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* SECTION I

OVERVIEW AND SUMMARY

Ramakant Nevatia

1.1 INTRODUCTION

This report describes in detail our research under contract F-33615-82-K-1786
during the period of October 1 1982 to September 30, 1983 and constitutes the final
report along with a previously published semi-annual progress report [1]. During this
period we have concentrated on the following tasks: symbolic matching for a variety of
applications, 3-D surface inference from 2-D images by using stereo, shadows and shad-
ing, texture based segmentation and parallel, VLSI implementations of image understand-
ing algorithms. This section summarizes our results in these areas.

1.2 MATCHING

We have been developing a number of symbolic description matching algorithms
that have been described previously in (1); we have applied them to a variety of aerial
image tasks previously. In section 2 of this report, Kaufmann, Medioni and Nevatia
describe the application of our line matching algorithm to the task of inspecting a printed
circuit board assembly for defects such as a missing or misplaced component The
generality of out technique is demonstrated by showing applicability to domains as
diverse as aerial images and industrial inspection.

In section 3, Price gives a comparison of various relaxation matching techniques
that use different criteria for updating matching confidences at each iteration. The com-
parison is in terms of efficiency and accuracy. In section 4. Price gives an algorithm for
contour matching that is, in some sense, a combination of line matching and relaxation
matching, and has been successfully applied to scenes of simple objects such as hand
tools. In this case, the objects are on a bright light-table and thus a perfect segmen-
tation is obtained.

1.3 STEREO

In section 5, Medioni and Nevatia describe a new stereo matching algorithm using
line segments, rather than edges or area correlation, as has been common in previous
work. Line segments are more global and also, in principle, lead to more efficient match-
ing. We have developed a new matching criterion called "minimal differential disparity"
that seems to lead to good global matches. We have successfully tested our algorithm
on a number of difficult scenes. However, this work is still to be regarded only as a
promising first step.
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1.4 SHADOWS AND SHADING

Shadow and smoothly varying intensity, known as shading, are two important cues
for inferring 3-D information from monocular images. The difficult task in shadow
analysis is the correspondence of object boundaries with shadow boundaries. Previously,
we developed a method that used a priori knowledge of specific shapes expected to be
seen, e.g. rectangular buildings [2]. In section 6, Huertas presents a more general scheme
relying on labeling of edges in images and good results are obtained for estimating
heights of objects such as oil tanks. Our analysis indicates that shadow correspondence
problem could be extremely hard in a general case, but that useful information can be
obtained for the case of aerial images where shadows are often cast on relatively flat
ground. In aerial images, sometimes there is no cue other than shadows that is ap-
plicable.

Smooth variations in shading are postulated as another cue for estimating 3-D sur-
faces from 2-D images. There has been much interest in this area in the last few years,
but the application has been to extremely simple and highly controlled environments. We
have empirically tested two of the leading methods with results given in section 7. Our
results indicate that the techniques work very well for synthetic images but give dis-
appointing results for natural images. We believe that these methods need further inves-
tigation due to the important of this cue.

1.5 SEGMENTATION

-Segmentation in presence of texture has been a long standing problem in image

understanding. We have, under previous contracts, developed some texture analysis
methods that are new being applied to the segmentation problem. In section 8, Lee
describes a method using "pyramids", with the expectation that at some level of pyramid,
a textured region appears uniform and can be extracted easily. Another concern is with
refining the boundary location. This method is still being fully developed and will be
described in a forthcoming Ph.D. thesis.

In section 9, Weber and Sawchuk take a slightly different approach, using texture
classification for segmentation. They also use windows of multiple sizes and choose the
size that seems to give the highest confidence classification. This method also needs
further development.

1.6 PARALLEL AND VLSI IMPLEMENTATIONS

It is becoming increasingly clear that complex IU algorithms can not be run in real-
time on even very fast, conventional, simple-processor, general purpose machines. In
fact, the limitations of computation power inhibit research into more powerful algorithms
that are essential for improved performance. A part of our effort has been devoted to the
study of parallel architectures suited for IU and construction of special VLSI devices for
specific algorithms.

In section 10, Moldovan describes a parallel architecture for computing sub-graph
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isomorphism. This architecture can be implemented efficiently in VLSI. Graph isomor-
* phism is well known to belong to the computationally difficult class of problems known

as the NP-complete problems.

Section 11 contains a large study by Hughes Research Laboratories on the
suitability of a variety of parallel processing architectures, current and proposed. The
study is necessarily qualitative in nature as many of these systems are not completely
defined and there is also a lack of consensus on optimal IU algorithms for some tasks.
Nonetheless, this study should be a valuable guide in the design of future architectures
for IU.

A special purpose device called RADIUS was constructed by the Hughes Research
Laboratories (under a sub-contract). This system uses novel residue arithmetic opera-
tions to allow a variety of arithmetic operations on images in real-time. The operation of
most interest has been convolution. The kernel size of the current implementation is 5 x
5, but the design is modular and larger kernels can be obtained by replication. Details of
this project have been described previously in (1].

REFERENCES

[11 R. Nevatia (Editor), Image Understanding Research Technical progress
reportUniversity of Southern California report #1SG102, October 1982.

[21 A. Huertas and R. Nevatia, "Detection of Buildings in Aerial Images Using Shape and
Shadows," Proceedings of IJCAI-83, Karlsruhe, W. Germany, August 1983.
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SECTION 2

VISUAL INSPECTION USING LINEAR FEATURES

Peter Kaufmann 1 ,

Gerard Medioni and Ramakant Nevatia

2.1 INTRODUCTION

Automatic inspection of printed circuit board assemblies is of obvious importance in

electronics manufacturing. Several approaches to such inspection have been described in
the past; a recent survey on automated visual inspection [1 contains over 200 references,
including a large number for inspection of printed circuit boards and integrated circuits.
We will not attempt a complete survey; basic techniques are described in textbooks on
machine vision [2-31.

The various approaches to inspection can be characterized as belonging to the fol-
lowing classes. In one class, the image is compared to an ideal or model image directly,
on a pixel-by-pixel basis, or by some form of area template matching. These methods
are, of course, sensitive to variations in the lighting, reflectivity of the material and the
size of the image. An alternative is to use a feature based description of the image and

the model and to match the descriptions for inspection. Level and complexity of the
description may vary; a typical example is the system described in (4-61. Lastly, some
methods attempt to find defects described generically, for example connecting wires to

be of a certain minimum width or the corners to have certain ch'aracteristics [7-81. These
methods have the advantage of being applicable to a new part without changes, however,
in many cases the defects to be inspected may be product dependent.

Our system is a feature based matching system. In our system, the symbolic
descriptions to be matched are derived from line segments detected in an image. In ad-
dition, we also have a model of the expected defects. The part we have used in our tests
is a printed circuit board used in digital watches in Switzerland. Its main components
are:

- a printed circuit board, approximately 2cm by 2cm.
- a square, black plastic Integrated Chip with 8 soldering points
- an elongated, brass/ceramic capacitor with 2 soldering points
- a cylindrical metallic quartz connected to the board by 2 soldering points
- an elongated, brass battery contact riveted on the conductor.

The intensity of the parts of interest covers most of the black to white range and no ef-

fective threshold can be applied to the whole image to extract the desired parts. Figure 1
shows a complete printed circuit board with all elements in their proper locations. (All
images shown in this paper were obtained by positioning the camera above the object,

IPeter Kaufmann was visiting USC and is now at ET.A., Schild Strasse 17 Grenchen, Switzerland
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the illumination was provided by two sources, a light table under the object and a light
* source normal to the table, and the resolution is 512 by 512 pixels).

The defects we wish to detect are:

-broken printed circuit board
-missing IC
-missing capacitor
-missing quartz
-battery contact out of place or missing

These defects are the ones that seemed to be of the major concern in the
manufacturing process where this board is used. Here, we have not attempted inspection
of the conductor paths; apparently, for simple boards, visual inspection of these paths is
not of major concern.

2.2 DESCRIPTION OF THE MODEL

The model description consists of a set of line segments which are logically divided
into submodels. Each submodel contains one or several segment chains which represent
contours or outlines of parts or assemblies. Each of these submodels also has a descrip-
tor which tells the comparison program how to interpret matches with the segment
chains contained in the submodels. It contains for example a value for each segment
chain which indicates the amount of correspondence with the part required to consider

* the chain as matched. The exact format of each submodel descriptor is defined as:

1. Lexical description of submodel (e.g. name of corresponding part in assembly).
2. Minimum required length of correspondence for each segment chain.
3. Maximum acceptable length of non-correspondence for each segment chain. (Note

that the absence of some parts, such as the capacitor or integrated circuit, is in-
dicated by too many line segments being visible, rather than not enough).

4. Message to be printed out in case of success or failure.

Figure 2 shows the outlines of parts of interest that constitute the segment component of
the model.

2.3 SEGMENT ENCODING OF THE PART

To find the segment representation of an image, several processing steps have to
be executed in sequence:

- Edge detection (followed by edge thinning and thresholding)
- Approximation of edges by line segments

These steps are only sketched here, a more complete description of the algorithms
can be found in [9]. In this method, edge templates in six directions are convolved with
the Image and the direction with the highest output determines the magnitude and direc-

* tion of the edge associated with a pixel. Based on direction and magnitude information,
an edge thresholding and thinning operation follows. The threshold value is kept rather
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low, so that no "good" edges are discarded at this early stage. Figure 3 shows the output
of the edge detector using six 5x5 masks.

Next, the edges are linked to form continuous curves, and these curves are ap-
proximated by piece-wise linear segments (using the method described in [9]). Each line
segment is described as follows:

- segment number (each segment has a unique identification)
- family number (unique for each linked segment chain)
- predecessor number (if the segment belongs to a chain)
- successor number (if the segment belongs to a chain)
- begin and end point coordinates
- strength (average contrast along the segment)
- length
- orientation angle

Although length and orientation are redundant, they are stored so that they are cal-
culated only once. The algorithm to fit the line segments into the edge points is defined
so that all segment end points are actual edge points and the normal distance between
the line segment and the edge is never greater than a fixed number of pixels, say d. While
generating these line segments, several filtering operations can be performed. Weak
edges can be suppressed using length and strength properties of the edges. Figure 4
shows the line segments computed from the edges in figure 3. A line fitting tolerance, d,
of 2 pixels was used and isolated segments shorter than 10 pixels were discarded.

2.4 COMPARING THE PART WITH THE MODEL

Now that we have the same representation for model and part under inspection, the
next step is to find out how the part compares with the model. In order to compare
them, we will assume identical position, orientation and size of model and part. If these
constraints are not given by the layout of the inspection (fixtures, positioning device),
then these parameters have to be roughly estimated in a preprocessing step which is
discussed in section 4.1. Once we have model and part in an identical coordinate frame,
corresponding segment chains have to be identified, as described in section 4.2.

2.4.1 Alignment of Model and Part

Given our data, which is a printed circuit board to be used in digital watches, we
extract the chain of segments containing the longest vertical segment and match it with
the outline of the left side of the model using a brute force technique, i.e. evaluating the
quality of every possible set of matches, to estimate the parameters of the rotation and
translation. This technique is effective because of the small number of elements involved
in the matching, typically less than 5.
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* 2.4.2 Matching the Part with the Model

The method used to match each part with the model is a variation of the Kernel
method[1O,11] successfully applied at USC on aerial images. The main differences stem
from the fact that the structures to be matched were already aligned in a previous step.
We will sketch here the main components of the process.

Definitions
We will denote the segments of the part as ai, 1<i<n and call them objects. We
will denote the segments of the model as I., l__j<m and call them labels. The set
A=fai} is the scene.
The set L={li } is the model.

We want to compute the possibility p(i,j) for object a, to have label I. p(i,j) can be

either 0 or 1.
The method presented here relies mostly on geometrical constraints, meaning that
when we assign label I to object a,, we expect to find an object a h with the label Ik
in a certain area dependent on (ij,k). This area is noted w(i,j,k) and call the window
w(i,j,k).
Finally, we define the relation C, "is compatible with", between (i,j) and (h,k) as

(i,j) IS COMPATIBLE WITH (j,k)
<=> (ij) C (h,k) <=> ah in w(i,j,k) AND ai in w(h,k,j).

We need to check both predicates because the relation "is in w" is not symmetric.
The method then proceeds as follows: Find a few pairs of very likely matches that
are also mutually compatible, cat these pairs the kernel and check each possible
assignment for compatibility with this kernel.

- Assignment of possibilities
Since scene and model are approximately aligned, this step is very simple: We will
assign label II to object a if the corresponding segments have approximately the
same position and orientation. The tolerance on orientation is large for small seg-
ments and very small for long segments. As we assign these labels, we mark every

pair that is very closely matched as a good candidate for kernel element. We then
extract the largest set of mutually compatible assignments from these candidates

and call it the kernel. Then each other assignment is verified against this kernel for
compatibility. Finally, we bridge accidental gaps in segment chains by looking at
the labels assigned to the predecessor and successor of a given segment s; if both
have a label, then we globally match chains and force a label on s.

- Interpretation
Once -scene and model have been matched, we generate a description of this match
with each submodel part based on the length of matched chains. Each submodel
contains the minimum and maximum bounds required for acceptance.

Results of this matching process are shown and discussed in the next section.

0
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2.5 RESULTS AND CONCLUSIONS

Figures 5 to 10 show the results obtained with 6 different instances of the given
printed circuit board representing different possible configurations. For each example,
figure (a) shows the segm-nts matched with the model of figure 2 superimposed on the
image of the part and figure (b) gives a detailed explanation of the matching evaluat on.
For each sub-part of interest, the program outputs whether that sub-part is found and if
so how much of the total length of model segments has been matched - this can be a
measure of the quality of the match. A defect can be indicated by not enough of the
model segments being found, or by too much of the segment length being visible. The
acceptable limits are also given in the result figures.

It is clear that our program is able to detect the desired defects for the examples
shown. However, the matching system would only be a component of an inspection sys-
tem. There is much additional useful information in the images that we have not utilized.
For example, we indicated the presence of the quartz crystal merely by the boundaries of
the hole being invisible. Many lines, parallel to the axis of the quartz, are also typically
detected by the line finder, and these along with some use of intensity variations could
be used to more accurately verify that the correct part was in place (e.g. as in [121).
Thus, our system may be regarded as a top-level cueing mechanism that detects major
defects to be verified by a more specific, goal-oriented inspection module.

REFERENCES
0

[1] R. T. Chin and C. A. Harlow, "Automated Visual Inspection: A Survey," IEEE Trans.
PAMI, Vol. 11, No. 6, November 1982, pp. 557-573.
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Figure 1: Complete Printed Circuit Board Figure 2: Outline of the model

Figure 3: Edges using 5x5 masks Figure 4: Line segments

0



(a)

the part: outlifle/top.right..corner Is found
not matched: .0000000 limit: 9.016455
Matched: 60.10970 limit: 51.09325
model length: 60.10970

the part: otlineflefzsiae Is found
not Matched: .0000000 limit: 06.0252?
Matched: 573.5018 limit: 487.4765
model length: 573.5016

the part: outline/top is found
not Matched: .0000000 limit: 78.13128
matched; 390.6564 limits 312.5251
model length: 390.6564

the part: outline/rightSide is found
noat Matcheds .0000000 limit: 65.957700matched: 439.7180 limits 373.7603
model length: 439.7180

the parts outline/bottom is found
not matched: .0000000 limit: S0.33727
matched: 335.9151 limit: 235.5279
model length: 335.9151

the parts center.hole Is found
not matcheds .0000000 limit: 62.00780
Matched: 413.3853 limit: 351.3775
model length: 413.3353

the parts capacitor Is found
not matcheds 14.00000 limit: 9.355159
Matched: 162.4427 limits 187.2480
model lengths 197.1032

the part: integrated Circuit is in place
not matched: 81.78685 limit: 15.12139
matched: 163.3025 limit: 237.3064
model length: 302.4275

the port: Quartz Is in place
nlot matched: 145.2147 limits 20.80467
Matched: 167.5798 limits 395.2837
model length: 416.0933

the part: Battery Contact is found
not matched: .0000000 limit: 43.45157
matched& 359.0243 limit: 274.539
model length: 323.0105

(b)

Figure 5: Matching results
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(a)

the part: outlinu/top..rightcorner is found
not matched: .0000000 limit: 9.0164'5S
matched: 7S.83074 limits S1.09325
Model length: SQ. 10970

the parts outline/leftside Is found
not matched: .0000000 limit: S6.02527
Matched: 574.5556 limits 487.4765
model lengt'" 573.5018

the parts outlinettop is found
not matched: 67.23146 limit: 78.13129
Matched: 326.8160 limit: 312.5251
Model length: 390.6564

the part: outline/right..side is found
not matched: .0000000 limits 65.9S770
matched: 440.0202 limits 373.7603
Model length: 439.7180

the part: Outline/bottom is found
not matched: .0000000 limit: 50.3B727
Matched: 337.7853 limit: 235.5279
Model length: 335.9151

the part: centerhoie Is found
not matched: .0000000 limit: 62.00780
Matched: 414.1680 limit: 351.3775
model length: 413.3353

the part: Capacitor Is missing or not In place
not matched: .0000000 limit: 9.855IS9
matched: 197.1032 limit: 187.2480
model length: 197.1032

the part: Integrated Circuit Is missing or not in placc
not matched: .0000000 limit: I5.12139
Matched: 302.4278 limit: 287.3064
model length: 302.4278

the part: Quartz is missing or not in place
not matched: .0000000 limit: 20.90467
matched: 416.0933 limit: 395.2887
model length: 416.0933

the part: Battery Contact is not found
not matcheds 323.0105 limit: 48.45157
matched: .0000000 limit: 274.5589
model lengths 323.0105

(b)

Figure 6: Matching results
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the part: *utlineltooprightcorner is found
not matChed: .0000000 limit: 9.016455
matched: 69.06133 limit: 51.09325
model lengths B0. 10970

the part: outline/legttside Is found
not Matched: .0000000 limits 96.02527
matched: 604.6610 limits 437.476S
Model lengths 573.5018

the part: outlineltop is found
not matched: .0000000 limit: 78.13120
matched: 402.0784 limit: 312.5251
Model length: 390.6564

the part: outlinetrightside is found
not matcheds .0000000 limits 65.95770
matcheds 444.0930 limits 373.7603
model length: 439.7180

the part, outline/bottom is found
not matcheds .0000000 limits S0.38727
matched: 333.7736 limit: 255.5273
model lengths 335.9151

the parts centerhole Is found
not matched, .0000000 limits 62.00730
Matched: 413.3684 limits 351.3775
model length, 413.3353

the parts capacitor Is found
not matched. 14.03567 limits 1.155159
matcheds 149.6836 limits 137.2430
model lengths 197.1032

the part, Integrated Circuit is In place
not matched: 10.29563 limit: 15.12139
matched: 194.5338 limit: 237.3064
model lengths 302.4273

the part: Quart& Is missing or net In place
not matched: .0000000 limit: 20.30467
matched: 414.1096 limit, 335.2337
model lengths 416.0933

the part: lottery Contact Is not feud
net matched: 323.0105 limits 46.45157
matched: .0000000 limit: 274.5533
model lengths 323.0105

(b)

Figure 7: Matching results
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the part: outline/top.rightCorner is found
not matched: .0000000 limit, 9.016455
matched: 59.29365 limit: 51.09325
model length: 60. 10970

the part% outline/left-side is found
not matcned: .0000000 limit: 56.02S27
matched; 501.3698 limit; 487.4765
mode] length: 573.5015

the part: outline/top Is found
nlot matched: .0000000 limit: 78.13128
Matched: 414.3125 limit: 312.5251
model length: 390.6564

the part: outlin&/rIgh1_side is faund
not matched: .0000000 limit: 65.95770
matched: 450.9297 limit: 373.7603
model length: 439.7150

the part: outline/bottom Is found
no~t Matched: .0000000 limit: 50.38727
Matched: 330.0233 limit: 255.5279
model length: 335.9151

the part: center.hole is found
not Matched: .0000000 limit: 62.00780
Matched: 415.7956 limit: 351.3775
model length: 413.3853

the part: capacitor Is missing or not in place
not matched: .0000000 limit: 9.555159
matched: 199.0475 limit: 187.2480
model length: 197.1032

the part: Integrated Circuit is in place
nlot Matched: .0000000 limit: 15.12139
Matched: 220.7356 limit: 237.3064
model length: 302.4275

the part: Quartz Is in place
not matched: .0000000 limit: 20.50467
matched: 365.5972 limit: 395.2537
model length: 416.0933

the part: Battery Contact is found
not Matched: .0000000 limit: 48.45157
matched, 339.1811 limit: 274.5589
Model length: 323.0105

(b)

Figure 8: Matching results
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(a)

the part: outline/top~right corner is found
not matched: .0000000 limit: 9.016455
matched: 50.25959 limit: 51.09325
model length: 60.10970

the part: outline/left side is found
not matched: .0000000 limit: 86.02527
matched: 571.9929 limit: 457.4765
model length: 573.5015

the part: out line/top is found
not Matched: 46.71318 limit: 78.13128
Matched: 358.0725 limit: 312.5251
model length: 390.6564

the part: outline/rightSide io found
not matched: .0000000 limit: 65.95770
Matched: 436.3224 limit: 373.7603
model length: 439.1150

the part: outline/bottom is found
not matched: .0000000 limit: 50.38727
matched: 368.0060 limit: 285.5279
model length: 335.9151

the part: centerhole Is found
not matched: .0000000 limit: 62.00780
matched: 412.7569 limit: 351.3775
Model length: 413.3853

the part: capacitor Is found
not matched: .0000000 limit: 9.555159
Matched: 164.6381 limit: 187.2480
model length: 197.1032

the part: Integrated Circuit Is In place
not matched: 73.30357 limits 15.12139
Matched: 199.4696 limits 257.3064
model length: 302.4275

the parts Quartz Is In place
not matched: 45.26370 limits 20.50467
matched: 333.6798 limits 395.2087
model length: 416.0933

the parts Battery Contact Is not found
not matched: 323.0105 limit: 43.45157
matcheds .0000000 limit: 274.5589
model lengths 323.0105

(b)

Figure 9: Matching results
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the part: outline/top right corner is found
not Matched: .0000000 limit: 9.016455
Matched: 55.81174 limit: 51.09325
Model length: 60.10070

the part: Outline/loft side is not found
not matched, 102.6470 limits 86.02527
Matched: 319.4996 limit: 407.4705
Model lengtht 573.5018

the part: Outlin*/top Is not found
not matched: 240.0139 limit: 78.13128
Matched. 125.5273 limit: 312.5251
Model length: 390.6564

the part: outlinefright.sfae i$ found
not matched: .0000000 limit: 65.95770
matChedt 435.3755 limit% 373.7603
model length: 439,7180

the part: outilin/bottom is found
not Matched: .0000000 limit: 50.311727
matched; 366.6647 limit: 285.5279
model length: 335,9151

the part: centerhole is not found
not matched: 114.4814 limit: 62.00780
Matched: 2631.0096 limit: 351.3775
model length: 413.3553

the part: capacitor is missing or not in place
not matcnect .0000000 limit: 9.855159
Matched: 197.5216 limit: 187.2480
model length: 197.1032

the parts Integrated Circuit Is In place
not matced:a .0000000 limit: 15.12139
Matched: 161.5724 limit: 237.3064
Model length: 302.4275

the part: Quartz Is missing or not in place
not matched: .0000000 limit: 20.80467
Matched: 414.2710 limit: 395.2557
model length: 416.0933

the parts battery Contact is not found
not matcheds 323.0105 limit: 48.45157
Matched; .00000o0 limits 274.5559
model lengths 323.0105

(b)

Figure 10: Matching results
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SECTION 3

RELAXATION MATCHING TECHNIQUES - A COMPARISON

Keith E. Price

3.1 INTRODUCTION

Matching of images and descriptions has many different uses and can be performed
at several different levels. Some matching tasks require that very precise corresponding
locations be computed (e.g., stereo depth computation, pixels level change detection). But
for many tasks, matching at a higher level (i.e., finding correspondences between large
areas) is best. This paper discusses results of using a variety of relaxation techniques in
a general symbolic level image matching system applied to the task of matching an
image and an a priori description of the scene (a model), and the task of matching two
images to find the location of an object in two different views. Thus we use this
program to find correspondences between areas of the images (or objects) rather than to
find a pixel level mapping between them.

3.2 BACKGROUND

The work reported here represents an extension of earlier relaxation base, symbolic
U matching efforts [1J. A variety of other image matching techniques have been developed

for different tasks. Moravec [21 has developed a system which locates feature points in
one image (essentially corners) and uses a correlation based matching procedure at mul-
tiple resolutions to efficiently find a set of corresponding points in the two images. This
system is intended for land based robot navigation which uses the three dimensional in-
formation from these feature points for navigation. A stereo system developed by Baker
[31 generates a complete disparity map starting from edge correspondences. The dis-
parities can be used for depth computations if the camera positions are known. These
two (and many other similar efforts) concentrate on precise matching of image data to
obtain 3-dimensional descriptions.

Several systems which work on a variety of symbolic representations have also
been developed. Barnard and Thompson [41 have developed a relaxation based motion
analysis program which finds corresponding feature points in two images. The feature
points are similar to those of Moravec (21, but they are located in both images. Wong et
al. [51 also use a relaxation procedure to match corners which are detected in pairs of
images. This system allows arbitrary translations and rotations of the camera. Clark et
al. [61 have developed a system to match line like structures (generally either edges or
region boundaries). The program uses three initial matching line pairs to get a mapping
between the two images. The quality of the match depends on how well all the other
lines match, and the best match is determined by trying all possible triples of matching
lines. The number of possible triples is limited by the allowable transformations, i.e.,

* given one match, the possible matches for the other two are very restricted. Gennery [71
extracts simple description of objects and uses a tree searching procedure to find the

best match.
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The primary relaxation procedure in this paper is developed more fully in [1, 81 and
differs from other methods in its gradient optimization approach. The other alternative
relaxation updating schemes used in the comparison are the basic method of Rosenfeld
et al. [91 the product combination rule of Peleg [101 and the optimization method of
Hummel and Zucker [11].

3.3 SYMBOLIC DESCRIPTION

This matching system uses feature-based symbolic descriptions for its input. The
description of an idealized version of the scene (a model) is developed by the user
through an interactive procedure. The image descriptions are derived automatically from
the input images. The underlying descriptive mechanism is a semantic network. The
nodes of the network are the basic objects with associated feature values and the links
indicate the relations between objects.

The basic objects used in the image description are regions or linear features ex-
tracted by automatic segmentation procedures [12, 131. These procedures produce a set
of objects composed of connected regions which are homogeneous with respect to some
feature in the input image [12] and long narrow objects which differ from the background
on both sides and can be represented as sequence of straight line segments [131. Only
the important objects are described in the model. The automatic image segmentation
produces many objects which are not included in the model (as many as 100-300
elements). The model description determines the outcome of the matching procedure
and can also be used to guide the segmentation procedure [14.

The description is completed by extracting features of the regions and linear ob-
jects. The features are those which can be easily computed from the data and which are
reasonably consistent. These features include average values of the image parameters
(intensity, colors, etc.), size, location, texture, and simple shape measures (length to width
ration, fraction of minimum bounding rectangle filled by the object, perimeter /area, etc.).
Relations included in the description are also those which are easily computed; such as
adjacency, relative position, (north of, east of, etc.), near by, and an explicit indication of
not near by.

3.4 MATCHING

The basic goal for the matching procedure is to determine which elements in the
image correspond to the given objects in the model. Most of the objects cannot be
recognized by only their feature values. They require contextual information to be cor-
rectly located. An important idea used by the matching system is to locate a small set of
corresponding objects using feature values and available contextual information. These
initial islands of confidence provide the context needed for finding correspondences for
the less well defined objects. Finally, when most objects are assigned, the matching can
be done solely on the basis of context, thus radical differences in a few objects do not
cause the matching program to fail.

The basic operation of the matching system is outlined in Fig. 1. In the large outer
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* loop a set of possible matching regions is determined for every element in the model.
Each of these possible assignments has a rating (probability) based on how well the
model and image elements correspond. These ratings are refined by the relaxation pro-
cedure in the inside loop, until one or more model elements have one highly likely as-
signment (usually a probability threshold of about 0.75 or 0.8). At this point a firm as-
signment is made and all likely assignments are recomputed using these assigned ele-
ments to give the context for the match. The inner relaxation procedure updates the
probabilities of the assignment based on how compatible the assignment is with the as-
signments of its neighbors in the graph (i.e., objects linked by relations). We use a
variety of relaxation schemes (1, 8, 9, 10, 11, 151 in this loop, with the criteria optimizing
method in [1, 81 giving the best results.

The importance of this two level procedure is clear when an analysis of relaxation
updating is made. Relaxation can be viewed as moving around in a multidimensional
space searching for the global maximum of some function (such as overall match quality).
But, the search is constrained to find a local maximum near the initial assignment [11.
The reinitialization step moves the searc.h from the vicinity of one local maximum to
another, which should be as high or higher.

34.1 Matching Details

The quality of match between two elements (one each from the model and image
or from two different images) is given by the weighted sum of the magnitude of the fea-. ture value differences,

m
R(u, n) E2 IV k - VnkI WkS k  (1)

kWi

where u is an element from the model n from the image, m is the number of features
being considered, and Vuk(Vnk) is the value of the kth feature of element u(n). Wk is a
normalization weight (the same for all tasks) to equalize the impact from all features. S k

is the task dependent strength of a given feature. These strength values distinguish be-
tween important, average, and unimportant features. The ratio of the strength values is
5:1 and there is a fourth strength, zero, which indicates a feature is not used. This rating
function is converted to the range [0, 11 by

a
f(u, n) - (2)

R(u, n) + a

where a is a constant which controls how steep the differences function is. A value of 1
(a sharply declining function) produces the best results with the optimization updating ap-
proach. A larger value such as 10 should be used when using the product combination
method [101. Relations are treated like features in computing their contribution to the
match rating. Vuk is the number of relations of type k which are specified in the model
and Vnk is the number which actually occur in the image. Figure 2 illustrates how these
values are computed for a given u. For each possible corresponding region n , check all
u. (in the model) which are related to u i to see if the given correspondence (n,) for ui is
properly related to n k* When computing the initial probabilities of a match, only those uI
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which have been previously assigned can be considered.

The relaxation procedures require a function which measures the compatibility of a
particular assignment nk for u, with the current possible assignments at all neighboring
(related) units. This is defined by

1
Qi(nk) - L2d c(ui' n, ui, nl)pi(n I)

IN(u,)I i N( u1) n, inW

+ f(ui, nk)P(nk) (3)

Where N i is the set of objects related to ui, INil is the number of neighbors, is a factor

between 0 and 1 that adjusts the relative importance of features versus relations (0.1 to
0.25 is the usual range), p,(nk) is the current probability for assigning name nk to unit u,,
W i is the set of likely assignments of ui (for efficiency and improved results we generally
use only the one most likely assignment here). c(u i, nk, uj, n,) is the same as f(ui, nk) ex-
cept that only relations between ui and ui are considered. The vector is used directly
in the updating step without normalization, which simplifies the computation. The itera-
tive updating is given by

Pi(n+ l) . Pi(n) + pnP,{5g (n)}  (4)

where Pn is a positive step size to control the convergence speed, P. is a linear projection
operator to maintain the constraint on pi(n+l ) that it is a probability vector, and Ain) is an
explicit gradient function determined by the optimization criteria [1, 81.

gi(nk) -Qi(nk) - pi(nk) f(u i, nk) (5)

E 1 c(ui, nl, ui, nk)Pj(n,)

st. ueN(ui) IN(u)I n, in W

Briefly, the gradient gives the direction of greatest change in the criteria and the

updating function takes a step in this direction. An alternative formulation is the one by
Hummel and Zucker (111. They optimized a different function and thus do not compute
the gradient, but, under the assumptions which apply here, the final updating step is the
same except that Oi is used rather than g-. The original method of Rosenfeld et al. [91
uses the same computation method for the compatibility measure, but has a different up-
dating function.

pi(n)(nk)Qi (n)(n (6)
pP nnn(nk) , (6)pin l lo 'n l l
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* The product method of Peleg[10] uses the updating function given in Eq. 6, but combines
the compatibility values using a product rather than a sum. This changes the outer sum-
mation in Eq. 3 to a product. If this product combining rule is used, then the constant (a)
in Eq. 2 must be a much larger value (10 or 100) so that the match ratings are not all al-
most zero.

3.5 RESULTS

We have applied this system to a variety of images (generally two views of each
scene, see Fig. 3, 4). For different views of the same scene, we use the same model.
The results are presented as overlays on the original images, showing the border of
regions or center lines of linear features. The labels are taken from the name given in
the model, either the user derived model or the image which serves as a model. Table 1
summarizes the results. The results given here reflect the use of a post-match error
elimination heuristic which eliminates errors based on ambiguous matches.

Figure 5 shows the results of matching the model to the first image of San Fran-
cisco area (Fig. 3). The errors in the second view are caused by the segmentation errors.
The two sections of the Bay Bridge are missed by the linear feature extraction program
and thus both cannot be matched correctly plus the island which is adjacent to the
bridges and both portions of the bay is mismatched. (Note that the two sections of the
bay were intended in the model description to be split by the bridges.) See Table 1 for a

* summary of the results.

Figure 6 gives the results for a subwindow of the low altitude aerial images (Fig. 4).
The regions were extracted using a model based segmentation technique (141. Different
objects are segmented poorly in the two views, but the matching still works well for both.
An alternative segmentation produced similar matching results (using the same model),
even with differences in some of the extracted regions.

The two methods (11 and [111 based on an optimization approach give more correct
matches with few errors. The product combination rule [101 converges very rapidly (as
expected), but does not make the "difficult" assignments which require more iterations to
incorporate the global context. The original method [9) was more uneven in its perfor-
mance (some good, some poor). The product rule is the fastest - becaue of the product
in the combinations, a few low match ratings quickly cause the overall rating of an as-
signment to approach zero. Because the number of iterations is greater, the original
method takes longer than the product method. The two optimization approaches take
even longer due to the increased number 6f iterations and the increased complexity of
each step. Interestingly, the simpler method of Hummel and Zucker requires more time
and, usually, a greater number of iterations, because fewer potential matches are
eliminated (forced to a probability of zero) on each iteration.

Figures 7-9 present the image to image matching process. In Fig. 7 the first view
is used as the model, and the second is used in Fig. 8 (the image used as the model is

* the one on the left). Figure 9 shows those pairs which occur in both cases. Table 2
gives the computed disparities for each of these 37 matched objects. The same general
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comments apply here as in the preceeding paragraph. Note (see the summary in Table 1)
that the product rule combination forces probabilities quickly to one or zero so that
global context may be missed.

3.6 SUMMARY AND CONCLUSIONS

This paper compared the use of four different relaxation updating schemes with the
same general matching system. The most consistent performance was the gradient
based optimization approach detailed in [1]. There is a higher cost, in terms of the com-
plexity of the necessary operations as reflected in the computation time. These results
indicate that rapid convergence is not always an advantage, when the relaxation con-
verges before enough global context has been included.
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Compute initial likelihoods

Update assignments
using a relaxation scheme No

Any assignment over threshold
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Make firm assignments

Figure 1: Basic operation of the matching system. Several different relaxation
procedures can be used in the inner loop.
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Figure 2: Computation of the match value for relations
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Figure 3: Two high altitude aerial views of the San Francisco Bay area. With
region based segmentations and linear features indicated.
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Figure 4: Two low altitude views of the Ft. Belvoir UA area

7- r

AP

Figure 5: Matching results using optimization approach for the first
San Francisco view
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04O7

Figure 6: Matching (using the optimization approach) for 2 windows of the

low altitude viewing with a scene model

O

Figure 7: Image to image matching (using the optimization approach) for the two

low altitude images. The image on the left served as the model.

0
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06

Figure 8: Same as Fig. 7 except the other view is used as the model

Figure 9: Continuation of results from Fig. 7 and 8.

0
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SECTION4

MATCHING CLOSED CONTOURS

Keith E. Price

4.1 INTRODUCTION

Closed boundary matching and line segment matching have been explored in a
variety of contexts. Chow and Aggarwal [1] used contour matching for motion studies of
simulated cloud patterns. Davis [21 used a relaxation based matching system for recog-
nizing islands using their outlines. Bhanu [31 has looked at contour matching of occluded
objects. Recently, Avache [4] has given a method for accurately locating an object in a
scene where there is substantial occlusion (or additional metal on the original object).
Line segment matching (without considering closed contours) has been studied by Clark
et al. [51 for arbitrary aerial views and Medioni [61 for stereo pairs.

The matching method here is an attempt to be more general in terms of the type of
potential tasks and computationally simpler. The previous work has shown that cor-
responding segments in two views can be computed reliably and used for recognition or
object matching. Also, it has shown that some correct corresponding segments can be
located by simple, rotation invariant, features of the segments. The most important con-

* sideration for matching closed contours is that the order of segments in the two views
must be the same (or in strictly reverse order if mirror images are allowed).

4.2 ALGORITHM DESCRIPTION

Rotation invariant features of line segments include the line segment length and the
angle between consecutive segments. Using only these features, a given line segment in
one view can readily match many segments in another view. But a consecutive sequence
of border segments in one view should have few matches with consecutive or monotoni-
cally increasing sequences in the other view. Rather than comparing sequences of
boundary segments, we will compute the potential matches and look for sequences.

4.2.1 Boundary Descriptions

The images are of a variety of small tools on a light table for a good contrast, but
the clear handles of some of the tools do not always have a sufficient contrast between
the objects and the background. The objects are extracted using a simple threshold to
separate them from the bright background. The boundary of the region is transformed
into a sequence of straight segments by a procedure originally developed for sequences
of edge points (7]. The accuracy of the line segment representation is controlled by a
parameter which gives the allowable deviation of the individual points from the straight
line segments. Three representations are generally computed corresponding to a devia-

* tion of 1.2 (1 has an anomalous behavior), 2 and 4. Each boundary is represented as an
ordered sequence of these line segments with length and orientation for each. Segments
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are numbered in order around the boundary, thus consecutive segment numbers cor-
respond to adjacent segments in the boundary. These segment sequences are called
families. Each family corresponds to one region boundary with separate families for the
interior boundaries of holes. Several families are included in the description for an image,
with each family processed separately.

4.2.2 Initial Matching Segments

The matching procedure considers two families at a time, one from each of two
images. Each segment in the first family is compared with each in the second family to
determine if they can possibly match. If they do match, then the orientation difference is
stored in an array (indexed by segment numbers), called a disparity array. Possible
matches are determined by comparing the segment lengths and by comparing the angles
between the current segments and their respective successors. Both of these tests use a
threshold chosen by the user. The length threshold is a multiplicative factor greater than
1, thus we can use the test:

L(1)/t !5 L(2) _< L(1)*t

where L(X) is the length of segment X and t is the threshold. At this point the length
restriction is severe - around 1.3. The angle difference threshold depends on the resolu-
tion of the line segment representation, ranging from 900 for the lowest resolution ver-
sion to 450 for the highest.

Each segment will have many possible matches using these two criteria, but there
should be very few cases where several consecutive segments in one image match con-
secutive segments in the other all with similar orientation differences. Thus, we need to
find long consecutive sequences of matching segments. As the first step, we find two
matches, n with m and n+l with m+l. These two matches are used as the starting point
for a simple search to find a long sequence of matches where gaps in either sequence
are allowed.

4.2.3 Initial Matching Sequence

From the pair of initial matches we search for the next (or previous by searching
backwards) matching segments. We look at the diagonal segments next (increment both
by one) then the points of the diagonal. In the following:

X . . . . .

Y 3 8 5
.2 16 3

7 5 4 1
4 2 0 9

X is the first point located and Y the second. The search starts at 1 then continues at 2,
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* 3, etc, after 9 we continue at 0, 1 ..... This search continues until another matching
pair is located which has a disparity array value within the threshold range of the first
pair. The same threshold is used as in the initial match computation. Here it is a limit
on the difference between disparities, there is was used as a limit on the difference be-
tween the angles of segments and successors. Gaps between the last match and the
new match are filled in as matchs when the new match occurs along the diagonal, i.e.
both sequences jumping the same amount.

All possible sequences are located in the two families. If the longest sequence has
enough points (5 for cases where good matches are expected, 3 as an extreme where
nothing is known) then this set of matching segment pairs is used to determine the ap-
proximate transform to align the two families. The transform is one which would per-
fectly align a pair of matching segments. This pair is the one near the median, orien-
tation difference (computed using the length of the segments as weights), which is
longest and has both segments of the pairs near the same length. That is, starting at the
median look for the longest segment where the ratio between the segment lengths
(short/long) is greater than 0.8. The best two transformations are used for the transfor-
mation refinement (along with the best transformation from the second longest matching
sequence - if it is close (0.7) to the length of the longest one). This transformation only
applies for mapping between the pair of families, there will be many such transformations
in the final complete match

. 4.2.4 Transformation Refinement

Two (or possibly three) transformations for a pair of families have been generated
which must be compared to select the best, for the final result. With a known transfor-
mation, we use different constraints for matching segments. A possible match is in-
dicated if the segments overlap in position, or nearly overlap, and the orientations are
similar - after the transformation has been applied to the appropriate segment.

Using each possible transformation, we compute the set of initial matching seg-
ments and the sequence of matching segments by the same procedures as above. A
transformation is applied to all the segments in the first image and different features are
used to determine a match. Position and orientation of the segments are used, with
thresholds on the allowable differences of each. A disparity value (Euclidian distance) is
stored in the disparity array and is used in the search for long sequences. Since a trans-
formation is applied to segments in the first view, the disparities should all be near zero,
but the matching ideas here are more general and can be used in a stereo problem where
there is no angle transformation and disparity is the only way to separate various pos-
sibilities.

For each transformation we compute the likely matches and find the longest se-
quence. From these sequences we choose the longest to compute a final transformation.
We use a disparity threshold of 100 and an orientation difference which varies from 900
for short segments to 200 for long segments. The search for long sequences allows wrap. around matches - if one sequence hits the end of the sequence it can start over at the
beginning while the second only increments by one.
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4.2.5 Hierarchical Matching

Multiple resolution segment representations help improve speed and accuracy. The
time for matching of two families depends on the number of segments in the two
families, but the alignment is best when the segments very closely follow the contours of
the object. We apply the two step matching procedure to the lowest resolution represen-
tation and obtain a set of matches for many of the families. At the next higher resolution
we use the known transformation as the starting point and apply the transformation
refinement operation twice. (The second step primarily finds which segments match with
the updated transformation rather than a more accurate transform.) Families which had
no match at the lower resolution are processed the same as at the lowest resolution
- find initial matches using the length and angle with the successor, then refine the
match using position and orientation.

4.2.6 Matching Summary

In summary, the matching procedure can be described as two passes of two
processing steps applied to each pair of families.

Pass 1, step 1: Compute likely corresponding segments by comparing all segments with
all others. Use segment length and the angle between a segment and
its successor to determine the match.

Pass 1, step 2: Locate sequence of corresponding segments where the segment number
increases monotonically in each image. Use these sequences to deter-
mine a good transformation to map one set into the other.

Pass 2, step 1: Using the transformation compute a new set of likely matching segments
using segment position and orientation.

Pass 2, step 2: Locate sequences of monotonically increasing segments and determine a
new transformation.

For multiple resolution data, Pass 2 is repeated as Pass 3 and 4, to determine cor-
responding segments at the higher resolution and yet a better transformation.

4.3 RESULTS

This matching program is intended to be somewhat general, it answers the two
questions: Do these two sets of segments match? What transformation will align the
view in the first image with the second? Because we wish the program to work even
with occlusions, the program will indicate a good match when presented with two par-
tially similar objects. If the task is recognition then an evaluation of the match quality
would be necessary to determine which identification is best. In this paper, the results
are for a basic matching task, not specifically recognition, but we do evaluate the
matches and eliminate those which are much worse, based on number of matches, total
disparity, total orientation differences, and total successor angle difference, than others
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* for the same family.

The input images are of a set of tools (two pairs of pliers, two small screwdrivers,
one longer one with a similar handle, one large screwdriver and one short, fat one). A
mechanical pencil and a fountain pen were also included. These last two had fewer seg-
ments in the representation and, in some cases appeared as mirror images and thus did
not match as well. Two views of all nine objects, with no occlusions, were taken, plus
two more views of a subset of the objects, and six other views with a variety of occlu-
sions. The exact segment to segment match is not important since some segments only
partiolly match, therefore, we will present the results as outlines taken from the first
images transformed to line up with the objects in the second image.

Figure 1 shows the outline of the two images with all objects and no occlusions.
These two images are matched with all the others (including with each other) in our ex-
periments. Even though the images were digitized on a light table to obtain near perfect
outlines, in some cases the clear handles of the screwdrivers cause problems Figure 2-3
show some of the results - selected to show successes and problems.

4.3.1 Evaluation

The program locates most of the correct matches and many of the extra matches
are with very similar objects. The differences between the two small screwdrivers are
very minor and the handle of the long bladed screwdriver is almost the same as the two
small ones, so these three often match all three possibilities (see Fig. 2). When two
similar objects occlude each other, the match for both may be with the same sequence
(see Fig. 3). Round objects can cause difficulties (even when there are small well defined
"ears") since many different rotations will give a good match. We show no examples
here, but we encountered this problem on an earlier similar data set and mention it as a
known problem.

This matching procedure is reasonably efficient, with the total time depending on a
number of factors - primarily the number of segments in the representation. For ex-
ample, the matching for image 1 (Fig. la) with image 2 (Fig. 1b) (see Fig. 2 for the results)
takes about 2 minutes 36 seconds. This includes matching at three resolutions for 9 ob-
jects in each image. Approximately 80% of the time is in computing the likely matches
and 15% in searching for sequences of matches or computing the transformation. The
times for the higher resolutions are not significantly greater than the lowest resolution
because the matching is restricted to refining existing matches, not searching for new
ones. The lowest resolution match uses 116 and 119 segments from the first and second
view, respectively and compares 9 families in one view with all 9 in the second (i.e. test
the match for 81 possible combinations). This requires a total of 47 seconds for all 81
comparisons. The implementation is on a PDP-10 with no special effort for low level ef-
ficiency.

0
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4.4 CONCLUSIONS

We have proposed a simple relatively efficient matching procedure for comparing
contours in scenes containing occlusions and multiple objects, which requires no iterative
updating (relaxation). This procedure uses the order of segments around a boundary as
the most important criterion for determining whether individual segments match. There
are still some open problems, which are also problems for any other existing system.
These include how to evaluate several different matches for use in a recognition system
with a variety of similar objects. Another problem is the uniform use of holes which give
multiple segment sequences for one region, and efficient handling of almost circular ob-
jects.
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Figure la: .Outlines of the first image

LANE

Figure Ib: Outlines of the objects in the second image
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Figure 2: Matching of image I and image 2

The outlines of image 1 (Fig. la) are transformed to line up with the
objects in image 2 (Fig. 1b) and displayed.
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Figure 3a: Outlines from third image
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Figure 3b: Result of matching image 1 (Fig. 1a)
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SECTION 5

SEGMENT-BASED STEREO MATCHING

Gerard G. Medioni and Ramakant Nevatia

5.1 INTRODUCTION

The human visual system perceives depth with no apparent effort and very few
mistakes, but how it does so is not understood. Binocular stereopsis plays a key role in
this process, and the straightforward extraction of depth it provides, once corresponding
points are identified, makes it very attractive. Depth recovery is necessary in domains
such as passive navigation (1, 21, cartography [3, 41, surveillance [51 and industrial
robotics. Proposed solutions for the stereo problem follow a paradigm involving the fol-
lowing steps [6]:

-image acquisition,
-camera modeling,
-feature acquisition,
-image matching,
-depth determination,
-interpolation.

The hardest step is image matching, that is identifying corresponding points in two
images, and this chapter is solely devoted to it. The next section reviews the existing
systems that have been proposed so far, divided in two broad classes, area-based and
edge-based, then we summarize our assumptions and give a formal description of the
method. The fourth section presents results, and we then discuss extensions.

5.2 REVIEW OF EXISTING METHODS

Two classes of techniques have been used for stereo matching, area-based and
feature-based.

5.2.1 Area-based Stereo

Ideally, one would like to find a corresponding pixel for each pixel in each image of
a stereo pair, but the semantic information conveyed by a single pixel is too low to
resolve ambiguous matches, therefore we have to consider an area or neighborhood
around each pixel. By applying correlation-based matching algorithms to determine the
corresponding match, we use local context to resolve ambiguities. The justification for
such an approach is that of "continuity," that is disparity values change smoothly, except
at a few depth discontinuities. All systems based on area-correlation suffer from the
same limitations:

- They require the presence of a detectable texture within each correlation window,
therefore they tend to fail in featureless or repetitive texture environments.

- They tend to be confused by the presence of a surface discontinuity in a correlation
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window.
- They are sensitive to absolute intensity, contrast and illumination.
- They get confused in rapidly changing depth fields (vegetation).

For these reasons, the existing systems, specially the ones used in "automatic" cartog-
raphy, require the intervention of human operators to guide them and correct them. Such
systems are described in [7, 4, 8, 9, 21.

5.2.2 Feature-based Systems

The depth information in stereo analysis is conveyed by the differences between the
two images of a stereo pair due to the different viewpoints, the differences being most
prominent at the discontinuities, or edges. Obviously, matching of features will not
provide a full depth map, and must be followed by an interpolating scheme. The common
characteristics of feature-based matching techniques are:

- They are faster than area-based methods, because there are many fewer points to
consider.

- The obtained match is more accurate, edges can even be located with sub-pixel
precision [10.

- They are less sensitive to photometric variations, since they represent geometric
properties of a scene.

Henderson [51 considered scenes representing cultural sites (man-made structures) and
* matched edge points on epipolar lines in the two views. He reduced ambiguity by as-

suming . ontinuity between consecutive epipolar lines. Marr and Poggio have relied on
two apparently simple constraints [111:

1. Uniqueness.
Each point in an image may be assigned at most one disparity value. One may
note that this assumption is not correct for transparent objects.

2. Continuity.
Matter is cohesive, therefore values change smoothly, except at a few depth dis-
continuities.

They first proposed a cooperative algorithm [121 that works very well on random-dot
stereograms, but they rejected it to propose one of more heuristic nature, implemented
by Grimson [13, 141, that generates good results, given the very few assumptions. Arnold
[151 matches edges using local context, and his system seems to perform well on cultural
scenes. Finally, Baker and Binford [161 match edges on epipolar lines by using the no-
reversal constraint that the order of the match has to be preserved, in addition to unique-
ness and continuity. They also consider continuity by examining adjacent epipolar lines.
This system appears to perform reasonably on a wide variety of images.

In most of the systems presented above, a considerable saving in search time is
obtained by a coarse to fine matching, that is the matching is originally done on a low-
resolution version of the image and the results are propagated to the higher resolution
version. However, it should be noted that in current implementations, good matches as
well as errors tend to propagate from one level to the next.
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5.3 THE MINIMAL DIFFERENTIAL DISPARITY ALGORITHM

From the survey conducted above, it appears that feature-based techniques are
more appropriate to solve the correspondence problem, but edges as a primitive seem to
be too low-level, and a connectivity check is needed to remove spurious matches. High
level primitives such as physical object boundaries or surface descriptions would be
preferred, however, stereo processing may need to precede the computation of such
descriptions. As a step towards higher level primitives, we are using segments. In order
to generate them, we fit straight lines through adjacent edge points with a given
tolerance of one pixel, using an iterative end point fitting technique. These segments can
be described by

- coordinates of the end points
- orientation
- strength (average contrast)

By using these primitives, we implicitly assume the connectivity constraint. When match-
ing segments, we need to allow one segment to possibly match with more than one seg-
ment in the other image (i.e. to allow for fragmented segments), even if we wish to
preserve unique matches for the individual edge points. Also, instead of considering one
epipolar line at a time, we have to consider all epipolar lines in which a given segment
appears.

5.3.1 Assumptions and Definitions

We consider a simple camera geometry in which the epipolar pane, defined as the
plane passing through an object point and the two camera foci, intersects the two image
planes, so defining epipolar lines parallel to the y axis. Therefore, corresponding points
must lie on corresponding epipolar lines, that is have the same row value, this is il-
lustrated in Figure 2. We also give a bound on the disparity range allowable for any
given segment, let us call it maxd.
Let A - fai} be the set of segments in the left image and
let B - (bi} be the set of segments in the right image.
Then, for each segment ai (resp. bi) in the left (resp. right) image, we can define a
window w(i) (resp. w(j)) in which corresponding segments from the right (resp. left)
image must lie. The shape of this window is a parallelogram, one median being a, (resp.
bi), the other a horizontal vector of length 2.maxd, as shown in Figure 3. One can see
that ai in w(j) implies bi in w(i).
We define the boolean function p(i,j) relating two segments as:

p(i,j) is true if
- b, overlaps w(i)
- ai , bi have 'similar' contrast
- ai , b. have "similar" orientation

The required similarity in orientation is loose and is a function of the segment length.
We have set it to be 250 for long segments and up to 900 for very short segments.
Two segments are defined to have similar contrast if the absolute value of the difference
of the individual contrasts is less than 20% of the larger one.
To each pair (i,j) such that p(i,j) is true we associate an average disparity d, which is the
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average of the disparity between the two segments a, and bj along the length of their

overlap.
We define the two functions SP and S-P as:

Sp(a) = (jib in w(i) AND p(i,j) is true)
Sp(a,) = (jib in w(i) AND p(ij) is false)

Similarly, we define Sp(b) and S~p(b,). We will also need the value card(a,), which is the
number of elements in the set Sp(a,) U S-p(a).
It is to be noted that all the functions described above are static, meaning that they are

computed only once.

5.3.2 Description

Each possible match is evaluated by computing a measure of the distortion this

match provokes for its neighbors,i.e given that (ij) is a correct match with its associated

disparity d, how well do the neighbors agree with this proposed disparity? We compute

an evaluation of the match (ij) and compare to the matches (i,k) and (hj) for k in Sp(a,)

and h in Sp(b ). If the evaluation is minimum for (i,j), then j is the preferred interpretation

for i and i is the preferred interpretation for j. Formally, we compute the following:

At iteration 1

v(iJ) =bmin Idhk - d,ji card(b )

v 1 (iin SP (a hi'

ah in Sp(b U S p(b ) bk A b

mi Idhk - dii card(a,)

ah in Sp(bk)
bk in Sp(a) U Sp(a i) ah A a,

At the end of each iteration, we define the sets Q(a) and 0(b) as

j in Q(ai) and i in Q(b,) if Vk in Sp(a,), vt(i,i)<vt(i,k) AND Vh in Sp(b), vt(ij)<vt(h,j)

For any iteration after the first one, in order to evaluate a match (ij), we only look

at the preferred matches for the neighbors of i and j, if they have any. Formally, the

computation of vt(i,j) becomes
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vt(i.) min Idhk - dj1  card(bj)
b. bk in Wh

ah in Sp(b U S_ p(b ) bk A bi

+ min ldhk - dii  card(a i)

E a h inl Q(bk)

bk in Sp(ai) U Sp(a i)  ah A ai

if the sets Q are not empty, otherwise the computation of the function v is done using
the formula for iteration 1.

At the last iteration, only those elements that have a preferred match are con-
sidered valid, and a disparity map array is filled using these values. It is interesting to
note that this process is absolutely symmetric in the two views and therefore will yield
identical results (except for the sign of the disparity) if the two views are interchanged. It
is helpful to look at a simple example to understand this process.

5.3.3 Example

Let our 2 views be the ones shown in Figure 1. In absence of any extra infor-
mation, the correct interpretation is that the 3 points have the same disparity, and the
result of the matching is (a,,b i) for i in (1,2,3).
In this example,
S(ai) = Sp(bi) = (1,2,3) and S~p(a i) = S p(bj) = 0.
The array d.i is

0 1 2

-1 0 1
-2 -1 0

Therefore we find:
V( 1,1) - (Id22-d 1 11+1d3 3 -d 11)/3 + (Id22-d 1 ll+ld 33-dll 1)/3 = 0

compared to
v1(1,2) - (Id23-d 121+1d3 3 -d121)/3 + (Id2 1-d12 1+1d 2 3 -d 121)/3 = 1

and to
v1 (1,3) - ( d2 2 -d 1 31+1d3 2-d 131)/3 + (Id1 2-d 1 31+1d 11-d 13)/3 = 2.67

The calculations are similar for the other pairs, so, at the end of the first iteration,
the preferred interpretations are only the correct ones, and further iterations will not alter
the results.
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5.3.4 Discussion

The criterion used here, namely the minimal differential disparity, has similarities
with the edge interval constraints given in [171 and subsequently used by Baker [16], but
looser in the sense that it does not require ordering of the edges. Since our criterion
does not take ordering into account, a dynamic programming implementation is not pos-
sible. Our evaluation function is more informed than Baker's in the sense that it con-
siders all edges in a neighborhood instead of just the predecessor and successor of a
given edge.

In order to estimate the complexity of our algorithm, we make the following
simplifying approximations:

- The image is square, with r rows and columns.
- The density of segments, d, is constant over the whole image. It is equal to the

total number of segments, n, divided by the area of the picture, that is, d = n/r 2.
- The distribution is isotropic.
- All segments have length I.

Then, each search window has an area w ft 2.1.dmax, and therefore the number of ele-
ments in Sp U S p is s = w.d.
Since we allow an angle tolerance of 300 for long segments and 90' for short segments,
the average number of possible matches for each segments is s/3.
For each a, we have to look at s/3 elements in Sp(a), then s elements in
SP U S-p(b,), then s/3 elements in Sp(ah), leading to a total number of operations of N -

2.n.s3/9.
This formula can be rewritten as N = 16/9 Nd 3 (dmax.I) 3, which means that if we are
working on different windows of a larger image, the complexity only depends on the
number of segments in each such window.
If, however, we are working on different resolutions of a given image, then the value of
dmax changes with the resolution. Taking a typical value dmax - r/10, the formula be-
comes N = 16/9 N4 (I/10r)3.
It is interesting to note that we have a function of degree 4 in the number of segments
because we do not impose the order preserving constraint used by Baker; his algorithm is
of degree 3 is the number of ed-ge points in each line.

The performance of this algorithm on a few examples is presented next.

5.4 RESULTS

It is difficult to display results of stereo matching meaningfully, especially in a two
dimensional picture, since we only generate a sparse disparity map. We will simply show
the line segments in the two views that are found to match. We have not been able to
master the art of cross-eyed stereo fusion, but since a number of people in the field are
good at it, we will present all pairs of images according to its convention, that is the left
view is shown on the right and the right view on the left. All results will also be shown
this way, without explicitly marking each point and its correspondence. We first started
our experiments with very simple line drawings, slightly more complex than the one
shown in Figure 1 and the results matched the expectations. In order to remove the ef-
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facts of the segmentation procedure on the performance of our matching technique, we
hand-segmented the images shown in Figure 4 by tracing the boundaries of the objects
on a digitizing table. This image, from Control Data Corporation, is synthetic and has
been used by Baker (161 for his experiments. The resulting segments are shown on
Figure 5 and Figure 6 displays the results after matching. All the lines that have been
matched have the correct correspondence, but some matches are missed. This is due to
the fact that when the matcher gets confused by closely competing assignments, it
chooses not to assign a label. Also, some edges are not matches because of mistakes in
the tracing procedure: we traced the boundaries of some objects in opposite directions in
the two views.
For all other examples, edge detection was performed automatically using a technique
developed by Nevatia and Babu [181 that finds edge magnitude and direction by convolv-
ing the image with edge masks in different orientations (we used 5x5 masks in 6 direc-
tions here). These edges are then linked to form boundary curves which are ap-
proximated by piecewise linear segments.

Next, consider the industrial part shown in Figure 7, the original resolution is 256 by
256 and the grey levels are encoded in 8 bits. We applied the matching algorithm to two
different resolutions of the image, running it through three iterations. We found that no
assignment changed after three iterations in our experiments. Figure 8 shows the original
edges and Figure 9 displays the results in the above mentioned form. Similarly, Figure
10 shows the segments at half resolution and Figure 11 the results. Looking at the seg-
ments one by one, we did not notice any incorrect assignment at either resolution, mean-
ing that we captured the shape of the object, even though the density of edges is much
larger than in the previous example.

Another, more complex image is shown in Figure 12. In this image, we have a wide
range of disparities, a change of sign in the disparities across the picture, various occlu-
sions, the presence of a repetitive structure (a Rubik's cube) and contrast reversal. We do
not expect to get good results with this contrast reversal since one of our preliminary
conditions is similarity in contrast, but the other peculiarities are very interesting. We
worked at low resolution on the segments shown in Figure 13 to obtain the results
shown in Figure 14. The interesting points are the following:

- The elongated vertical blocks in the rear of the image are correctly put into cor-
respondence.

- All the squares of the cube that should be identified are correctly matched. The
correct labeling appeared at iteration 2 (at iteration 1, most of them are am-
biguously matched.)

The segments at high resolution are shown in Figure 15 and the matching results in
Figure 16. We did not use the results at low resolution to guide the matching at high
resolution, therefore the elongated block in the rear right is not matched any longer. It is
interesting to note that the edges coming from the texture of the wood blocks do not
create confusion, but help the matching, on the front cylinder for example. Once again,
most assigned matches are correct.
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* 5.5 CONCLUSIONS

This research is far from being in a final state. The initial encouraging results
presented here must therefore only be viewed as an indication that the hypothesis of
minimal differential disparity may be useful. The critical points that must be examined
are:

- Relax the contrast constraint. This may be done by considering not the contrast of
an edge, but the intensity values on each side. Edges could then be matched if ei-
ther their left side or their right side correspond. One may eventually consider an
edge as a doublet [141 and match each side separately.

- To refine the formulation of the evaluation formula. Statistical analysis may yield
better functions, maybe by introducing a static probability measure to evaluate each
match based on similarity of intrinsic properties (length, color, orientation). Also of
concern is a more accurate definition of a no-match label, which is obtained if a
match pair is not clearly better than the competing ones.

- Further extensive testing is also required on aerial and close range imagery, with
terrain models for accuracy checking.

- Finally, we must use an interpolation scheme, very likely intensity-based, to
generate a full disparity map of the scene depth.
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Figure 1: A simple example
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Figure 2: Collinear epipolar geometry from [141
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Figure 3: Example of window construction

Figure 4: Synthetic image (256x256x61
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Figure 5: Hand generated segments
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Figure 7: Industrial part (256x256x8]
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Figure 8: Segments from the full resolution image
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Figure 9: Results at full resolution
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Figure 10: Segments from the half resolution image

Si - * I -



52

Figure 11: Results at half resolution

0

IL

Figure 12: Image of some blocks[512x512x7]
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Figure 13: Segments at low resolution
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Figure 14: Results at low resolution
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Figure 15: Segments at high resolution

Figure 16: Results at high resolution
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SECTION 6

USING SHADOWS IN THE INTERPRETATION OF AERIAL IMAGES

Andres Huertas

6.1 INTRODUCTION

When presented with a single monochromatic aerial image, a human observer per-
ceives a number of clues and features that give a strong impression of depth. In part
this is due to the ability to recognize familiar shapes and textures together with other
available cues that reinforce the interpretations made. One such clue is due to the
shadows cast by the three dimensional objects. Our goal is to show that under simplify-
ing assumptions, it is possible to derive 3-D information from distinguishable objects and
shadows, and that 3-D shape hypotheses can be made from distinguishable shadows cast
by objects or portions of objects that are not visible or difficult to distinguish.

It is unclear how humans use shadows when interpreting visual information. If we
refer to shadow analysis as the process of locating the shadows in the image, establish-
ing the correspondence between shadow casting elements and shadow boundaries, and
the use of these pairs to obtain three dimensional information and infer geometric inter-
pretations, then the analysis of the shadows in arbitrary natural scenes requires substan-

* tial conscious effort, and therefore can be considered a complex and difficult task.
Shadow analysis however, becomes useful when other techniques are not applicable, and
simplifying assumptions are made about viewing angles, and either the surfaces casting
the shadows or the shadowed surfaces. This is the case with high altitude aerial images
where the "third dimension", or objects height, is almost completely lost in the image due
to the overhead vantage point. In fact the observed shadows cast often become the
main source of three dimensional information from a single aerial image.

In this section we discuss two techniques to obtain information from the shadows
which allow us to locate three dimensional objects, and obtain 3-0 descriptions of at
least the object portions that cast shadows. We assume that the sun is the source of il-
lumination, considered a point source at infinity, and that the sun angles are known a-
priori. The ground surface in the immediate surround of the objects of interest is flat and
horizontal (or, if there are differences in the elevation of portions of the ground surface,
these are small compared to the altitude of t .v camera). The camera principal ray points
to the center of the scene, and the camera is located at a known altitude. We do not as-
sume that the objects have a specific shape, but that that the objects shape correspond
to generalized cones with straight vertical axes. The visible top surface of the objects is
either flat or consists of flat portions. Also objects do not occlude each other although
an object may occlude another objects shadow. Previously we have shown that if the
shape of the objects is known in advance, we are able use the shadows cast to detect
buildings in aerial images using as a clue the restricted shapes that many of them have.
The shadows also allowed us to differentiate the buildings from other objects having
similar shapes, and for height estimation [1).
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Our techniques use the intensity data and line segment approximations to the in-
tensity edges in the image. They differ in the way the image is initially segmented, which
in turn determines the amount of line segments available for analysis and 3-D interpreta-
tion. The first technique involves the intensity data and the processing of line segments
throughout the image. The second technique involves only the line segments ap-
proximating the boundaries of shadow regions extracted from the image. Both techniques
automatically assign an initial interpretation to the line segments on the basis of assump-
tions regarding object geometry, photometry, constraints imposed by the direction of il-
lumination and the position of the camera. Line segments are grouped into classes ac-
cording to their interpretation labels. From these classes we form graph structures that
represent the correspondence between shadow and object lines, and boundary continuity
along object and shadow outlines.

From the established correspondences and other evidence of shadow boundaries
cast by visible or non-visible object portions, we are able to make inferences about the
object portions casting shadows as well as the shape of the visible or non-visible object
side surfaces. The resulting inferences are shown by means of a 3-D wire model of the
objects in the scene for the first technique, and a 3-D wire frame model of the shadow
casting object portions for the second technique.

Previous work on the interpretation of image edges [2,3,4] and processing of scenes
with shadows [21 is based on boundary junction constraints which are difficult to obtain
from natural images. Theoretical work on shadows by Shafer and Kanade [51 has con-
centrated in obtaining surface orientation, and no experimental results have been
reported. Binford and Lowe [61 discuss the derivation, use and implementation of more
general constraints to carry out geometric interpretations up to the volumetric level.
Their technique has been tested on simulated image edge data derived by hand; it re-
quires accurate curve junction information, which may be difficult to obtain from natural
images. With a similar philosophy, we use edge and region data derived automatically
which explicitly implies dealing with partial information. Hence, further assumptions about
the objects are introduced that may limit generality. We make extensive use of the in-
herent redundancy which results from the fact that adjacent shadow casting object points
cast adjacent shadow points, to predict the presence of weak evidence as well as to
hypothesize missing data resulting from errors in the data, poor contrast, inadequate sen-
sor response, and and other scene and illumination conditions that prevent automatic
boundary detection.

We consider the analysis of the shadows cast not a complete solution in itself, but
a means to obtain information that can be used in conjunction with other 3-D surface in-
ferencing techniques, such as intensity and feature-based stereo, and local shape from
shading. This is particularly important if we are interested in detecting cultural features
such as buildings and other 3-D man-made objects.
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. 6.2 PRIMITIVES FOR SHADOW ANALYSIS AND SHADOW GEOMETRY

Our shadow analysis techniques are segment-based, segments being line ap-
proximations to the intensity boundaries in the image. Image boundaries seldom have a
unique interpretation locally (true physical occluding or non-occluding convex and con-
cave edges, apparent edges, reflectance edges, illumination edges) but their stability with
respect to geometry, illumination and sensor is quite general and useful. We define a
shadow model, analyze the image, and obtain three dimensional descriptions in terms of
these primitives.

We define shadows as portions of 3-D space not illuminated by direct sun light due
to an interruption in the flow of illumination radiation by an occluding object in 3-D
space. As a result the occluding contour is projected onto the surface(s) beneath the ob-
ject (from the source vantage point) forming dark regions surrounded by illumination dis-
continuities. If we think of this space as a shadow "solid", then it consists of two ter-
minators joined by an imaginary illumination surface generated by the light rays passing
through corresponding shadow casting points along the occluding contour, and shadow
cast points along the shadow boundary. A similar definition is given in [51. We call an S-
terminator the shadow cast, and an 0-terminator the self-shadowed surfaces of the ob-
ject casting the shadow. Figure 1 shows a planar and a curved surface (0-terminators)
and the shadows (S-Terminators) cast by these surfaces, illuminated from above and be-
hind by an infinitely distant light source.

0 Under the flat ground assumption, S-terminators are planar, parallel to the image
plane and hence, visible from the camera vantage point. 0-terminators correspond to
object sides and, under perspective, may be visible, depending on the position of the
camera. As a result, since the sun angles are known, only the 0-terminator parameters
are left to be determined or hypothesized for each shadow solid.

Given a visible shadow casting boundary along the top surface of an object and its
corresponding shadow boundary, those visible points at the extreme ends of the shadow
casting boundary are denoted object extreme points (OEP). Corresponding points, in the
direction of illumination, on the matching shadow boundary are denoted shadow extreme
points (SEP).

With the stated definitions and assumptions we are able to model the imaging
process and shadow geometry in a straightforward manner Basically, the sun rays are
parallel and strike the objects at a known angle and with a known direction. Points along
some of the objects boundaries, constrained by the sun angles, will cast corresponding
shadow points. These shadow points will be located in the image plane in a certain
direction (see below) from the shadow casting points, according to the perspective trans-
formation effected by the camera lens. Figure 2 shows the geometry.

Let (X,Y,Z) be the scene reference coordinate system and, (Xc,Yc,Zc) the camera
coordinate system. With the camera at (O,O,Ac) and its principal ray pointing down along. the Zc axis, the vertical vanishing point will be located at (0,0,-Ac). (Therefore, all visible
vertical edges in the image must be oriented towards the origin of the camera coordinate
system).
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Let a be the direction of the illumination rays projected on the ground surface and,
i, the sun incidence angle. If we associate a coordinate system (Xs,Ys,Zs) with the Xs
axis along the ground projection of the sun ray passing through the origin of the camera
coordinate system, then we determine the direction of the projection of the 3-D sun rays
onto the image plane, by computing for a given (x,y) point the unit vector I, given by

I =- - , ,J where

[IXI v] = [Ac-xsCot(i) , -ysCot(i)], and

x V

This simple expression requires that the Xc axis be aligned with the Xs axis, and
that the image point (xy) be expressed in (Xc,Yc) coordinates. The later transformation to
obtain (xcyc) from (x,y) is a translation, and axis alignment gives (xs,Ys) by rotation:

xs = XcCos,+ycSina

VS = -xSinc+yvCosL

To obtain the vector I in image coordinates, we rotate its components by -0t. Hence,
for any given image point, I gives the imaged direction of the sun ray passing through
that point. Establishing object-to-shadow segment correspondences under perspective is
along these I vectors, as discussed in the following sections.

6.3 THE SHADOW ANALYSIS PROBLEM

6.3.1 Locating the Shadows in the Image

(a) Discussion

The problem in locating cast shadows is to distinguish the transitions between
direct and scattered illumination from changes in reflectance or surface orientation. Since
these parameters contribute together to the image, this discrimination is difficult; it re-
quires that the effects of each parameter be distinguished from one another.

One technique to distinguish shadow and occluding edges from other edges (7J
suggests that the boundaries of shadow S-terminators are signified by a high correlation
across the edge, with an abrupt shift in the regression parameters in the neighborhood of
the edge. With this approach, high resolution is required to make accurate measurements
and the technique has been tested on hand derived data only. This technique may be
useful for fine and detailed object description and recognition. We make use of a weaker
constraint: If there are visible shadows in the image, in the sense that they are distin-
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* guishable from the background, then the visible S-terminators are darker than the back-
ground. Reflections from nearby surfaces complicate matters but, with the sun as source
of illumination, the ratio between shadow and sunlight will be the ratio of diffuse to direct
sunlight, which is roughly equal across shadow boundaries within an image [81.

To locate the S-terminators or their boundaries (see both methods below), we first
determine from the intensity data the range of gray levels that a shadow region in the
image is likely to have, on the basis of the assumption that most of the area in the image
corresponds to smooth and continuous regions. We have previously shown [9] that by
masking out the portions in the image of a sunny scene where the intensity transitions
occur (edges), it is possible to obtain a more accurate histogram of the distribution of the
gray levels of the regions in the image. Most shadow gray levels are in the "dark" side of
the masked histogram and, depending on the illumination conditions, histogram features
can be located to provide a reliable shadow gray level range, as shown in figure 3.

(b) Locating the shadows in the edge-based method

In our edge-based method we first compute line segment approximations to the in-
tensity boundaries in the image using the Nevatia-Babu technique [10], and cbtain a list
of records of line segment attributes, such as segment ID, the coordinates of their "begin"
and "end" points, angle of orientation, relative contrast and its predecessor and successor
line segments. The direction associated with a line segment indicates that the brighter
side is to the right. Next we automatically assign an initial interpretation to the line seg-
ments by classifying them into one or more of the following classes:

- Type 1: Shadow casting line
- Type 2: Non-shadow casting line
- Type 3: Object line not on top surface
- Type 4: Shadow line cast by a non-vertical line
- Type 5: Shadow line cast by a vertical line
- Type 6: Shadow occluding line
- Type 7: Vertical line
- Type 8: Reflectance line

Figure 4 show the intended classification for an object viewed from the same
camera position but illuminated from two different light source positions; the I and C ar-
rows represent the projected illumination direction and a camera ray, respectively. The
segments are classified on the basis of photometry (edge contrast and gray level statis-
tics in the neighborhood of the segments), assumptions regarding object geometry and
constraints imposed by the direction of illumination and camera position. The following
are the heuristic rules used in our current implementation:

-Type 1: If the light source is on the brighter side of a high contrast line segment
and, the darker side is likely a shadow (i.e. the average gray level of the region ad-
jacent to the segment is within the shadow gray level range), then the line segment
Is classified as a shadow casting segment. If the contrast is low, these lines are
also classified as shadow casting although depending on the position of the camera,
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the 0-terminator may be visible and these lines may correspond to object lines not
in the boundary of the object top surface.

- Type 2: If there is no evidence of a shadow S-terminator on the darker side of the
segment and one of the regions adjacent to the segment is smooth (has a small in-
tensity variance), then the segment is classified as a non-shadow casting line.

- Type 3: If the light source is on the brighter side of a low contrast line segment
and, the darker side is likely a shadow then the segment is classified as an object
line not on the object top surface shadow casting boundary. In fact, these lines may
in the boundary between an 0-terminator and an S-terminator. If the region on the
darker side is not a shadow but one of the regions adjacent to the segment is
smooth and bright then depending on the combined illumination direction camera
position, this segments are also classified as lines not in the object top surface.

- Type 4: If the source of illumination is on the darker side of the segment and, the
region on the darker side is likely a shadow S-terminator then the line segment is
classified as a shadow segment.

- Type 5: If the segment is parallel to the projection of the sun rays on the ground,
and the region adjacent to the darker side is dark enough to be a shadow S-
terminator, then the segment is classified as a shadow line cast by a vertical line in
the boundary of the 0-terminator. The vertical boundary is visible or not depending
on the position of the camera. This constraint also allows us to determine the
general position of the object casting the shadow.

- Type 6: If the source of illumination is on the darker side of the segment, the region
on the darker side is likely a shadow S-terminator, and the region adjacent to the
brighter side of the segment is smooth then the line segment is classified as
shadow occluding line.

- Type 7: If the segment is oriented towards the vertical vanishing point, which coin-
cides in the image with the origin of the camera coordinate system, the segment is
classified as a vertical line.

- Type 8: If there is no evidence of a shadow S-terminator on the darker side of the
segment and the segment can not be classified into another class then it is clas-
sified as a reflectance line.

With our classification scheme there is seldom a unique interpretation for each line
segment but in some cases more than one interpretation is valid, due to coincidences
resulting from overhead viewing. A visible shadow boundary may coincide in the image
with an occlusion boundary line obscuring the shadow cast by a nearby object. Misin-
terpretations and conflicts are resolved when we look for object-to-shadow correspon-
dences and attempt to derive global interpretations.

(c) Locating the shadows in the region-based method

In our region-based method we use the range of shadow gray levels to extract the
dark regions in the image, using a recursive splitting method [11]. Next we approximate
the region boundaries with line segments. The segments obtained are then automatically
classified into a subset of the classes in the above method, namely, types 1, 4 and 5; the
other classes do not occur since we have only the boundaries of the shadow regions.
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* 6.3.2 Establishing Object-To-Shadow Correspondence

(a) Discussion

Medioni [121 has reported an approach to the correspondence problem which as-
sumes knowledge of the position of a shadow casting object. Given the outline of the ob-
ject, he looks for a the outline of a dark region adjacent to the object in a direction con-
sistent with a known direction of illumination. Correspondence is established by finding a
vector that best describes the correspondence between object and shadow. Such vector
is found by using the maximum peak of the correlation function of the region and its
shadow.

Our techniques do not assume knowledge of the position of the object but rely on
the initial interpretations assigned to the segments to locate object and shadow outlines,
and uses the illumination constraints to establish explicit object-to-shadow correspon-
dences along illumination vectors, with the following assumptions:

- Object surface boundaries are continuous and the visible shadow boundaries cast
by object boundaries are also continuous.

- Straight boundaries in the image correspond to continuous straight boundaries in
the scene. This fails if a curved physical boundary coincidentally lies in a plane
aligned with the camera. This is detected if the boundary casts a curved shadow
boundary and the shadow is not occluded by a curved object.

- A s'hadow line has a corresponding shadow casting line, visible or not, and this
shadow casting line lies between the shadow line and the source of illumination in
3-D space.

- Parallel lines in the image correspond to parallel lines in the scene. This is not true
if there is an accidental alignment of the camera with the planes that contain them.

(b) Establishing Correspondences in the Edge-based Method

So far we have eight classes of line segments. Our immediate problem is to bring
into correspondence the shadow casting segments and the shadow segments and create
a record of these correspondence. Since we expect fragmentation along automatically
detected boundary contours, it is difficult to simply collect chains of shadow casting seg-
ments and chains of shadow boundaries and try to match entire contours. But we can
expect to be able to correspond single segments to a small group of segments. This
suggests constructing subgraphs that are combined with other subgraphs (on the basis of
boundary continuity), to form a graph that represents the entire matching object and
shadow contours.

In our current implementation we have simplified the above idea by performing the
!-! rch from object-to-shadow segments rather than from shadow-to-object or in both
ways. The only reason for this choice was that in our experiments, the class of shadow
casting segment was significantly smaller than the class of shadow segments. As a
result, the structures for representing the correspondence becomes simpler, i.e. trees
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rather than subgraphs. Nevertheless, the extension from trees to graphs should be
straightforward. We now discuss the process in some detail. Consider the object and
shadow segment boundaries depicted in figure 5a:

i) Construct Correspondence Trees (C-trees, figure 5b). For the length of each
shadow casting segment (type 1) we search along illumination vectors for a shadow seg-
ment (type 4). The root of the C-tree is the shadow casting segments, and has one leaf
node for each distinct shadow segment found. The distances are recorded, and the arcs
of the tree represent object-to-shadow segment correspondence.

ii) Combine C-trees into Correspondence graphs (C-graphs, figure 5c). C-trees are
combined in an attempt to form a C-graph representing complete matching object and
shadow contours. C-trees are combined on the basis of boundary continuity (shown as
double lines) as follows: C-trees having leaf nodes with the same shadow segmcnt; C-
trees having leaf nodes with adjacent shadow segments; and C-trees having nodes with
adjacent shadow casting segments. Notice that this step indirectly implements boundary
colinearity and curvilinearity where fragmentation occurs.

iii) Locate SEP and OEP extreme points (figure 5d). The C-graphs so far encode ob-
ject and shadow continuity horizontally, object-to-shadow correspondence vertically, and
represent continuous object and shadow contours. Therefore, the extreme shadow points
(ESP) and extreme object points (EOP) are found at the extremes of these contours. If a
pair (OEP,SEP) is found to correspond along an illumination ray, then the line segments in
the image located between the SEP and the OEP represent the boundary of the shadow
cast by the side (possibly non-visible) of an object, whose shape can be derived from the
shadow information. We discuss the information that can be de;ived from these seg-
ments in the next subsection. At this point we only determine whether these segments
indicate that the object sides are vertical or not. This is rather straightforward since ver-
tical edges cast shadow edges parallel to the projected direction of illumination, and
these segments are readily available in the class of segments of type 5 (v1, v2 and v3 in
figure 5a). This information allows us to determine the relative position of the object, in-
cluding the non-shadow casting portion (see below). The evidence is added to the C-
graphs on the basis of continuity, as shown in figure 5d.

iv) Locate non-shadow casting segments. We know that the shadow casting and
non-shadow casting outlines of the object top surface conoarge at OEP points. To locate
non-shadow casting contours, we form non-casting chains (NC-chains) with segments of
type 2. Next, the following rules are applied:

- If the end points of a chain coincide with the OEP points in some C-graph, then the
chain represents the non-shadow casting portion of the top surface of an object.
Note that depending on the position of the camera, the sides of an object may be
visible and more than one chain can be found The correct interpretation for these
chains is discussed in the next subsection.

- If the end points of an NC-chain coincide with OEP points at the extremes of two
different C-graphs, then have three cases:

*An OEP was not located for one of the two C-graphs due to shadow occlu-
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sion (see question marked node in figure 5d). In this case, there is a missing
NC-chain between the two C-graphs. They are combined into a complete C-
graph on the basis of boundary continuity after the missing chain is found
(see the O5-O6 chain in figures 5e and 5f).

*An OEP was located for each of the C-graphs. Usually one of these is miss-

ing due to shadow occlusion, and the other, due to missing segment infor-
mation. The C-graphs are combined on the basis of boundary continuity
evidence as in the previous case. If no evidence is found, then the overall
shape of the object outline can be used to hypothesize the missing infor-
mation. In our current implementation this step is limited to hypothesizing a
straight line between the "loose" end points.

*The OEP for both C-graphs were located. In this case, the graphs are also
combined on the basis of continuity but there must be another C-graph be-
tween the two C-graphs. The second case occurs for an unusual combination
of illumination direction and object geometry and position.

- If only one end point in an NC-chain coincides with an OEP in a C-graph for which

both OEPs have been located, then we for evidence of continuation between the
chain "loose" end point and the remaining OEP. These evidence may be found in the
classes of segments of type 2 and type 8. As before, if no evidence is found, the
missing portion is hypothesized.

- Further combination of trees as well as the hypotheses for missing or unseen por-
tions of the outlines can be performed on the bases of proximity, colinearity, cur-
vilinearity and symmetry. This step has only been partially implemented.

(c) Establishing Correspondences in the Region-based Method

In the region-based method we only have closed shadow contours, with the seg-
ments along the contours classified into three classes: Shadow segment (type 4), shadow

segment cast by a vertical edge (type 5), and "other" which we have initially classified as
having type 1. The information that we derive from the shadow regions primarily depend

on whether the "other" class in fact should be labeled type 1 or whether it should be
labeled type 4. In the former case, the region boundaries correspond to the boundaries of

an S-terminator whose segments labeled with type 1 correspond to coincident 0-
terminator boundaries. In the latter case, no O-terminator boundaries are available If we
determine that the case for a given shadow region is the former, then we attempt to es-
tablish object-to-shadow segment correspondences between type 1 and type 4 segments.
Otherwise we do not attempt to establish a correspondence.

In order to determine whether correspondences are to be established we apply the

following two heuristic rules:

- If the amount of "orthogonality", S, among the segments in the region contour is

high then attempt this region is a good candidate for attempting correspondence.
- If the segments along a region contour consists of chains of segments of type 4

(possibly mixed with segments of type 5) and chains of segments of type 1, rather
than a random mix of segments of types 1,4 and 5, then this region is a good can-
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didate for attempting correspondence.

If a region is found to be a good candidate according to the first or both rules, then
correspondence is attempted. Let us now elaborate in some detail about these rules and
how we apply them, with an example, and with the derivation of the Q measure.

Consider the shape of the shadows cast by a rectangular building such as the one
shown previously in figure 5a. Most of the shadow outline consists of straight and long
portions, there are many pairwise parallel segments in the boundary as well as several
900 corners. Segments S 1 to S3 and segments S4 to S7 form two continuous chains of
type 4 segments. Segments 01 to 04 and segments 07 to 09 form two chains of type 1
segments. Segments V, to V3 are of type 5. The remaining segments, 06' O0 and 0 ,
would not be available in this method. We would have two separate shadow regions and
clearly both would satisfy the above two rules.

Consider now the hand drawn shadow cast by a tree depicted in figure 6a. The ar-
bitrary mix of segments with types 1 and 4, as well as the low degree of orthogonality
among the segments in the boundary clearly fail the above rules.

Let us now derive the 9 measure and discuss the accuracy of the above rules. To
compute S for a given shadow region:

1) Compute the function f(e), equivalent to a length weighted orientation histogram

for the segments in the boundary.

f(e) = SL(k)*Se(k) where,
k

- k is a line segment in the boundary of the region.
- SL(k) is the length of segment k.
- Se(k) is the orientation of segment k such that Se(k) MOD 900 = e.

2) Determine the predominant segment orientation 06max

emax m MAX [f(e)] with 0 6<90 ° .

3) Compute S1, the degree of orthogonality as a percent.

emax-
1 00 -f(())

- ---------- where,
segno

max+E
S+CSL(k)

k-1

- segno is the number of segments in the outline.
- E is a small angle tolerance to compensate for angle distortions in the line segment
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* approximations.

For a perfect rectangle or combination of rectangles with boundaries along two or-
thogonal directions, f(e) is zero everywhere except at 0 =emax; emax coincides with the
orientation of the longer sides modulo 900 and, f(s) will have a value equal to 100%. On
the other hand, a circular region with very short boundary segments will result in an
evenly distributed f(O) and thus, a very small Q. Note that the measure also encodes
parallelism since 1800 is a multiple of 900.

The question remains as to what constitutes a random mix of segment labels along
a region boundary, and what constitutes a high or low degree of orthogonality, or
whether other known shape descriptors would be more adequate. Take the convex hull
approach. Suppose that we compute the convex hull for one of the shadow regions of the
building shown in figure 5a, and the convex hull for the shadow of the tree shown in
figure 6a. If we decide that a region whose shape is close to the shape of its convex hull
(as in the tree shadow) is not a good candidate, then the building shadow would be a
good candidate. But this would fail for many man-made objects having cylindrical
shapes, or for objects having parallel side and illuminated from one side. Other
measures would tell if the region shape is elongated or not but still not capture the
geometric detail needed. Our experiments with images containing man-made objects
such as vehicles, fuel storage tanks and conventional building structures have yielded or-
thogonality measurements well above 50%, while objects like trees tend to yield
measurements well below 50%. As a result our criteria uses 50% to make a decision.

An arbitrary mix of type 1 and type 4 segments indicate a succession of large
changes in the orientation of the segments along the region boundary. If the region is in
fact a shadow region, the illumination occluding profile also has this changes in orien-
tation along its boundary. This is a good indication of a object having complex surfaces,
such as a tree. On the other hand, a mix may indicate that the segments have been as-
signed incorrect labels but these would tend to be sporadic or occur systematically. We
have not studied ways to detect systematic mixes but we have observed that in many
cases, a mislabeled segment along the boundary of a region with a high degree of or-
thogonality and parallelism is brought in to correspondence with a segment that is also
mislabeled. In fact, interchanging the labels would result in the correct labeling. As a
result we rely more heavily on Q than on the labeling mix. We currently consider the mix
criteria valid only for regions with low Q.

6.3.3 Geometric Interpretation of Object/Shadow Pairs

(a) Discussion

The most obvious information that can be derived from the established correspon-
dences is the height of the shadow casting elements. In the absence of occlusion by
other objects, the observed shadow width in the image can give an accurate estimate of
the object height, which is equivalent tu- the shadow width multiplied by cotan(i), where i
is the sun incidence angle. If there is occlusion, a lower bound on the height is obtained.
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Our problem now is to derive the shape of the 0-terminator surfaces by geometric
reasoning, involving the information in the C-graphs, the segment configurations between
OEP/SEP pairs, and the segment junctions involving shadow segments. Consider the fol-
lowing assumptions:

- Under the flat ground assumption a constant shadow width along corresponding
object and shadow boundaries indicates constant elevation of the shadow casting
points. A smoothly varying shadow width indicates a slanted object top surface, or
shadow occlusion.

- Breaks in the shadow (L-junctions) boundary correspond to breaks in the shadow
casting boundary. Otherwise, abrupt changes in shadow width indicate an 0-
terminator aligned with the observer or not visible. The amount of change is
proportional to the amount of change in elevation of the shadow casting elements.

- On a flat shadowed surface, shadow boundaries lying between an OEP and a SEP in
the 2-D image which are parallel to the projected direction of the illumination have
been cast by a vertical edge, visible or not.

- Since the ground is flat, a straight shadow casting boundary cannot cast a curved
shadow boundary. This fails if the observed shadow lies on, or is occluded by a
curved object in the image, or, if a curved shadow boundary has been cast by a
curved shadow casting boundary lying on a plane aligned with the camera.

- Parallel lines in the image correspond to parallel lines in the scene. This fails if
there is an accidental alignment of the camera with the planes that contain them.

- Given a pair of matching object and shadow contours, the shape of the 0-
terminator is derived from the segments located between corresponding OEP and
SEP pairs at the ends of the matching contours.

(b) Obtaining 3-D Interpretations in the Edge-based Method

In this technique, the segments between corresponding OEP/SEP pairs determine
the shape and position of the 0-terminators in 3-D space, and the T-, Y-, and + junc-
tions at the end of the shadow contours determine the geometric relationship between
the 0-terminators and the top visible surfaces of the objects.

Figure 7 shows the basic shape hypotheses that are derived from the T-, Y- and +
junctions and the segments between OEP/SEP pairs. The arrowheads denote shadow
lines of type 5 (cast by vertical lines). In figure 7a the segments between the two cor-
responding OEP/SEP pairs signify a vertical O-terminator, and the + junction signify that
the shape of the 0-terminator is constant from the top of the object to the ground sur-
face. In figure 7b, the segments between the OEPs and the SEPs indicate that the top
structure of the object has vertical sides and that this structure is supported by a smaller
structure whose sides do not cast visible shadows. The distance between the end of the
stem of the T-junction and the OEP determines the elevation of the top structure from
the ground. The T-junction indicates occlusion but also that there is no information
available to determine the shape of the support structure. Figure 7c shows a similar case
but the absence of segments of type 5 indicate that no information can be derived be-
sides the elevation of the top visible surface. Figures 7d, 7e and 7f show that Y-
junctions give information about support structures that are smaller than the top visible
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' surface.

Object sides are visible under perspective. As a result, barring coincidental align-
ments, the 2-D junctions at the ends of the shadow contours do not appear geometrically
symmetric even if they are so in 3-D (see figure 4). The complete analysis of the pos-
sible junctions can become a difficult task, even with complete edge data. In our im-
plementation, we concentrate only on the simpler junctions mentioned above, which are
found at one of the end points of a shadow contour. At the other end, we only look for
segments of type 7, representing vertical lines, to verify previously made 0-terminator
shape hypotheses.

An additional source of information for verification of 0-terminator hypotheses are
the visible object lines which are neither vertical nor in the outline of the top surface
(segments of type 3). Most of these lines are difficult to locate in advance since their
photometric properties depend on the combination of illumination and camera ray angles.
If these lines do not occur as additional NC-chains, then we attempt to locate them only
for those objects whose sides have been found to be vertical. We search for segments,
from the outline segments in the top surface, in the direction of the vertical vanishing
point.

(c) Obtaining 3-D Interpretations in the Region-based Method

In this method we have so far a record of the correspondence between the seg-
merits in the boundary, with one C-graph for each shadow region. If no correspondence
was established (according to Q) then the C-graph is empty (see below). Our problem is
to derive the shape and position of the 0-terminators in 3-D space.

The only type of line junctions in the region boundaries are L-junctions. We distin-
guish three types of L-junctions depending on the angle formed by the interior angles of
the region shape: Narrow (less than 900), square (900) and wide L-junctions (more than
900).

The square, narrow and wide L-junctions correspond to the T, Y, and + junctions
discussed earlier, without the "leg" that would have corresponded to an object boundary.

Figures 8a-8f depict only the S-terminators shown previously in figures 7a-7f and
the O-terminator hypotheses that are derived. As before, the arrowheads denote shadow
lines cast by vertical lines. Narrow L-junctions formed by segments of type 5 and type 1
indicates that a vertical 0-terminator appears to be in contact with the ground. If there
is a chain of segments of type 1 which is parallel to a chain of segments of type 4, and
there is no difference in their length, as shown in figure 8a, then the support structure
under the top surface has the same size as the top surface at this portion of the object;
otherwise the object has a support structure which is smaller then the top surface, as
shown in figures 8d and 8e. Also, the difference is equal to the distance between the
junction point and the OEP, and the end point of the chain of segments of type 4 is the
SEP.
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Square L-junctions, as T-junctions before, may signify occlusion As shown in
figures 8b and 8c, the square L-junctions signify that portions of the 0-terminator are off
the ground surface. They also indicate that there is no information about the structure
supporting the top surface. Wide L-junctions occur throughout the shadow boundaries
and have meaning only within the context where they occur; between OEP/SEP pairs they
indicate the shape of the shadow casting lines in the sides of the objects, and within
chains of segments of type 4 along a shadow boundary, they indicate changes in eleva-
tion of the hypothesized shadow casting segments in the 0-terminators.

If the C-graph is empty for a shadow region, as it probably would be in the case of
the shadow cast by a tree, then we hypothesize from the shadow information a planar 0-
terminator, perpendicular to the ground surface, whose outline approximates the outline
of the illumination occluding profile that cast the shadow. We compute the equation of a
line passing through the portion of the shadow boundary that is closest to the source of
illumination and parallel to the projected direction of illumination, and compute the dis-
tances to this line from the elements in the boundary of the shadow to hypothesize their
height, as shown in figure 6.

6.4 RESULTS

We have tested our techniques on small portions of high resolution aerial images,
and we used our previously reported segmentation techniques to compute line segments
[10,11,13. Figure 9 shows the intermediate and final results obtained by processing an
image with the edge-based method. The entire process is automatic, although it consists
of several independent modules that run in sequence. Figure 9a shows a 256x256 picture
of fuel storage tanks and figure 9b shows the line segments extracted from it. The clas-
sification rules are able to classify 62% of the detected line segments into classes 1-7. Of
those, 77% are in a single class, 27% are in two classes, 22% are in three classes, and
4% are in four classes. Figures 9c to 9i show the segments in each class for this image,
with the segments of types 1 and 3 combined in (c).

Figure 9j shows the extracted object and shadow boundaries, and figure 9k shows a
three dimensional wire frame model for the objects in the scene, which together with the
following description of the objects is obtained from the C-graphs:

a) Perimeter
b) Edge segments in outline
c) Approximate center
d) Average width of shadow
e) Approximate height
f) Shadow Occlusion
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OBJECT:1 OBJECT:2 OBJECT:3 OBJECT:4 OBJECT:5 OBJECT:6
a) 84.3 40.2 72.2 135.6 105.8 84.8
b) 10 6 11 17 14 11
c) (72,125) (56,78) (93,93) (111,127) (137,79) (155,113)
d) 20.9 15.0 14.5 14.8 12.7 13.5
e) 36.2 25.9 25.1 25.7 22.0 23.5
f) Occlusion Occlusion Occlusion Occlusion

by obj:9 by obj:3 by obj:1 by obj:5

OBJECT:7 OBJECT:8 OBJECT:9 OBJECT:10 OBJECT:1 1
a) 99.6 141.2 51.9 42.0 99.5
b) 15 18 8 9 13
c) (170,141) (210,100) (80,62) (79,226) (114,47)
d) 8.1 17.5 15.7 16.8 17.4
e) 14.1 30.3 27.2 29.1 30.2
f) Occlusion

by obj:6

Figures 10 and 11 show the intermediate and final results obtained with the region-
based method. Figure 10a is the 128x128 original image showing a building and some
trees. Figure 11a is the 300x300 original image showing several vehicles, two trees, and
a lamp post casting shadows.' Figures 10b and 11b show the line segments in the boun-
daries of dark regions extracted automatically from the original images. The left portions

* of the shadows of the trees in the parking lot image were not in the original gray level
image, and were completed by hand.

Figures 10c and 11c show ground level side views of the 0-terminator hypotheses
made automatically from the shadow information. Figures 10d and 11d show another
view of both 3-D wire frame models. Note that for the objects in figure 10, only the
building surfaces result from the correspondence between building boundaries and their
shadows. The "trees" are the hypothesized illumination occluding profiles computed from
the shadow shape. Note also that the 0-terminator hypotheses for the vehicles in figure
11 are correctly interpreted as being off the ground. Also note that the breaks in the
shadow boundaries of the cars do not correspond to breaks in the corresponding 0-
terminator boundaries. This indicates a change in the height of the 0-terminator ele-
ments, which in fact correspond to the tops of the cars, and the container in the truck.
The trees and the lamp post are the hypothesized illumination occluding profiles com-
puted from the shadows.

6.5 CONCLUSION

One of the reasons that a hximan observer is able to obtain a strong impression of
depth from a single monochromatic aerial image appears to be the observed shadows
cast by the 3-D objects in the scene.

* While other techniques such as shape from texture and shape from shading could
determine whether the visible object surfaces are slanted or curved, they can not deter-
mine their height from the ground surface if they are elevated. We have demonstrated
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that under simplifying assumptions, shadow analysis is useful to obtain 3-D information
from the shadows cast by the objects in the scene, without prior knowledge of object
position. This is particularly useful if we are interested in recognizing man-made objects,
which have been a source of difficulty for techniques such as stereo.

We have also shown that our image segmentation techniques can provide stable
line segment primitives suitable for the analysis of the shadows cast by the relatively
small objects in the images shown. Our two shadow analysis techniques are suitable for
an initial coarse segmentation of the image to locate the objects in the scene (by locating
the shadows first and establishing partial object to shadow correspondences), and guide
fine segmentation and analysis algorithms for detailed object descriptions and recognition.

We then come to the conclusion that the shadows cast become an important
source of 3-D information information from a single monochromatic aerial image. Sug-
gested extensions to this work include determining whether the two techniques discussed
could cooperatively produce good results for images containing objects more complex
than those shown here. With the region-based technique, it might prove useful to extract
also other regions, with varying gray level intervals to locate the visible object surfaces
as well as the shadow regions. More interesting, is to study how the information that
can be derived from the shadows can be combined with other techniques, such as local
shape from shading and stereo, to obtain more accurate and informed 3-D surface infer-
rencing techniques.
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Figure 4: Line Segment Types
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d) Augmented C-graphs
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f) Complete C-graph

Figure 5: Object-to-Shadow Segment Correspondence (continued)
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a) Gray Level Image

b) Shadow Regions

Figure 10: Results for Building Image
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SECTION 7

IMPLEMENTATION OF SHAPE-FROM-SHADING ALGORITHMS

Sheng Hsuan Yu

7.1 INTRODUCTION

One purpose of a visual system is to reconstruct a 3-D model of the world from a
2-D image. When we look at an image, we have no problem in identifying the objects and
their shapes no matter how complicated they are. Our visual system is very robust in
perceiving the shape of a surface; but we know little about it.

One method for depth perception that is relatively well understood is binocular
stereopsis. In stereo computation, object features in the left and right view are placed in
correspondence- The difference in the projection of the corresponding points in two
views is used to determined the depth of the surface along that contour. Since the stereo
computation can determine depth only at particular points in the image, we have to use
other cues to recover the complete surface of the whole regions. An interpolation method
can be used to compute a complete description. However, this may give a poor descrip-
tion, when the contour information is sparse.

When we look at a single image, we still can find other cues to help us perceive the
shape of the surface of an object. One of these cues is shading. The ordinary visual world
is mostly composed of opaque 3-D objects. The intensity of a pixel in a digital image is
produced by the light reflected by a small area of the surface near the corresponding
point of the object. Different surface normals will produce different image intensities. The
changes of image intensities in a smooth region give us information about the surface
shape.

Many shape-from-shading techniques have been proposed. Woodham (1] uses
multiple images to obtain a solution. A global relaxation method in [21 has been used to
recover shape by propagating constrains from boundary conditions (such as surface nor-
mals from smooth occluding contours) over the surface whose shape is to be estimated.
Pentland [31 has formulated a method for deriving surface shape from local image shad-
ing. It utilizes local changes only in image intensity to estimate shape and doesn't require
a priori knowledge about the viewed scene. It assumes that albedo and illumination are
constant in the neighborhood of the point being examined, the surface reflects light
isotropically, and the surface principle curvatures are equal and nonzero.

In this report, we carefully evaluate the two methods mentioned above by applying
them to both synthetic and natural images. We also examine the possibility of combining
these methods, that is, to use the output of the local estimation method to bootstrap the
global method.
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O 7.2 REPRESENTATION

7.2.1 Gradient Space

There are various ways to specify the surface orientation of a plane. One can use
the equation defining the plane or the direction of a vector perpendicular to the plane. If
the equation of a plane is ax+by+cz+d=0, the surface normal is (a,bc). This method is
easily extended to curved surface by applying it to tangent planes. If the equation of a
surface is given explicitly as:

-z=h(x,y),

then the surface is given by the vector (p,q,-I), where

p=-az/ax, q=-az/ay

The quantity (p,q) is called the gradient of h(x,y) and the gradient space is the 2-D space
in which coordinates are p and q. Geometrically, we can think of this as the projection of
the "Gaussian sphere" on a plane tangent to its north pole. The center of the projection
is the sphere center.

7.2.2 Stereographic Space

As we shall see, points on the equator of the Gaussian sphere correspond to sur-

* face patches on the occluding boundary. With the gradient space projection. the equator
maps to infinity. As a result, a point on occluding boundaries, which plays a very impor-
tant role in the global relaxation method, is undefined in gradient space. We can consider
sufficient large values of p and q to be approximation of the gradients of points on the
equator of the Gaussian sphere. The other solution is to use the stereographic projec-
tion. Two axes of stereographic space are labeled by f and g and they can be converted
from pq-space directly (2]:

f=2p(,/1+p z +q z - 1)/(p2z+q 2)

g=2q(/1+p2 +qZ -1)/(pZ+q 2 )

The center of the projection is !he south pole instead of the center of the sphere. The
use of stereographic space instead of gradient space doesn't change the constrains that
restrict the surface orientations.

7.2.3 Slant and Tilt

We also use slant and tilt representation. It is a modified representation of a point
(p,q) in the gradient space by using the polar coordinates T and tan(o. They can be con-
verted from pq-space by the following formulas:

T - arctan(q/p)
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tano - /!p+q t

The tilt specifies the direction in which the surface normal is oriented and the slant is the
angle between the surface normal and the viewer.

7.3 SHAPE FROM SHADING

In this section, we briefly outlines the algorithms for each method and the com-
putation techniques.

7.3.1 Global Relaxation Method

Our work is based on [2]. The global relaxation method uses the image-irradiance
equations and smoothness criterion as constrains. It has been shown that the recovery of
surface orientations is possible if the position of light source and the object reflectivity
are known. Let f and g be the stereographic coordinates. We define some error terms:
s is defined as the departure from the smoothness, r,. is defined as the difference of the
image intensity and the value computed from reflectivity function by putting current
(f11,g,.) into it.

s = [(fi+l,.j-fi) 2 +(fJ.1 _-f,,i) 2 +(g 1i+.i-giJ) 2 +(g,. 1i -g ,,i) 2]/4

r,., = (I,J-R (f,.,g ,.1))2

The total error E is d-fined as follows:

E =

where X weights the relative importance between smoothness and reflectance
errors.

Given adequate initial conditions, the goal is to find out the surface normals else-
where on the surface that minimize the total error, E. To obtain this goal, Gauss-Seidel
like iteration method is derived as follows:

fn+1 i~j=f av ni.j +X( o, (i- R(f av n ijgav n i'i)) a R(f av n ijgav n ij)/af

g n+1 ,.i= gav n q+ X, (i;.j_ R(f av ni.j'gav n ij)) a R(f av n i'l;g av n ij /a g (1I)

where fay and gay are the averages of their four neighboring points.

The iteration ends when E is sufficiently small or reaches a stable value. This
method needs a lot of a priori knowledge about the image, to reduce convergence time.
In the following paragraphs, we will discuss how to choose or estimate the boundary

conditions.

- Occluding boundary. Since the surface normal of the point on the silhouette is per-
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pendicular to the line of sight and the tangent line of the silhouette, it can be
determined uniquely. A smooth shading region is a region which has a wide range
of the intensity distribution and has no occluding edge within it. By using a region
growing method, we segment such a region into many elongated(strip) regions with
long artificial boundaries. If the boundary of such a region matches with the edge
from zero-crossing, it is very likely to be occluding boundary.

- Local estimates. Use the output from the local estimates that will be discussed in
the next section as the starting points.

7.3.2 Local Estimation

Pentland formulated a method that utilizes only local changes in image intensity to

estimate shape without a priori knowledge about the image. He proposed two estimators
for slant and tilt of a surface normal by assuming that the surface is a Lambertian surface
and the surface principle curvatures are equal and nonzero.

1. Tilt estimator: The tilt of the surface is the image direction in which the second
directive of image intensity d2 l is greatest.

2. Slant estimator: The arccosine of the surface slant , Zn, the z component of the
surface normal, is estimated by the following equation:

Zn = -c / /(IV 21/l1 - c 2  (2)

where c is a constant related to the surface curvature, and

V 2 1 _ 3 2 1/ax 2 + a 2 l/ay 2 .

In digital images, the Laplacian is usually approximated by [4],

.V Zl(i,i) =  I(i+l,j)+l(i-l,j)+l(i,j-l)+l(i,j+l)- 41(i,j).

Since very accurate values of V2 I are required in the above estimators, this function
doesn't work here. Another way is to approximate VIi by convolving the operator V 2 G
with the image. This operator is Jetermined by two parameters w(=2o,standard deviation
of G) , the width of the central excitatory region, and X(=21ra), the diameter of the
operator. This is a circularly-symmetric filter as shown in figure 1.

There are two reasons for using V 2 G operator. First, it incorporates a smoothing
function that makes it less sensitive to noise and quantization. Second, the operator
covers larger areas and takes more elements into consideration so that the output is
more stable and accurate. The size of the operator affects the quality of results. The
details will be discussed in section 5. Since albedo and illumination are assumed to be
locally constant, dividing Vi by I yields a measure that depends primarily on the surface

curvature and the slant. A good estimate of constant c within an image region is ob-
tained by applying the constraint that -1 < Zn < 0, which means a visible surface facing

* the viewer.
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c=/min( I V zll 1)/2 (3)

Then, the z component of the surface normal can be obtained.

Estimating the tilt from the slant estimates: To compute the tilt is to find out the
direction k(=<u,v>) along which dZl is maximum. The second derivative of I along a
vector k is given by

d 21 = I u2 + 21 Ouv + I 9v2 .

where Ixx=zl/axz, Iy=z l/ayZ and IX,=a 2 l/x ay.

Thus directional second directive along a direction k can be calculated by using values of
lxx, Ixy and lyy. But very accurate values of them ars required and it is not computation-
ally efficient because separate operators are needed for each of them. Pentland [3J sug-
gested a method to approximate the directional second directive operator by summing
the values of V21 along a straight line. Although this method is more convenient than the
previous one, it still requires a lot of efforts to compute the sums along many different
lines and to normalize them so that they can be compared. Intuitively, the direction along
which the slants have the biggest changes is the direction in which the surface is
oriented. So the tilt can be approximated bv

T = arctan (dv/dx),

where dx and dy are the first-order differential derivatives in x and V axis.

We have found that it outperforms the previous methods and is very attractive computa-
tionally.

7.4 INTEGRATION ALGORITHM

Gradient space, stereographic space ,and the slant-and-tilt representation are all
good representation of the surface normals, but not convenient for display. Integration of
these representations of surface normals into a depth map makes it easier for us to judge
how accurate of the recovered shape is.

p and q are partial derivatives of z along x and y axis, and hence give changes of z
in x and y direction, respectively. Suppose that the depth at point (xO,yO) is known as zO.
Let xl-x0+dx and vl-yO+dy and zl-f(xl,y). Then z1 can be approximated by the follow-
ing equation:

z1 - zO + (1/2)dx(p(xO,yO)+p(xl,yl))+(1/2)dy(q(x,yO) + q(xl,yl)) (4)

The integration procedure includes the following steps.

1. Choose the starting point, (xO,yO), and assign zA a value. For example, the center of
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a sphere is a good starting point.
10 2. Integrate the depth along an axis. i.e., x-axis or y-axis.

3. Based on the depth of the axis chosen in the last step , continue the integration
process toward the two opposite sides normal to this axis.

If the surface normal is represented by the slant and the tilt components, a transfor-
mation is needed, p=tanocosT and qztanasinT. In the next section, we use this scheme
to transform the orientation representation into a depth map, which proves to be very
helpful for our perception of the recovered shape.

7.5 RESULTS AND DISCUSSION

We have applied these shape-from-shading techniques to several synthetic and
natural images. In local analysis, we used a synthetic image of 64x64 pixels as shown in
figure 2(a) to test the effect of the size of the operator on the recovered shape. The
operators used are the same as the Laplacian-Gaussian filter for Ioca. edge detect'on dis-
cussed in [5]. Figure 2 (c)-(f) show the depth maps recovered from different size V 2G
operators with w=1,3,3,5 and X=3,7,11,15, respectively. Compared to the true depth shown
in figure 2(b), the results become better as the size of the operators increase. It shows
that the operator with X=15 is quite good for an image of 64x64 pixels. Therefore, the
operators used in the following experiments are around this size.

Figure 3(a) shows the synthetic images of Lambertian ellipsoid and hyperboloid and
* both are 64x64 images . Their true depth maps are shown in figure 3(b). These samples

consist of different types of surface with different combinations of principle curvatures.
Using Pentland's local estimation method, the recovered shapes of these images are
shown in figure 3(c). Compared to the true shapes, the results are quite accurate except
at the points along the boundaries and at points on the valley(saddle) of the hyperboloid.

If the global relaxation method is used to recover shape, we need some a priori
knowledge about the surface, i.e., occluding boundaries and the illumination angle. Figure
4(a) shows the occluding boundaries of the synthetic sphere and hyperboloid as shown in
the previous figures. The points on these boundaries provide the initial conditions for the
global relaxation method. The sphere has a closed occluding boundary, while the hyper-
boloid has two separate occluding boundaries. The recovered shapes are given in figure
4(b). Both are very accurate compared to the true shapes given in previous figures. It
shows that a closed occluding boundary is not necessary.

We also have experimented on a synthetic image with a reflection function other
than Lambertian surface. The brightness of the surface depends linearly on the incident
angle rather than the cosine of the incident angle.

I a 1-2i/ir

The generated image is shown in figure 5(a). We still perceive it as a sphere. The
recovered shape by local estimation method is shown in figure 5(b). The estimations

* around high-slant area are quite accurate. It is interesting to know that there is a dip in
the center, which is a low-slant area. This is because the estimators are based on the as-



91

sumption of Lambertian surface. So the estimators are very sensitive to the changes of
brightness when the incident angles are very small (the curve of cosine is relatively flat
here). The global relaxation method has also been applied to this image and the
recovered shape more resembles the true shape as the result shown in [2]. Figure
6 shows the profiles of the true shape and the shapes by local analysis and the global
relaxation method.

Figure 7(a) is the digital image of "Lenna". We have a very strong perception of
shapes in this image because of rich shading information, such as the part of shoulder.
We used it as a test case for both local estimation and global relaxation methods.

Local analysis method is not suitable for a relatively flat area because the output of
the Laplacian-Gaussian convolver on the area is very small. As shown in figure 7(b), the
background has a very strange recovered shape, not a plane as we perceive it. After
removing the background, the result looks better as shown in figure 7(c). For a surface of
complex shape, local analysis will cause errors. This is because c value can not be es-
timated correctly. It is better to split a complex shape into small homegeneous regions.

The segmentation of this image by region growing is shown in figure 7(d). It shows
that the intensities of these segmented regions change gradually from the southwest
corner to the northeast corner, but there is an abrupt change near the boundary. So this
boundary can be , girded as an occluding boundary as shown in figure 7(e). These initial
conditions are chosen from the output of the pentland method. By giving a guessed
orientation of the light source based on the direction along which the changes of inten-
sities occur in the segmented regions, the recovered shape of the shoulder by relaxation
method is shown ir, figure 7(f).

Figure 8(a) shows part of the face of "Elaine". As shown in Figure 8(b), the shape of
the nose is correctly recovered by local estimation method. But the shape around right
cheek is not. As we see clearly the black part of the nose, it seems to be illuminated in-
directly or looks like a self-shadowed area. This may confuse the shape-fiom-shading al-
gorithms. Noisy spots may cause errors as well as the area around zero-crossings. Be-
cause no clear occluding boundary can be found, it is very difficult to apply the global
relaxation method. Using the result in figure 8(b) as initial conditions and these con-
ditions are changeable, it reaches a solution after many iteration s(400). Again, the orien-
tation of illumination is guessed. The result is shown in figure 8(c).

7.6 CONCLUSION

We have applied shape-from-shading algorithms to several synthetic images and
natural images. They both work well on synthetic images as illustrated in the last section,
but the performance for natural images is poor. The reasons for this are not completely
clear and require further investigation.

Some possible causes for the errors are:
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a) Inadequate resolution
b) Non-Lambertian surface
c) Complex surface curvature (e.g. non-spherical)
d) Local changes in albedo
e) Complex illumination, including reflections from other objects and

multiple light sources.

Pentland's method seems to be tolerant to non-spherical shapes, as seen by ex-
amples of synthetic surfaces with different curvature, but in natural images, it is effective
only in some areas of high curvature, e.g. a nose. The method is sensitive to the choice
filter size, which is hard to determine for a natural image. The method factors out albedo
changes, but the effect of local changes, as in texture, is unclear.

The global relaxation method requires a priori knowledge of light source and reflec-

tance function, which are not generally available for natural images - it is also difficult to
obtain the needed initial conditions.

Our experiments indicate that shape from shading algorithms require further inves-
tigation before they can be applied to complex, natural images.
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Figure 1: A Laplacian-Gaussian Filter with w-7 and X-27.
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(a) (b)

( (c) (d)

(e) ()
Figure 2: Recovered shapes from different size operators.

The synthetic sphere in (a) with true surface in (b) is convolved with VG
having wm1,3,3,5 and A-3,5,7,15 pixels.(c)-(f) show the recovered shapes.
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Figure 3: Shape recovered by local estimation for a hyperbotoid and an
ellipsoid. (a) shows the synthetic images.(b) the true depth

maps,(c) the estimated shapes.
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Figure 5: (a) A synthetic sphere with I ;1-21/w

(b) recovered depth map by local analysis method.
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Figure 6: Profile of true shape and the shapes recovered from
local estimation and global relaxation method. Solid line indicates

true depth, dotted line indicates local analysis, and dashed line indicates
global relaxation.

Sole,

~Figure 7: (a) Elaine - Shoulder, 76076.
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(b) Reoee shape ,by loa optainwtbcgon
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(d) (€)

Figure 7: (continued)

(b) Recovered shape by local computation with background
(c) Recovered shape by local computation without background

0 (d) Segmented regions
(e) Occluding boundaries
(f) Recovered shape by global relaxation method
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(a)

(b) (c)

Figure 8: (a) Face ,64x64

(b) Recovered shape from local computation
(c) Recovered shape from global relaxation with initial values
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SECTION 8

TEXTURED REGION EXTRACTION USING PYRAMIDS

Hong-Youl Lee

8.1 INTRODUCTION

Even though texture plays an important role in human visual perception, attempts to
utilize texture in segmentation have been limited and have encountered many formidable
problems. In many cases such problems stem from the very essential fact that textural
properties at a location (or pixel) in the image are measured over some neighborhood of
that location whereas intensity properties (e.g. spectral value, luminance, tristimulus
values) are measured strictly on that location itself. For this reason, textural properties
measured for a pixel near the boundary of two differently textured regions show mixed
properties of the two regions.

The population of pixels with mixed properties often bring undesirable results when
the conventional segmentation schemes which work well with the intensity properties are
adopted to deal with texture. In attempts to use unsupervised pattern classification
(clustering) techniques [1-31, for example, well separated and individually condensed
clusters rarely exist in feature space. Neither do prominent peaks in property histograms

* when the histogram-based thresholding technique [41 is used. In the application of the
split-and-merge algorithm (5-61, there is a danger of obtaining separated boundary
regions if the merging criterion is set too strict or merging differently textured regions
together if it is set too loose. Such is also true with the application of the pyramid-
linking algorithm [7) where the number of segments to be obtained is controlled ar-
bitrarily by setting the highest level of the pyramid differently.

Even though the fine details of the image are smeared by the texture processing, all
these approaches were directed to divide the image into completely exhaustive uniform
regions without specifically separating the textured portions from the untextured ones.
One reasonable alternative can be extracting only the textured regions partially and con-
servatively without committing ourselves to the untextured portions which will be seg-
mented more easily and accurately using intensity properties instead. Therefore we
proposed a region extraction scheme which selects the most likely textured spots of the
image as the starting elements and then expands them up to the boundaries to form
separate connected regions on the previous report [8]. Several important changes were
made ranging from the starting element selection to the texture measure itself.

8.2 PREDICTION OF TEXTURE PRESENCE AND UNIFORMITY TEXTURE MEASURES

Local uniformity and the change in uniformity at different resolutions are used as
the texture cue in our extraction scheme. While constructing a level of the intensity

* pyramid where level L is obtained by non-overlapped block averaging of level L-1, the
corresponding levels of the uniformity pyramid indicating the local uniformity at that
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resolution and of the uniformity-change (UC) pyramid indicating the local uniformity
change from the lowest level are computed as shown in Figure 1. The underlying sup-
position on which these measures are valid is that the averaging process in constructing
a pyramid structure changes a large textured region into a uniform luminance region at
the level where the averaging window approximately equals the collection of texture
primitives in size. (The principle of halftone prints, which are highly textured dot patterns
meant to be viewed from far enough to blur the texture, is essentially the same.) This is

true only if the variations in the illumination and the primitive size are small throughout
the region.

After subdividing the image into non-overlapping square windows, the average at

each level of the uniformity pyramid taken over a window is used in determining the
presence of large enough textured regions at the window location and estimating the
proper level of resolution (level T) which is compatible with the size of the texture. If the

average uniformity over a window improves at a higher level of the pyramid than the
level 1 and the average UC over the window is greater than that over the entire image at
the higher level, this window is marked as the probable site for a textured region. For

each connected set of the textured windows, level T is determined by examining the
average uniformity value over the entire set at each level. The size of the window is
given by the human operator and depends on the expected size of the textured regions in
the image. The low altitude aerial image of Figure 2, for example, has large forest
regions which cover more than half the image and have approximately the same size of

texture primitives. A very large window (e.g. 2x2 dividing) is desirable or even no dividing
is necessary in this case where a single type of texture dominates the whole image. The
starting elements shown in Figure 3 were actually obtained without dividing the image.
The outdoor house image of Figure 7 has a large portion of untextured regions (sky, wall,

car) and the textured regions have different size and texture primitive (trees at different
distances, roofs, etc.). The starting elements shown in the figure were derived using 8x8
dividing.

8.3 EXTRACTION OF TEXTURED REGIONS

After the level T is determined for each connected set of the textured windows,
three consecutive levels of the pyramids are involved in extracting compact textured
regions. At level T+1, pixels with high uniformity values (e.g. upper 20% from the local

histogram corresponding to the textured window set) are thresholded to form the starting
elements. At level T, one of the starting elements (magnified by the factor of 2 to take
account of the level descent) is grown by merging neighboring pixels whose uniformity
and UC values lie inside the uniformity and UC ranges of the magnified element. Though
it is unreliable to use the level T-1 uniformity and UC values inside the textured region, a

textured region often adjoins untextured regions or regions with a texture of different
primitive size, which are detectable at level T-1 ( e.g. a forest region touching rivers or

roads in an aerial image). At level T-1, therefore, boundary refining is carried out by
eliminating the untextured or differently textured portions (with low uniformity or small
UC values) from the search area which is constructed at level T and magnified by 2 to be
compatible at level T-1. (After the region growing stops at level T, the search area is
formed by the exterior boundary pixels as well as boundaries of holes and their neighbor-
ing pixels within a distance of 1.) After one region is extracted, the process is repeated
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using another starting element which is separate from the detected regions. The starting
elements from Figure 2 are shown in Figure 3 and the binary images of the resulting
regions after each step are shown in Figure 4. Figure 5 shows the boundaries of the ex-

tracted regions on the original image. The final result on another test image (high al-
titude image of the San Francisco urban area) is shown in Figure 6. Figure 8 shows the
final regions extracted from Figure 7.

8.4 CONCLUSIONS

The test results on natural images show that the proposed technique can extract
large textured regions fairly well. Without the sophisticated description of textures from a
stochastic or structural model, simple texture measures achieve sufficient results in the
natural image domain.
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Figure 2: Low altitude aerial image

Figure 3: Starting elements selected at level 4

0
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(a) (b)

Cc) (d)

Figure 4: Results from the largest starting element
after each step

(a) starting element at level 4
O (b) region grown from (a) at level 3

(c) search area of (b)(d) after the elimination of the untextured portions at level 2
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Figure S: Region boundaries with small noisy regions
removed and smoothing

Figure 6: Final result on a high altitude Image of

San Francisco area

V.
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Figure 7: Outdoor scene with its starting elements

F 4

Figure 8: Final region boundaries from Figure 7.
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* SECTION 9

MULTIPLE RESOLUTION IMAGE TEXTURE SEGMENTATION

Allan G. Weber and Alexander A. Sawchuk

9.1 INTRODUCTION

One of the basic requirements of any image understanding system is to be able to
segment the image into regions that have some common characteristic. For many ap-
plications, the common characteristic is texture. While image texture segmentation has
been studied extensively in the past, most of the research used data obtained by making
measurements on the image at one particular resolution. The purpose of this research is
to find a way to use data from multiple resolutions in hierarchical manner that increases
the overall segmentation accuracy above that which is obtained at a single resolution.

9.2 CLASSIFICATION FEATURES

The segmentation of a textured image can be viewed as a constrained classification
problem in which the constraints are derived from available spatial information. As with

any classification problem, the proper selection of the features to be used in the cias-
sification algorithm is very important for obtaining the best possible results. To provide a

0 solid basis for the rest of the research, we will use features similar to the texture energy
measures developed by Laws [1]. His features have been shown to work as well or better

than most others and are also relatively easy to calculate. The test image to be used is a
texture mosaic (Figure 1) which consists of eight different textures: grass, water, sand,
wool, pigskin, leather, raffia, and wood. All eight textures are present in the image in
squares of size 128x128, 64x64, 32x32, and 16x16.

The texture energy features are based on a using a sequence of convolutional

operators on the image data, one small (micro-window) and one large (macro-window).
To calculate a classification feature, the image is first filtered (convolved) with the micro
window operator. These are small convolution masks designed to act as matched filters
for certain types of quasi-periodic variations commonly found in textured images. Typi-
cally these masks are of size 5 by 5 or smaller and are zero-sum, resulting in an filtered
image which is zero mean. The masks are intended to be sensitive to visual structures
such as edges, ripples, and spots. Because the micro-texture features are quasi-periodic,
we expect strong variations about the mean output as a function of mask position for
masks that are matched to the local texture. Thus the relevant information for texture
discrimination is now present as the image variance. Therefore the second part of cal-
culating the features involves measuring the local sample variance (or some
approximation) within overlapping or non-overlapping macro-windows. It is the size of
this macro-window that will be changed to give the multiple resolutions for the final
classification. Typically, the macro-windows sizes will be on the order of 15 by 15 or 31

* by 31.
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The variance in the local windows of the filtered image can be measured in a

variety of ways. The true sample variance within a 2n+1 by 2n+1 window at point (xy) is

given by

x+n y+n

o 2 (x,v) _ (2n+1)- 2 (f(i,j) - m(xy)) 2 . (1)
i-x-n =y-n

where the mean, m, is given by

x+n y+n

m(x,y) - (2n+1) - 2 F ': f(i.i). (2)
inx-n j=y-n

Because the output of the small convolution masks is theoretically zero mean, the

local variance may be approximated by assuming that the image is indeed zero mean and

averaging the squares of the points within the window.

x+n y+fl
02(x,y) - (2n+1) - 2 E 1: (fl(i,jl) z .  (3)

Ix-n- j=y-n

Experimental examination of the statistics of some filtered images show that this zero

mean assumption is justified.

A final step in creating the feature set is a normalizing process. The normalizing

factors are derived in much the same way as the feature points described above. As

above, the original image is filtered with a small (5 by 5) smoothing convolution mask.

However in this case the operator is not zero sum, resulting in a non-zero mean filtered

image. The output of this operation is similar to that of a low-pass filter. The standard

deviation,co , of the output image is measured as described above except that the true

variance (Equation 1) must be measured since the zero mean assumption is no longer

valid. The resulting standard deviations values are used to normalize the feature images

on a pixel by pixel basis. Since the final feature images are now a ratio of standard

deviations, any difference in gain from one image to another will cancel. Bias offsets are

also canceled due to the zero sum nature of the convolution masks.

In Laws' work, the texture energy features were calculated for several different

micro-texture masks. In order to reduce the dimensionality of the classification process,

a principal component transformation was then used to allow selection of the a working

subset containing the most significant transformed features. This process has been

simplified in our case. A subset of the micro-texture masks were selected beforehand

and used without performing the principal component transformation. Figure 2 shows the

micro window masks used. These correspond to the E5L5, R5R5, E5S5, and L5S5 masks

used by Laws. Their performance is certain to be inferior to that which would be ob-

tained using an equal number of features which are optimum linear combinations of many

features. However for the purpose of this research, the relative performance of the clas-

sification at various resolutions is more important than the absolute classification ac-

curacy. Figures 3 and 4 show the resulting features generated with the E5L5 mask for the

texture mosaic image. These images have been scaled to an eight-bit range for the pur-

pose of viewing. All the features used for the classification are stored as floating point

numbers. The statistics for these features are given In Table 1.
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Table 1: Normalized Feature Statistics for Texture Mosaic Image

Feature Mean Min Max

E5L5 (31x31) 50.4 12.3 12.9 89.5
R5R5 (31x31) 20.8 7.8 6.8 75.2
E5S5 (31x31) 7.6 1.9 2.7 14.5
L5S5 (31x31) 36.5 9.9 17.1 96.4
E5L5 (15x15) 58.8 16.5 6.8 158.2
R5R5 (15x15) 21.8 10.7 4.7 110.0
E5S5 (15x15) 8.2 2.7 1.7 22.9
L5S5 (15x15) 39.7 14.4 10.3 156.0

9.3 CLASSIFICATION ALGORITHM

As with any pattern classification problem, the selection of the classification algo-
rithm is based to a large extent on the type of information available for use. For most

applications of texture classification one does not know beforehand what textures will be
present in the image. However, for the initial attempts at multi-resolution classifying we

will have available a priori the class statistics. This allows us to use a Bayes classifier.
This classifier is based on Bayes decision theory and guarantees that no other decision
rule will yield a smaller probability of error. In the following discussion, s is a discrete

random variable which describes the classes present in the experiment and can take on

values s1, s., ... s n. The probability density of s is given by P(s). The continuous random

variable, x, represents the sample in question. The distribution of x is dependent on the
class it belongs to. This gives the class-conditional probability density function, p(xls,),
which is the density of x given that x is a member of class si. According to Bayes deci-
sion rule, a point should be classified to class i if

P(sijx) > P(sijx) for all i A i (4)

or equivalently, by Bayes rule

p(xlsi)P(si) > p(xls)P(sJ) for all j A i. (5)

It not necessary to always compare the actual probability functions as shown above to
make a decision. Instead we may define discriminant functions which will satisfy the

same relationships but reduce the amount of calculations.

The classification of textures usually involves multi-dimensional data. The vector, x,

contains the feature points from all features for the point in question. We will assume
the features are Gaussian distributed with mean m, and covariance matrices C i. Under
this assumption, it is convenient to define the discriminant functions as

gj(x) - log(p(x4w)P(w)) - log(p(xlwi)) + Iog(P(w)) (6)

- - 2 x - m,)tC'l(x - m i) - 2dlog2 - A4oglCI + log(P(wi))

where d Is the dimensionality of the feature set [2]
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The 2log2 term is common to all functions and can be removed. For the case
where the classes are present in equal number, the a priori densities will be equal for all
classes and the log(P(w)) term can also be removed. This results in equivalent dis-
criminant functions given by

gi(x) - (x - mj)tCil(x - mj) + IogIC.I. (7)

This function is basically Mahalanobis distance plus a class dependent bias. It is not a
true distance metric since gi(m) is not equal to zero. The Bayes decision rule then clas-
sifies a point x to class i if

gi(x) < g1(x) for all j # i. (8)

The classifier described above was applied to the feature data calculated with 31 by
31 windows and with 15 by 15 windows. The classification results are shown in Figures
5 and 6. From these we can see that the classifier is performing about as expected. The
classification using the 31 by 31 features is more accurate in the large regions but per-
forms badly near the borders between the textures. The results in the small regions are
essentially worthless. The classification with the 15 by 15 features is more accurate near
the borders and in the small regions. However, there are also considerable errors in the
interior of the large regions. Table 2 lists the accuracy of the classification for the overall
image and for each sub-image containing regions of a particular size.

Table 2: Classification accuracy using Bayes classifier (%)

31x31 15x15
Overall 68.13 69.69
128 x 128 83.29 78.21
64 x 64 69.26 71.07
32 x 32 48.41 58.22
16 x 16 23.75 44.31

A graph of the performance of the two sizes of features versus the region size
would show an intersection at a region size slightly above 64x64.

9.4 CONFIDENCE MEASURE

The basic problem with a multi-resolution classifying scheme is that it is difficult to
know when to use the large window classification result and when to use the small win-
dow classification result. From observing the result of classifying an image using an
operator of a single size, one can see that the effectiveness of the operator is dependent
on its position in the image. The larger operators are more accurate away from texture
edges while the smaller operators perform better near texture edges. This leads to the
simple rule: use the large operator result when classifying a pixel away from edges and
use the small operator result for pixels near an edge. Unfortunately, since one of the
reasons we are trying to classify the texture is to find the edges between them, we can
never know in advance where the texture edges are. To get around this dilemma, the
classification method is set up as a decision hierarchy in which certain classifications
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* have precedence over others. Specifically, the larger window operator result will always
be used unless the estimated accuracy of the classification falls below a threshold. The
key to making this type of decision process work is to be able to measure the confidence
of the classification made with the large window operator. Ideally, this confidence
measure will be high when the large window classification is correct and low when the
classification is wrong.

The confidence measure is essentially a measure of "how close did this point come
to matching a (hopefully) correct class?" It should also take into account the relative
nearness of any other class means. For a minimum-distance-to-mean classifier using
Euclidean or Mahalanobis distances, a confidence measure can be implemented using the
discriminant function values (Equation 7). While the discriminant function is not a true
distance metric, it serves much the same purpose and can be treated as one when cal-
culating confidence values.

One possibility for a confidence measure would be

distance to nearest mean
confA - 1 - (9)

distance to second nearest mean

This satisfies an intuitive criterion for a confidence measure in that for a point which falls
exactly on a class mean the confidence is 1 and for a point midway between means the

* confidence is zero. Figure 7 shows the result of applying this confidence measure to the
texture mosaic features generated with a 31 by 31 local standard deviation operator. In
the image, low confidence is indicated by darker shades while high confidence shows up
as brighter areas. It can be seen that this method tends to react very quickly to any tex-
ture edges. One possible deficiency is that the low confidence regions following the tex-
ture edges tend to be very narrow, in a sense overestimating the correctness of the deci-
sion. This confidence measurement also doesn't take into account the number of classes
that came close to being selected. It will return the same confidence value for distances
of 1, 1.2, 5. and 10 to the four closest means as it would for distances of 1, 1.2, 1.2, and
1.2.

Various modifications to this general confidence measure have been tried with mar-
ginally acceptable results. In Figure 8 we see the result of applying a confidence operator
defined as

distance to nearest mean
conf e a 1 - (10)

average distance to all 8 means

to the same features. Using the average distance to all the means in the denominator
does not yield very good results since the confidence values tends to be driven up by the
presence of a class mean far away from the point in question. The confidence values in
this example range from 0.99 down to only 0.43. Since we would not classify the point in

* question to the class whose mean is farthest from it, the confidence should not inadver-
tently benefit from its presence.
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Figure 9 shows a compromise confidence measure calculated as

(11)

distance to nearest meanconf C  - 1 - _________________
average distance to 3 nearest means

This method seems to come the closest to how one might imagine a confidence operator
to act but still leaves something to be desired.

The most prominent problem areas that have shown up using this technique occur
in the regions where the texture region is much smaller than the size of the operator
window. The confidence calculation often results in all points in these areas getting a
confidence level well above what they deserve. The cause for this seems to be due to
the spatial arrangement of the class means in the feature space. In many cases, the
mean of one class happens to be close to being on a line between two other class
means. The effect of the mixture density of these two classes is usually to classify the
point to the third in-between class. Since the confidence operation only sees that the
point ended up relatively close to a class mean, the confidence is declared as being high.
This problem is compounded further when there are several classes present in the

operator window. Any class that happens to have its mean near the center of the means
of the classes in the the window tends to collect most of the class assignments. An ex-
ample of this can be seen in Figure 10 where the means in the feature space have been
projected onto the E5L5-R5R5 plane for plotting. We can see that the class means for
textures 1 and 3 through 7 are well separated from those for textures 2 and 8 with the
texture 2 mean lying roughly between that of texture 8 and the others. With this spatial
arrangement, many points in texture 8 that lie near a texture edge will get classified using
a mixture of texture 8 statistics and statistics of one or more of the other classes. The
feature point ends up lying somewhere between the mean of class 8 and the means of
the neighboring texture. As can be seen from the graph, a point that lies between the
texture 8 mean and the means of textures 1 and 3 through 7 will probably be closer to
the mean of texture 2 then it will be to that of texture 8. For this reason, the points near
the border of a texture 8 region are usually classified incorrectly as belonging to texture
2.

One piece of information that is perhaps not properly considered with this con-
fidence operator is the number of classes that have means close enough to the mean of
the selected class to have been under consideration. The measurement defined by equa-
tion 11 will return the same confidence level for distances of 1, 1.1, and 6.9 to the three
closest means as it will for distances of 1, 4, and 4. Intuitively, we should feel less con-
fident about the decision made in the first case than we would about the second.
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. 9.5 SPATIAL COHERENCE

When segmenting a textured image, it is a safe (and probably necessary) assump-
tion that the textures will be present in cohesive regions of some minimum size as op-
posed to scattered and intermixed pixels. The classification techniques we have used so
far are all based on individual pixels. The classification decision for one pixel is not de-
pendent on the decision made for any neighboring pixel nor is any consideration made of
the spatial arrangement of the data. This is obviously different from the way that a
human observer would classify textures. A human would probably rely greatly on the
classification of the area surrounding the pixel in order to make the best possible deci-
sion. Since we assume the textures are in regions, this is certainly a good idea and one
that should be implemented in any texture classification technique. If a point is believed
to belong to class 1 but all the neighboring pixels in a surrounding region have been
classified to class 2, then we should strongly consider classifying the pixel to class 2. No
matter how we go about taking the surrounding neighborhood into consideration, it will
probably be possible to invent a situation where we would have been better off ignoring
the neighboring pixels, but in general this information can be put to use in lowering the
rate of classification errors.

Work is currently in progress to implement these ideas. The basic concept involves
measuring the "coherence" between a pixel and its neighbors. Since we are working with
a multi-class problem, the measurement must examine the coherence between a pixel
and its neighbors for each possible class assignment for the pixel in question. The. resulting vector of coherence values represents a "coherence histogram" in which the
value in each histogram bin indicates the coherence of the center pixel with the pixels
around it under a different assumption for its class assignment. Due to the nature of the
coherence histogram in that it contains information about the spatial distribution of the
texture classes, it will be a major component in the final decision process. We will
describe work on using spatial coherence in a future report.

9.6 DECISION PROCESS

The final step in the segmentation process is to combine the previously developed
information to select a final classification for the texture points. These sources of infor-
mation include:

- The classification choice using the large window operators.
- The confidence of the large window operator classification.
- The coherence histogram giving spatial information about the surrounding area.
- The classification features from the small window operators.

The basic decision process can be stated as follows: If the confidence of the large
window operator classification is above a threshold use that classification, otherwise
reclassify using the small window operators with the allowable class assignments deter-
mined by the spatial information from the coherence histogram. Implementing this
process basically involves the selection of the threshold and the design of the class
elimination rule. Work is currently In progress to develop an acceptable decision rule
which uses all the information listed above.
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Even without the use a complex decision rule, the desirability of using multiple
resolution features can be demonstrated by using the results of the 31 by 31 and 15 by 0.
15 window classifications and the confidence values. A simple multiple resolution clas-
sifier can be implemented by using the confidence value as a threshold for selecting a
classification from one of the two images. If the confidence value is above the threshold
then the large window classification result will be used. If the confidence value is below
the threshold then the small window classification result will be used. The confidence
value in this example is given by Equation 11. The results of using this very simple rule
with a threshold of 0.6 are shown in Figure 11 and Table 3. Comparison with the clas-
sification results using a single size operator (Table 2) shows that this does provide an
improvement in all areas of the image, except in the region of highest resolution (16x16).

Table 3: Classification accuracy using Bayes classifier (%)
Combining single resolution results using confidence threshold

Overall 73.75
128 x 128 85.30
64 x 64 74.04
32 x 32 59.22
16 x 16 41.48

9.7 SUMMARY AND CONCLUSIONS

The multiple resolution segmentation process is based on the fact that features
from different resolutions will behave differently in many areas of an image. The basic
idea is to always be using the features that can be expected to be most accurate in a
particular area of the image. This goal is accomplished by using a confidence operator to
estimate the accuracy of the classification at one resolution level. If the confidence is
not high enough, then the classification is performed using the features from the other
resolution. A spatial coherence measurement is used to constrain the final classification
to be one that is consistent with the surrounding area.

The work that has been done so far has provided a solid basis for investigating the
effects of different coherence measurements and decision rules. Several different
coherence measuring techniques are being tried and some seem to be exhibiting the re-
quired characteristics. Preliminary attempts at using the coherence histogram in a deci-
sion process have been encouraging, and will be described in detail in future reports.
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Figure 1: Texture mosaic image
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Figure 2: Micro window masks
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Figure 3: 31 by 31 E5L5 normalized feature

Figure 4: 15 by 15 ESL5 normalized feature
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Figure 5: 31 by 31 classification results
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Figure 7: ConfA applied to 31 by 31 features
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SECTION 10

A VLSI ALGORITHM AND ARCHITECTURE FOR SUBGRAPH ISOMORPHISM

Dan I. Moldovan

10.1 INTRODUCTION

10.1.1 Statement of the Problem

Consider two graphs G. " (Va.Ea) and Gb - (Vb , Eb) where V denotes the set of ver-

teces (or points) and E denotes the set of edges (or lines) for each graph. The adjacency

matrices for the two graphs are respectively A- (a,] and 8 - [bJ 1. Two graphs G. and G b

are said to be isomorphic to each other if there exists a 1:1 correspondence between the

points of G. and Gb that preserves adjacency. This definition implies that the two graphs

have the same number of points and lines. If the number of points in the two graphs is

not the same. then it may be possible that the smaller graph is isomorphic to a part of

the larger graph. This is the problem of subgraph isomorphism; it is more general and

includes the graph isomorphism as a particular case. In this paper we will assume that

Ga is the smaller graph, i.e., na  nb' where n is the number of nodes.

10.1.2 Complexity Considerations

Many possible algorithms for subgraph isomorphism can be deviced. One approach
is to verify if adjacency matrix A can be made identical to a submatrix of the larger ad-

jacency matrix B by permuting the rows and columns of B. The complexity of this opera-

tion is 0(nb!). Algorithms with such exponential complexity are inefficient. An acceptable
algorithm for subgraph isomorphism should be 0(nbk).

Many researchers have proposed algorithms for graph isomorphism problem. Two

annotated bibliographies on this subject by Read and Corneil [1] and Gati [21 discuss more

than 60 representative papers. Graph isomorphism is known to be equivalent to many

other graph related problems, for instance automorphism partitioning problem [31.

10.1.3 Applications of Graph Isomorphisms

Since graphs can be used to represent large classes of structures, the isomorphism

problem has many applications. Thus, graph isomorphism is useful in computer vision

analysis, pattern recognition, artificial intelligence, robotics, chemistry and many other

fields. This paper was particularly motivated by the necessity to compare images, that is,

to determine If an image or scene taken by a camera corresponds to another expected

scene. In computer vision this is called matching problem, and Is employed in systems

such as Acronym [41 and others. For large images, this problem is computationally inten-

sive, and oftenly constitutes an Impediment for the real-time realization of some com-

e puter vision algorithms.
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In this paper we propose a parallel algorithm and architecture for the problem of
subgraph isomorphism. The algorithm is relatively simple and requires simple logic. The
algorithm has been designed having in mind requirements imposed by the VLSI technol-
ogy, such as logic regularity, reduced and localized data communications and reduced
input/output transfers. Indeed, the architecture proposed in this paper is easily realizable
in VLSI.

10.2 PARALLEL ALGORITHM

10.2.1 Algorithm Development

The algorithm for subgraph isomorphism is based on manipulations of adjacency
matrices. The permutations of rows and columns of one adjacency matrix is equivalent
to a tree search. Our approach is to improve upon such brute force method by testing a
necessary condition for isomorphism

Define an na x nb permutation matrix M* i [mij] whose elements are l's and O's.

This boolean matrix is such that each row contains one I and no column contains more
than one 1. Define a new matrix C - [cJ obtained by permuting the rows and columns of
B.

C M' B MIT

Ga is isomorphic to a subgraph of Gb iff A = C. Thus, the isomorphism problem is to
identify all possible permutation matrices M that will lead to A - C. The brute force solu-
tion to this problem is to perform a tree search on an initial matrix M ° - [m J which con-
tains all existing isomorphisms, if any. Such M ° can be constructed as follows.

1 if the degree of the ith point
in Gb is greater than or equal

mi.. = to the degree of the ith point
in G.

0 otherwise

Ullmann [51 proposed a refinement procedure which significantly reduces the tree
search method. This refinement procedure tests the following necessary condition: if
node i in graph Ga corresponds through an isomorphism to node j in graph Gb, then all
nodes in G. adjacent to i must have correspondent nodes in graph Gb which are adjacent
to j. This means that for any m,i = 1 in matrix M for which this condition is not satisfied
mi. - 1 is changed to mil 0. This simple idea can be translated into the following
boolean matrix equations.

RMi xB

S-Ax

M'.41 aM. *1
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where x indicates boolean product and * indicates logic AND. These equations contain a
* high degree of parallelism because it is possible to test the necessary condition at all

nodes simultaneously. The algorithm uses equation (1) in an Iterative manner; M, is
simplified to Mi, 1 during iteration i.

Notice that Mi 1 does not have more I's than M,, it can only have less l's or be
identical to Mi.

As a result of the refinement procedure only one of the following possibilities exist.

8) Mi+1 has less 's than Mi, but Mi+, is not an
isomorphism yet.

b) MI, 1 a Mi i.e. no change made.

c) Mi+1 has a row with O's or two or more identical rows
with only one 1. These conditions indicate that there
is no isomorphism obtained from M, .

d) M,. 1 is an isomorphism.

For each of these possibilities some actions are taken by the algorithm. The ac-
tions taken can best be described by the following primitives.

. Actions:

1. Repeat refinement procedure.

M 4--M,

I // M2. Split M+1 into Mi and M such that M, has one more row with only one 1, than

2M Spi M -M ' 11+
M M,, 1 (+ is logic OR)

.I

LIFO--M 4.1

3. Fetch a new matrix from LIFO

Mi i -- LIFO

4. Send Mi+1 to ouput because it is an isomorphism

OUTPUT-Mi+1

The algorithm Is illustrated in the flowchart shown below. It consists of a sequence of
computations, tests and actions.

The computations refer to the refinement procedure, i.e. equations (1). These equa-

tions are highly parallel. The tests are as follows:
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TI: Test Mi 1 if at least one row has O's.

T2: Test if there are two identical rows having

only one 1 and rest O's.

T3: Test if Mi+1 is an isomorphism.

T4: Test if Mi+1 0 M,

Based on these tests, some actions are taken as shown in the flowchart. As a ter-
mination procedure for this algorithm we can test if the LIFO is empty or not. If LIFO is
empty it means that all possibilities have been exhausted.

A program was written to verify the efficiency of this algorithm. Thus, several sub-
graph isomorphism problems were studied and satisfactory results were recorded. Here
are a few examples

Example 1

Consider two graphs G. and Gb with their adjacency matrices A and B respectively.

Ga G b

I -3

2

1234 1234

1011 1 0 1m1
2 10101 2 10111

A- 3 1 101 3- 3 1 100
4 1010 4 110

For these graphs, an initial matrix MO can be constructed as indicated above.

1234

1 2 1111

S 3 1100
4 1 11 1

q~~~~ ----- I i l i iJ}
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In figure 2 it is shown the search tree which normally results for two 4 th order graphs. In

* our algorithm, the refinement procedure systematically eliminates those branches which
do not lead to any isomorphism. The algorithm first splits MO into M, and M2

1 001 10
M 0 0 M2 1 00

110 M1 [ 1OO

M2 is stored in LIFO, and refinament procedure is applied to M1. M1 is unchanged

after refinament procedure, and M, is splitted into M,2 and M12

F1 0 00C 0 0 0
0100 M0 11

M12 1l01 12 [11000

1101 1 1

Refinement procedure is applied to M12 while M12 is stored. It is found that M12

does not lead to any isomorphism and then M,2 is fetched from LIFO. The process con-

tinues and eventually it is found that four isomorphisms exist for these two graphs. The

paths from M° to these isomorphisms are marked with heavy lines in figure 2.

Isomorphism found:

Ga Gb Gb Gb Gb

1 1 1 2 2
2 3 4 1 3
3 2 2 3 1
4 4 3 4 4

Number of pushes/pops 5

Number of refinmeuts 17
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Example 2

Consider the graphs:

G a  G Gb :

33

"oioi," "ooiioil 001100"

0 011 00100 0 0 1 0 0
A- 11000 B - 1010111 0  001111

000001 0011011 O0111

1 1 1 1 1 0 001 1 1 1 00 10 00

Isomorphisms found:

Ga Gb Gb

1 4 4
2 1 1
3 2 2
4 5 6
5 6 5
6 3 3

Number of pushes/pops 17

Number of refinements 66
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Example 3

Consider the graphs:

Ga G b

7 NIHN
0 1000 1 0 1 000 1000 1 0 01 1 0 1 1 1
1 0 1 1 1 0 0 0 001011 00 0 0 1 0 1

A- 01101000 B- 100000110 MO 0 1 1 1 0 1 1

01010100 010001000 01110111
0 0000101 01 1010100 00000101
1 1 1 1 1 1 1 1 00010101 1 1 1111 11
01110111 101100100 01110111

Isomorphisms found.

Ca Gb Gb Gb'

1 3 1 7
2 8 2 6
3 1 3 5
4 4 4 2
5 7 5 3
6 6 6 8
7 5 7 1
8 2 8 4

Number of pushes/pops 6

Number of refinements 54



128

Example 4

Consider the graphs:

a b

0 12 10110

A 011 B 101110 C - 1111
1100 110101 [Il11]

1100 111011 I I l
110100

Number of subisomorphismfound: 68

Number of pushes/pops 93

Number of refinaments 228

End of examples.

It is difficult to measure exactly the efficiency of this algorithm because of the vari-
able number of computations for different graph pairs. However, in general, we would
like that the algorithm uses the stack memory as little as possible, such that the ratio be-
tween the number of occurrences of refinement procedure and stack operations is large.
This is because for every iteration the refinement procedure is likely to eliminate unsuc-
cessful paths. Notice from our examples that in this sense the efficiency of the algorithm
Increases with the number of nodes.

10.3 VLSI ARCHITECTURE

The block diagram of the architecture proposed to implement the algorithm
described above Is shown in figure 3. This architecture consists of:

- systolic-type array for computing equations (1)
- test and control logic for performing tests T1 thru T4 and for providing control sig-
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nals accordingly
- LIFO stack memory for temporary storage
- switch for control of data communication.

All these main blocks contain a large degree of parallelism and regularity. This is the
reason why this architecture is suitable for VLSI implementation. In what follows we will
focus mostly on the systolic array which is used to implement equations (1). The rest of
the blocks are relatively straightforward. A methodology for designing algorithmically
specialized processor arrays has been described recently by Moldovan [6]. According
with this technique, an algorithm containing loops can be mapped into hardware via some
transformations of algorithm data dependences. Applying such techniques to equations
(1) we arrived at the array shown in figure 4.

In this array matrix B moves south and matrix M, moves east. Their boolean

product is performed in a similar way as any matrix product, except that the cells are
much simpler here, they perform only logic operations on bits. The resulting boolean
product R moves south and it is feedback as shown in figure 4. Next, the boolean
product S a A x R is performed, R moves south and A moves east. The operation M, 1 =
Mi S is performed either inside of the array or outside as part of the test and control
procedure. The tests T1 thru T4 are easily implemented with combinational logic. The
LIFO stack consists of two-directional shift registers. The capacity of LIFO is 0(n 3) bits
where n is the size of the problem (number of nodes in larger graph.)

The switcl, r',3ced at the output of test and control logic is used to route the newly
computed M 1 either to stack, back to systolic array or outside if an isomorphism occurs.

10.4 CONCLUSIONS

Subgraph isomorphism is in general considered to be a time consuming computa-
tional problem. The algorithm introduced in this paper performs a tree search while test-
ing a simple necessary condition for isomorphism. Fortunately, most of the computations
in each iteration can be performed in parallel due to the lack of data dependences be-
tween operations. A VLSI architecture consisting of a systolic-type array, stack memory
and control logic was briefly discussed. This architecture can be integrated on a simple
chip for practically large order graphs. Currently, we are investigating the design details.
One pending issue is how to accommodate efficiently graphs with variable number of
nodes. The algorithm described in this paper can be extended to clique detection,
directed graph isomorphisms and perhaps other graph algorithms.
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OUTPUT

Figure 3: Architecture for subgraph isomorphism

Figure 4: Systolic array for refinement procedure
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SECTION 11

A STUDY OF PARALLEL ARCHITECTURES FOR IMAGE UNDERSTANDING

ALGORITHMS

Dave Etchells

11.1 INTRODUCTION

The increasing maturity of Image Understanding (IU) software algorithms has placed
growing demands on the hardware systems used to implement them. In addition, the
time is rapidly approaching when these algorithms will find their place in real-world
military and industrial systems. The speed, power, and size limitations imposed by such
real-world systems will only further increase the demands on computer hardware.

It has been apparent for some time that conventional, single-processor, "Von
Neumann" computer architectures are unable to meet the needs of advanced IU software

systems, especially from the standpoint of providing real-time response within the power
and size constraints mentioned above. In many cases, uniprocessor architectures are in-
capable of providing real-time response regardless of power and size constraints: The
speed required of the arithmetic and memory units is several orders of magnitude beyond
that foreseeable for any future circuit technology.

These limitations of uniprocessor machines have caused researchers to turn to mul-
tiprocessor, concurrent architectures as a solution to the demands of advanced IU
processing. This expansion of the field of computer architecture has resulted in a
proliferation of new computing structures, many of which are intended to match special
processing requirements within the larger discipline of IU. [1-141 A key issue in the
development of such machines is the degree to which they also meet the general re-
quirements of the field, beyond the special needs which motivated their design and con-
struction.

Comparative analysis of the new, concurrent architectures is complicated by the
remarkable diversity which they encompass. This same diversity, however, makes the
task of comparative evaluation all the more important. Various machines differ greatly in
their utilization of hardware, making the selection of an optimal structure all the more im-
portant for future autonomous systems with limited space and power resources. To date,
little attempt has been made to objectively analyze the performance characteristics of
concurrent architectures, within the context of general IU processing requirements. The

work that has been done in this area [15,161 has so far been limited in scope to just a
few architectures, and primarily to biomedical image processing application areas. No
concerted effort has been made to study the full range of parallel architectures, within the
broader context of Image Understanding and scene analysis.

In our opinion, a primary reason for the lack of such comparative analysis is the ab-
sence of a set of widely accepted metrics for parallel hardwar3 performance evaluation.
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One of the goals of this report is to propose a set of common algorithms for use as per-
formance evaluation standards within the field of IU. The selection of candidates for in-
clusion in the proposed metric set will be guided in large part by our view of anticipated
future requirements of autonomous military systems.

The remainder of this report is organized into three principal sections. The first of
these deals with general issues of performance evaluation, a system of classifying
software algorithms, and an analysis of the processing requirements of common IU al-
gorithms. The second section applies the results of the "software" section to a clas-
sification and study of existing and proposed families of concurrent architectures. The
final, summary section of the report is a synthesis of information in the preceding sec-
tions. We draw conclusions regarding the strengths and weaknesses of existing families
of computing structures, and suggest directions for future architectural development.

11.2 PERFORMANCE EVALUATION METHODS

In conventional numeric processing, there are two commonly used methods of per-
formance evaluation. These are the instruction mix and benchmark program approaches.
In the instruction mix approach, a set of programs is examined to determine the number
of times each type of machine instruction occurs. The execution time of the programs in
question on any particular processor can then be estimated by multiplying the execution
time of each type of machine instruction by the number of times that instruction occurred
in the benchmark. The sum of all such products, one for each type of machine instruc-
tion, may then be taken as an estimate of the execution time for the program set
represented by the instruction mix.

The instruction mix approach is useful for rapidly evaluating the performance of
conventional serial processors, but has little utility for the study of concurrent architec-
tures. This is because of the importance of data movement in IU applications. That is,
two algorithms might show identical statistics, in terms of the numbers of multiplications,
additions, etc. that each require, but nonetheless exhibit radically different execution
times on concurrent hardware, due to widely differing data movement requirements. For
example, one algorithm might involve only data taken from a relatively small kernel, while
the other might require global access to data scattered across the entire image data
plane. Furthermore, in concurrent systems, the pattern of data movement is often at least
as important as the amount of movement itself, since different architectures are able to
take varying advantage of regularities in data movement. In addition to the importance of
data movement, the instruction mix approach is unusable in IU applications because of
the varying efficiencies in concurrent architectures. Many parallel processors, particularly
SIMD arrays are not always able to use all of their available hardware to best advantage:

Situations frequently arise in which a significant portion of the available hardware is idle,
due to the lack of pertinent image data in the pixels associated with it. In such cases, a
simplistic analysis based on aggregate instruction rates leads to performance figures sub-
stantially higher than can actually be attained. To have any meaning then, an instruction
mix performance evaluation approach would have to include information on patterns of
data movement, as well as some specification of the concurrency possible at each stage
of execution. This last requirement is further complicated by the fact that different ar-
chitectures vary in their ability to take advantage of parallelism inherent in software.
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The benchmark program method of performance evaluation, on the other hand,
* avoids many of the problems inherent in the instruction mix approach just discussed. In

this approach, a representative, or 'benchmark" algorithm is programmed to run on a par-
ticular machine, and the actual execution time is measured. This execution time is taken
to be characteristic of that machine for programs similar to the benchmark. If the
benchmark program representative of the performance of the machine for actual applica-
tions. This is because such matters as data movement, machine efficiency, and the
operating environment are naturally included in the final measurement.

The key problem of the benchmark program approach, of course, lies in the choice
of the "representative program" that is used as the benchmark. Especially in the case of
a field as broad as IU, it would be a hopeless task to map every interesting algorithm
onto every proposed architecture. The problem of selecting characteristic algorithms is
complicated by the breadth of the field, the wide range of approaches to any given IU
sub-task, and by the fact that there are many areas in which there is currently no clear
consensus as to the best algorithm for performing a given task. These are the
parameters within which we must work. In the context of the current report, they are
further modified by the need to arrive at a basis for meaningful comparison of architec-
tures that does not involve explicitly coding algorithms to match individual architectures.
These requirements lead us to seek the lowest level of program modules with the
greatest degree of applicability across the entire range of IU algorithms

In selecting representative algorithms or modules though, we must be particularly
* careful to not only represent the full range of application requirements (such as feature

extraction, segmentation and classification, etc.), but to include as well the entire range of
processing requirements, as seen by the hardware. In other words, while covering the
entire range of IU algorithms, we must (since our objective is hardware evaluation) focus
more on the processing load in making our selections, than on the overall structure or
function of any particular algorithm. In order to do this effectively, we need to first de-
velop a conceptual basis, or taxonomy, by which we might determine the unique process-
ing requirements of each algorithm studied.

11.3 SOFTWARE TAXONOMIES

Little work has been done to date on the classification of software algorithms.
Swain et. al. [17] proposed a six-point classification scheme which consisted of the fol-
lowing categories:

o Type: - Enhancement
- Extraction

o Context Dependency: - Context Free
- Context Dependent

o Iteration: - Single-Pass
- Multi-Pass

0 o multivariancy: - Univariate Data
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- Multivariate Data

o Execution Environment: - Real-Time
- Batch

o Computational Complexity: - n, n log(n). etc.

In this taxonomy, the "type" classification is based on the sort of processing that is
being performed. Swain makes a distinction between those algorithms which modify the
appearance or structure of an image (Enhancement), and those which evaluate that struc-
ture, to determine its contents (Extraction). 'Context dependency" is a measure of the
extent to which the processing performed is dependent on the image data values them-
selves. For example, an algorithm such as histogramming would be considered context-
free, since the set of final values arrived at are solely a function of the values of the in-
dividual input pixels, independent of any relative associations that might exist between
them. By contrast, an adaptive filtering algorithm would be context-dependent, since the
output value (and, more to the point, the structure of the algorithm itself) for any given
pixel would depend strongly on the values of the pixels surrounding it. The "iteration"
category is self-explanatory: A single-pass algorithm only takes one pass over the input
data to compute the output value, while a multi-pass one takes several. The
"multivariancy" classification refers to the number of data values associated with each
pixel of the input image. A simple grey- scale image would be classed as "univariate
data," while a multi- spectral Landsat image would be considered "multivariate data."
Swain's "time" parameter seems to be directed more toward the environment within
which the software system will operate, rather than the structure of the algorithms them-
selves. While it is true that real-time algorithms are significantly different from those in-
tended for batch use, this difference is a consequence of external constraints. That is to
say that the classification of real-time vs. batch separates algorithms along lines dictated
by the limitations of the hardware, rather than the sort of processing being performed.
Swain's final software classification parameter is the "computational complexity" of the
algorithms being considered. This refers to the relative dependence of the execution time
of an algorithm on the size (n) of the data being manipulated.

These classification criteria focus more on the use to which various algorithms are
put than on their structure. As a result, little explicit information is conveyed regarding
the processing requirements of the algorithms so classified. While this approach results
in a system useful to someone wishing to select an algorithm for use in a particular ap-
plication, it has little use in the current situation, in which we wish to study algorithms to
determine the unique demands which each places on hardware. We propose the follow-
ing set of classification parameters as being more appropriate to the current effort.

- Functional Statistics.
- Local vs. Global.
- Kernel Size.
- Memory Intensive vs. Computation Intensive.
- Context Dependent vs. Context Free.
- Iconic vs. Symbolic.
- Object Oriented vs. Coordinate Oriented.
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Here, *functional statistics" simply refers to statistics of the sort we referred to ear-
* lier in our discussion of the instruction mix approach to performance evaluation. In par-

ticular, we refer to the relative frequency of various arithmetic operations, such as ad-
dition, multiplication, division, etc. Such statistics are important in evaluating the perfor-
mance characteristics of specific machines, but are less valuable in the study of generic
architectures. This is because, apart from performance gains attributable to the level of
parallelism employed, arithmetic performance is more a function of implementation than
architecture. That is, the arithmetic performance of any architecture can be improved
simply by adding (for instance) a faster multiplier, a special functional block for perform-
ing division or square rooting, etc. Such enhancements, while often significantly improv-
ing the performance of a particular machine, have little or nothing to do with the
structure of the machine. Hence, pur contention that such issues are
implementation- rather than architecture-dependent. Under this category, we do not ex-
plicitly count data-movement operations. This is because data movement in concurrent
architectures is highly dependent on the characteristics of the particular architectures in
question. Since many machine structures (such as SIMD arrays) are able to take great
advantage of regularities in data access patterns, a simple count of data values being ac-
cessed is not an accurate representation of the data movement required to effect that
access (as would be the case in conventional serial processors). Data movement require-
ments are handled implicitly by this classification scheme through the subsequent "local
vs. global" and "kernel size" categories.

The local/global distinction in the classification scheme is mostly a measure of the

amount of a priori knowledge available to the concerning the location of data accessed
by an algorithm. This in is contrast to -the more usual interpretation of these terms as
being indicative of the kernel size over which an algorithm operates. In the present
usage, we consider an algorithm to have "global" scope if its domain cannot be restricted,
a priori, to any definable subset of the image data. We therefore classify an algorithm as
.global' if it may draw its data from anywhere in the image plane, regardless of whether
it does so in all cases. This choice of interpretation for the terms "global" and "local"
stems from the implications such access has for the architecture of individuai processors
within a concurrent architecture. If an algorithm may require the individual processors to
have access to any portion of the image array, the architecture must provide for such ar-
bitrary access in order to execute the algorithm efficiently. From the viewpoint of the
computer architect, the fact that only a small number of pixels will be involved in a given

operation matters less than the fact that those pixels may lie anywhere in the image
plane. This is not by any means to imply that the number of pixels forming the kernel
over which an algorithm operates is unimportant. Quite the contrary, the size of the
"local" kernels processed by various algorithms can be quite important, particularly if they
are of a size which exceeds the provisions of an architecture for 'local" processing. As
an example, some machines are optimized for the processing of kernels up to some max-
imum size (eg, 5 x 5 pixels). Manipulation of kernels larger than this upper limit can be
highly Involved and time-consuming. The maximum linear extent of a kernel can directly
affect execution time on arrays employing nearest-neighbor communication. In our sub-
sequent evaluation of various candidates for inclusion in our metric set, we will see that,
while much of the raw computational load of IU algorithm would be one which requires

* the storage of a significant number of data values for each Sixel of the image. An ex-
ample of a memory intensive algorithm would be certain edge-detection routines, which
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require the storage of edge magnitudes for each of several possible edge directions.
Operations which involve sorting within a kernel, such as median filtering, require par-
ticularly large amounts of local memory. This is because all of the values found in each
kernel must be stored and sorted for each pixel of the image. Even a relatively modest 5
x 5 kernel would thus require 25 words of local storage for each pixel of the image.

As with Swain's classification, we take context dependency to mean the extent to
which the values output by an algorithm depend on relationships existing between input
data elements. Note that this definition of context dependency does not refer to situa-
tions in which the output of an algorithm merely depends non-hnearly on the input data
values (as with thresholding). Such behavior is described independently by the
linear/non- linear classification. Both context, dependency and non-linearity are included
in the more commonly employed term 'data dependency." We have chosen to distinguish
these cases as two separate classification parameters because of their different implica-
tions for hardware. Simple non-linearity, as exemplified by operations such as threshold-
ing, usually involves only.a comparison operation, and the setting of some sort of flag bit,
based on the result. Context dependency, on the other hand, implies more involved
processing, often predicated by a complex set of preconditions. Consequently, context
dependency implies substantial differences in the program actually executed, depending
either on the structure of the data, or on previously extracted information regarding that
structure. Our usage of context dependency here therefore refers to a dependency of the
program on the context of the input data.

The "iconic vs. symbolic" categorization is included because the two representations
involve greatly different types of processing. In iconic processing, there is a direct
relationship between physical storage locations and image pixels. Symbolic processing,
on the other hand, involves the manipulation of lists, trees, and other data structures
which contain image coordinates only as explicit entries in the data structure. Because of
this difference of implicit versus explicit coordinate specification, architectures well suited
to iconic processing often perform poorly when doing symbolic processing, and vice
versa. The focus of the IU field historically has been directed more toward iconic
processing. Consequently, most of the concurrent architectures built to date have been
optimized for iconic applications. As the IU field matures however, attention is shifting
from the simple, mostly open-loop classification and extraction that characterized earlier
efforts to knowledge-based, intelligent systems that apply a significant amount of reason-
ing to the process of object recognition. As this trend continues to develop, symbolic
processing will come to account for an ever-increasing amount of the IU processing load.
We should accordingly expect to see more research activity in the area of architectures
optimized for concurrent, symbolic processing.

The issues separating iconic from symbolic processing go beyond the simple
dichotomy of the classification, however. While modern image understanding employs in-
creasing amounts of knowledge-based symbolic reasoning, it nonetheless remains de-
pendent on the lower levels of iconic processing for its raw information. Both sorts of
processing are therefore important to practical applications. A consequence of this is
that advanced IU applications almost invariably involve at some point the translation of
data from the initial, iconic representation to a symbolic one amenable to the application
of various rule systems and reasoning processes. Significantly, while we know fairly well
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how to build machines that are capable of processing either iconic or symbolic data, no
current architectures adequately address the problem of translation between the two
domains. The difficulty of this translation lies in the fact that it Is basically an object-
oriented process. The data associated with a particular object might lie anywhere within
the image plane, making it difficult to make any a priori assignments of individual proces-
sors to individual objects in a multiprocessor architecture. (Hence, most object-oriented
applications are also classed as "global," according to our earlier definition of that term.
Similarly, SIMD machines can only translate between iconic and symbolic, representations
one object at a time, due to their single instruction stream. The matter of how various
processors handle object-oriented processing will be discussed in greater depth in the
subsequent section of this report dealing with concurrent hardware. For now, suffice it to
say that the problem of iconic to symbolic translation is a difficult one that as yet lacks
adequate solution. For this reason, we have included "object oriented vs. coordinate
oriented" in our list of software classification parameters. Coordinate oriented processing
refers to situations in which the location of the data to be processed within the image is
known in advance, independent of any characteristics of that data. On the other hand, in
object- oriented processing, the location of the data to be processed is an implicit func-
tion of the data itself, and of relationships existing within the data Object-oriented
processing commonly encountered in IU applications includes such feature-extraction
operations as boundary tracing of objects, computation of medial axes or generalized
cones, etc. Such operations typically involve following object features on a pixel-by-pixel
basis. At the same time. the pixels associated with an object may lie anywhere at all on
the image plane. Few architectures provide for such image-wide access while simul-

* taneously allowing independent processing of various parts of the image. As mentioned
above, we will be covering this issue in greater detail as part of the discussions relating
to each of the processor categories studied in the hardware section appearing later in
this report.

This list of software classification categories provides the basis for a study of algo-
rithm characteristics, distinguished by the demands they place on the processing
hardware We will use this taxonomy in the following section on IU processing require-
ments, and again in our overview of contemporary and proposed concurrent architectures.

11.4 IU ALGORITHM OVERVIEW AND METRIC SET

As mentioned in the introduction, one of our goals in this report is to develop a set
of common algorithms which will serve as performance evaluation standards within the IU
discipline. In this section, we briefly review the most common types of processing en-
countered in image understanding, and select a set of algorithms for inclusion in a metric
set which most accurately represent the range of IU processing.

Before launching directly into this discussion, though, it is first appropriate to con-
sider the level of algorithms that would be most profitable to study. We would like to
find algorithms or operations which enjoy wide application across the entire IU field. We
must balance this desire against the requirement that the algorithms selected be uniquely

* representative of the requirements of IU, as Identified by our taxonomy. Obviously, great
commonality of application can be found If one examines the very lowest level of opera-
tions possible within an architecture. That is, virtually every IU algorithm in existence
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uses the operations of addition or multiplication at some point in their execution. Simple
addition and multiplication however, have very little about them that is uniquely charac-
teristic of the requirements of IU. On the other hand, we could select a particular algo-
rithm developed by a particular researcher that would contain much more of the essence
of IU processing, but that would be rather limited in application.

We suggest that algorithms or, more properly, sets of operations can be found that
are intermediate in level between the two extremes just mentioned. Such 'unit
operations* as we call them function at a low enough level that they may be found as
functional blocks within a wide range of more highly developed image understanding ap-
plication programs. At the same time, they are of a sufficiently high level themselves
that they embody characteristics, as defined by our previously discussed taxonomy, that
uniquely define the processing commonly encountered in IU systems. Table I lists the
unit operations that we have selected for consideration, and shows how they fit into our
classification scheme. A discussion of these unit operations and their classification fol-
lows.

In the following discussion, it is important to note that many of the unit operations
described can be used in ways contradictory to their primary classification. (For example,
almost any coordinate-oriented procedure can be applied to the data representing only
one or more unique objects. The resulting program would then most properly be object-
oriented.) Such application does not in any way invalidate their selection as part of the
metric set, based on our classification of them. This is because our intent here is not to
rigorously classify the algorithms, including all variations of their usage. to the contrary,
we only wish to insure that we have adequately accounted for the various types of
processing, represented by our taxonomy, that are typical of IU. Thus, as long as we in-
clude examples of both coordinate- and object-oriented processing, we care little if our
examples of either type may sometimes be used in a context opposite to that of our
primary classification.

Thresholding was selected as the first candidate for inclusion in the metric set. It
was chosen because it is the simplest example of a parallel, non-linear operation, and be-
cause of the wide application it finds in IU processing. It is further classified within our
software taxonomy as being local, because it by definition takes as input only the values
of individual pixels. Thresholding may be either context-free or context-dependent,
depending on whether the threshold value is selected adaptively or not. If the threshold
value is the same for all pixels in the image, the operation is context-free. On the other
hand, if the threshold value is set locally, as some function of the local data values (other
than the threshold value itself), the operation is context-dependent. Since either type of
thresholding does not typically involve the storage of intermediate values, little local
memory is required, and it is classified as computation intensive. It is also coordinate-
oriented, even in the context-dependent case, because the data required to generate a
given result always lies within a small area surrounding the pixel being processed.
Likewise, the operation is strictly iconic.

Context-free thresholding is widely used in IU for such tasks as thinning, and for
identifying regions or points of interest. Context-dependent thresholding can be found in
routines doing adaptive filtering or connectivity linking. In such situations, the threshold
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value is adjusted depending on the values of adjacent pixels or some properties of the
* local ensemble. Because the two types of thresholding stress machine architectures dif-

ferently, it would be wise to include examples of both in the metric set. The context-free
example would be quite simple to implement: All pixel values are compared with a
single, arbitrary value, and either the contents of pixels containing values less than or
equal to the threshold value are set to zero, or a flag is set in all such pixels. The action
taken would depend upon the architecture being examined: Some machines handle data
selection by toggling condition flags, others by simply zeroing (or otherwise modifying)
the contents of registers associated with the affected pixels. We suggest the use of a
"less than or equal to" condition, rather thn the simpler "less than," because of the dif-
ferent ways that various architectures handle compound conditionals. Some processors
allow the setting of multiple condition flags (or their equivalent) with a single instruction,
while others require that two separate comparisons be performed, and the results com-
bined in a third operation. Obviously, the former solution is the more desirable of the
two. The requirement for such compound conditionals appears frequently, either in the
form just mentioned, or in the need to test for a "not equal" condition, which may be ex-
pressed in some machines as a "greater than or less than" condition. The context-
dependent case could be implemented by requiring that the threshold value be deter-
mined for each pixel in the image as the average value of the 3x3 neighborhood sur-
rounding it. This would test the ability of the architecture to compute and load data
values for context- dependent processing, based on local data characteristics. The 3x3
average would overlap somewhat with the subsequent metric candidate of convolution, in
terms of data movement and computation requirements. Since convolution usually in-
volves a larger kernel, as well as different memory requirements (for storage of the
weighting function), the redundancy in the metric set resulting from the inclusion of the
3x3 averaging here is negligible.

We have chosen convolution as the second member of our metric set. Convolution
is widely employed in filtering functions such as edge detection and enhancement
[18-201 and as part of such procedures as connectivity linking and region growing
[21-23]. It is basically a linear, arithmetic process, in which the data values within a local
neighborhood are individually multiplied by a set of weight values, and the resulting
products are summed to produce the final result. Such a sum-of-products is computed
over the local neighborhood of each pixel of the input image. As just stated, convolution
would be classified in most cases as a linear, local operation. In some situations, the
output is made non-linear, but this typically occurs through a thresholding operation,
which we have already included in the metric set. In most cases, convolution is also
context-free, with the weighting functions being Invariant across the image. In some
forms of adaptive filtering, a multi-pass iterative technique is used, with the local weight-
ing functions being modified by the results of the earlier pass. An example of such usage
would be an algorithm to extract the lines forming loops and whorls of fingerprints. In
this application, the weighting values of a line-enhancing filter are modified according to
the dominant local line direction found on a previous pass. Such usage is obviously
highly context-dependent. Context-free convolution by itself is computation- rather than
memory-intensive. Some of Its applications do involve the storage of intermediate
products, however. Edge-detection, for example, usually involves a series of convolu-

* tions, one in each edge direction being tested for, with the intermediate results of each
individual convolution being stored for subsequent comparison and selection of the
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largest directional value at each point. We consider this process of selection from among
multiple values to be an example of sorting, though, which we treat as a separate mem-
ber of the set of software metrics. Unlike context- free convolution, context-dependent
convolution can involve substantial amounts of local storage, depending on the architec-
ture in question. This is because some machines, particularly those having a cellular ar-
chitecture, require that the various weighting coefficients for each of a range of possible
convolutions all be stored in the local memory. For this reason, it would be advisable to
include examples of both context-free and context-dependent convolution in the metric
set. Both types of convolution are strictly coordinate oriented, and operate within iconic
representations.

Another issue in the selection of examples of convolution for inclusion in the metric
set is the size of the local neighborhood, or kernel, that is involved in the computation
[24,25]. Kernel sizes have tended to increase proportional to the sophistication of the IU
algorithms employing them. Early edge operators, such as the Sobel, operated on kernels
of 3 x 3 pixels. Most modern edge algorithms employ 5 x 5 kernels, and some algorithms
use kernels as large as 17 x 17. To some extent, the size of the kernel can be thought of
as being representative of the amount of knowledge that the program has about the
structure for which it is searching. The 5 x 5 kernels that are now common can only be
expected to grow in size as time progresses. Kernel size is important in that it can affect
the execution time of an algorithm non-linearly on certain processors. This is especially
true in some machines optimized for local-neighborhood operations. Such machines of-
ten have special hardware for performing convolutions that can only accommodate ker-
nels smaller than some maximum size. Kernels smaller than or equal to the maximum
size designed for are all processed with roughly equivalent speed. Larger kernels usually
reqf unique weight values present. This is because the difference in execution speed be-
tween having to perform an additional subtraction operation (rather than simply summing
positive values) is negligible in virtually all architectures, compared to the time required
to perform an extra multiplication. The most popular algorithms using convolutions seem
to employ about N unique weights in their N x N kernels. That is, a typical 5 x 5 kernel
uses about 5 or 6 unique weight values.

From the preceding discussion, it would seem that the convolution metric should
include the following: 1) A simple, context-free convolution with a 5 x 5 kernel and per-
haps 5 different weight values; 2) A context-free convolution with a 17 x 17 kernel and 20
unique weight values; and 3) A context- dependent convolution with 5 x 5 kernels, where
the processing occurs in two passes: In the first pass, each of 6 different kernels is ap-
plied, and the results stored. A new image is composed of the set of maximal mag-
nitudes resulting from the first-pass convolutions. Then, in the second pass, the kernel
that resulted in the largest average magnitude on the first pass for each pixel is applied
to the new, maximum-magnitude image, centered on the pixel for which it produced the
maximum magnitude. This last test is artificial in that no algorithm of which we are
aware employs exactly this sequence of operations. It does serve the purposes of the
metric set quite well, however, in that it exercises the local storage capabilities of the ar-
chitecture under test, by requiring the conditional selection of kernel weight factors,
based on the results of earlier processing.

The third class of algorithms we have co.,sidered for inclusion in the metric set are
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those which perform sorting operations. Sorting is a local, non-linear, memory-intensive
process. As mentioned above, it often finds application in conjunction with convolution,
in operations such as line-finding, where the largest of several values must be selected.
In this form, it has already been included as part of the third case of convolution
processing, discussed immediately above. Another application, requiring more memory

than the preceding case is median filtering [261. Median filtering involves the selection of
the median value from among a number of pixel values found in a local neighborhood.
Median filtering is often used for size discrimination and connectivity processing. It is
useful for these purposes because objects smaller than the kernel used are removed from
the image, with relatively minimal additional disturbance to the image. Sorting in general
is more purely context-dependent than any other algorithm we have examined thus far, in
that the shuffling of pieces of data, or the setting of pointers and flags is strictly a func-
tion of the data values involved. While it may be employed in either a coordinate- or
object-oriented fashion, its usual usage is in a coordinate- oriented mode. It may also
occur in either iconic or symbolic representations, depending on the application.

The example of sorting we propose for inclusion in the metric is a median filter
operating on a 5 x 5 kernel. This will require the sorting of 25 data values for each pixel
of the input image, and should fairly represent the processing load of many memory-
intensive algorithms. This particular example is strictly coordinate-oriented and deals
only with iconicly represented data.

We have chosen histogram generation as the fourth member of the set of software
* metrics. A histogram is simply a set of numbers indicating the frequency of occurrence

of each of a set of intensity values or intensity ranges within an image. Histogramming
is representative of what might be called "statistical processing," and finds wide applica-
tion within IU. The popular region-splitting segmentation algorithm [27-291 uses his-
togram characteristics as the criteria for distinguishing distinct regions within images, and
many object classification algorithms use intensity histograms to classify and distinguish
target objects. The processing requirements of histogram generation differ from those of
the operations discussed so far in that histogram computation operates globally in a
context-free fashion. It is most properly thought of as computation- intensive, according
to our previous definition of that term, since the memory required for storage of inter-
mediate results is quite modest: Only one memory location is required for each value
being tallied for the histogram, regardless of the size of the array being processed. On
the other hand, the actual execution of the algorithm is memory access-intensive, par-
ticularly on MIMD and pipelined machines. This is because the memory locations used to
store the individual tallies are accessed repeatedly as the tallies are updated for each
pixel processed. On cellular machines, the global nature of the processing places special
demands on the architecture, particularly in systems employing nearest-neighbor com-
munication exclusively. If proper provision is made for global communications across the
array though, cellular machines can be highly efficient for this sort of processing [301.

Histogram computation is also linear with respect to the input values, and is most
often applied within an iconic context. While we have classified histogram processing as
coordinate- oriented, it should be noted that many applications use it in an object-
oriented context. An example of such usage would be the case, mentioned earlier, of
target-identification algorithms, which frequently require the computation of intensity his-
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tograms for each of a class of objects present in an image. While this object dependency
is not an intrinsic characteristic of the histogramming process, it does represent an im-
portant mode of usage of the histogram operation. Furthermore, this object- oriented
usage can have significant implications for the execution of the operation on various ar-
chitectures. In particular, the algorithm cited above [301 for histogram calculation on cel-
lular arrays is most suited to the calculation of global histograms. The computation of
individual histograms for each of several objects in the image would require separate
passes for each object evaluated. For this reason, it would be important to include ex-
amples of both global and object-oriented histogramming in the metric set.

Our recommendation for the histogram generation metric is as follows: 1) A 256-
level (8 bit) histogram computed over the entire image; and 2) An 8-bit histogram com-
puted for each of six objects (an arbitrary number) in the image. The six "target" objects
would be identified on the image by the presence of "Is" set in a binary mask having the
same resolution as the source image itself. The object-oriented histogram generation
task would consist of producing an 8-bit intensity histogram or each object identified by
a discrete pattern of "Is" in the binary mask. A part of this task would obviously be to
identify and separate the regions corresponding to each of the objects. This portion of
the histogram generation metric would provide the strongest example of object-oriented
processing we have encountered so far in the metric set. It might, in fact, be informative
to require that the execution time of the object- separation sub-task be separately quan-
tified, and used as an independent measure of the ability of the architectures tested to
perform object-oriented processing.

Correlation operations were chosen as the fifth metric set class because they in-
volve local processing with a high degree of context dependency. As typically applied (in
stereo processing), portions of one image are compared against (correlated with) various
regions of another picture [31-33]. The correlation process is basically a convolution, but
with the weighting functions being the data values of the reference image, rather than
some externally generated filtering function. 7is process of data-dependent convolution
can be conceived of as a matched filtering operation, where the reference image is the
object for which the filter function is optimized. Correlation of this sort thus tests the
ability of an architecture to rapidly access different sets of weighting values for convolu-
tion processing As mentioned above, processing of this type is very common in both
simple intensity-based and more advanced feature-based stereo algorithms. Correlation
is a linear process, most frequently operating in the iconic domain, although some ap-
proaches operate at least partially in a symbolic fashion [34]. It is also a memory-
intensive operation, in that correlation coefficients are typically evaluated and stored for
each pixel of the image for each of several pixel displacements (between 3 and 15). The
correlation coefficients for each pixel are then compared to each other, and the largest
chosen as that corresponding with the most likely relative displacement between that
pixel and the equivalent one in the reference image.

As most commonly applied, correlation for stereo vision is performed only in areas
containing features of interest, such as regions of high contrast, high-magnitude edges.
or corner elements. These areas of interest may lie anywhere in the image plane, and so
the processing involving them could properly be thought of as object-oriented. On the
other hand, this object- orientation is not usually an intrinsic part of the algorithm itself,
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but more often represents an attempt to reduce the computational load on the conven-
* tional serial computers used to develop and test the algorithm. Since such computational

load reduction is rarely necessary (and frequently undesirable) on highly concurrent
machines, we have classified correlation processing as coordinate-oriented.

We propose the following as the correlation processing metric: Two images would
be provided, representing two stereo views of the same scene. The objective would be
to determine the most likely relative displacement between pixels in the "right" image and
those in the "left" image. The most likely relative displacement would be that which
produced the maximum correlation coefficient over a 7 x 7 local neighborhood of the
pixel in question. For the purposes of the test, it would 'be assumed that the two
cameras had identical optics, and were mounted on a common centerline that was rpral-
lel to the "ground" plane of the scene represented. Thus, there would be no need to cor-
rect for scale, rotation, and tilt factors. Relative pixel displacements ranging from 0 to 6
pixels would be evaluated for each pixel of the right image.

We have chosen interior point selection as the sixth member of our proposed
metric set. Interior point selection is the process of identifying those points of an image
that lie within closed boundaries defined by previously located lines and edge segments
A point is typically determined to be on the interior of a closed boundary if there are
edge segments within a certain radius of it, with the proper direction, and in a majority of
the directions checked. More sophisticated algorithms may impose the further cons&raint
that an interior point be bounded by a pair of edge elements of opposite polarity (ie,

* light/dark and dark/light). Interior point selection processing is non-linear, because of the
binary nature of the output data (a point is either inside a boundary or not). it is also
most properly classified as global, since the processing is performed for all pixels in the
image. Some implementations might be considered to involve only local processing, due
to restrictions on the size of the neighborhood searched for pertinent edge elements, but
on the whole, the global classification is most appropriate. Interior point selection most
naturally operates on iconically represented data, and is computation- rather than
memorv-intensive, in that little intermediate data is stored for each point evaluated. The
operation is also obviously context-dependent, according to our earlier definition, and is
object-oriented in most implementations.

This classification of interior point selection touches upon an important and difficult
issue in the description of IU software. The problem lies in the fact that the structure of
the hardware being used to implement an algorithm often has a substantial impact on the
nature of that implementation. We saw this to some extent in our previous discussion of
correlation processing, which is often performed on serial machines in an object-oriented
manner, focussing on particular "points of interest* in the image, in order to minimize the
amount of processing required to locate objects in three-space. The issue is raised again
by our classification of interior point selection. Most current implementations of such al-
gorithms operate in an object-oriented manner, by applying some sort of preliminary
selection criteria to produce likely candidates for interior points, subsequently performing
the detailed selection processing only on the likely candidates. The process is again an
attempt to reduce the computational load to a minimum for serial processors, and is typi-

* cal of similar techniques which appear throughout the field of IU. On many concurrent
architectures though, little time Is saved by such 'planning" or pre-selection processes.
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This is because, on such machines, it is just as fast in many cases to process the image
homogeneously, rather than to separate out certain parts of it for special attention. Thus,
while algorithms developed on and implemented for conventional serial processors may
be object-oriented, equivalent algorithms implemented for concurrent machines may
process the data uniformly, in a coordinate-oriented fashion. The classification process is
further complicated by the fact that many distinctions between algorithms are of a quan-
titative, rather than qualitative nature. The ultimate solution to this issue is beyond our
present reach, so for the purposes of this report, we are taking the approach of: 1) In-
serting this caveat; and 2) Being guided in our classification by the currently dominant
modes of usage of the various algorithms, making note of potential differences in clas-
sification that might arise from implementing the algorithms on different architectures.

Returning to our discussion of the interior point selection metric then, we propose
for that metric the following: An edge image, indicating edge magnitude and dirertion for
each pixel, representing a scene containing five or six clearly defined objects of varying
shape and dimension, appearing as light objects on a dark field. The process used to
select interior points would be: 1) Scans would be taken across the image along each of
three possible edge axes (total of 6 possible edge directions). For each scan direction,
regions between edge segments antiparallel to within 120 degrees of each other would
be "marked" as interior point candidates. 2) For each pixel, the number of candidate
"marks" that it had received in part (1) of the algorithm would be counted. 3) The mark
counts of part (2) of the algorithm would be thresholded. Points having two or more
"marks" would be considered to be interior points.

As with the other metric set algorithms proposed earlier, we must emphatically
state that the proposed algorithm is not intended to represent the state of the art in the
particular area it addresses (in this case, interior point ,selection). The proposed al-
gorithms are not even intended to be particularly effective at their purported tasks. Our
intent is solely to provide an easily-coded algorithm which has processing requirements
representative of certain classes of IU algorithms.

We have selected line-finding as the seventh member of the IU metric set. By
"line-finding," we mean those routines which are concerned with linking edge segments
together into lines, and "tracing" the resulting lines to determine their lengths and orien-
tations. This definition differs from common usage, in which the term "line-finding" is
applied to complete algorithms which locate and evaluate edge elements, in addition to
performing the linking operations which we are considering here [20,35,361. This is by far
the most clearly object-oriented process that we have examined thus far, in that the
"tracing" operation necessarily involves following the line wherever on the image plane
that it might go.

Line-finding is particularly interesting, because it operates on iconically represented
data, producing as output information that is symbolically represented. In other words, it
proceeds from an image of a line to a list of the characteristics of that line. As men-
tioned earlier, and as we shall see in our subsequent discussion of machine architecture
characteristics, such translation processes pose particularly difficult problems for com-
puter architects. In fact, no current architecture adequately meets the requirements of
such algorithms. The detailed reasons for this will be left for the hardware section of this
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report, but basically involve a conflict between memory requirements, communication
* capability, and data contention among the processing elements of concurrent architec-

tures. This poor match between any existing architecture and the requirements of the
problem also makes the classification process difficult. On array machines, the process is
computation-intensive according to our earlier definition of that term, because the
generated information about the lines being traced either remains distributed across the
memories between processors overloads the interprocessor communication network.
Line-tracing is otherwise classified as non-linear, due to the binary decisions as to
whether a pixel is or is not on the line being followed; global, because there is no a priori
knowledge of where any particular line might go, and therefore no information regarding
the extent of memory access required for the local processor to follow it, and context-
dependent, for reasons too obvious to mention.

We propose that the line-finding metric consist of the following: The input image
would be an edge image, containing edges in six possible directions, of varying intensity.
These edges would have been "thinned" previously, to leave only those which were
strongest, and most likely to be associated with extended linear structures in the image.
The earlier steps of most line-finding algorithms employ methods for executing such
thinning, and the test imagery could be prepared with such an algorithm. Given this
image, the operations performed would be to: 1) Examine the 8-neighbors of each pixel,
on a 3 x 3 grid to determine the predecessors and successors. Only the neighbors in
directions approximately parallel and antiparallel to the central pixel would be examined.
(We will take discontinuities of edge direction to mark the end of one line and the begin-
ning of another. 2) A neighboring pixel is linked to the central one if their directions are
within 30 degrees of each other. In the case of more than one neighboring pixel satis-
fying this criteria, a decision function is calculated for each pixel, taking into account the
positions of the two pixels relative to the direction of the central one being linked to, and
the relative magnitudes of the candidates. The candidate having the highest value of this
decision function would be selected for linkage. 3) Once links have been made to all
possible predecessors and successors, the "boundary segments" are traced. This proce-
dure, taking the predecessor/successor data and using it to construct linked lists of edges
corresponding to linked lines is the heart of the line- finding metric. Processing for this
step occurs in two passes. In the first pass, tracing begins with edge points having no
predecessors, continuing for each segment until an edgel is reached that has no succes-
sors. The second pass begins arbitrarily at any point not traversed by the first pass, and
proceeds in the same fashion as the first pass. (Note that this simple-minded algorithm
creates two separate lines at any point where there is a "fork" in the line. (le, fork
"branches" are not shown as attached to their parent 'limb".) This somewhat simplifies
the implementation of the metric, without significantly affecting the processing require-
ments of the task. The end result of the line-finding metric will be a file of line segment
descriptors, consisting of starting coordinates, a linked list of successor and predecessor
pixels, and a pixel count, indicating the length of each segment. The task would only be
considered complete when all of the segment descriptors had been transferred to the
host processor, preparatory to recording into mass storage. (This line-finding algorithm
is a simplification of the one developed by Nevatia and Babu [201.

Shape descriptions were chosen as the eighth member of the metric set because
they also involve the translation of information from the iconic to the symbolic domains.
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The difference between shape description processing, and that associated with line-
finding is that shape description algorithms typically involve the 'tightly coupled" trans-
mission of information across somewhat greater distances than does line- finding. While
line-finding is strongly object-oriented, it is feasible in most cases to sub-divide the
image into smaller regions for processing by individual execution units. In those in-
stances where a line segment being traced extends beyond the boundary of the area
represented in the memory of the local execution unit, the "entry point" and direction of
the line can usually be passed to a neighboring processor into whose domain the line ex-
tends, so that that processor may continue the required processing. This is usually not
feasible in shape description algorithms, such as medial axis transforms (371 or general-
ized cones [38,39). The reason is that these algorithms locate the centerline of objects
by taking multiple "scans" through the image segment in question, perpendicular to the
iteratively calculated axis of the object. The midpoint of the object at that point along its
axis is taken to be midpoint of the path traversed through the object. If an object being
examined in this manner straddles the subdivision boundary between two adjacent
processors, the resulting message-passing requirements would quickly overload any con-
ceivable communications network. Such a high communication bandwidth is required in
these cases because path length and direction information must be passed for every scan
line crossing the image subdivision boundary. This might involve the passing of a
separate message for each pixel along that boundary. It is because of this high, local
loading of communication networks in multiprocessor architectures that we have included
shape description processing in the metric set. As to the other categories in our clas-
sification taxonomy, we categorize shape description processing as global, context-
dependent, and computation intensive It should also most properly be considered linear,
since the output data depends linearly on the shape of the object being examined.

Our metric for shape description would consist of executing a generalized cone
transform on an input image containing an irregularly shaped object, such as a humanoid
doll or airplane. The single object would be sized to substantially fill the frame, to max-
imize communication loading in multiple instruction stream architectures.

Our final two .ntries in the proposed metric set are examples of more purely sym-
bolic processing. Graph matching, the first symbolic metric involves searching a graph
for a sub-graph having a particular, specified structure. The difficulty of this sort of
processing lies in the fact that the computational complexity grows exponentially with the
size of both the graph being searched, and the sub-graph being searched for. The key
issue in implementing such algorithms on concurrent architectures is the partitioning of
the problem among available resources. Our graph-matching metric would involve
searching a graph of 100 nodes for a sub-graph of 10 nodes.

The last metric candidate is symbolic prediction, involving the application of a set of
rules to a set of existing data to predict the probability of occurrence of some particular

-condition. Such tasks are commonly implemented as "production systems," where the
'triggering" of a rule causes some modification to the body of data being operated on
(either addition of data, deletion of data, or a change of value for some element of the
data-base). Rules usually have an "if-then-else" form, where various actions are taken on
the knowledge base determined by the presence or absence of certain conditions. As
with graph matching, the key issue in implementing such algorithms on concurrent
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machines is that of partitioning. The problems lie in the division of the knowledge base

* between the available storage regions, and the links (via the rule system) between the
data stored in these regions. (In this usage, a "storage region" would most commonly be
the local memory associated with each processor in a concurrent system.) As with many

of the object-oriented processing we studied earlier, the problem focusses on the
bandwidth of the communication network, and partitioning the data and program elements
so as to minimize the bandwidth requirements.

Our suggestion for a metric in the area of symbolic prediction would be to abstract
a representative piece of predictive processing from that performed by an existing system
such as ACRONYM. Such an approach would have the advantage of providing a ready
comparison with many existing, serial machines.

11.5 CLASSIFYING SYMBOLIC PROCESSING

It is somewhat apparent from the above that symbolic processing does not fit easily

into our classification scheme This is because virtually all such computation is described
similarly within the taxonomy. (Eg, as non-linear, memory intensive, object-oriented, and

context-dependent.) This lack of distinction between various symbolic processing tasks is
reflected in the fact that both of the operations we have selected as representative of

symbolic processing are quite high level, involving a wide range of processing require-
ments. This contrasts sharply with our selection of "unit operations" to represent the

processing loads imposed by more iconic processing. It would thus appear that an ex-

* tension to our classification method is in order, to allow us to identify "unit operations"

within the symbolic regime. We have not done this as of this writing, but a paper by Hil-
lis [401 indicates four possible computational categories which might be used to describe

symbolic processing. Hillis' list of critical operations for symbolic computation may be
paraphrased as follows:

- Deduction of facts from semantic inheritance networks.
- Matching of patterns against sets of assertions, demons, or productions. Best

matches must be selected in the absence of a perfect match. ("Fuzzy" decisions.)

- Sortin of sets according to chosen parameters.
- Searching graphs for sub-graphs with a specified structure.

Our proposed graph matching metric directly addresses the fourth of Hillis'

categories, while our prediction metric is more generally directed at the first three areas.
Further study in this area should permit the development of more refined metrics which

more specifically target the processing requirements of each of these four areas.

11.6 HARDWARE ANALYSIS -- INTRODUCTION

In the preceding sections, we established a basis for understanding the different

processing requirements of IU algorithms. We have used this taxonomic basis to study

the differing requirements of a range of typical "unit operations" commonly employed in

the IU field, and selected a number of these operations as candidates for a software
* metric for the evaluation of concurrent hardware performance.
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The software taxonomy also provides a basis for a more general discussion of the
characteristics of various classes of concurrent architectures. We can gain a relatively
complete understanding of the generic capabilities of different machine classes by ex-
amining their performance in each of the categories included in our earlier taxonomy.
The purpose of this portion of the report is to perform just such an analysis.

Our approach here will be to divide the entire range of concurrent computer ar-
chitectures into nine categories. The categories used are: cellular numeric, pipelined,
multiple instruction stream (MIMD), number theoretic, systolic, hierarchical, "broadcast,'
data-driven, and associative. Within each category, we will first present the general
structure of machines within the class, followed by one or more examples of specific im-
plementations or proposed implementations of the architecture, and will conclude with a
discussion of how well machines of that general type perform the various sorts of
processing represented by the categories of the software taxonomy.

11.7 CELLULAR NUMERIC ARCHITECTURES

Cellular machines are those composed of an array of identical processors, or cells,
directed by a common instruction stream, but operating on separate data. Image
processing is usually performed by assigning pixels to processing elements of the array
in a one-to-one mapping In most cellular architectures, the program interpretation and
sequencing is performed by a single "control processor" (CP), separate from the array
elements: The array processing elements are typically only capable of executing arith-
metic and logical instructions under the direct control of the central CP, although most
implementations do provide for some data-dependent data selection through the use of
masking" operations.

Data flow within cellular machines is primarily between adjacent processing ele-
ments, using nearest-neighbor links. Some machines also permit the "broadcasting" of
values along the rows and/or columns of the array, or to all elements of the array simul-
taneously. Such broadcast or replication capabilities greatly speed the execution of cer-
tain algorithms. Provision is also usually made for data values to be passed between the
CP and the array elements, for such purposes as thresholding and data- dependent
program branching.

Cellular machines are perhaps the most popular of all concurrent architectures for
image processing work, with quite a number having been built to date. Machines built or
proposed to date include the Goodyear MPP (Massively Parallel Processor) [411, the CLIP
at University College, London [421, the ICL DAP (431, the Hughes 3-D machine [441, the
BAP [451, and the Illiac IV at the University of Illinois.

11.7.1 Characteristics of Cellular Architectures

Cellular machines have a number of hardware advantages over other types that
make them particularly attractive for VLSI implementation. Their extreme parallelism per-
mits the use of serial arithmetic in the individual processing elements, while still achiev-
ing very high throughputs. Circuitry for serial processing is in turn both simple and cor-
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pact, permitting high cell densities in the completed machines, and high yields of the in-
dividual cells. Furthermore, the high regularity of the array hardware gives a high ratio of
replicated-to-designed circuits for such systems when CAD is used In their layout.
Finally, since communication among array elements is primarily between nearest neigh-

bors, the signal routing requirements are relatively modest.

Cellular numeric arrays are often easier to program than other types of machines
because of the natural match between the structure of the computing array and the
structure of the pixel arrays being manipulated. This topological correspondence
eliminates much of the address calculation overhead required by architectures lacking
such a match, and furthermore eases the visualization required of the programmer in the
implementation of various algorithms.

The nearest-neighbor communication scheme employed in cellular architectures
means that they are most efficient when executing programs which are local, according
to our earlier definition of that term. Global operations requiring a great deal of data
sharing between processing elements separated widely in the array are usually less ef-
ficiently executed. Most implementations, however, allow constants to be rapidly broad-
cast across the entire array, for use as thresholds or multipliers in the local operations
This capability is particularly useful for such operations as histogramming (one of our
software metrics), where a large number of values must be compared with every element
in the array.

If provisions are made for data-dependent masking operations within the array ele-
ments, cellular machines are about equally effective in performing linear or non-linear

operations. In any given application, a particular machine may be more or less efficient
at non-linear selection operations, depending on the amount of storage provided for dif-
ferent mask vectors. Some machine provide only one or two bits of mask vector storage
at each cell site, while others permit any of the general registers of the machine to be
used for such storage.

Most cellular implementations proposed or constructed to date have relatively
limited amounts of storage available in the individual elements of the array. This means
that they are less well suited to memory intensive problems than they are to computation
intensive ones. Th - limitation is not inherent in cellular architectures though, but rather
is a reflection of technological limitations in force at the time these machines were
developed, as well as conscious design choices made by the designers of the machines.
Cellular machines, to a somewhat greater extent than is the case with other architectures,
present the designer with a tradeoff between either increasing the amount of local
memory available, or fabricating a larger array. Since most IU problems are far more
computation intensive than they are memory intensive, most designers opt for a the
largest array size possible with the technology available, at some expense in the amount

of memory present at each cell site. Thus, while cellular architectures are typically less
suited to memory-intensive computation, this need not be the case, although the
above- mentioned design considerations will probably result in the persistence of this.characteristic into the foreseeable future.
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The single instruction stream of cellular machines means in most cases that they
are less efficient in context-dependent than in context-free applications. In most cases,
context-dependent programs are executed exhaustively for all possible cases at all array
sites. That is, if there is a program branch in which data each object or structure in the
image must be processed separately and in sequence. This is slow and, since the

- processing is usually concentrated in only a small region of the total array area, rather
inefficient as well. As we shall see, though, few architectures perform well in this
respect.

Finally, coming to the last taxonomic Category, cellular numeric arrays are almost
exclusively oriented toward iconic processing. Some thinking has lately been directed
[461 toward providing the individual processing elements with an associative capability,
which would extend their capabilities into the symbolic domain as well. This appears to
be a promising approach, but the work done in this area is so far very preliminary.

11.8 PIPELINED ARCHITECTURES

Pipelined machines consist of series of processing elements arranged in chains or
"pipes," such that each element in the pipe accepts data from its predecessor, and passes
results to its successor. Processing occurs simultaneously in all elements of the chain,
with the data and results flowing down the chain as liquid through a pipe. In addition to
the concurrency achieved by having processing occur simultaneously at various points
along the pipe, some implementations employ a multiplicity of pipes as well.

In contrast to cellular arrays, pipelined hardware usually handles its own program
interpretation and sequencing, rather than relying on a separate controller for those func-
tions. Also in contrast to cellular machines, each pipe of a multi-pipe machine usually
has access to the entire image array. On the other hand, functional units within the pipe
typically only access data through the hierarchy of the pipe itself; ie, from their predeces-
sor in the chain. This places some constraints on the patterns of data access permitted
by the architecture.

Because of their dependence on temporal relationships within the algorithms imple-
mented on them, pipelined architectures are for the most part a good deal more difficult
to program than conventional machines. This is because the programmer must under-
stand the structure of the pipe in detail, and organize his program to take advantage of
the 'sequential concurrency" built into the hardware. For this reason, most commercial
pipelined machines come with very extensive software libraries so that most users need
not directly involve themselves with the hardware. This of course is a compromise, and
one that is only successful if the algorithm to be programmed can be composed from the
standard elements available in the library supplied.

Pipelines are the most popular concurrent architecture in the commercial
marketplace, with most of the so-called 'array processors" available on the market ac-
tually having pipelined architectures internally. (These machines are usually sold as as
attached processors for standard minicomputers.) Part of the reason for this commercial
popularity is probably the fact that pipelined architectures are rather easily built up out of
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standard MSI and LSI circuits, in contrast to more highly evolved architectures which re-
* quire custom VLSI for their efficient implementation. This is not to suggest though, that

pipelined machines lack potential for application within the IU community. To the con-
trary, a number of research machines have been proposed or built with pipelined ar-
chitectures, including DIP (471, GOP (481, the "CYTOCOMPUTER' [491, and an interesting
"pipelined array," combining some of the characteristics of both pipelines and cellular
machines (50].

11.8.1 Characteristics of Pipelined Architectures

Since a single pipeline must naturally have access to the entire image array,
pipelines are by nature equally suited to both local and global processing. In multi-pipe
machines, this characteristic may be somewhat modified by the manner in which memory
is distributed between the separate pipes. If the individual pipes draw their data from a
single, common memory, the resulting machine may suffer from memory contention be-
tween the execution units. To eliminate this problem, the designer of such a machine
might opt to have separate memories for the individual pipes, segmenting the image be-
tween them. If this is done though. the machine loses some of its generality, and perfor-
mance on globally-oriented algorithms is affected Of course, the brute force approach of
replicating the entire image in memory as many times as there are pipes may be taken.
This can be extremely costly in terms of memory space though, and the problem still
remains of passing information and results between the pipes, should that be required.

Pipelined machines also usually perform both linear and non- linear processing
equally well, since non-linear operations- only require the addition of comparator circuitry
at appropriate locations along the pipes. Context-dependent processing is quite another
matter, though. Since the concurrency exhibited by pipelined machines derives from cer-
tain fixed temporal dependencies in the program, as well as on fixed sequences of opera-
tions, any disruption in the normal flow of data is highly deleterious to the overall perfor-
mance of the system. Thus, such machines are quite efficient when the type and se-
quence of operations to be performed is rigidly determined. This is the case in many
lower-level operations such as thresholding and convolution. Speed obtained in this
manner carries a penalty though, in that there is a fixed delay from the time that data is
first presented to the beginning of the pipe to the time that the first results appear at the
output. This delay corresponds to the amount of time that it takes for data to pass
through all the functional units along the pipe. Because of this, each context- determined
program branch will incur a fixed "pipeline delay," while the results from the new branch
move down (fill) the pipe. This reliance on context-independency also makes pipelines
relatively unsuited to symbolic processing, due to the highly context-dependent nature of
such applications.

Pipelines usually incorporate fairly limited amounts of memory, at least with respect
to the size of the images that they are used to process. By our earlier definition of
*memory intensive" processing then, in which substantial amounts of memory are needed
for each pixel of the image, pipelines are "not* memory-intensive. This is not an un-
equivocal criticism of pipelines though, since many operations involving the sorting of
values within a local window (such as median filtering, for example) only require that
enough memory be present to hold the kernel values that are sorted at any one moment.
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Pipelines are thus quite effective for median filtering and similar operations.

In the area of object- versus coordinate-oriented processing, pipelines are generally
better suited to the coordinate-oriented case. The performance of pipelines in object-
oriented applications is a function of several factors. First, there is the question of the
extent to which such processing is also context-dependent. It is usually quite so, leading
one to think that pipelined machines would have great difficulty with it. On the other
hand, the context-dependency in such cases in large part just results in alterations of the
pattern of data access, rather than in any significant alteration of the instruction stream.
Also, the processing being performed in such cases is frequently rather low-level, con-
sisting only of binary decisions based on very simple sets of predicates (governing
whether a particular pixel is or is not part of an object). This means that most object-
oriented processing can be performed fairly early in a pipe, resulting in much shorter
pipeline delays that would otherwise be encountered. Single pipelines are still limited by
their single instruction stream to processing only one object at a time, but multiple pipes
gain performance proportional to the number of pipes that may be effectively employed
in any given application. Thus, pipelines as a general class rate slightly better than cel-
lular machines for object-oriented processing.

11.9 MIMD ARCHITECTURES

MIMD stands for "Multiple Instruction, Multiple Data," and refers to architectures in
which a number of largely autonomous processors are harnessed to process data in
parallel. In this class of machines, each of the individual processors of the ensemble ex-
ecutes its own instruction stream. IU processing is typically performed in these systems
by partitioning the image data among the processors in the array, with each element
receiving a contiguous segment of the image.

Many MIMD architectures developed to date represent attempts to efficiently make
use of the inexpensive, powerful, general- purpose microcomputer chips that are readily
available in the commercial marketplace. The lure of such endeavors is obvious: In one
sense, the "hard" part of the design of these chips has already been done. and, since the
cost of this development has been amortized over perhaps millions of commercial chips,
the design of the individual processors is virtually free to the system designer. Further-
more, many of these machines. particularly the more recent introductions to the field, are
impressively powerful: Many of the newer chips surpass the capabilities of even "super
minicomputers" of only a few years ago. If hundreds or even thousands of such general-
purpose microcomputers could be efficiently connected into a processing network for IU
applications, the reward would be significant. A good deal of work has already been done
in this direction, and several research machines have already been built [51-551.

The drawback to all of this, of course, is to find a means of interconnecting and ap-
plying multiple general-purpose processors that is truly efficient. Synchronization and
coordination overheads, resource contention, and programming considerations mean that
the net increase in capabilities as more processors are added to the network is far from
linearly proportional to the number of processors. Data flow within MIMD structures oc-
curs in two main areas: between the local memories of the individual processors and
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those processors themselves, and between the separate processors of the array. The link
* between processors and memories is no greater problem than in any conventional, "Von

Neumann" machine. In fact, since the individual processors in an MIMD machine have a
much smaller data base to deal with, the limitations of memory bandwidth are less ap-
parent than in single-processor machines with larger, single memories. In all but the
very lowest levels of IU processing though, information must be passed across the boun-
daries separating the image segments which have been assigned to the individual
processors. This requirement is the source of most of the obstacles to achieving truly
efficient operation of multiprocessor arrays.

There are a number of ways that processors can be interconnected in MIMD sys-
tems, each with its own advantages and liabilities. The various approaches can be
categorized into three broad categories: Shared memory systems, bus-oriented systems,
and "network" systems. In shared memory systems, the processors communicate with
each other through overlapped regions in their memory spaces. That is, their memory
systems are multi- ported, with regions of memory being accessible to more than one
processor. Data is passed between processors by leaving "messages" in the shared
memory areas [54). Memory-based communication schemes have the advantage of in-
curring some of the lowest synchronization overhead costs for relatively local com-
munications (communications between processors directly sharing memory space), but
are much less efficient when the messages must cross more than one address-space
boundary. In bus-oriented systems (52,551, a bus passes between processing elements,
with messages being passed along the bus. In such systems, the transfer itself can be
very rapid, regardless of the "distance" separating the communicating units, but the over-
all message bandwidth is limited to that available from the bus used. Finally, in "network"
communication schemes, the individual processors are attached to nodes of a message-
passing network of varying intelligence, which conducts message packets from the
originating processors to their appropriate destinations [401. Such networks have the ad-
vantages of low communications overhead for the individual processors, coupled with
higher bandwidths than are available in a single-bus system. Since the network itself
typically contains a fair amount of processing capability, and since the characteristics of
such systems are sufficiently different from those of most other MIMD implementations,
we will discuss their characteristics in greater detail in the subsequent section of this
report entitled "Broadcast Architectures"

As we shall see in the following discussion of the performance characteristics of
MIMD machines, their multiple instruction streams can be very useful for some types of
processing. On the other hand, this greater flexibility carries with it a greater burden for
the programmer, who must efficiently assign and coordinate tasks across the pooled
computing resources. This programming overhead complicates the actual application of
MIMD machines, and, coupled with the problems of interprocessor communication ef-
ficiency, has possibly contributed to their relatively slow rate of development and accep-
tance. As yet. the resource-allocation problem has remained too complicated and poorly
understood to yield to effective handling by compiler software. This places further
demands on the programmer.
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11.9.1 Characteristics of MIMO Architectures

Due to their partitioning of the image between the multiple execution units com-
posing their architecture, MIMD machines are best suited to processing involving only
relatively local data access. "Global' algorithms, in which any local processor MAY be re-
quired to draw upon data from any location in storage are less efficiently handled by
most MIMD machines.

In the area of computation-intensive versus memory-intensive processing, the rela-
tive performance of MIMD machines is largely a function of the characteristics of the in-
dividual processors composing the array, and the manner and degree to which the image
data is partitioned between them. The ability of MIMD structures to perform
computation-intensive processing is determined by both the number of processors in the
array and by the execution speeds of the individual units. With current or near-future
commercial microprocessors, performance levels in the 100-1000 MIP range are quite
feasible. Ultimate capabilities are probably in the 104 to 105 MIP range. The upper. limit
is set both by the maximum likely VLSI uniprocessor performance figures, and by a max-
imum practical array size that is probably on the order of 103 to 104 processors. Larger
arrays are rendered impractical by the limitations of communication networks and bus
systems. The memory-intensive performance of MIMD machines is determined by the
ratio between the size of the image segment assigned to each processor and the size of
the local memories available. Obviously, the amount of per-pixel memory available is ex-
actly this ratio. Most machines constructed to date have a fairly limited amount of per-
pixel memory, primarily due to practical limitations such as funding level, intended scope
of the project, etc. Increasing commercial memory density and uniprocessor memory ad-
dressing capabilities will probably result in increased MIMD performance in this area in
the near future.

Since each local processor in an MIMD structure is a complete, general-purpose
computer, MIMD machines are equally suited to both linear and non-linear, as well as
both context- dependent and context-free processing. MIMD architectures as a class
perform better in these areas than virtually any other architecture evaluated. On the
other hand, if the region of data defining the context-dependency extends across the
memory space boundaries of more than one processor, the problems of interprocessor
communication and synchronization can have a substantial negative impact on both ex-
ecution speed and programming efficiency.

The relative abilities of MIMD architectures to execute object-oriented and
coordinate-oriented programs are rather similar to their just-discussed abilities to ex-
ecute context-free and context-dependent programs. This is to be expected, since
object-oriented processing is just a special case of context- dependent processing. The
tradeoffs involved in designing a machine for efficient object-oriented processing once
again revolve around the balance between local processor memory space and com-
munications bandwidth. The single distinguishing feature of object-oriented processing is
that there is no a priori information regarding the location of the data associated with any
particular object being processed, other than a presupposition of connectivity. In MIMD
structures, the most natural implen ntation of object-oriented algorithms is to assign a
separate processor to each identifiable "object" in the image. Since any of these objects
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may extend into any region of the image, it is necessary for each processor to have ac-
cess to every part of the image. This access may be implemented either by supplying
sufficient local memory for each local processor to store the entire image, or by provid-
ing a communications network memories for MIMD architectures. In general though, even
in the present context of relatively limited processor memory spaces, MIMD architectures
perform well on object-oriented problems, due to their multiple, independent instruction
streams. Their coordinate-oriented processing performance, on the other hand, is some-
what less than that achieved by other machines having a greater inherent parallelism (eg:
cellular machines with their tens or hundreds of thousands of arithmetic/logic units).

Finally, MIMD arrays are best suited to iconic processing, but show more promise
than some for symbolic work as well. As is the case with other architectures though,
machines which are optimized for symbolic processing are relatively poor for iconic
processing and vice versa. A good deal of development has been done on the University
of Mexico's "AHR" machine [71,721, which uses a bus-linked array of microprocessors for
concurrent LISP processing. This machine shows good promise, but has the dual draw-
backs of being a bus-structured machine, with the inherent communications bandwidth
limitations that this implies, as well as relying on a sequential task-allocation unit that
severely limits throughput in complex problems. Since this particular machine is really
more of a data-driven architecture than it is an ordinary MIMD structure of the sort we
have been discussing so far, we will defer further mention of it to the subsequent section
on data-driven architectures.

. 11.10 NUMBER THEORETIC ARCHITECTURES

'Number Theoretic" architectures perform their arithmetic operations through the
use of programmable look-up tables in fast RAM, employing residue arithmetic techniques
to minimize look-up hardware requirements. They are characterized by very simple,
highly regular circuitry, and extremely high throughput capacities. The single machine of
this type constructed to date has exhibited throughputs of 250 million multiplications per
second, and was built with 10 MHz NMOS circuitry [56.

Since residue arithmetic is rather unusual, we will present a brief description here
of its operation. Readers wishing an exhaustive treatment of the subject are referred to
the comprehensive volume authored by Tsabo and Tanaka [571.

In the early days of computing, look-up tables were sometimes employed for arith-
metic processing when performance was paramount and cost no object. In this approach,
every possible value of a function was stored in a large memory, ordered according to
the values of the operands that would result in each output value. Arithmetic was then
performed by using the values of the operands as addresses into this memory space, with
the resulting output value simply being read at the memory's data output. Since the ac-
cess time of such memories was significantly less than the computation time of the logic
required to implement the functions in question, this approach resulted in arithmetic ex-
ecution speeds orders of magnitude greater than were otherwise obtainable. The draw-

* back to the technique was that very large memories were required for the look-up tables,
even for relatively modest dynamic ranges. (A 64K x 16 bit table is required for the mul-
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tiplication of two 8-bit operands.)

The residue number system provides a means by which the size of the required
look-up tables may be significantly reduced for any given dynamic range. This reduction
of the problem is accomplished through the application of elements of number theory
[571. The residue number system is based on a collection of N integers: M1, M2'. ... MN;
each of which is called a modulus. The moduli are required to be relatively prime, i.e.
have no common factors, but need not be absolutely prime. The 'residue' of X mod M is
defined to be the least positive integer remainder of the division of X by Mi, where X is
the number to be converted to residue form, and M. is a modulus. The dynamic range of
the full processor, D, is given by the product of the moduli employed, and any integer in
the range of 0 < X < (D-1) can be uniquely represented. The residues of residue arith-
metic may be thought of as somewhat analogous to the digits of conventional number
systems.

The strength of the residue number system lies in the way in which arithmetic is
performed within it. Arithmetic operations are performed in parallel, in each modulus, or
base, and then combined to uniquely determine the final result. All operations are also
performed in modular arithmetic, in which all carries are ignored, and only the remainders
with respect to each base are retained. This further simplifies both the arithmetic opera-
tions and the hardware needed to implement them. An example of residue addition is
given below. Here, we choose the moduli of 5, 7, and 8, giving a dynamic range D of 280.
Thus, we may uniquely represent integers in the range of 0 to 279. without overflow In
the example, we add 19 to 87, to obtain a result of 106. We begin by converting 19 to
residues of 4, 5, and 3, in the three moduli we have chosen. The 4 is the least remainder,
or residue, of 19 mod 5; with the other residues shown similarly derived. We convert 87,
the second operand in like fashion, and arrange the residues of the two operands in
columns according to the moduli employed, as shown in Table I.

M1(5) M2(7) M3(8)

19 -- > 4 5 3

+87 -- > +2 +3 +7

106 <-- 1 1 2

TABLE I: Residue Arithmetic Example

Each column is then independently summed, with the results again expressed as
residues of the associated moduli. The resulting number triplet (1,1,2) uniquely represents
the result in the residue number system. That is, that the actual result gives a residue of
1 when reduced mod 5, a residue of 1 when reduced mod 7, and a residue of 2 when
reduced mod 8. This result can be uniquely decoded to determine the integer result, 106,
in the range of 0 to 279. One of two decoding processes may be used, known as the
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mixed-radix and chinese remainder theorem methods. A full discussion of the details and
* relative merits of these decoding techniques is beyond the scope of this report, but may

be found in references [561 and [57).

As the example shows, the arithmetic operations performed in each modulus are in-
dependent of each other, making them ideally suited to parallel computation. Further-
more, look-up tables can be used to perform the operations for each modulus, giving
very high speed operation. Very large dynamic ranges may be obtained with relatively
small look-up tables, by using a sufficient number of moduli. In effect, the residue num-
ber system permits the use of look-up tables which only increase in size as a logarithmic
function of dynamic range, rather than as a linear function of dynamic range, as would be
the case in a system using a conventional approach.

As mentioned above, residue systems exhibit a high hardware regularity, which
makes them ideally suited to VLSI implementation. Also, since they merely involve the
use of a special number system, they may be effectively combined with various architec-
tural topologies to produce hybrid machines of even greater power, with little impact in
the form of increased programming difficulty. As might be expected though, there are
limitations to the use of residue number systems, one minor, and one severe. The minor
limitation is that there is some amount of overhead associated with the conversion of
data from a conventional reprssentation into residue form and back again. The amount of
overhead contributed by this requirement varies as a function of the amount of process-
ing that can be performed in the residue domain. The conversion time is fixed at some

* small value, typically one memory cycle for encoding and N-1 memory cycles for decod-
ing. where N is the number of moduli employed. Thus, residue arithmetic makes most
sense in applications involving great numbers of operations that may be performed in the
residue domain.

This brings us to the second, more serious limitation of residue number systems.
Since residue arithmetic ignores all carries, it is impossible to perform magnitude com-
parisons within a residue representation. This means that any non-linear operations, such
as thresholding, etc, necessarily involve the translation of the residue-represented num-
bers back into a conventional number system before the operation can be carried out
This requirement does limit the range of application of residue arithmetic. The perfor-
mance obtainable in the areas well suited to its use, however, make it a strong contender
for many applications within IU.

11.10.1 Characteristics of Number Theoretic Architectures

Number theoretic techniques involve only the number system in which computa-
tions are performed and, as such, have little direct impact on the architecture of machines
employing them. On the other hand, the unavailability of magnitude comparisons in in
the residue representation, and the overhead involved in converting between residue and
normal representations dictate the use of residue techniques in applications dominated by
computational requirements and characterized by a lack of both non-linearity and context
dependency. The single machine constructed to date using a residue number system was
optimized for convolution operations on 5 x 5 kernels, a local, linear, computation-
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intensive, coordinate-oriented, iconic, and context- free operation.

Number theoretic machines may be designed that are well- suited for either local or
global operations. However, the extremely high throughputs available when using residue
arithmetic dictate that image memory access be highly optimized, in order keep up with
the processing circuitry. This probably means that most practical residue-based
machines will be optimized for local processing.

As just mentioned, residue-arithmetic based systems cannot perform any sort of
magnitude comparison or thresholding, and therefore are not at all suited to either non-
linear or context- dependent processing. This restriction must be qualified by pointing
out that, while residue arithmetic can't handle these types of operations, systems may be
built which incorporate both residue-based processing circuitry and conventional arith-
metic elements, thus providing the ability to perform both non-linear and context-
dependent processing. The fact nonetheless remains that heavily context-dependent
processing, such as that found in object-oriented applications, will benefit but little from
the availability of residue hardware. This is due to the fact that most of the processing in
such applications consists of the sort of decision-making that is impossible with residue
techniques.

Finally, since residue arithmetic is a number system, architectures based on its use
are only suitable for use in iconic processing: There is no foreseeable use for residue
techniques for strictly symbolic processing.

11.11 SYSTOLIC ARCHITECTURES

Systolic architectures are best described as a sub-class of pipelined architectures.
They are similar to more conventional pipelines in that they may be conceptualized as
"numeric assembly lines," with each element in the array accepting data from its
predecessors and passing its results to its successors in the network. Systolic structures
are different, however, in that they employ arrays of identical function modules called
cells; in that these arrays are most often two dimensional; and in that data flow through
the cells of the systolic array is highly regular They were developed by, and have been
popularized in large part by H. T. Kung and his students [58-61), [621, and are somewhat
similar to residue-based systems in that they seem to be well-suited to highly
computation-intensive applications, although they lack characteristics which would permit
broader usage.

Systolic processors operate by exploiting data and processing regularities within the
algorithms being implemented. Their design principle is to achieve the highest level of
parallel-pipelined processing possible within an algorithm, while making maximally ef-
ficient use of data fetched from memory. This is typically done by operating on serial
data streams fed into a multiply-connected array of identical processing cells. In such
systems, the input data streams usually flow into the array from one or more separate
directions, with computations being performed whenever appropriate elements of the
criss-crossing data streams "meet" each other in one of the processing cells.
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Systolic arrays have a number of advantages which recommend their use for image
understanding systems. One of the most important characteristics of systolic hardware is
its extreme regularity, which combines with its relatively simple communication require-
ments to make such systems almost ideal for VLSI implementation. Also, as mentioned
above, the pipelined nature of systolic architectures does much to alleviate the memory
bandwidth problems encountered in other architectures. Furthermore, in purely local
operations, the size of the array is dictated purely by the size of the kernel being
processed, independent of the size of the image being manipulated. (Systolic structures
share this characteristic with number theoretic processors.)

The preceding advantages present strong arguments for using systolic methods to
meet many of the requirements of IU processing. Unfortunately, the realm of application

of systolic hardware is limited to many of the same areas also served by the number
theoretic architectures discussed in the last section. These limitations arise from the fact
that systolic arrays relv heavily on certain fixed sequences of operations and regularities
of data access in the algorithms for which they are designed. As such, they represent
optimized solutions for specific applications of necessarily limited generality. If an ap-
plication does not meet the timing and functional constraints for which a systolic array
was designed, it may not be possible to implement it on that machine This means that
systolic arrays may be very useful in dedicated imaging systems of the sort anticipated
for future intelligent military systems, but that they will have only limited usefulness in a
research environment.

* 11.11.1 Characteristics of Systolic Architectures

As we have already mentioned, systolic machines are most suited to local process-
ing. Because they operate on serial streams of data, the inherent "pipeline delay," and the
size of the required array will be strong functions of the linear extent of the kernels being
processed. This would make systolic machines poor candidates for applications in which
local results depended strongly on global data values.

To their credit, systolic machines have no difficulty with non-linear processing, as

did the number theoretic machines of the preceding section. This is to be expected.
since they do not rely on special number systems for their speed. On the other hand,
due to their rigid functional and timing restrictions, they also perform poorly in either
context-dependent or object- oriented applications. Likewise, since the size of a systolic
array seldom matches that of the image being processed, they are generally less suited
for memory-intensive applications than they are for purely computation-intensive ones.
Finally, systolic machines are exclusively limited, at least as of this writing, to processing
in the iconic domain.

11.12 HIERARCHICAL ARCHITECTURES

Hierarchical architectures encompass both data structures and particular hardware

configurations Known by various names, including "pyramids," "cones," 'structured vision
* systems," 'hierarchical systems," and "parallel-serial architectures;" such systems are at-

tempts to model the manner of functioning of natural (human and animal) visual systems

I I I i I '
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[63. They employ a system of multiple levels of resolution, as do the organic systems
they mimic. This approach has some valuable consequences for image understanding ap-
plications, as we will see in the following "characteristics" sub-section.

Hardware for hierarchical processing would have log 2(N) separate arrays of iden-
tical execution units, where N is the linear dimension of the N x N pixel input image. The
lowest level of the architecture has a full N x N array of processing elements, with each
succeedingly higher level having 1/2 the linear dimension and resolution, meaning 1/4 the
number of processing elements. The highest level of the structure consists of but a
single processor. Prior to processing, an image is loaded into the lowest level of this
.pyramid," and data values for each higher layer are computed by taking the average of
the four cells associated with each processor, on the level below. During the processing
of an image, data is passed back and forth, both between cells of the same level
(primarily on a nearest- neighbor basis), as well as between cells of different levels.
Structures proposed to date typically require connection of each processor with four ad-
jacent cells on its own level, as well as with four cells on the level above it, an im-
plementations have been proposed, no zctual machines embodying these concepts have
been built, at least as of this writing. One such system is presently under construction
by Boeing though, and detailed reports of its performance should soon be forthcoming
[671. Possible reasons for the lack of actual implementations of pyramid structures is the
complexity, and the sheer volume of the hardware required. This last may not be as
great a restriction as one might imagine though, since a hierarchically structured proces-
sor of any given resolution would contain only a third as many elements as a simple cel-
lular machine of only twice greater resolution. For example, consider that a 64 x 64
pyramidal machine would contain only 5461 processing elements, as compared to the
16,384 elements of a 128 x 128 cellular machine, such as the Goodyear MPP. Given their
advantages for various types of image understanding processing, which we will discuss
below, it is likely that more such machines will appear in the near future.

11.12.1 Characteristics of Hierarchical Architectures

Since they are little more than a stack of cellular machines of successively decreas-
ing resolution, hierarchical architectures exhibit many of the desirable characteristics of
cellular ones. As with cellular machines, their extreme parallelism permits the use of
serial arithmetic in the individual processing elements, while still achieving very high
throughputs. The simplicity and compactness of serial circuitry permits very high cell
densities, as well as high circuit yields in the individual cells. Also, the high regularity of
the array hardware and the interprocessor communication links makes such designs
natural candidates for VLSI implementation through the use of CAD techniques.

Hierarchical architectures also share the excellent performance of cellular machines
in applications involving local and linear processing. Like cellular machines too, their per-
formance at global and non-linear processing is very good, with the specific levels attain-
able being largely dependent on the implementation. Versions with more flexible com-
munications networks and greater amounts of memory dedicated to mask vector storage
will perform proportionately better in these areas than will machines without such
resources.
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The memory available in hierarchical systems is subject to the same tradeoff
against processing circuitry and, generally, array size as we observed in the case of cel-
lular machines. The more memory allocated to each processing cell, the more area each
will require, and the more silicon real estate will be needed by the system as a whole.
On the other hand, since array machines are usually constructed with linear array dimen-
sions expressible as integral powers of two, and since hierarchical machines will for the
most part have arrays that are a factor of two smaller than cellular machines of equiv-
alent technology level, there will no doubt be greater amounts of local memory in most
hierarchical machines than in equivalent cellular ones. Hence, hierarchical machines
should be slightly better than cellular machines for memory-intensive applications, but
somewhat slower in computation-intensive ones.

Since the hierarchical machines proposed to date are all SIMD machines, they have
the single-instruction-stream limitation of their cellular predecessors. This contributes to
a context- dependent performance that is somewhat less than that attainable on equiv-
alent, context-free processing. It should be pointed out though, that the single instruc-
tion stream is by no means a requirement of the hierarchical data structure on whtch
these machines are based. Furthermore, the overlaying of multiple resolution levels in
the data structure can greatly facilitate many types of context-dependent processing, by
providing a "lateral lookahead" capability. This can be especially useful in object-oriented
processing and iconic to symbolic translation. In object-oriented processing, hierarchical
machines can make use of the implicit locality of data associated with a particular object.
"Implicit locality" refers to the fact that, while the data associated with an object cannot a

* priori be assumed to occupy any given area of the image, it is likely that an object's data
will be found in some fairly localized region. This means that information regarding the
extent of an object can readily be passed through the multiple-resolution data structure
to guide the operation of the individual processors at each level of resolution. For this
reason, hierarchical architectures seem to hold excellent potential for dealing with the dif-
ficult iconic- symbolic translation problem.

While no work has been done to date on the application of hierarchical architec-
tures of the sort discussed here to symbolic processing, their structure closely matches
that of so-called "tree machines," which have been expressly designed to execute sym-
bolic algorithms. Thus, they should be easily adaptable to use in symbolic applications.

11.13 DATA-DRIVEN ARCHITECTURES

Data-driven, or so-called "data-flow" architectures represent an attempt to
.automatically" exploit the parallelism inherent in any given algorithm. This is done
through the use of hardware structures in which the execution of each individual arith-
metic or logical operation is triggered by the availability of the data forming its operands.

'Thus, the lowest level of data is presented to the lowest level of the architecture, and is
routed to computation units embodying the various functions of the program being ex-
ecuted. This data-routing is accomplished by the hardware, which previously has been
configured to implement the application program. Each of the lowest-level computation

* units receives the operands it needs to perform its programmed function. As each unit
completes its function, it passes the results on to subsequent units which await those
results for use as operands to their own programmed functions. Whenever a functional
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unit has received all of its required operands, it "fires," and passes its results in turn to
other units awaiting them. In this fashion, data ripples through the ensemble of com-
putational elements, proceeding as rapidly and with as much concurrency as is permitted
by the algorithm being implemented.

- Hardware ensembles for data-driven processing would ideally have as many execu-
tion units as there were independent functional blocks within the application program
being implemented. Some proposed architectures do, in fact, recommend this approach
[68- 701. Others, such as the AHR computer being developed at UNAM (71,721, use in-
stead a multitude of general-purpose execution units, each of which can perform a num-
ber of possible operations. In such machines, the availability of operands, and the nature
of the functions with which they are associated, are kept track of by some central dis-
patching unit. This central dispatcher (called the "grill" in the AHR machine) determines
when a function is ready to "fire," assigning execution units from a pool of available units
as required.

Both approaches just mentioned have relative strengths and weaknesses. The first
approach, in which there is a unique functional element for every functional block in the
program being implemented, provides the greatest possible execution speed for any given
program. A drawback of this approach is that it requires an enormous amount of
processing circuitry, a great deal of which will lie idle during most of the course of
program execution. Also, reconfiguration of the processing ensemble for programs
having radically different directed graphs can be difficult. Machines of this type tend to
be best suited to small classes of substantially similar applications: Radically different al-
gorithms require different system architectures. Systems relying on a central "dispatching
engine" largely eliminate this problem by providing a more flexible, general- purpose
structure that is readily adapted to the varying demands of different algorithms. This
flexibility is achieved at some cost in absolute performance, however. By concentrating
the dispatching and control functions in a single, central processing unit, this approach
performs those tasks serially, potentially creating a bottleneck slowing the overall perfor-
mance of the architecture.

All data-driven architectures share the problem of complexity control. This term
refers to the efficient decomposition of algorithms into functional blocks to be distributed
to the individual execution units of these machines The most simple-minded approach is
to divide the algorithm into its simplest discernable component operations, such as ad-
dition, multiplication, comparisons, etc. The problem with this approach is that it requires
an enormous number of execution units for all but the most trivial of problems. As the
number of execution units required grows, so does the number and complexity of inter-
connections between them. On the other hand, as the level of processing assigned to
the individual units is raised, opportunities for parallel execution are lost. The optimal
tradeoff between these two factors varies considerably from application to application,
and the means of arriving at that tradeoff are poorly understood at best. The lack of un-
derstanding of this crucial area limits the current and near- term utility of data-driven ar-
chitectures.
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11.13.1 Characteristics of Data-Driven Architectures

0 The performance characteristics of data-driven architectures are highly dependent
on the nature of the particular hardware embodiment involved. As such, it is difficult to
draw conclusions regarding the performance characteristics of these machines that will
be true for all such architectures. A few broad observations can be made, however.

In general, data-driven machines will perform context-free algorithms with greater
efficiency, if not with greater speed, than they will algorithms that are context-dependent.
This because they require that each potential branch of a program be expressed in the
form of additional blocks of execution units. In the majority of algorithms, only one such
branch will be executed at any one time. That is, most branches are of the "either-or"
form. This means that much of the hardware associated with the branches not taken will
lie dormant much of the time. Thus, while context-dependent programs will execute with
as much parallelism as is permitted by the algorithm, data- driven machines built for their
execution will exhibit substantial inefficiencies in their usage of hardware.

For similar reasons, it can be said that data-driven machines are better suited to
computation-intensive, rather than memory intensive algorithms. Because each execution
unit must wait for all of its various operands to appear before it can "fire," data-driven
structures will be most efficient in applications in which the ratio of execution units to
operands is high. In other words, the fewer operands an execution unit requires, the
more frequently it will be able to fire. In memory-intensive algorithms, there would logi-
cally be fewer execution units operating at any one time, since more intermediate values
would be generated for each image pixel, before the next stage of processing could
begin. As a corollary to this, data-driven machines would be largely unsuited for use in
object-oriented applications, due to the extreme data- dependency involved in such al-
gorithms.

Finally, data-driven architectures, at least as represented by the AHR machine, seem
to hold some potential for use in symbolic applications. The realization of this potential
will become more fully evident as the problem of bottlenecking in the task distribution
hardware are addressed and overcome in the future.

11.14 "BROADCAST" ARCHITECTURES

"Broadcast" architectures are constructed from arrays of processor/memory cells,
which appear as the nodes of a locally- connected communications network. The
processors a' each cell are very simple, consisting of only a few registers, a rudimentary
ALU, and a rule table that is typically shared with other, adjacent processors. Each cell
also contains a communications processor which is interfaced to and forms part of a
packet-switched communications network. All communications between cells occurs
through this packet-switched network, In the form of discrete 'messages" passed be-
tween members of the array. In normal operation, each cell knows the addresses of
those with which it must communicate. A message is formed by attaching a destination
address to the block of data that is to be transferred. This packet is then released into

* the network, where it is accepted and passed on by the various communications nodes
associated with each of the cells of the array. The circuitry at each node routes the
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message to one of its neighbors, depending on which of those neighbors is closest to the
ultimate destination of the packet. When the message reaches its destination, it is
removed from the network, and passed to the local processor for which it was intended.

In typical applications, each processing element of the array "knows' the addresses
of several other cells with which it communicates. Unconnected cells may establish
communication links through the use of "message waves." A cell that wishes to search
for another with particular characteristics broadcasts a message wave through the net-
work, indicating the type of cell that is being searched for, and the address of the
originating cell. When a cell matching the specified characteristics is found, it transmits
its address back to the requesting cell, indicating its availability. The requesting cell
responds to the first such message with an "accept" message, and to all subsequent ones
with "reject" messages. Once a cell of the desired type has been found, the requesting
cell also broadcasts a special, high-speed "cancel" message wave, which overtakes and
cancels the original search wave.

Broadcast architectures were developed at MIT by Hillis and coworkers [40] to
provide for the concurrent processing of semantic nets. Advantages claimed for such
processors (the proposed MIT machine is called the "connection machine") are that 1)
They are able to implementa all of the operations found in relational algebra, as well as
structured inheritance networks. 2) The individual processors are very simple, and well-
suited to VLSI implementation. 3) The communication network. being locally connected,
involves only short wires, and packs easily into two dimensions. 4) Because all connec-
tions between cells are virtual ones, made solely through the packet- switched com-
munications network, their structure may readily be altered to mimic the structure of any
specific problem. 5) Because all links between objects are made in software, the physical
location of the objects themselves can be changed easily, as long as the (relatively few)
cells communicating with the displaced objects are informed of their changed location.
This could have valuable implications for issues such as fault tolerance and virtual
storage in these systems.

11.14.1 Characteristics of Broadcast Architectures

Our discussion of the characteristics of broadcast architectures should be prefaced
with the observation that they were designed with the primary goal of providing concur-
rent execution for symbolic algorithms. As such, they are poorly suited to most forms of
iconic processing. Since the bulk of our software metric deals with iconic problems, the
broadcast machines fare rather poorly in comparison with others developed primarily to
meet iconic processing requirements. On the other hand, this poor performance in iconic
applications is almost exclusively a result of the characteristics of the packet- switched
communications scheme, particularly in the case of messages which need only travel
short distances.

Several factors affect the efficiency of the packet-switched network. First, is the
overhead associated with assembling data and destination addresses into message pack-
ets. This process obviously takes time that is not required in, for instance, a cellular ar-
chitecture, where local communications are globally controlled. In many iconic applica-
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tions, where the flexibility of the packet-switched approach is not needed, this overhead
O - can present a severe liability. The second efficiency-limiting factor is the response of the

packet-switched network to varying message loads. The distributed routing approach, in
which individual communications nodes independently decide how to route outgoing
messages, depends on relatively light traffic loads to avoid delays and potential deadlocks
as messages collide. Finally, since most large arrays of this sort employ serial data
channels between processors, the explicit address information passed along with the
messages will reduce the overall bandwidth available for data.

These limitations of broadcast architectures for iconic processing could easily be
overcome though, if an alternative provision were made to permit nearest-neighbor com-
munication without the mediation of the packet-switching hardware. This would allow
the array to operate as aconventional cellular machine, with the concomitant advantages
for iconic processing exhibited by that architecture.

Given that they weren't designed for iconic processing, we would be better able to
perform context-dependent processing than other types without such local program
storage.

Broadcast architectures could potentially perform well in object-oriented processing,
due to their local program storage, and the independent message-passing capabilities of
the unit processors. Care would have to be taken in the actual implementation of the al-
gorithms, however, to ensure that the local bandwidth capacity of the message network is

O not overloaded by the message-passing requirements of the application. Specific im-
plementations of object-oriented metric algorithms would have to be executed to ac-
curat.ily determine the performance of these machines in this area.

11.15 ASSOCIATIVE ARCHITECTURES

Associative architectures are those in which data is addressed by value or structure,
rather than by absolute memory location. A number of machines based on this storage
conc.pt have been built or proposed [73-781, with the STARAN machine representing the
highest degree of sophistication of that field.

There are two primary means of providing a memory system with associative
cape bility. The most direct method is to assemble the memory from content-addressable
cells Memories of this sort produce a "data present" signal in response to a word
pres :nted at their data inputs if they contain a piece of data matching that being inquired
abou'. This is in contrast to a conventional memory which provides a piece of data in
response to an address or location-indicating word. Alternatively, an associative memory
may be constructed from arrays of conventional memory cells, address-sequencing
counters, and comparator circuitry. Systems of this sort mimic the function of true
content-addressable systems by loading the word being scanned for into a comparison
register, and then quickly sequencing through all words present to see if any produce a
match with the reference data. A flag output is set if a match is found, and a "no match"

* indication Is given if the search did not succeed. The true content-addressable approach
is by far the fastest of the two methods, but in most cases requires substantially more
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hardware to implement.

The associative nature of these architectures though, comes more from the or-
ganization of data within their memory systems than it does from the cell-level address-
ing method that is used to implement them. Associative machines are usually charac-
terized by very large word lengths in their memories. Related pieces of data are stored
in various fields within single words. In this fashion, once one has located one piece of
data corresponding to a particular object, the location of other information regarding that
object is immediately known, since it is located in the same physical word of storage.
This partitioning of information within single memory words is usually facilitated by
hardware allowing the scanning, reading and writing of selected word fields, without dis-
turbing the information stored in other fields of the same words.

Associative capability of the sort discussed here finds greatest use in applications
involving searches of large databases for information structures with particular attributes
Examples of such use might be the querying of image databases for objects having cer-
tain characteristics, or the following of multiple radar tracks in a complex air-defense
system. Associative machines also appear to be very well suited to the requirements of
knowledge-based systems of the sort encountered in the field of artificial intelligence
This is because a great deal of the processing load imposed by such systems arises from
searching for "rules" that are applied in response to a set of conditions in the database
By performing searches across the rule base in parallel, associative machines promise far
greater throughputs than conventional serial machines in these applications.

11.15.1 Characteristics of Associative Architectures

The characteristics of associative architectures revolve around their memory access
methods, and even under the broad classification of "associative," a wide variety of dif-
ferent memory structures may be found. The nature of these memory structures will
have a great deal to do with the suitability of the machines involved for different sorts of
processing. A few general observations may be made, however.

In most areas of iconically-based processing, associative machines as a class are
undistinguished by either very good or very bad peiformance when compared with the
other types of processors that we have discussed earlier. Most machines actually con-
structed to date suffer somewhat in overall performance when compared to, for instance,
cellular numeric arrays in the areas of local, linear, context-free processing. This,
however, is more a reflection of technological limitations that were in force at the time
that these machines were constructed tan it is indicative of any inherent deficiency in the
class as a whole. These limitations dictated that fairly small, memory-intensive process-
ing ensembles be built, in the interests of practicality. More modern VLSI-based architec-
tures, by taking advantage of the extreme circuit densities made possible by current tech-
nology, promise to largely overcome this restriction.

The real strength of associative architectures appears to be in their ability to rapidly
perform the pattern-match searches that are so integral to symbolic processing. Some
tasks in symbolic processing are inherently serial, but a great deal of the computational
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load found in most knowledge-based systems involves searching and matching functions.
* Associative machines seem to hold great promise in this area.

11.16 SUMMARY AND CONCLUSIONS

In this study, we have comprehensively examined the processing requirements of
image understanding, and have ,tudied various computer architectures intended to satisfy
them. It was concluded that the best means of dealing with the proliferation of IU al-
gorithms was to extract from them the highest level of operations that were common to
a wide range of algorithms in various areas. A software taxonomy was developed, based
on the demands various algorithms placed on the hardware which executes them. This
taxonomy was used to determine the different classes of computation represented by IU
algorithms, and subsequently to select representative algorithms to serve as a hardware
metric set. Specific suggestions were made regarding the elements of this metric set,
which can be used to objectively evaluate the performance of various concurrent com-
puting structures with radically different architectures.

Next, we turned to the problem of evaluating generic classes of processor architec-
tures, again basing the evaluation on the software taxonomy presented in the first section
of this report. A total of nine architectural families were studied, with specific comments
made regarding each.

The overall objective of this report has been to develop a knowledge base that
* would facilitate the inference of broadly based conclusions regarding the suitability of

various computer architectures for image understanding. The conclusions thus drawn are
as follows:

First, processor designs optimized for iconically- represented problems enjoy a
much greater degree of evolution and sophistication than do those for symbolic problems
This is probably because iconic image processing is necessary to extract the symbolically
structured information that is the subject of symbolic processing Early researchers in
the field were most immediately impressed with the vast throughput required by
so- called "low-level," iconic processing, and so concentrated the bulk of their efforts
there. Only in recent years has the realization developed, chiefly among workers in the
artificial intelligence (Al) community, that symbolic problems can involve far greater com-
putational requirements than had previously been supposed. Indeed, it now appears that
many problems in symbolic computation can only be solved in exponential time, rather
than the polynomial time characteristic of many iconic problems. Thus, one conclusion of
our study is that special architectures for symbolic computation are still in their infancy,
and therefore presently represent the weakest link in the effort to develop autonomous
vision-based systems.

A second conclusion of the study is that there is another class of processing, logi-
cally separate from either iconic or symbolic, because it contains elements of both, in-
timately Interwoven. This Is the area of iconic-to-symbolic translation. Few existing or
proposed architectures adequately meet the requirements of this process. The difficulty
posed by iconic-to- symbolic translation Is that It is a fundamentally object- oriented
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process, with few a priori restrictions imposed on the extent of data associated with any
particular object being processed. Single instruction stream machines perform poorly in
this area, because they can only process data associated with a single object at a time.
Multiple instruction stream machines, on the other hand, must solve the problems of ef-
ficient data partitioning and interprocessor communication and coordination. The ar-
chitectures which show most promise for solving these problems are those belonging to
the class of "hierarchical," or "pyramid" machines. These architectures employ multiple,
overlaid levels of resolution in their representation of image data. These multiple resolu-
tion levels can be used to exploit the connectivity that is implicit in object-oriented
processing.

Third, again in the area of purely symbolic processing, a great deal of the computa-
tional load of such applications involves searching data structures to find matches or
common elements Since this search capability is an inherent characteristic of associa-
tive machines, they would appear to be natural candidates for certain areas of symbolic
computation.

Assembling these conclusions into a final, comprehensive recommendation for the
"ultimate IU processor," it appears that the most useful piece of hardware to have, for
research, strategic, and tactical application, would be some sort of "Image Database
Engine." This machine would accept raw image data as input, convert it to symbolic
form, and then serve as an intelligent symbolic database manipulation processor, allowing
a more conventional processor to rapidly query the symbolic database developed from
the input image data. A possible form that such a processor might assume is even fairly
easy to see, given our earlier examination of the various concurrent processor classes.
Hierarchical structures would appear to be well-suited to this sort of application, due to
their excellent capabilities in the realm of iconic processing, as well as their potential for
iconic-to-symbolic translation. Furthermore, the addition of an associative capability to
the basic pyramidal structure would provide the ability to serve as the sort of intelligent
symbolic query processor, once the image information had been rendered in that form.
Thus, a single machine would be able to perform all levels of iconic processing; translate
the iconic information into symbolic form; and finally, to handle the most
time- consuming portions of symbolic processing. It is possible that the such a machine
could also be capable of executing all levels and forms of symbolic processing, but a
definitive determination of this would require further study.
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