuration parameters.) Instructions in the help facility contain nu-
merous examples, often graphically depicted, to insure clarity. Instructions can be
easily changed at any time by changing files. Given these files are parameters in
MECH parameter files, different experiments with MECH can use different instruc-
tion files. As a result, instruction files can be used to implement various learning
and troubleshooting manipulations.

2.1.2 MOVE

MECH assumes that the device being modeled can be decomposed hierarchically
into subsystems. In small engines, for example, the engine is the largest system,
decomposing into subsystems such as the ignition system, fuel system, and drive
train. These subsystems in turn often decompose into more specific subsystems.
For example, the ignition system decomposes into the magneto and breaker points.
Eventually all subsystems decompose into terminal components. For example, the
breaker points decompose into terminal components such as the stationary point
and moving point.

MECH contains a graphical depiction of every subsystem-it does not contain graphs
for terminal components. MECH currently contains graphs for the engine as a whole
and for subsystems such as the ignition system, magneto, breaker points, and so
forth. These graphs are organized hierarchically, such that each subsystem is nested
in the larger subsystem to which it belongs. Note that strict hierarchical structure
is occasionally violated. Sometimes a component bridges two subsystems such that
it can be conceived of as belonging to both. In small engines, for example, the spark
plug belongs to both the ignition system and the cylinder assembly. In these cases,
we show the component in the gr,.phs for both subsystems. For small engines,
MECH currently contains 19 hierarchically nested graphs. However, MECH is
designed to handle any number of graphs in any hierarchical configuration.

Every graph contains three kinds of information:

1. COMPONENT INFORMATION. A component of a graph can be either a
terminal component or a more specific subsystem. At high levels in the hi-
erarchies, most components may be subsystems, having graphs themselves.

5

For example, the graph for the fuel system contains components for the fuel
pipe and carburetor, both of which are subsystems and have their own graphs.
The lowest-level graphs contain only terminal components. Components are
always associated with verbal labels that identify them.

2. INTERNAL INPUT-OUTPUT RELATIONS. These relations represent the
inputs and outputs between components in the subsystem. In the graph for
the fuel system, an internal relation shows that fuel flows from the fuel intake
pipe to the carburetor. Internal relations are always associated with verbal
labels that identify them.

3. EXTERNAL INPUT-OUTPUT RELATIONS. These relations represent in-
puts entering the subsystem and outputs leaving the subsystem. In all cases,
these relations connect to a component in the subsystem and then point in or
out of the subsytem. For example, an external input to the cylinder assembly

is air-fuel mixture from the fuel system; an external output from the cylinder
assembly is displacement from the connecting rod to the drive drain. External
relations are always associated with verbal labels that identify them.

At higher levels in the hierarchy, spatial relations between components are some-
times violated in the graphs, given this information is hard to convey graphically
and clearly (e.g., for the ignition system). At lower levels, spatial relations are often
preserved (e.g., for the spark plug). In other words, at lower levelF the graphs often
look a lot like their physical counterparts.

The MOVE module allows subjects to move through the space of graphs. Except in
a few situations, a graph is alw ys present on the screen. To move to a new graph,
subjects call MOVE and implement one of its functions. These functions include
moving to the root graph for the engine, moving up one level in the hierarchy from
the current graph, or moving down to a lower subsystem. Subjects can quickly and
clearly view decomposition of the engine using these three "vertical" functions. Two
further functions allow traversing external input and output relations. By tracing
back through the inputs to a subsystem, subjects can discover how various forces
and substances converge on that subsystem. Following the outputs out of a sub-
system allows subjects to see how the current subsystem affects other subsystems.
Subjects can quickly and clearly view the functionality of the engine using these
two "horizontal" functions.

Using MOVE is essential to the TUTOR, TEST, and REPAIR modules. Tutoring,
testing, and repairing at any point during program use are always limited to the
current graph. For example, if a subject is currently viewing the graph for the
breaker points, he or she can only learn about, test, and repair the breaker points.

6

To learn about, test, and repair some other part of the engine, the subject must
move there first.

An advantage of this design is that it allows us to track what parts of the engine
are currently relevant to the subject. Because MECH records all keystrokes, we can
follow a subject's path through the model and see when they needed tutoring, when
they ran tests, and when they attempted repairs. Because we also store the latency
for each keystroke, we can see how much time a subject spent at each point in the
model performing an operation.

MECH is also designed such that the keystrokes provided by one user can be used to
control MECH for other users. For example, an experimenter could move through
MECH performing breadth-first search for a fault. A subject could later interact
with MECH while it performs the exact search performed by the experimenter.
Similarly, an experimenter could present information from the tutor only about
system level information as opposed to component level information. In general, we
use this keystroke control facility to implement various instructional manipulations.

2.1.3 TUTOR

The graphs provide some tutoring, given they represent the components and rela-
tions for each subsystem. However, the tutor, through text, describes these compo-
nents and relations in much greater detail. Analogous to the graphs, the text units
are organized hierarchically. The root contains the text describing the engine as a
whole at a very general level. Texts associated with subordinate nodes of the engine
topology describing increasingly specific subsystems that constitute decomposition
of the engine.

For a given subsystem, subjects can access one SYSTEM DESCRIPTION of the
subsystem as a whole and one COMPONENT DESCRIPTION for every component
in the subsystem. The system description provides a general description of how the
subsystem functions as a whole and how it interacts with external subsystems.
A component description describes the structure and local function of a specific
component in the current graph. As discussed in the previous section, we can
implement keystroke control during tutoring such that we control which descriptions
the subject receives in what order. Alternatively, we can allow subjects free reign
in accessing these descriptions.

2.1.4 JOBS

Once subjects have learned how to use MECH from HELP and know something
about small engines from MOVE and TUTOR, they can begin practice at trou-

7

bleshooting. To make their first repair, they access a jobs menu, which presents
in-depth information about the first/next job. This job description may include the
owner of the engine, the type and model of the engine, the age of the engine, the
engine's maintenance history, the engine's repair history, and comments from the
owner about observed symptoms and possible faults. There is much flexibility in
exactly what kinds of information a subject receives.

Across problems, we can correlate various features of the job description with faults
to look at how subjects form generalizations about troubleshooting (e.g., whenever
the engine is a Tecumseh more than 3 years old, the problem is likely to be in the
electrical system; whenever there is smoke coming out of the exhaust, it is likely
that air intake into the carburetor is clogged). We can also look at remindings by
seeing whether the features of the current job cause subjects to look for a fault that
occurred in a previous repair having the same features.

JOBS also allows subjects to review previous problems they solved. One menu
option allows reviewing the jobs in order, listed by name. Another option allows
viewing specific pieces of information from a given job. Because subjects have to
ask specifically for each piece of information about a previous job, we are able to
keep track of exactly what they're interested in (through their keystroke file). This
will be useful assessing how subjects are generalizing, given they will probably want
to look up previous information in order to see if a generalization is warranted. For
example, a subject might want to look back over previous problems for which the
engine was only three months old to see if all engines were of the same type and
exhibited the same fault.

2.1.5 TESTS

Once subjects have read the description for the first/next job, they are free to
perform various tests on the engine's subsystems and components. A subject's goal
is to find and repair all faults in the current engine being repaired, where a fault can
be a malfunction in any subsystem or component (faults are preset by a parameter
file read in for the problem). Only one fault may exist, or there may be several.
When there is more than one fault, they may be related or unrelated, in the same
subsystem or in different subsystems. At any given time, the engine may be in
either an on or off state, since some tests require that the engine be on. If the
current faults preclude the engine being on, the subject will not be able to turn it
on to run these tests.

Whenever a subject performs a test, he or she receives feedback about the results.
The test may have been unnecessary, or it may have any number of other possible
outcomes. The outcome of a test depends on PRODUCTIONS associated with

8

it in the current parameter file for the problem. Each production has a set of
BROKEN CONDITIONS and a set of WORKING CONDITIONS that trigger it.
Broken conditions are engine components that must be broken for the production
to fire (i.e., faults that haven't been repaired yet). Working conditions are engine
components that must be working for the production to fire (i.e., faults that have
been repaired). If both sets of conditions are completely met, the message associated
with the production is presented to the subject as the outcome of the test. One
advantage of this approach is that the outcome of a given test can vary widely,
depending on the current state of other subsystems and components in the engine.
For example, imagine that there are obstructions in the carburetor, both for air and
fuel intake. Further imagine that a subject tests the cylinder to see whether it is
admitting air-fuel mixture. If neither the air or fuel intake has been fixed, subjects
receive a message saying that nothing is entering the cylinder; if the air problem
has been repaired, subjects receive a message saying that only air is entering; if the
fuel problem has been repaired, subjects receive a message saying that only fuel is
entering; if both have been repaired, subjects receive a message saying that the test
revealed no fault.

As can be seen from this example, a test can report that a component is not working
properly even though it is not a fault (i.e., the intake value of the cylinder may
report not receiving air-fuel mixture, not because the valve is broken, but because
other components connected by external relations are broken). By taking advange
of such relations, we can orient subjects toward causal reasoning about symptoms
and faults. Moreover, because a given problem takes both broken and working
conditions into account, it provides a dynamic testing environment in which the
outcomes of tests vary as a function of the repair process.

2.1.6 REPAIRS

A subject is free to make any repair at any time, regardless of whether it needs
to be done. If the repair was necessary, subjects receive a message saying that the
repair was needed. If the repair was unnecessary, subjects receive feedback saying
the repair was unnecessary. When a repair is made, the fault disappears, thereby
changing which test productions will fire. To see if the current engine has been
completely repaired, the subject can try to start the engine at any time. If no faults
remain, then the engine has been repaired, and the subject is asked to go on to the
next problem.

9

2.1.7 PAYOFFS

A cost is associated with every test and repair. Subjects receive constant informa-
tion about how much tests and repairs cost and how much cost they have incurred
cumulatively for the current job. Once a job is finished, subjects receive information
about the the optimal cost and the actual cost incurred. The payoff structure is set
up such that the closer subjects get to the optimal costs, the more money they can
make by being in the experiment. This will encourage subjects to learn two kinds
of information.

1. To the extent that subjects learn the structure and function of the engine,
they will be able to identify faults optimally. Because symptoms in the job
description may be causally related to the faults, and because multiple faults
may be causally related, subjects' understanding of engine subsystems and
operation will help them reason through problems as quickly as possible.

2. To the extent that subjects learn arbitrary correlations between irrelevant
(non-causal) features in the job description and faults, they will be able to
predict faults quickly upon initially reading about the job.

Consequently, MECH strongly encourages subjects to learn and discourages subjects
from using strategies such as breadth-first and depth-first search, which typically
are quite costly. Of interest will be the ways in which subjects utilize remindings
and generalizations to support optimal fault prediction. We can also use payoff
information to measure troubleshooting skill. To the extent subjects are good at
troubleshooting, their actual costs should approximate the ideal costs. As discussed
later, we plan to use this measure to see what kinds of learning conditions produce
the best skill at troubleshooting.

2.1.8 CURRENT STATUS

The version of MECH described here is nearly finished. We have a working version
up and running. However, there are several bugs that need to be handled and
a few minor features that need to be added. We anticipate having MECH fully
completed in about two weeks. Once it is, we will spend the next month testing it
and streamlining its user interfaces. We will also be developing problem sets that
explore various issues in causal reasoning, generalization, and reminding. All of
this preparation should be done by January 1, 1989, at which point we will begin
running pilot experiments on troubleshooting.

10

2.2 Theoretical Analysis

In this section we present theoretical analyses that we have performed in the process
of developing MECH and reading the literature. The principles in this section
structure the design of MECH and our experimental work. For these reasons, we
present our analyses in some detail.

2.2.1 Analogical Models

We have found that the following representational assumptions and entites go a long
way in accounting for the structural aspects of mental models. First, any mental
model is based on the following three representational assumptions:

1. ANALOGICAL MAPPING: There is generally a 1:1 mapping of components
and relations in a physical device to representations of components and rela-
tions in a mental model (Johnson-Laird, 1983).

" CAVEAT 1A: Not all components and relations in a physical device may
be represented in a mental model.

" CAVEAT 1B: Components and relations may not be correctly repre-
sented.

2. HIERARCHICAL ORGANIZATION: To the extent the organization of a
physical device is hierarchical, the organization of a mental model may be hier-
archical. More specifically, the device and the mental model both decompose
to subsystems, which in turn decompose to more specific subsystems, etc., be-
fore decomposing to terminal components. As discussed earlier, components
belonging to two subsystems may occasionaly violate the strict hierarhical
organization of components. Even with these violations, it is still possible
to decompose a device in a quasi-hierarchical manner that serves as a useful
organization of components. In a small engine, decomposition may procede
from the engine to the ignition and fuel systems, from the ignition system to
the magneto and spark plug, from the magneto to the breaker points and coil,
from the breaker points to terminal components such as the stationary point
and moving point.

3. MULTIPLE MODELS: A given mental model may be one of many possible
for the same physical device. There are many ways models can differ. There
can be be simple ways in which different people represent the same device
in slightly different ways, with there being more similarity than dissimilarity
between models. On the other, there may be multiple models for the same

11

device that capture fundamentally different kinds of I/O relations and serve
fundamentally different kinds of reasoning goals (e.g., White and Fredericksen,
1986).

Any hierarchically-organized mental model contains the following representational
entities:

" COMPONENTS: These include representations of the specific subsystems
that compose a more general subsystem, as well as the terminal components
of the most specific subsystems. In a small engine, components of the en-
gine include the fuel system and ignition system (decomposition of a general
subsystem to more specific subsystems); components of the coil include the
primary wire and secondary wire (decomposition of a subsystem to terminal
components).

" INTERNAL RELATIONS: These are representations of the input/output re-
lations between components of a subsystem. In the ignition system, these
include passage of current from the magneto to the breaker points to the
spark plug; in the fuel system, these include passage of fuel from the tank to
the fuel pickup pipe to the carburetor.

" EXTERNAL RELATIONS: These are representations of input/output rela-
tions from one subsystem to another. External relations are only possible
when a hierarchical decomposition of a mental model exists. Note that exter-
nal relations in some sense provide violations of hierarchical structure, since
they criss-cross the decomposition hierarchy in ways that violate class inclu-
sion. In a small engine, these include passage of current from the ignition
system to the cylinder assembly and displacement of the drive train by the
cylinder assembly.

Another kind of entity related to mental models seems quite interesting and im-
portant. It is similar to what Murphy and Medin (1985) and Schank, Collins, and
Hunter (1986) have argued structures categories:

* GENERAL PHYSICAL MECHANISMS: These are representations of gen-
eral physical mechanisms that in some way help integrate (at least initially)
the components and relations of mental models. Examples of such mecha-
nisms include the generation and amplification of electrical energy, the com-
bustion of air-fuel mixture, the build-up and dissipation of heat, lubrication,
and so forth. One way to think about these mechanisms is as very abstract

12

input/output relations between very abstract components. Once these mech-
anisms are understood, they become mapped into more specific applications
to help produce mental models. An interesting question is whether acquiring
them can should precede acquiring a mental model for a physical system or
whether they are more easily acquired after having gained knowledge of how
at least one physical system works. It is possible that the acquisition of a new
mechanism may cause a person to fundamentally restructure a mental model
(Collins, Salter, & Tenney, 198?).

2.2.2 Processing Mental Models

We have found that three kinds of rules go a long way in accounting for the pro-

cessing of mental models. They are:

1. QUALITATIVE REASONING RULES: These rules specify how the outputs
from one component determine the outputs of another. People use these rules
to simulate performance of the device. Series of these rules may be applied to
see how an input to one component produces effects over paths of relations that
emanate from the component. Following Hegerty et al. (1988), the operation
of these rules depends on the properties of the the respective components,
as well as on the inputs they receive (e.g., the rate of fuel flow through a
tube depends on its diameter, as well as on the amount of fuel it receives as
input). These properties and inputs provide constraints on the behavior of
components. Qualitative reasoning rules capture these constraints and allow
qualitative prediction about performance. More specific forms of these rules
may allow quantitative prediction.

2. SYMPTOM-FAULT RULES: These rules start with observed problematic
symptoms and provide hypotheses about what components might be at fault.
For a small engine, a symptom-rule might state that whenever there's a strong
gas smell during engine operation, check to see if the choke is broken. Another
rule might state that whenever the engine type is Briggs and Stratton, check
to see if the condenser is broken.

3. META-RULES: These include rules about how the topology of a mental model
should be searched to find a fault (e.g., breadth-first versus depth-first); rules
about the transitivity of qualitative reasoning rules (e.g., if component X
produces an input to component Y, and if component Y produces an input
to component Z, then X produces the input to Z); rules about how to handle
remindings; etc. In contrast to qualitative reasoning and symptom-fault rules,
meta-rules may be fairly domain independent. In general, meta-rules guide the

13

executive control of troubleshooting by setting goals, deciding how to handle
errors, handling interuptions and unexpected results, etc. (cf. Norman &
Shallice, 1986).

An organizational principle also seems important to processing:

COMPILATION: With practice at using any sequence of rules repeatedly, the
sequence may become compiled into a procedure that produces more efficient
processing in the future. Sequences of qualitative reasoning rules may become
automated for frequent kinds of qualitative reasoning. Sequences (or simulta-
neous sets) of symptom- fault rules may become automated to zero in quickly
on suspected faults. Sequences of meta-rules may become automated to min-
imize wasted resources and non-optimal behavior. Moreover, combinations of
different types of rules may become automated to the extent they frequently
occur in a systematic pattern.

2.2.3 Learning Mental Models

There appear to be two important kinds of learning that car. occur for mental
models: (1) learning a mental model; (2) learning to use a mental model for trou-
bleshooting a physical device. Learning mental models is addressed in this section;
learning how to troubleshoot is addressed in the next.

Learning a mental model can be assessed on the following six dimensions:

1. ACQUISTION OF COMPONENTS: To what extent are the components of
the physical device represented in the mental model?

2. ACQUISITION OF HIERARCHICAL STRUCTURE: To what extent is the
hierarchical organization of components in a physical device represented in
the hierarchical organization of components in the mental model?

3. ACQUISITION OF INTERNAL RELATIONS: Assuming components are hi-
erarchicstly organized in a mental model, to what extent are the components
within a particular subsystem integrated by the appropriate input/output
relations?

4. ACQUISITION OF EXTERNAL RELATIONS: Assuming subsystems are hi-
erarchically organized in a mental model, to what extent are they integrated
by the appropriate input/output relations?

14

5. ACQUISITION OF GENERAL PHYSICAL MECHANISMS: To the extent
that general physical mechanisms are important to properly integrating the
components of a mental model, to what extent are these mechanisms repre-
sented and integrated with the model?

6. ACQUISITION OF MULTIPLE MENTAL MODELS: To the extent that fun-
damentally different models can usefully represent the same device, to what
extent have they been represented and integrated?

2.2.4 Learning to Troubleshoot

Learning how to use a mental model during troubleshooting can be assessed on the
following five dimensions:

1. USE OF REMINDINGS: To what extent do people use previous problem
solving episodes to solve new problems (Ross, 1984)? The natural contrast is:
To what extent do people use meta-rules such as breadth- first search to solve
problems? Related issues include: What characteristics of the current problem
trigger a reminded episode? What information about a previous problem gets
stored in an episode? What information is utilized from an episode? How is
this information used in the current problem? What kind of generalization
takes place as a result?

2. ACQUISITION OF SYMPTOM-FAULT RULES: To what extent do people
develop symptom-fault rules? Are they generalized from a single episode
or from several? If several, how many? What information do they keep?
What information do they throw away? Note that other information besides
symptoms may constitute the triggering conditions of these rules (e.g., kind
of engine, maintenance history, etc.) How are symptom-fault rules related in
memory to the episodes that produced them?

3. ACQUISITION OF QUALITATIVE REASONING RULES: To what extent
have rules been acquired that allow accurate simulation with the model? To
the extent these rules are present, accurate prediction of how the system will
behave should be possible given an input. Of interest is whether predictions
about normal functioning are more accurate than predictions about how the
engine functions when broken.

4. ACQUISITION OF META-RULES: To what extent do people develop var-
ious high-level rules and strategies such as breadth-first search to support
troubleshooting? To what extent are meta-rules created for troubleshooting

15

the current device, versus being adapted from some other domain? What
aspects of the current troubleshooting create or modify these rules?

5. FURTHER ACQUISITION OF THE MENTAL MODEL: To what extent
do people continue developing knowledge of the mental model during trou-
bleshooting? All six kinds of learning described in the previous section could
occur. To the extent such learning takes place, what conditions promote it?

2.3 Experimental Techniques for Studying the Learning and

Troubleshooting of Mental Models

2.3.1 Measuring the Acquisition of Mental Models

This section proposes specific ways to study the acquisition of mental models. The
next section proposes ways to study the acquisition of troubleshooting.

Earlier we presented six kinds of learning that could occur for mental models: acqui-
sition of components, hierarchical structure, internal relations, external relations,
general physical mechanisms, and multiple mental models. In the context of us-
ing MECH, we are not currently able to study the acquisition of general physical
mechanisms or multiple mental models (although MECH could be made to handle
these with a moderate amount of effort). Consequently, we are only in a position
to address the acquisition of components, hierarchical organization, internal rela-
tions, and external relations. Arguably, however, these are the most basic aspects
of mental models to study.

1. TIMECOURSE ISSUES. There are four timecourse issues that must be con-
sidered in assessing acquisition. They are:

(a) RELATIVE ACCRUAL OF COMPONENTS AND RELATIONS: What
kinds of information accrue early in the acquisition of a mental model?
What kinds of information come in late? Do components generally pre-
cede internal relations? Do external relations generally precede internal
relations? Some theories make these predictions. On the other hand,
these various types of information may accrue at relatively equal rates.
Another issue concerns the heigth of information in the topology of the
engine. Are components and relations from higher-level subsystems ac-
quired faster than components and relations from lower-level subsystems?

(b) RELATIVE ACCRUAL OF ORGANIZATION: How does the organiza-
tion of a mental model change over time? Are early models relatively

16

unhierarchical, with later models becoming increasingly differentiated
according to subsystems? Or are early models primarily organized hier-
archically in terms of components, with later models become organized
more functionally by internal and external relations?

(c) RELATIVE LOSS OF COMPONENTS AND RELATIONS: After a
model has been acquired, which kinds of information are retained the
longest and which are forgotten most rapidly? For example, are compo-
nents better remembered than relations? Are external relations remem-
bered better than internal relations? Are components that are involved
in more relations better remembered than components involved in fewer
relations? Is information higher in the hierarchy better remembered than
information lower in the hierarchy?

(d) RELATIVE LOSS OF ORGANIZATION: To what extent is organiza-
tional information lost over time? What kinds of organizational infor-
mation are best remembered? Is loss of organizational information de-
pendent on hierarchical height? Is organizational information lost more
rapidly than component information?

2. EXPERIMENTAL TECHNIQUES. The following experimental techniques
can be used to address these questions:

(a) MEASURING MENTAL MODELS AT VARIOUS POINTS IN LEARN-
ING. Subjects could receive multiple tutoring sessions on a physical de-
vice, with the same material being presented in each session (i.e., utiliz-
ing MECH under experimenter control). At the end of each session, we
could assess a subject's current model with various recall and recognition
measures. By coding responses with respect to components, internal re-
lations, external relations, organization, and hierarchical height, we can
assess how much of each kind of learning occurred. By comparing these
measures across sessions, we can see what kinds of learning occur early
versus late during acquistion of the model. In other words, we can track
the timecourse of learning for these various aspects of the mental model.

Another way to do this study would be to allow subjects to use MECH
however they wish to tutor themselves (i.e., utilizing MECH under sub-
ject control). We could stop subjects at various points and assess their
memory for the different kinds of information. Subjects could return for
subsequent sessions of a similar type. By also seeing how subjects search
through the tutor to learn, we can also get a sense of the kinds of infor-
mation they want to see early in learning versus the kind of information
they want to see late.

17

(b) MEASURING MENTAL MODELS AFTER VARYING DELAYS. After
subjects have achieved some criterial level of learning, we can test them
after varying delays (e.g., immediately, 1 day, 1 week, 2 weeks, 4 weeks, 3
months, 6 months, 1 year). This could be done both between and within
subjects. Between-subjects testing would allow the best assessment of
what kinds of information are lost at what rate over time. Within-
subject testing, in conjunction with between-subject testing, would al-
low assessing the extent to which testing maintains the mental model in
memory. More specifically, subjects could be tested after 1 week, again
after 1 month, again after 6 months, and again after 1 year. Of interest
would be seeing how their forgetting at each point in time compared to
the forgetting of the comparable between-subjects group. Another use-
ful manipulation would be to run a third condition in which subjects
received tutoring instead of testing. More specifically, subjects could be
tutored again after 1 week, again after 1 month, again after 6 months,
and again after 1 year. Of interest would be seeing how their forget-
ting at each point in time compared to the forgetting of the comparable
within-subjects, testing group. Does subsequent tutoring or testing best
maintain a mental model in memory?

(c) MODERATION BY LEARNING CONDITIONS. Actually, assessing the
accrual and loss of information in mental models may be moderated by
learning conditions. For example, some learning conditions may optimize
the learning of components, others may optimize the learning of relations,
etc. Several examples of learning conditions are:

9 LEARNING COMPONENTS FIRST WITHOUT LEARNING RE-
LATIONS OR ORGANIZATION

* LEARNING INTERNAL RELATIONS WHILE LEARNING COM-
PONENTS

e LEARNING THE HIERARCHICAL ORGANIZATION OF COM-
PONENTS WHILE LEARNING COMPONENTS

* LEARNING HIERARCHICAL ORGANIZATION AND EXTER-
NAL RELATIONS WHILE LEARNING COMPONENTS

The central issue in the above learning methods concerns the proper
mix of information to give subjects at various points in learning. Does
compartmentalizing information lead to faster or slower learning, and
does it lead to better or poorer memory? Or does mixing various types
of information optimize learning and memory? If mixing is better, then
what are the optimal mixes? Over what timecourse? The basic way
to answer these questions is simply to manipulate learning conditions
and observe the effects on learning and retention. Another interesting

18

learning mode is:

* LEARNING ABOUT COMPONENTS, RELATIONS, AND OR-
GANIZATION IN THE CONTEXT OF TROUBLESHOOTING

Subjects may acquire information about a mental modej faster if they
are trying to troubleshoot it then if their task is simply to memorize
the material. This kind of learning may also produce the best retention
of mental models. One problem is that the haphazardness of problem
solving may make it difficult for subjects to receive systematic and ex-
haustive coverage of the engine's structure and function. Consequently,
a mix of troubleshooting and tutoring may be optimal.

2.3.2 Measuring the Acquisition of Troubleshooting

Earlier we presented four kinds of learning that could occur during troubleshooting:
remindings, symptom-fault rules, qualitative reasoning rules, and meta-rules. In the
context of using MECH, we are currently able to study all four.

The following nine paradigms may provide various insights into the role that re-
mindings, symptom-fault rules, qualitative reasoning rules, and meta-rules play in
the development of troubleshooting expertise:

1. THE DISTRIBUTION OF STRATEGY TYPES OVER THE DEVELOP-
MENT OF EXPERTISE

2. FACTORS THAT DETERMINE REMINDINGS

3. FACTORS THAT DETERMINE THE USE OF SYSTEM-FAULT RULES

4. FACTORS THAT DETERMINE THE USE OF QUALITATIVE REASON-
ING RULES

5. FACTORS THAT DETERMINE THE USE OF META-RULES

6. THE EFFECT OF MENTAL MODELS ON TROUBLESHOOTING

7. THE EFFECT OF TROUBLESHOOTING ON MENTAL MODELS

8. THE ORGANIZATION OF TROUBLESHOOTING EPISODES IN MEM-
ORY

9. THE CONTENT OF EPISODES AND SYMPTOM-FAULT RULES.

Each of these nine paradigms is discussed next in turn.

19

1. THE DISTRIBUTION OF STRATEGY TYPES OVER THE DEVELOP-
MENT OF EXPERTISE. The basic question is: To what relative extents
do subjects use remindings, symptom-fault rules, qualitative reasoning rules,
and meta-rules over the development of expertise. Do novices initially use
meta-rules such as breadth-first and depth-first search to find faults? Do they
sometimes use qualitative reasoning to map symptoms onto possible faults?
After subjects have performed a number of troubleshooting episodes, do they
start using remindings to guide search? Once they have been reminded a few
times, do they start using symptom-fault rules that are generalizations of re-
mindings? After subjects have acquired symptom-fault rules, what do they do
upon receiving a problem that bears no resemblance to a previous problem?
Are they more likely now to use qualitative reasoning, or do they fall back on
meta-rules? Does the likelihood of qualitative reasoning increase or decrease
with experience?

We can study these questions by giving subjects problem sets of 100 problems
over several hours, for example, where each problem presents a broken engine
with one or more faults. By manipilating the similarity of job; characteristics
across problems (i.e., customer, engine type and model, symptoms, mainte-
nance history, previous repairs, customer observations, and faults), we can
create conditions that will produce remindings and generalizations. We can
identify the use of various strategies using the following techniques:

(a) META-RULES. If subjects are using meta-rules such as breadth-first and
depth-first search, then we will be able to determine this by the pattern
of their keystrokes (which are stored completely during troubleshoot-
ing). Subjects using breadth-first search, for example, should test all the
highest-level systems first before proceeding to more specific subsystems
and terminal components.

(b) QUALITATIVE REASONING RULES. If subjects are using qualita-
tive reasoning rules, then we should see two sorts of patterns in their
keystrokes. First, if subjects draw qualitative inferences from symptoms
to faults, we should see them go directly to the correct fault without
going through something like breadth-first or depth-first search. For ex-
ample, the symptom "strong smell of gas while engine is running" is
connected by various qualitative rules to the choke, throttle, and air in-
take. If the subject immediately tests these components, we can assume
they are pursuing qualitative reasoning of a sort. Second, subjects may
use the outcome of a test to direct search, rather than continuing with a
meta-rule. For example, if a subject discovers that no fuel is reaching the
cylinder and that the intake valve is not broken, then the subject may
reason that something in the carburetor must be clogged or broken.

20

(c) REMINDINGS. If subjects are using remindings, then upon receiving a
job that shares characteristics with one previous job, they should imme-
diately test the component(s) at fault in the previous job. They should
not use a meta-rule or qualitative reasoning to determine search.

(d) SYMPTOM-FAULT RULES. If subjects are using symptom-fault rules,
then upon receiving a job that shares characteristics with two or more
previous jobs, they should immediately test the component(s) at fault
in the previous job. It is essential to note that subjects could be using
reminndings at this point. In general, it is difficult if not impossible to
discriminate exemplar from generalization models, empirically speaking.
There may be a fundamental indeterminacy problem here that can not be
resolved, much like the indeterminacy problems for serial versus parallel
processing and imaginal representations versus propositional representa-
tions. Nevertheless, we may discover that there are ways to differentiate
these accounts, and we will attempt to do so. Otherwise, we will proba-
bly make a theoretical assumption that subjects who show learning after
receiving two or more problems of a particular type have extracted a
symptom-fault rule. Issues concerning the induction of symptom-fault
rules are addressed in a later section.

In summary, we will use patterns in subjects' keystroke files, in conjunction
with our knowledge of the problems they have received, to assess their strate-
gies in locating faults. Again, our primary interest will be to see the relative
extent to which these strategies are used over the development of expertise.

2. FACTORS THAT DETERMINE REMINDINGS. Basic questions include: To
what extent must the current job overlap in features with a previous job for
the previous job to be reminded? What kinds of features produce the most
frequent remindings, holding amount of overlap constant? Are remindings
more likely to occur early in learning rather than late? To what extent must
a previous job have occurred recently for it to be reminded? Finally, imagine
that a previous job (the "target job') is similar to the current job on several
features. Further imagine that we vary the extent to which other previous
jobs are similar to target job on features different from those shared by the
target and current jobs. Does this decrease or increase the probability of the
current job reminding the target job? In other words, if the target job is part
of a cluster that may have been generalized, how does this affect accessibility
of the target?

We can study all of these questions in MECH by constructing pairs of problems
that overlap on certain features. We can manipulate the number of shared
features, the type of shared features, the number of intervening problems,

21

and whether the pair occurs early or late in learning (holding the number
of intervening problems constant). We can also manipulate the similarity of
previous problems to the target. In all cases, we can assume reminding has
occurred if a subject first tests the same component that was at fault in the
target problem.

3. FACTORS THAT DETERMINE THE USE OF SYSTEM-FAULT RULES.
Basic questions include: To what extent must two or more jobs overlap in
features for a symptom-fault rule to be constructed? What kinds of features
are most likely to produce a symptom-fault rule, holding amount of overlap
constant? How does the probability of forming a symptom-fault rule increase
with the number of similar jobs? Are symptom-fault rules more likely to de-
velop late in learning rather than early in learning? Are massed or distributed
episodes more likely to produce symptom-fault rules? When a symtpom-fault
rule is formed, what information is extracted? Only information that can be
related to the fault by qualitative reasoning? Or irrelevant information as
well? If irrelevant information is included, is it just as likely to trigger the
symptom-fault rule as is relevant information? Finally, how are symptom-
fault rules related in memory to the episodes that produced them? Are they
clustered together such that activating the symptom-fault rules also activates
the episodes? Or are they stored separately?

We can study all of these questions in MECH by constructing sets of problems
that overlap on certain features. We can manipulate the number of shared
features, the type of shared features, and the number of problems sharing
features. We can manipulate whether similar jobs are massed or distributed
and whether they occur early or late in learning. We can see whether the
conditions for a symptom-fault rule contain irrelevant as well as relevant in-
formation by seeing if later problems that only contain the irrelevant informa-
tion fire the rule. In all cases, we can assume that a symptom-fault rule has
been formed if a subject first tests the same component that was at fault in
the previous problems that produced the rule. Again it is important to note
the difficulty of disciminating pure exemplar accounts from generalization ac-
counts. Whether a symptom-fault rule is stored with its episodes is addressed
in the paradigm that addresses the organization of episodes, discussed below.

4. FACTORS THAT DETERMINE THE USE OF QUALITATIVE REASON-
ING RULES. Basic questions include: Does prior training on the structure
and function of a physical device transfer to qualitative reasoning during trou-
bleshooting? If a subject first learns internal and external relations from a
tutor; does this later facilitate reasoning about how a symptom might be pro-
duced by a faulty component? Or about how a faulty component might affect

22

another component? Perhaps subjects really only learn to reason qualitatively
in the process of troubleshooting. If so, then what types of troubleshooting
experience best promote the acquistion of qualitative reasoning rules? To the
extent problems form predictable clusters and produce predictive symptom-
fault rules, do subjects not learn to reason qualitatively? To the extent prob-
lems don't have much predictive structure at all, do subjects primarily use
meta-rules and forego qualitative reasoning? Does qualitative reasoning pri-
marily develop when subjects are faced with relatively novel problems, where
knowing qualitative relations between components can facilitate search? If so,
do these problems promote better qualitative reasoning skills than learning
about qualitative relations from a tutor?

We can study these problems in MECH in a couple of ways. First, we can
vary the kind of tutoring a subject receives before troubleshooting to see if
tutoring affects the ability to reason qualitatively. If tutoring can promote this
skill, then we should see benefits from some types of tutoring but not others.
Second, we can study qualitative reasoning by controlling the composition
of the problem set. We can manipulate the amount and type of predictive
structure in the problem set to see if these factors determine how well subjects

reason qualitatively.

Measuring the ability to reason qualitatively can be done in two ways. First,
we can ask subjects specific questions about the relations between two compo-
nents. For example, "If the magneto is broken, what other components might
not function properly." Or, "If the magneto is not working properly but is not
broken, what other components might be broken, thereby causing the magne-
toto malfunction." Second, we can observe qualitative reasoning indirectly by
looking at how subjects search for faults. On some problems, symptoms may
be qualitatively related to the faults. If subjects are good at qualitative rea-
soning, they should make the connection and find the fault quickly. On other
problems, we can direct subjects to a component that is not broken but that
is not working properly. If subjects are good at qualitative reasoning, they
should converge quickly on the faulty component that is making the unbroken
component perform improperly.

5. FACTORS THAT DETERMINE THE USE OF META-RULES. Basic ques-
tions include: Do subjects generally prefer breadth-first or depth-first search?
What conditions promote these preferences? What other general rules do
subjects develop to direct problem solving?

To see whether subjects prefer breadth-first to depth-first search, we will in
some-cases present them with problem sets that have no predictive structure
and see what they do. To see whether different conditions promote these

23

two types of search, we will simply note situations where a particular type of
search is preferred. At this point, it is not clear what these situations might
be. As far as other general rules, we again don't have any specific hypotheses
and will simply be on the look out for systematic patterns that suggest the
use of meta-rules.

6. THE EFFECT OF MENTAL MODELS ON TROUBLESHOOTING. The
basic question here is: What effect does prior tutoring on a mental model
have on troubleshooting? Are subjects any better at troubleshooting after
having learned the structure and function of the device to be repaired? If
so, then are particular types of tutoring better than others at promoting
troubleshooting skill? Does focusing on hierarchical structure during tutoring
encourage breadth-first and depth-first search during troubleshooting? Does
exposing subjects to all the possible tests and repairs during tutoring lead
to better troubleshooting later? If so, does presenting tests and repairs work
best when they are presented breadth- first, depth-first, or following paths of
qualitative reasoning?

To assess this question, we will tutor subjects in various ways described in
Section III.A and see what kinds of tutoring produce the best troubleshoot-
ing. We will also include a condition with no troubleshooting to see if these
subjects do as well as tutored subjects. The measure of troubleshooting abil-
ity will simply be how quickly subjects find faults (i.e., how closely actual
costs approximate ideal costs in the payoff structure). We wiil also look more
specifically at the abilities to reason qualitatively, to use meta-rules, and to
construct symptom-fault rules, all of which may be affected by various kinds
of tutoring.

7. THE EFFECT OF TROUBLESHOOTING ON MENTAL MODELS. The
basic question is: What effect does troubleshooting have on learning mental
models? Do people learn mental models better in the context of troubleshoot-
ing than in a tutoring context? If troubleshooting primarily serves to increase
the quality of a mental model, what kinds of changes does it produce?

We can explore these questions by assessing people's mental models after trou-
bleshooting, using all the same measures described earlier in Section III.A

(e.g., knowledge of components, internal relations, external relations, hierar-
chical organization). If troubleshooting alone produces better learning than
tutoring alone (given a constant amount of time spent), then troubleshooting
subjects should score higher on these measures than tutoring subjects. To see
how troubleshooting changes already established models, we can first tutor
subjects on a mental model, then have them perform troubleshooting, and
then assess their mental model. We can compare these subjects to others who

24

were tutored but who did not perform troubleshooting. We can then see what
kinds of differences exist between the mental models of these two groups on
our variety of memory measures.

8. THE ORGANIZATION OF TROUBLESHOOTING EPISODES IN MEM-
ORY. The basic question is: How are episodes integrated with symptom-fault
rules and qualitative reasoning rules? If subjects store episodes with the rules
that identified their faults, then subjects should later cluster episodes that
share a common rule. For example, if several episodes involved the same
qualitative reasoning rule, then these episodes should be recalled together.
If several episodes involved the same symptom-fault rule, then these episodes
should be recalled together. Another possibility is that subjects store episodes
according to the topology of the model, with each episode being associated
with its fault(s) or with every component that was tested.

We can assess this issue by asking subjects to recall all previous jobs at the
end of troubleshooting. To the extent that subjects have organized exemplars
according to particular organizational principles, we should see jobs clustered
in those ways.

9. THE CONTENT OF EPISODES AND SYMPTOM-FAULT RULES. The
basic question is: What information is recorded in memory for episodes and
symptom fault rules. Are memories of episodes biased toward information
relevant to finding the fault? Or is irrelevant information remembered well,
too? Do symptom-fault rules contain only predictive information? Or do
subjects also generalize over irrelevant information that is not predictive?

To assess these questions, we can ask subjects to recall information about
previous jobs and about the conditions of symptom-fault rules. For episodes,
we can give subjects enough information to identify a job and then ask them
to recall the remaining details. We can further probe their memories by
specifically asking them to recall the type of engine, the maintenence history,
etc. For symptom-fault rules, we can give subjects a fault that occurred in
more than one job and ask them to provide characteristics shared by jobs
having that fault. Again we can probe subjects by specifically asking them
to recall the type of engine, the maintenence history, etc. Using these recall
techniques, we can assess the information stored with episodes and symptom-
fault rules.

25

2.4 Current and Future Experiments

2.4.1 Current Experiment

We are currently in the process of performing our first learning experiment, which
had the following three purposes. First, we wanted to compare several modes of
learning to see which is optimial. Actually we expected to find that different modes
have different strengths and weaknesses, rather than there being a simple rank or-
dering of modes from best to worst. Second, we wanted to identify the fastest but
most effective way to teach subjects about a small engine so that they can start
learning about troubleshooting as quickly as possible in later experiments. Third,
we wanted to get a general feel for how subjects acquire knowledge about the struc-
ture and function of small engines. We thought we might observe some interesting
phenomena that would stimulate further hypotheses about how people acquire men-
tal models for physical devices. We have almost completed this experiment, with
nearly all the data collected at this point.

In this experiment, subjects first acquire information about a small gasoline engine
and then perform two tests of what they have learned. One manipulation-and the
only one between subjects-concerns how subjects acquire information about the
engine. Subjects acquire information about the engine in one of the following five
ways:

" SYSTEMS ONLY: the tutor component of MECH presents the 19 system
descriptions for the engine in a controlled, top-down manner

" TERMINAL COMPONENTS ONLY: the tutor component of MECH presents
all descriptions for terminal components from the engine in a controlled man-
ner

" SYSTEMS AND COMPONENTS: the tutor component of MECH presents
all system and terminal component descriptions for the engine in a controlled,
top- down manner

" SUBJECT CONTROL: subjects control the tutor component of MECH to
acquire whatever information they wish about the engine

" BOOK: subjects read the sections of the book from which all the information
in the tutor component of MECH was drawn

Of general interest is whether MECH promotes better learning than book learning
and whether subject control is better than experimenter control. Of more specific

26

interest are the relative merits of the different modes for acquiring specific types of
engine information. Which modes lead to the best learning of components? Which
lead to the best learning of internal relations? Which lead to the best learning of
external relations? Which lead to the deepest learning, hierarchically speaking (i.e.,
which promote learning of the most specific subsystems)?

After subjects acquire information about the engine, they are tested first for cued
recall and then for recognition. In cued recall, a subject receives the name each sub-
system, one at time, and has to describe its structure and function. In recognition,
subjects perform a timed true-false test on statements about components, internal
relations, and external relations from all 19 subsystems.

We have developed a coding system for the cued recall test that specifies the com-
ponents, internal relations, and external relations that could be recalled for each
subsystem. We also have coding categories for various types of errors that subjects
may make in recalling these types of information. Of interest will be how correct
recall and errors vary with learning mode.

2.4.2 Future Experiments

At this point, we have no plans to run any further learning experiments during the
remainder of this contract, although we are very interested in extensively studying
the learning of mental models at a later time. Instead we plan to focus our modest
resources for the coming year on running some initial studies of troubleshooting.
In particular, we plan to explore several of the nine paradigms described in Section
III.B. At this point, we are not sure exactly which paradigms we will have explore
first. As can be seen from that section, however, there is no shortage of things to
do. Eventually we would like to explore all of these paradigms.

3 Learning by Understanding Expert Diagnoses

Diagnosis of malfunctions in complex systems requires a great deal of domain specific
knowledge, and any diagnostic reasoner must either already have this information
or must be capable of learning it. A frequent means of human instruction in many
diagnostic domains is the presentation of cases for students to solve, followed by
an instructor solving those same cases. This is true in wide ranging areas such as
automobile mechanics, medicine, and management strategy.

In human protocol studies of diagnostic behavior, Lancaster and Kolodner [1987,
1988] examined the evolution from novice to expert in auto-mechanics students.

27

One type of learning observed in these protocols was "Learning By Understanding
Explanations" (LBUE) [Redmond and Martin 1988]. In LBUE, a student, who has
only an incomplete understanding of auto diagnosis and repair, follows along as an
instructor explains how to diagnose a problem in a particular car, making inferences
from the instructor's explanations and actions. When the instructor explains some-
thing that deviates from the learner's understanding, the learner debugs his model,
adding or changing information. In addition, the learner generates diagnostic short
cuts, called symptom fault sets, which directly associate a given fault with possible
hypotheses.

In this paper, we present a computational model of LBUE that is implemented in
two computer programs EDSEL1 and EDSEL2 (Explanation and Diagnosis: The
use of Symptoms, hypotheses, and Explanations for Learning). The novel charac-
teristic of this approach is its ability to use new knowledge that is provided by an
instructor to fill gaps and debug an incomplete and incorrect causal domain model.
LBUE begins to explain how two different students, with differing initial knowledge,
might learn different information from the same example.

The paper will present the general concept, discuss how our approach deals with
issues in completing and correcting causal models, and present the two preliminary
implementations.

3.1 LBUE - General Process

3.1.1 Introduction

Learning by Understanding Explanations (LBUE) assumes that if a reasoner can
explain a teacher's actions, then she can more appropriately generalize what is
learned. The explanation will help identify novel situations in which the action is
also appropriate. This is essentially the foundation of explanation based learning
(EBL) [DeJong, 1983; DeJong & Mooney, 1986; Mitchell et al., 1986]. However,
LBUE further acknowledges that the reasoner may not yet know enough to provide
a complete explanation. In such a case, the teacher might provide a partial expla-
nation that could assist the student in forming a complete account of the action.
If a complete explanation can be formed, then the conditions under which the ac-
tion is appropriate can be generalized. Furthermore, the student simply can learn
the information contained in the partial explanation with the hope that the new
information will help explain the instructor's actions in future situations.

For example, an instructor in diagnosis tells students the hypotheses that he gener-
ates given a certain problem state. The students must then explain why a particular
hypothesis is appropriate and what about the problem state makes it appropriate.

28

If the student can account for such hypotheses, then that student will be better
able to generate appropriate hypotheses in the future. If, on the other hand, the
student is too much of a novice to understand a given hypothesis, then the instruc-
tor can provide a partial explanation that will direct the novice to a more complete
understanding. Not only will the novice be able to generate appropriate hypotheses
in the future, but she will also be better able to explain future hypotheses.

The LBUE technique generalizes beyond diagnosis. A mathematics instructor who
is teaching algebra tells students what transformations are appropriate given a par-
ticular series of symbols. Again, it is the students' job to explain why a particular
transformation is appropriate and what it is about the series of symbols that makes
the transformation appropriate. Just as in the diagnosis example, the instructor can
provide novices with the knowledge necessary to explain the application of transfor-
mations. So again, the novice will not only learn what transformations to perform
and when, but will also be better able to explain why particular transformations
are performed.

The general LBUE process, which follows, allows the student to improve his per-
formance and to improve his explanation of an instructor's actions.

1. Instructor states and refines the problem's initial state and goal.

2. Student attempts to generate an action.

3. Instructor generates an appropriate action.

4. Student attempts to explain the instructor's action.

5. Instructor provides a partial explanation of the action.

6. Student adds the partial explanation to their knowledge and uses it to attempt
complete explanation of the instructor's action.

7. If the student generates an explanation in steps 4 or 6, then the explanation
will be used to generalize the conditions under which the action is appropriate.

The student, in general, requires a background domain model that is not necessarily
complete or consistent and a set of procedural or declarative rules that direct the
search for explanations in the current domain. An example of these rules include:

e A hypothesis is explained by causally connecting it to an observed symptom.

e A transformation is explained by causally connecting it to either a major or
minor goal of an algebra problem.

29

3.1.2 Diagnosis as LBUE

The EDSEL LBUE research specifically explores a student's explanation of an in-
structor's hypotheses and subsequent explanations in a diagnostic domain. When
the student is attending to an expert's diagnosis, she must make inferences from
the given information to fill in the omitted information. In general, the instructor
cannot explain everything at every level of detail. One way to infer the missing
information is to attempt causal chaining. When the student is told a symptom,
she may construct backward causal chains to all possible findings that could lead to
that symptom. When she receives a hypothesis, she might build forward chains to
all possible findings that could be caused by the hypothesized fault. If forward and
backward chains meet, then the student has an explanation for the hypothesis and
thereby has filled in the omitted information. The student might finally collapse
the chain into a fault and symptom pair and save that as a symptom fault set. The
collapsed chain could then be used more efficiently in future, similar situations.

Often a student will not have enough information to explain the hypothesis. In this
case, the instructor's explanation can be useful. First, if the explanation represents
a new causal relation, such as X causes Y, it can be added directly to the causal
domain model with high credibility. Second, it may allow bridging a gap to complete
a causal chain, thus enabling the student to add a collapsed causal chain as a new
association in the causal knowledge, as in EBG. Third, when the explanation does
not complete a chain, the student may still infer that the hypothe.sized fault causes
X, and that Y causes the symptom, though there may be unknown intermediate
causal links.

The LBUE concept goes beyond explanation-based methods by being able to use
new information to complete a causal chain that would not be possible otherwise.
As has been noted by many researchers [Mitchell et al., 1986], EB methods do not
generate any knowledge that the student or automated reasoner does not already
have; rather, existing knowledge is reorganized to be more useful. In collapsing the
chains, the LBUE method has some similarities to Explanation-Based Geneiiza-
tion (EBG) [Mitchell et al., 1986] and Explanation-Based Learning (EBL) [DeJong
& Mooney 19861. The student has used available knowledge to form an explana-
tion, which is then stored for later use, somewhat like a macro operator in STRIPS
[Fikes et al., 1972]. The LBUE concept goes beyond explanation-based methods by
allowing learning of truly new information and allowing collapsing of a causal chain
when the domain theory is incomplete.

30

3.1.3 An Example

A example will illustrate the ideas and introduce the LBUE algorithm for diagnosis.
An instructor may present the student with a malfunctioning car in which the engine
cranks but does not start. She may suggest a hypothesis that the distributor cap
is cracked. The student may know, from whatever sources, that for a car to start,
the starter motor must turn, and combustion must occur. The student may further
know that for combustion to occur, there must be fuel mixed with air in the cylinder,
and a spark from the spark plug. Therefore, the student might reason backwards
from the symptom:

(not (start engine)) is-caused-by

(not (combustion cylinder)) is-caused-by
(not (ignite spark-plug))

However, he might not know what a cracked distributor cap can cause, so he does
not understand why that fault was hypothesized. In other words, he might not be
able to reason from (CRACKED DISTRIBUTOR-CAP) to what that condition causes.

The instructor might then provide a partial explanation that a cracked distribu-
tor cap can allow moisture to collect inside the distributor. The student did not
previously know this causal relationship, and the relationship could not have been
generated without some outside information. The student, using the new informa-
tion, might finally be able to completely explain the hypothesis:

(cracked distributor-cap) causes

(contains distributor-cap moisture) causes
(low (input spark-plug electricity) causes

(not (ignite spark-plug)) causes

(not (combustion cylinder)) causes
(not (start engine))

A completed explanation of this form will be termed a causal chain. With the
complete causal chain, the student understands the hypothesis (and the explana-
tion). He can learn that a cracked distributor cap causes the symptom of the engine
cranking but not starting. If the student was missing the fact that moisture in the
distributor cap can cause less electricity to reach the spark plug, he may still be
able to infer that fact based on the explanation having been given by the trusted
expert in conjunction with general knowledge about water's effect on electricity.
In summary, the partial explanation permits complete causal chaining, it assists
the student in directing the search for relevant causal relationships, and it can be
learned to improve future explanations of hypotheses.

31

3.1.4 Algorithm

LBUE, as applied to learning automobile diagnosis from examples, requires a very
straightforward algorithm as illustrated in the above example. The algorithm must
process symptoms, hypotheses, and explanations, and must add to the causal do-
main model when possible. An outline of this algorithm as it may be carried out
by humans or artificial reasoners follows.

1. From the symptom, chain backward toward possible findings.

2. From each hypothesis, chaih, forward toward possible effects.

3. If the symptom chain meets a hypothesis chain, then the generalization that
(cause hypothesis symptom) is added to the symptom fault table and to the
causal domain model.

4. If the chains do not meet,

(a) Chain backwards from the explanation toward the hypotheses.

(b) Chain forward from the explanation toward the symptom.

(c) If both directions can be linked, then the most general relationship (cause
hypothesis symptom) can be learned.

5. Add explanation to the causal domain model.

This algorithm is a specialization of the student portion of the general LBUE process
(section 2.1) for diagnosis.

The inputs to the algorithm are a diagnostic example and an initial causal do-
main model (see section 3). The output is an updated causal domain model and a
cognitive trace of the learning process. The following knowledge may be learned:

1. new objects,

2. structural relationships between objects,

3. new causal information, and

4. new symptom fault knowledge.

After this learning, the causal domain model is more capable of verifying an expla-
nation, and diagnosis is more efficient and more powerful for the same or similar
problems.

32

3.1.5 Example 2

The algorithm is demonstrated in two further examples. For clarity, all examples
present a single path through the causal model, rather than the tree-like search
that is more typical. The current example diagnosis demonstrates learning with
just the symptom and hypothesis, without requiring an explanation. The symptom
that the instructor reports is slow cranking of the engine. The student chains
backward hypothesizing that the crankshaft is spinning slowly, that the starter
motor is spinning slowly, that the battery is not generating much electricity:

(slow (crank engine)) --> ; meaning of the engine cranking
(slow (spin crankshaft)) --> ; cause

(slow (spin starter-gear)) -- > ; cause

(slow (spin starter-motor)) --> ; cause
(low (contains starter-wire current)) -- > ; cause

(low (generate battery electricity))

The student achieves this backward chaining by using information about normal
function and how, in general, modification of that normal function modifies the rest
of the mechanism.

The instructor then suggests the hypothesis that a cracked wire can cause the
observed symptom of slow cranking of the engine. The student, if applying the
algorithm, chains forward, inferring that the battery cable may be carrying less
than normal current, that the starter receives less power, and that the wire in the
starter receives less electricity:

(cracked battery-cable) -- >

(low (contains battery-cable current)) -- > ; cause

(low (input starter current)) --> ; cause
(low (contains starter-wire current))

In this example, the symptom and hypothesis chains meet, so an explanation is not
required. The student would then understand the instructor's hypothesis, and is
able to learn a new symptom-fault set and add the relationship

(cause (cracked battery-cable) (slow (crank engine)))

to the causal domain model.

33

3.1.6 Eymple 3

As in the first example, the student does not always have enough domain knowledge
to fully understand an instructor's hypothesis. When an explanation is given, an
important gap in the student's knowledge may be filled, thereby allowing completion
of a causal chain. Additionally, the explanation may assist the student in directing
the search for relevant causal relationships. For example, there are potentially
many causal chains that might be constructed when the symptom is that the car is
stalling. The explanation can help determine which of many chains is relevant.

Suppose that the instructor presents a situation in which the car has stalled. The
student chains backward, hypothesizing only that there might not be combustion
occurring in the cylinders:

(not (run engine)) -- > ; meaning of a stalled engine

(not (spin crankshaft)) -- > ; cause
(not (down-stroke cylinder)) -- >

(not (combustion cylinder)) ; any cylinder.

The instructor then provides the hypothesis that the butterfly valve of the choke
assembly is stuck. Forward chaining would reveal:

(not (movable butterfly-valve)) -- >

(low (flow air carburetor))

In this case, the forward and backward chains do not meet, and the student does
not know or cannot retrieve any causal relationships that might connect the chains.
However, if the instructor provides the explanation that low air flow into the car-
buretor leads to a low air/gas mixture as the air passes the fuel float bowl then the
following results:

(not (movable butterfly-valve)) -- >

(low (flow air carburetor))
(low (mix air gas))

(not (combustion cylinder))
(not (down-stroke cylinder)) -- >

(not (spin crankshaft)) -- >

(not (run engine))

This example of explanation demonstrates how a new causal relationship may be
added, (low (flow air carburetor)) = (low (mix air gas)) , and how an existing causal

34

relationship that was not accessed or was not known to apply, (low (mix air gas))
=:: (not (combustion cylinder)), can be used. The student, therefore, understands
the instructor's hypothesis, and is able to learn a new symptom-fault set and add
the relationships

(cause (low (flow air carburetor)) (low (mix air gas)))
(cause (not (movable butterfly-valve)) (not (run engine)))

to the causal domain model. The following section will be more explicit about what
is contained in the causal domain model.

3.2 Causal Domain Models

Causal domain models describe some complex system to allow a reasoner to perform
tasks such as diagnosis, prediction or simulation. They are usually used to represent
physical devices, but can in general represent any system including biological and
social systems. Causal domain models may represent only the normal behavior
of the system, or may represent both normal and faulty behavior. The benefit of
reasoning from causal domain models is that more knowledge is available to the
reasoner than just simple associations. Circumstances or problems that had not
been anticipated can be handled by making inferences from the normal function.
This generates a more robust, less brittle problem solver. Chandrasekaran and
Mittal's [1982] MDX demonstrated this by generating rules from a model of normal
function to provide a more complete understanding of the modeled system. Johnson-
Laird [1983] has argued that people achieve their high level of performance by
building "mental models", rather than just reasoning from propositions. A simple
causal domain model would correspond to his concept of relational models, a more
complex model would correspond to his temporal model concept.

In order to support the type of reasoning desired and displayed by humans, a causal
domain model must represent several different types of information. A component's
inputs and outputs should be represented. This allows the reasoner to trace inputs
and outputs until a problem is found. If component x does not have the proper
output, then if its inputs are correct it is not working correctly. If it receives bad
input then the component that is supposed to produce that input as its output
is suspect. In a simulation task, representing inputs and outputs allows reasoning
about the effects of changing something in the system.

A closely related type of knowledge is that of connections between components. This
allows tracing effects to components that might not seem to be related based on
inputs and outputs, but which are adjacent. For example, the adjacency between

35

coolant and an engine causes the engine to cool down. Abbott [1988] gives the
example of the blade of a fan breaking off and damaging nearby components.

A second type of knowledge necessary in a causal domain model is information that
represents a partonomic hierarchy. Any given component is part of a more complex
component, and is made up of less complex parts. Sometimes it is better to reason
at more abstract levels, such as the fuel system causes fuel to get from the gas
tank to the carburetor, or that the charging system is not working. Other times
it is more useful to reason at a more detailed level, such as that the starter motor
brushes cause a reverse in polarity, causing the motor to spin the pinion gear, or
that the carburetor discharge check valve is stuck. For example, Lancaster and
Kolodner [1987] observed that the advanced students and experts tended tc, '-,rv
out diagnosis in a hierarchical manner, isolating the faults first to an abstract level,
then refining it to a more detailed level. This could also be applicable in simulation.
The higher level simulation can be done first, then more detailed simulation can be
done if time and resources permit. Or the most critical part could be refined while
other parts are left less specific.

A third type of necessary knowledge is an arrangement of components into a spe-
cialization or isa hierarchy. The reasons for this are similar to those for having a
partonomic hierarchy. Such a hierarchy allows reasoning at the appropriate level
of abstraction. In this case, it enables reasoning about belts, gears, hoses, or wires
when appropriate, instead of always at the level of a specific component.

Lastly, and probably most importantly, there must be a representation of causal-
ity. This describes the function of the system and at least indirectly the way the
system malfunctions. A reasoner is able to test the reasonableness of a hypothesis
by explaining or simulating its probable effects. As mentioned above, the causal
knowledge used to explain or simulate can either reflect normal or faulty function-
ing. In addition to being important in its own right, causal knowledge also enables
learning, as we discuss in the context of LBUE.

The knowledge necessary in a causal domain model can be shown with examples
from EDSEL1 and EDSEL2. The implementations represent components of the
car in a manner roughly equivalent to frames [Minsky 1975] or objects [Goldstein
1980]. Information about any system component includes all of the above types of
knowledge. For example, Figure 3 shows a representation of a starter, and Figure
4 shows a more detailed representation of a carburetor barrel from EDSEL2.

As many AI researchers have discovered, complete and consistent causal domain
models are very difficult to design and maintain. In fact, even the human designer
of such models often does not have an error free understanding of the system to be
modeled. Fortunately, people, including AI researchers, are able to function success-
fully with clearly incomplete, inconsistent models of the world. For example, many

36

people believe the intuitive, but long since disproved, impetus theory of physics.
An important goal for AI research is to allow an artificial reasoner to also function
successfully with incomplete, inconsistent models. AI causal domain models will
be increasingly incomplete and inconsistent as the complexity of the modeled sys-
tem grows. For example, in EDSEL2 an admittedly incomplete representation of a
carburetor involves 25 frames. In creating large models of entire systems, human

working memory limitations prevent noticing most contradictions, since all asser-
tions cannot be compared with all related assertions. We will next discuss how a
human or automatic reasoner can recognize what knowledge is missing from the
causal domain model, and how the reasoner can correct the deficiencies using the
LBUE approach.

3.3 Issues for Completing and
Correcting Causal Models

Two major problems arise because complete and correct causal models for non-
trivial systems are, in general, unattainable. First, the reasoner must use the domain
model while it is incomplete and incorrect to generate acceptable diagnoses. Second,
the reasoner must augment and correct the model. The LBUE approach addresses
both of these problems. Furthermore, LBUE is not sidetracked by coincidences the
way similarity based learning approaches are, and the method does not attempt
to extend the explanation of the diagnosis to the level of quantum mechanics. In
this section we will discuss how LBUE addresses the problem of augmenting and
correcting the causal model.

As discussed above in Section 2, a good diagnostic reasoner tries to explain why
an hypothesis causes a symptom. It is, in fact, this process that allows for the
recognition of different types of missing information, and that mediates the ad-
dition of knowledge to the causal model. The process of explaining hypotheses
identifies just that information that might be useful for diagnosis because diagnosis
is itself explanation, and hence requires the same information. That is, performing
a diagnosis requires knowledge of causal relationships that lead from the symptom
to the fault, which are the same relationships required to explain the instructor's
hypotheses. The following discusses the types of information that can be missing
from the causal domain model, how that information can be detected and added,
and how inconsistent knowledge is handled. This section elaborates on a discussion
of these issues in Martin and Redmond [1988].

37

3.3.1 Types of Missing Knowledge

The causal model can be missing several types of knowledge. These include some
of those mentioned in Section 2.4:

e Causal relationships

* Other relationships between objects

e Objects.

This also includes nonoptimal organization of the knowledge that would lead to in-
efficiency in diagnosis. We do not discuss symptom-fault associations here, because
we currently consider them as separate from the model.

Causal Relationships

The most important type of missing knowledge is 'causal relations'. In general, a
causal model may be missing many causal relations that are necessary for diagno-
sis. A reasoner will recognize that they are missing a causal relationship when an
explanation of a symptom cannot be formed, either while watching an instructor or
while actually doing diagnosis. As well, there are situations in which an unknown
causal relationship will be presented to the reasoner. Both possibilities are simple
to detect, the former when causal chaining fails or when no reasonable hypothesis is
generated, and the latter,,4hen the reasoner is actually told that something is miss-
ing. For instance, in Example 3 (section 2.6) above, when the backward chaining
from the symptom

(not (run engine))

and the forward chaining from the hypothesis

(not (movable butterfly-valve))

have been attempted, the reasoner knows that he is missing knowledge, since he
cannot explain why the instructor would make that hypothesis. Also, when the
explanation,

(cause. (cracked distributor-cap)
(contains distributor-cap moisture)).

38

contains knowledge that the causal domain model does not contain, the reasoner
only needs to check the model to realize that the information is missing.

Other Relationships

Another form of missing knowledge that is easily detected are 'referred-to facts'.
These facts can involve various non-causal relationships. Specifically, when an ob-
ject or general relationship between objects is asserted, but is not known, then it is
missing from the model. Somewhat more interesting, though, are when such rela-
tionships are merely implied. The reasoner guesses he does not know an implied fact
when a causal relationship is stated that the reasoner believes requires a mediating
fact. For example, a reasoner may know,

(INTERLOCKED gearl gear2) & (SPIN gearl 'clockwise)
-- > (SPIN gear2 'c-clockwise)

and an instructor may state,

(SPIN starter-gear 'clockwise)
-- > (SPIN flywheel-ring-gear 'c-clockwise)

From this, the reasoner will recognize that he may be missing a fact (i.e., that the
two gears are interlocked).

Objects

The domain model must add a necessary object when a hypothesis, symptom or
explanation refers to the object and the reasoner cannot retrieve any information
about the object when he tries to form an explanation. As long as the reasoner
does not need to reason about the object he can remain blissfully ignorant of its
existence, thus avoiding the need to understand atoms and molecules.

Inefficiency

In a sense, inefficiently represented knowledge is a type of incomplete knowledge.
The information that is needed is in the causal model, but is not useful because
either it cannot be accessed, it is given insufficient credibility, or it leads to slow
processing. We refer to this type of missing information as efficiency information.
The reasoner must be able to arrive at a reasonable or correct hypothesis quickly. If
he cannot, the causal model must be modified to ensure timely and correct diagnoses
in the future. The reasoner can recognize that he is missing this kind of information
if he arrives at an incorrect hypothesis during diagnosis or is slow at generating a
correct hypothesis.

39

3.3.2 Methods of Handling Incomplete Knowledge

The LBUE approach handles each of the above types of missing knowledge. We
will discuss the methods for adding missing:

" Causal relationships

" Other relationships between objects or facts

" Objects

" Efficiency information

Causal Relationships

An instructor's explanation of a given hypothesis can lead to information being
added in three different ways:

" The explanation is an unknown causal relationship.

" The explanation can enable filling a gap in a causal chain.

" The lack of a complete explanation can trigger an inference that enables filling
a gap in a causal chain.

An example of the explanation itself being an unknown causal relationship which
can be added to the model directly follows. If the instructor explained that,

(cause (corroded battery-terminals)
(not (connect battery battery-terminals)))

and this relationship was not associated with either battery or battery-terminals in
the causal model, then it can be added there. The second way that the instructor's
explanation can be used is to enable filling a gap in a causal chain. Either the
explanation filled the gap, or it was a better cue to information that was not being
accessed in the causal model. If, as in Example 3 (section 2.6) above, the causal
chain that can be built from the symptom (NOT (RUN ENGINE)) is:

(not (run engine)) -- >

(not (spin crankshaft)) -- >

(not (down-stroke cylinder)) -- >

(not (combustion cylinder))

40

and the causal chain that can be built from the associated hypothesis (NOT (MOVABLE

BUTTERFLY-VALVE)) is:

(not (movable butterfly-valve)) -- >

(flow air carburetor low)

then there is a gap in the causal chain - the hypothesis is not fully explained. If
the instructor provides the explanation that low air flow into the carburetor leads
to a low air/gas mixture as the air passes the fuel float bowl then the following
results:

(not (movable butterfly-valve)) -- >

(flow air carburetor low) -- >

(mix air gas less) -->
(not (combustion cylinder)) -- >

(not (down-stroke cylinder)) -- >

(not (spin crankshaft)) -- >

(not (run engine))

Not only is the causal relationship from the explanation used in filling the gap,
but the relationship that (MIX AIR GAS LESS) causes (NOT (COMBUSTION CYLINDER))

is accessible under carburetor when it had not previously been available. Between
these two processes, the causal gap is filled, and a new causal relationship can be
added to the model.

The third way in which the instructor's explanation can be used is to infer a rela-
tionship that would fill a causal gap. If the explanation is not sufficient to fill the gap
as discussed above, causal relationships, which are implied by the expert instructor,
can be inferred. The instructor implies that there is a causal chain between the
hypothesis and symptom and that the explanation lies along this causal chain. In
general, gaps will be filled with inferences if there is some knowledge that indicates
that a cause is plausible. For example, a cracked wire can cause low electricity
because (a) wires conduct electricity, and (b) a conduit affects what it conducts.
An inferred cause is given lower credibility than other learned relationships. In sit-
uations where there are several plausible but mutually inconsistent inferences that
might fill a gap, the chosen causal relation could depend on confirmation from the
instructor.

Other Relationships

Knowledge can also be added 'to an incomplete causal model by inferring facts
from a cause. This would occur as a result of the starter-gear/ring-gear example

41

mentioned above. In that case, the reasoner will infer that the starter gear and ring
gear are interlocked.

Objects

A newly discovered object cannot be fully specified when it is added to the model,
since the object is only indirectly taught. The object, though, can be included in
the model along with any knowledge explicitly given, such as a causal relationship
given in the explanation involving the object. It is conceivable that the object could
be determined to be an instance of something more specific in the isa-hierarchy
than 'object', thus enabling more class information to be inherited, but this is not
currently done in either implementation.

Efficiency Information.

The final type of missing information that a reasoner must handle is efficiency in-
formation. For instance, the explanation can allow the access of knowledge that
could not previously be accessed. Additionally, filling a gap in a causal chain, as
discussed above, is a way of dealing with some inefficient knowledge. This allows
collapsing the chain into a single causal relationship, which can be used for more
efficient processing. In order to allow for proper generalization of variables when
collapsing a causal chain [DeJong & Mooney, 1986j, a substitution list is kept that
indicates to what categories each feature in the example was matched when instan-
tiating the causal relationships. The collapsed chain then uses the most general
category that describes a particular feature as the variable name l the antecedent
or consequent of the new causal relationship.

3.3.3 Inconsistent Knowledge

Since new information is being added to the causal domain model there is a possi-
bility that a contradiction may occur. This raises three issues that we will discuss:

" Types of inconsistencies

" Detection of inconsistencies

* Handling of inconsistencies.

Types of Inconsistencies

A contradiction could arise in many different ways. There might be two pieces of
knowledge such that

42

(corroded battery-terminals) -- >

(connect battery battery-terminals)

and (corroded battery-terminals) -->

(not (connect battery battery-terminals))

A circular chain might be possible from known information, such that a condition
indirectly causes a contradiction of the condition:

(corroded battery-terminals)

-- > (not (connect battery battery-terminals))

-- > (not (spin starter-motor))
-- > (not (spin starter-gear))
-- > (not (corroded battery-terminals))

or such that a condition indirectly causes itself.

Detection of Inconsistencies

Contradictions may not be detected inunediately, though, because the causal in-
formation is distributed throughout the causal model, and beiause an arbitrary
amount of causal chaining might be necessary to detect the contradiction. A causal
relation indexed under one car component in the model might contradict a causal
relation indexed under another component. Without an exhaustive search of the
model before or after each addition to the model, it is impossible to guarantee that
the model will be completely consistent. Even more seriously, since the inconsis-
tency may not be detected without exploring all possible causal inference chains
derivable from the model, checking for inconsistency is intractable. One heuristic
method for correcting some inconsistencies is to use the problem solving task to
drive inconsistency detection. When the reasoner constructs a causal chain, she
checks the chain for contradictions. This is limited to direct contradictions, with
no inferencing done beyond the already built causal chain. This method limits the
amount of work done.

Handling of Inconsistencies

In cases where the new input is found to be inconsistent, the source of the infor-
mation is the first information used to decide what to believe. Knowledge from the
expert is given precedence over inferred, learned, or background model information.
Information that contradicts the expert can either be removed or its strength can
be decreased. When both pieces of information were inferred, or one was inferred
and the other is background information, the piece with higher plausibility value
or strength is more highly believed. As with expert information, the lesser believed
information is removed or its strength is decreased.

43

3.4 Implementations

Implementation of the general model described above has followed two parallel
paths, EDSEL1 and EDSEL2 (Explanation and Diagnosis: The use of Symptoms,
hypotheses, and Explanations for Learning). This decision was made because the
research is exploratory and, therefore should generate several alternative approaches
to the problem. This allowed parallel exploration of the problem space, and did not
require premature agreement on one approach. Both implementations are models
of the auto-mechanics student evolving to greater expertise. EDSEL1 uses a fine-
grained network representation of the causal model, while EDSEL2 uses a more
traditional frame or object based causal model. These alternatives can be produc-
tively compared. An additional advantage of the separate implementations is that
the different programming efforts highlight different inconsistencies and difficulties
with the model, possibly producing a more general theory than would arise from a
single implementation. Descriptions of each of the implementations follow.

3.4.1 EDSEL1

One of the implementations, EDSEL1, is based upon a simple active semantic net,
similar in process to local connectionist models such as McClelland and Rumel-
hart's [1981] interactive activation model. This approach was taken to examine
how parallel competitive activation might be applied in LBUE diagnosis.

LBUE Process

In a diagnosis training example, EDSEL1 receives input, consisting of symptoms,
hypotheses, and explanations of those hypotheses, as described above in the gen-
eral algorithm section (section 2.4). The symptom will trigger backward chaining
through the existing causal knowledge where the chaining is guided by weights on
the causal links that indicate credibility or likelihood. The underlying causal knowl-
edge was designed with reference to Kuipers [1984] and DeKleer and Brown [1981].
To process the symptom, the system attempts to discover the most likely cause.

As the instructor progresses in the problem, she will suggest possible hypotheses.
For each, the system will try to explain why that hypothesis would cause the symp-
tom, again the search is guided by weights on the causal links. If a causal chain can
be ound from the hypothesis to the symptom then a "short cut" cause is added,
of the form (cause hypothesis symptom). The antecedent of the collapsed cause
would also include any preconditions of causes in the causal chain, (cause (prel 8
pre ... 8 hypothesis) symptom). This essentially establishes the causal context
in which the hypothesis causes the symptom. The procedure is simple until one
considers variables in the antecedents and consequents. In order to allow for proper

44

generalization of variables [see DeJong & Mooney, 19861, a substitution list is kept
that indicates to what slots or frames each feature in the example was matched
in order to instantiate each causal relationship. The collapsed chain then uses the
most general frame that consistently refers to a given feature as the frame name in
the antecedent or consequent of the new causal relationship. For instance,

(drop ?object) -- > (fall ?object)

(fall ?object) -- > (forceful-contact ?object ?surface)

(forceful-contact ?rubber-object ?surface) --> (bounce ?rubber-object)

applied to '(drop ball)' would result in,

(drop ?rubber-object) --> (bounce ?rubber-object)

where '?object' and '?rubber-object' are abstractions that serve as variables. The
algorithm in this implementation for collapsing chains differs from the general al-
gorithm in that the frame substitution list is applied while collapsing.

When explanations enter the system, they are assumed to indicate what causal gap
filling is required. They may simply fill a gap themselves, or they may refer to causal
knowledge that the system already has as indicated in section 4.2.1. The explanation
is handled by continuing to process the previous hypothesis, emphasizing those
chains that contain the explanation. Failing that, the system attempts to fill causal
gaps from the end of all hypothesis chains to the provided explanation and from
that explanation to the start of all backward chains from the symptom.

If the system is still unable to find a causal chain even after given an explanation, it
attempts to bridge a gap between two partial chains. This is the situation depicted

in section 4.2.1. When no chain is found, several possible incomplete paths may
have been considered. If the end of an incomplete chain can be connected to the
beginning of a chain from the symptom, then that causal gap will be filled and the
entire chain collapsed as above. Causal gaps, however, will be filled only if there is
an explanation or some general knowledge that indicates that a cause is possible.
An example of this possibility is that, a cracked wire might be assumed to cause
low electricity because (a) wires conduct electricity, and (b) a conduit affects what
it conducts. This is a reasonable guess given some general knowledge about what
causes what.

Whenever erroneous causes are encountered, they are given lower strengths or
weights, but retained to be used if all other alternatives fail to be useful for di-
agnosis. An incorrect cause as discussed in section 4.3 might have the form (cause
A B) where the instructor states or implies that (cause A C) and the system knows

45

.- at B and C are incompatible states - states that cannot coexist. The behav-
.or of this subsystem would be improved if the system attempted to explain the
contradiction in order to isolate its necessary and sufficient features.

The system currently learns and partially debugs information necessary for diagnos-
tic performance. It acquires new causal information, collapses chains of reasoning
for more efficient use, and reduces the weight of causes that contradict what the
instructor states or implies is a true causal relationship.

Representation and Basic Processes

The representation used in EDSEL1 is essentially a network of parallel comput-
ing elements connected by weighted links. This is currently implemented on a
sequential machine using what amount to weighted rules to handle the links. The
connectionist idealization was adopted because it provides an efficient algorithm for
competition between weighted rules and because it has potential as a human model.
This metaphor when combined with distributed representations may also allow a
future version of EDSEL1 to take advantage of similarities between rules.

Figure 5 demonstrates the network organization of EDSEL1 and shows how the
network can support the frame/slot/value notion. In particular, the figure depicts
the knowledge that a battery is connected to a starter motor by a wire that con-
ducts electricity. It uses an abstraction about conduits that connect objects to
organize the information. In this case, 'connectOO' is a frame that inherits slots
from connect. 'Input', 'output', and 'conduit' are all slot names, and 'material' and
'flow-obj' are slot names for the frame, 'conduit'. Additional token nodes, such as
'inputOO' are specialized slot names that are required for unambiguous interpreta-
tion of the network. In general, interpretation of this knowledge is performed by
simple competitive spreading activation from the slot name and the frame name to
the value or values. For instance, the value for the 'conduit-material' of the connec-
tion from the battery is 'electrical wire'. As this example demonstrates, slot names,
such as 'input', can be more general than the token nodes, such as 'inputOO'. This
is possible because the system knows the abstract category to which each token
belongs.

Causal information is represented in the same manner, using a 'cause' slot and
the antecedent as the frame. Figure 6 presents an example of this general method
for representing causation. It depicts the fact that dropping an object makes it fall
which, in turn, causes it to contact the ground. When there are multiple antecedents
for a particular consequent or multiple consequents for a particular antecedent, the
mechanism places the multiple values in competition. In particular, all links in the
representation have associated weights that determine the strength of each of the
possible results. Each of the competing values also inhibits the other's strengths in

46

proportion to their own strength. The result is that one of the possible values will
have a very high strength and that value will be used for later processing. Figure
7 depicts a symptom - the car cranks, but does not start - that could be caused
by one of two possible faults. Either the distributor cap contains water or the fuel
line contains dirt. Suppose that the weight on the link between 'containOOl' -

the first hypothesis - and the symptom is 0.7; and that the weight on the link
between 'clogOO' - the second hypothesis - and the symptom is 0.5. When the
symptom, 'cranks, but does not start', is active, it sends activation along its links in
proportion to those weights. Clearly, 'containOOl' will receive the highest activation
and then will further inhibit 'clogOOl'. The frame names that are causally related
to the symptom receive higher activations than do other related frames because the
cause slots are activated by the request for causal information. Therefore, the best
answer to a 'cause' request will be a value or frame associated to a cause unless
none exists. What is the point, one might ask, of having multiple possible answers
to a request if the same one is always chosen? In fact, the multiple possible results
can all be generated by the mechanism, depending on what additional facts happen
to be true in a given situation. For example, if the system knows that a lot of
water was introduced to the engine, 'containOOl' would easily receive the highest
activation. However, if the system knew that dirt had been introduced to the fuel
tank, then the second hypothesis, 'clogOO', might edge out the other hypothesis by
virtue of additional activation from the 'clog' slot.

Example

Figure 8 displays a small amount of causal information that a mechanic might have
about a battery and electricity. The figure includes knowledge about leaks, but
not about what a leak can cause. It also has information about what happens
when the ignition switch is turned on, the function of a battery, and what flows
between the battery and the starter motor. If an instructor states that he believes
that a hole in a battery may be causing slow cranking of the engine system and
that holes cause leaking, then Figure 9 is the resulting memory structure. Note
that the system learned that holes cause leaking, battery holes cause electrolytes to
leak out, and that a battery hole causes slow cranking of the engine system. The
reader should note that, for simplicity, the figures only represent small pieces of the
resulting knowledge and that they omit the connections to the rest of the causal
domain model. As well, both models omit multiple chains.

In contrast to Figure 8, if another mechanic is given the same information, but
begins not knowing that batteries contain electrolytes, s/he will learn that there
is some liquid in a battery that is necessary to output full electrical power and
that this liguid is called 'electrolyte'. This demonstrates that the existing state of
knowledge in the system can help determine what is learned. The system learns

47

what it does not know and it may learn those facts at varying levels of specificity,
depending on the inferences that can be made.

In summary, this implementation learns enough to reproduce causal chains that
it encountered in the training examples. Future directions will include allowing

greater learning about the instructor's strategies from the explanations, and allow-
ing learning of the abstract knowledge necessary to evaluate causal gap filling in the

absence of an explanation.

3.4.2 EDSEL2

Representation

The second implementation, EDSEL2, uses an enhanced version of the causal do-
main model described in Allison [1987].

The representation uses structure like frames [Minsky 1975] or objects [Goldstein
1980]. It uses basic frame system functions developed by Tom Hinrichs for JULIA
(1988]. The current form of the causal domain model contains essentially 5 different

types of frames. There are frames for

1. objects, including car components,
2. predicates,
3. modifiers,
4. features, and
5. relations.

The largest percentage of the causal domain model is frames for objects. Every
system, component, and part should be represented by a frame. This is certainly

not the case at this point, only the starter and the carburetor have been represented
in detail with multiple levels of abstraction. Other parts of the car have been rep-
resented at only one level, mainly major parts such as battery, air filter, alternator,
and battery cables. Car components are frames with slots for

" parts - the objects that comprise the given object

" part-of - the higher level entity that the object is part of

* input - objects that the object needs to function, and their source

* output - entities that the object produces, and where they go

" connected-to - objects that this object is connected to

48

e causal relations - what the object is supposed to do and how it fails, repre-
sented in terms of relationships between components.

This representation constructs a partonomic hierarchy, as well as representing the
normal functioning of the car and creating a isa hierarchy. So far no effort has been
expended on dealing with different cars having different parts. At this time, the
model has on the order of 125 objects.

All predicates such as CORRODED, CONNECTED, CRANK, CONDUCT, and HOLE,
and all modifiers such as levels - HIGH, LOW; speeds - FAST, SLOW; sizes - LARGE,
SMALL; quantities - MORE, LESS; and derivatives - INCREASE, DECREASE are also
represented by frames so that they can be interpreted by more general functions.
Frames were created for predicates so the system could reason about predicates
rather than having knowledge of predicates embedded in the code. For example,
a predicate such as connected must be handled differently than a predicate such
as corroded. If some state or action causes something to be corroded, then that
is knowledge about problems rather than normal function. Also, some predicates
refer to one object (e.g. corroded) while others refer to two objects (e.g. connected).
A nice frill is the specification of the type of modifier the predicate takes. The
specification of the type of modifier for the predicates relies on the definition of
modifiers. Modifiers are predicates that modify other predicates, such as speed,
size, quantity, etc. If something causes an object to have a hole, then a greater
magnitude of that something will cause (large (hole ...)). If something causes an
object to be clogged, then a greater amount will cause it to be (more (clogged
...)). The predicate 'hole' is modified by a size, while 'clogged' is modified by a
quantity. These types of modifiers are defined with greater than normal and less
than normal values. This allows the system to reason about modifying predicates.
For example, as in the above discussion of predicates, it can be important to know
if something implies a greater than normal value. Also, based on these frames it
can be determined that (slow (crank ...)) is the opposite of (fLst (crank ...)).

There are frames for features, that is for slots. For example the car model and the
symptom are slots for a problem. There is a frame for 'symptom' that lists the
type of data to expect and whether the slot is salient. If salient features can be
learned then the frames can be modified; this structure does not necessarily imply
an a priori assignment of feature salience.

Relations are sort of higher order predicates, a predicate that refers to predicate(s).
They are defined somewhat like predicates, since they are more like predicates than
modifiers. The main reason these are currently needed is for the number-of-claus
slot which helps process clauses involving them by specifying how many places they
require. This is not very refined as of yet, 'cause', 'not', 'and', and 'or' are the only
defined relations at this time.

49

Process

The process at first closely follows the general concept presented in section 2.4. We
will note correspondences to the steps in that algorithm. The process is pictured

in Figure 10. We will use Example 3 (section 2.6) above to demonstrate the steps,

and the learning possible.

From the symptom presented as input to the system, the system chains backward
toward possible causes (Step 1). In the case of Example 3, the system would chain
backwards from

(not (run engine))

to

(not (spin crankshaft))

to

(not (down-stroke cylinder))

and finally get no farther than

(not (combustion cylinder)).

Thus (NOT (RUN ENGINE)) would be S in Figure 10, and (NOT (COMBUSTION
CYLINDER)) would be Z in Figure 10.

From the presented hypotheses, the system chains forward tcward possible effects
(Step 2). In the case of Example 3 (section 2.6), the system would chain forward
from

(not (movable butterfly-valve))

and not get any further than

(low (flow air carburetor)).

Thus (NOT (MOVABLE BUTTERFLY-VALVE)) would be H in Figure 10, and (LOW
(FLOW AIR CARBURETOR)) would be A in Figure 10.

If the chains meet, as in Figure 10(a), then the generalization that the hypothesis
causes the symptom is added to the symptom fault table, and to the causal domain
model under the components invclved in the symptom and hypothesis (Step 3). For

example, if the system had been able to chain as far forward as

(not (combustion cylinder)).

50

in Example 3 (section 2.6), then that would have been both A and Z, and the
relationship

(CAUSE (not (movable butterfly-valve)) (not (run engine)))

could be learned and stored in the symptom fault table and also stored in the causal
relations under butterfly-valve and engine in the causal domain model.

If the chains do not meet, as in Figure 10(b) where nothing in the chain from H
to A matches anything in the chain from S to Z, then an explanation is needed
in order to understand. This is the actual case in Example 3 (section 2.6), and
the instructor provides the explanation that low air flow into the carburetor leads
to a low air/gas mixture as the air passes the fuel float bowl. The explanation
given by the instructor is intended to clarify the reasons for making the hypothesis.
Therefore, it is information that he considers hardest or least likely to be known by
the students. It can be added to the information in the causal domain model, and
can frequently aid in bridging the causal gap between the chains. This is done by
using causal information included in the explanation, and causal information in the
causal domain model under the car component(s) referred to in the explanation.

The system tries to chain backwards from the component involved in the expla-
nation toward the forward chain built from the hypothesis (Step 4a). In Example
3 this does not yield anything new, since the explanation points forward and the
carburetor had already been cued, so no new relationships were made accessible.

Then the system tries to chain forward from the component involved in the expla-
nation toward the backward chain built from the symptom (Step 4b). In Example
3 this means chaining from

(low (flow air carburetor))

to

(low (mix air gas))

to

(not (combustion cylinder)),

which of course fills the causal gap.

This process is illustrated in Figure 10(c), where chains are built from E to B in an
attempt to meet the chain from H to A, and from E to Y in an attempt to meet

51

the chain from S to Z. In this case, Y = (NOT (COMBUSTION CYLINDER)), and
B = E = (LOW (FLOW AIR CARBURETOR)).

If either direction of chaining is successful in closing a gap, then a causal relationship
can be learned. This is illustrated in Figure 10(d), where since A and B represent
the same thing, the chains from H to A and from E to B meet, and the partial cause
(cause H E) can be learned. This is one difference from the general algorithm. This
could be the case in Example 3, since the gap, in the opposite direction, from E =

(LOW (FLOW AIR CARBURETOR)) to Z = (NOT (COMBUSTION CYLINDER)) is
filled (since Y = Z), the short collapsed chain

(CAUSE (low (flow air carburetor)) (not (combustion cylinder))

can be learned. However, in this instance more valuable information can be learned.

If both directions can be linked, as in Figure 10(e) where A and B represent the
same thing and Y and Z represent the same thing, then the most general relationship
(cause hypothesis symptom) (or (cause H S)) can be learned with confidence (Step
4c). This is the actual case in Example 3, since A = B = E = (low (flow air
carburetor)) and Y = Z = (not (combustion cylinder)), and the relationship

(CAUSE (not (movable butterfly-valve))(not (run engine)))

can be learned.

If either direction is unable to link, the system infers that the gaps between the
chains can be filled, based on the expert instructor having given the hypothesis and
the symptom. This is shown in Figure 10(f) where A and B represent the same
thing, but nothing in the chain E to Y matches anything in the chain S to Z. The
inference is made that smallest gap should be filled ((cause Y Z)). This is the second
difference from the general algorithm. In Example 3, if the system did not have the
information that

(CAUSE (low (mix air gas)) (not (combustion cylinder)))

available, then Y = (low (mix air gas)) and Z = (not (combustion cylinder)), and
the system would infer (with lower plausibility than other things learned) that the

relationship

(CAUSE (low (mix air gas)) (not (combustion cylinder))).

52

holds.

Consistency

Detection of Inconsistencies

The system resolves contradictions in the causal domain model by checking for a
contradiction whenever causal information is added. The check is only done for
the frame where the information is being added; no causal chaining is done. For
example, if a relationship

(CAUSE (low (mix air gas)) (not (combustion cylinder)))

exists in the causal domain model indexed under the carburetor, and a somewhat
contradictory relationship

(CAUSE (low (mix air gas)) (low (combustion cylinder)))

is added to the causal domain model under the cylinders, the contradiction will
not be detected. This is necessary computationally, since contradictions could ex-
ist in any number of somewhat related locations. Also, the contradiction could
be more subtle, where it would take several steps of causal chaining before it is
discovered. Section 4.3.2 discusses this more fully. Exhaustive checking would be
highly inefficient. This is in accord with the algorithm proposed by Johnson-Laird
[1983], in that contradictions are dealt with only when necessary, when parts of a
causal domain model are connected. However, it differs in that his process, once
contradictions are detected, exhaustively tests the model for consistency.

Handling of Inconsistencies

If a conflict exists, the piece of information with the higher credibility will be re-
tained. If

(CAUSE (low (mix air gas)) (low (combustion cylinder)))

is indexed under the carburetor with a fairly high plausibility, and the system
attempts to add

(CAUSE (low (mix air gas)) (high (combustion cylinder)))

53

under the carburetor, with a low plausibility, then the existing relationship will be
retained and the new possibility discarded. On the other hand, relationships given
by the instructor, such as

(CAUSE (low (flow air carburetor))(low (mix air gas)))

are given high plausibility and would replace a relationship incorrectly learned by
the system such as

(CAUSE (low (flow air carburetor))(high (mix air gas)))

if it was indexed under the same component (carburetor in this case).

3.4.3 The Effect of Learning

EDSEL2 shows two effects of learning:

" In succeeding episodes different information will be learned.

" Succeeding diagnosis will be better and/or faster.

Succeeding Learning Episodes

The system learns different information when the causal domain model is in a dif-
ferent state. Figures 11, 12, 13, 14, and 15 demonstrate this principle. Figure 11
shows a subset of the causal knowledge in the working model before one learning
episode. Figure 12 shows a simplified trace of the system's processing of a learning
episode. Figure 13 shows the causal knowledge subset modified based on the learn-
ing episode. Figure 14 shows part of the trace of a second run, after the knowledge
has been added to the model, and Figure 15 shows the further modified model
subset.

The initial state of part of the model is shown in Figure 11. Only the causal
relationships are shown, and only a few frames. In the processing shown in Figure
12, the system first processes the symptom

(NOT (CRANK ENGINE-SYSTEM))

and builds a chain of related findings through

(NOT (CRANK CRANKSHAFT)).

54

(NOT (CRANK STARTER)).

to

(NOT (CRANK STARTER-GEAR))

(The clause (NOT (CONNECTED STARTER BATTERY-CABLES)) is a different possible

branch in the chaining, which will not be of interest in this case). Next the system
processes the instructor's hypothesis (CORRODED BATTERY-TERMINALS). Since
the causal domain model did not have any causal knowledge related to battery ter-
minals at that time, the system is not able to build a chain to further findings. The
chains do not meet, so an explanation is necessary. The instructor's explanation
is that battery terminals are frequently corroded. Once again, the lack of causal
knowledge prevents any causal chaining. At this point, based on the instructor's
status as expert, the system infers that the explanation is relevant to the hypothesis,
and the system bridges the gap, learning the plausible relationship

((CAUSE (CORRODED BATTERY-TERMINALS) (NOT (CRANK STARTER-GEAR)) 7)).

as illustrated in Figure 10(f). This relationship is stored under both BATTERY-
TERMINALS and STARTER-GEAR. Note these relationships in Figure 13.

When the system is re-run using the samre learning episode and the modified working
model, additional information is learned. In the processing shown in Figure 14, the
system is able to build the chain further back from the symptom because of the
newly learned causal knowledge under starter gear. It chains from

(NOT (CRANK STARTER-GEAR))

to
(CORRODED BATTERY-TERMINALS).

Then, because of the new information under battery terminals, the system can
chain from the hypothesis. These chains meet, so the hypothesis can be associated
with the symptom in the symptom-fault table, and the causal domain model can
be updated to include that the hypothesis causes the symptom. In this case, that
is:

(CAUSE (CORRODED BATTERY-TERMINALS) (NOT (CRANK ENGINE-SYSTEM))).

55

The explanation then is not necessary, and does not cause anything to be added.
The processing of the explanation has been omitted from Figure 14. Figure 15
shows the new relationship added under BATTERY-TERMINALS and ENGINE-
SYSTEM.

Succeeding Diagnoses

As a result of learning, not only is the Learning by Understanding Explanations
system prepared to learn additional things because more causal knowledge allows
further inferencing, but the diagnosis performance element is better able to diag-
nose. It uses symptom fault sets to index into the causal domain model. Using the
portion of the causal domain model that represents the component suggested as a
possible problem, it tries to verify the possibility by explaining the link from the
symptom to the fault. If it can do so, it then suggests a test of that component.
For example, if the symptom fault table suggested the possible association of

(CORRODED BATTERY-TERMINALS)

with the symptom of

(NOT (CRANK ENGINE-SYSTEM)).

then the diagnostic system would try to verify that that is reasonable by forming
an explanatory chain. With the model in the state shown in Figure 11, before any
learning, this would not be possible, but with the model in the state shown in Figure
15 it would. Once the possibility has been verified, a test must be carried out to
see if that is actually the case. That test will be found in the causal domain model
indexed under the appropriate component.

Future Directions

The implementation has some problems. The model is too dependent on explicit
causes, therefore too fragile, and not flexible enough. The system needs to know
about generalized actions/functions. For example, this will allow the system to
make inferences based on what can be a problem with gears or belts or wires in
general. The current model allows little generalization. Also, the model needs to
better handle enabling states for actions. For example, a valve being open will under
normal circumstances cause the amount of a substance outside to decrease and the
amount of a substance inside to increase. However, before that inference is made,
there must be some amount of substance outside the valve. Forbus's Qualitative
Process Theory [1984] handles some things like this nicely. The causal domain
model may also need different tracks in order to handle different types of cars.
The handling of bad data in the causal domain model is crude, as is the handling
of branching causal chains. It also seems that the student following along should

56

make use of his symptom fault knowledge. Lastly, the plausible inference made
when chains do not meet should be restricted based on some general knowledge as
in the other implementation, or based on some relatedness heuristics as in Doyle
[1984], Pazzani [1987] and Hammond [1988].

The diagnosis program was not the main focus of this effort, more thought will need
to be given to it.

3.4.4 Summary of the Implementations

Both EDSEL1 and EDSEL2 started with the same problem: how to learn from
explanations and hypotheses given in response to a symptom. Both used the same
input examples in roughly similar formats. They differed in the way they achieved
some of the implementation goals. The biggest difference in the implementations
was in the representations. EDSEL1 used a fine grained representation similar to
local connectionist models and KODIAK [Wilensky, 1986], while EDSEL2 used a
frame-based representation.

It is surprising that the two implementations, which began as vastly different rep-
resentations of the same problem, have started to converge at many levels. As the
implementations proceeded, the fine grained approach has come to use the conven-
tions of frame-based systems, and the knowledge-based approach has come to use
a more homogeneous representation for all system knowledge. Similarly, through
independent development, both implementations have come to need some represen-
tation of the credibility of causal knowledge. EDSEL1 uses weights, while EDSEL2
uses certainty factors. However, these have become roughly equivalent.

Of more practical importance for future research, however, are the differences.
There are two general differences in the technical details of how the general al-
gorithm was implemented. First, when a causal gap is present but no explanation
fills that gap, EDSEL1 uses generic knowledge about what affects what, whereas
EDSEL2 uses a less general but far simpler notion of filling gaps between recent
hypotheses and symptoms. The first method brings more knowledge to bear on the
postulation of a new causal relationship. It verifies that the proposed relationship
is not inconsistent with any known knowledge, and is potentially relevant. It is
therefore a more flexible and reliable metric for evaluating whether a given causal
gap should be filled.

The approaches are somewhat different in how the causal chains are stored. ED-
SEL2 keeps flat contexts which contain lists of what information has been encoun-
tered in the current causal chaining. For example, if the system is processing a

57

hypothesis, the context for that hypothesis will be updated as causal information
is used to consider the implications of the hypothesized fault. Any implications
are added to the list. EDSEL1 keeps recent chains of reasoning. The tree form of
any explorations is retained for future reasoning with a given example. Thus, if
a subsequent hypothesis requires similar reasoning, that reasoning is available. A
disadvantage of this approach is that if there are many plausible hypotheses at a
given time, the program will pursue only a few to great depth.

The third difference involves where causal information is stored and how it can
be accessed. EDSEL1 does not address the issue of limited availability of causal
relationships. Instead, if a relationship is in the system, it can be used. On the
other hand, EDSEL2 allows the more realistic situation in which causes are not
maximally indexed when they enter the system. That is, they may not necessarily
be retrieved when needed unless the proper cues are present. This is a more realistic
and efficient approach for a system with a very large memory.

3.5 Related Work

As has already been noted, the current effort uses techniques that are in some ways
similar to those of Dejong and Mooney [1986] and Mitchell et al. [1986]. It is similar
in that it recognizes that a system may know all the necessary information to solve
a given problem, but a solution path through this information may be inefficient to
calculate. Instruction or observation might allow a sample path to be generated and
condensed to a more easily used form. Specifically, in diagnosis, a causal chain must
be discovered in a potentially very large network of causal information. EBL can
be profitably used to permit instruction to produce "short cuts" in that network.

Classical EBL, however, does not produce enough learning when the causal network
is incomplete. Hall's [1986,1988] learning by failing to explain (LBFE) approach
was an attempt to remedy this problem. The technique involves isolating the infor-
mation that is present in the input but that is not understood, and subsequently
adding it to the existing EBL system. Our approach differs from Hall's work by
proposing that the information that must be added in the absence of an expla-
nation is not necessarily explicitly represented in the input. Instead, the current
effort allows for more general assignment of blame by disambiguating what might
be implied by the instructor. Also, the current effort presents a domain indepen-
dent notion of learning by attempting to explain that describes how potentially any
diagnostic causal model might grow, whereas Hall's effort was, in his own view,
domain specific.

One of the methods that is used to augment incomplete networks in the current
approach is to use relationships that are more general than causes in order to infer

58

causal relations. For example, an action and a state change that relate to the same
object tend to be causally related. This technique was originally used by Pazzani
[1987] and similar approaches were suggested by Russell [1987], Doyle [1984], and
Hammond [1988].

Rajamoney and DeJong [1987 have specifically addressed the problem of inconsis-
tencies or missing information in a causal model for simulation. If more than one
simulation is possible, their system will experimentally search for disambiguating
features in the environment. Although this approach is clearly useful, it does not al-
low for modification of the general causal information in the model. It concentrates
on quantitative values for the current situation, and does not learn any general
knowledge.

Another related work is Mitchell et al's [1985] Learning Apprentice (LEAP) system.
LBUE and LEAP are similar in that they both use explanations to properly modify
knowledge when given instruction. They differ on how the explanation is related to
the knowledge that is learned. LEAP uses two distinct types of knowledge - domain
knowledge and implementation knowledge - whereas, LBUE has a single type that is
used both for explanation and for performance. LEAP uses its domain knowledge to
learn new implementation rules. LBUE allows the system to improve its explanation
capability because what is learned can be used in future explanations. A related
difference is that LBUE handles incomplete/imperfect domain theories, while LEAP
assumes a complete theory. Their domain is less complex since training examples
can be proved correct or incorrect, unlike examples in medical or diagnostic domains.

Work on Qualitative Models by Forbus [1984], DeKleer and Brown [1981], and
Kuipers [1984], shares the goal of representing a physical domain qualitatively in
order to reason about it. However, they do not attempt to have the system augment
its model. In addition, with the exception of the medical modeling by Kuipers, the
domains are significantly less complex than a car. Chandrasekaran and Mittal
[1982], used a causal model of a medical domain to generate compiled rules or
associations. However, just as in EBL, they do not add any truly new knowledge.

Other studies that have shared some of the goals of the current research in other
domains include, Haas and hendrix [1983, Learning by being told], and Sammut
and Banerji [1986, Concept learning by asking questions].

3.6 Conclusions and Future Directions

This paper has discussed the Learning by Understanding Explanations paradigm
that was observed by Lancaster and Kolodner [1987, 1988] in the training of car
mechanics. The main contribution of LBUE is the ability to accept new knowledge

59

into the causal domain model and to create new generalizations by understanding
an instructor's example problem. In particular, an algorithm for learning to diag-
nose is proposed which when provided with an incomplete causal domain model,
symptom-fault pairings, and an expert's diagnostic example, will output a more
complete model. The algorithm is capable of noticing missing causal relations, gen-
eral relations, objects, and efficiency information. Once noticed, this information
can be added to the model. The algorithm is further capable of correcting inconsis-
tent knowledge. This algorithm has been implemented in two programs, EDSEL1
and EDSEL2, that demonstrate the concept and help to explore its possibilities.

There are several directions for future research. First, better representation of the
causal knowledge is needed to take full advantage of the inferencing possible from
qualitative models. One aim is to use more levels of abstraction to allow reasoning
at whatever level may be appropriate, and so that knowledge of the normal function
of a mechanism can be more useful in inferencing. For example, in some cases it
may be appropriate to reason at the level of the starter, at other times, at the level
of the starter motor, and at yet other times, at the level of the starter brushes. A
related proposal is the representation of normal function on a more detailed level,
rather than at a single level of abstraction. Currently, components are represented
with inputs, outputs, connectedness, parts, part-of, and causal relationships. It
would be more elegant if the normal function was represented as a general function
that was common between several components, that would have common effects,
common enabling states, common obstacles to their function and so on. Then
concepts that are learned can be better generalized. For example, if the system
learned that the starter pinion gear has worn teeth which impairs its function, then
the generalization that worn teeth is an obstacle to the functioning of a gear can
be learned. A further improvement in the model would involve better handling of
conditional causal relationships. For example, a valve being open normally causes
more of a substance to be at the destination. However, this only occurs if there is
some of the substance at the source, and the destination is not already full.

Second, the EDSEL algorithm should include understanding of why particular tests
were done by the instructor and what the results of the tests mean for previous
and future hypotheses. Tests are frequently linked both to a preceding hypothesis
that led to its execution, and a following hypothesis that is a reaction to its result.
We want to investigate how the process of diagnosis can be learned, not just how a
system can improve its answer or result. A long term goal is to use this knowledge
in intelligent tutoring.

Third, it may be possible to incorporate Case-Based Reasoning [Kolodner and
Simpson, 1984], which is a method of using previous episodes and evaluation of
their results to suggest solutions to new problems. One general method that seems
promising has been suggested by Koton [1988a, 1988b). Associational knowledge is

60

used first, then if necessary, previous cases are used. Finally, if a diagnosis has not
been made, the model can be used to make the diagnosis. This has the advantage
of using the fastest method that will be successful in any given case. The same
learning episodes could create associations through collapsing chains and/or form-
ing generalized episodes, while exceptional cases would be stored and the causal
model be augmented in an LBUE like manner. We would want to differ from Ko-
ton's approach in that she has all the test results available at the start, and as
mentioned above we want to investigate the process of diagnosis as well as the re-
sult. This bears further investigation. Another general method would be to store
cases based on correlated attributes in which a single domain model could be used
for LBUE and for case storage. The greatest potential advantage of this approach is
that LBUE and case use would be naturally balanced. Correlated attribute meth-
ods involve storing cases in an overlapped format for maximal generalization at the
cost of perfect case recall. Other approaches that may be worth examining are the
use by Hammond [19881 and Barletta and Mark [1988] of EBL type methods for
improving regular Case-based reasoning methods.

Fourth, in diagnosis, causal chaining is not the only strategy used, though it was
the most common in the protocols. The explanations used by the instructor reflect
several different strategies. For example, a dead battery could be hypothesized as
a problem because that occurs frequently. It may be that a particular model of car
has a defect. Or the explanation may be an explanation of a normal function of
a component that the instructor thinks the student may not understand. For this
reason, and to allow strategies to be learned and improved, diagnostic strategies
must be explicitly represented. Some initial work has been done on the representa-
tion. This is of course related to understanding the relationship between tests and
hypotheses as well.

61

Generalized Symptom-Fault Sets:

Symptom: ((NOT (START)) CAR)

Faults: ((MALFUNCTION FUEL-SYSTEM), credibility = 3)

((MALFUNCTION STARTING-SYSTEM), credibility = 1)

((MALFUNCTION AIR-INTAKE-SYSTEM), credibility = 1)

Symptom: (CRANK ENGINE-SYSTEM SLOW)

Faults: ((MALFUNCTION STARTING-SYSTEM), credibility = 4)

((MALFUNCTION CHARGING-SYSTEM), credibility = 2)

Symptom: (MALFUNCTION FUEL-SYSTEM):

Faults: ((MALFUNCTION FUEL-LINE), credibility = 4)

((MALFUNCTION FUEL-TANK), credibility = 2)

((MALFUNCTION FUEL-PUMP), creaibility = 1)

Figure 1: Generalized Symptom/Fault Sets.

'Credibility' represents the likelihood that
a particular pair holds.

62

Figure 2 - Representation of Protocol

(defvar *protocol#13*) ; Made up protocol
(setq *protocol#13*

'((SYM (Not (Crank Engine-system)))

(HYP Hi (Not (Contains Fuel-Tank Gasoline)))
(TEST (Contains Fuel-Tank Gasoline) (Type Visual)

(Result (Not (Contains Fuel-Tank Gasoline))))
(HYP H2 (Corroded Battery-Terminals))
(EXP H2 (Frequency (Corroded Battery-Terminals) high))
(EXP H2 (Cause (Corroded Battery-Terminals)

(Not (Connected Battery Electrical-wire))))
(TEST (Corroded Battery-Terminals) (Type Visual)

(Result (Corroded Battery-Terminals)))
(ACTION (Scrape Battery-Terminals Corrosion))

(TEST (Corroded Battery-Terminals) (Type Visual)
(Result (Not (Corroded Battery-Terminals))))

(HYP H3 (Loose (Connected Battery-Cables Ground)))
(TEST (Connected Battery-Cables Ground) (Type Visual)

(Result (Loose (Connected Battery-Cables Ground))))
(HYP H4 (Loose (Connected Battery-Cables Solenoid)))
(EXP H4 (Cause (Loose (Connected Battery-Cables Solenoid))

(Not (Adjacent Starter-Gear Flywheel))))
(TEST (Connected Battery-Cables Solenoid) (Type Visual)

(Result (Loose (Connected Battery-Cables Solenoid))))
(HYP H5 (Low (Power Battery)))

(TEST (Power Battery) (Type VAT40) (Result (Low (Power Battery))))
(HYP H6 (Not (Generate Battery-Cell Power)))
(EXP H6 (Cause (Spill Battery-Cell Electrolytes)

(Not (Generate Battery-Cell Power))))
(FAULT (Not (Generate Battery-Cell Power)))

63

Star uer:
(isa component)

;A starter is a component.

(part-of starting-system)

;A starter is a part of the starting system.

(input electricity battery battery-cables)

;A starter receives electricity from

;the battery via battery cables.

(parts starter-pinion-gear starter-motor)

;A starter has parts: pinion gear and

;starter motor.

(function spin-action starter-pinion-gear)

;The function of the starter is to
;spin the pinion gear.

(cause (switch-action solenoid on)

(adjacent starter-pinion-gear

flywheel-ring-gear))

;Setting the solenoid switch causes
;the pinion gear and the flywheel gear

;to become adjacent.
(cause (crank starter-pinion-gear)

(crank flywheel-ring-gear))

;Cranking the pinion gear causes the

;flywheel gear to crank.

Figure 3: A Generalized causal domain model Definition of a Starter.

64

Carburetor-barrel:
(isa -conduit)
(parts -venturi ^carburetor-barrel-wide-partl

'carburetor-barrel-wide-part2)

(part-of ^carburetor)))
(input ((Wfuel -carburetor-float-bowl ^carburetor-pipe-to-venturi)

(air "vacuum-line)))
(output (fuel-air-mix -intake-manifold)))

(connected-to

(('carburetor-float-bowl 'carburetor-pipe-to-venturi)
('vacuum-line)

(-intake-manifold)))
(function

((^mix-action 'air ^fuel)

(^conduit-action ^air ^vacuum-line ^intake-manifold)))

(cause (contains ^vacuum-line -air)

(increase (contains ^intake-manifold -air)))
(cause (clogged -carburetor-barrel)

(not (increase (contains ^intake-manifold 'air))))

(cause (hole -carburetor-barrel)

(not (increase (contains ^intake-manifold -air))))
(cause (low (contains 'carburetor-barrel air-pressure))

(increase (contains ^carburetor-barrel 'fuel))

(cause (high (contains ^carburetor-barrel air-pressure))
(lean -fuel-air-mix))

Carburetor-barrel-wide-part:

(isa -conduit)
(parts)
(part-of -carburetor-barrel)

(input ((air -vacuum-line)))
(output ((air -venturi)))
(connected-to

(('venturi)
(-vacuum-line)))

(function
((-conduit-action "air -vacuum-line ^venturi)))

(cause (contains ^vacuum-line 'air)
(increase (contains 'venturi ^air)))

(cause (clogged -carburetor-barrel-wide-partl)

(not (increase (contains ^venturi -air))))

(cause (hole ^carburetor-barrel-wide-partl)

(not (increase (contains ^venturi -air))))

Carburetor-barrel-wide-part2:

(isa 'conduit)

65

(parts)
(part-of 'carburetor-barrel)
(input CWfuel-air-mix -venturi))
(output ((fuel-air-mix 'intake-manifold)))
(connected-to

((venturi)
C' intake-manifold)))

(function
U(conduit-action -fuel-air-ix -venturi 'intakre-marifold)))

(cause (contains 'venturi ^fuel-air-mix)
(increase (contains 'intake-manifold 'fuel-air-mix)))

(cause (clogged -carburetor-barrel-wide-part2)
(not (increase (contains ^intake-nanifold ^fuel-air-mix))))

(cause (hole ^carburetor-barrel-wide-part2)
(not (increase (contains 'intake-manifold 'fuel-air-mix))))

Venturi:
(isa ^conduit)
(parts)
(part-of 'carburetor-barrel)
(input ((fuel -carburetor-float-bowl 'carburetor-pipe-to-venturi)

(^fuel ^accelerator-pump -carburetor-discharge-check-valve)
(^air 'carburetor-barrel-wide-parti)))

(output
((fuel-air-mix -carburetor-barrel-wide-part2)))

(connected-to
(('carburetor-pipe-to-venturi)
('carburetor-discharge-check-valve)
('carburetor-barrel-wide-parti)
('carburetor-barrel-wide-part2)))

(function
((mix-action 'air -fuel)
(^conduit-action ^air 'carburetor-barrel-wide-parti

-carburetor-barrel-wide-part2))

C'pressur -flow-action ^fuel ^carburetor-float-bowl -venturi)))
(cause (contains ^carburetor-barrel-wide-parti 'air)

(increase
(contains -carburetor-barrel-wide-part2 'fuel-air-mix)))

(cause (clogged -venturi)
(not (increase

(contains ^carburetor-barrel-wide-part2 -fuel-air-mix))))
(cause (hole -venturi)

(not (increase
(contains 'carburetor-barrel-wide-part2 ^fuel-air-mix))))

(cause (low (contains 'venturi air-pressure))
(increase (contains ^venturi 'fuel))

(cause (high (contains 'venturi air-pressure))
(lean 'fuel-air-mix))

Figure 4: EDSEL2's causal domain model Definition of a Carburetor barrel.

66

connectO0

conduitO01

battery start 'er-motor

[insulated-wire

Ielectricity I e e t ical'w ire

Figure 5: Representation of frame-like information
for the first implementation.

instance

Figure 6: Causal representations for EDSEL1.

68

Figure 7: An example of causal competition.

69

leak . '

leak-fro

Fiue8oarilsae ftecualdmicodlbfr isrcin

baOt

hol hoco
t ! flow-obOO0

causcin 004r-mto

liue 9 a ta tt ftecua o anmdlatrhsre~n

71aO~

Figure 10 - EDSEL2 Causal Gap Filling

The uppercase letters represent pieces of knowledge that are involved in causal
chains.

H - Hypothesis

S - Symptom
E - Explanation
A - Edge of chain forward from hypothesis
B - Edge of chain back from explanation
Z - Edge of chain back from symptom
Y - Edge of chain forward from explanation

H AZ S
-----><---

Since A=Z, Learn: (cause H S)
(a)

H A Z S
---------- > < -----

(b)

H A B E Y Z S
-.. . .> < ------ > . .

(c)

H AB E Y Z S
><---> <----

Since AfB, Learn: (cause H E)
(d)

H AB E YZ S
----- -- --- ->< -----

Since A=B and Y=Z, Learn: (cause H S)
(e)

H AB E Y Z S
.......- >< --.---- > <-....

Since Y*-Z, Learn: (cause Y Z)

(f)

72

Figure 11 - Some causal domain model Relationships Before Learning

Causal relationships only; with credibilities.

EQUIV means that the two clauses are equivalent;

CAUSE represents a straight causal relationship;

NEC-CAUSE represents a necessary cause;

SUFF-CAUSE represents a sufficient cause;

POSS-CORR represents a p sitive correlation between clauses.

ENGINE-STSTEM

(EQUIV (CRANK ENGINE-SYS1EN) (CRANK CRANKSHAFT) 9)
(CAUSE (CRANK STARTER) (CRANK CRANKSHAFT) 9)
(CAUSE (CRANK CRANKSHAFT) (TURN DRIVESHAFT) 9)

CRANKSHAFT

(POSS-CORR (CRANK CRANKSHAFT) (AMOUNT CO3MUSTION) 9)
(CAUSE (CRANK STARTER) (CRANK CRANKSHAFT) 9)
(CAUSE (CRANK CRANKSHAFT) (MOVEMENT PISTONS) 9)
(CAUSE (CRANK CRANKSHAFT) (MOVE!E;T CASHAFT) 9)
(CAUSE (CRANK CRANKSHAFT) (TURN DRIVESHAFT) 9)

STARTER

(CAUSE (SWITCH-ACTION SOLENOID ON) (ADJACENT STARTER-GEAR CRANKSHAFT-GEAR) 6)
(NEC-CAUSE (CRANK STARTER-GEAR) (CRANK CRANKSHAFT-GEAR) 8)
(IEC-CAUSE (ADJACENT STARTER-GEAR CRANKSHAFT-GEAR) (CRANK CRANKSHAFT-GEAR) 8)
(NEC-CAUSE (CONNECTED STARTER BATTE&Y-CABLES) (CRANK STARTER) 9)
(SUFF-CAUSE (AND (ADJACENT STARTER-GEAR CRANKSHAFT-GEAR)

(CRANK STARTER-GEAR))
(CRANK CRANKSHAFT-GEAR) 8)

(POSS-CORR (AMOUNT ELECTRICITY) (CRANK STARTER-GEAR) 7)
(EQUIV (CRANK STARTER) (CRANK STARTER-GEAR) 7)
(EQUIV (CRANK CRANKSHAFT-GEAR) (CRANK CRANKSHAFT) 7)

STARTER-GEAR

BATTERY-TERMI NALS

73

Figure 12 - Learning By Understanding Explanations Processing

Processing Protocol 013a of instructor. Protocol is:

(SIN (NOT (CRANK ENGINE-SYSTEM)))
(HYP 12 (CORRODED BATTERY-TERMINALS))
(LIP 32 (FREQUENCY (CORRODED BATTERY-TERMINALS) HIGH))

Processing symptom (NOT (CRANK ENGINE-SYSTEM))

Extending symptom chain from: (NOT (CRANK ENGINE-SYSTEM)) 10
Extending syaptom chain from: (NOT (CRANK CRANKSHAFT)) 9

Extending symptom chain from: (NOT CRANK STARTER)) 8

Extending symptom chain from: (NOT (CONNECTED STARTER BATTERY-CABLES)) 7
Extending symptom chain from: (NOT (CRANK STARTER-GEAR)) 7

*e***eeeeeeeeee END PROCESSING (STM (NOT (CRANK ENGINE-SYSTEM))) acaccece
eeeO eeateseet*ettteeeeeeetn tsnttts**ns*ssss*ee* ..tseee t 1tseeee t*s*e*****e*

Exaining hypothesis (N2 (CORRODED BATTERY-TERMINALS)) hyp-list24

Extending hypothesis chain from: (CORRODED BATTERY-TERMINALS) 9

Hypothesis and Symptom chains do not most

eee*e*********** END PROCESSING (HYP H2 (CORRODED BATTERY-TERMINALS)) essee.

Processing Explanation (H2 (FREQUENCY (CORRODED BATTERY-TERMINALS) HIGH))

Try to link (CORRODED BATTERY-TERMINALS) to something in current hypothesis list
And try to link (CORRODED BATTERY-TERMINALS) to something in current symptom list

hypothesis list is: hyp-list24

it contains: (((CORRODED BATTERY-TERMINALS) 9))

symptom list contains: (((Not (CRANK ENGINE-SYSTEN)) 10) ((Not (CRANK CRANKSHAFT)) 9) ((Not (CRAINK STARTER))
8) ((Not (CONNECTED STARTER BATTERY-CABLES)) 7) ((Not (CRANK STARTER-GEAR)) 7))

chaining back from (CORRODED BATTERY-TERMINALS) toward hypotheses list

Going back - at: ((CORRODED BATTERY-TERMINALS) 10)

Resulting backwards chain is: (((CORRODED BATTERY-TERMINALS) 10))
Chain backwards toward hypothesis and chain forward from hypothesis meet at (CORRODED BATTERY-TERNIALS)

chaining forward from (CORRODED BATTERY-TERMINALS) toward symptom chain

Going forward - at: (CORRODED BATTERY-TERMINALS) 10

Resulting forwards chain is: (((CORRODED BATTERY-TERMINALS) 10))
Chain forward toward symptom and chain backward from symptom do not meet

enable to link BOTH (CORRODED BATTERY-TERMINALS) to something in hypotheses chain, and (CORIODED BATi.tY-TENITALS)
to something in symptom chain.

so link edge of symptom chain (((Not (CRANK ENGINE-SYSTEM)) 10) ((Not (CRANK CRANKSHAFT)) 9) ((Not (CRANK
STARTER)) 6) ((Not (CONECTED STARTER BATTERY-CABLES)) 7) ((Not (CRANK STARTER-GEAR)) 7)) to edge of chain
forward from explanation to symptom (((CORRODED BATTERY-TERMINALS) 10))

Adding to memory under STARTER-GEAR and BATTERY-TERMINALS
((CAUSE (COR/ODED BATTERY-TERMINALS) (NOT (CRANK STARTER-GEAR)) 7))

eeeeeeeeee END PROCESSING (EIP H2 (FREQUENCY (CORRODED BATTERY-TERMINALS) HIGH)) eat

Figure 13 - causal domain model Relationships After Learning

Causal relationships only; with credibilities.

EQUIV means that the two clauses are equivalent;

CAUSE represents a straight causal relationship;

NEC-CAUSE represents a necessary cause;

SUFF-CAUSE represents a sufficient cause;

POSS-CORR represents a positive correlation between clauses.

SS *5 ** *5*5 55

ENGINE-SYSTEM

(EQUIV (CRANK ENGINE-SYSTE1,1) (CRANK CRANKSHAFT) 9)
(CAUSE (CRANK STARTER) (CRANK CRANKSHAFT) 9)
(CAUSE (CRANK CRANKSHAFT) (TURN DRIVESHAFT) 9)
555*.55* **,**5***

CRANKSHAFT

(POSS-CORR (CRANK CRANKSHAFT) AMDU:NT COMBUSTION) 9)
(CAUSE (CRANK STARTER) (CRANK CRANKSHAFT) 9)
(CAUSE (CRANK CRANKSHAFT) (KOVL!ENiT 'PISTONS) 9)
(CAUSE (CRANK CRANKSHAFT) (OVEVIENT CAMSHAFT) 9)
(CAUSE (CRANK CRANKSHAFT) (TUR:N DRIVESHAFT) 9)

STARTER

(CAUSE (SWITCH-ACTION SOLENOID ON) (ADJACENT STARTER-GEAR CRANKSHAFT-GEAR) 6)
(NEC-CAUSE (CRA i ita-G,'R) (CRANK CRANKSHAFT-GEAR) 8)
(NEC-CAUSE (ADJACENT STARTER-GEaR CRANKSHAFT-GEAR) (CRANK CRANKSHAFT-GE LR) 8)
(NEC-CAUSE (CONNECTED STARTER BATTERY-CABLES) (CRANK STARTER) 9)
(SUFF-CAUSE (AND (ADJACENT STARTER-GEAR CRANKSHAFT-GEPR)

(CRANK STARTER-GEAR))
(CRANK CRANKSHAFT-GEAR) 8)

(POSS-CORR (AMOUNT ELECTRICITY) (CRANK STARTER-GEAR) 7)
(EQUIV (CRANK STARTER) (CRANK STARTER-GEAR) 7)
(EQUIV (CRANK CRANKSHAFT-GEAR) (CRANK CRANKSHAFT) 7)

*555*Ss*sss***ssss*

STARTER-GEAR

(CAUSE (CORRODED BATTERY-TERPINALS) (NOT (CRANK STARTER-GEAR)) 7)

BATTERY-TERMINALS

(CAUSE (CORRODED BATTERY-TERMINALS) (NOT (CRANK STARTER-GEAR)) 7)

Learned:

STiRTER-GEAR

(CAUSE (CORRODED BATTERY-TERLMINALS) (NOT (CRANK STARTER-GEAR)) 7)

BATTERY-T EMINALS

(CAUSE (CORRODED BATTERY-TER!'INALS) (NOT (CRAN;K STARTER-GEAR)) 7)

Figure 14 - Second run of LBUE, after Learning

Processing Protocol #13a of instructor. Protocol is:

(SYM (NOT (CRANK ENGINE-SYSTEM)))
(HYP H2 (CORRODED BATTERY-TERMINALS))

(EXP H2 (FREQUENCY (CORRODED BATTERY-TERMINALS) HIGH))

Processing symptom (NOT (CRANK ENGINE-SYSTEM))

Extending symptom chain from: (NOT (CRANK ENGINE-SYSTEM)) 10
Extending symptom chain from: (NOT (CRANK CRANKSHAFT)) 9
Extending symptom chain from: (NOT (CRANK STARTER)) 8
Extending symptom chain from: (NOT (CONNECTED STARTER BATTERY-CABLES)) 7
Extending symptom chain from: (NOT (CRANK STARTER-GEAR)) 7
Extending symptom chain from: (CORRODED BATTERY-TERMINALS) 6

*********** END PROCESSING (SYM (NOT (CRANK ENGINE-SYSTEM))) *************

Examining hypothesis (H2 (CORRODED BATTERY-TERMINALS)) hyp-list27

Extending hypothesis chain from: (CORRODED BATTERY-TERMINALS) 9
Extending hypothesis chain from: (NOT (CRANK STARTER-GEAR)) 8

Chains meet at (CORRODED BATTERY-TERI,!INALS)

Adding to memory under BATTERY-TERINALS and ENGINE-SYSTEM
((CAUSE (CORRODED BATTERY-TERM.INALS) (NOT (CRANK ENGINE-SYSTEM)) 3))

Adding to Symptom-fault table ((Not (CRANK ENGINE-SYSTEM)) (((CORRODED BATTERY-TERMI,"ALS)
(3 3))))

********** END PROCESSING (HYP H2 (CORRODED BATTERY-TERMINALS)) *************

Processing Explanation (H2 (FREQUENCY (CORPODED BATTERY-TERMINALS) HIGH))

Try to link (CORRODED BATTERY-TERMINALS) to something in curreLt hypothesis list
And try to link (CORRODED BATTERY-TERMINALS) to something in current symptom list

Figure 15 - Causal Domain Model Relationships After More Learning

Causal relationships only; with credibilities.

EQUIV means that the two clauses are equivalent;

CAUSE represents a straight causal relationship;

NEC-CAUSE represents a necessary cause;

SUFF-CAUSE represents a sufficient cause;

POSS-CORR represents a positive correlation between clauses.

ENGINE-SYSTEM

(EQUIV (CRANK ENGINE-SYSTFI) (CRANK CRANKSHAFT) 9)
(CAUSE (CRANK STARTER) (CRANK CRANKSHAFT) 9)
(CAUSE (CRANK CRANKSHAFT) (TURN DRIVESHAFT) 9)
(CAUSE (CORRODED BATTERY-TERMINALS) (NOT (CRANK ENGINE-SYSTEM)) 3)

CRANKSHAFT

(POSS-CORR (CRANK CRANKSHAFT) (AMOUNT COMBUSTION) 9)
(CAUSE (CRANK STARTER) (CRANK CRANKSHAFT) 9)
(CAUSE (CRANK CRANKSHAFT) (MOVEMENT PISTONS) 9)
(CAUSE (CRANK CRANKSHAFT) (MOVEMENT CAMSHAFT) 9)
(CAUSE (CRANK CRANKSHAFT) (TURN DRIVESHAFT) 9)

STARTER

(CAUSE (SWITCH-ACTION SOLENOID Ol) (ADJACENT STARTER-GEAR CRANKSHAFT-GEAR) 6)
(NEC-CAUSE (CRANK STARTER-GEAR) (CRANK CRANKSHAFT-GEAR) 8)
(NEC-CAUSE (ADJACENT STARTER-GEAR CRANKSHAFT-GEAR) (CRANK CRANKSHAFT-GEAR) 8)
(NEC-CAUSE (CONNECTED STARTER BATTERY-CABLES) (CRANK STARTER) 9)
(SUFF-CAUSE (AND (ADJACEI;T STARTER-GEAR CRANKSHAFT-GEAR)

(CRA;K STARTER-GEAR))
(CRANK CRANKSHAFT-GEAR) 8)

(POSS-CORR (AMOUNT ELECTRICITY) (CRANK STARTER-CEAR) 7)
(EQUIV (CRANK STARTER) (CRANK STARTER-GEAR) 7)
(EQUIV (CRANK CRANKSHAFT-GEAR) (CRANK CRANKSHAFT) 7)

STARTER-GEAR

(CAUSE (CORRODED BATTERY-TERMINALS) (NOT (CRANK STARTER-GEAR)) 7)

BATTERY-TERMINALS

(CAUSE (CORRODED BATTERY-TERMNIALS) (NOT (CRANK STARTER-GEAR)) 7)
(CAUSE (CORRODED BATTERY-TERMINALS) (NOT (CRANK ENGINE-SYSTEM)) 3)

Learned:

ENGINE-SYSTEM

(CAUSE (CORRODED BATTERY-TERMINALS) (NOT (CRANK ENGINE-SYSTEM)) 3)

BATTERY-TERMINALS

(CAUSE (CORRODED BATTERY-TERMINALS) (NOT (CRANK ENGINE-SYSTEM)) 3)

4 References

Abbott, K. H. (1988). Robust operative diagnosis as problem solving in a hypothesis space. In
Proceedings of Seventh National Conference on Artificial Intelligence.

Allison, K. R. (1987). Use of a working model in fault diagnosis. In Proceedings of the 25th Annual
Conference of the Southeast Region ACM.

Barletta, R. & Mark, W. (1988). Explanation-based indexing of cases. In Proceedings of a Workshop
on Case-Based Reasoning.

Chandrasekaran, B. & Mittal, S. (1982). Deep versus compiled knowledge approaches to diagnostic
problem-solving. In Proceedings of the National Conference on Artificial Intelligence.

Collins, A., Salter, W., & Tenney, Y. (198). Contract progress report. Technical Report, Bolt,
Beranek, and Newman.

DeJong, G. & Mooney, R. (1986). Explanation based learning: an alternative view. Machine
Learning, 1, 145-176.

DeJong, G. (1983). Acquiring schemata through understanding and generalized plans. In Proceed-
ings of the Eighth International Joint Conference on Artificial Intelligence.

de Kleer, J. & Brown, J. S. (1981). Mental models of physical mechanisms and their acquisition. In
J. R. Anderson (Ed.), Cognitive Skills and Their Acquisition. Hilsdale, NJ: Lawrence Erlbaum.

Doyle, R. J. (1984). Hypothesizing and refining causal models. Technical Report A.I. Memo No.
811, Massachussetts Institute of Technology.

Fikes, R. E., Hart, P., & Nilsson, N. J. (1972). Learning and executing generalized robot plans.
Artificial Intelligence, 3, 251-288.

Forbus, K. D. (1984). Qualitative process theory. Artificial Intelligence, 24, 85-168.

Goldstein, I. P. & Bobrow, D. G. (1980). Extending object-oriented programming in smalitalk. In
Proceedings of the 1980 LISP Conference.

78

Haas, N. & Hendrix, G. (1983). Learning by being told: acquiring knowledge for information
management. In R. Michalski, J. Carbonell, & T. Mitchell (Eds.), Machine Learning: An Artificial
Intelligence Approach. Los Altos, CA: Morgan Kaufmann.

Hall, R. (1986). Learning by failing to explain. In Proceedings of the National Conference on
Artificial Intelligence.

Hall, R. (1988). Learning by failing to explain: using partial explanations to learn in incomplete or
intractable domains. Machine Learning, 3, 45-77.

Hammond, K. J. & Hurwitz, N. (1988). Extracting diagnostic features from explanations. In
Proceedings of a Workshop on Case-Based Reasoning.

Hinrichs, T. R. (1988). Towards an architecture for open world problem solving. In Proceedings of
a Workshop on Case-Based Reasoning.

Johnson-Laird, P. N. (1983). Mental models. Cambridge, MA: Harvard University Press.

Kolodner, J. & Jr., R. Simpson. (1984). A case for case-based reasoning. In Proceedings of the Sixth
Annual Conference of the Cognitive Science Society.

Koton, P. (1988). Reasoning about evidence in causal explanations. In Proceedings of a Workshop
on Case-Based Reasoning.

Koton, P. (1988). Using experience in learning and problem solving. PhD thesis, Massachussetts
Institute of Technology, Cambridge, MA.

Kuipers, J. (1984). Commonsense reasoning about causality: deriving behavior from structure.
Artificial Intelligence, 24, 169-203.

Lancaster, J. & Kolodner, J. (1987). Problem solving in a natural task as a function of experience.
In Proceedings of the Ninth Annual Conference of the Cognitive Science Society.

Lancaster, J. & Kolodner, J. (1988). Varieties of learning from problem solving experience. In
Proceedings of the Tenth Annual Conference of the Cognitive Science Society.

Martin, J. & Redmond, M. (1988). The use of explanations for completing and correcting causal
models. In Proceedings of the Tenth Annual Conference of the Cognitive Science Society.

79

McClelland, J. L. & Rumelhart, D. E. (1981). An interactive activation model of context effects in
letter perception: part 1. an account of basic findings. Psychological Review, 88, 375-407.

Minsky, M. (1975). A framework for representing knowledge. In P. H. Winston (Ed.), The Psychology
of Computer Vision. New York: McGraw-Hill.

Mitchell, T. M., Kellar, R. M., & Kedar-Cabelli, S. T. (1986). Explanation based learning: an
unifying view. Machine Learning, 1, 47-80.

Mitchell, T. M., Mahadevan, S., & Steinberg, L. I. (1985). Leap: a learning apprentice for vlsi
design. In Proceedings of the Ninth International Joint Conference on Artificial Intelligence.

Murphy, G. L. & Medin, D. L. (1985). The role of theories in conceptual coherence. Psychological
Review, 92, 289-316.

Norman, D.A. & Shallice, T. (1986). Attention to action: willed and automatic control of behavior.
In R.J. Davidson, G.E. Schwartz, & D. Shapiro (Eds.), Consciousness and Self-Regulation: Advances
in Research Theory (Vol. 4). New York, NY: Plenum Press.

Pazzani, M. (1987). Inducing causal and social theories: a prerequisite for explanation-based learn-
ing. In Proceedings of the Fourth Annual International Workshop on Machine Learning.

Rajamoney, S. A. & DeJong, G. F. (1987). Active ambiguity reduction: An ezperimental design
approach to tractable qualitative reasoning. Technical Report UILU-ENG-87-2225, University of
Illinois at Urbana-Champaign.

Redmond, M. & Martin, J. (1988). Learning by understanding explanations. In Proceedings of the
£6th Annual Conference of the Southeast Region ACM.

Ross, B.H. (1984). Remindings and their effect in learning a cognitive skill. Cognitive Psychology,
16, 371-416.

Russell, S. J. (1987). Analogy and single-instance generalization. In Proceedings of the Fourth
Annual International Workshop on Machine Learning.

Sammut, C. & Banerji, R. B. (1986). Learning concepts by . questioi.s. In R. Michalski, J.
Carbonell, & T. Mitchell (Eds.), Machine Learning: An Artifict.' Ty -lligence Approach, Volume II.
Los Altos, CA: Morgan Kaufmann.

Schank, R.C., Collins, G.C., & Hunter, L.E. (1986). Transcending inductive category formation in
learning. The Behavioral and Brain Sciences, 9, 639--651.

80

White, B.Y. & Frederiksen, J.R. (1986). Intelligent tutoring systems baaed upon qualitative model
evolutions. In Proceedings of the National Conference on Artificial Intelligence.

Wilensky, R. (198A). Some problems and proposals for knowledge representation. Technical Re-
port UCB/CSD 86/294, University of California at Berkeley.

81

