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ABSTRACT

The sound generated by rainfall at sea is caused by raindrops of a wide range of sizes
and angles of incidence, which fall at their terminal velocities. The purpose of this labo-
ratory research has been to make complete acoustical measurements of the sound gen-
erated by single water drops striking the water surface at their terminal velocities for
normal and oblique incidence. Thesc measurements have included the total acoustic
energy, peak axial pressure, frequency spectrum and polar radiation pattern.

Depending on the drop size and the angle of incidence, many drops falling at their
terminal velocities create bubbles. At all angles of incidence studied here the sound ra-
diated by an individual bubble contains more energy than the sound from an individual
impact.

These results, using terminal velocities and oblique trajectories, are very different
from the published normal incidence, non-terminal velocity characterizations. For ex-
ample bubble frequencies other than the well known 14 kHz peak are found. Also the
energy of the impact sound increases significantly for larger drop sizes and for larger
deviations from normal trajectories. Furthermore, drops of diameter 0.8 mm to 1 mm,
which always produce bubbles at normal incidence, create bubbles only about 10 %% of
the impacts at oblique incidence. These observations provide specific reasons for the
previously unexplained broadening, shifting and reduction in magnitude of the 14 kHz
spectral peak of the rain noise in the presence of winds at sea.
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1. INTRODUCTION

There have been no theoretical studies of the sound generated by rainfall at oblique
incidence, which most probably alwavs occurs because of the wind as well as the
roughness of the sea surface. Instead there have been theoretical studies (Franz, 1959),
(Longuet-Higgins, 1989), (Oguz and Prosperetti, 1989) for normal incidence. Also there
have been no experimental results published before for oblique incidence of single drops.
Instead there have been several experiments for drops at normal and non-terminal ve-
locities. The purpose of this thesis is to study the sound generated by raindrops striking
the water surface at oblique incidence and at normal incidence.

Several previous experiments, both with natural and artificial rain, have verified that
the main feature of the noise spectrum generated by rain at sca is a peak at about 14
kHz. (Nvstuen and Farmer, 1987). This peak broadens, shifts to higher frequencies and
decreases in magnitude as the wind speed increases (Figure 1).

G.J.Franz (1959) concluded a laboratory study of single drops by asserting that rain
drops create noise by two different mechanisms: IMPACT and OSCILLATION of the
bubbles created by the drops. He also concluded that at low impact velocities bubble
noise domunates but at high impact velocities bubbles are less likely to be formed so that
the sound generated by a raindrop at its terminal velocitv could be considered as the
sounrd from the impact only.

Later studies showed that oscillating air bubbles are more important noise sources
than Franz had argued. Pumphrev and Crum (1989) conducted experiments for
normally incident single drops with different sizes and different impact velocities as
shown in Iigure 2. Their explanation follows : the shaded area is a region of consistent
bubble creation. In the range below this region the impact is not energetic enough to
create a bubble. Above the region the encrgy is excessive. At still higher velocities and
drop sizes (upper right corner) there is another region for which bubbles occur in an ir-
regular and random fashion. The curve at the left of Figure 2 shows the terminal ve-
locity of drops as a function drop diameter. The range of drop diameters where this
terminal velocity curve intersects the shaded region and causes bubble entrainment is the

narrow rcgion, stated by them as

0.8 mm < DROP DIAMETER < 1.1 mm
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Figure 1. Noise at sea: This figure is taken from Nystuen and Farmer (1987).

It shows the noise spectra at sea for dillcrent wind conditicns.
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Crum and Pumphrey argue that the bubbles entrained by these drops have narrowly
defined sizes and that thev oscillate at a frequency around 14.5 kHz. Only drops in this
range entrain bubbles with high probability. Since bubble sound is louder and in a
narrower frequency band than the impact sound, they conclude that these particular
drops lead to the formation of the 14 kHz peak in rainfall. Furthermore, since drops
of this bubble-producing size are likely present in both natural and artificial rain they
conclude that, even though a small fraction of all drops are capable of creating bubbles,
the acoustical effect of this range of drops is dominant.

In this thesis previous experimental results for normal incidence are first verified for
small drop sizes which strike the water surface at their terminal velocities. Then acous-
tical radiation from single water drops striking the water surface at terminal velocity and

oblique incidence 1s studied.




1. THEORY OF THE EXPERIMENT

Since the radiation pattern of the noise from the bubble as well as the impact noise
is assumed to be dipole radiation for both normal and oblique incidence we can find the
total acoustic energy produced by knowing the axial pressure. Assuming p,,(r) is the
measured acoustic pressure on the axis of the dipole at range R, p, is the pressure at 1
meter, p,, is the acoustic pressurc on the axis at 1 meter. For a dipole source
Py = P COs § , where 6 is the angle from the axis. So the acoustic energy can be written
as:

Energy = J'j (INTENSITY)dSd:
3

Energy = ijlwlde[

5

where w, is the particle velocity and dS is the element of area.

When kR > 3 we can use w; = {T]C' with less than 10 %o error in magnitude, where

p is the density of the water, ¢ is the speed of sound in the water and k is the acoustic
wave number. Doing the area integration by using the ring element (2zR sin 8)Rd8 we
can find that

Energy R? El
=(2n e )

2 20
— cos 0 sin 8460
Tine Piax
0

T 22
= (25, R Plax

Because the impact sound and the bubble sound are not continuous, it is convenient to
do the integration over time by a summation for elements of time in the digitized form.

R’ 2
3pC )Zplaxt

Energy = (2n




This can be compared with the kinetic energy of the rain drop just before the impact

time where

KE = ';— my*




)

HI. EXPERIMENT

A. EQUIPMENT
1. Mechanical

An Eppendorf digital pipette which can produce accurately metered drops from
0.1 u liter to 10 u liter (0.58 mm to 2.67 mm diameter) was used to create definite sizes
of artificial raindrops. The dropper was placed on a plate located at a fixed position of
1.8 meter over the water surface to make sure that all drops strike at the same point over
the axial hydrophone. At this height all drops smaller than 0.985 mm diameter reach
their terminal velocities (Wang and Pruppacher, 1977). The hvdrophones were placed
in an anechoic water tank 10 ft x 10 ft x 9.5 ft deep with redwood wedge absorbers.

Oblique incidence was obtained by using a fan to blow the drop horizontally,
immediate after it started to fall. The water surface was not disturbed by the wind.

2. Optical

To observe the angle of incidence for the oblique incidence case a video camera
with 7 lux light requirement and high speed shutter was used together with an HQ video
playver. The plaver (Hitachi VT 498 EM) had adjustible time, frame by frame slow mo-
tion and view freezing capability which made possible both drop velocity measurements
as well as incidence angle.

Alternatively a camera (Canon AE-1) was also used together with an adjustable
frequency stroboscope to observe both the impact velocity and the incidence angle of the
drops. Lor both techniques we used a 5 cm x 5 ¢cm string grid behind the paths of the
drops to locate the position of the drop.

3. Acoustical
An ITC 6050 C hydrophone with high sensitivity (-163 dB ref 1V per u Pa) and
flat frequency response from 1 to 40 kHz was used to observe the impact and bubble
noise for the normal incidence case. For oblique incidence a nine hyvdrophone array was
used. These hydrophones were either LC10 of sensitivity -198 dB or our own
hydrophones constructed of 6 mm diamcter cvlindrical lead zirconate elements. The
sensitivitics of our own hvdrophones are -205 dB. The array was mounted on a 1 8 inch

diameter thin semu-circular rod bent to 30 centimeter radius. The hvdrophones were




placed every 10 or 20 degrees along the rod. The hydrophones were calibrated by ab.-
solute reciprocity and by inter-comparison, using a ping or the impulse from a reference
raindrop.

4. Electronic

To investigate the polar radiation pattern, nine hydrophones, nine preamplifiers,
nine high pass filters, were the input to an IBM PC -XT computer with an
RC-Electronics analog to digital converter board. A software package, called
COMPUTERSCOPE, having a maximum A’D conversion rate of 10¢ samples per sec-
ond and 12 bit amplitude resolution processed the signals. We made our own pream-
plifiers as shown in Appendices 1 and 2.

Also to calibrate the hydrophones, an HP-4192 Impedance Analyvzer, a signal
generator, a power amplifier and a transducer were used. The transducer was placed in
the far field and was driven with pulsed signals to prevent scattering from the tank walls.

5. Experimental Procedure

The experimental setup was as shown in Figure 3. The noise created by the
bubble and the impact was recorded by the hydrophone at depth of 1 m, directly below
the point of impact for normal incidence and at depth of 20 cm for oblique incidence and
for radiation pattern observations. The output of the hydrophone was amplified and
passed through a high pass filter. After filtering all the noise below 8 kHz the signal was
sent to an IBM PC-XT Computer which had an RC Electronics analog to digital con-
verter board with sixteen input channels.This svstem made it possible to observe the
outputs of several different hydrophones, trigger with a desired voltage level, find out the
frequency spectrum, maximum pressures, total energies and radiation patterns of both
the bubble and the impact when used with the software package called Computerscope.
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B. NORMAL INCIDENCE

Initially, different sizes of drops between 0.3 u 1(0.83mm) to 0.5 z 1(0.985 mm di-
ameter) that fell normally incident to the tank were used. The fraction of drops that
created bubbles was noted for all different drop sizes to compare with the experimental
results of Crum and Pumphrey (1989) which is shown in Figure 2. The bubble creation
region curve was re-plotted including our data points for near terminal velocities as
shown in Figure 4. Our data agreed with theirs, i.e,,98% of the drops created bubbles.

10
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1. Peak Axial Pressure

The noise generated by a typical impact is shown in Figure § with the bubble
noise created by the same drop 17.7 ms after the impact. The same impact and bubble
radiation are shown in Figures 6 and 7, with different scales to see the details. As we
can see from Figure 5, the peak axial pressure of the bubble is much greater than the
peak axial pressure of the impact. For the impact in Figure 6 the peak axial pressure is
460 milivolt after 40 dB amplification The sensitivity of the hydrophone is -163 dB ref
1V per u pascal and it is located 20 ¢cm under the water surface. So the calculation of
the peak axial pressure is as follows :

—163 = 20 log,, ~2—
ref

Since .X,,,is 1 V per ¢ pa, we can write

—163
20

= log,oX

ref 1V per u Pa

X=708x107°

V per u Pa
1 _ 6 uP
T = 141 x 10 T
- 141_1)‘7_
volt

The voltage output is 400 mV after 100 times amplification for the hydrophone is on the
axis and 20 cm away {rom the point of impact. So the voltage at the hydrophone for 20
cmis 4.6 mV and for I mis 920 4 V. To find the axial pressure at 1 meter we must simply
multiply this value by % The result for this particular case is 0.13 pascal. The calcu-
lation of the peak axial pressure for the bubbles is the same as for the impacts.

The peak axial pressure for the bubbles and the impacts of different sizes of
drops werc measured. The average values with standard deviations, and maximum and
minimum pressures for different sizes of drops are shown in Figures 8 and 9. The

histograms of peak axial pressures for impacts and bubbles arc shown in Figures 10 and
11.




Figure 5.  Acoustic pressure of an impact and a bubble.: Impact and bubble sound
of a 0.83 mm diameter drop. The drop is falling at its terminal velocity,
perpendicular to the surface. The time between vertical grid markers 1s

400 microseconds.
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Figure 6. Acoustic pressure caused by impact: The same impact shown in I'igurc
S, with 100 microseconds between vertical grid lines and the amplitude

incrcased by a factor of 2.5 to see the details.
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Figure 7.

Acoustic pressure caused by bubble: The same bubble of Figure 5, with
200 microseconds between vertical grid members and the amplitude de-
creascd by a factor of 2 to sec the details.

15
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2. Total Acoustic Energy

Total acoustic energy radiated both by the bubble and the impact were calcu-
lated by using the formulas described in the previous chapter. The calculation of the
radiated acoustic energies is as follows: for the impact we measured the output voltage
at every 2 u sec and converted this value to pressure using the formulation described in
the previous section of this chapter. Then by using the energy formula given in Chapter
2 (Theory of the experiment), we found the acoustic energy radiated by the impact.-We
calculated the acoustic energy radiated by the bubbles first again using the output volt-
ages every 2 u second. Then for a simplified calculation we assumed a constant pressure
equal to the each peak pressure for each half period cycle and calculated the energy for
such an alternating square wave signal. This was compared with the energy calculated
accurately for the 2 u second recording using 20 bubbles as a test population, we found
that the accurate calculation gave 67 % of the energy of the approximate square wave
calculation. This value i1s very close the rms amplitude of each half cycle, which is 71
%% of the peak amplitude. Based on this calculation we calculated the acoustic energies
radiated by the bubbles by using only the peak pressures of the half cycles and taking
the 67 %, of the result obtained. For example, for one of the bubbles we studied, p,,, ,
the consecutive half cycle peak pressures, were 0.38, -0.5, 0.23, -0.19, 0.14, -0.15 etc.
pascal with an oscillation period of 72 u sec. Using the formula :

Energy = (2n

R2
30 prax Ar

where the squared pressures are 0.14, 0.258, 0.055, 0.04, 0.02 etc. Pa*> , At = 36 u sec-

ond, R = 20 cm, and 2n R
3pc

therefore the energy is 1.06 x 10~ joule.

= 5.66 x 10-* The sum of squared pressures is 0.6 Pa? and

The average values for the impact and bubble acoustic noise are shown in Fig-
ures 12 and 13, with standard deviations and with maximium and minimum energies
obtained for three different drop sizes. The energyv histograms for impacts and bubbles
obtained during the normal incidence experiment are also shown in Figures 14 and 15.

The ratio of the total average acoustic energy (impact and the bubble) to the calculated




Kinetic energy of the drops just before the impact is 1.43 x 10~¢ for 0.83 mm diameter
drops, 6.6 x 10-" for 0.914 mm and 4.51 x 10-" for 0.985 mm diameter drops. Where the

Kinetic energies are 1.58 x 10-¢ Joule for 0.83 mm, 2.74 x 10-* Joule for 0.914 mm and
3.61 x 10-¢ Joule for 0.985 mm diameter drops.

21
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drops (100 of cach size) at normal incidence and terminal velocities.
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Figure 15. Acoustic energy histograms of the bubbles: Acoustic energies for 300
drops (100 of cach sizc) at normal incidence and terminal velocitics.
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3. Frequency Specta

The central frequency for the impact was found by taking its Fourier Transform.
A frequency spectrum of impact noise for a normally incidenting 0.83 mm diameter drop
is shown in Figure 16. Histograms of the impact peak frequency for 0.83 to 0.985 mm
diameter, normal incidence drops, falling with their terminal velocities are shown in
Figure 17. Because the impact signal approximates a doublet (two opposed delta func-
tions), its spectrum is very broad. Its peak at about 15 kHz agrees with the prediction
by Nvstuen (1986). ]

The bubbles are similar to Type Al bubbles in breaking waves (Medwin and
Beaky, 1989), which were described as simply damped spherical bubbles. The period is
easily found by measuring the duration between two consecutive peaks. The frequency
is found simply by taking the reciprocal of the period. The resonance frequencies of the
bubble radiation for different sizes of drops are shown in Figure 18.
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Figure 16. Fiequency spectrum of the impact sound.: I'or a 0.83 mun (diameter)

drop normally incidenting with its terminal velocity.
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4. Radiation Pattern

To find out the radiation pattern of the impact and the bubble noises we first
used the 8 hydrophone array shown in Figure 19, with the hydrophones placed every 20
degrees on each side of the vertical axis with a highly sensitive hydrophone on the center
for triggering. First it was verified that the polar radiation pattern is nearly same as the
theoretical dipole radiation pattern, which is the p,, cos 8 as described in the previous
“hapter. Since the pressure on both sides of the axis was verified to be symmetric, the
array was changed as shown in Figure 20, with hydrophones placed only on one side of
the axis with 10 degrees between them to provide a more accurate beam pattern.

The polar radiation patterns for normal incidence drops of different sizes are as
shown in Figure 21 including their theoretical radiation patterns. As we can see from
Figure 21, the radiation pattern is not an exact dipole but is very close to a dipole.
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C. OBLIQUE INCIDENCE

The same experimental procedure used for normal incidence drops was followed to
record and observe the acoustical properties of impacts and entrained bubbles for ob-
lique incidence drops. A fan was used to impart a horizontal velocity. To obtain the
angle of incidence and the impact velocity two different methods were used. The first
technique was to take still photographs of drops in their path by using a stroboscope
calibrated to a certain frequency and measuring the distance the drop travelled between
two consecutive flashes of the stroboscope. This value was divided by the time between
two consecutive flashes to find the velocity of the drops. A § cm x S cm string grid was
used behind the path of the drops to obtain maximum accuracy. The angle of incidence
was measured by using the same grid. The second technique was to take a motion pic-
ture of the drops using a video camera. Drop angles and velocities were then obtained
by using a video recorder that has the capability of slow motion (frame by frame) with
adjustable speed. We mostly used the second technique which made the observation of
the angle and the impact velocity much easier. To measure the distances for the second
technique again the string grid was used.

1. Peak Axial Pressure
The peak axial pressure for the bubbles and the impacts of different sizes of
drops were mecasured for different incidence angles. The axis is again defined as being
perpendicular to the water surface. The average pressures are shown in Figures 22 and
23, for different drop sizes and different angles of incidence.
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2. Total Acoustic Energy

Total acoustic energy radiated both by the bubble and the impact were calcu-
lated by using the formulas described in the previous chapter for a dipole perpendicular
to the surface. The maximum, minimum and average acoustic energies are shown in
Figures 29 to 26. The average acoustic energies radiated by the oblique impacts of dif-
ferent drop sizes are shown in Figure 27. It was observed that at high incidence angles
the energy radiated by the impact increases as can be seen from Figure 27.

Maximum, minimum and average encrgies radiated by oblique incidence bub-
bles for different drop sizes are shown in Figures 28 to 30. Average energies radiated
by bubbles of different drop sizes are as shown in Figure 31. As we can see from this
figure average acoustic energies of bubbles do not change significantly with incidence
angle. For all these figures, around 430 drops that created bubbles are used (around 150
for each size).
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Figure 24.

Max. min. and avg. impact acoustic energies for 0.83 mm drops
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Figure 27. Average impact acoustic energies of the drops at oblique incidence
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Figure 28. Radiated bubble energy for 0.83 mm drops: Maximum, minimum and
average acoustic energy radiated by the bubbles of oblique incidence

drops, observed for diflerent incidence angles.
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3. Frequency Spectra

The spectrum for the impact was found by taking the FFT as in the normal in-
cidence case. The frequency spectrum of a tvpical impact at oblique incidence is shown
in Figure 32. Impacts of all drop sizes in our range (0.3 u 1to 0.5 u 1, or in other terms
0.83 mm to 0.985 mm diameter) had broad spectral peaks of nearly at the same fre-
quencies for all different incidence angles. The peak frequency shifted slightly to lower
frequencies for oblique incidence with respect to the normal incidence case. The average
peak frequencies of the impacts is shown in Figure 33.

Frequencies of bubbles were found from the period of the bubbles, following the
same method as uscd for normal incidence.

The range of resonance frequencies of bubbles for 0.83 to 0.985 mm drops for
oblique incidence are as shown in Figures 34 to 36. The average frequencies of the
bubble radiation for different sizes of drops and for different incidence angles are shown

in Figure 37.
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4. Percentage of Drops Creating Bubbles
The percentage of drops that create bubbles decreases sharply with increasing
incidence angle.This is shown in Figure 38. Because bubble creation percentage de-
creases with increasing angle, the ratio of the average bubble energy to the impact en-
ergyv decreases sharply as well, with increasing incidence angle. The ratio of the average
bubble energy to the impact energy is as shown in Figure 39.
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Figure 38.  Percentage of drops that create bubbles
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The ratio of the average bubble energy to the impact energy: The sharp
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5. Radiation Pattern
To determine the radiation pattern of the impact and of the bubble sound the
8 hydrophone array shown in Figure 19 was used with the hydrophones placed every 20
degrees on each side of the vertical axis with a highly sensitive hydrophone on the center
as in the normal incidence case. The polar radiation patterns of bubbles for different

sizes of drops and for different incidence angles are as shown in Figures 40 and 41.

56

]




— 5 0.83mm

180 10-08-06-04-02-6-02-04-06-08-1
6-:08-10—r 0 0O 0.914 mm

© 0.985 mm

270
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degrees incidence
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1IV. CONCLUSIONS

There have been several theoretical studies and laboratory experiments to under-
stand rain noise at the sea. Previous experimental studies have considered only normal
incidence drops, often at less than terminal velocities.They have concentrated on either
bubble noise (Crum and Pumphrey) or impact noise (Franz, Nvstuen). All the theore-
tical studies have also considered only normal incidence (Longuet-Higgins, Prosperetti,
Nvstuen). But rainfall consists of oblique incidence as well as normal incidence drops.
For this reason we have studied both normal and oblique incidence drops. We have ob-
served several new and interesting results as well as verified several previous exper-
imental results.

We can conclude that for both normal a..d oblique incidence, if a bubble is created,
the individual bubble has more energy than the individual impact and the total acoustic
energy (bubble plus impact) of undenvater sound generated by raindrops is much less
than the Kinetic energy of the drops.

For normal incidence, bubble noise increases with decreasing drop size. On the
contrary, impact noise increases with increasing drop size. Both impacts and bubbles
have spectral peaks around 15 kl1z. The radiation pattern for bubble noise is verv close
to dipole.

For oblique incidence, the impact energy increases with both increasing drop size
and increasing incidence angle. When bubbles are formed, the energy per bubble does
not change significantly with changing incidence angle but increases with decreasing
drop size (as in the normal incidence case) for all angles.

The percentage of drops creating bubbles decrcases sharply with increasing incidence
angle. At 20 degrees of incidence, which corresponds to wind speed of 1.3 -'—;I— less then
5 % of the drops create bubbles for the three different drop sizes that we have studied.
Considering this sharp decrease in the percentage of drops creating bubbles, we can
conclude that the average acoustic energy radiated by the bubbles decrtases significantly
with increasing incidence angle.  This explains the reduction in the magnitude of the
spectral peak observed in natural rainfall with increasing incidence angle. in other words
with increasing wind speed.  The average resonance frequencies of bubbles increase for

oblique incidence. On the other hand the impact spectral peak shifts slightly to lower




frequencies. These factors explain the broadening and shifting of the spectral peak ob-

served in natural rainfall with increasing wind speed.
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APPENDIX A. PREAMPLIFIER |

The block diagram of the preamplifier to obtain a flat 58 dB amplification between

5 kHz and 45 kllz.
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APPENDIX B. PREAMPLIFIER 2

The block diagram of the second type, simpler prcamplificr to obtain a flat 55 JB3
amplification between 5 and 45 kHz.
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