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Earlier results for scattering by random uncorrelated planar distributions, and by doubly periodic

cq planar configurations of relatively arbitrary obstacles, are generalized to pair-correlated
nonsymmetrical monolayers. The existing development for parallel cylinders in terms of theC~%J Zernike-Prins one-dimensional pair function p(x), is extended to analogous two-dimensional

N distributions specified byp(R) for aligned impenetrable disks. We obtain the average multiple f fjT c,4 scattered transmitted and reflected waves, and an energy conserving approximation of the ,.

differential scattering cross section per unit area. Simplified forms are developed to facilitate Cro
determingp by inverting measured data. Closed form low-frequency results are derived for
identical ellipsoids aligned nonsymmetrically to the plane of centers, and the array multi le- -

coupling processes are discussed in terms of functions ofp and their approximations.

PACS numbers: 43.20.Fn, 43.20.Bi

INTRODUCTION 
periodic limit.

In previous papers" - we considered scattering of waves Now we generalize the earlier results for cylinders to
by random and by periodic planar distributions of relatively multiple scattering by correlated nonsymmetrical mono-
arbitrary obstacles. The developments emphasized scatterer layers of bounded obstacles, and emphasize reduction proce-
shapes symmetrical to the plane of centers, e.g., radially dures for data inversion purposes. The initial development
symmetric obstacles, parallel elliptic cylinders, or ellipsoids for cylinders,' based on separation of variables (1953), was
with a principal semidiameter perpendicular to the plane of simplified by a Green's function procedure (1959); the pre-
centers, or more generally, a monolayer of obstacles with sent procedure for bounded obstacles (as well as for cylin-
reflection symmetry in a midplane (henceforth a symmetri- ders) represents a further simplification. We specialize the
cal monolayer). For uncorrelated random distributions, in general representation7 for the solution V' in terms of the
the course of development of a model for rough surfaces,' we multiple scattering amplitude G of an obstacle in an arbi-
obtained the average multiple scattered transmitted and re- trary configuration, with G related functionally to the ampli-
flected waves, and an energy conserving approximation for tude g in isolation, and then average. We consider the aver-
the differential scattering cross section per unit area. For age field (') for a statistically homogeneous ensemble of
periodic monolayers (gratings3 of equally spaced parallel configurations of aligned identical obstacles with one-parti-
cylinders in two dimensions and the doubly periodic planar cle statistics specified by the average numberp of particles in
array4 of bounded obstacles in three dimensions), we derived unit area, and two-particle statistics determined by pp(R).
the multiple scattered solutions for arbitrary ratios of spac- For p, the distribution function for the separation R of
ings (b ) to wavelength (A ). The results for small b/A were also centers of pairs, we use general statistical mechanics re-
relevant for random distributions for negligible incoherent 'sult s' 9 for impenetrable aligned identical disks b(R)/2, such
scattering. In addition, we considered correlated mono- that the exclusion curve b (the curve around one center that
layers of parallel cylinders5 in terms of the Zernike-Prins excludes all others) determines p(R). In general, we assume
pair distribution function'p(x), with emphasis on reduction that b andp have the same inversion and reflection symme-
procedures leading to the results for the uncorrelated' and trics as an ellipse.
periodic3 limits. Although even the radially symmetric special casep(R),

The uncorrelated limit corresponds to a one-dimen- the radial distribution function for identical circular disks is
sional sparse gas in statistical mechanics, with minimum se- not known explicitly, the results derived for ( I' ) and (I p 12)
paration (b) of particle centers small compared to average are reduced to facilitate determining p(R) by inverting mea-
separation (b); the periodic limit (b--b) corresponds to a one- sured data, essentially as in the corresponding x-ray prob-
dimensional crystal. Using transform methods we converted lems. For the direct problem of predicting (1P ) for a particu-
p(x) to a residue series' to obtain more rapidly converging lar distribution, or of synthesizing a monolayer with special
forms for b4b and b-b. For cylinders of width 2a in the characteristics, several procedures for approximatingp exist
plane of centers, we considered 2a <b and arbitrary for special ranges of the parameters. The leading terms of the
kb = 21rb /A, in order to demonstrate that correlation effects virial expansion of p suffice for sparse concentrations, and
determined by b/b = pb = w (the statistical mechanics for arbitrary concentration and low frequencies (small kb ) a
packing factor) accounted for the full range of phenomena required integral ofp is available as a simple function of the
from w =0 for the sparse gas on to w-, 1 for the deterministic packing density in the plane.'0 More generally, p(R ) can be

obtained numerically from the Percus-Yevick or other ap-
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2a(R). For greater generality (essentially as for the corre- three dimensions and can be specialized to two, and treat
spondin, volume distributions' ° ) we take the exclusion two- and three-dimensional problems in parallel; if two
curve b(R) as neither similar nor similarly aligned with a(R). forms of a function or operator arise, we list the cylindrical

In the following, for brevity, we use (1:9) for Eq. (9) of first.
Ref. 1, etc. Section I introduces required notation and repre- In the region external to the scatterer (outside the vol-
sentations in the form of a brief sketch of the single and many ume V bounded by Y), the field b = + u satisfies
body scattering problems, ind Sec. II derives (P) for an (V2 + k 2)b = 0 with u as a radiative function'
incident plane wave 0S, and the functional equation for the
average multiple scattered amplitude G [g]. Section III con- u(r) = Co[ho(k Ir - r'j)O~u(r') - udh 0 IdY(r') thuI;
siders the average energy functions, and provides physical f
motivation for Sec. IV in which G is expressed in terms of a (2)
transform of g that delineates the loss mechanisms in the h0(x) =H1')(x), h l(x); c = l/i4, k/i47.
array, and that leads directly to simplified results for data 0

inversion. For the nonsymmetrical monolayer, for incident Here, Y5 is the obstacle's surface (or any surface that isolates
waves 0 and 0' that are images in the plane of centers, we it from the field point r), and 8. is the outward normal deri-
develop explicit approximations in terms ofp and g for the vative. For r- oo,
magnitudes and phases of the transmission and reflection , u-h(krg), g(t,k)--- e'',u}, k, =kt, (3)
coefficients and for the differential scattering cross section

per unit area. Section V uses Fourier series in G [g] to obtain with h as the asymptotic form of h, and g(?,k) as the scatter-
algebraic systems for the corresponding multiple scattered ing amplitude. Substituting the plane-wave spectral repre-
multipole coefficients A [a] in terms of the distribution inte- sentation for ho in (2) we obtain, at least for r > a for all F,
grals A' that characterize the array (i.e., in terms of contin-e i
uium analogs of the lattice sums for the periodic cases).3'4 We u(i) = Je& *r8fk),

consider A' in terms of p (virial expansions and Fourier
transforms), and develop low-frequency approximations. k =/ , ?, = f'(0,), (4)

Section VI derives closed form results for small ellipsoids where f, equals (l/r)$ dO, with contour as for H t, or
aligned nonsymmetrically to the plane of centers, with em-
phasis on multipole coupling effects. These explicit results [ (,
provide illustrations of the general considerations of Sec. IV (er )fdj

for 0 and 0' incident on nonsymmetrical monolayers. For with contours as for h ) Decomposing g as Fourier series
small kb, except for sparse packings, wavelength-indepen- (trigonometric or spherical harmonic) of scattering coeffi-
dent multipole coupling effects may be misinterpreted as cients a. (to) or a(f 0 ), we obtain' from (4) for u the corre-
changes in the shape of the obstacles; e.g., because of array sponding series in special functions H()(kr)e or
coupling, a spherical obstacle corresponds to an equivalent h ('(kr)Y'(?). We reserve such series for special computa-
ellipsoid flattened along the array normal and broadened in tions, and use primarily (2) and (4) to derive general results.
the plane of centers. The integral in (4) corresponds to ho. In terms of the

associated integral operator forj o = Re ho, the mean (.4')
1. REPRESENTATIONS over all real directions of observation, we write the energy

Consider a plane wave qOe - "" incident on an obstacle (in theorem as
two or three dimensions) with center at r = 0, the center of
its smallest circumscribing circle or sphere (of radius a). We -a 0 Rgkk)= 0 + ;

take a. - j alb) a, aoIuu j = ao4g(fk) I

#=e';r =rf, r2 =iZ2+R 2  (5)
4 47rf (Gq) I Cos 0 +R(q')sin , 0o= T' 2

R(f~ I cospq + t sinl op c2r 12v
k = k = 2ir/A, -4= i dO, do Ed sin 0,

2a-o 4 iro 0o
I = =(6o4'o) = eo0 + Ro sin 00, where a. and oa, are the absorption and scattering cross sec-
Ro = R(q.o). (1) tions. This theorem follows directly from the definition ofa,,

When convenient, we work with direction cosines in terms of b = 0 + u by using Green's theorem and (3). The
same procedure applied to 0(f I) and 0(?,), the solutions for

t = 
t '-l +n -r- + 53 = X 1 , r' = CO. 6, two different directions of incidence ? 1,t 2 (each solution sa-

a = y2 = sin 0 cos op. tisfying the same conditions on .Y and in V"), gives the usual

fl =-r3 = sin s qP. reciprocity relation

For cylinders with axes along t, we set q =,6= y3 =0. In I 0t), t 2)) = 0: g( - ?lt2) = g( - ?2,

general, we use terminology and procedures that apply for g(f,k) = g( - k, -). (6)
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The following development applies for general obstacles and Substituting (10) into (9), we write R, -'f + -Sq,
all conditions on 9 and in r for which (6) holds. d R. = d dT/, and (Po - ?)'R = (ao - a. g + (Po -,6,)77;

Fora fixed planar configuration of N obstacles with the integral over " reduces to
centers (I,) in the xy plane, we write the solution external to 216(ao-a)
all obstacles as f k

P =O+ U(r - R;R,,R2 ... &RN)e.R + , and that over 17 to 21T,6(80 -6ic)/k. The8 functions corre-
= . spond to P, = ( 0o,.po),f(ir - 0o,qo) = Po,? = k,k' for z0.

Rs = x~i +ysy = RsR(qps), Transforming fdD, toyfda, di , 'in terms of real varia-e2 2)112 =1,

bles a, [with r, =(1 -a.-/)= =' or ilrI forU,(r - Rs) e G3,(?c,), a 2 +#i 2 < 1 or > 1], we reduce the average scattered wave
(7) as before' to the specular values

G, (i,k)= (e rr,Us }3 , (7) ~2Gk~=2G 0( 0?. > ) 0 2CG (iz,i=)..- 2CGOO,
where the multiple scattering amplitude G, is the form (3) ) 'CG(i) = '2CGo;
over Y (r'), and r' is the local vector from Rs. For <
I r - R I - oo, we have U ~h (k Ir - R I)G,. With reference C=p/ko, pir/k 2

0 ; 0'=e",
to the center of scatterer t, we display the phase factor intro- P' = -fr - 0o,.po) = i - 2k.t, (11)
duced by 0S (R,) and use where 0S' is the image of 0 in the plane z = 0. The subscripts

P = P, e"- = (0, + U,)e", (> and <) indicate that the forms hold at least forz > a and
0, = e&' + Y U, (R, + r' - Rs)eR .n 

- R , z <- a, respectively. (Were the incident wave 0 'instead ofo
where I' is the sum over s:0 t. We require that , 0, U then k and k' would be interchanged.) The corresponding net
satisfy the same conditions on Y, and Y, as 0,0,u for the average fields in the transmitted and reflected regions are
corresponding scatterer in isolation, and that (P!'> = 0 (1 + 2CGoo) = OT,
(V2 + k 2)U, = 0 external to r,. Consequently from (P< =0 + '2CGo = 0 + 'R, (12)

P RI), P, = 0, we have with T and R as the coherent transmission and reflection
G,( - P,I 2) = 1 (R,),U (?2))] = 1 ('0(?2),u(?) )1; coefficients.

substituting for 0, with Us as in (7), and using the definitions The two values in (11) correspond to one wave form
of g and G, it follows that multiplied by the forward scattered (GOO) or reflected (G~o)

(S= ,(,J + -), amplitudes:
(i') - e ± o + W'2CG( I f. cos 00 + Ro sin 60,ko)

-r, - r,, (8) c ek IzIro +.

at least if the scatterers's projections do not overlap on
is a wave outgoing from z = 0. The images q$ and ' have theR , = R ,/IR ,. Th e functional eq uation (8) is essentially a s m z x e e d n e a d c m r s h e t a r p g t

reciprocity relation between the multiple (G) and single (g) me of depednce d is e the c al er
scattering amplitudes, for both the direct and inverse scat- ing mode of the periodic cases3'4 discussed earlier; the earlier
tering problems. We emphasize the direct problem G [g as if results for the case of one propagating mode,
g were known, but the results also apply for the inverseg[G]. kb (1 ± sin 0o) < 27r, provide bounds for present low-frequen-

cy approximations.
II. THE AVERAGE WAVE Similarly, (G,), = G is obtained from the ensemble

average of (8) for pair-correlated scatterers with separationWe average 3P over a statistically homogeneous ensem- (R,) specified by pR(.), such that p(R) - 1 for R - oo, and
ble of planar configurations of identical aligned obstacles p(R) = 0forR < b (R)withb (R)astheminimum separation of
with one-particle statistics specified by the average number pairs. We assume that p(R) is fully determined by the curve
(p) of centers per unit area. Thus R = b(R), the exclusion curve enclosing the area containing

P +the center of only one scatterer. For radially symmetric sta-= +p (U(r - R1)) = + , (9) tistics, b (R) = b is constant and p = p(R ) is independent of

where (U,),, the average with one variable held fixed, de- direction. More generally, we consider exclusion areas hav-
pends only on R, (now a dummy). From (7), ing the inversion and reflection symmetries of an ellipse,henceforth elliptical symmetry. From (8),

( -(? '- R ))), = fe(G, k = g(,k) + pdR p(R e- R-

= k- r - R.l )(tf ,), (10) Xfic(st~)se~~,(13)
with (G,), = G independent of R,, because el ' . was fac- where (G,),, is the average over all variables but R, and R,.

tored at the start. To obtain a deterministic equation for (G, ), = G, we pro-
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ceed as before' 5 and replace (G.), by (G,), = G. See dis- total correlation functionp(R) - 1,
cussion after (10:16) for citations to work of Lax on the corre-
sponding approximation for random media, and for - [K]= plp(R) - 1 e 'KdR, (17)
alternatives by Keller and by the writer.

We consider which differs from P [K ] by the 8-function contributions at
?o,?0', we make specular terms of S explicit. Thus

g(?,i) + pfd R p(R)e - 4tfe&aKq - 31t )jG (?J,); G,0 = g,0 + C[go Goo + gv, 0]

(14) + S(°) (g,,G + geGo), (18)

where S°" differs from S of(16) in containing 9 [K ] instead
ofP [K ]. If the effects of S(') are negligible, then (18) reduces

-2 /2 -to the form analyzed before for sparse uncorrelated distribu-
_r1- r + do, dp, dO, sin 0, tions. The earlier construction consisted essentially of taking

ITf Jv/2 +,i 2Jthe multiple-scattered excitation of one obstacle in the array
as the mean of the average transmitted and reflected fields

in terms of simple contours, andz = ito provide aconver- [ ('> ) + ($P<)] of(12).
gence factor with exponent ikz cos 0, = k Ielsinh -r for In Ref. 5 for correlated cylinders, we emphasized re-
0, ± (ir/2 - iT) and r~ oo. We asume that G (?,k) may be duction procedures of (16) that led to earlier results for the
equated with the limit of (14) for z = IeI--*0, or for periodic and uncorrelated cases, but now we exclude period-
z = - jE--0 and ?, replaced by its image ?,; in general, we ic distributions (except for the low-frequency case of one
work with the mean of the two which makes the symmetry of propagating mode) and emphasize the effects of correlations.
the problem more evident. The form f(lf) = Y (?) To motivate the reduction for G, we first consider the aver-
+ Y (?,), with Y (?) = g(?tA)G (?, l), depends only on the ages of the quadratic function of the field.

real variables q?, and sin0, (i.e., sin 0, = :p: cosh r is real
even for 0, = ± Ir/2 T hr) as may be seen by using trigono- Ill. AVERAGE ENERGY FUNCTIONS
metric or spherical harmonic series representations. For cyl- For a fixed configuration, the normalized average ener-
inders, .() depends on exp[in 0 ] + exp[in(ir - 0)], so that gy density is given by I P I' and the corresponding flux den-
only cos 2n0 and sin (2n + 1)8 arise; these functions are pol- sity by Re(s *Ve ik) with I as in (7). The ensemble average

ynomials in sin 0. Similarly for bounded obstacles, of !p 12 equals

P'"(cos o)+ P( -cos 0) = [+(I - 1)" P-ce O l = I(V,>l 2 + v,
selects P 2and P+,I and these too are polynomials in V c(
sin0. The exponent k(?, - 0).R =k(?, - ?0 ).-K,.R V pj(U1 2), dR, +p 2JJ[(UU,-).p(R.)

also depends only on sin 0, and q, so that e ' RY(r) is &(
symmetrical to reflection in z = 0. - (U,), (U e - *." dR, dR, (19)

Weintroduce the Fourier transform of the pair correla- with I (P) 12-- I1 + (0,)12 in terms of(12) as the coherent
tion function intensity, and the variance V= (p-- (V,)12) as the inco-

herent or fluctuation intensity. Substituting the spectral

P [K ] fd ip(R)e"', form of U,, and integrating over R, to obtain 6-functions
' (15) which eliminate one of the spectral operators, we obtain for

K, = (k, -- ko)(ft + ):k (a. - ao)i + k (8, - 9)t, z = IZl,

a real function of K, for elliptical symmetry, and briefer V> = f 2Ce - 21mr..((IGAf,,)l%

notation G (?,ko) = Go,G (P9,Po) = Go, etc. Thus the mean
form of (14) may be written essentially as (5:36). +p dR et[p(R)(GG*), - (G,) (G0),]

G,0 =g,0 + S(g. G, +g 9,Go)"20 (20)

S= lim-- !ekl rmIP [KC , where C.- o/r . For z-oo, we have V>
-2Cr 0 .',sec~l ].Replacing (G,G*). by (G.).(G*),

S=S,+S, S,=ReS=-.-f,P[K,]. (16) with(G,),----,
As before for the periodic cases, S, corresponds to real 0,
(the propagating range), and S, to 01 1 > ir/2 (the evanescent V> - 2Ccro, *'[K ] IG (t,j)1 2 sec p Q,sec ,
range). The operator ,&, representing the mean over the >
right half-space (10 1 <ir/2) can be replaced by -0 of (5) be- 2 1
cause of the symmetry of the operand. The operator S, is Qro = c, 'G,o 2; c, " (21)
imaginary; using 0, = (ir/2 - i') yields real integralstimes. L W"[K I + .9[K] I + +pf(p - 1)eat daR,

Equivalently, in terms of the Fourier transform of the +
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where [K ] is the structure factor, and pQ,0 is the multiple where the term in .W follows from the asymptotic form
scattered differential cross section per unit area. In (21), we U, -hG, or from the f, form in (7). For lossless particles
integrate f> =fd,d12 over the forward half-space V1P*, J, =0, Eq. (24) is a special case of (7:A17).
10 1 <v-/2; for the back space, we replace F by F, or writef< to We average (24) with scatterer t fixed for a planar distri-
integrate over the appropriate values of 0. bution R(xy) by proceeding as for (13). Thus, initially we

For the corresponding average flux, we write write

J = Re(P,*VP!/ik ) = Jc + I, JC = Re('*)V(0P)/ik, - Re(G,(k,l)), = Y./o0 + .,(IG{t,l)2), + .0,;

i -PQ,oi sec 0; (22) J = = Re S [ Y .(i) + Y, (F) ],

J,)= -Gky.R)()+?'(+12,. 3,, (25)
= T 2 , J . = + Re(e-krR)(k+kc)+ IR 12k'. where

The components normal to the distribution satisfy 1 - *,, j 0 0 (,jj° = --(I[* l) + -- 12o) 0,,',

.J = IT 2 ro . (1 + IR 2)o, is the average absorption cross section of obstacle t, and

rr i2 where S (in which the implicit P [K ] is real) operates on a
i.(I> +I,)=P[ +fQio =pGo . IG=,oI2 =pY,, function of the real variables sin 0, and V,. Replacing

(G G *) by IG 12, etc., and using briefer notation we have
with p.J', as the average incoherent scattering cross section _" = Re S[ [Go 12 + IG.0 12]
per unit area. The corresponding average absorption cross
section per unit area is the average inward flux - i.(J> = S, [IG 2 + IG, o 2] = 'P [K IG 2,
+ J < ) = pY , and conservation of energy is shown by'- and make the specular contributions explicit by

1 IR 12 +IT1 2 +p_0see, " =y +'y; r =f Al [KG, 0 1 +C[Il oo2 + •IG 0
2

R = 2 CGO, T = 1 + 2CGo,. (23) Thus introducing .. ' into (25) and combining the _' terms
by using = 1 + e , we obtain

This states that the incident flux density equals the flux co-

herently reflected and transmitted, and incoherently scat- - Re Goo = C [ IG00
2 + I G0 0 12] + (_r. + _r. )/O0,

tered and absorbed by the area of distribution irradiated by Y, = oo.W 5"[K ] IG,o 12, (26)
unit area of incident wave.

To obtain Y 8 as a well-defined surface integral of a which also follows from (23) on writingR and Tin terms of G
quadratic function of 1P, as well as additional relations for G, andusingpsec 0 14C= lo.
we write the energy absorbed by a fixed set of scatterers with- Similarly, corresponding essentially to (7:A16), we have
in a closed surface A as

_____# Nil*(~ ),q ( j& )j G G*(i 2,k,) + G, (i, 2)Re" l -
fJkj 2 )+ 1,G,(i 2)G,'(?,k1 + "r2, +f?12

Using Green's theorem and (V2 + k 2) V = 0 outside all ob- (27
stacles we obtain I IP*,V I 1, 1 V'' in order toreplace Jr2j = Ie ,k.Je- RaG(t?1 2)G *(i*',',k). (27)
A by the set of scatterers' surfaces (or any set of surfaces that
isolates each scatterer from the others). Working initially For planar distributions R(f,f), and C,142 each correMpond-
with W '= + ', and then decomposing 0'2, we use Green's ing to either kor k', we haveklR- k2 .R, andcau proceed
theorem and (V2 + k 2) U, = 0 outside scatterer s to obtain essentially as for (24) in terms of the same P [Ka ] Thus

I P*,' 1, =2 Refo *,2,, J, + 12'*,'' i, - (G,(k,,i 2)), - (G,*2,k)),

2 ReIo 0,U, 1, + I U*,U, , - 2Y!'/o,' + 1.4(Gj 2)G*(Fij), + 2 + 2S21po + Y-(f,(,) *ti) r*

+ 2 Re[U,'Ue"I,. Jf, = S[IL'(tc¢) + s'(o )]-SY ,,

Multiplying through by - Oo, we relate the absorption SS) (O,(el 2)G(t,k,)),, ".2 = (Y'), (28)

cross section of obstacle t to the energy derived from 0 by where
interference with U,, and to the scattering cross section - 2,9' = 0o1 OP*),0( 2)), 1.

o 00 I **,-? 1, ofobstacle t. The decomposition of[ %*, t
in terms of U, and U,, corresponds to an intrinsic compo- Dropping the dependence on s, t as before, we write
nent I U ., U, 1 tknd to a set of two-particle terms. Proceeding = GC2G* and.- = ,9 + $9, to obtain
essentially as for (8), we obtain J, + J* S? + [SY-* =(S + S*),F = 2S,Y-

IP*,I ', 2 Re G,(ii) + 2,OIG,(t,j) 2 +. r, = 2OP [K IG2 G,

(24) = 2.4 [K ]G,G*,.f- 2 Re 2'e - , 1 ' Om(-fe) ,(a" (24)

.f= 2 Re+ 2C [ G02G 01 + 00.2 Go,,I
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which reduces (28) to fields, of (12), j [ (P,) + (I< )J, evaluated at z = 0. The

- G, 2 - G* = 2C [G02G0, + G'2 G&J following indicates the physics implicit in jx to provide a
G 2 1 -- guide for developing practical forms for data inversion.

+ 2, &*/[K ] G,2 G ,? + 2Y./o 0 . The analog of (33) for a lossless isolated obstacle is
(29) g12 + g921 = - 2.4g,2g ,, = - 2.,'g,g92,, (35)

Equation (29) represents four relations, with (26) as the case whereg 12 =g(Cf 2)withf, andfarbitrary; thesecondequa-
r, = 2=Po = k. lity follows from reciprocity and the fact that

Similarly from I OP((t P(t2 ), =~ 0, we obtain the .f(f) = .,Wf( - f). The special value Re goo = - , Jg,o 2
reciprocity relation corresponds to (5) for oo = 0. To develop approximations of

G (C,,t 2) = G ( - r2- ), G, 2 = G -2- , gas well as of the multiple scattered amplitude for periodic

for i, and f 2 each corresponding to either f, or i,. distributions,' 4 we expressed g before in terms of the ampli-

From (29), in terms of tude g' for the radiationless problem

T = I + 2CGo, T'= 1 + 2CGoo,, 91 2 =g9, + -kgg,2 =g92 +dl9,, 2  (36)
such that for the lossless case, g 2 + g21 = 0. The leading

R = 2CGo~o, R' = 2CG0 oo; term of(36) includes phase and absorption effects (that domi-

S12 = (p'1 = y,1210 sec 00; nate for various special cases) but no radiative losses.

S=S, l=S, S = S0o =S&, Decomposing the operator S(0 ) in (32) as

we obtain four equalities + S = I e, Ir - e, + S,
I = IR 12+ TI2 +S= R'I 2+ IT'12 +S, and representing the operand by [gp], we use

1 = jR ~.'f(r) = .11, f(rt)+f(')] for (36) to construct

0 = (R'T* + R *T'+ S') = ( )*. (30) _ =g,0  + M If(6[ csu

The first two correspond to conservation of energy for inci-

dent 0$ or q', and the second two provide additional con- = g9o + [ b", W' + S,] [g'F ].
straints. For lossless particles and negligible fluctuation ef- Suppressing S, by introducing the radiationless distribution
fects (or for the one-propagating mode periodic cases), we amplitude
drop the S terms to obtain the earlier results discussed in
detail for periodic' 2 structures; for such cases, I T I = IT'[ and g = g; 

+ S, [gY 1 (37)

IR I = IR 'I, and the sum of the transmitted phases differ by such that for the lossless case g' + g"* = 0 with i, or ?2
180! from the sum of the reflected phases. For a symmetrical each either I or k', we obtain
monolayer (R = R ', T = T'), (30) reduces to two relations F 2 = g9"2 +4 W'[K ] [g'.,2] (38)

I = I R I2 + I T 12 +S, 2ReR*T+S"=O; as the analog of the isolated obstacle result (36).

1 = IT± R 12 + (S ± S 0), (31) For large kb, the operation over S, is negligible for the

with Sand S 'real. IfSis negligible, then Re R *T = 0, and R present problem (which excludes complex 00, as well as mul-

and T are 90 out of phase; for such cases I T ± R I = 1. timode periodic cases). We may also neglect S, for small kb,
provided that the scatterer's width is small compared to min-

IV. SCATTERING AMPLITUDE REDUCTIONS imum separation (a/b small); if not, then as shown subse-
quently, S, may introduce k-independent factors arising

The procedure we followed to obtain the generalized from multipole coupling. Neglecting S, corresponds to
energy relation (29) corresponding to G of (18), may be ap- Y12 =g; 2 + .eWgz, 2 which differs from g, 2 in that the
plied to a modified scattering problem shorn of specular radiation integral is modulated by the structure factor
losses specified by 5V' = I + 9; the first term of W corresponds to radiation

-o g,0 + SV°l [g,, .o + g,w P]. (32) over the continuum as for the isolated case, the 9 term

For lossless scatterers, the procedure yields corresponds to the effects of correlations, and their sum rep-
resents fluctuation scattering. The similarities in the forms

1,2 + * = - 2 ' [K ],2A* for p and g indicate how we may carry over existing results
f by inspection of g. In particular, for various practical prob-

K] = I + 9 [K ] = 1 + p (R) - 1 ]e ' R, lems for small scatterers, we may construct approximations
(33) for y by using phase and absorption terms of g and by modi-

where K.R= k (f - f.).R = k (F - C2).R, and P, orf 2 each rep- fying the radiation term of g by incorporation r.
or ie. In terms of y, we reduce (18) to We reduce (34) by eliminating G from the right-hand

resents'either okside, and write

G,0 = p ,(I + CGoo) + y,.CGo0o, (34) G, = [ , (1 - C 22) + CZ,2 ]/1D,
D = (I - Cy,l)(l _- C22) _- C2q ,2F2,

the form considered earlier' in terms ofg. The interpretation - C ,, + 2 + C 2 1 1 I ;

of G p] is the same as before in that G corresponds to F
excited by the mean of the averge transmitted and reflected G,, = (p,, - C III)/D, G2 [ = F2 /D, (39)
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where 1,2 correspond to 0,0 for incident q$, and to 0',0 for , g1 + ." 7Kgjg; = - g 2

incident 0 '. If we construct _4' G, G * (for r, and r2 differ-

ent or equal) and apply (33) to eliminate integrals of products Zilmg - (a + &j/a0 ,
of y's, we rewrite the results collectively as -,e= Y' [K I Ig,o 12,

- G12 - G* ITI2=l - 12CImg 2 1
2 -p(oa + &)sec 0 , (46)

= 2C [ Go2G * + Go.2 G*' I ] + 2W G,2 G*, (40) such that for 7'= 1,& approximates or,. The corresponding

i.e., as (29) for Ya = 0. If il = 2, we obtain the lossless differential scattering cross section Q, = 71[K ]q,o, with

version of (26) q,0 = c, Ig, 12 as the value for an isolated obstacle, may be
used to isolate 7[K ] from measurements essentially as in x-

-ReG, =C(1Go1 [2 + 1Go. 12)+. lG,12, (41) ray diffraction by liquids. For the direct problem we use the

where 1 equals 0 or 0'. In the isolated obstacle result Zernike-Prins6 p and 7XK ] for the planar distribution of
- Re g,, = M IP', 12, the term - Re g,, corresponds to the parallel cylinders; for bounded obstacles, we have explicit

energy lost from the incident wave via interference with the results for restricted ranges and numerical results forp based
scattered wave, and _' Ig,, 12 shows it is balanced by radi- on the Percus-Yevick or other integral equation approxima-
ation over all directions. In (41), the interference loss is bal- tions.9

anced by specular scattering in the forward and reflected For kb small (small-spaced particles),
directions, and by fluctuation scattering over all directions. W'[K V= 7'[01 + o (k 2),

Equation (41) is the same form as (5:62) for the two-dimen-
sional case; using the Zernike-Prins6 distribution function, 7[10] = * = 1 +pf[p(R ) -l]dR, (47)
we showed before5 that it reduced to the required forms for -

the uncorrelated and periodic limits, where 7 is proportional to the variance (fluctuation) of the
From (39), we construct the transmission and reflection number of particles in a central region. We obtained 7 in

coefficients, closed form ' " by using statistical mechanics theorems and

T= (1 + CI 1 - C. 22 + C2IIFII)/D, R2, = 2CP2 1/D, the scaled particle approximation for the equations ofstate' 3

for fluids of impenetrable particles. For planar distributions
D = 1 - C(P,, + j22) + C1 p11. (42) of correlated parallel strips (7W"j) and disks (5V2), and for
The corresponding differential scattering cross section per lattice gas statistics (5V,), we showed
unit area, pQ, =pcZl 0[K ] IG, 12 is determined by 1

D 21G, 1 12 = Ii 211 - CP2 212 + 1 ,,22 1
2 7,I =1-w, N',=(1--w) 2  '0 =(I-w)3 (48)

+ 2 Re p,,2(1 - Cp 2 )C02 . (43) wherew = pv is the fraction of the xy plane covered by statis-tical mechanics particles of width or area v. The upper bound
Using these and (30) we write the transmitted flux as on w is unity for 7, and 7K0; for 0-2 we use w: <0.84, as

measured for circular disks. The associated function
1T1 12 I= 1- IR2 1 12 -pY sec 0, S= w 1 has a maximum S, at w = w, determined by
T,,1 12 = 1 + 4CRe[(p, I- CI lpI1)(l - Cp* )]/ID 12, d.S = 0, and so does the corresponding differential scatter-

? 12 = &1111 12 ± 1
2  ing cross section per unit area (c S). If the particles areJ 1,1D I ,- CFI2 +&2lCO1 nonabsorbing, the sum of the coherent fluxes

+ 2 Re &2,(1 - C*2)CF21; IT2 + IR 12 =1 -p o,, sec o has a minimum at w,; if

- (92i + P12)Go/2, &= + &.. (44) they are absorbing, and a /o, is small then the minimum is
shifted to

For grazing incidence, cos 00-*0 and C--oo, so that WA = W" + a./0" 1s69?SI > W ;
G---0 and T---I. Except near grazing, for small ICpI, we if a la, is not small then there is in general no minimum
have with variation of w, and oa dominates for all w. See analo-

gous discussion of random volume distributions for details.
T 1 + 2Cp, 1 + 2C 2(P21 + 21P12), Rz2 2 1C, For some purposes we may compare monolayer results

IT 12= 12CF2 112 +4CRep,1 - IA 12 _ p 6, with equivalents for single-path transmission through a slab
region volume distribution. Multiplying numerator and de-

Q, =4, = c,1 *[K I Ip, 2, (45) nominator of2CpI = popl ,/2cos 00 by the layer thickness
do (the separation of the tangent planes), we define an equiva-

where we neglected lent complex index of refraction q by

Re(p , + lV1tI 2+ Pf2t + 121 2 ) 2Cp,, do2 dosec 0oik(7 - I)d =M,

= 2Re(p, r7, + P21&21) = d(se2)c ,(
d = d, sec 00, (49)

For small Img'= g>Re g, or small * and small absorp-
tion, we iterate (37) for g' =g' and neglect absorption in the wherep/do is the number of particles per unit volume, and d
quadratic terms, to obtain is the ray path along the direction of incidence. Similarly,
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R = 2CP2I- iFd defines - F as an equivalent Fresnel in- sum of the transmitted phases as discussed earlier for the
terface coefficient. lossless periodic case (12:15). Similarly for negligible losses

Introducing (49) in (45) and (46), we exponentiate A, we require I T I = I T'I and IR I = I R 'I; this will be demon-
and work to lowest order with strated in terms of explicit results for p we obtain subse-

T=e (I + JIR 12), quently.
IT12 =e 2 mAl - IR 12=1 -2Im A - IR 12, The general forms (39) and (42) can be simplified consid-

erably for normal incidence k = 1 and arbitrary scatterers,
iA = 2C Img,, -p(oa + W-'o1)/2 cos 00, or for scatterers symmetrical to reflection in the plane of

IR 12=12CImg 2 , 2, (50) centers and arbitrary i. For the first case, with

where we would use o,., = -f'#K jI Im g,1 2 if the scat- k, = - i 2 = i, the reciprocity theorem (6) gives g,, = 9 22,

terers were not small spaced. To lowest order in k, except for and although g2, need not equal 12 , we may factor the de-

pressure release scatterers, from g', = iF [YF,, + e~k 2)]

with F = k/uoo = (k 2,k 3) and 7 independent of k, we T, = = [2+ + 2_ ,
have R 2 1 = =R=1[2+- _], I + -Z+

ReA =pVk ReY -/2y 0 , I - Z

ImA (prk/2r0 )[ImY7,+Ff'*%I(Re_-")2], Z± =C z), C 9±01= =22P P=(0120'21)2 ,

IR 1
2 = 1 Re -2 IP rk/2o012. (51) ,1/2.

For such scatterers, IR 12 = e(k 2) dominates o, = e(k 3,k 4)2

in the scattering losses of a transmitted ray, except for special G, ,- + Pn + - (55)
angles corresponding to small - 2,. - 2(1 -Z+ ) 2(1 - Z-)

The limitations of (50) and (45) are indicated by theoTe limitations of(50). andF r e ta idcpuatios bwe This is restricted to normal incidence, but the scatterers'complete expression Tof (42). For detailed computations, we shape and orientation are arbitrary. If the scatterers have
use inversion symmetry, then9 2, = 9 ,2 = p'and , = 1 for arbi-

T=ITIe' - +Z IT 2 = + 4ReZ trary orientation with respect to z = 0.
I -Z' 11 -Z 2 ' The same simple forms as for.- = I also apply for arbi-

Im T 2 Im Z trary k for scatterers having reflection symmetry in z = 0,tan '~ = ....

Re T 1 - IZ 12' with no requirement of inversion symmetry. For a,, =

Z= Cp1 1 + C 2
0 1 29 /1 - C 22)G = J(F+ +F,-), F I =/2/(1 ± Z±),

- CF1, + C 2
P 129 21(1 + C9V 22) + e (k 4). (52) = "o ± , o', Zt = C,4 = (Poo, , oo');

For oo at least as small as o,, the transmitted phase to e(k ) T= 1 + + Z.. -Z+Z.
in terms ofi ,- = C Im g; with g' =g' for small a/b is given I -Z+ I -Z_ D
by R= Z+ Z_ =Z+-Z-

tan T 1 -- Z+ I -Z_ D
1 - ) 2 + 2 2)D 1 - Z+ - Z_ + Z+Z_. (56)

(53) The functions /" and /- are twice the components of 9
9T = 2(r, 1 - 1.,2 r 21 T72 2 - r, 1/3). symmetrical and antisymmetrical with respect to reflection

of k (or F) in the plane z = 0. Equivalently, /- orf are the
This provides a more complete result than in (51). Similarly scattering amplitudes for protuberances on a base plane for
from the complete form of R of (42), we specify the reflected which a, 0 or b equals zero, a rigid ( + ) or free ( - ) base. For
phase by Im R /Re R = tan eR such that 0' incident on such structures the corresponding coherent

reflected waves are ± 0 (1 + Z , )/(I - Z ± ) with Z . as
tan e , 2( - ,1122 + ,272,) normalized impedances. We discuss such problems in detail

12(r22 +r,) + C Re 2 , in a sequel.

1 - 1r22 + 721712

r22 + 711 (54) V. MULTIPOLE EXPANSIONS

t z("1, +- 1.22Xl - .1212l) - (r"! +- 2 )/3 + ir/2, For various detailed applications or computations, we
reduce G [g] of(16) by expanding the scattering amplitudes G

where we dropped Re P2 , for negligible losses. The set of and g in Fourier series. This provides algebraic systems for
four phases corresponding to T, R, T', and R' of (30) for the corresponding scattering coefficients A and a in terms of
negigiblessatify a + e. - O - T. = Ir, where OT' distribution integrals A (continuum analogs of the lattice
follows from 9 T of(53) by interchanging I and 2, and where sums for the periodic cases)." ' In Ref. 7, using the general
OR = &i of(54). Thus, to the present degree of approxima- form G [g] we derived the general algebraic systems A [a] for
tion, the sum of the reflected phases differs by I SO from the arbitrary configurations, and indicated how the same results
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followed from more detailed manipulations starting with ex- xb I (x - sb ) -b

pansions of all fields in terms of special functions. We includ- pp(x) X D 2(s- 1)e - b)

ed essentials of special function derivations for the planar
periodic cases- "' to stress several points, but now we start D = b - b = (1 - w)/p, (62)

directly from (16). where [u] is the closest integer to u from below. We may also
use the residue-series representation s

A. Cylinders
For cylinders, we use the trigonometric series pp(x) = -W b+ De I +Dr =e

ft= - -_ D"
g' aeein ,  rv = Y~ ~ r -aI +t S ± V I; af8>0

derived by taking5 the Laplace transform of (62), and then
a,= a, (00) = an, e - ,oo, the inverse; see Ref. 5 for simple approximations of the roots

. near the sparse (w=0) and periodic (w= 1) limits. From geo-
G,o = YZA.eine, metrical considerations, or directly from (62), we obtain the

where the angle independent coefficients satisfy an. virial expansion in powers of w = pb, e.g., to e(w2 ) in terms
= ( - )n + "'a - n -. (from the reciprocity theorem). Substi- of u = x/b,

tuting into (16) we obtain in general p = 0 for u < l, p= 1 + w(2 - u) for l<u<2,

A. =a. + Xa,.A 9 _ (57) p= 1 for u > 2. (63)
VM

and for circular cylinders as in (5:93) The Fourier transform ofpp(x), except near the periodic

An, = a, [e -n. + Amf', -v (58) limit, is given by

where the an are independent of angles. The distribution P [K, = 9 [K, ] + (21rp/k).(sin 0, - sin 00);

integrals A", = ( - 1)n*_ are given by (5:93) if, I() = 1 + .9(,Y)

i',, = Ste -' +e -'Rn' - ')] =1 + 2w (p- 1)cos X'udu=(l +2)-',

=p dxpx)H,kx[e n-(- 11 .I) w sin u (1 - cos.X) (64)

+ +e-'ik snk], (59) 2 (1 - -V +  (I _-w)2,_V 2

z= kb (sinG0-sin 0o),
with H. = H I = J. + iN. and corresponding decomposi-

tions i.' = / + LI4'or S = Re S + S.. The second form in where - .0 is the transform of the direct correlation func-
(59), which follows from the first by applying the spectral tion. See Zernike and Prins6 for the original derivation of W
integral in S to the special cases of and for plots of W' and pp(x) for several values of b/b = w.

For small kb, or for 0=0, from (64) by expanding sin X'
e = H, (kr)e'"0  and cos X or from the virial expansion (63),

at hand, makes the dependence on k and 0o explicit. [In Ref. k(,-) = 0Y + B2 + % I = (1 - W),

5 (1953), we derive the second form, as well as (11), by ex- B = *-w(I - 3w/4)/3, (65)
panding all fields in terms of special functions.]

For even and odd n, we decompose (59) into two sets with 0' = W', as in (48). For large X(1 - w), from (64) in
,= 25 cos 2n0 terms of-., or from integration by parts and using the scaled

particlel 3p(b),

= 2f dxp(x)W2. (kx) cos (kx sin 0o), (6.0^')- I - [2w sin /(l - w). (66)
A'72+= - 2tS sin (2n + 1)0, and W' tends to unity in an oscillatory fashion as X in-

creases. We also showed5 that in the periodic limit

- - 2ifdx x , .+(kx) sin (kx sin 0o).

For normal incidence (0o = 0), the only set that arises is P[K- +-
2{dx~x)H,,(x). k-b) - 6 (sin 0, - sine,,)

dY2. = 2fdxp&)HU (kx). (61) sin 0, = sin 00 + 2nir/kb,

See earlier work3 for discussion and reduction of the same corresponding to the grating of spacing b. The present paper
algebraic systems (57) and (58) in terms of the different A's considers only the low-frequency periodic case kb (I
(lattice sums) appropriate for the periodic case. ± sin 0) < 2r, the case of one propagating mode.

The A's are determined by the Zernike-Prins pair We obtain F, from the first form in (59) by replacing S
function s.6 by Re S,
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./0 + / 2n(-w)

=Cje- 'n-+e- i(iv- 0.) 2w

= I _1W[K ]e + e - i"( - 0) , (67) + n(2n + 1[(1 2

where C = p/k cos 0, = (kb cos 0)-', and I f tto

= 2 cos 2n9, - t2 sin(2n + 1)0. The specular contribution Ifw-- 1, then the asymptotic result reduces to (2n), the Rie-
/On is the same as for the one-propagating mode periodic mann zeta function, as before for the periodic case.' For the

case3 with b replaced by b; the term bwo converts coefficients dipole, 12 /2 -(2)=r216=.645.
a ofg as in (62) to corresponding coefficients a' ofg'. We may B. Bounded obstacles
also write

pFor bounded scatterers, we use series of spherical har-
/" - =. j}= p x(p - l)J.f [ ]monics

with [ ] as in the second form in (59). For small kb, from (64)
and (67), or from f(J) with J (x)z (x/2)"/n!, we have g,0  Z a (

f ' " + (kb)2B (I + 2 sin 2 
0 )/2, n=Om= -n

,f' zi(kb )2 Bsino, a an'(ro) - a Y (to),
'3'

fr = (kb) 2B/4; / ' ,/,. _' = O(k 2n). (68)2 . O ~ (8) G~o= jA7 Y.(r), y m(f= p..(cosO0)ei,9
The next terms are two orders higher in k, and the result .,

2f- 6 for kb---" corresponds to small-spaced scat- P _ - P'(,- 1)' (n - m)!/(n + m)! = P'C'
-o=P(- 1)" (n- )!( +in

terers. l n+ a-1A-MWe construct.> Aby using - iS, in the first form of(59) v- ( - )"+vajm .
or Nn, in the second. For the second form, fbpNn [ ], for From (16), in terms of coefficients 4 d( of the expansion
n = 0 and 1 we use f" (p - I)N [ ] because the correspond- 1
ing integrals without p vanish; for n> 1, we use Y =
f - + f$-(p - 1). Correct to 0(w 2) and to leading terms in kfor small kb we have in general

m = 2/ Oa+ (71)A'=Z=-2i)O ~vOA ;dt S)

1°=2 (p -ln 2-- d=loln 2 -I and for spheres
Jo ck b u c k b A " = ( - ) a Y --(,o, + A ' , d - M 1 1 A- " ] .

c= 1.781; (69) n

Io2{P lu -2 w,(6)(72)
I, = 2w(p - )du =-2w + w2,  These systems are the same as considered before4 (p. 644 if)

for the doubly periodic planar lattice, but the present A"
I, 2wJ(p - 1) In u du = 2w [ 1 + w(21n 2 - i)]; represents distribution integrals. We have

, = 9, -- i(2/i4/o sin 0= - i(2/r)w(2 - w) sin O.. " = S [ Y , (i) + Y m(l)]

Ifw- l,thenIl(-In 2randI'- - In (4r/ckb).Thecorrec- = ( - 1ofd)R IR~e**Rinh(kR )et , (73)
tions to ./fo0 , , are 0 (k 2). For n > 2, from n (

N -(X) (n- 1)! 1_)n, with hn h =j. + in. and the corresponding decompo-

7 X sition A' = f + L4/ as before. Either form requires that

we obtain the dominant terms for small kb n - m be even: for odd parity,

2n (2n - 1)! 12\2", YN~)+ = YTt)[l +(- l)-m]
2 (kb)2n 2k / vanishes, and so does P."(O). The second form follows from(kb 4 sin ) A wf- d. (70) the first by usingX:42. + I -iV2.4n sin 00, ln = 2w uu.

I~ ~ ~ U2 e&. T(t) =r Y ."(Mh. (kr)
For small w, to O (0),

2=2w[I + l - In 2)]=21 + u0.307), and specializing to 1ir + 0) to correspond to the dis-
2 played e" .  For negative m, we have

12. = 2 I-- + ( -22n -- 3 + 2 A-11 M"+ ;-2 -1 = C ZRT.( - 0l ).-
2n - Ik 2n -2 ' ' No explicit analog ofp of(62) exists for two-dimension-

the next term in 12 equals 2w3(1 - 6 In 2 - 3 In 3) 2w6.45. al distributions, but for circular symmetry p(R ) can be coin-
For w near 1, puted numerically from the Percus-Yevick integral equa-
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tion or from other approximations (hypernetted chain or mation of space that leaves the origin fixed, a centro-affine
Born-Green) or from machine simulations.9 The virial ex- transformation that converts the circular disks (b ) to aligned
pansion for identical impenetrable circular disks of diameter elliptic disks (b2,b.such that b2b 3 = b 2), converts the equi-
b analogous to (63) can be obtained solely from geometrical probability circle R = ub R around the origin to the corre-
considerations; in terms of u = R lb and w = irb 2/4, we sponding ellipse R(u) on which we usep[ u}.
again have p = 0 for u < 1, and p = 1 for u > 2, but now the For circular symmetry, the second form in (73) reduces
first shell is specified by to two sets corresponding to n,m both even or both odd:

p= I + cos_- 1 2 l<u<2. =P' (O)i" - e"I-7rpI 2 21
(74) Xf fP(R )h, (kR )Im kR sin 0o)R dR,

The structure factor for circular symmetry
8 n = Il+o8W (p -du, Pl'(O) = ( - l)-"(2n + 2m - 1)!!/2" -'(n - m)!,
/".Zf = +w -- ~l('Tu~uu'p2m+la=2+m+ 1)P2 (0),2,(75) 2n+ 1 (0) (n + 2m + 2Pn

(X/kb )2 = (a - ao)2 + (f l- f 0)2  n!l = n(n - 2)!!, 1!! = 0!! = 1. (78)

= sin20 + sin 2 0, - 2 sin 0 sin0o cos(q? -- qo) For normal incidence (0o = 0), only

may be evaluated numerically by means of integral-equation b= P n(0)( _ )n21rpf p(R )h2. (kR )R dR (79)

approximations9 for p. is required. More generally, for elliptically symmetric statis-

Using (74) and (75), we obtain for small X', tics, the symmetry properties of (73) are roughly similar to

l() = I - 4w + 12v3 w2 those of the lattice sums for the rectangular unit cell dis-

IT cussed before for (4:18), p., 646. Thus there are four sets of

+-- [ 1 - +9 's, two for even indices and two for odd:

2= ( -*02 1 (0) dRph2,,(kR)[cosXcosYcos2m
+ e(w 3) + e'(k 3) 2

1 - 4w + 6.6159w 2 + py
2w(l - 5.9746w) - isin Xsin Ysin 2m 1],

W- + _V + I n 2m +,I()d

A (76) "2n+I =( l)P 12n (o)fd

The first three terms of W(0) = 0 in (76) differ from the
corresponding terms of WK2 in (48) in that 2V2 approximates
the third by 7u. A more complete expansion of 'K(A') + icosXsin Ysin (2m + 1)0 1; (80)
would show the same structure as (65) with *K(0) = Wt as a
factor. We use 7V= 72 and B = w(l - 6w)/2 in the follow-
ing. Y = kfl0R sin =kflob3u sin r,

For large X, we integrate (75) by parts and use the where
scaled-particle approximation for p(b), and Jl(x)~(2/ 2
rx)/2 sin(x - ir/4), to obtain fdR = b2b3f du uf d-r,

W(M- I 4w(2 - w)(2/r) / 2 sin(Y - ir/ 4 ) (77) and
(I w)2  X312 , (/2

which tends to unity more rapidly with increasing X than f d-r = 4f dr.

the corresponding result in (66).

For aligned elliptic disks with principal diameters b2  Subsequently, we use A' and A' to indicate components

and b3, we write involving cos mO and sin mO. For normal incidence
(a, = fo = 0, X = Y = 0), the only set that arises is

R = u(ib2 cos r + mb3 sin _p2R(u)

with u = 1 as the exclusion ellipse, and use d R = b2b3u = ( - 1)"P'(0)fdR
du di- to integrate over similar ellipses. For such elliptically
symmetric statistics, we work with (74H77) in terms of X ph2, (kR )cos 2mto = A2m'.  (81)

(, /k) 2 =b (a - ao)2 + b (3 fl- 0 )2  In (80) and (81) we use

and w = pirb2b34 on the basis of geometrical consider- R = u(b 2 cos 2 r + b 2 sin2r)'/2

ations. The geometrical distribution of hard circular disks of and
diameter b, and variable R = ubR with u = 1 as the exclu-
sion circle, determines the valuep(R j= pI u I corresponding e = u(b2 cos i" + ib3 sin i)/R.
to the equiprobability circle R = ubR with origin of u at the Essentially as for (67), for all cases with n - m even, we
center of one disk regarded as fixed. A homogeneous defor- have
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2CY"(fo) + fn m _ 6,o - .°kb 2  - 9o~fogo; Io= - 8w(l -6,)
O 0 

0

---W Y[K ] r T k2 COS (82) , = 8( V -

The specular contribution in C = 7p/k oo is the same as = r4 3)
the result for the doubly periodic array4 withp- replacing M' = (2/Trt )K (v), v = I - t
the area of unit cell. For small kb and circular statistics, from 0 '= sin - (Moe'9'" + e '
(82) in terms of YIK ] of (76), or from the form /() with X' kb - -

j. =x"/(2n + 1)I!, M' =(2/irtv)[ 2E- (2 - v)K ; (86)
( /2

1fo z7 + (kb )2B ( + sin2 00), E(v)= f(1 - v sin2 r)"2dr,

/-,' .- (kb)2 Bj sin 80e"'°,  ,/2
'0= - (kb)2BA; /,/,I '(k 2

,). (83) K(v) (1 - v sin2 r) - 12 dr,2 2n , 2n - I -

The next terms are two orders higher in kb. where E and K are the tabulated complete elliptic integrals,
For elliptic statistics, from (82)with and the next terms are e(k ). The dominant contributions for

n > I involve

or from (74) and (80) in terms of u and r, 2n - 1I + wB 2 - W12'n 1,

IFo - K=Bk [b2+aO)+ +b3 0 B2 = - __L_ = 1.564,o

If I.= -Bk 2 J(b 2ao + ib 2 0 )) 3 4i")
2 3' 1- 2 )112/;oz - (Bk 2/ 15)(b 2 + b 2)) 2,. = 8-E- 25 'A5f (1 U- du" ,

= 3 1. 2 2n - 2J/ 2 U2 du
2 -, z/r2Z=Ci(Bk 2 )(b2 - b 2),8 1.2,

4),~~ 12 = = v- LO, -- L)
/22 (k4), (84) i; 2 ir 2

where the corrections are 6(k 4). If b2 = b3, these results re- I; = 1(4 3  L = ln(2 + V3) 1.317.
duce to the corresponding ones in (83). For both sets, if k-.O, 2iT -8 /
then W-'. 6. for small-spaced scatterers. The dipole terms are given by

We obtain .4' by using - iSe in the first form in (73) or 20kb 2)3 /3-_ 2/3= _ 2M40)
n,, in the second. Corresponding to (70), the dominant terms
of -IV for small k may be obtained by using 'P2 (kb2 )3 /9 22 /9 2I2M9)

nm(x)= - (2n - l)!/x"n 'in the -41 form of(80). Proceed- 12 = 8tw(1 + wB 2 - wI 2)=8w(l + 0.4157w),
ing essentially as before for the periodic analog (4:90), p. 653, M2 = (2/irt)E, M 2 = (2/ir3tv) [(2 - v)E - 2(1 - v)K].
we obtain in terms oft = b3/b2, 2(87)

_ _ (4n -If t--* I for circular symmetry, then M 2 and M 2 -_.0, and M 0-1) Inps,,(O) 
02

2m- 2n -1M 2I(t)) and M-.1I; the leading terms of.A", is then e(k -). The
(kb 2)

2" + I (kb2)2" + 1 dominant terms for circular symmetry are the subsets

_ 2,,, +_ (4n + 1)!!(- )P +,'/, (2n - 1)11(4n - 1)!!
+I 2+ + 2n +-4/32. 2"n!(kb)2f +12.

(k b 2)
2  + I (k b 2)2 n +

A' 00 2. 2.+ (2n + 1)l2(4n + 1)!!I
I 2 -S. 2n e-"°), (85)

as obtained directly from the form (78).
10 o = 8w (p - = u ,_. (ur consideration of *'(X) and A.' ' for elliptic sym-

Io= 8w (p--l)du, 1n=8j du, metry based onp(R) =pIuJ, withpluI as the values of the
radial distribution function for circular symmetry, have led

2r /2 cosr + it sin.), to approximations in terms of elliptic integrals which make

( rJo (co s2 i" + t 2 sin 2,.)n + m + 1/2' explicit the departures from maximal symmetry. By inte-grating over symmetrical ellipses, we isolated integrals of

where the M's may be expressed in terms of elliptic integrals. p I u I over u that are identical with results for circles, so that
The present IM plays the same role as the periodic" L; as existing approximations and computations9 for circles can
before we need consider only t> 1 explicitly, and obtain re- be applied directly.
suits for t < I by using In distinction to the one-dimensional distribution, for

M2- ) l)t 2n + IM 2M1 which the periodic case is a proper limit of p, there are no
M 2.(t =(- -- M + 'M ,. comparable representations or approximations for a two-di-

For n = 0 and 1, in terms ofp of (75), mensional distribution function p(R). There is no unique pe-
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riodic limit in two dimensions, and a great deal more struc- For the corresponding multiple scattering amplitde. we
ture (noncentral potentials) would have to be introduced, write
and more than geometrical arguments would be required, to ,

trace the evolution of a gas of rigid disks through the liquid G,o = Ao + '.A = Ao + IA yr = Ay,, ro = 1.
to some specific periodic limit. For distributions governed =1 (91)
solely by the geometry of the exclusion region, a realistic
bound corresponds to the two-dimensional analog of an We work explicitly with n = 3, and set Y3 and q' = 0 for
amorphous solid; instead of using the close-packed value n = 2.
w, =0.785 for a square array or wi =0.9 0 7 for a hexagonal From the algebraic systems (57) and (71), or from the
array, we use the experimental value Wd =0.84 for the den- functional equation (16), we obtain
sest random packing (which approximates the mean of w, Ao = ao(1 + k'0oAo + ,',A), A = i.(k + tAAo + .A);
and wA). Nevertheless, the earlier results for the rectangular -Y = 0 + W (92)
lattice4 with the square as a special case provide rough (less =
symmetrical) analogs of the present forms for the ellipse and 7' = eyl I iiZ + IY 2 2 fd + A' 23 4y + IY32Yi + I'Y33Y

,

circle, as well as estimates for bounds for the present case. where the ',j = A,, are linear combinations of the distri-
In the explicit low-frequency approximations of *T bution integrals we considered. For the planar array of cylin-

for the rectangular array given by (4:14), p. 659 if, the func- ders, in terms of (59) if,
tion L (t) corresponds to the present IM (t). For the square A00 = ,, -A 2 = (1y0 + A!2),
lattice, 222 = I Wo - A 2). (93)

Lo{1)=-3.900, L°{1)=9.03, L()--0
and for rectangles For bounded obstacles, in terms of (73) if,

0 ( 2) = 0 2 'Y o 0 , ' V 0 2 = A 011 ,  ' V 0 3 = g I ,0O(2 -2.521, L(2)z4.049, L (2)=1.856;

LO(4)=-1.135, L°(4)=2.815, L2(4)=2.267. ' (Ao +2A2),
2 IY23 J A ' A2, 22 j "[ 0 A ID +2 " V T2

c

Normalizing L '(t) by dividing by L ' (1), we write

mo(2) =0.646, m(2) = 0.448, m2(2) = 0.206; A - - (94)
mo (4) 0.291, m2 (4) = 0.312, m2 (4) =0.251. The superscripts c and s correspond to terms in cos mO and~0 2 2sin m1 as indicated after (80). Thus, in general, the four A's

The corresponding values for the present problem are are specified by four simultaneous equations in terms of the
M o.(1) = l,M 2 (1) = 0, and a's and A's. First we consider the simpler systems that arise

MO(2)=0.686, MO(2)=0.385, M2 (2)=0.0616; for several special cases in order to display the structure ofthe multipole coupling; then we obtain closed low-frequencyMO(4)=0.446, M°(4)=0.171, M2(4)z0.0447. (89) forms of(92).

The normalized monopole terms are larger for the ellipse If the principal axes of the dipole are along xvz (the
than for the rectangle, and the normalized dipole terms are symmetrical monolayer), then (92) reduces to two sets.
smaller, i.e., Mo(t ) > mo(t) and M2(t) < m2 (). The ratiosM2M2 arMmle hn2/Mo A, =aj(e, +,*',A,); A, =a,(ei+ *ijAj);

I/are smaller than /m; with increasing t, the first
tends to j and the second to 1. i or j = 0,2,3, so (95)

corresponding, respectively, to the decomposition
VI. CLOSED-FORM APPROXIMATIONS G = GA + Gs into components antisymmetrical and sym-

metrical with respect to the plane of centers (z = 0). Intro-The algebraic systems (57) and (71) may be expanded in dcn h efculn ofiins

series form, truncated and solved in closed form, or investi-

gated numerically. We illustrate truncation by retaining a(. = a. /(l- a.
only the monopole and dipole terms for elliptical scatterers we write the antisymmetrical component as
and statistics. The results are applied to obtain low-frequen- AI = a3 /(l - a1 ,A"1 ) =,

cy approximations for small-spaced scatterers with empha- G

sis on dominant multipole coupling effects. GA (PA) =Air, = -,f ne, (96)
The isolated scattering amplitude has the form and specify the symmetrical component Gs = Ao + A2r 2

R0 00  + +A 3 r 3 by
go = ao .i.+ P = ao + = & 2 ,aK; ++A '%3)

= a= atirie; A2 = Q2(1 + A0 YI' 20 + A 3 "23 ),

I- 1J - I A 3 = S013iy + AOr 30 + A 2 k 32 ). (97)

,= cos e, r2 = sin 0 cos , r3 sin 0 sin i; (90) For normal incidence, e = I = 0, and the displayed lat-
where i is a symmetrical dyadic with principal values a, tice, sums vanish; they are not in the subset (81). Then
along ,, and n = 3 or 2 for ellipsoids or elliptic cylinders. Gs = o and G = &to + 1.rer.
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For incidence in the zx plane, only the *'7c arise and A, = (a, cos2 fl + a2 sin2  - a a2Y' 22)/D,

only , o2 = A ' survives in (97). Thus G, = A, + A 272 in A 2 = - (a, - a 2)sin f cos fl ID,
terms of D = 1 -- a,(', , cos 2 

g + &Y 2 2 sin 2
#)

Ao = z/o(l + A 2 ' 0 2), A 2 = d 2(' + Ao *2o); - a2( r , sin 2 fl + A022 COS2 f)

AO = d 0 (l + Y 0 2sf2 'A)/D,-

A2 = d 2(Y2 + ,fA20 -ro)/D, D = I - i/1 3. 2(PY20)', + a ,a 2 ' I'a"22. (103)

and the multiple scattered amplitude equals The forward scattering amplitude for this case,
G. = A0 + A, with Yii = -Y, (i, is substantially different

G(i,k) = GA + Gs = v/lye from G of (98) evaluated for i = k = i cos f + i sin f, i.e.,

from Gkk = A, + A, cos 2 f + A2 sin 2 fl with A?°
+4'0 + -d 2Y2y + d 0 j 2 O 2 (Y 2 + 2) = Vj (k). Although the orientation of a single ellipsoid with

-- z/oi2 ( 02)
2  respect to an incident ray is the same in both cases, the orien-

tation of the array is not, so that the coupling processes dif-

_W, = a,1/(1 - ajA',). (98) fer. In general (103) is considerably more complicated be-
cause it is much less symmetrical.

More generally, we reduce (92) to the form G [g] of (32)
ercti .Th s s strcrrelso t o r prode win- which we have already analyzed, and show the relationships

teractions. This same structure also arises for spheroids withthe first form ofg of
symmetry axis along i and arbitrary k, and for the two-di- (90) and the first for g' of
mensional problem (-y2 = sin 0) of elliptic cylinders. (90) and the analog for g' into (36), we obtain

Although the general case in (97) is a simple system that g = a' + i'.-k, a = (1 + ao)- ao,

can be solved directly, in order to delineate cross coupling i' = (I + i/n)-i'.i. (104)
between ZQ2 and (a, we first incorporate such effects in The amplitude g' for the radiationless obstacle, and the coef-
coefficients 9,1K. We have ficients a' are imaginary for lossless scatterers. In practice,

we start with g' or an approximation (derived, e.g., from
A 2 = 23 +Ao 0 - 2 3, A 3 = -32 +AoWff 32, perturbation of potential theory results) and use the inverse

923 = "/2(72 + A yI 3 f'' 23)/D, relations a, = a( - a;)-',i = i'.(I - i'/n)- to construct

&23 = -W 2(P 20 + -W 3'Y 23AY"3 )/D, g. To analyze (92), we use (104) and the decomposition

D = 1 - C/ 2d/ 3(W 2 3 )
2
, (99) -Y,, = /'0 - m6i, + r, f- = 2Cr ,

Jy; =fri +Llrj, (105)
and -4 3 2 , ' 3 2 follow on interchanging 2 and 3. If the mono- where m, = 1, and mi = l/n with n = 2 or 3 if i#0.
pole is negligible (e.g., if the relative compressibility of the Substituting (105) into Ao of (92), we make the specular
particles is unity), then A2 = V 23 and A 3 = -V32. From (99) contribution explicit
and (97).

Ao = ao[ I + (2C - 1 + Ao)Ao
A, = I°(1 + OA"02C&23 + 'Y03e23) (100) + 2cQy2A 2 + rPA 3) + A,'.A]I - z/o( ?"oz2a + a~o332)

and then suppress - I + Ao by the form
and A2 and A3 follow from (99).

An alternative simplification of (92) is obtained by spe- A, = d. I[1 + 2CAO + C(k + i').A] + "'.AJ
cializing the forms for arbitrary alignment to 3 = k' and nor-
mal incidence k = .Only the Yt", are nonvanishing, and = A 0 [(1 + CGoo) + CG0 o ] + ,','.A , (106)

from ao

Ao = ao(1 + Ao.'oo), 1 - ao(- 1 + a'o)

AI = a ,(l + o',A) + a,2 ay2 ,A2 , a; a'

A2 = a2 (1 + Y,,A,) + a 2 291- 2 2 4 2, (101) = = 1 -
I - a;( ,0) 1 -a

we have Here a" = a/(l - a0L o)=-a3.o, such that go is real

Ao = zo, A, = [a,,- (a,,a2 2 - a22 )W 2 2]/D, when ao is imaginary, is the monopole coefficient of the ra-

A2 = a21/D; diationless distribution amplitude g'.

2  Similarly for A of(92), we incorporate - 80/n directly,D 1- a~ , - a221r22 -J+= (aila22 - al2 V22; and make explicit the specular f/ terms,
G=Ao +Ay, +A 2Y2. (102) A = i,.k + C(I + i), + Ckk + k'f'.A]

the same results hold for the two-imensional problem. Indi-

cating orientation by = cos f- x sin fl, we rewrite the + i'{("Ao + #f.A)

dipole terms as and then suppress S' to obtain
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A = . . [k(I + CGo) + k'CG0 , ] + Yk"A 0 , " =1- ii';VA is real; the factor. - ' introduces a k-inde-

- . ')- = (- j.")- , (107) pendent coupling correction to the stripped dipole coeffi-
cient a .The operator (I - i" *'/n)[ reinstates radiation

where i = (I - ii'W,1 '.i' is the dipole coefficient of the losses corresponding to fluctuation scattering governed by
radiationless g". The brackets in (106) enclose the packing factor W.
(('P>) + (I,< ))/2 evaluated at z = 0, i.e the mean coher- To illustrate the above we start with Rayleigh's re-
ent field (excess pressure); and similarly the brackets in (107) sults'5 for elliptic cylinders and ellipsoids in the form
enclose V((I> ) + (P< ))/2ik evaluated atz = 0, themean aozt'T , K = C- I;
gradient (normalized velocity).

We eliminate the cross terms in (106) and (107) corre- a; = - iFf'f/(l +6qi)= - if'1"Z, -4 = B - 1;
sponding to monopole-dipole coupling, and obtain in terms F = K 2/4, k 3 /4ir, Im C>0, Im B<0. (112)
ofL = 1 + CGoo, M = CGo, Here Y is the particle's volume, C and B are its relative

A 0  (ao + a.k)L + (.o + a.k'g, parameters (compressibility and inverse mass density in the

A (a + a- k)L + (a + -I'M, simplest cases), and q, is the elliptical depolarization inte-
gral' 6 normalized to 1q, = 1; in two dimensions, in terms of

a° = (1J-r)f° " 's/ ' the principal diameters d, and d 2 along z and x,

Z 1.{I - aoq'i.q),q = 1 - q2 = d2/(d, + d2). For rigid scatterers, C = B = 0,

a = "."dao = W"ao, (108) and a;= -i, azif/(l -q,). More generally than in
(112), we replace B by a tensor parameter B = (Bj).

as well as , = (I - ', d.k"'F -.. /and a = ,. t'. If the principal axes are along the Cartesian axes, then
Substituting into Go= Ao + i.A yields GO = poL for cylindrical dipoles, in terms of I2 of (70),
+voM as in (32) with . , =1 + -:E,, E,=E= r1I/2rb2, E2  -6.

g', = ao + a.(+ ,)+ .-I.; +i, = k&. (109) (113)

The three coefficients ao, a, and a hold for both k and k' For ellipsoids, in terms of I2M' and I2M' of(87),
because only their tangential (xy) components are involved.
If we replace kby - k, then ao and a are unaltered, but = 6, 2 = - ( + e'), 3 = - (e - 6');

- k) - a(k).Theequivalentscattererp,fromwhichwe f = 7I 2M 0/417.b 3, e' = 3Z"'12M,/4ib, (114)
obtain G by incorporating the specular effects via (32), satis- for both cases, lei = 0, and consequently a!' has the same
fies the same reciprocity relation as G, i.e., form asa;,
i rL,r) = P( - P2, - r) with either i, or i 2 equaling either k

or k'. Substituting g and q, of (109) into (39), (42), if, ai' -= . - i T
provides explicit illustrations of the general considerations. ai =q 1 + ViQ, -i

The procedure (106H109) serves to delineate the rela- Q=, = + e, 1Q = 1, (115)
tions between the various coefficients and amplitudes, and to
display the role of the coherent field in the monopole Ao and such that the packing effects are incorporated in new de-
of its gradient in the dipole A. However, we derive 7 more polarization factors Q1. The relation at = am = vlum plus
directly from (32) by substituting p, =11o + .U and Eq. (11si5) determine an ellipsoid having the same volume and
g, = a, + i-'ii, and denoting the corresponding distribu- physical parameters s athe original, but a different shape.
tion integrals generated by S10 1 as A'° = V - f. We ob- The equivalent ellipsoid is flatter along the array normal and
tain (92) in terms of U,U,11,V, ), and corresponding analogs of broader in the plane of centers, the elongation being greater
(106) and (107) devoid of specular contributions (no terms in along the smaller diameter of the exclusion ellipse (along b
C). This leads directly to 11o,= d;(1 +,'.1U) and forb 2 <b1 )'Correspondingto(111),wehave
U = d( 1 + A'Uo), and after eliminating the cross terms,
to 11o = ao + a.-? and U = a + a.f with coefficients as in
(108). - #:r 2(' 0i + r,/n), (116)

For small-spaced scatterers, and a' and i' of order k", where we keep only the leading terms in *'T 2, and use
we use e2 = (Re ') 2 Z' eI

2, etc. Substituting (116) into (50) and

f i .~m~ ,  A^/'6j , (110) (51) we generalize the earlier results by replacing 7 corre-
sponding to g' by the present factor for g" and thereby in-

where _.i4,, obtained from (70) and (85) via (93) and (94), is of clude the dominant multipole coupling effects.
order k - " for i > 0, and X0'o k "--*0 as k-+O. Thus More generally, for an ell~psid of arbitrary orientation

p,' =ao + ?'i"4; aoza/(l - ao zti, with shape dyadic = , ,g, and dyadic parameter

-[I- i'(/n) - ii' V] -I.i' B = 1Biq, , , we have
V ~ ~ ~ ~ ~ ~ ~ i = -n W7n -f n+VifW1, (1)i r (i + .4.4)- =--- ir*S, -4 5 f- .

=(l-i'7/n)'.i=i"+ i'i" F'/, (11)(117)

in = (I - i"41 -I .' = . - .'. Writing the array coupling factors e, with e = 0 as the

For lossless particles, i' and i" are imaginary, i.e., array dyadic i = lXeii (where i = i,9), we use
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- ia', = 5'.i, and (- iia"-).* = (1+ 8'.i)-'.i' to .2*.9* = I ,rrI + F8 12(Y2a + a2r,) + 0 22a2a,,
obtain t.2  .t, = ( , + 2)rY2rI + ,2(81 + F22)

= - iF(i+ .)-. - iI~8~ + X X(r2a , + a 2 r,)+(¢2 + 2 a,2 . (125)
a, = - - -. ,(118) SPecahzngto? 21i, = i',and kk', intermsofk = r + ia

with Q as the net depolarization dyadic. The corresponding and k' = ir + la, we have
equivalent scattering amplitude, obtained by substituting = = - 2 + 822a2,
(118) in (I11), A.k'.88e.k = k .8.8.k'

i (c - P.8k) - wTr 2(,
e 2 + t.g.8.k/n), (119)

as well as the special case (116), can be used in (44) if to 1 - + 222)
2 + 12 + 2 )a. (126)

construct T, R, and IG, 12 explicitly. Consequently, from R2 , = 2C2,1/D of (42)
We apply (119) to illustrate statements for (52) ff with 00 R~o R

reference to theorems for T = Too, T' = To,, etc. It suffices - -- =- = 1. (127)
to consider coincident principal axes for the parameter (A) jow RW R'

and shape (4) of the particle, and particle orientation speci- Thus, although the particle alignment is not symmetrical to
fled by 3= , 1 = co C-- Sfl Sin iP2 = t Xt • For inci- the array, the reflection coefficients for arbitrary imaged dir-
dence and observation in the zy plane, we require only ections k and k' are identical in magnitude and phase.

' s ;2 )Hi On the other hand if ?2 and F, both equal k or k', then
C.(f. = Z,r 2 + 1,22ra + ,22a 2,

+ %R2(i + + (M2 + % '%2,)ii]/D, k'.C.k' = F,,y2- _, 22ra + F22a 2, (128)

D = 1 + E l + 22 E 2 + % 2 IE2, and similarly for the e.e terms. Thus, from (42) for Too -T

!" = V,(l + 9jq)-', , =Bj - 1, (120) and To =T',

where DT- (1 - C21,II) = - [DT' - (1 - C211.01)]

, = 3; cOs2 fi+ F sin2fi, = C(.oo -0-)

B22 = B; sin2f - cos 2f, = iK441 2ya - K4Fr* Re 12
%'12 = %2 = (F - Z )sin6 cos. (121) XRe(, 1 1- 2 2 )ya, (129j

Equivalently, in terms of Q = q + 1 = (Qo) = (q + e6) so that T and T' differ in general. However, for negligible
with q. expressed in terms of V and q2 by the relations in t
(121),we obtain from the form 8= (I + .)_. losses, .012=1imP 12, and I1p11 = oo - is real; for

such cases, (129) in terms of real quantities A and B reduces

= [( 1 + - I41 - 2Q22)
" + ('V21 - 1 -4 2Q21) to

x(iA+i)+(VV 22 +-,- 2QIi)]/D, T= +T2 T' - 12=A 2 +B 2

-- D -'1=1--I---'= ID12

D' = " VIIQI! 22Q22 -4"2 12QI2 D D ID 1(130)

+ - 1-42(QIIQ22 - Q1 2 ), (122) so that the transmitted magnitudes are equal for k and k'.

with 4 Y in terms of - as in (121). From (120) or (122) with This plus (127) illustrates the general considerations of mag-

8 = (F,), we have nitudes after (54), and (1 26H 129) serve for the related discus-
sion of the phases, i.e., that the sum of the reflected phases

8.8 = (1 + 22 )1 z + F82(211 + 522) (eR + e.. = 2 60R) and the sum of the transmitted phases(eT + Or) differ by ir for negligible losses. From (129), the
X(i + i) + ( 22 + 22 )ii, (123) transmitted phases differ by eT - eT, = 8K Re 1 2ya to

first approximation.
for which we use (48) 2

= (Re F0)2" The development of (112) excludes pressure release ob-
Corresponding to the generalization of Cp in (51), we stacles for which ao is not of order k", and the case of mono-

write . _ =P + if with MP and / in terms of the present pole resonance. We include these by an alternative form for
results. Thus, for absorption of the order of the scattering the monopole if > 1 (corresponding, e.g., to underwater
losses, sound incident on gaseous cylinders or bubbles),

ImC02, =Kq 2,, ReCp2, =KV 2 + rw-.42, ,o0  ____2o I
K=pTk/4o= C', 1-1". ; = '(131)

q21 = Re(CK - 2" 'I), / 21 = Im( + ?2..i), where 6o = ln[8/kc(d, + d2)], and (is the electrostatic ca-
qt ,,o = (Re e,)

2 + Re(t2 .8).Re 1.3t/n. (124) pacity of the ellipsoid. For the pressure release case, we let

The angle dependent terms for , =Icos0, +isin0, C---oo in f =C- I of(131), and B--+o ina' of(112) to
=- y, + ta, are given by obtain
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