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Earli resuip r coherent propagati of sound in correlat random distributions of two-
e tcles of radius a ( minimum separation b 2a small compared to wavelength

S =2 , k) are generalizedto in the refractive and absorptive terms and the corresponding U
C\I bulk parameters to order (ka) The present development includes higher order terms of the earlier C3

multiple scattering by monopoles and dipoles, as well as scattering and multipole-coupling effects k ( o
through quadrupole terms. The correlation aspects are determined by the statistical mechanics U 
radial distribution functionf(R ) for impenetrable particles of diameter b. The new terms for slab , _

I scatterers and spheres involve the integral offR (first moment), or of R fln R for cylinders. The f' C
new packing factor is evaluated exactly for slabs as a simple algebraic function of the volume

~ fraction (0, and it is shown that the bulk index of refraction reduces to that of one particle in the
limit AI. Simila results are obtained for spheres in terms of the Percus-Yevick approximation
and th urealizable limitw 1.

PACS xubr: 43.20. ,4.0B

INTRODUCTON C '  forms or approximations"' 5 for f We obtained explicit
We apply general results for coherent propagation in closed form approximations before2" 6 for the integrals that

pair-correlated random distributions' of particles with mini- arise in the 7 set, and also used the required X integral for
mum separation (b ) of centers small compared to wavelength spheres in a related development' 7 for large kb; for slabs, we
(A = 21r/k ) to obtain additional terms in k of the bulk param- obtain both the W- and ' integrals from our earlier Laplace
eters (CB) and index of refraction (172 = C/B) considered transformation' 3 of the exact Zernike-Prins result' 2 for f.
before.2 Using y for either C, B, or 72, and the form For cylinders, we may use the virial expansion forf to con-

r = Y, + in + iy,, for small kb, we obtained2 results for the sider some of the properties of.4A'.
refractive (r,) and absorptive (ry) terms that were explicitly In the following, for brevity, we use, for example (1:113)
independent of k, and corresponding results for the scatter- to indicate Eq. (113) of Ref. 1, as well as essentially the same
ing (y) loss term to lowest order in k. The explicit approxi- notation as before."-5 We generalize the earlier' multiple
mations for , and ro for spheres, cylinders, and slabs scattering monopole and dipole approximations for C, B,
(m = 3, 2, 1, respectively) depended only on the particles' and il 2 by including scattering and multipole coupling to
radius or half-width (a), their acoustic parameters, and on higher orders in k, as well as quadrupoles (for spheres and
their average number (p) per unit volume: They exhibited cylinders) to lowest order. For slabs and b = 2a (minimum
the statistical aspect of the problem only in the volume frac- separation of slab centers equal to slab thickness), the explic-
tion w = pv with v = v(a) as the volume of one particle. The it approximations for the bulk values (r) reduce to the single
corresponding scattering terms y, were additionally depen- particle values (7') ifw-,l, as required from physical consid-
dent on (ka)" and on the low-frequency limit of the structure erations: r---' because the particles occupy all space. The
factor *'(W) with W = w(b /2a)'" as the volume fraction of limit w-- 1 is not realizable for identical spheres, and we take
impenetrable statistical particles with diameter b>2a, i.e., in w : Wd =0.6 3, with Wd as the densest random packing intro-
general, each particle was visualized as having an acoustical- duced earlier' 6 to define the amorphous solid. However, our
ly transparent coating of thickness (b /2) - a. The present explicit approximations for y for spheres also reduce to 7' as
paper applies the general theory' to derive the leading A- w increases to 1; we regard this as consistent with the ap-
dependent terms of y, and -y; these depend explicitly on proximations involved in scaled particle and Percus-Ye-
(/a) 2 and a/b for all cases, and on appropriate correlation vick4'"6 statistical mechanics theory, and with the closure ap-
integrals A4'(W). We parallel a recent development for the proximation used in the multiple scattering theory.' For
simpler one-parameter optical case.3  cylinders, we take w : wd =0.84 as before.', 2 Were an anal-

The correlation aspects of the distribution we consider ogous closed form available for the X integral for this case,
are determined by the statistical-mechanics radial distribu- we would expect the corresponding approximations for y to
tion function4f(R ) for impenetrable particles, and are exhib- show the same behavior for the nonrealizable limit w-+1.
ited explicitly Fs simple integrals over all R of the total corre- The present application of the general theory' to larger
lation function F= f - 1. The integrals for spherical and kb than before2 plus the recent applications' to large kb
slab particles are of the form f FR " dR (moments ofF), but provide simple forms which explicitly display the functional
cylindrical particles also involvef RF(In R )dR. These can all dependence on all key parameters for many practical appli-
be evaluated numerically from existing statistical mechanics cations. Thus, in these ranges of kb, elaborate machine com-
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putations are no longer required, and the results help delin- results, as illustrated for circular cylinders by (1:10 l)ff. Now
eate the fundamental physical processes. we apply the multiple scattering procedure to obtain F ex-

plicitly for an unbounded distribution. See discussion after
I. GENERAL CONSIDERATIONS (1:102) and (23:37), as well as after (23:50) which considers

For a slab-region distribution and a normally incident the impedance; discrepancies may arise for measurements

wave gOe - (the excess pressure) we write on plane-bounded distributions because of transition region
boundary layers.

e' , k = 21r/ = 2v A,, (1Rewriting (2:30) in the original form (1:89)ff, we use
with 17 as the index of the embedding medium. The corre- (72 - 1) = y p Po + P, + P2, (8)
sponding bulk coherent propagation coefficient is given by c

K = k7Tb/77l = ki7, 712 = C/B, (2) where P 2 does not arise for slabs. The coefficients P. are

where in the simplest cases, C is the relative compressibility determined by the linear system of algebraic equations (ma-
and B - ' is the relative mass density. The values are to be trix equation),
expressed in terms of p and F for pair correlated particles P. ( - v

specified by their isolated scattering amplitudes g(i,.). The = a, 1 + X " 7 . , (9)
normalization for g is such that for lossless particles with A., given in terms of the correlation integrals T,. by

- Re g(,i) = - Reg = jg(i,fi) 2, (3) (2:21)ff. All cases we consider are covered by

with _W as the mean over all directions of observation F. The (
corresponding known 9 scattering coefficients a. are nor- Po = ao I + Po A'o + PIA I + ,

malized by the form 
77

P = a1772(I +P f PIA I-" P2- . ) '  (10)
g = a.; a. = a. (C',B';x), xka, (4) P+(

P,= (V Po -2 +PA,2 +P2_ 2

where 2 =a 2 74(l + 7 + 77 3 ).
C' Cp B Bp . C'- I -- , B'-I-- , Introducing

C , B ,(5) R P ,/ ,P . ( 1

with C' and B'as the particle's relative acoustic parameters, 1 -
such that Im C'> 0 and Im B'< 0 to account for energy sptnd n ul paramet w r

losses; 'S and - are the parametric contrasts. In addition to spo parameters as

the dependence on the relative parameters and on x (the nor- C - 1 Pd c=R n P0

malized radius or half-width), the coefficients depend on the c = R "

dimensionality (m) of the problem. x2
We obtain results for the bulk relative values -7' Po)-m P,;2)

r= IC,B,712 1 in the form m(m + 2) ( 2)

y=r, +n+iy,=F,+x2Fr+ixmF, (6) 2(B 1) B
where '1 (with i = l,cs) depends on m. The forms for F, and c " 7 "
F,, corresponding to multiple scattering by monopoles and
dipoles to lowest order in x for the real and imaginary parts =P, p0 1Po2 2
ofao and a,, were discussed before2 in detail. Now we obtain m(m + 2)_ '

From Rayleigh's results for spherical dipoles,20 the first - m-:. P, + P2, 17'2 = C 'B'. (13)

approximation for sparse uncorrelated distributions corre- The sets of d's are expressed in terms of Bessel functions of
spondsto parguments ka and Ka in the forms (1:96H1: 100); we use the

1i - I --c c A p (7)rp forms in terms off. for spheres, in terms of J. for cylinders,
T k k 2 k 3 'and in terms /o = cos and f, = sin for slabs. See cited

where the order for c (and subsequent sets) corresponds to equations for full details, and (:101 H 1:107) for illustrations
m = 1, 2, 3. In Ref. 18 (1975), for lossless particles with small based on cylinders and for comparisons with the interface
parametric contrast, we multiplied Im i7R by the statistical approximations. As shown in (1:99) and (1:100), the d C and
mechanics packing factor *' to obtain the appropriate 1,, d B sets are proportional to le and .A, respectively; thus
for the correlated case. Appropriate forms for C, and B, for C= I ifC' = 1, and B = I ifB' = 1, as required by the theo-
spheres and slabs were given by Maxwell, 2' and for cylinders reas (2:13) and (2:14) discussed earlier23 in detail.
and spheres by Rayleigh. 22 We obtained r, and Y, from Using (11), we see that the equality 71

2(B - 1)
(2:59), which followed from either the full multiple scatter- - (C - 1) = 1 - 72 is satisfied by the rigorous series forms
ing procedure or an equivalent slab procedure (interface ap- in (13), (12), and (8). To the accuracy indicated for (6), we may
proximation). '.2 For y, the two procedures lead to different replace 712 + cP, by 1 - cP0 within the large parentheses of
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the approximations; thus, the approximations in (13), (12), C = I + wW;
and (8) satisfy the equality to the required accuracy.

The isolated scattering coefficients 9 for the slab, B = I W.1 ___(

a. = a'/(1 - a') with a' imaginary for lossless scatterers, BM=l+ w
are given by

a = ix(' - x2 T0)/(l - x2 Do) + 0(x-),

To = ['(I + 12) + 2_*],2]/6, *]2 = C,/B, = (1 + w ie)/(1 + w a/..), (23)

Do = (,'2 - I - 2'e)/2; (14) where W = C' - I and - = B' - I are complex if absorp-

a, = - ix(_ -x 2 T,)/[l + _q -x 2 D], tion is present. In distinction to the notation in Ref. 2, the

T= [_(1 + '
2

) + 2ie']/6, DI = (6 + W)/2. (15) present set r, includes absorption losses, such that
Im C, >0, ImB, <0, and Im* ----2 Imq, Re*], >0. The

For the cylinder, we use ao=a /( 1-a ) and a corresponding scattering terms are
- a'/(1 - a'/2) in terms of dq 2

a; = i(rx2/4)(W' -X 2 T0)/(1 - x 2 DO) + 0 (x 6), C =xm d. W 2 W , B, - m w

To = [(1 + 7, 2) + _i7, 2]/8, d, = {1,r/4,1}, (24)
Do = (,,2 _ 1 + 2 'L )/4 -D + 2 ''L/4, (16) with packing factors as in (2:33),

where L = ln(2/xc') with c' = 1.781...; (1 - W)" I

a' = - i(ir 2 /4)( -x 2 T,)/[ 1 + -4/2 - x 2 D,] + 0 (x), '=[+(m-)W]"- (

T = I_1-(I +7' 2) -+2'1/8, For small absorption, i.e., for IRe Y'>IIm I, we use

D, = [31e - 24(1 + 2L) + -q,2 _ 1)]/16 C2= Ile 12 and (i/.q) 2 = I_/.I 12 .
From (2:70)

-D,-4 VL/16; (17) C,+iC, [ CB, 2 *2

a= -ir(x/2) 4  /(2+ )+Ox 6). (18) B+-B- IL [ I ±; ]=

For the sphere, a. = a',/[ I - a,/(2n + 1)], 2 C, - B, -- x'd,= w W ., + V V2

a; = i(x3/3)(W - x 2 T)/(1 - x 2 D) + 0 (x), B, B, M.02 , ,
(26)

T0 = [I' + 7V,2) + 2 _VV,2/3J/10, where Re (-q,/21j)corresponds to attenuation via incoherent

Do = (77,2_ I + 2')16; (19) scattering losses. Similarly for the present generalization
based on (6), from analogous decomposition offl 2 = C/B, we

a, = - i(x 3/3)(9 - x 2 T)/(I + 9 /3 -x 2 D) obtain the additional relation

+0 (X7 ), 72 C -2 ~ C, _ 172 B,
(\C B )/ + -- 71 B, (27)

S= [ {1 + *],2) + 2 ]J/1O, which provides a check for the independent derivation ofthe

D, = [3 W - 5 -4 + 2(17'2 - 1)1/30; (20) new terms r,.

a = - ix52 -A/9(5 + 2 _) + 0 (x7 ). (21) II. DISTRIBUTION OF SLABS
Although alternative decompositions may be con- For slabs, we use c = 12p/k = iwix, w = p2a, and re-

structedtothesameaccuracy, thepresentsetsofT'sandD's tain only Po and P, in (8H13) with I, = c + ', and ,0
help delineate the dependence on le = C' - I and and A' as in (1:177) or (2:23). The algebraic system for Po
.4 =B' - 1; comparison ofagiven set for m = 1, 2, 3 indi- and P, is valid for all ka = x, but we consider only the forms
cates the role of dimensionality. If -4 = 0, then the mono- (14) and (15) for a. and the corresponding leading terms of
pole a, dominates; if W" = 0, then the dipole a, dominates, the correlation integrals
The ratios of parametric contrasts in (12) and (13) do not FdR + ik 2p FR dR = - 1 - ixN,
introduce singularities; the explicit approximations dis- A70=2P f
played in the following show that the ratios insure fulfill- A, = ixtN, (28)
ment oftheorems (2:13) and (2:14), so that the development is where the next terms are 0(x). We use the rigorous func-
consistent to the required accuracy. For m = 2 and 3, cylin- tions3

ders and spheres, we also consider 172 for rigid particles
(C'--*0, B'---O) as the limit for e'--*-I and a--*-1. V=(1-W) 2, N= (3w(1- + -,

Using (8H21) to lowest orders in x of the real and imagi- 3 2
nary parts of all components, we reconstruct (2:63), (2:67), W=pb, (29)
and (2:70) in the present forms y, andy, corresponding to (6) with 5V = W, of (25). For b = 2a corresponding to W = w
and use the results to simplify the subsequent forms for (minimum separation of particle centers equal to particle
7y = x 2 r,. We have width),
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X = (1 - w)2, N- 20 1 - 4w/3 + W2/2). (29') in order to minimize elementary algebraic manipulations,

For full packing w-l-, (the limit of a uniform slab), 70"--+0 the y, terms are listed as in (32H34), and followed by the

andN--,l/3. Note that the present N differs in sign from that equation for 7/2 as in (35).

used earlier3 ; all packing functions are now defined as non- The results simplify for the special cases where either

negative for w---I one of the relative parameters equals unity. Thus if B' = 1,

Solving (10) to the required accuracy in terms of the T's then -= 0, B, = B, = 0, and B reduces to unity as re-

and D's of(14), (15), and .9 = 1 + -4(1 - w), we obtain quired by the general theorem. 23 For this case

cPO= - w(' -x 2 U + xW'2 7); 12 = C, = X2w 2(2 - w - 3N)/3, (36)

Uo = -T , Do e 2N _ e N&72/_, with corresponding

To-eDo=[W(2- + 3e) + -4 ]/3. (30) 721=C=1+w , if=C5  =xwVf 2 . (37)

CP I = i2WU -x 2U, - ix _
2 V/g)/ ; The resulting sum C = C, + Cc + iC is the same form as

U, _[T,(I + -4)_-4 D, + _V2 N] /9 + 'e - N, (3:21) for in terms of e' and 6 = ' - 1.
Similarly, if C' = 1, then W =0, and C reduces to uni-

T,(I+-)- - D,=[4(1-V)+e]/3. (31) ty. We have
Substituting into (8) gives a linear equation for q2 whose so- Bc = -72 B 2 =x 2wq 2(2--w-3N)/3q 2, (38)
lution plus (30) and (31) also determine C and B of (12) and with corresponding
(13). To lowest orders in x, we obtain the sets rj = r, and 1 -4 W
y, =xF, asin (22H26)form = 1. Thus werequire only the B, = - 1 +
k 2 correction to y, i.e., y, = x 2 r, form = 1. 72 2 "

We have B., I B 22w (39)

2 W 2 w A o
2w _ U0 72 7/2) For the present one-dimensional problem, we may reduce(7 ) =±-(A0 +th'B, 9 B, a the forms for 77? in (38) and (39) to the same forms as in (36)

3o40 W [q'2 2 -- 3(1 - N)j - _ 7'2,  and (37) by introducing ' = 1/B'andidentifyinge' - I with
3A,[( -4(1 - V + 3 - N) + W]/40 + 6W - N, le. The general acoustic two-parameter results (32H34) also

(3) +correspond to the general two-parameter (ep) electromag-
(32) netic cases for 4o =1; if4o = E, then C' = e'andB' = l/p';

C' x2w MV- w U + .  'C _if 4)=H, then C' = z'and B' = IA'.
3 3 For b = 2a, we define

Xw . ,2 2 3 W (l N) w(2 - w - 3N)2 = 2 - 7w + 8w 2 -3w 3V2
3 "= w(2 - 3w)(1 - w)2/2, (40)

+ 2w 1 +3 1N)7 (33) where(Il-w)2 =N' decreasesmonotonefrom I to0asw
"/ increases from 0 to 1. As discussed before, Y

=2W(_ U1 +.4 q"B__._, -w-_.. = w V" = w(l - w)2, which vanishes at w = 0 and 1, has a
a 3 . maximum at w = 1/3 corresponding to maximal loss

x2
Q . ( 1 3 - 4 N W (Iw)through incoherent scattering (maximal fluctuation ef-

____ -fects).2,"' The function .9/w decreases from unity at w = 03 2 to 0 at w = 2/3, reaches its minimum value at w = 7/9 and

3 ce N 2 then increases to 0 at w = 1. The function . which vanishes
a +,q' B)9(34) at w = 0, 2/3, and 1, has a maximum at 2w= 1 - (1/3)1/2

and aminimum at 2w= 1 + (l/3)"2 .The sign ofthecorrec-
such that V. B, = C. - V21 B, as required by (27). tn msn che at w /3.

If WI= w-l (the limit of a uniform slab), thenN-,l/3 tion termsy, changes at w = 2/3.

(as well as .0-1 and yr-r'), and the set y, vanishes. Since Ill. DISTRIBUTION OF CYLINDERS
^'_0 for w--+l, the set y, also vanishes, and the results for For cylinders, we use c = i4p/k 2 = i4w/irx2 , W = pira

r= 1I2, C,B I reduce to the values ' = '2,C',B'] fora in (8H13) with
single particle as required by elementary physical consider- 2 ,= + 0 +7 e 'y2 12 = 2' + 1l +g" '3'

ations.
From (23) and (26), plus (32) with q' replaced byq2 v,, 2I22 7

reconstruct the linear equation for q2 that follows directly m terms of the correlation integrals A. in (1:71) or (2:22).
from (8) in the form We have

V2 = I + u( +X24 0 + IX W2,9) k'o=2Vp fFRdR +i4pf Fln( 2) dR

--(w/. g)[ M -x 2A I-Lx( M 2/.9)-i]f .  (35) V_ 1 +iAr,

The int approximation is f12 = fq as in (23), and iteration (41)
gives V22 = V21 + V,2 + iV.. We proceed similatly in the fol. R2___2_ F__7__-
lowing sections, where (8) gives a quadratic equation for ;nr ) nir
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where the next terms are 0(x2 ). We work with corresponding moments are then F, = 1/8 and

V= - F = - T = - (In2)/8 -3/32.
4 F(u)u d, Solving (10) to the required accuracy in terms of a. and

the T's and D's of(16H18), and .0 = 1 + -4(1 - w)/2, we
(42) obtain

and

-M=L---- --In (A)+ 0ln -2 +8WT,; cPo -U4 -x 2 Uo+irX 2  e2W/4);

2 a\c'b/ U 0o=To- 1K'

F= -f F(ln u)u du. (43) + C'
2M/2 - 11 --_ /2/4.9,

Note that the present M differs in sign from that used ear - D = [ 13 - i/,
2) + 17,2/8]. (47)

ier.3  cP =- 6p x 2 
U, - i- .2 '/8_)/.0;

We may evaluate F and F, numerically by using tabu- IT(2 + -4) D1
lated values of F, or the original integral equation approxi- U, = 42 D 4)
mations in the computing routine.9

To first order in W, we use the virial expansion 4 3: + w' 1 - 7)
F= - lforu<l, 4

Wco 2  2[1  l2 2 2,16 1 +B'
(44) JT,(2 + 9)- - D, =-[9(3,-4 +4) +4 i]. (48)

and F = 0 for u > 2. This provides results for W- and M cor- cP2 = )14wx 2 U2,
rect to 0(W 2), e.g., -4 ±66"92 .p(1 + BI) - " _1_"-_

7-= -4W+[3 12W 2/ rl 4W+661 U2 8+B') 42 + 2_q =8 q
(45) 8(49)

The closed form approximation derived earlier,' 2 i.e., The forms for U2 illustrate other versions that also arise for
U,. Substituting into (8) gives a quadratic equation for 17'

7 = (1 - W)3/( I + W), (46) whose solution plus (47H49) also determine C and B of (12)
gives 7/= 1 -4W +7W 2 +.... For the unrealizable and (13). To lowest orders inx, we obtain the sets y, andy, as
value W = 1, the closed form 7 vanishes; as shown in the in (22H27) for m = 2, and as before we require only the set
following, a comparable approximation of M would reduce y = x2 Fr.
to 3/4 for b = 2a and W = I in order for y to equal Y'. The We have

,!=X2W( Uo" + L/2 U2/4) = ±W (A °  Al 72 +A2 V4

2 Bw ( U I B
27 -- \ EJ0+ --

8.4° = %(1,2 - 3 - 4e M) - q 1,2,

16,,= [,V(4 + 3 -4 -4 RM) + 4e]/2 + 8 -4 W"( - Xq',

16A2 = - _4 2(l - 50/,92 - g [(I +B,) 21(1 + B')], (50)

-F8 )/2- -4 M1 /2'" [(- )) ], (51)

16w u,2 0,2 1 +2 )

a 17 C, + _X)W1e [#222A1174

X2w~i M (, [-3+4M+i72(I-Wj/]-4+2W(1-w) 4 1( 1$+2/2B +t.q2 + 122

II

The set !50)-52) satisfies q/2 B, = C, _ 72 B, as required by q/2= + W( W] +X2 Ao + i ,(2

(27). For the unrealizable limit W= 1>), we have "
= 2- and y', = 0, y, = y; if we use M--+3/4, then _w (,V _ X2, i~rx2 

g 2 2..
7",--+0, and y.-,-. q2.9 , 8 2 *-)2 +j WX2A217/4

The original equation for 172 obtained directly from (8)
by proceeding as for (35) is a quadratic in 172, (53)
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The first approximation gives ,/2, and we obtain ,/ = rl and
+ V/ + i,2 by iterationF

For the one-parameter case corresponding to B' 1 1, N = - 4rpa FR dR = 24 (63)
we have 0

,2 = C, = X2w e 2( +with the first moment as in (42). The next terms are 0 (x).C x 2( + 2w - 4M)/8, (54) By differentiating the scaled particle5 approximation

= C, = 1 + w W, ,/2 = = jrX2w * 24 for theequation ofstate, weobtained 16 
W- = 3 of(25),i.e.,

(55) -= (I - W)
4 /(1 + 2W) 2

, (64)

which also follows from the Percus-Yevick approximation. 6

The resulting sum C is the same form as that Afc in terms of The corresponding first moment 7 FT, of the Wertheim-
c' given in (3:26) for the optical case of the electric field paral- Thiele solution of the PY integral equation6 gives
lel (Ell) to the axes of purely dielectric cylinders.

Similarly if C' = 1, then 2a 6W W "(65
B~ ~b1+2W\ 5 10/

For b = 2a and the unrealizable value w = 1, it follows from
x2w -4 (3B'+ 1 -[4M+,/(1 - )] the closed forms(64) and(65) that W = 0andN= 9/5; then

16 k q2 as shown in the following, y = j/. See (2:27)ff for virial ex-
2B, 2 (1+ B 2  pansions in powers of W. The physically realizable range

B 7 (1 + B')/ (56) corresponds to W< W =0.6 3 , and although the range of va-
lidity of PY theory is more restricted, the limiting behavior

1 . w of the closed forms provides a useful check. The simplicity ofB, -- 1 + --
2 (64) and (65) obviates detailed computations, and their rela-

2 = - X 2TW 5 2 tions to the rigorous one-dimensional results (29) emphasize
B, - 72 2 (57) the essential physics.

Solving (10) to the required accuracy in terms of the a.
If we introduce ,' = I/B' and 6 = c' - 1, then the corre- and T's and D's of(19H21), and. = 1 + -4(1 - w)/3, we
sponding sum 172 =,2 + 77,2 + i,2 = is the same as in obtain
(3:33) for E. The general acoustic two-parameter results cPo = -w(, - x2U0 + ix3

,'
2 '/3);

(50H52) correspond to the two-parameter (equ) general elec. W 2N le _

tromagneticcases;forE,,, wetakeC' = c'andB' = 1/j';for U0 = To- le Do +
E, we take C' =p' andB' = 1/'. 3 9.9

For comparison with (54) and (55) to 0 (_ 2), we have To - 'es Do = I [e(4 - 77'2 _ 5 ce) + _4 7,2] (66)

BX2 V- -w. 2(1 + 2w - 4M+ r')/16, (58) cP= 72 w[ i -x 2U, - ix3 2  /9 ]/g;
B, =I + w.4-(I -w)-42/2, U,=( T,(3 + - )  R D, -_q2 N)I -+ R'ce N

171 = -w +w(1 + w)-4 2 /2, (59) 7 2M22 + N (3+2B,

B,=-= - =w W4 2 /8. (60) 15 [ 5k
The difference in the statistical factors in 77 ' of(54) and (58) is T,[(3 + 4)/3] - 4 D) = [ ( + 1) + '], (67)
the packing term W, butboth factors vanish for w = W--- 2I3+26'
and r--,O, M-.3/4. cP2 =, 4wx 2 U2, U2 =_V 2 . (68)

We proceed as before for (47H49). We haveiv m o. DS IBTO OFSPHERES
2 (7

Forspheresweusec=i41rp/k-3 =i3w/x3,w =p4Ca 3/ ,= -  
U2 I

3 in (8H 13) with

3,Jr,,=c+o+2, 2 , 5,,, 2=2ci7+2 ,,t+ 3'0 3, = A0+ +A°  ± A 2  )

35 A22 = c(7 + 17772) + 7 V0 + 10,r2 + 18 ,, B, " - A

in terms of the correlation integrals A. of (1:148) or (2:21). 15A= - '2 - 4 - '(N- 1)] _ 6F 1712,
We have 45A, = {9[ 4(M + 1) + 'f] - 5 42N}/.I + 10W 9 N,

Ao W - 1 + iN/x, A'..i 7nN/x(2n + 1), (61) 15A 2  2 .2V2 _ 2 (3 + 2B)2  (69)
where 3 -2 5 (3 + 2B')'

V 1 + 4p fFR 2 dR = 1I 24, ; Uo± 4'2 C

3 ()~ " =(x 2w re/15)[17'2 -4- 5 %'(N- 1) + _q ,' 2W

3 + (1,//3 .0)(5 -4 N+ 9)], (70)
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-+ 7'2B, + W + 2 ) B, -72 -x 2w 2(6 +3w-5N)7/(15) 2, (80)
A - x2IU)C( w-5)1

.0 5 5_qB,=1 + W R, -- U1 -- W}R2 /2,
_w (--3(-V + 1) + le(1 - w) + -4 N(5 + 2172 )/3 2a

5_ 2 - w + 2w)2/3, (81)
g2 B, 772= -x 3w * M,

2/9. (82)

5'N + 1 -B,+ 2( l)
2  (71) Thus, toO (V 2) the statistical packing function in B, is the

3 .q 5 (3 + 2B') same as in Cc of (73) and (3:44).

The set (69H71) satisfies 172 B, = Cc - 72 B,. For the un- For b = 2a, we define
realizable limit W= w-l, we have 0 = 23 = 0 and w(6 + 3w - 5N)" w(2 - 5w + 4w2 - 3 )
N = 9/5, so that Y--*7/. 2 6 2(1 + 2w)

The original equation for 772 obtained from (8) by pro- w(2 - w)(1 - w) 2

ceeding as for (35) is a quadratic in 772, = (83)
72 + W[ ( + X

2
AO -+ (X3/3 )20] 2(1 + 2w)

as the analog of (40). The relation of 9 to XI' 3 of (25) is
S X 3-2 )7 2  indicated by (1- w)2/(1 + 2w) = W31/2. The functions W'

A- " + WX 2A 2 774  and 9/w decrease monotone from I to 0 as w increases from(72) 0 to 1. The product 2"8s Y = w *K has a maximum at
w=0.13, and q has a maximum at w=0.22.

corresponding to the analog of (53) for m = 3.
For the one-parameter case B' = 1, we have V. COLLECTIVE FORMS

2 = C,= 2(6 2t t71 C x2w (6 + 3w - 5N)/15, (73) The results (35), (53), and (72) correspond to (8), i.e., to
72 = I - c YP. expressed as

27 =C,=l+WW', 77 =C'X2I 2e
771 =C=1 w 

,  
2 s 2W 2/3. (74) 17 2 = I + w(, + X2Ao +l &-,nd e2 h.q

Similarly if C' = 1, then - A x .

Be = 2 = x2W 3B'+ -4 N(5+ 212)/3 , , x2A, _ IX_ d., _,2m + 4wxA 2 ,

15 k, (84)

B-- L++1 2-2 (3 + 2B') 2  (75) withA 2 =Oform= l. The solution of the matrix equation
15 (3 + 2B) (10) for the P. isolated corresponding X2U, (7 2)/c terms; the

I + w regrouping of the sum of U's in (8) in order to make the
2 dependence on 772 explicit, introduced the coefficients A,.

, _x 3w y g 2  
The explicit versions are special cases of

.9. 2 (76) 21_, 2 .= ( (76) 2)
9.92 7+ A0+ +A 2

where .0 = 1 + -4(1 - w)/3. BI
Ifweintroduce 1/B' =V'and I/B,= V, then the re- +xm dM W7K C2+ R2 2)

suiting form of 77' equals -+ B, , m. 2 7 (85)

2w with coefficients defined in (32), (50), and (69).
.9+ Similarly (33), (51), and (70) are covered by

.0.=l- I + --3 (77) C =C, + X2w(_Uo+. 7 + W V,3( m(m + 2) + (m + 2).9)

For m = 11,2,31 we have.0,, = 1 + r(I - w)(1 - m ')as +ix"'d. '2 W (86)
compared to . = I + R(1 - w)m - 1. We also have B,.9
= .,1/V' RB, . = - Y/. , so that and (34), (52), and (71) by

v.2 B I/B' =x 3w W7 ,'/9.9 (78) B1 ,7
1 =B,+___ Uw -2B/ -- +m(m+2) (m+ 2).

B, 2wr( 3 + rN(5 + 2 711)/3 .- d 1

Xm _WI, (87)

22 (3V,+ 2)2 (79) with the U, defined in (30), (31), (47H49), and (66H68), for
5 3V +2/ m = 1,2,3.

For the simplest acoustic problems, V' = I/B'is a particle's
relative mass density. The electromagnetic two-parameter VI. RIGID PARTICLES
and one-peramet& problems for spheres give different We derive the analogous results for 772 for distributions
forms than (69H79). of rigid spheres and cylinders as the limits of the two-param-

For comparion with (73) and (74) to 0(.q 2), we have eter functions for C'---0 and B'--,0. We consider spheres
from (75) and (76), first, because explicit closed forms in Ware available for the

35 J. Acous. Soc. Am., Vol. 77, No. 1. Jnuary 18 Victor Twesky: Coherent sound in scattem 35



required packing functions *Fand N. Then we consider cyl- A--3 - 4M, (3 - 4M ) - 8 +0( - W1)
inders and use the development to infer an additional prop- 8 8(1 + w) 2

erty of the implicit function M (W). A *-
For rigid spheres we substitute le - 1, = - , A2  W)2 ' (95)

and = 1+(1- w)/3 =(2 +w)/3 in(69) toobtain which vanish for W = w = 1, if we use k- = h/2 = 0 and
9 - 5N 27 - 5N(I + 2w) M = 3/4. Substituting into (53) yields15 = 4 5(2 + w) 2lW 2W7/2 + X2W[/ q
2[(10- w)2 -45N] ) 2 1 + A

[15(2 + W)1 2  iiix
2 W I 2o2+

Although these vanish for W= w = 1 (for which case 4 ( I1I 2 (96)
N =9/5), we show that for W= w each coefficient contains
I - w as a factor; this enables us to use the same iteration and iteration gives
procedure in (72) as for the two-parameter case even for the 2 1 + W, (97)
unrealizable limit of w--* 1.

Substituting (88) into (72) for 'e = = - 1, we have 72 r 3 + w), - (1 - W)3  (98)
4(l - w) I + W

772 3 w 2 + X2w  o + 3A. 2 + A2 q4 as obtained directly from (23) and (26), or from the closed
2±w \ 2 + w form (2:74); see (2:76). In addition, the correction to 71i is

iwx3  ( 1  3712  (89) given by
+ kw ) . 9) 2 7__ X2wt [(I + w)/(1 - w)] [A0 + 2A, +A 2(1 + )2 ].

Solving by iteration yields the leading term of the real part (99)

711 = (2 + w/2 = 1 + w/2, (90) The physically realizable domain corresponds to W< Wd

as well as the leading term of the imaginary part =0.84, and w< W.
4 For (98) and W = w, we factor I - w from 7P'(w), and

2 = x3w (7 + 2w) - (1- W) W w theresult for q2 vanishes for the unrealizable w = 1. For(99)
12(1 - w) ' (I + 2W)2 ' however, although the individual A, vanish for the limiting

(91) values W1 = 0 and M = 3/4, this does not insure that 7'C

and the x2 correction to the real part vanishes. To eliminate a nonvanishing residue, we require
that for large w,

7Cx2(1 - w) A -+-A1 2+A 2  4 (92) 3 4M (1- w)8 + 0 (1 - w) (100)

The leading terms follow directly from (23) and (26), or from 3 + w
the closed form (2:74); the factor 1/3 in (2:75) should be re- with n > 1. This inference, based on the behavior of 7C for
placed by 1/12. The physically realizable domain corre- spheres in terms of the known closed forms for N and W'3,

sponds to W< Wd =0.6 3 , and w< W. For W= w, (91) has a may facilitate development of a corresponding closed form

maximum at w=0.16. for M to use with *2-

It is clear for (91), that even for W = w-1, the iteration
procedure is valid: 1 - w is a factor of AV, and *-/(I - w) ACKNOWLEDGMENTS
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A. = (I - w)d.; Research.
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