REPORT D	OCUMENTATION	PAGE	form Approved OME No. 0704-0188
Pushe reporting oursen for the conscion of infigure and maintaining the data needs. and	ormation is estimated to average 1 nour a completing and revenues the collection	Der resonne, inc. in sine ter rem n of information and tamments regers	ne the Burden etchnete or any other an
gathering and mantgaring the data reader. An collection of information, including suggestions Davis regiment, Surge 1284, Artington, VA 22202	-4302, and to the Office of Management	and Budget, Facerwork 4 esuction Project	10704-0100, Washington, OC 10503
1. AGENCY USE ONLY (Leave blan	W) 2. REPORT DATE	3. REPORT TYPE AND Reprint	DATES COVERED
4. TITLE AND SUBTITLE			. FUNDING NUMBERS
Filters With Small N	lon-Linearities		AFOSR-86-0332
			61102F 2304/2
6. AUTHOR(S)			/.
Robert J. Elliott			()
7. PERFORMING ORGANIZATION N	AME(S) AND ADORESS(ES)	1	
Department of Statist	ics and Applied Pro	obability	REPORT NUMBER
University of Alberta			•
Edmonton, Alberta, Ca T6G 2G1	inada	APOSR .	K • 90-059
9. SPONSORING / MONITORING AG	ENCY NAME(S) AND ADORES	K(ES)	18. SPONSORING / MONITORIN AGENCY REPORT NUMBER
AFOSR/NM Building 410			AROOR 96 0222
Bolling AFB, DC 2033	32-6448		AFOSR-86-0332
-			
11. SUPPLEMENTARY NOTES 12. OISTRIBUTION / AVAILABILITY Approved for public re distribution unlimite	lease;		126. DISTRIBUTION CODE
12e. DISTRIBUTION / AVAILABILITY Approved for public ro distribution unlimite 13. ABSTRACT (Maximum 200 word DTIC ELECTE MAY 2 9 1990	leasc; d.	finite dimensional solution ion processes are linear and aper the effect of a small non- sed by considering stochastic sanov transformation for the	126. DISTRIBUTION CODE
12e. DISTRIBUTION / AVAILABILITY Approved for public ro distribution unlimite 13. ABSTRACT (Maximum 200 word DTIC ELECTE MAY 2 9 1990	10050; d. k) he Kalman filter provides a hen the signal and observat ave Gaussian noise. In this pe hearity in the signal is discuss was for the signal and a Gira was rot the signal and a Gira was rot. The result can be	finite dimensional solution ion processes are linear and aper the effect of a small non- sed by considering stochastic sanov transformation for the	
12e. DISTRIBUTION / AVAILABILITY Approved for public redistribution unlimite 13. ABSTRACT (Maximum 200 word DTIC ELECTE MAY 2 9 1990 D	10050; d.	finite dimensional solution ion processes are linear and aper the effect of a small non- sed by considering stochastic sanov transformation for the expressed in terms of Gaus-	15. NUMBER OF PAG
12e. OISTRIBUTION / AVAILABILITY Approved for public ro distribution unlimite 13. ABSTRACT (Maximum 200 word DTIC ELECTE MAY 2 9 1990 D D MAY 2 9 1990 D	10050; d. k) he Kalman filter provides a hen the signal and observat ave Gaussian noise. In this pe hearity in the signal is discuss was for the signal and a Gira was rot the signal and a Gira was rot. The result can be	finite dimensional solution ion processes are linear and aper the effect of a small non- sed by considering stochastic sanov transformation for the expressed in terms of Gaus-	15. NUMBER OF PAG

ł

Robert J. Elliott

Department of Statistics and Applied Probability University of Alberta Edmonton, Alberta, Canada T6G 2G1

ABSTRACT

The Kalman filter provides a finite dimensional solution when the signal and observation processes are linear and have Gaussian noise. In this paper the effect of a small nonlinearity in the signal is discussed by considering stochastic flows for the signal and a Girsanov transformation for the observation. The result can be expressed in terms of Gaussian densities. ()

1. THE LINEAR FILTER

In this section we first describe the linear Kalman filter. For simplicity real valued signal and observation processes will be considered; the vector case can be discussed with more complicated notation and calculations. ω_t , B_t , $t \ge 0$, are two independent Brownian motions defined on a probability space (Ω, F, P) which has a complete, right continuous filtration $\{F_t\}$ to which ω and B are adapted. a_t , $t \ge 0$, is a locally integrable, measurable function, and h_t , $t \ge 0$, is a function with a locally integrable derivative.

Suppose the SIGNAL is described by the linear equation

$$x_t = x_s + \int_s^t a_u x_u du + \omega_t. \tag{1.1}$$

Write the solution of (1.1) as $\xi_{s,t}(x_s)$. Suppose $\Phi(s,t)$ is the solution of

$$\frac{d\Phi(s,t)}{dt} = a_t \Phi(s,t) dt, \qquad t \ge s, \qquad (1.2)$$
$$\Phi(s,s) = 1.$$

Clearly,
$$\Phi(s,t) = \exp\left(\int_{s}^{t} a_{u} du\right)$$
 and
 $\xi_{s,t}(x_{s}) = \Phi(s,t) \left\{ x_{s} + \int_{s}^{t} \Phi(s,u)^{-1} d\omega_{u} \right\}.$ (1.3)

Research partially supported by the Natural Sciences and Engineering Research Council of Canada under grant A-7964, and the U.S. Army Research Office under contract DAAL03-87-K-0102. The OBSERVATION process is taken to be of the form

$$y_t = \int_0^t h_s \xi_{0,s}(x_0) ds + B_t. \tag{1.4}$$

As usual, we shall suppose x_0 is a Gaussian F_0 measurable random variable independent of ω_t , B_t , t > 0.

Write $\{Y_t\}, t \ge 0$, for the right continuous complete filtration generated by the observations and

 $\hat{x}_t(x_s) = E[x_t \mid x_s, Y_t] \quad \text{for } t \geq s.$

Then it is known that $\hat{x}_t(x_s)$ is a Gaussian random variable for t > s and

$$\hat{x}_{t}(x_{s}) = x_{s} + \int_{s}^{t} a_{u} \hat{x}_{u}(x_{s}) du$$
$$+ \int_{s}^{t} P_{s,u} h_{u} (dy_{u} - h_{u} \hat{x}_{u}(x_{s})) du$$
(1.5)

where

÷

$$P_{s,t} = E[x_t^2 \mid x_s, Y_t] - (E[x_t \mid x_s, Y_t])^2$$

satisfies the deterministic equation

$$\frac{dP_{s,t}}{dt} = -h_t^2 P_{s,t}^2 + 2a_t P_{s,t} + 1, \qquad (1.6)$$
$$P_{s,s} = 0.$$

Consequently, $\hat{x}_t(x_s)$ is Gaussian with conditional mean $\hat{x}_t(x_s)$ and variance $P_{s,t}$.

Writing $\hat{x}_t = E[x_t | Y_t]$ we see \hat{x}_t is Gaussian with mean and variance P_t given by

$$\hat{x}_{t} = E[x_{0}] + \int_{0}^{t} a_{s} \hat{x}_{s} ds + \int_{0}^{t} P_{s} h_{s} (dy_{s} - h_{s} \hat{x}_{s} ds)$$
(1.7)
$$\frac{dP_{t}}{dt} = -h_{t}^{2} P_{t}^{2} + 2a_{t} P_{t} + 1,$$
(1.8)

$$P_0 = E[x_0^2] - (E[x_0])^2.$$

333

22ACSSC-12/88/0333 \$1.00 © 1988 MAPLE PRESS

The equations (1.5) and (1.6), or (1.7) and (1.8) are forms of the Kalmar filter. The inovation processes

$$\beta_t(x_s) = y_t - \int_s^t h_u \hat{x}_u(x_s) du, \qquad t \ge s,$$

$$\beta_t = y_t - \int_0^t h_u \hat{x}_u du, \qquad t \ge 0,$$

are $\{Y_t\}$ Brownian motions. They generate the same filtration as $\{y_t\}$.

The Gaussian measure on R with mean m and variance P will be denoted by $\mu(m, P, dx)$. If g is a Borel measurable function on R we shall write

$$\Gamma(g,m,P) = \int_{\mathcal{R}} g(x) \mu(m,P,dx).$$

If Z_t is an integrable process, $t \ge 0$, $\Pi_t(Z)$ will denote the $\{Y_t\}$ -predictable projection of Z, so $\Pi_t(Z) = E[Z_t | Y_t]$ a.s. For a function g(t, x) such that

$$|g(t,x)| \le K(1+|x|^m)$$

for some K > 0, m > 0, we shall write

$$\Pi_t(g) = \Pi_t(g(t, x_t)).$$

From [2] we quote the following results:

LEMMA 1.1. a) Suppose $0 \le s \le t$. The conditional law of x_s given Y_t is

$$\mu(m_s^\iota, P_s^\iota, dx)$$

where

$$m_s^t = \hat{x}_t + \frac{P_s}{\gamma_s} \int_s^t \gamma_u h_u d\beta_u \qquad (1.9)$$

$$P_s^t = P_s - \left(\frac{P_s}{\gamma_s}\right)^2 \int_s^t \gamma_u^2 h_u^2 du \qquad (1.10)$$

and γ is the solution of

$$\gamma_t = 1 + \int_0^t (a_s - P_s h_s^2) \gamma_s ds \qquad (1.11)$$

so

$$\gamma_t = \exp \int_0^1 (a_s - P_s h_s^2) ds.$$

b) Suppose g(t, x) and $g_{x}(t, x)$ are Borel functions satisfying growth conditions as above. Then

$$\Pi_{t}\left(\int_{0}^{t}g(s, x_{s})ds\right) = \int_{0}^{t}\Pi_{s}(g)ds + \int_{0}^{t}\Pi_{s}\left(\int_{0}^{s}g_{x}(u, x_{u})\frac{P_{u}}{\gamma_{u}} du\right)\gamma_{s}h_{s}d\beta_{s}.$$
(1.12)

From (1.3) we see the map

 $x \rightarrow \xi_{s,t}(x)$

is a diffeomorphism of R and

$$\frac{\partial \xi_{s,t}(x)}{\partial x} = \Phi(s,t).$$

From (1.5) we can write

$$\hat{x}_{t}(x_{s}) = \Phi(s,t) \Big[x_{s} + \int_{s}^{t} \Phi(s,u)^{-1} P_{s,u} h_{u} d\beta_{u}(x_{s}) \Big]$$
(1.13)

 $\frac{\partial \hat{x}_t(x_s)}{\partial x_s} = \gamma_{s,t}$

and

where

$$\gamma_{s,t} = 1 + \int_s^t (a_u - P_{s,u} h_u^2) \gamma_{s,u} du \qquad (1.14)$$

$$\gamma_{s,t} = \exp \int_s^t (a_u - P_{s,u} h_u^2) du. \qquad (1.15)$$

2. NONLINEAR SIGNAL EQUATIONS

For linear signal and observations the Kalman filter provides a finite dimensional solution to the filtering problem. Consider a measurable function f(t, x) on $[0, \infty] \times R$ which is twice differentiable in x and which satisfies the growth condition

$$|f(t,x)| + |f_x(t,x)| \le K(1+|x|).$$
(2.1)

Let $\varepsilon > 0$ be a small positive number. Consider a signal process given by the non-linear equation

$$\bar{x}_t = x_0 + \int_0^t (a_s \bar{x}_s + \epsilon f(s, \bar{x}_s)) ds + \omega_t. \quad (2.2)$$

Consider the process z defined by

$$z_t = x_0 + \int_0^t \Phi(0,s)^{-1} \varepsilon f(s,\xi_{0,s}(z_s)) ds \qquad (2.3)$$

where $\xi_{0,s}(\cdot)$ is the diffeomorphism defined by (1.1).

LEMMA 2.1. The process $\xi_{0,t}(z_t)$ is the solution of (2.2).

PROOF. Substituting (2.3) in (1.3) we have

$$\xi_{0,t}(z_t) = \Phi(0,t) \Big[x_0 + \int_0^t \Phi(0,s)^{-1} \varepsilon f(s,\xi_{0,s}(z_s)) ds \\ + \int_0^t \Phi(0,s)^{-1} d\omega_s \Big].$$
(2.4)

Differentiating (2.4) in t the result follows.

REMARKS 2.2. Because f satisfies the linear growth con dition (2.1) $\bar{x}_t = \xi_{0,t}(z_t)$ has finite moments of all orders.

If
$$Z_t$$
 is a process we shall write $Z_t = O(\varepsilon^k)$ if

$$\left(E\left(\sup_{s\leq t}|Z_t|^p\right)\right)^{1/p}=O(\varepsilon^k)$$

for every $p \ge 1$.

NOTATION 2.3. Write

$$\Delta_{0,t} = \Phi(0,t) \int_0^t \Phi(0,s)^{-1} f(s,x_s) ds.$$

Using the mean value theorem we can quickly deduce

PROPOSITION 2.4.
$$\bar{x}_t - x_t = D_{0,t} = \varepsilon \Delta_{0,t} + O(\varepsilon^2).$$

REMARKS 2.5. To discuss the effect of the non-linear signal $\bar{x}_t = \xi_{0,t}(z_t)$ on the observations consider the measure \bar{I} defined by

$$\frac{d\overline{P}}{dP}\Big|_{F_t} = \Lambda_t^{\varepsilon}$$

where

$$\Lambda_t^{\ell} = \exp\Big(\int_0^t h_s D_{0,s} dB_s - \frac{1}{2}\int_0^t h_s^2 D_{0,s}^2 ds\Big).$$

Then under \overline{P}

$$\overline{B}_t = B_t - \int_0^t h_s D_{0,s} ds$$

is a Brownian motion, i.e.,

$$y_t = \int_0^t h_s \xi_{0,s}(z_s) ds + \overline{B}_t. \tag{2.5}$$

Therefore, under \overline{P} the signal process is \overline{z} and this now influences the observations as in (2.5). The non-linear filtering expression we wish to consider is

$$\overline{E}[\xi_{0,t}(z_t) \mid Y_t].$$

By Baye's theorem this is

$$E[\Lambda_t^{\varepsilon}\xi_{0,t}(z_t) \mid Y_t] \cdot (E[\Lambda_t^{\varepsilon} \mid Y_t])^{-1}.$$

LEMMA 2.6.
$$\Lambda_t^{\epsilon} = 1 + \epsilon \int_0^t h_s \Delta_{0,s} dB_s + O(\epsilon^2).$$

PROOF. $\Lambda_t^{\epsilon} = 1 + \int_0^t \Lambda_s^{\epsilon} h_s D_{0,s} dB_s$ and the result follows by substituting for Λ_s^{ϵ} on the right and using Proposition 2.4.

From Proposition 3.3 of Picard [2] we have

LEMMA 2.7.
$$\Pi_t(\Lambda)^{-1} = 1 - \varepsilon \Pi_t \left[\int_0^t h_s \Delta_{0,s} dB_s \right] + O(\varepsilon^2).$$

The main result is the following theorem:

THEOREM 2.8. Writing
$$\bar{x}_t = \xi_{0,t}(z_t), \ x_t = \xi_{0,t}(x_0)$$

 $\overline{E}[\bar{x}_t \mid Y_t] = E[x_t \mid Y_t] + \varepsilon E\left[x_t \int_0^t h_s \Delta_{0,s} dB_s \mid Y_t\right]$
 $+ \varepsilon E[\Delta_{0,t} \mid Y_t] - \varepsilon E[x_t \mid Y_t] E\left[\int_0^t h_s \Delta_{0,s} dB_s \mid Y_t\right]$
 $+ O(\varepsilon^2).$ (2.6)

PROOF.

$$\overline{E}[\overline{x}_{t} \mid Y_{t}] = E[\Lambda_{t}^{\epsilon} \overline{x}_{t} \mid Y_{t}] \cdot E[\Lambda_{t}^{\epsilon} \mid Y_{t}]^{-1}$$

$$= E[\Lambda_{t}^{\epsilon}(x_{t} + \epsilon \Delta_{0,t}) \mid Y_{t}]$$

$$\times E[(1 - \epsilon \int_{0}^{t} h_{s} \Delta_{0,s} dB_{s}) \mid Y_{t}] + O(\epsilon^{2})$$

$$= E[(1 + \epsilon \int_{0}^{t} h_{s} \Delta_{0,s} dB_{s})(x_{t} + \epsilon \Delta_{0,t}) \mid Y_{t}]$$

$$\times [1 - \epsilon E[\int_{0}^{t} h_{s} \Delta_{0,s} dB_{s} \mid Y_{t}]] + O(\epsilon^{2})$$

by Proposition 2.3 and Lemma 2.7.

REMARKS 2.9. These expectations are all expressible in terms of Gaussian measures because they are all expectations of functions of the original linear process x_t under the original measure P. For example, $E[x_t | Y_t] = \hat{x}_t$ is given by the Kalmar filter. The remaining terms in (2.6) can be expressed in a recursive way; proofs can be found in [1]. For example, we have

LEMMA 2.10.

$$E[\Delta_{0,t} | Y_t] = \Phi(0,t) \Big[\int_0^t \Phi(0,s)^{-1} \Pi_s(f(s,x_s)) ds \\ + \int_0^t \Pi_s \Big\{ \int_0^s f_x(u,x_u) P_u \gamma_u^{-1} du \Big\} \Phi(0,s)^{-1} h_s \gamma_s d\beta_s \Big].$$

3. CONCLUSION

As in the paper of Picard [2] the first two terms in an expansion of the conditional mean in powers of ϵ have been determined. These coefficients have been expressed explicitly in terms of Gaussian measures by using stochastic flows.

REFERENCES

- R.J. Elliott, "Filtering with a small non-linear term in the signal," Technical report, Department of Statistics and Applied Probability, University of Alberta. Submitted, 1988.
- [2] J. Picard, "A filtering problem with a small nonlinear term." <u>Stochastics</u>, 18, pp. 313-341, 1986.

ACCE	Hor For			
D NC Utian	Cire&I TAB TAB nounced icution			
By Distrit	oution (
Availability Codes				
Dist	Avail and/or Special			
A-1	1 store			

NSPECTED

336