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1. INTRODUCTION

Packet radio networks have evolved over a time span of less than two decades from a

fixed system for centralized communication, the ALOHA system [1], to mobile wide-area

multihop systems, supporting store-and-forward operation, and possessing a distributed

network control, al.lowing a variety of network services, and exhibiting a graceful degrada-

tion in the presence of malfunctions [21, 131. Typically such systems operate using a single

frequency, in a broadcast mode. Channel access schemes, as an essential component of a

packet radio network, also accompanied this evolution. New channel access schemes with

performance superior to that of the simple ALOHA protocol were developed, examples

of which are the Carrier Sensing, Busy Tone, and Code Division Multiple Access families

of access protocols [2], [3]. The need to assess the performance of these networks and

protocols spurred the development of analytical models for the analysis of their through-

put and delay characteristics 141-[13]. Most early work [4]-[7] concerned either single hop

fully-connected configurations, or multihop configurations with specific topologies and a

limited number of hops. The study of these cases was usually done by formulating an ap-

propriate Markovian model which was numerically solved for its steady-state probabilities,

and from which performance measures such as throughput and delay were then derived.

The inherent difficulty of the problem, however, made it hard to study networks with

arbitrary topologies and a large number of hops. The difficulty stemmed from the fact

that a packet radio network can be viewed as a queueing system in which the success of

a message (and hence its service time) depends on the global state of the system. Such a

system is difficult to analyze unless the problem possesses some special structure 181, 1141.

More recently, analytical models were introduced for the study of general topologies

and access protocols. Some of these models [01 achieve analytical tractability by assuming

some form of decoupling between the activity of the different nodes. Other models, such as

the one we consider in this Report, use assumptions of heavy traffic (thereby eliminating

from consideration the queueing of packets at the different nodes), and lead to analytical

solutions. These models are useful primarily for the purpose of determining the capacity of

a packet radio network. The first such model was proposed by Boorstyn and Kershenbaum
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for the analysis of multihop packet radio networks with zero propagation delay and

exponential packet lengths, operating under Carrier Sense Multiple Access, and leading to

a product form solution [10]. This model was extended in a number of subsequent works

to encompass more general situations. In [11], still under the assumptions of exponential

packet lengths, the model was extended to a number of other protocols. However, it was

recognized that not all protocols lead to a product form solution. In [12] it was shown

that, for CSMA networks with packet length distributions possessing a rational Laplace

transform, the steady-state distribution depends on the packet length distributions only

through their means, and thus, in what concerns the steady-state distribution, the results

of [10] remain valid.

In this Report we address the problem of finding conditions for the existence of product

form solutions. Section 2 describes the network model and its assumptions, and specifies

the class of protocols encompassed by the analysis. Section 3 presents some preliminary

definitions. Section 4 studies the existence of product form solutions in the case where all

packet length distributions are exponential. In this section it is shown that the existence

of a product form solution is equivalent to the reversibility of the underlying stochastic

process, and it is given a simple characterization, in terms of the blocking between links

(as specified by the channel access protocol), of the protocols which possess a product form

solution. The results of this section had previously been reported in [13]. Section 5 treats

the case of general packet length distributions. The main result of this section states that

a product form solution exists in the general case if and only if a product form solution

exists in the exponential case. Additionally it is shown that a product form solution does

not exist whenever any of the link scheduling point processes is not Poisson. The Appendix

gives the proof that the computation of the normalization factor appearing in the product

form solution is an NP-hard problem.
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2. GENERAL MODEL

We consider a packet radio network with N nodes, numbered 1, 2, ... , N, which

utilize a single broadcast radio channel. The topology of the network is given by a hearing

matrix H = [hij], where

1ij if j can hear i

0 otherwise.

Thus each nonzero entry hii in the hearing matrix corresponds to a directed radio link in

the network from node i to node j, and vice-versa. We call node i the source and node

j the destination for that particular link. Due to the broadcast nature of the channel, a

message sent over a given link will reach nodes other than its intended receiver, eventually

colliding with messages destined to these nodes.

The traffic requirements for each link are assumed to be dictated by the end-to-end
traffic requirements together with a static routing function. It may happen that for some

links the required traffic is zero. We refer to these links as unused links, and all other

links as used links. We say that a used link is active whenever a transmission is taking

place over that link; i.e., whenever the source node is transmitting a message intended to

the destination node on that link. Throughout this Report we consider all used links to

be numbered 1,2,...,L, and we let L - {1,2,...,L). For link i E L, we denote by 8i

its source node, and by di its destination node. Alternatively we represent link i by the

ordered pair (si, di).

The dynamics of link activity in the network is conditioned by the channel access

protocol in use. An access protocol is a set of rules which, given the current global

state of the network, determines whether or not an inactive link can become active.

For most protocols of interest, a sufficient description of the network state is one which

includes the information, for each node, as to whether the node is idle, transmitting a

packet, or receiving a packet, and in the last two cases, the destination or source node,

respectively. For practically realizable protocols, the rules embodied in the access protocol

are constrained to be defined only in terms of information that can be made available
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locally at the source node of the link, such as the state of the receiver at that node, and

the state of the transmitters in some neighborhood of it. We will consider here only the

class of protocols for which the decision on whether or not to transmit can be expressed as

a function of only the set of active links. For this class of protocols, and in what concerns

the activity of the transmitters, the activity of the receivers can be ignored*. The above

class of protocols possesses some desirable analytical properties which do not exist in other

classes of protocols, while at the same time containing protocols of great importance for

the applications, such as the nonpersistent Carrier Sensing Multiple Access protocol, and

the Busy Tone Multiple Access family of protocolst.

Since the entire packet radio network operates using a single radio frequency, each

node in the network has one transmitter, but can in general have more than one outgoing

link. We consider that each outgoing link at a node has a separate queue for the packets to

be transmitted on it, and that the transmitter is shared among all queues at that node. To

avoid repeated interference between transmissions in the network, transmission requests

for the various queues at a node are scheduled according to random point processes, one

for each queue. In this study, we consider the point process for link i E f- to be Poisson

with rate Xi (X > 0), independent of all other such processes in the network.

Consider a point in time defined by the point process for some link i. If the queue

is empty, this scheduling point is ignored. If the queue is nonempty then a packet in

the queue is considered for transmission. The transmission may or may not take place

depending on the status of the transmitter at the source node (busy or idle), the priority

structure (if any) among the queues at the source node, the channel access protocol in

use, and the current activity on the network. If the transmission is inhibited, or if the

transmission is undertaken but unsuccessfully (due to a collision at the intended destination

*Note that an implementation of the protocol at a given node might use information provided by the receiver

at that node in order to assess whether or not a given link is active; this is the case, for example, with CSMA
in narrowband channels. Our restriction, however, requires that, given the complete state description of
the network, the protocol bases its decisions on the set of active links only.

tAn example of a protocol which does not belong to the class under consideration is furnished by disciplined
ALOHA 121, 131, in which a node is allowed to transmit at any time except when it is already transmitting,
or is receiving (i.e., locked onto) some packet destined to it.

5



or to a preemption by another transmission at the source), then the packet in question

(or any other packet in the queue, for that matter, depending on the queue discipline) is

reconsidered at the next point in time. Otherwise (i.e., the transmission is successful), the

packet is removed from the queue, and the same process is repeated at the next scheduling

point for that link.

It is assumed in this study that at each scheduling point of the point process there is a

packet in the queue for consideration (i.e., heavy traffic is assumed). It is also assumed that

neither preemption, priority functions, or collision detection are supported at the nodes. In

addition, we assume the transmission time of the messages transmitted over link i to have

a distribution function B(.) with mean p-i < oo, and to be redrawn independently from

this distribution each time the message is transmitted. The functions B(.) are assumed to

possess a positive density almost everywhere. We also assume infinite buffer space for each

queue, and instantaneous and perfect acknowledgments for each link, providing immediate

feedback regarding the success or failure of each transmission.

This Report is devoted to the study of the conditions under which the process {X(t)

t > 0}, where XIt) is defined as the set of the links which are active at time t, has a product

form stationary distribution. The stationary distribution of this process is important in

that, from it, network performance measures, in particular throughput, can be derived.

These applications will be considered in a separate paper.

In the case where all B(.), i E L, are exponential (i.e., the period of time that a link

remains active is exponentially distributed), and given that the scheduling point processes

which determine the points in time at which links can become active (as determined by

the access protocol) are Poisson, {X(t) : t > 0) is a continuous time Markov chain.

The precise formulation of this Markov chain as well as the conditions under which it

possesses a product form solution are presented in Section 4. When some of the B(.)

are nonexponential, {X(t) : t > 0} is no longer Markovian. However, it will be shown

in Section 5 that this process has the structure of a general class known as Generalized

Semi-Markov Processes (GSMPs). By exploiting the general properties of these processes

we shall be able to derive the conditions under which a product form solution exists.



3. PRELIMINARY DEFINITIONS

Given an access protocol, we say that link i E L blocks link j if, whenever link i is

active, the protocol used does not allow a scheduling point for link " to result in an actual

transmission. It is to be noted that if link i blocks link j, it does not necessarily follow

that link j blocks link i.

Let D be a set of links in L. We say that D blocks link j E L -D if there exists some

link i E D which blocks j. We define U(D) to be the set of all links in L - D which are

not blocked by D.

In later treatments, the following two protocols are used as examples:

(i) Nonpersistent Carrier Sense Multiple Access (CSMA)[7]: under CSMA, a link will be

blocked whenever its source node detects a transmission by any other source node that

it can hear; i.e., link (sj, dj) is blocked by (se, di) whenever hsisj = 1, or 8j = 8j;

(ii) Idealistic Busy Tone Multiple Access (I-BTMA)[15]: this protocol assumes the exis-

tence of a separate channel for a busy tone. The destination of a link emits a busy

tone whenever that link is active. A link is blocked if its source node hears either a

transmission or a busy tone; i.e., link (si, dj) is blocked by (si, di) if either hi,, = 1,

hd.j = 1, or s i = sj.

4. EXPONENTIAL PACKET LENGTHS

4.1. Markovian Description of Network Activity

4.1.1 State Space

As stated in section 2, when all packet length distributions are exponential, {X(t)

t > 0} is a Markov chain. We now define the state space S for this Markov chain. Since

X(1) is the set of all links that are active at time t, S C 21L. Given an access protocol and

its blocking properties, not all subsets of L may be in S.

Definition 4.1.1 S is the collection of subsets of L that the system can reach starting

from the idle state q0 (i.e., all links inactive) by any sequence of link

activations and deactivations.

Definition 4.1.2 A subset D = {11, 12,..., In} of L is said to be directly reachable if
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there exists some permutation (il, l i2 , . . . ,'in) of D such that lij is

not blocked by (lil, li2". 1ij- 1 ), j = 2,..., n. That is, D is directly

reachable if it can be reached by only activating the nks in it, in some

order, starting from the idle state 4.

Lem-na 4.1.3 If a subset D = { 1, 12,... ,ln} is directly reachable, then any subset

D' C D is also directly reachable.

Proof: Let (411 1i2.... , 'in) be an ordered sequence of activations which allows D to be

reached. The ordered subsequence in (lil ,/2, . . 'in) corresponding to links in

LY is a sequence of activations which allows i to be reached directly. I

Proposition 4.1.4 The state space S consists of 4) and all subsets D C L that are

directly reachable.

Proof: Clearly a set D which is directly reachable belongs to S. To prove the converse,

we let D E S be some subset that is reached via some sequence of states

Do, Di,...,Dm, with Do = 4 and Dm = D, due to link activations and

deactivations. (Note that since the process {X(t) : t > O) is such that no

two events can occur at the same instant, then IDkI = IDk-1I ± 1 for all k =

1, 2,..., rn). Since the first transition out of Do = 4 must be an activation, there

is some index r<m such that D7 is reached directly. Consider Dr+l. If Dr+i =

Dr Ui} for some i, then Dr+l is clearly directly reachable. If Dr+i = Dr - {j}

for some i, then Dr+i is also directly reachable, by Lemma 4.1.3. Applying the

same argument to the remaining steps, we guarantee that D is directly reachable.

I

According to Proposition 4.1.4, one can generate the state space by the following

algorithm, which is not necessarily claimed to be the most efficient for this purpose:

begin

S :={4);
L :-- {1, 2,...,L);

for k:- 0 to L- 1 do

for every D E S such that IDI -- k do
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for every I E L - D do

if I is not blocked by D, then add DU{} to S;

end.

Throughout this Report we assume a fixed ordering of the state space 5, according to

which the rows and columns of all the vectors and matrices to be considered are indexed.

Remark 4.1.5 Given an access protocol and some state D E S, it should be noted that

not all sequences of activations of its elements will necessarily allow D to

be reached from 4'. For example, consider the 4-node chain of Figure I

with nonzero traffic requirement over links I and 5 only, and the I-BTMA

access protocol. State {1, 5} is an example of a state for which the order

of activation is relevant. This state is reachable by the permutation (1, 5),

but not by the permutation (5, 1).

Remark 4.1.6 Recall that L is the set of all used links and thus Xi > 0 for all i E L.

Accordingly every state can be reached from the empty state in a nonzero

period of time with nonzero probability. Similarly, the empty state can

be reached from any other state in a nonzero period of time with nonzero

probability (since pi > 0 for all i E L). It then follows that all states

communicate and the resulting Markov chain is irreducible.

4.1.2 The Equilibrium Equations

As noted above, the Markov chain {X(t) : t > 0} is irreducible. Since the state space is

13 5

Figure 1. A 4-node chain



finite, the chain is then positive recurrent and ergodic. Thus the existence and uniqueness

of a stationary distribution is ensured. We denote by {p(D) : D E S} the stationary

probability distribution, and let p = (p(D)) D be the row vector of the steady-state

probabilities.

Let the state of the system at time t be D E S, let i be any link not blocked by D, and

let j E D. Given the assumptions in Section 2, the time to the next scheduling point of i is

exponentially distributed with parameter Xi, and the time to the end of the transmission

over link j is also exponentially distributed with parameter pj. Given that X(t) = D, the

state of the system at time t + At is given by (recall the definition of U(D) in Section 3)

[DU{i}, i E U(D), with probability XiAt + o(At)

X (t + At) D - {j}, j E D, with probability pjAt + o(At)

DI with probability 1 - ( 1 X8 + Epj) At + o(At)
iEU(D) jED

This equation defines the transition rates which we need for writing the equilibrium

equations [16]. Before doing so we have to introduce some further notation. For each

D E 5, let M(D) be the set of all links i f D such that DU{i} E S. Clearly M(D) D

U(D). Note however that it is not necessarily true that M(D) = U(D). (See Example

4.1.7 below.) Let J(D) to be the set of all links j E D such that j is not blocked by

D - {j}, i.e., such that j E U(D - {j}). Clearly, J(D) C D. Here too, in general we

have J(D) 3 D, as is also illustrated in Example 4.1.7. With these definitions, a sketch of

the state-transition-rate diagram for state D and the transitions to and from its neighbors

can be seen in Figure 2. An equivalent description is given by the transition-rate matrix

Q [q(D, D')ID,D'ES$ where

if DY = DU{i}, i E U(D)

pj, if D-=D-{j}, jED

q(D, X- -( xl + Y, 'j), if D' = D

iEU(D) jED

0, otherwise
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me()D() XmX DU (j) je U(D)

meDD je M(D)

IMeD-J(D){ D -(m) kLm j DU(j) j eM(D) -U (D)

Figure 2. Typical transitions to and from a state

The equilibrium equations take then the form

p(D) E Xi+ , Pj]= , p(D - {j})).j + p(DU{i}) pi, D E S (4.1)
LiEU(D) jED I jEJ(D) iEMD(D)

Example 4.1.7 Consider the 4-node chain of Figure 1 with nonzero traffic requirement

over links 1 and 5 only, and the I-BTMA protocol. The corresponding

state-transition-rate diagram is shown in Figure 3. From the definitions

we have that J({1, 5}) = {5}, U({5}) = 0, and M({5}) = (1). These

are examples of states D for which M(D) 34 U(D), or J(D) 3 D.
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Figure 3. State space for the Markov chain of Example 4.1.7

4.2 Reversible Markov Chains and Product Form Solutions [171

Definition 4.2.1 A continuous time stochastic process {X(t)) defined in I = (-oo, +oo)

is said to be reversible if for any r E I, integer n, and tt 2 . tn

in I, (X(t),X(t2 ),.. .,X(tn)) has the same distribution as (X(r -

4), X(T - t2),... , X(r - tn)).

For the particular case of Markov chains, reversibility has a simple characterization

in terms of the transition rates and steady-state distribution, as given in the following

proposition, whose proof can be found in [171.

Proposition 4.2.2 A stationary continuous time Markov chain is reversible if and only

if there exists a collection of positive numbers (-D) : D E S},

summing to unity, such that

'y(DI) " q(Dl, D2) = yD2) q(D 2 ,D1) (4.2)

for all DI, D2 E S, and where q(Di, D,) is the rate of transitions

from D i to Dj. When such a collection exists, it is the stationary

probability distribution.

12



An equivalent necessary and sufficient condition for reversibility (called Kolmogorov's

criterion) is that, for any finite sequence of states D1 , D2, ... , Dn E S, the transition rates

satisfy

q(DI, D2 ) q(D 2 , D3 ). .q(Dn, DI) = q(DI,D)q(Dn,Dn- 1 ).. q(D2, D). (4.3)

Suppose we are given a reversible Markov chain with state space S. Let Do be a

fixed state and D a generic state in S. Let Do,D 1, ... ,Dm be any sequence of states in

S, with Dm = D, such that between any two consecutive states of the sequence there

exist nonzero transition rates. By repeated application of (4.2) it is easy to see that the

steady-state probability distribution for such a Markov chain satisfies

p(D)-=p(Do) j1 q(Dk-',D) (4.4)kflq(Dk,Dk-1)

A solution with the form of (4.4) is called a product form solution. It is immediately seen

that if the steady-state solution satisfies (4.4), then (4.2) is automatically satisfied for all

D 1 , D 2 E S. Thus

Proposition 4.2.3 A stationary continuous time Markov chain {X(t) : t > 0} possesses

a product form solution for the steady-state probability distribution

if and only if it is reversible.

4.3 Criterion for the Existence of a Product Form

We use here the results of the previous section to determine the conditions on the

access protocol, network topology, and traffic requirements under which the resulting

Markov chain, defined in Section 4.1, is reversible and hence the global balance equations

(4.1) have a product form solution.

Lemma 4.3.1 U(D) = M(D) for all D E S if and only if J(D) = D for all D E S.

Proof: We know already that J(D) g D and U(D) g M(D). To prove the desired

equalities we only need to prove the reverse inclusions. Assume that U(D') =

M(D') for all D' E S. It is evident that J(O$) = 0. Consider now any D E

5, D # 0. For each j E D, by definition j E M(D - {j}). Since by hypothesis

13



U(D - {j)) = M(D - {j}), then j E U(D - {j}). But this just means that

j E J(D). Thus D C J(D), for all D E S. Conversely, assume that DI = J(DI)
for all /f E S. Call a state maximal if M(D) = 4. Since U(D) C M(D), for
maximal states it is true that U(D) = M(D). Let now D E S be a non-maximal
state, and j E M(D). By hypothesis J(DU{j}) = DU{j}, which in particular

implies that j is not blocked by D, and thus that j E U(D). Hence M(D) C

U(D). I

Proposition 4.3.2 The Markov chain {X(t) : t > 0} is reversible if and only if

D = J(D) (4.5)

for all D E S (or, equivalently, U(D) = M(D) for all D E S ).
Proof: Assume that the Markov chain is reversible. Clearly (4.5) holds for D = 4.

Consider now D E S, D # 4', and j E D. From (4.2) we have that

p(D) q(D, D - {})= p(D - {}). q(D - {j}, D).

Since q(D, D - {}) = pj > 0 and p(D) > 0 for all D E S, this last equation
implies that q(D - {j}, D) > 0. But since q(D - {j}, D) can only be either 0 (if
j 0 J(D)) or Xj (if j E J(D)), we necessarily conclude that q(D - {j}, D) = ,j
and j E J(D). Then D C J(D) for all D E 5, and consequently D = J(D) for

all D E S. Conversely, assume that J(D) = D for all D E S. We now show that

{I(D) : I(D) -- 7o - ,ED D E S}, with -1o chosen so that ,DES y(D) = 1,
is a collection of numbers that satisfies the conditions of Proposition 4.2.2. Let

DI, D 2 be any two states in S. Assume first that they are of either the form

DI D, D 2 = D - {j}, or the form D1 = D - {j}, D 2 = D, for some D E S

and j E D. From the choice of 'y(D) we have

xj
7(D) - y(D-{j)

PJ
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The transition rates between these two states are q(D, D - {j}) = ,pj and, from

the assumption J(D) = D, q(D - {j}, D) = Xj. Thus, in this case,

'y(Dj)q(Dj, D2) = -y(D 2)q(D2, DI)

For any other choice of D1 and D 2 , q(D, D2 ) = q(D2 , DI) = 0, and

y(D1 )q(DI, D 2) = -y(D2 )q(D 2 , DI)

is trivially verified. Thus (4.2) holds for all D1, D2 E S, and {X(t) : t > 0) is

reversible, by Proposition 4.2.2. j

Proposition 4.3.4 (Criterion for the existence of a product form - exponen-

tial packet length distributions) A necessary and sufficient con-

dition for a channel access protocol, together with a given net-

work topology and traffic requirements, in a system with exponential

packet lengths, to have a product form solution is that, for all pairs

of used links i and j, link j blocks link i whenever link i blocks link

j.

Proof: We will prove the equivalence between the condition stated in the above criterion

and the condition that J(D) = D, for all D E S.

(a) J(D) = D, for all D E S.

Assume that link i blocks link j. If j does not block i, we will have the situation

depicted in Figure 4 in which j E {i,j} but j VJ((i,j}), providing an instance of a

state D for which J(D) 34 D, which is a contradiction. Thus j blocks i.

(b) There exists D such that J(D) -76 D.

Since J(D) g D and J(D) 3 D, there exists j E D such that j is blocked by D- {j}.
Let i E D - {j} be some link blocking j and define I = {i, j}. Since DI C D then,

by Lemma 4.1.3 and Proposition 4.1.4, D' E 5, and DI can be directly reached by

activating links i and j in some order. By hypothesis i blocks j, and so D! has to be

directly reachable from {j). Thus j does not block i. *
15



xi}{j}

I

Figure 4. Portion of a nonreversible chain

Proposition 4.3.4 implies that, in a reversible chain and for any state D E 5, any order

of activation of the links in D allows D to be reached directly from state 0, and thus the

situation depicted in Remark 4.1.5 does never occur.

For a reversible chain the stationary probability distribution is given by (4.4). From

the particular form of the transition rates we have

p(D) = P(O) X (4.6)
iED Pi

for all D E S. We can ask if there can exist protocols for which the corresponding Markov

chain {X(t) : t > O} is not reversible, and yet the steady-state probabilities have the form

(4.6).

Proposition 4.3.5 (4.6) is a solution of the global balance equations (4.1) if and only if

D = J(D) (4.5)

for all D E S (or, equivalently, U(D) = M(D) for all D E S).
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Proof: Assume that D = J(D) for all D E S. By Proposition 4.3.2, {X( ) : t > 0) is

reversible and thus the steady-state probabilities have the form (4.6). Conversely,

assume that (4.6) is a solution of (4.1). By substitution of (4.6) in (4.1) and

simplification we obtain

iEM(D)-U(D) jED-J(D)

We now seek the conditions under which this equality can hold. Recall that

a state D of the Markov chain is said to be maximal if M(D) = 0. Given a

generic state D, define a maximal path starting at D to be a finite sequence of

states Do, D 1 ,..., Dk such that Do = D, D1+ 1 = DL U{i} for some i E M(DI),

I = 0,1,..., k - 1, and Dk is a maximal state. Define the length of the maximal

path to be k, and let I(D) be the maximum of the lengths of the maximal paths

starting at D. We shall now prove (4.5) by induction on (D). For i(D) = 0 we

have that D is a maximal state, for which M(D) = U(D) = . Then

'Pj -- 0.

jED-J(D)

Since, by assumption, pj > 0, we obtain that D = J(D). Assume now that, for

n a positive integer, (4.5) holds for all states D' for which i(D)5n. Let D be

a state for which I(D) = n + 1. For all j E M(D), D U{j) is a state for which

li(D) n. By the induction hypothesis we then have J(D U{j}) = D U {j}, which

means in particular that j is not blocked by D or, in other words, that j E U(D).

Then U(D) = M(D) and

'"j -- O.

jED-.(D)

Again, as all pj > 0, it follows that D = J(D). I
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Example 4.3.6 As an application of Proposition 4.3.4, we can now prove that, with

a symmetric hearing matrix, nonpersistent CSMA always leads to a

product form solution. Consider any two used links i and j, and repre-

sent them as (si, d1 ) and (sj, dj), respectively. Under CSMA, if i blocks

j, then either s i = 8j or h =ij = 1. The symmetry of the hearing

matrix then implies that j blocks i, and thus by Proposition 4.3.4 the

stationary distribution will have a product form. If the hearing matrix

is not symmetric we will not get a product form solution, except when

all pairs of nodes si and sj for which h8.8i = 1 and hgjsi = 0 are such

that at least one element of the pair is the source of no used links.

Example 4.3.7 The I-BTMA protocol will not, in general, lead to a product form solu-

tion. Indeed, if the network under consideration contains the subnet-

work and traffic pattern of Example 4.1.7, we can find links i and j

such that i blocks j but j does not block i. For some specific topologies

and traffic patterns, however, I-BTMA will have a product form solu-

tion. Examples of these are a star network with arms of length I and

arbitrary traffic pattern, or a 4-node chain in which the outer nodes

generate no traffic.

Remark 4.3.8 In general, one may write the solution to (4.1) in the form

p(D) = p()f(D) II i I D E S (4.7)
iED Pi

where f() = 1 and {f(D) : D E S, D 9 0} is the solution of the

following system of linear equations (obtained by substitution of (4.7) in

(4.1) and simplification):

[ , Xi + E Jj f(D) = , pi f(D-(j})

iEU(D) .ED jE J(D)

+ E Xi f(DU{i)), DE S (4.8)

iEM(D)
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Indeed, this amounts to nothing else but a scaling of the unknowns in

(4.1). The choice of the scaling given in (4.7) is remarkable in that the

coefficients of the resulting set of equations (4.8) take on a very simple

form. Furthermore, Proposition 4.3.5 implies that (4.8) has the solution

f(D) = const., D E S, if and only if J(D) = D, D E S. (Incidentally,

in this case (4.8) coincides with the adjoint Qf = 0 of the system of

equations (4.1), where f is the column vector (f(D))DE ")

It is plausible that (4.8), together with (4.7), might present some

computational advantages over (4.1) for the computation of the non-

product form solutions. Indeed, one would intuitively expect that, for an

"almost reversible" system (this notion being difficult to make precise)

the solution of (4.8) would differ little from a constant, whereas (4.1) could

give values of p(D) for the various states D widely different in magnitude,

such as, for example, for states D1 and D 2 of different cardinality. In this

way, (4.8) would be expected to have a better numerical behavior. Along

the same line of reasoning, the "deviation from constancy" of {f(D) :

D E S} would be a measure of the "non-reversibility" of the Markov

chain under consideration, and could be used to relate the performance

of product form and non-product form protocols. Unfortunately, we were

not successful at neither obtaining useful bounds for f(D) nor, assuming

that bounds were available, at relating those bounds to the differences in

performance of product form and non-product form protocols.

5. GENERAL PACKET LENGTH DISTRIBUTIONS

5.1 Introduction

Let X(t) be defined, as in section 2, as the set of links which are active at time t. We

shall consider in this section the case where the lengths of the packets belonging to link

i E L have a distribution function B(.), with

J zdBi(z) = pi1 < oo.

19



We shall only require that each B(.) possess a positive density almost everywhere. This

condition will ensure the existence and uniqueness of a stationary distribution for {X(t):

t>0}.

In this general case {X(t) : t > 0} is no longer Markovian. However, it possesses the

structure of a general class of processes known as GSMPs. We shall use general properties

of these processes to obtain conditions under which {X(t) : t > 0} has a product form

steady-state distribution. The existence of a product form will be seen to be closely related

to the insensitivity of the steady-state distribution with respect to the moments of second

and higher orders of the distributions B(.), i E L.

5.2 Generalized Semi-Markov Processes* [181-[21]

Consider a process {X*(t) : t > 0} which, at an arbitrary instant t > 0, can be in any

one of the states g of a finite state space G. Each state g is itself a finite set of elements s of

a finite set S. (These elements can represent, for example, links in a packet radio network,

or customers in a closed queueing system.) It is required that, for each . E S, there exist

at least one g E G such that 8 E g. Suppose that X*(t) - g. To each element a E g

(which we shall say to be active at time t) there is associated a residual lifetime Y.(t) > 0,

determined as described in the following. We let Y(t) = (Y,(t)),Eg be the vector of the

residual lifetimes of the elements active at time t. The lifetimes of the elements which

are active at any given time decrease at unit ratet, X*(t) remaining in state g as long all

Y.(t) are positive. Eventually the lifetime of one of these elements will reach 0 (which we

will refer to as the "death" of that element), at which time X*(t) jumps from state g to

a new state g' E G. It is assumed that no two elements can die simultaneously. The state

transitions are specified by a family of transitions probabilities

p = {p(g, 8, .). g E G, 8 E g},

where p(g, a, ) is the probability that the next state of X*(t) is g, E G given that the

*This section is a summary of the main definitions and results in [181 and [191. We will try to conform to

the notation of these papers whenever possible.
tSee 1201 for a generalization which allows a countable state space, and arbitrary rates of decrease for the
residual lifetimes of thA - Live elements. See also [211 for an alternative construction of a GSMP.
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present state is g E G and that the state transition is caused by the death of a E g. It is

required that p(g,s, g) = 0 unless g - {8} _ g (i.e., it is required that all other elements

which are active in the old state remain active in the new state). Upon entering state

g the residual lifetimes of the elements of g are determined as follows: the elements in

g - {} keep the residual lifetimes they had at the time the state transition took place; a

new element si  g'-(g-{s}) is assigned a residual lifetime which is drawn, independently

from the past, from a nonnegative distribution (psi, with distribution function Fi(.), and

mean j7,1 <0 o. (These residual lifetimes continue to decrease at unit rate after the system

enters state J.) X(O) is chosen to be some arbitrary state go E G, and the initial residual

lifetime vector Y(0) is obtained by assigning to the element s C go a residual lifetime Y(0)

drawn from the corresponding distribution (ps. These distributions are assumed to be such

that

(C1) no two deaths can occur simultaneously at any time, and

(C2) the resulting X*(t)-process has a unique stationary distribution.

Remark 5.2.1 In general, (Cl) is easy to verify directly. A sufficient condition for

(C2) is that all distributions involved possess a positive density almost

everywhere [20]. In some cases it may be possible to obtain less restrictive

conditions sufficient to ensure (C2).

Definition 5.2.2 The collection E = (G, S, p) is called a generalized semi-Markov scheme

(GSMS); the process {X*(t) : t > O} is called the generalized semi-

Markov process (GSMP) based upon E by means of the family {Jp :

8 E S}; the process {X*(t),Y(t) : t > 0} is called a supplemented

GSMP.

Definition 5.2.3 A GSMS is said to be irreducible if, for every pair g, g' E G, there exist

finite sequences (go, .. . , gn), gi E G, and (s, 8n), 8i E S, such that

p(g, 80, g)... p(gn,8n, g) > 0.

Definition 5.2.4 Let E = (G, S, p) be an irreducible GSMS, and O(E) the collection

of all families p = { e : a E S} of distributions concentrated on

(0, oo) which imply the existence of a unique stationary distribution
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for the corresponding supplemented GSMPs based upon E. Let • be

a nonempty subset of t(E). E is called 0-insensitive if every GSMP

based upon E by means of an element of 0 has the same stationary

distribution.

Notation Let S' C S. We denote by Isl(vs 8 8 E S) the family of distributions

{ " O E K), , En(') for s VS',p arbitrary with mean 11, -1 for s E S'},

where E,7(-) represents an exponential distribution with parameter r. We also

set 0 8(r/s : 8 E S) A ${80)(r/ : 8 E S).

We now state the main results of interest for our applications. It is assumed throughout

that the GSMS E = (G, S, p) is irreducible.

Proposition 5.2.5 An GSMS E is $st(fls : S E S)-insensitive if and only if E is 4$(j7,9

s E S)-insensitive for every s E St.

Proposition 5.2.6 An GS'.AS E is $Si(1l, : 8 E S)-insensitive if and only if the stationary

distribution of every supplemented GSMP based upon E by means

of a family P E (Psi is of the form

P{X(t) = g,Y,(t) - ,,E glS'} - Pg U 1. 8(1-F,(t))dt,
aEg fn St

where {Pg :g E G} is the steady-state probability distribution of the

GSMP based upon E by means of the exponential family in $s,(vqa:

sES).

Remark 5.2.7 {pp.: g E G} is the normalized solution of the system of equations

Pg = , Pgi , P(g,8,g)t1, gC G. (5.1)
a~~g gEG ,Eg?

These are the global balance equations for the GSMP based upon E by

means of the exponential family in 4st(q, : a E S).
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Proposition 5.2.8 E is ,0(V. :8 E S)-insensitive if and only if there exists a distribu-

tion {pg : g E G} that satisfies (5.1) and

PgVa0 = E PI , p(g' 8,g) 8A + E Ptp(g', so, g) qo0, g E C0 ,
91VV0 8Eg' O1EG0

(5.2)

where Go = {g E G : so E g}. In the case where such distribution

exists, it is the stationary distribution of the GSMP based upon E

by means of to0('1 : a E S).

Remark 5.2.9 (5.2) is a set of local balance equations for the GSMP based upon E by

means of the exponential family in to(o : 8 E S), equating the rate of

transitions out of state g due to the death of so to the rate of transitions

into g due to the birth of so.

5.3 Formulation of X(t) as a Queueing Process

The process {X(t) : t > 0}, defined in Section 5.1, can be obtained as the queueing

process of an M/G/oo queue with state-dependent arrivals. Consider an infinite server

queue with L classes of customers (recall that L represents the number of used links in

the network), each class being uniquely associated with each used link in the network,

and vice-versa. The successive service times of the customers of class i are i.i.d. random

variables with distribution function B(.). Customers arrive according to nonhomogeneous

Poisson processes, whose rate at time t is a function of the queue occupancy at that time,

in the following manner: if D is the set of customer classes present in the queue at time t,

then the arrival process for class i customers has rate Xi whenever the corresponding set of

links D (in the packet radio network) does not block link i, and has rate 0 otherwise. If we

denote by X(t) the set of customer classes present in the queue at time t, and restrict X(0)

to belong to the collection S (defined in 4.1.1), then at any subsequent time t we still will

have X(t) E S. It is easily seen that this process {X(t) : t > 0} coincides with the process

defined in 5.1 in terms of the link activity of the packet radio network. The correspondence

between both models is made by interpreting the arrival of a class i customer to the queue

as the activation of link i in the packet radio network, and its departure as the deactivation
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of the same link. This formulation explains some of the similarities between the properties

of the process describing the joint activity of the transmitters in the network, and the

properties of some queueing systems, e.g., those considered in [221.

5.4 Formulation of X(t) as a GSMP

We construct now a GSMS E = (G, S, p) and a family of lifetime distributions such

that the associated GSMP {X*(t) : t > O} is equivalent to {X(t) : t > 0}. The states

in the collection G are of the form g = AUD, where D E S is a set of active links, and

A - (a,a 2 ,..,aL} such that each aj, i E L, is an element present in all states. The

deaths of ai correspond to the occurrences of the scheduling points associated with link i,

generating the state transitions corresponding to the activations of link i if unblocked. The

death of an element j E D corresponds to the deactivation of j. The GSMS E = (G, S, p)

is formally defined in the following way. Let S --A AUL, and G - {g = AUD : D S S}.

The transition probabilities {p(g, 8, 9) : g, g' E G, s G g} are defined by

1, if s=aj andj EU(D) and g=gU{j}

p(g, , g) =andj U(D) and =g1, 8or s = j and j C D and g = g - {j},

0, otherwise.

We associate with this GSMS a family p = {o, : 8 E S} of residual lifetime

distributions, such that the distribution oa, i E L, is exponential with parameter Xi, and

the distribution poj, i E L, is the packet length distribution for link i. Let {X*(t) : t > 0)

denote the GSMP based upon E by means of the family (o, and suppose that X*(t) -

A UD, D E S. We have that X*(t+At) = AU(D U{i}), i E U(D), with probability Xiht+

o(At), and X*(t+ At) = A U(D- {j}) if element j E D died in the interval (t, t+ At). The

GSMP thus obtained is equivalent to X(t) in the sense that X*(t) = A UX(t). It follows

that, if we again let {p(D) : D E S} denote the stationary distribution of {X(t) : t > 0),

then PAU D = p(D).

Remark 5.4.1 It is easy to see that the GSMS E is irreducible (see 4.1.1). Since

the intervals between the times at which new links become active are
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continuous random variables, condition (CI) of Section 5.2 is satisfied

for arbitrary packet length distributions. The restrictions imposed in 5.1

on these distributions ensure that (C2) is also satisfied. Given the nature

of the system under study, it is intuitively plausible that (C2) be also

satisfied for arbitrary packet length distributions, but we do not know

of a proof of this conjecture.

5.5 Existence of a product form solution

Equation (4.4) does not make sense in the general case. For this case, we shall say

that {X(t) : t > 0) has a product form solution if its stationary distribution satisfies

p(D) = p(D) I DES. (5.3)
iED Pi

Obviously, the existence of a product form solution for {X(t) : t > 0} is equivalent to (i)

tL-insensitivity of {X*(t) : t > 0) and (ii) the existence of a product form solution for

the version of the GSMEP in which all residual lifetimes are exponential; (i.e., the GSMP

corresponding to the case of exponentially distributed packet lengths, which we shall refer

to as the "exponential version" of the GSMP). We have the following

Proposition 5.5.1 {X(t) t > 0) possesses a product form solution if and only if

J(D) "D, for all D E S.

Proof: Let {X(t) : t > 0) have a product form solution. In particular, the exponential

version of the GSMP will have a product form solution. Proposition 4.3.5 then

implies that J(D) = D, for all D E S. Conversely, let J(D) = D, for all D E

S. Again from Proposition 4.3.5, the exponential version of the GSMP has a

product form solution (5.3). Recall that the distribution (5.3) is a solution of the

global balance equations (5.1). We shall now show that (5.3) also satisfies the

local balance equations (5.2) for any i0 E L. Indeed, for the system under study,

the equations (5.2) take the form

p(D) i io= p(D - {io)) 1 i0EJ(D)) X io , D D ({i0}, D E S (5.4)
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or, given that J(D) = D,

x.0
p(D)_ p(D-{i}), D D{i}, DE SPio

which is indeed satisfied by (5.3). Proposition 5.2.8 then allows us to conclude

that the GSMP {X*(t) : t > 0} is 4i0-insensitive for all i0 E L which, together

with Proposition 5.2.5, implies that it is 4bf-insensitive, and hence its stationary

distribution is also given by (5.3). Thus {X(t) : t > 0} possesses a product form

solution. I

As a direct consequence of Propositions 4.3.4 and 5.5.1 we have (note that only the

blocking properties of the protocol, and not the form of the service time distributions, are

relevant for the proof of Proposition 4.3.4)

Proposition 5.5.2 (Criterion for the existence of a product form - general

packet length distributions) A necessary and sufficient condi-

tion for a channel access protocol, together with a given network

topology and traffic requirements, in a system with general packet

length distributions, to have a product form solution is that, for all

pairs of used links i and j, link j blocks link i whenever link i blocks

link j.

Remark 5.5.3 It is possible for a given network configuration and access protocol to

be insensitive with respect to the packet length distributions of a proper

subset of the links of the network, and nevertheless not have a product

form solution. In terms of (5.1) and (5.2), this corresponds to the solution

of (5.1) satisfying (5.2) for some, but not all, links of the network. As an

example, consider the network of Figure 1 operating under the I-BTMA

protocol, and with nonzero traffic requirements over all links. It is easy

to see that, when i0 is taken to be either link 3 or 4, the corresponding

system (5.4) is compatible with the solution (5.3) of (5.1), and hence

insensitivity exists with respect to the packet length distributions of these
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links. On the other hand, if we take i0 to be any of the other links in the

network, it is always possible to find states D E S such that io V'J(D),

for which (5.4) then requires p(D) = 0. This requirement is incompatible

with (5.3), thus showing that insensitivity does not exist with respect to

links 1, 2, 5 and 6.

Remark 5.5.4 In the construction of a GSMP given in Section 5.2, an element of a E S

is assigned, at the times of its birth, lifetimes that can be viewed as

the interarrival times in the renewal point process associated with the

distribution o&. It can be shown that the results presented in Section 5.2

remain valid if the successive lifetimes assigned to an element 9 E S are

obtained as the interarrival times of an arbitrary stationary point process

with intensity qg [20]. This implies, in particular, that an insensitive

system, as defined in Section 5.2, is also insensitive with respect to the

choice of the stationary point process from which the successive lifetimes

of a given active element are generated.

Remark 5.5.5 It is easy to show that insensitivity (and hence a product form solution)

does not exist with respect to the distribution of the times between

occurrences of two successive scheduling points. For that purpose, let us

apply Proposition 5.2.8 by taking 80 to be aj, j E L. Since the element

aj is present in all states, the local balance equations (5.2) become

PAUDXj= X PAUD' p(AUD, aj, AUD) Xj, D E S.
DIES

By retaining only the appropriate nonzero probabilities, this equation

gives

PAUD X~I + PAU(D-(.}) Xj, if j E J(D)

PALJD X - 0, if j E U(D)

PAUD Xj, if j E L- U(D)- J(D)

(5.5)
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Clearly this system of equations is not compatible with (5.1), since for

D such that j E U(D), (5.5) requires PAUD = 0, whereas (5.1) is known

to have a strictly positive solution. The conclusion then follows from

Proposition 5.2.8.

Remark 5.5.6 Although the product form (5.3) is analytically attractive, it is not satis-

factory from the point of view of numerical computation. As pointed out

in [12], the straightforward method of computing the normalizing factor

p() -1 , given by

= X IIr-' (5.6)
DES iED Pi

would involve the determination of all independent subsets of the graph

with adjacency matrix A = [aij], where

i1, if i blocks j, and i, j are used links;
a 1 = otherwise,

and such determination is an NP-complete problem. We show in Appendix

I that the computation of p(o) is hard, by proving that the problem

known as INDEPENDENT SET [23] can be reduced in polynomial time

to a suitable version (from the point of view of computational complexity

theory) of the problem of computing p(o), thus proving that this problem

is at least as hard as INDEPENDENT SET, known to be NP-complete.

Hence it is not likely that a polynomial time algorithm for computing

p(o) can be found.

6. CONCLUSIONS

In this Report we studied the existence of product form solutions for models describing

the joint activity of the transmitters in a packet radio network, under a general class of

channel access protocols. For this purpose, we presented two stochastic models, correspond-

ing to the cases of (i) exponential packet length distributions, and (ii) general packet length
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distributions. The scheduling point processes associated with the links in the network were

assumed to be Poisson. The stochastic process corresponding to case (i) is a Continuous

Time Markov Chain, whereas that corresponding to case (ii) is a Generalized Semi-Markov

Process. In case (i) we showed the existence of a product form to be equivalent to the

property known as reversibility. We gave a criterion, valid for both cases (i) and (ii), which

allows the existence of a product form solution to be easily determined from the description

of the access protocol, the network topology, and the traffic pattern. This criterion does

not involve the specific form of the packet length distributions. We also pointed out the

equivalence between the description of the joint behavior of the transmitters in a packet

radio network, and the description of the activity in a multiple server queueing system

with multiple customer classes and state-dependent arrivals. In addition, we showed that

a product form solution does not exist whenever any of the link scheduling point processes

is not Poisson. Finally, we proved that the computation of the normalization factor of a

product form solution is an NP-hard problem.
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APPENDIX I Computational complexity of normalization factor

We now show that it is possible to reduce the INDEPENDENT SET problem to the

problem of computing the normalization factor (5.6). These problems are defined in terms

of an undirected graph G = (V, E), where V is the set of vertices (or nodes), and E is

the set of edges (or arcs) of the graph. They are formulated as decision problems, in a

form consistent with the computation model of a Turing machine. The graphs we will be

interested in correspond to the description of the blocking between the links of a product

form protocol, as described in Remark 5.5.6.

Given a graph G, we say that a set of nodes is an independent set if no two nodes in

the set are adjacent. The two problems of interest for us are defined as follows.

P1 (INDEPENDENT SET) Given an undirected graph G = (V, E), and an integer

K < IVI, where IVI denotes the cardinality of V, is there an independent set of vertices

V1 C V, with IVJ > K?

P2 (SP) Given an undirected graph G = (V, E), a collection {XV}vEv of integers, and

an integer R, determine whether or not

SP(G) A F, ]I Xi >_ R.

DCV iED
D indep.

The input strings to these problems use the symbols "0", "1", and ",". Let L = IVI.
The input to problem (P1) is ri, r2 , ... , rL, K, where rj is the i-th row of the adjacency

matrix of G. The length of this input is ni = (L + 1)L + rlogK1 (all logarithms being

taken to be to the base 2), satisfying L2 < nj < L2 + 2 L. The input to problem (P2) is

rl,.. ., rL, l,.. ., XL, R, of length n2 = L(L + 1) + X 1 ([logx il + 1) + logR. Note that,

since SP(G) < 1"1= 1(1+.\i), the problem of determining the value of SP(G) can be solved

by doing a binary search on {1,... , fl 1 (1 + Xi)}, taking at most Et..l log(1 + \i) < n2

calls to a solver for problem (P2).

The reduction of (PI) to (P2) in polynomial time is accomplished as follows. Given

an instance of (PI), create an instance of (P2) with the same adjacency matrix, and with
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X .. = - i. -- X - 2 L + 1 and R - XK. The length of the corresponding input string

is

n3 =L(L+l)+L(K +2)+K(L+ 1) _ L(L+1)+L(L+2)+L(L+1) < 8L 2,

so that n3 < 8nl.

Suppose the largest independent set has at most K - 1 elements. Then

K-1 K-I
SP(G)= E XIDI <2 \' j (

DCV j=O DEV jO
D indep. D in dep.

IDI=j

< K-1( L \ <XK R.Efi LL/2J T X-I

The two last steps are justified, respectively, by Sterling's approximation, and by the fact

that X > 2 L + 1 implies 2 L (XK - 1)/(), - 1) < XK. Supposing now that there exists an

independent subset with K elements, then SP(G) > XK = R. Thus we found a set of

parameters, X1, ... , XL, R, function of K and L, such that the answer to an instance of

(P2) is "yes" if and only if the answer to the corresponding instance of (P1) is "yes", and

the translation from (PI) to (P2) can be done in polynomial time. Hence SP is at least as

hard as INDEPENDENT SET.
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