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~* Earlier results for coherent reflection and incoherent scattering by embossed rigid or free 0
'' surfacesiV. Twersky, J. Acoust. Soc. Am. 29, 209-225 (1957); 73, 85-94 (1983) ] are applied C

to ellipsoidal bosses with axes large compared to wavelength. The asymptotic procedures used riiC
originally for circular cylinders and spheres, and, subsequently, for elliptic cylinders [J. E. C0

N Burke and V. Twersky, J. Acoust. Soc. Am. 40, 883-895 (1966) ]Pbare genera|iii zo triaxial
(rl ellipsoids, and results for the corresponding bosses are obtained by the image method.< Illustrative curves for both isotropic and anisotropic surfaces exhibit the influences of boss

shape and orientation on the coherent reflection coefficients and incoherent differential
I scattering cross sections per unit area with emphasis on forward-(specular) and backscattered

effects.

< PACS numbers: 43.20.Fn

INTRODUCTION and take the incident wave for a rigid ( + ) or free ( - ) base

In a previous article,' results2"3 for scattering and reflec- plane to be ± q'e - "', where

tion by relatively arbitrary bosses on rigid or free (pressure 0' = exp(c'.r), k' = kk', k =21r/,

release) base planes were applied numerically to aligned el- (2)
lipsoidal bosses with diameters small compared to wave- = - aB),
length (A). Illustrative curves exhibited the low-frequency
effects of boss shape and orientation on the coherent reflect- with ' as the direction of incidence. The corresponding
ed intensity (R) and forward-scattered (specular) and wave reflected from a smooth plane at z = 0 is the image
backscattered cross sections per unit area [ or(J) and a(b) 1. = exp(ik.r), k = kk, k = i(a,/3), (3)

The present article provides high-frequency analogs for with k as the direction of specular reflection. For brevity we
boss diameters large compared to wavelength. We use an define
asymptotic approximation' for scattering by a triaxial ellip-
soid that includes the geometrically reflected term and the s = k - i and s' = l -i. (4)

diffracted (shadow forming) term, and construct the re- When convenient, we work with the direction cosines
quired scattering amplitude for a single boss by the image i= yxi + rYyk + Yri, (5)
procedure.2 5 For the distribution of bosses, the correspond-
ing results2 for R and or in terms of the isolated boss ampli- with r = sin a cos/3, ry = sin a sin/3, and r = cos a.
tude are mutually consistent in fulfilling the energy principle For an ellipsoid centered at the orgin with principal se-
and account for coherent multiple scattering. midiameters a, b, c along x, y, z, we write the dyadic9 asso-

r We consider both isotropic and anisotropic surfaces, ciated with the ellipsoid as
Sand emphasize plots versus angle (a) of incidence (from the = xx j i

E~ '- .. E + + - (6)
normal) for R, r(,/), and a(b). Orientation effects are a2 + c (

, shown by plots with azimuthal angle (fl) as the parameter. so that r.Er = I is the equation of the ellipsoid. The use of FE
The graphs for broadside incidence (/3 = 0) are similar to6 and its reciprocal

O 0 o a those obtained for the striated case discussed earlier.' Closed
c form approximations forR and crare included to indicate the I 2,k + cIl7

9E =axxi+ b2 ~c (7)
dependence on parameters and to facilitate data inversion.

0 Various illustrations and applications we consider were mo- such that -. FE = 1 is the identity, leads to simple forms for
tivated by the programs of Diachok,? Roderick,' and others. factors that arise in the development.

We let g(,k) denote the scattering amplitude for 0$ inci-
I. NOTATION dent on an ellipsoid at the phase origin. The scattering ampli-

We write the position vector as tude for the corresponding boss on a rigid or free base plane
excited by ± 6' follows by superposition2

r = r(,q'), (1) f, (,k') =g+ (,,k) +g± (,k'). (8)

(Oq') = sin 0(cos p i + sin V k) + cos 0 i, The coherent reflected field, the ensemble averaged
wave for the base plane plus bosses, has the form2

Visiting from the Department of Mathematical Sciences, Loyola Univer-

sity, Chicago, IL 60626. 0(l +Z)/(l -Z), Z=7rntk,k')/k 2 cosa, (9)
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where n is the average number of bosses in unit area. As Thus, although (14) need not vanish for i -. k, the appropri-
before, we suppress subscripts ± where feasible. ate form (15) vanishes in the limit. In particular, for q = 9,

The coherent power reflection coefficient equals2  and a = ir/2 - r, "z 0 (corresponding to near-grazing inci-

R =I( + Z)/( I - Z)1
2
, (10) denceand observation in the specular direction for theboss),

andthe incoherent scattering in a direction i is specified by g, (i lk') - k 2rab( I - 4ikAc2/3)/(2cA). (16)

the differential scattering cross section per unit area2 : The integral forg 2 may be evaluated exactly4 in terms of

o( ,k') . (n/k 2) [f(,k')/( - Z) 2. (11) the Bessel function J,. Using Green's theorem, we replace
the surface of integration by the elliptic disk that closes the

Energy conservation for lossless bosses is exhibited by (10) shadowed side of the ellipsoid, i.e., by the disk defined by the
and ( 11 ) in that the total scattering from unit area, the inte- shadow boundary k. = 0:
gral of ( 11 ) over the observer's half-space of directions, sat-

iSfieS2  r E.k=--- + 1 + =-- 0. (17)
a 2  b 2  c2

(I - R)cos a =(12) Thus, if L, and L2 are the directed semidiameters of the disk,

Although more complete forms are available in terms of then

the statistical mechanics pair correlation function,3 these g2 (F,k) - (k 'abc/2r) ( + i).QJ, ( U)/U,
simple forms for sparse distributions appear appropriate for (18)
the applications in view." As discussed before,' for some U 2 = k 2[ (L,.s)2 + (L2.s) 2 ].
purposes a single scattering approximation may be better For the triaxial ellipsoid we write
except near grazing incidence.

L=L Lj=Lj(Ki i+mi+n,i), i = 1,2, (19)

II. LARGE ELLIPSOIDAL BOSSES where the semidiameters are given by")

For an ellipsoid whose semidiameters are large corn- L 2 [B (B 2 - 4AC)= 2/2A,

pared to wavelength, a Kirchhoff (tangent plane) approxi- A = k.Ek, B = (a2 + b 2 + C
2

)A - 1, (20)
mation in the surface integral representation of g suffices for
the essentials. As before,2 '4 for rigid ( + ) or free ( - ) sur-(abc) 2 k.E

faces, we obtain a geometrically reflected term g, and a dif- Their orientations are expressed in terms of the direction
fracted (shadow forming) beam g2: cosines'0

g. (L9) =g,(l) ±g,(,k), =

(13) tn -y,(r - a 2r2- c)/di, (21)

k - . eik'p -  i'"( -- )ds(p). n, y.('j -a 2 )(r-b)/d,,4 - 4r ,i.2

Here, p is the radius vector to a point on the ellipsoid's sur- with ri Li, and

face and i, is the normal. The subscripts I and 2 indicate d= [y (r - b2)(r _ c)]
integration over the irradiated and shadowed sides of the
ellipsoid; the planar curve kI = 0 corresponds to the shad-
ow boundary. + [y. (2 -a2 )(r2 - b 2) 1 2.

The integral over the irradiated side may be evaluated
by the method of stationary phase (except near the forward In particular, for incidence in the xz plane (/3 0, corre-
direction). Thus, in terms of the principal radii of curvature sponding to broadside incidence at grazing if b > a),

Pt and p. at the point of reflection r, L, = b5', L, = (a"/d) cos a i - (c2/d) sin a i,

g,(i.k) = ike s"(po,2/2 ) = ik(abc/2)De ,kP d= (a2 cos2 a + c2 sin 2 a) 112 , (22)
(14) U 2 =k 2 -{b 2 sin' O sin2 T

P-"= s'E- '-s, D =s's/P2.
± [ a2 cos a ( si aa- sin 9 cos q')

The form for g, exhibited in (14) is not valid near the

forward direction (Ri ) where the method of stationary - c2 sin a (cos a - cos 0) 2/d 2}.
phase breaks down. Near the forward direction we expand For incidence in the yz plane (fl = 90, nose-on incidence
the integrand as a Taylor series and integrate the first two for b > a), we obtain L, and U from the above by interchang-
terms exactly to obtain ing i and k, a and b, as well as sin q and cos q. Ifa = b, then

g, (ik) - (k 2 abc/4r)Q.s - ik '(abc/6) (s-s); (22) corresponds to the spheroid with symmetry axis along
Q .', i. Ifa = b = c, then U reduces to the form obtained earlier2

r2=k.= (A sin a)2+ (cosa) 2 C2 , (15) for the sphere,

U = kaI I - (i-k) 21" (23)
A2 = (sin -) 2/b- + ( cosf) 2/a 2, Substituting ( 13), (14), and ( 18) intofof (8), we write

ss=2(1 -. ). Zof (9) as
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_c__( 1  A sin2 a J,(2ku cos a) wabc2 [D 2 + (D') 2]2 cosa k 2u cos a 41r(l + wcF/2 cos a)2'

ie - 2jkc cm a which drops the rapidly oscillatory terms and provides a
'kc2r baseline for various practical purposes.

u =(L,)
2 + (L,4)2 1" 2 [(L, n, )2 + (L~n2 )2 ]/ 2

, In particular, in the back direction (0 = a, q' = ir +,6)

(24) for a not near normal incidence,

where w = nirab (the packing fraction) is the fraction of the 01, (b) = wabc2[-4+( + ' +c2 cos' a) -21

base plane covered by bosses. 41r( ( 3 wc2)2 cos a)2. '

III. SPECIAL CASES with 52 = (a cos #)
2 + (b sin f) 2.

Aa 2 tIn the forward (specular, i.e., 0 = a, 97 =fl) direction,As discussed previously for hemispherical bosses, 2 the for a not near grazing,

first term of Z of (24) (the shadow term arising from the fe
image wave) is the largest; the second (the shadow term of r, 2 w1g 2 (kk) 

12

the incident wave) is negligible except near grazing. The k 2nfab( 1 + wcF/2 cos a)2

third term (the incident wave reflected at the curved sur- wF 2k 2 abc2

face) indicates specular reflection at the tangent plane of the ) 2  (33)
bosses. This term is significant in the reflection coefficient A2 41r(1 + wcl/2 cos a

when wcF/2 cos a= 1. For near-grazing incidence we re- If 1/C2 > 0, the above form has a local maximum

place this last term by the alternate form ofg, obtained from 0 '^ () at a = a, where

(16). cos2 a, = A2/[ (A 2 -l1c 2) + t 3],

Thus, up to moderately large values of a and wcF/ wk 2 abc2A 2t 2/3

2 cos a 1 1, we keep only the leading term of Z and use a,( 41r[ (A2 _ /c 2) + t 
2 13 j [1 + (wc/2)i 1/3]2

R z(0 -wc/2cosa)/(l +wc/2cosa)]2. (25) t=2(A2 - l/c 2)/wc. (34)

To this level of approximation, R vanishes at a = ao, with At normal incidence, both u(j) and ar(b) correspond to

tan ao = (2/wcA) (1 - w2/4)' /2. (26) backscattering:

At normal incidence, (25) reduces to or± = ± (b)

R ( -w/2)/(1 + w/2)]2 . (27) wk 2ab I - (i/kc)e --2 kc 2

For wc F/2 cos a= 1, we replace (25) b) 41r" 1 + w/2 - (iw/2kc)e - 2ikc

i - wcr/2 cos a + iwe- 2
,k,,.a/(2kc cos a) 2 wk 2ab

1 + wc/2 cos a - iwe 4i, . (2kc cos a) 41r(1 + w/2) 2 " (35)

(28) For a near grazing, the forward- and backscattering

Forlargera, all thetermsofZof (24) are to be retained. vanish as 0(r 2 ) for the rigid ( + ) surface and as 0(r4 ) for
As a approaches grazing, we use the first two terms of Z of the free ( - ):
(24) and the alternate form of the third term obtained from or ± 0 , k 2 r 2ab /irw, (36)
(16). Consequently, in terms of the grazing angle r, we ob- o+ (b) -7 r2ab/ ( IrwA 2

4), (37)
tain

ai a (D - wk 6c6 abA7 4/161r, (38)

R+ -- 4r/wcA, R -l-wk 'c-Ar ; r-0. a_ (b) -WIkabr , (39)
(29) Ir 25 cAU

The differential scattering cross sections are given by where U reduces to

(I I) in terms of f of (8) and Z of (24). For directions of U = k I (2 - b 2)sin 2/3 I/(abA).
observation not near the specular and a not near grazing, we
may neglect the diffracted wave contributions to f [i.e.,
g(,k) and g2(i,l')] and retain only the first term of Z. IV. NUMERICAL ILLUSTRATIONS
Thus We illustrate features of R and the forward-scattered

wabc2  De iAP + D'e ikF 2 (specular) and backscattered cross sections, ay and or(b)
or, =4 I [written as S(F) and S(B) on the graphs to facilitate com-

41 I + wc2 cos a parison with the earlier' normalized versions], by plots ver-
(P') = s'.E- 's', D' = s'-s'/(P')2 . (30) sus angle (a) from the normal for rigid ( + ) and free ( - )

The rapidly oscillating cross terms may be ignored except surfaces. We consider both isotropic and anisotropic sur-
near grazing observation since they will not contribute sig- faces, and emphasize the roles of boss shape and boss orien-
nificantly when integrated over a portion of the distribution tation. For isotropic surfaces we compare results for hemi-
or over ka (with a as the minimum semidiameter). Conse- spheroidal bosses of constant circular base area (rra 2 ) with
quently, for both free and rigid surfaces boss height (c) as the parameter. For anisotropic surfaces,
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we consider elongated ridgelike and vertical disklike bosses
by using results for spheroids, as well as generalizations de-
rived for triaxial ellipsoids. Plots versus a with azimuthal
angle P as the parameter (such that = 0" corresponds to
broadside incidence at grazing, and # = 90 to nose-on) ex-
hibit the effect of surface anisotropy. For the triaxial case, we D
fix the boss volume (and height and base area) but vary the
ratio of the base diameters to separate shape effects from
volume effects.

For all cases, we take k = 20 (with 2d as the smallest c,
diameter) and w = 0.2 (and discount correlations). In the 0 is 30 45 60 75 90

figures, curves for the rigid surfaces are shown solid and
curves for the free surfaces are dotted. Curves obtained from -
Eqs. (25), (32), and (33) are shown dashed; these serve as
baselines for the oscillations of R, a(b), and cr(f), respec-
tively, arising from interference of the wave components in 0

the more complete expressions. Computations with the ex- -

plicit approximations of (13) based on (14)-(18) suffice in
general. However, in calculating R we use the uniform inte-
gral approximation (13) forg, toavoid switching from (14)
to (15) for a near grazing; computations based on g, of (14) 0

gave unrealistically high values for R - near grazing for 0 15 30 45 60 75 90

some values of the parameters.
Figures 1-3 correspond to isotropic distributions. Fig-

ure I compares R for hemispheroids with fixed circular base

In

Z 0 15 30 45 60 75 90

DGREES FR13M NQRMhRL

FIG. 2. The backscattering curves from( I I) and dashed bases from (32)
associated with R of Fig. I. The upper, center, and lower panels correspond

to c = 4, 3, and 2, respectively.

S .: 30 45 60 75 90

80 05 90
DEGREES FROM NORMAL

FIG I. G aphs of the reflection coefficient R of (10) for hemispheroidal
bosses of fixed base radius a = 2 and height c as the parameter. The solid 1 i' i0 45 so 75 96
and dotted curves obtained from (24) correspond to rigid ( + ) and free DEGREES FROI NORMAL
( - ) surfaces, respectively; the dashed baseline curves were obtained from
(25). The upperpanelshowsthefull rangeofangleofincidence (a), while FIG. 3. The forward scattering from (II) and dashed bases from (33)
'he lowcr shows the near-grazing region. The lower curves for a not near 90 associated with R of Fig. I. The higher curves apply for the larger values of
apply for the larger values of c = 2,3,4. c = 4, 1.2.

2006 J. Acost. Soc. Am., Vol. 83, No. 6, June 1988 R. J. Lucas and V. Twersky: Reflection and scattering of sound 2008
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o-o

0 -

0 is 30 45 60 75 9

0 0 , 5 C 75 90 -

o 0 -
8

0 -. ...

o-0 is 30 45 60 75 90

N - ,.

75 80 85 90

DEGREES FROM NORMAL M
U'

FIG. 4. Graphs of R for elongated ridgelike bosses (a.b~c) M14, 0 with
azimuthal angle, as parameter. The higher curves for a not near 90 corre-
spond to the larger values of a = 90, 45°, and 0' (with 0 as broadside inci-
dence at grazing).

(of radius a = 2) and boss height (c = 2,3,4) as the param- 0 15 30 45 60 75

eter. The associated backscattering and forward scattering DEGREES FROM NORMAL

are shown in Figs. 2 and 3. Scattering effects increase as the FIG. 5. The backscattering curves associated with Fig. 4. The top, center,

boss height (and scatterer volume) increases. To the present and lower panels correspond tof, = 90%. 45', and 0", respectively.

level of approximation, the R baseline curves in Fig. I show
zeros (shifted to smaller a with increasing c) corresponding
to (26), and the forward-scattering baseline curves in Fig. 3
show maxima whose location and magnitude are determined
by (34).

Plots for anisotropic distributions of aligned elongated
ridgelike bosses or vertical disklike bosses, as well as triaxial
generalizations, are shown in Figs. 4-12. The dependence tn A
azimuthal angle is illustrated in Figs. 4-9, where we take ",
as the parameter. The essentials are indicated by the simple
approximations (25), (32), and (33) through their depen- -

dence on A(/3) and 5(fl). For ridgelike bosses .
(a,b,c) = (1,4,1) asin Figs. 4-6, A decreases from I to' as/i U"

increases from 0' to 90", while (5 increases from 1 to 4. Thus, -
for moderate a, R of Fig. 4 increases with increasing # as
indicated by the baseline form (35). The trend is maintained
at near grazing for the free surface and reversed for the rigid; -"
see Eq. (29). The zero of R is shifted to larger values of a
with increasingf#as indicated by (26), as is the minimum of
R . Similarly, the baseline curves for the back- and forward _

scattering in Figs. 5 and 6 are higher for/i = 0* (broadside 0 3'0 4s 60 75 90

incidence) than for fl = 90*' (nose-on). Analogous plots of DEGREES FROM NORMAL

R, o(b), and o(f) for vertical disklike bosses FIG. 6. The forward-scattering curves associated with Fig. 4. The higher
(a,b,c) = (1,4,4) are shown in Figs. 7-9. curves correspond to the smaller values ofr = 0", 45, and 90'.
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C 3 ~ 0 75 go

DEGREES FROM NORMAL

FIG. 9. The forward-scattering curves associated with Fig. 7. The higher
curves correspond to the smaller values of~ j6 (, 45%, and 90r.

'5 50 50

DECREE5 '-RY' NORMAL.

FIG. 7. Plots of R for vertical disklike bosses (0~,0) =1,4,4) with azi-
muthal angle flas the parameter. The higher curves for a not near 90' corre-
spond to the larger values of fl 90%, 45', and 0.

C is X is so 75 90 ,

0 30 45 4,5 7E

~PAA M~MDEGREES FROM NORMAL

1 C Is 6C FI.90Gah fRfr railbse ihhegtc Iadcntn
SGES -Rr NORA I. 0 rps fRfrtrailbssswt eih ndcntn

base area irab = rra2: = 7r4, with Ias the parameter, i.e.. for fixed boss vol-
FIG. It. The backscattering curves associated with Fig. 7. The top, center. ume. The higher curves for a not near 9(rcorrespond to I = 2 and the lower
and lower panels correspond to fi = 90Y, 45', and 0., respectively curves to t 3.
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Figures 10-12 for c = 1 and ab = a2t = 4 with = 2,3
serve to separate shape and volume effects. The bosses for
the two cases have the same volume and base area, but differ
in the ratio of the base diameters a/b.
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