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"To - Abstiact

The primary topic of this thesis is the multigrid solution of the steady state 2D non-
linear conservation law. The difficulties encountered in the numerical solution of more
complicated problems in fluid dynamics (e.g. the steady 2D Euler system), like the non-
ellipticity of the equations, and the presence of discontinuities in the solution, can be
studied in this model scalar case.

The work deals with two main issues: development of new discretization schemes and
adaptation of the coarsening techniques."

New genuinely 2D (based on a "9-point square" stencil) conservative discretization
schemes are developed. These schemes provide the possiblity to separate treatment of the
streanwise and cross-stream directions. Due to this separation, the artificial viscosity
can be added in the streamwise direction only. High resolution is introduced in the
cram-stream direction. Therefore, the resulting schemes have good stability properties,
are second order accurate and provide a good resolution of discontinuities: representing
them in the numerical solution by thin oscillation-free transition layers.

The adaptation of the coarsening techniques is based upon a more precise understand-
ing of what should be meant by discontinuity location in a shock-captured solution. We
have shown that a such solution (provided the discretization scheme employed is conser-
vative and second order acurate) contains information about the discontinuity location
with second order accuracy. The conventional coarsening techniques (full-wdghted resid-
ual transfer and bilinear correction interpolation) appear to provide a good correction
for the discoatinuity location as well as for the solution in smooth egions.

As the result an efficient multigrid solver is constructed for a general steady state 21)
coserion law.
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Chapter 1

IntroddUction

A great need for accurate simulations of flows with discontinuities exists in many fields
of physics and engineering. The major difficulties in this area are the non-ellipticity of
the governing equations and the problem of representing the shocks and contact discon-
tinuities.

Multigrid methods were initially developed for elliptic problems and have been shown
to be extremely efficient in this case. However, the non-elliptic case still requires inves-
tigation in order to achieve the same efficiency.

The objective of this work is to develop a fast multigrid solver for the scalar steady
state 2D conservation law. Such a conservation law can serve as a good model problem
for more general non-elliptic problems (like the steady-state 2D Euler system). This is
because some difficulties encountered in their numerical solution, such as the conflict
between numerical stability and higher-order accuracy or the presence of discontinuities
in the solution, can be studied already in the scalar case. Therefore, this work can be
regarded as a preparational step towards developing a fast solver for more complicated
non-elliptic problems.

This solver is required to approximate the solution such a conservation law fast,
approaching steady state directly without an explicit marching in time. We want it not
only to produce second order accurate solution in smooth regions, but also to deal with
discontinuities in some efficient way. Therefore, we explore the problem of representing
discontinuities and getting them to converge to their correct position by a multigrid
solver as efficiently as obtaining the solution in smooth regions is explored.

One approach to representing discontinuities by a finite difference method is to use
difference equations only in smooth regions. The discontinuity itself is followed explicitly
using some jump conditions supplemented by characteristic data. This approach is called
shock fitting. A multigrid fast solver can be used both for obtaining the solution in
smooth regions and for following the path of a discontinuity in an efficient way. It is also
possible to show that, once we obtain higher order accuracy in the smooth regions, we can
obtain the same order of accuracy in the discontinuity location. However, for complex
flows with several intersecting shocks such procedures become difficult. Furthermore,
there is the additional difficulty of predicting the generation of shocks that are not
present initially.

Another alternative is the so-called shock capturing method. In the flow of a real fluid
there are no discontinuities. There are instead very thin regions of very steep gradients.
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This is because terms representing viscosity and heat conduction in the usual equations
of fluid dynamics have very small but still non-zero coefficients. However, the distance
scale on which the resulting transition layers are smooth in the physical solution may be
smaller than any reasonable meshsize. The numerical method then is to increase the size
of these dissipative terms so that the flow is not distorted much in smooth regions, but
the discontinuities are spread over distance scales resolvable on a practical computational
mesh. -

This approach leads to some difficulties. The width of the transition layer representing
a discontinuity in case of a shock is only- few xneshsizes. However, it grows indefinitely
in space with the distance from the initial boundary in case of a contact discontinuity.
Another defect is that when the difference scheme is more than first order accurate,
this transition is not monotonic anymore. Large numerical overshoots and undershoots
occur from both sides of the discontinuity. Whether one needs to remove these oscillations
except for aesthetic reasons seems to be problem dependent. For instance, one unpleasant
consequence of these oscillations may be that some quantities may attain values out of
their physical domain (like negative density or pressure etc.). Another consequence may
be that in case of a strong shock (when the characteristic field is essentially convergent)
these oscillations may cause convergence to a non-physical solution or even the loss of
stability.

There exists a whole family of one-dimensional methods which produce a higher order
solution in the smooth regions and give a sharp resolution of discontinuities. They are so-
called high resolution schemes, which are shown to be total variation diminishing - TVD
(see [11, 12, 16, 211), and lately essentially non-oscillatory schemes - ENO (see [13]).
These methods are successfully used to solve ID time-dependent problems. However,
even TVD schemes are shown to be convergent for finite time only.

The situation with two-dimensional methods is much less favorable. The explanation
is probably that the physics of one-dimensional flows is especially simple and well under-
stood, and easy to imitate by a numerical process. Also, it has been shown in [9], that a
higher order accurate 2D scheme cannot be TVD. We can conclude that the theoretical
results for the TVD schemes may not be relevant fcr the higher order methods applied
to 2D steady state problems, which is our interest here.

One approach toward the numerical simulation of multidimensional flows is called
"dimensional splitting". The multidimensional differential operator is expressed as a
sequence of one-dimensional operators, which are then approximated by one-dimensional
difference operators (a review can be found in [231). This approach completely ignores
the multidimensional nature of the flow (vorticity, the possible use of diagonal neighbors
in the difference scheme, the infinite number of wave propagation directions instead of
only two in ID). Therefore it is important to develop fully multidimensional methods.

The key here is probably to imitate the anisotropic nature of the multidimensional
fluid flow. This is possible to achieve by using moving grids with gridlines aligning
with the stream direction. However, this simple idea turns out to be very difficult to
implement even in case of a simple problem. Our approach here is to construct genuinely



2D difference schemes which use a fixed grid, but provide a separation between the
treatment of streamwise and cross-stream directions. This allows us to combine in one
difference scheme properties of stability with good resolution of discontinuities and higher
order accuracy.

We show in this work that, once a discontinuity is recognised in the shock capturing
solution, its location can be recovered up to tlie same order of accuracy as achieved by
the numerical solution in smooth- regions. This means -that using the shock capturing
approach one can obtain as much information about a solution as using the shock fitting
approach.-The multigrid solver apears to be as efficient in converging the discontinuity
location as in converging the solution in smooth re ions.

The next chapter presents a discussion about the boundary-value problem for the
2D non-linear steady-state conservation law, basic properties of its solution and some
considerations regarding its discretization. We show that if conservative second order
accurate stable scheme is used, it is possible to recover the discontinuity location from
the obtained numerical solution with second order accuracy.

Chap.3 contains a description a traditional multigrid algorithm for elliptic problems as'
well as the discussion about adaptation of coarsening procedure for the non-elliptic case
with disconinuous solutions, assuming that a stable second order accurate discretization
is employed by the algorithm.

Chap.4 is devoted to the construction of such a monotonic discretization for the case
of a linear constant coefficient equation. The generalization of this discretization for the
general non-linear case is presented in Chap.5.

Chap.6 reports about the numerical experiments, where we examine the accuracy of
the obtained solutions (both in terms of the solution error in smooth regions and the
error in discontinuity location as well as the perforemance of the algorithm.

Chap.7 contains the summary, the efficiency comparison with the existing methods
together with the discussion of future possible developments.



Chapter 2

Conservation law and its discretization

A simple differential equation, but typical to more complicated systems in fluid dynamics,
is the 2D nonlinear steady-state conservation law

- eAu + Uf(u)). + (U))-= s(X, y), (2.1)

where c > 0 is small, A denotes the laplacian, f, g and s are given functions.

2.1 Bondary-value problem: solution properties

We shall discuss properties of the solution of the boundary-value problem for (2.1) in
order to get insight to its discretization.

2.1.1 Linear convection diffusion equation

Consider first a linear version of (2.1) - a convection-diffusion equation

- eAu + au. + bu, = s(xy), (2.2)

The line whose tangent at every point is determined by the vector (a(z,y), b(x, y)) is
called a characteristic line. The entire domain can be covered by a family of characteristic
lines (chazcteristics). We want to single out the time-like direction along these lines.
In order to be consistent with the sign of the elliptic term coefficient the direction of
the vector (a, b) must be the choice. We shall call it the characteristic direction or the
stream direction.

Consider the degenerate case (e = 0) of Eq.(2.2). This equation will be hyperbolic
with respect to the characteristic direction (a, b). The boundary value problem for this
equation is not well posed. On the other hand, suppose we select the part of the boundary,
at every point of which the vector (a(z, y), b(z, y)) is directed into the domain. Letting
the data on this part of the boundary serve as initial data for the hyperbolic equation,
the obtained initial-value problem for the hyperbolic equation is well posed, and its
solution has the property that the information from the initial data propagates along
characteristics. This means that the value of the solution at every particular point of
each characteristic line depends only on the initial value at that point of the boundary
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where this characteristic line comes from and on the values of the right-hand-side a along
this characteristic. Hence, if the initial data are oscillatory, these oscillations will be
convected into the domain along characteristics without any damping. We shall call the
solution component which is smooth in the streamwise direction, but oscillates otherwise,
the characteristic component. If the initial data are discontinuous at some point, the
solution of the equation will have a -discontinuity (called a contact discontinuity) along
the characteristic line which emanates from this point of the boundary. - -

Return now to the original elliptic (viscous) problem (2.2). There exists a layer of
width O( -)(called a boundary layer), along that part of the boundary not taken as-
the initia1'dta for the hyperbolic problem, where the solution of the elliptic problem
may have rapid changes. The solution of the original elliptic problem differs from the
solution of the above described hyperbolic problem only by O(e) in the whole domain,
except for the boundary layer. If the solution of the hyperbolic problem contains a
contact discontinuity, the solution of the original elliptic problem will have a fast change
smeared over a layer of width 0( (r ' )), where r is the distance along characteristic
from the initial data.

The characteristic components of the solution will be dampened as they are convected
along characteristics. We want to obtain a quantitative description of this damping. We
shall recall the result for the discrete approximation of (2.2) presented in Sec.2 of 4]. The
characteiistic component with cross-stream wavelength q will lose a substantial fraction
of its amplitude when reaching a certain- distance rl,,(V) from the boundary into the
domain. This rhd,('1) is called a survival depth of the il component and as it is shown in
Sec.2 of [41

)= (2.3)

where h is the meshsize, p is the order of approximation, and ah may reflect the "width"
of the stencil, i.e. its diameter when projected on a plane perpendicular to the charac-
teristic direction.

2.1.2 Nonlinear equation

Consider now the degenerate case of Eq.(2.1). We shall obtain the hyperbolic equation

((u)) + (g(u)), = S(z, Y). (2.4)

Rewrite the equation (2.4) in the quasilinear form

a(u)U1 + b(u)u, = S(X,y), (2.5)

where
a(u) df/du (2.6)
b(u) = dg/du.

As in the linear case, characteristics may be introduced and the characteristic direction
can be determined. The part of the boundary from which the vector (a, b) is directed
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into the domain can be selected and the boundary conditions there can be considered as
the initial conditions for Eq.(2.4).

Integrate equation (2.4) over domain 11 and apply Gauss theorem

-Jf - dz dy-= JJ [(f(u)). + (g(u)),] dx dy = (fg). d(Ofl). " (2.7)

Here 011 denotes the boundary of the domain (1, and (, ),, the outward normal (to 811)
-of the vector (,:). Relation (2.7) expresses conservation: the integral of the-flux through-
the boundary is equal to the integral of the sources inside the domain. -u is called a
generalized solution of Eq. (2.4) if it satisfies its integral form (2.7), i.e. if (2.7) holds
for every smoothly bounded domain f.

The solution of the initial value problem for (2.4) as well as for (2.7) may be non-
unique and discontinuous even in case of continuous initial data (see [10, 221). However,
we are interested only in the solution which can be obtained from the solution of the
boundary value problem for Eq.(2.1) at the limit c --+ 0. Such a limit solution may be
discontinuous, but is unique (see [221).

Consider again Eq.(2.5). The main difference from the linear case is that the position
of characteristics depends also on the solution. Therefore, characteristics may intersect,
i.e. information from different points of the initial data will be brought along charac-
teristics to the same point, their intersection point. In such a case discontinuity of the
solution, which is called a shock wave, will be produced. Only such discontinuities axe
physically relevant. In other words, through every point of the path of a discontinuity
in the (z, y) plane one can draw two characteristics, one on each side of the shock. The
discontinuity will be physically relevant if these two characteristics can be traced in the
upstream direction back to the initial data. (Contact discontinuity is a limit case of such
a situation.)

Introduce the following symmetric vector-valued function of two variables

S(u, v) = [ (f(u), g(u)) - (f(v), g(v)) ] sign(u - v). (2.8)

Let r(u) E fl be a set of points where the function u(x, y) is discontinuous. Then this
discontinuity will be an admissible one (physically relevant) if the following inequality
(the entropy condition) is satisfied

(S(u+, c), ,) < (S(U-, c), V,), (2.9)

where c is an arbitrary constant, v is the normal to P(u), u+ is the limit value of the
solution from the side of discontinuity where Y is directed to, u- the limit value of the
solution from the opposite side of the discontinuity ([221).

The generalized solution of (2.4), which satisfies (2.9) is unique and it coincides with
the limit solution (when e -- 0) of the boundary value problem for (2.1) ([22]).
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2.2 Discretization of conservation law

Our approach to the discretization of (2.4) will be guided by its integral form (2.7),
because it holds also accross discontinuities.

VQnsider a computational grid with a meshsize A in both = and y -directions, which
covers domain f. Integrate Eq.(2.4) over computational cell Cie surrounding gridpoint
(i,j) (see Fig. 2.1)-

- 7] fg), d(OC) Jf sdxdg.- -(2.10)'

'ei. =fci.

The integral in the right-hand-side of (2.10) can be splitted into four parts - one along
each segment of the computational cell boundary. Since we are interested in second order
accurate solutions, it will be sufficiently accurate to approximate these integrals using
the mid-point rule. The 2D mid-point rule can be used to approximate the left-hand-side
of (2.10) as well.

Then the discrete form of (2.10) (we shall call it the balance equation) can be written
as follows:

h (f,+jj - fi- + -I + gj. - gij- 1 ) = h a i (2.11)

The difference scheme constructed this way is called conservative in that it has a property
analogous to (2.7): in the sum of discrete equations over all the grid points only numerical
fluxes through the boundary remain and all other fluxes cancel each other. The method
of calculating the numerical fluxes in (2.11) will be presented in Chapters 4,5.

2.3 Recovering of discontinuity location

As well known, the basic advantage of conservative schemes is that when the meshsize
h -+ 0 the discontinuities will converge to their correct location. However, the question
of the order of convergence has remained open. Moreover, it was not clear what should
be understood by a discontinuity location in case of a discrete solution. We define here
a discontinuity location for a shock capturing solution and we show that h2 convergence
in it can be achieved, if there is h2 convergence in the smooth regions.

2.3.1 Integral relation

Suppose the exact physically relevant solution of (2.4) contains a discontinuity with a

path d (see Fig. 2.2).

Suppose we also have a numerical solution of (2.4) obtained by means of a certain
conservative finite difference scheme (2.11). The discontinuity will be represented in the
numerical solution by a transition layer (monotonous or containing oscillations). Assume
that the numerical fluxes approximate the exact fluxes at the corresponding points with
accuracy O(h') in the smooth regions, away from the influence of the transition layer.



8 Chapter 2 - Conservation law and its discretization

i,j.+2

1-2j+ ,j+ .,

2

0 20 2.
4t 141 1.,

9L,j-'

0

LJ-j2

Figure 2.1: Computational grid and computational cell.
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L R

Figure 2.2: Domain and discontinuity path.

Draw a segment LR across the discontinuity. Suppose that this segment goes along
computational cell boundaries and that there is already a pointwise h2 convergence to
the exact solution at the point L and R. We want to connect each of these two points
with the boundary by a path which will go along computational cell boundary and. will
belong to the region with h2 convergence. Keeping these lines close to characteristics
going from L and R back to the boundary (Fig. 2.2) seems to be a good choice, because
of the physical relevance of the solution. The integration of (2.4) over the subdomain
bounded by BLLRBR using Gauss theorem will give

f(s). d(&a) =Jj dz dy. (2.12)

Split the boundary integral into four parts:

J~t g)3 d(8w)=

J ~fs g). d(aw) + fBLL ") d(8w) +

JRf g).d(Ow) + J(f g),d(&). (2.13)

By (2.11) the summation of the balance equations over the computational cells in-
cluded in wis c n i h f, - f,_Ij + g, di - gs-j) = A2 X . (2.14)

w d 
W

Notice that in the last summation all numerical fluxes cancel each other except for those
through the boundary -1 of subdomain w. Therefore, we denote

h(%,gh)= ,+j - f,-ij + g,.ij+ - gjj). (2.15)
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g
gL

L R X

Figure 2.3: Discontinuity location recovering.

Since we can assume

fLs dv = h2 Es,. + O(h2), (2.16)

we can deduce from (2.15),(2.14) and (2.12) that

J=f g). d) h 1 g), + O(h). (2.17)
aw

But since there is O(A2) pointwise convergence along the lines BRBL,BLL and RBR, on
the remaining line LR we must have

LR(f,g).d(&w) - h (f,gh), = O(h), (2.18)
LR

despite the lack of pointwise second order convergence along this segment LP.

2.3.2 Implementation

We can assume without loss of generality that the segment LR is perpeidicular to the
V-direction. Then, the flux normal to this segment will be just g(u).

The numerical fluxes values 9r. and gl are assumed to approximate the fluxes of the
differential solution at the respective points with an accuracy of h2. The values at points
between L and R do not in general approximate the differential solution. Their only role
is to indicate the discontinuity location.

Let us reconstruct fluxes of a discontinuous solution from the numerical solution we
have. For this purpose we have to substitute the values in the transition layer by values,
which approximate the differential solution. Therefore, we have to extrapolate them
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from the grid points to Jie left of L and to the right of R into the segment LR (see Fig.
2.3). The values, extrapolated from the left will approximate fluxes of the differential
solution on the left side of the discontinuity, and values extrapolated from the right will
aproxinate fluxes from the right side of the discontinuity. We just have to find the proper
location of the discontinuity (on this segment LR). Denote the reconstructed fluxes gf.,.
S Weshall locate the disdontinuity in such a way that the following relation will hold

- d .T h . (2.19)

This relation defines the discontinuity location to within O(h2 ) accuracy. Indeed, suppose
first that the width of the transition layer behaves like O(h). This means that the number
of grid points involved in the transition layer remains the same on each grid. Then, in
order to obtain h2 accuracy in the discontinuity location it is enough to use just an
extrapolation by constants from points L and R. In case the width of the transition
layer behave like 0(hi), it is enough to use a linear extrapolation.

The argument presented here has important implications for multigrid methods.
These implications are explained in Chap.3.



Chapter 3

-Multigrid methods

In this chapter we first give a brief description of the multigrid solver for an elliptic
problem. Then we show how to adapt a multigrid algorithm for a non-elliptic problem.

3.1 Elliptic case

3.1.1 Relaxation

Consider a difference scheme
Lhu' - s (3.1)

with certain boundary conditions, approximating a boundary-value problem for an ellip-
tic differential equation Lu = a.

Suppose these difference equations are being solved by a certain relaxation performed
in a certain ordering. The error after n relaxation sweeps is

V% -u ,h (3.2)

where uh is the current solution approximation.

It can be observed in numerical experiments that convergence of the relaxation is fast
in the beginning, but becomes very slow after few sweeps. This is because the relaxation
appears to be very efficient in reducing of the non-smooth error components. When the
error is smooth the convergence is slow. That is relaxation smoothes the error. However,
the smooth error can be approximated on a coarser grid. This is the main idea of the
multigrid methods.

3.1.2 Coarse grid correction

Assume the Eq.(3.1) to be linear. Let fih be the approximation obtained by a few
relaxation sweeps on the fine grid. The residuals of the fine grid equations are then given
by

r h = sh - L'fi (3.3)

The error uh uh - el will satisfy

LAY- rA. (3.4)
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Since vh is smooth it can be approximated by a coarse grid function vH satisfying the
equation

LHv s ~ --r (3.5)

where LH is a grid H difference approximation to the differential operator and

H- J(3.6)

where If! is a fine-to-coarse transfer operator (injection or a certain type. of weighting).

After obtaining a certain approximate solution vH of (3.5) we can use -it- to correct
the fine grid solution in the following way

jjh *- 4 ih + Ivh, (3.7)

where IH" is an interpolation operator.

The process of calculating rh, transfering it to the coarse grid, solving the coarse grid
equations for vH and interpolating the result and adding it to the fine grid approximation
is called "coarse grid correction".

3.1.3 Full approximation scheme

We have described a way to construct coarse grid equations for the error vh in the
fine grid approximation 0 to the solution of (3.1). It is called the Correction Scheme
(CS). Another way to do it is called the Full Aproximation Scheme (FAS). Coarse grid
equations are written in terms of a' different function: instead of tH we use

u I = II + vH. (3.8)

This coarse grid function approximates the full solution on the coarse grid. The equation
for it is

LHuH = ,S, (3.9)

where
- LH 'ff fi" + I,%fr. (3.10)

After solving this equation approximately, we use 0 to correct the fine grid approxima-
tion in the following way

ui e.1 u + II,(iiH yHfih). (3.11)
FAS is used in case of nonlinear problem or when local refinement is needed.

Both CS and FAS schemes can be applied recursively. Such a solution method will
be very efficient not only because coarser grid consist of less grid points. The error
components, which are smooth on the finer grid, will look "less" smooth on coarser grids
and therdore can be efficiently reduced there by relaxation.
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3.1.4 Multigrid cycle

As ume we have a sequence of grids h1 > h2 > ... > hM, where hM E h and hk- 2hk+1.
The k grid equation is written as

LkUk -- k.  (3.12)

For k -M: Lk Lh and s k -h . In the case of the Correction Scheme -

ak-1 = -- '(8
, k- Lki-k) (3.13)-

and the initial approximation for uk - is zero. For the Full Aproxiniation Scheme
k- kk- i-k k-i k kk

S-L 'k +lk-z(8 - L k ) (3.14)3k-I __Lk- k-1~

and the initial approximation for uk- is Ik-ifi

Given an approximate solution fik of the Eq.(3.12). The multigrid cycle

A 4- MG(k, ik, sk) (3.15)

is defined recursively as follows:

" If k = 1, solve (3.12) by relaxations.

" Otherwise:

- Perform Y, relaxation sweeps on (3.12) resulting in a new approximation.

- Transfer the problem to the coarser grid k- 1 and perform - successive cycles

fi,-1 # MG(k - 1, kIk-). (3.16)

- Interpolate the correction to grid k and add it to the approximate solution
there.

- Perform v2 relaxation sweeps on grid k resulting in fik of (3.15).

When -f = 1 the corresponding multigrid cycle is called V cycle or V(vi, v2). If 7 = 2
- it is called W cycle or W(pi, Y).

3.1.5 Full multigrid algorithm

The fist approximation for the multigrid cycle on a certain level can be obtained by
interpolating a solution from the previous coarser level, which itself has been calculated
by multigrid cycles MG on that level and so on recursively. Such an algorithm is called
a Full Multigrid Algorithm (FMG). We shall denote by FMG(N, NM, C, M) a certain
FMG algorithmwhere M is the finest level, NM - the number of multigrid cycles per-
formed in this finest level, N - number of cycles performed on the intermediate levels
and C is the type of a multigrid cycle employed (V(v1 , Y2) or W(v,iP)). In case we
want only to clarify how many MG cycles are done on the finest level we shall use the
notation NM - FMG.



3.2 Non-eiptic case 15

3.2 Non-elliptic case

The first task in this case is to construct a stable discretization, such that a certain non-
expensive local relaxation can be applied with it and will have good smoothing properties.
It is sufficient for this purpose if the discrete equations are h-elliptic (see (2, 3]), which
can be 'achieved- by adding artificial viscosity with the coefficient proportional to h-.
Of-course, this restricts us to the first order -accuracy, b'ut once it is-done, the usual
multigrid algorithms can -be efficiently applied in case of a smooth solution. However,
the discontinuous cases and the possibility to obtain second order accuracy require further
studies. We require from our discretization to be stable, second order accurate and to
provide a good resolution of discontinuities (representing them by thin and monotonic
transition layers). Chapters 4,5 are devoted to the construction of such discretization
schemes.

Since the difference schemes, which will be developed in Chapters 4,5 are nonlinear
even in case of a linear differential equation, the Full Approximation Scheme should
be used. We have shown in Chap.2 what should be understood by a discontinuity
location when a shock capturing approach is used. The question is now how to perform
coarsening in the multigrid process in order to achieve the same efficiency in converging
the discontinuity to its correct location as in converging the solution in the smooth
regions.

We have demonstrated that the conservation property of the difference scheme is of
crucial importance for obtaining the correct discontinuity location. Therefore, in order
to obtain a proper coarse grid correction for the discontinuity location a conservative
residual transfer should also be used. This can be just the usual Full-Weighting.

Another question is what correction interpolation should be used for this purpose
The important consideration here is preserving the flux correction integral along coarse
grid computational cells boundaries. Since this correction is small (when an FMG
algorithm is used it is 0(h 2) in smooth regions and 0(h) in the neighborhood of a
discontinuity), it is enough to preserve integral of the solution correction itself. This is
perfectly done by the usual bilinear interpolation, which was shown already to perform
well in smooth regions. Therefore, the conclusion is that for obtaining a full multigrid
efficiency for converging the discontinuity location the usual coarsening techniques can
be used. In other words, the coarse grid correction is perfectly capable of moving the
discontinuity, commensurably with the solution changes it affects. There is no need to
freeze the discontinuity location before going to coarse grids and performing a special
procedure to update it after coming back to the fine grid (like it was suggested in [5]).

- . . . •-_ . . . . "; , ; -- :.- : ! , ., . ., -



Chapter 4

Discretization: Linear-case

The problem we shall deal with now is how to construct numerical fluxes

f,+ij, fi-Ij, 9ij+ , gij- .

The general nonlinear case will be considered in the next chapter. In the present
chapter we shall study some existing approaches as well as our own on the case of the
simple linear constant coefficient equation

- ez~u + au. + b, = s, (4.1)

where . - s(x, y). Without loss of generality we can assume

b>a>O, b>O. (4.2)

Since the fluxes and fi are constructed in the same way (as well as gij+j
and gjj-;) we shall give formulas for fi- i and gij.- only.

4.1 Some existing methods

4.1.1 Central differencing

The most straightforward approach is the following "central" fluxes:

.- = la(u,,, + Ui... 1 )

go = b(ui, + u, 1.). (43)

When (4.3) is substituted into the balance equation (2.11), it will give the standard
central 5-point "star" second order accurate approximation to the equation (4.1)

1, ti,+1 - "-1,7 + b3,)+1 - it = . (4.4)
t  l 2 - 2

This scheme does not have a good measure of ellipticity (see [3]). There exist certain high-
frequency components which can be present in the error, but do not express themselves

in residuals.
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4.1.2 Upstream differencing

Let us add additional terms to the fluxes defined by (4.3) to produce "upstream" fluxes:

f, =/°,-P - a(ui - ui j) = au-Lj (45)

-, _ = 9 , . _ - b ( ,j u ,j. ,;) = (4 -5-

These additional'terms correspond- to the following anisotropic artificial viscosity -

-h((au), + ( ,, 1)), (4.6)

which has the same sign as the physical viscosity. When fluxes (4.5) are substituted
into the balance equation, we obtain a first order accurate upstream scheme, based on a
3-point stencil which can also be written in the form

Ui a - i,-b." + b u4 .j- 1 . (4.7)

Since the coefficients in the right-hand side of this equation are positive (i.e. this differ-

ence operator is of the positive type), the following relation will hold:

min (uj-., ui- 1) _ uj <- max (u,,_, u, ,_). (4.8)

In other words, a certain maximum principle holds for the solution of (4.5). We can
summarize that the addition of the artificial viscosity to the central second order scheme
creates a stable upstream first order scheme which produces a monotonic solution. The
characteristic components (i.e., components, which are smooth in the characteristic di-
rection and oscillating otherwise) and discontinuities propagating in an oblique direction
will be smeared significantly in the solution, but those propagating in the grid direction
(i.e., when a = 0) will be resolved perfectly.

4.1.3 Upstream second order scheme

We would like to construct a second order accurate scheme, which will maintain the
stability property of (4.5). We can approximate derivatives in each direction using second
order accurate 3-point one-sided approximation. The difference equation will be

a3uj - 4uj. 1 + Ui-_2j b3U., - 4uij-l + Uj-2 (4.9)
2A + 2h = (4.9)

In terms of numerical fluxes it can be written

f*2 = f,..j. + la(u, - Uij-2)
u2 2+-- (4.10)

The role of the additional terms is to compensate for the loss of accuracy due to the arti-
ficial viscosity (diffusion). Therefore, they are often called antidiffusive fluxes. However,
when applied in the neighborhood of a discontinuity, this scheme will produce spurious
osillatiens in the solution.
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4.1.4 Remark on overshoots

Consider a first order scheme. Its truncation error is dominated by its artificial viscosity,
which behaves like a physical one. Therefore, the truncation error causes at least as
much second order dissipation at every point as the .physical viscosity. As a result,
the difference solution has a monotonicity property analogous to one of the differential
solution and overshoots do not appear. In case of the higher order difference scheme,
its truncation error is dominated by higher order derivatives and does not behave like a
physical viscosity anymore. It may even attain values which are opposite in -sign to that
of the second order dissipative term at some grid points. This means that some non-
physical amounts of preserved quantity (mass, momentum or energy) are injected at these
points. In the neighborhood of discontinuities, where derivatives become la-ge, these
local violations of the conservation law cause appearance of large overshoots. However,
if the difference scheme is conservative, the conservation law still holds globally.

The usual way to overcome this difficulty is to multiply antidiffusive fluxes by a certain
quantity, which is called a limiter. The concrete values of the limiter at each grid point
should be chosen from considerations of the second order accuracy and monotonicity. It
is closed to 1 in the smooth regions, not distorting the order of accuracy of the original
scheme. However, it becomes different from 1 in the regions of changing gradients:
introducing first order artificial viscosity needed to damp the oscillations if smaller than
1, or sharpening transition layers representing discontinuities (artificial compression)
when larger than 1. This approach appeared to be very successful for ID problems (the
high resolution schemes are based on this principle, see (11, 12, 14, 16]). However, a
straightforward extension for 2D (dimensional splitting) has some flaws. It leads to wide
stencils and may require complicated block-relaxation process in order to maintain its
stability.

4.1.5 Approach of Spekreijse

Let us multiply the antidiffusive fluxes in (4.10) by a certain limiter lp(R), producing:

= + (4.1)91_ 1 9 ij, + 1(Q ,d_1)b(uij_1 ,ij_2),

where

SUij - Uixd (4.12)2 - = W-z" - Ui'-2,"

Q - Ut4 - uij-• (4.13)
2 Uij 1 - Uij_2

Choose 1 to be the Van Albada's limiter

OV (R) R 2 + R (4.14)
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It is shown in [201 that the solution of (4.11) will have the same monotonic property
(4.8) as the solution of (4.5), and will be second order accurate in the smooth regions.

However, a pointwise relaxation will be unstable when applied to this scheme. The
only way to maintain the stability is tc use more expensive block relaxation (4-points
-relaxation, [201). This scheme can be regarded as a typical example of the dimensional
splitting approach. _

4.2 2D approach: Homogeneous equation

Consider the Eq.(4.1) with (z, y) = 0.

4.2.1 2D scheme

Our approach is to construct upstream antidiifusive fluxes using certain difference ap-
proximations to the original equation (4.1) itself. It leads to a "compact" stencil, which
will use diagonal grid points instead of the points which are distance 2h from the central
one. The difference scheme based on such a stencil will have a smaller truncation error
and will he applicable near the boundaries as well. Another advantage is the possibility
to separate between the treatment of the cross-stream and streamwise directions. This
allows us to add the high resolution in the cross-stream direction only, but to maintain
a good measure of ellipticity in the streamwise direction. As a result we can obtain a
discrete scheme which is able to resolve well characteristic components (see Chap.2) and
discontinuities together with good stability properties.

Define the following 2D compact scheme

jD,_, = j - 12 b(ui4_j - Ui_,j_,) (4.15)e:'j.j- = .9",ji- - ,a(u.j-, - ,,,-,j-,)

Lenna 4.1 Scheme (4.15) is second order accurate.

Proof: We want to show that

f2 'D+j - f2'-jj = h(au) + 0(h3) (4.16)
9,. + - gl, - = h(bu,) + 0(h.).

Rewrite (4.15) as

'-j fi -I- - 1(a( - t-1j) + b(,,,_,. - j_,_,)) (4.17)•. ', _ : ",. _1 - 1(b,,, -,,,.j-,) +,,(,,,.-, -,,,-,. -,))
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Note, that
f2Di 4 - f2D1- j = f.- fc_ -

1 (a(ui+jj - uij) + b(uih - uij-)) +

- + ~ -(4.18).°~ i -j +bU-j U~jj)

Since the centralscheme (4.3) is second order accurate, we can conclude that

2

-f2D+ - f2D _ j

h(au.) - h2(au,,+ buv)z,+ O(h3). (4.19)

or taking the equation (4.1) into account
f2 i+ ,i - f2 _ a =
2D

h(au,) + 0(h 3 ), (4.20)

Similarly

92D 32D h(buy) - h2(au + t)y + 0(h 3) =

h(bu,) + 0(h 3 )., (4.21)

Remark 4.1 There is no first order artificial viscosity used by the scheme (4.15).

When (4.15) are substituted into the balance equation they give:

b-a a-b
Uid = Ui-Ij-I + I-a"uid-x + a-6Ui-Ij. (4.22)

Note that the diagonal grid point value uj-xj-t participates in the difference equation
instead of the values Ui-2j and uij-2 in (4.11). This scheme is second order accurate,
but not of the positive type, because the coefficient of u,-jj is negative.

Remark 4.2 Another significant defect of this scheme is that in the case a -- 0 it leads
to the difference equation

Ui = u,-.- 1 + (ui,- 1 - u_ 1 ) (4.23)

which is based on the wide stencil However, it is natural to expect the following equation
in this case

Uij = U-I1 - 1 . (4.24)

This defect creates an obvious difficulty for extending this approach for the case of the
variable coefficient equation and for the non-linear case as well. This is because it may
lead to discontinuous numerical fluxes.
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4.2.2 First order N scheme

Modify the previous scheme:

foi_ -- = aui-j. - Imin(a, b)(ujij - uj-t-1)

0i,.invni(a. 2 (4.25)
-. °, _ = t _-j n (a,:b)(ujjj - ujt _) . ,.

In our.a (4.2); (4.25) can-be rewritten a .
" -" -"f°_ -= _'j- - a(u -.,4  -- (4.26)

9,.ij = bu _1 - aij1 - ,,,_j_ ).

When substituted into the balance equation it will give

a b-a
uij = Tui-ij-1 + bU,'-1. (4.27)

This scheme is already of positive type, however only first order accurate. This type of
scheme was actually suggested in (6, 7], however, the present formulation is much simpler
(by avoiding rotation transformation of the equation) and is obviously conservative.
We shall call it N scheme ("narrow" scheme). Its solution will satisfy the following
monotonicity property:

min (Uij._I, U,_IjI) < j <5 m= (ix_,,Uij_,1 ). (4.28)

Notice, that this scheme will perfectly resolve discontinuities that are aligned with a
diagonal direction as well as along grid lines. It can be shown that the cross-stream
viscosity coefficient of this scheme is at least 3.64 times smaller (see [18]) than that
of (4.5). Still, the resolution of an oblique discontinuity by such a scheme has to be

improved.

4.2.3 S scheme

We would like to correct the N scheme to be second order accurate in a way similar to
(4.11), retaining the monotonic property (4.28). This can be done by the following S
scheme:

_ = ,_ - (R_,)(b - a)(u,_i - u,_ _j) (4.29)

where
-a(Uj- - ui-ij-1) (4.30)

The question is what conditions have to be imposed on the limiter function O(R), in order
to ensure monotonicity and second order accuracy of the S scheme. The two following
lemmas and the remark answer this question and show that all the limiters used in 1D
problems and reviewed in [21] are good for this purpose.

.........................7 - -
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Lemma 4.2 If the limiter 4b O(R) satisfies the following inequality

0<-( R) < 2, (4.31)

then the monotonicity property (4.28) holds for the S scheme.

Proof: Rewrite (4.30) as

1 a a ...
ui-lj - ui-1d-= Ri-"(Uid-1 - ui-- 1). (4.32)

Then the correction for fi*- d in (4.29) can be replaced by

1 i- -,RI ,) ca(6b - a)
2 Ri_ b(433

When the numerical fluxes (defined by (4.29)) and the correction for the flux fi* as

calculated using (4.33) are substituted into the balance equation, we obtain the following
relation:

a(1 -2 _ (_ - t)) (U,j - -w-i)

#(R -4j)(4.34)+(t2 -- ,=)(1 ,,-+j _ 1 =,,0,

It is easy to see that condition (4.31) ensures the positiveness of the coefficients in (4.34),
and therefore, monotonicity of the S scheme.

Remark 4.3 It is easy to see from (4.34) that the S scheme in case a --, 0 leads to the

difference equation based upon the narrow stencil

Uij = Ujd-. (4.35)

This means that the S scheme does not suffer from the same defect as the 2D scheme.

Lemma 4.3 If 0 =4(R) E C2 and

T1 =,(4.36)

then the S scheme is second order accurate.

Proof: In order to prove this lemma it is enough to show that

fff+jj - fS-.q = h(au.) + O(h'). (4.37)

L. •==m•nnmmmnm mnmlinm m lnI



4.2 2D approach: Homogeneous equation 23

faD - f S =4 2Dl - k b ) b -a) u.., (4.38)

Taking (4.36) into account:

1 -= -&- (1)(R- - 1) + 0(h 2), (4.39)

and hence - -
_-.. - .D- -ff .. 1-1 --

. ~3 ~* , =.- ,R(1)(R_4J, 1)(b --. )(u,,_, -,U_-:J,,) +o(h (4.40).
, 6-a b

= ,(b(u_., - ui..Ij..) + a(u,,j_, - u-,z-,)) + 0(h3).

Therefore
(fD fS+lj) _ 2 D _ fSlj) = 0(h) (4.41)(D 2D

or
f=S f2+ - f2D + 0(h), (4.42)

which proves (4.37).

Remark 4.4 Suppose that the limiter Ok(R) is twice continuously differentiable only in
the neighborhood of R = 1 and Lipschitz continuous otherwise. It is clear from the
proof of the previous lemma that the S scheme employing such a limiter is also second
order accurate. Moreover, even if O is discontinuous at R = 1, the S scheme will be
still second order accurate in L, norm. This is because the order of approximation will
deteriorate to the first due to discontinuities in the derivative of the limiter in su& a
case only in computational cells located along isolated characteristic lines. Therefore,
these computational cells will cover only O(h) part of the domain.

Remark 4.5 Note that a limiter satisfying both (4.31) and (4.36) cannot be a linear
function. Therefore, a monotone higher order accurate scheme will be nonlinear even in
case of a linear equation.

4.2.4 Examples of limiters

The construction of a limiter is not unique. Therefore, several different limiters were
proposed in the ID framework (see [211) and can serve our purpose. The difference
between different limiters is only in the amount of artificial viscosity they may add to
the scheme in order to damp oscillations and in the amount of artificial compression they
may or may not add to the scheme.

We shall give here some examples of limiters.

Example 4.1 Van Leer limiter

O, = I1 + II (4.43)
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Note that IVL > 0 is a monotone increasing function

0, if R < 0(
R ifR .(4.44)

Example 4.2 A class of limiters defined by

-0# = max(0,min(OR, 1), min(R,#)), (4.45)

where 1 < < 2. " .

Note that tko is a monotone increasing function. When 0 -2, b(R) corresponds to the
Roe highly compressive "superbee" limiter, defined as

02 = max(0, min(2R, 1), min(R, 2)). (4.46)

This limiter introduces a large artificial compression where possible. This means that
discontinuities in the solution will be resolved nicely, however, non-physical sharp layers
can appear.

When =1, ' (R) corresponds to another Roe limiter:

01 = max(O, min(R, 1)). (4.47)

Note that 0 5 OI/(R) _5 1. This means, that this limiter may add only an artificial
viscosity when it is needed to damp the oscillations, but does not add any artificial
compression. The solution produced by S scheme using this limiter will contain only
layers representing the physical discontinuities. However, these layers will not be as
sharp as in the previous case.

Remark 4.6 Van Albada limiter does not possess the property (4.31), therefore if used
with the S scheme, a non-monotone solution may be produced. It's unique property is

'VA E CO. (4.48)

However, it is not needed for a second order accuracy. We shall also show that this
property is not necessary to obtain a fast convergence of the multigrid algorithm.

4.2.5 Relaxation

Denote
F(u 4 ) - h(fj+ d - fi-ij + gi+ -gij-j) -= 0. (4.49)

A pointwise relaxation sweep implies updating the value of the numerical solution uij
at each internal grid point. This can be done performing one Newton iteration for the
nonlinear equation (4.49)

." U# F(u?') (4.50)
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To implement this formula, we have to differentiate with respect to uij all numerical

fluxes participating in the balance equation. For the first order accurate upstream scheme

these derivatives are ( a

(f=) -- 0 (4.51)

For the first order N scheme -

(fi+j)w.j 2
0 0

(= bd - (4.52)(g jj+j)',d b b- !a
I. 0.

If we assume differentiability of the limiter 0, the flux derivatives for the S schemes also

appear to be as simple as for (4.11) (see [201). They are:

(fWi+Ij), = (f= ,+pj) - 1(b -a)~b(R+j) - O't(Rj+ 1j)R+ j)

(f i;d = (f-pd), (4.53)

( Ij ) = (goijj4 I

Newton's method is known to have a quadratic convergence, while the relaxation process

is only linearly convergent, even locally. Therefore, relaxation does not really take ad-

vantage of the fast convergence of the Newton iterations. This is the reason why the flux

derivatives can be calculated approximately, treating the limiter function as a quantity

independent of ujj. Moreover, the flux derivatives of the S scheme can be substituted

by the flux derivatives of the N scheme. The numerical experiments confirm that this

substitution does not influence the performance of the multigrid solver.

We can conclude that it is not neccessary for limiters to be C2 functions for the fast

multigrid convergence as well as for second order accuracy.

4.3 2D approach: Inhomogeneous equation

The S scheme, as constructed previously, is second order accurate in case of a homoge-

neous equation. We shall generalize the S scheme in order to maintain the second order

accuracy for an ;-homogeneous problem (4.1).

4.3.1 2D scheme

Denote D-o 1. = ( + -iJ) (4.54)

S.o_= i (*, + ai-,)
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Define
f2D _ =/° _i - (a(ujj - u,_,j) + b(u,_jj - -, _) - hs,_.j)
2d-_ =9 (( - ia- + a(uiji - uiiii) - ha _-)

Lemma 4.4 Scheme (4.55) is second order accurate.

Proof: This lemma can be proved in a similir way to the corresponding homogeneous
-case. We want to show that

/I2+jj -,f2D- = h(au,) + 0(h ) .
2 2 _ = IDtsv) + (h3) (4.56)

'9 - 9 h(bu.) + 0(h3 ).

Note, that
f2Di+l1  _ f2D j = fC+l fG f -,_ -

I+j(a(uj+jd - uij) + b(uij - uid-,) - hsj+j .j) +t

1
j(a(ujj - u_.j) + b(u._.j - u-,.-j-) - hSjjj) (4.57)

Since the central scheme (4.3) is second order accurate, we can conclude that
t2Di _ f2D 1  =

la(au.) - jh2(au. + buy -.9). + 0(h 3), (4.58)2

or taking the entire equation into account
f2D, - =,.i

h(au,) + O(h3). (4.59)

Sitilarly

2Dj+i - 9 -2D~= h(bu,) - 1h2(au, + bu, - s), + 0(h3 ) =

h(bu.) + 0(h3 ). (4.60)

4.3.2 N scheme

In cAse one is interested to obtain first order accuracy the previously defined N scheme
can be used. However, the purpose of it here is to serve as an intermediate step towards
the construction of the second order accurate S scheme. Therefore, we shall modify it.
For our representative case a < b, putting

min(1, ) = < 1, (4.61)

the N scheme can be defined by:

f*-ij - f=A-ij -(a(u, - uj_,) + f(b(ui-j - u_j-) - hj1j)) (4.62)
- (b(ui, - uj-i) + a(u- .. - u,-. 4 -. ) - ha-j)"
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4.3.3 S scheme

The S scheme is defined by
= - (R,_ )(1 - #)(b(ui,, - u,_,j_,) - hs,_ ) (4.63)

S _0

where "
Rj-jjj (4.64)- - -R,-.j= - j_1,. 1) - h._

Lemma 4.5 If = O(R) E C2 and

(4.65)

then the S scheme is second order accurate.

Proof: In order to prove this lemma it is sufficient to show that

fs _ fs _ h(aut) + 0(h 3). (4.66)

Observe that
f ._2D .= f( (l_ )( )(b(u,_, - u,_, ,) - h,,_1j) (4-67)

Taking into account:

1 ( ._ 3) = -R(1)(R_ - 1) + 0(h2) (4.68)

Then

fj2D f- siij =

- 1)(1 - )(b(u_.i- - uj-,1) - haiij) + O(h3 )

(1)Ta(b(u_,j  -u.. 1,_,_) + a(uj_. - u_, _ ) + h,_-j)+ 0(h3 ).

Therefore

-+sj - A _ =I+ f - f D jt + 0(h 3 ), (4.69)

which together with the fact that 2D scheme is second order accurate proves (4.66).

Remark 4.7 In order to obtain a second order accurate solution to the inhomogeneous
problem by the FMG algorithm it is neccessary to use this scheme on the currently
finest grid only. The scheme constructed for homogeneous problems can be employed
on coarse grids. The coarse grid correction obtained this way will be only first order
approimation to the needed correction on the finest grid. However, it is satisfactory,
becum the needed corection is only 0(h2) large.
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Discretization: General case

There are several slightly different ways to extend the genuinely 2D approach for the
case of a nonlinear conservation law. We shall present here one of the simplest. We shall
first extend the construction of the difference scheme and prove its monotonicity for a
homogeneous case. Then we shall treat an inhomogeneous case, demonstrating, that a
second order accuracy can be obtained by this approach. A second order accuracy of the
schemes constructed for a homogeneous case will follows directly from the more general
result.

5.1 Homogeneonis equation

Consider a 2D homogeLcous conservation law

(f(u)), + (g(u)), =0 . (5.1)

Denote
a(U)= A (5.2)
6(u,) = g.

Then (5.1) can be written in quasilinear form *

a(u)u, + 6(u)u, = 0. (5.3)

5.1.1 Central and upstream schemes

A central unstable second order accurate difference approximation for (5.1) is determined
by

f°' J= (Ai + A-Ij) (5.4)
F ,j. = (gij + gj-).

In order to stabilize (5.4), we add artificial viscosity term

f - ij fi - ij - 1, a- j j( uj - u- ; )
= ~ - ,- - 1b, _jl(ui - -).(5i.5)
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If

-j I" - (5.6)

then scheme (5.5) is exaktly upstream ind of positive type. However, -relations :(5.6)
cannot be used for numerical calculations. Note, that for nonlineaxities typical of fluid-

-_dynamics equations, the following is. true

' (a (u i ) + a (u i _j )) = u j - (U,- i -,.,A

(b(u,4 ) + b(u ,jj _)) 
(5-7.).j

Therefore, the following definition will be used:

ai-Ij = (a(uij) + a(u- 1 )) (5.8)
b _A --- (bCujj) + b(uij_ )).

The resulting scheme will produce monotonic solutions, but only of first order accu-
racy.

5.1.2 2D scheme

Define

-L(a(uj,,..) + a(uj...j...,))
Bi-ij-1 = (b(uj,.j) + b(uj-jj-j)), (5.9)

where p, v =0, 1, depending on our choice only. Denote

A+jidj-= max(O, A,-.j_) (5.10)
A-, _1 = uzi(O,Ai4_._.)

and
B+-j- = max(OB-j -j) (5.11)
B-j_-jj_- min(0,Bi_ o-t).

Denote also
= { (ui - *-j), if B,_-i_ i _ 0 (5.12)

(uij- - u,-j-), if B,j-,_ > 0

( (u. -u. 4.._), if A-_.._j < 0 (5.13)
(ui- _ - -l,,), if A_,jj_ > 0.

Then the genuinely 2D scheme can be given by

S- .,.---. - . . ~ .-.
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f2D-jj = f,- - (Iai-jI(uij - U'-1j) + + .4-

g2D j_ = g i_- t(jbjj_jj(uj ui=j-g) + -yt (5.14)

where

• .- j sign(Ai- ,j+j)B-iT _' (6VU)i- 2 J+ 5,5

and

1 1 ~i~,- (5.16)'7i'_ sign(Bi+jj_ )A - i+ 11j_ ($=u I+  .  (.

The second order accuracy of this scheme will be a direct corollary from that of
the more general scheme, approximating an inhomogeneous equation, which will be con-
structed in Sec.5.2.1. However, our main concern now is monotonicity. The scheme given
by(5.14) is not monotonic.

5.1.3 First order N scheme

Denote

d,-Ij = aI"-Ij + IA,- a+j - A.-p.-. i- (5.17)L'j-t =  Ib'j-t + IBj+ j_ - Bj_ j_jj.

Modify the previously defined upstream scheme

fui-j = fesij - 2aj(
".-i= 9 I - A-!('a - Uj-,).

Note that the downstream grid points may also participate with positive coefficients
in the difference equation defined by (5.18). However, they will be only O(h) large
comparing with coefficients in the upstream grid points. Therefore, relaxation sweeps in
the downstream direction will still be very efficient way to solve the difference equations.
Denote IB iaj-

-i- -,(5.19)

= min(1,a --a+12 -A- _ +

and

J~j~j4(5.20)

mil, mi( - _

We shall call N scheme" the first order scheme defined by
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°-ij =/-p - 2(Oi+- + O°-f) (5.21)

where

S- -- = P "~i' k-." - (5.22).

and -

= '- 'i- ',s- (5.23)

It is easy to see that in case of a linear constant coefficient equation this scheme
coincides with the N scheme defined in the previous chapter.

Theorem.5.1 The N scheme defined by (5.21) is of positive type.

Proof: When (5.21) is substituted into the balance equation, the resulting relation can
be written in the following form:

Ck, (Ui+kj+l - uij) =O, (5.24.)
Ikl+lI#

where k, I = -1, 0, 1. We want to show that all the coefficients CQj _ 0 for (kI + IIl # 0.

In order to show this, we have to consider all the possible situations for each gridpoint
participating in the equation and to verify the non-negativity of the corresponding coef-
ficient.

Consider the diagonal point i - 1,j - . The corresponding coefficient will be deter-
mined by the quantities calculated for the grid square i - ,j - 1:

= a+  At fi+ p_1 Bli_*) (5.25)

or
C-. - min(A+_ ,, _,tE_ _ ) > 0 (5.26)

Non-negativity of other coefficients corresponding to the diagonal points can be shown
in a similar way.

Consider the gridpoint ij - 1.

,_ = 1(b,,-1 + tj- - Oj_* _ r (5.27)

where
-- min(I (IjjjtIjt jq) (5.28)

.6 ' + =- =i( l -l' 'l -)
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Riecalling
;-I bj-+ JB.+Ip.I - Bj..44A1, (5.29)

it is easy to see that
CO,._, > 0. (5.30)

Non-negativity of other cbefficients -can be verified in a similar way.

5.1.4 S1 andS2 shemes

We want to add a second order correction to the N scheme, maintaining its monotonicity.
We shall do it in two different ways (Si and S2). Two difference schemes will be con-
structed. One of them (the S1 scheme) is slightly simpler and has the smaller truncation
error, however it may admit non-physical discontinuities and is proven to be monotonic
only when used with non-compressive limiters (like Roe's 4'1 limiter). Another scheme
(S2) introduces larger numerical viscosity, but rejects non-physical discontinuities and is
proven to be monotonic when used with compressive limiters as well. Define

-= (1 - +._ ._ )sig(_ _ )&,(Pl_ _ )B,_ _ (aU4,) ._ (5.31)
4,s1-_ = (1 - 3i +)inA_,i ( _a Ba 5ui +

and
-= (1 __) ()u)_

7st-a_ = (1 - a-+ -)sign(B,+ j..._t)O.(Q,+j.4 )4 +j,-~ (6=u)~,+,. 5.2

where

- - ( ) - (5.33)

and 
(5.34)

Then the S1 scheme can be defined by

fS1~t. = fo_ _ (4 ,s+ 1 . + #s.-_j3 ) (5.35)
Si+ S I

f,i- = f~ -- 1(01 + 0+gsd. = 9o%_ - 2(-t*,j_ + lt-,j-j)

We can formulate the following monotonicity result

Theorem 5.2 The Si scheme defined by (5.35) is monotonic if

0 ±(_--) < 1, O/(R) :5 1. (5.36)
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Proof: Using the following identities

( P _ _ B , _ _ ( , , ) , _ _ - - -- A _ _ ( & ) _ _
. - - B. .- 4 -I.j _-- . (5.37)

- it can be verified that it is always possible to rewrite the.S1 scheme in the form
. .C,(,,,+j+, - ) o, - (5,.38)

where k,? = -1,0,1 and, provided (5.36) holds Cj > 0 for Ikl + Ill # 0.

The complete proof is straightforward. We shall only illustrate the importance of the
restriction (5.36) on two typical situations, considering grid point (ij - 1).

1. Suppose
A,- = B,_ .. > 0 (5.39)

This means that (&")' #- = tL,-.. - t-"j (.4o
( ) _ = j-1113 - u-..j(5.40)

Suppose also
B,+jj_1 = t,_p-_ (5.41)

and that Ai+j_ is a small positive number. Then

(6'),+1j_ = u+j-1 - Uij*_ (5.42)
(6, ),+jj_ = Uij - Uij_,.

1 _ ~, , -( +j§)( ,,_jB+j}(.3
CC + O*_ - ,,,.1 -jj+jjOA+jjB~jj(.3

or

c1,_ = 1(bij-1 + ;'. -j - Bj-jj-j - A,+jj-j
-(B, j - A j_)b(R j_-)) (5.44)

.The last expression will be non-negative if (5.36) holds, but may attain negative
values if O(R) > 1.

2. Suppose that Bi.._j_ > 0 and that Ai_.jj < 0 has a small absolute value. This
means that

(fi)'-p-i = Utj-1 - ui-W-1 (5.45)
. (4X.),-_Ij = Uid - #_,.

"" :"" :-" - .- -"-' "-.-. . . .- .. ..-" ;, .- ',,..,. ''°" e, ,T ... , .........-. ,,,".,...:: .. .. ,--..-..--.*,,. . .* ,



34 Chapter 5 - Discretization: General case

Suppose also
= _ (5.46)

and A,+iji is a small positive number. Then

(U)i+j_ =ui+j- 1 - -(5.47)

Note that this case corresponds to a rarefaction wave. Here we obtain

2"- + b- 1 4 I-
i -( -)O(R,+Iji)Bi+iji (5.4)

Since fi-j- and .+,_i are small, the last expression may attain negative values

if O(R) > 1. However, it will be non-negative, if (5.36) holds. If we rewrite the S1
scheme corrections using the identities (5.37), it will create negative coefficients at
diagonal grid points (i - 1,j - 1) and (i + 1,j - 1).

Remark 5.1 The inequality (5.36) means that no artificial compression can be added
to the schemes.

Remark 5.2 The Si scheme (as well as the N scheme) will perfectly resolve contact
discontinuities and shock waves which align either with grid lines or with grid diagonals.
However, non-physical discontinuities (corresponding to rarefaction waves) can also be
admitted in these cases. This is because of the vanishing cross-stream truncation error.

We shall now modify the S1 scheme in order to enable it to reject non-physical
discontinuities and to allow the addition of artificial compression when needed. Denote

-. .. (e=A)-- a - -i , [ •. .. . .(5.49)
(eB)_ _ = Ib-- ,._,

where p and P are the same as in definitions of A,_j_. and Biiji- (5.9). Denote also

(eW),_-_ = U,, - _j... - Uij_ + u,_ 4j- 1  (5.50)

Ol+-ij = 2(eB)i.jjj(us4 - ui-1.) - (gA)-jI(6 -u)iI.- (5.51)

#r--I = 2(LB),_j_(ui - ui,,) +

=+j_ = 2(&A)ipIj_(u j - uij_) - , (5.52)
_ , = 2(eA) +ij.(uij - uij,) + QB)i+ij_1( ) _

Define
fS2* = fSle- - (oe+i- # + -- ) (553)

_= g - (7e+ij + 7 -,_ )
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Theorem 5.3 The S2 scheme is monotonic if

0 S--A(R) < 2, O(R) < 2. (5.54)

Proof: Once again we claim -that it is possible to rewrite the S scheme using the identities.
- (5.37-), where-neccessary, in the following form -

- C ,)=0,. (5.55)
- . IkI+l1I~o -

where k,l =-1,0,1 and Cj > 0 for IkI + Il# 0.

We shall decsribe in details only the same two possible situations, as in the previous
theorem, considering a grid point (ij - 1):

1. Suppose
A._ -_ = Bj_ ,-_ > 0, (5.56)

Bj+j_-= B,_ _- (5.57)

and A,+j_ a small positive number.

Then
Cai,_ = Cos11 + ((e.A),_.j - j + (,oA),+j-j) (5.58)

Recalling the expression for Co,-. and taking into account the following

((gpA),_A _t + (e.A),+ 1jj-) > IAi,j_- - A,+jj 1, (5.59)

we can conclude that Coll, is nonnegative if (5.54) holds.

2. Suppose
= B+,j.j = ,Bj-. (5.60)

and A,+jj-_ is a small positive number.

Suppose also thatl Bjj 4 _. > 0 and Aqj_- < 0 has a small absolute valuer.
Note that, since Aj.j_ and A,+j_ have opposite signs, then either

(,oA),_ _j.j > IA,-_jjI (5.61)

or
(Q5A),+j..r >_ A-+§j,-. (5.62)

Suppose for simplicity, that the first is correct. Then the S1 scheme correction
corresponding to A_-j_- and Bj_ j_ can be substituted by using (5.37) and we
shall obtain

. ,= (Cei)'-*-. + ) - (5.63)

-+ 
2
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and
C s2 1

O'_1 = -(b,,j_1 + L, _1

+(1 _A I- A%_)(jj_~iB, j)
-~~i +

-( - -adCnneaiei -4hod

It is easy to see that both Cs2- will be.

Remark 5.3 The S2 scheme which was created from the S1 scheme by adding the e-
correction allows us to use limiters which may introduce artificial compression.

Remark 5.4 Another important property of the e-correction is, that it will introduce
additional cross-stream viscosity in case of a rarefaction wave (diverging characteristic
field). Therefore, no non-physical discontinuities will be admitted.

5.2 Inhomogeneous equation

Consider an inhomogeneous conservation law

(f(U)) + (g(u)), = s, (5.64)

where s = s(z, y).

5.2.1 2D scheme

The same central and upstream approximations can be used in this case and they will
be second and first order accurate respectively. However, the genuinely 2D scheme has
to be modified, in order to maintain the second order accuracy.

Denote
"i- IN 2(5.65)

,,#= 1(u+8_#
.s._ = (sji + Si-1)(

Define

-3jjB I-- (5.66)

SB7 +1

3-* (5.67)•.'- = _ _ - -B.,
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s.. (5.69)

Again =2 -j P- - IOj +0-j

92D gl&.. 12 +-.),(.0

but OLj=+htj

+ hsj)(5.72)

=signa(B 1~ij-.)(A i~j-( 6 3u)J.j + h-j

Theorem 5.4 The 2D) scheme defined by (5.70) with (5.71) and (5.72) is second order

accurate.

Proof: Assume that

sign(A,..j 4 .. j) = sign(A 1..4j~j) = sigii(Aj+pjq) = sign(A,+j~j i~)3

. (i-i-1)= 9ig(Bq-jj) =sigu(Bj+jj-..) =sipn(B,~j+j). (5.73)

Then

= h2 Sign(a(U))(b(u)uv - s)x + 0(03). (5.74)

Assuming that

sign(A,-jj+j - A 4 j+t) = sipi(Ai+l - A (5.75

we also obtain

VavlUilj- Ui)- 1~a-~j-u-j

= (hsipg(a(u))(a(u)u,), + h~sig(a,)(a,),) + 0(0~) (5.76)

2 
.

L 

..
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Since the central scheme is second order accurate
f - = (f(u)), + 0(h3 )

- + I+ I(ui+Ij - , . - +
2 -- +

- ( (U- (_ +t, ._). (5.77)

Taking into account the previous three relations, We conclude

2D -

= (f(u)), + h2sign(a(u))(a(u)u, + b(u)u, - s). + 0(h') = 0(h') (5.78)

Similarly

2D 2D

= (9(u)), + h2sig(bQU))(a(u)u, + b(u)u, - s) + 0(h3) - 0(h 3 ) (5.79)

If one of the assumptions (5.73) or (5.75) does not hold, the difference equation in this
computational cell will approximate the differential one only up to 0(h). However, this
can happen in computational cells which cover only 0(h) part of the domain. Therefore,
the scheme will be still second order accurate.

5.2.2 N scheme

If we are interested in obtaining first order accuracy only, we can ii the same N scheme,
as for the homogeneous case. However, if the N scheme is an intermediate step towards
constructing higher order schemes, it also has to be modified.

Once again

f-Ij= ,.j - 1(0+i-j + 40-i-i) (5.80)

where 00+ = , .. + , Ot+..
#,-jj j -2 (5.81)-0 = fl-,_fi-_o._i

a} -0-t- -1 (5.82)"- = a 'a} -
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5.2.3 S scheme

Define -B - " (6":u)q-,".- (5.83)

-RZ )-+ -- (5,84) -

.' i-~ = _-s-i - 12 - +. .=

S j _ - (5.87)

Q -=&+ a_(7u)+QA + 7S,, a_

fSl,_j = f'_ - i(91*,_ + -_)

with
#Sl+,-}jj =

(1- P"-}'d- )€'(RJ- )ign(A -J. -)(. -J - (5; ' 4) -i -i + -i) (5)
#s1- _Ij =

(1- p-',j+j),/,(.R_ )si g(A,_.. +i)(B,_ 44 +*(,,), .+ + ,.)

+ *,1+i-8 =
(1- a+__)( _) B__)(Ai,_.._ (S,u),_.._,, + s,,,..) (5.89)

(1- a-+j ( j. laB+j ( _(6,u),+i}._. + j_.

Theorem5.5 If 0b=O(R) eC 2 and

#(1) = 1, (5.90)

then the SI schaeme is second order accvute.

Proof: In addition to (5.75) and (5.73), assume also that

• 0,.,_+j > 0- (5.91)

.. ,...- -. . ,. ' .'-a.. "., - .,-.? !
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This means that
'-*1.+-I =(5.92)

=0,

-- b--.(5.93) _.

and--
_ - -(5.94)

Then

ff - ff..-j

+ hS,_...) (5.95)
Taking into account

1 - O(R) = O4(1)(R - 1) + 0(h2), (5.96)

we have

+ h.,_.j) + O(W3 ) . (5.97)

Recalling the definition of R1?_ j_,, we can rewrite (5.97) as

f, - f =

-- 2 (1)(-Ai_ j-j(8ru)j_ _ - Bj (6,u)....i .j_ - h-9_§j)

sign(Aij_ -)(1 - _i,,) + O(h).

Then
fstff4 lfr4=f ,- i?.! + 0(h3). (5.98)

If one of the assumptiom (5.73), (5.75) or (5.91) does not hold, the difference equation
at that computational cell will approximate the differential one only upto O(h). How-
ever, this can happen in computational cells which cover only O(h) part of the domain.
Therefore, the scheme will be still second order accurate.

Remark 5.5 The S2 scheme created by adding the e-correction to the Si scheme will
also be second order accurate. This is because the e-correction is 0(h 2 ).
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Numerical experiments

All the numerical experiments reported here deal with numerical solutions of the differ-
ential equation

- (0+)AU + (f(u)), + (g(u)), = S, (6.1)
where 0+ means an infinitesimally small positive number.

We choose for our domain the rectangle :

= {(, y) : 0 < z !5 3,05 y _ 2} (6.2)

and we set Dirichlet boundary conditions around its boundary.

We used five qrids (levels). The meshsize of grid k is hk = 21-, hence it has (3 x
2k- - 1) x (2" - 1) interior grid points and 5 x 2k boundary points (1 :_ k <_ 5).

Note that in all the cases reported below limit solutions can be obtained just by
few downstream relaxation sweeps on the finest grid. This is because all the difference
schemes used are upstream (or "almost" upstream). However, Eq.(6.1) is just a model
problem for more complicated systems which cannot be solved this way. In case of sub-
sonic flow for instance the equations contain an elliptic component as well as hyperbolic.
In case of supersonic flow there exist several families of characteristics. Therefore, the
main purpose of the experiments reported here is to demonstrate that the developed
discretization schemes provide the possibility to obtain second order accurate solution
(in smooth regions and also in terms of discontinuity location) by means of a certain
multigrid algoritm, employing a direction-free relaxation.

The algorithm used is of type FMG(N, NM, C, M) (see Chap.3.), where M = 5,N =
1,2 ,NM = 2,6, and C = W(2,1). The Full-Weighted residual transfer is used. In
case the N, S, Si or S2 schemes are used, the Red-Black relaxation without storing of
intermediate values is not direction-free anymore. Therefore, we use '4-colour" ordering.
The usual bilinear correction interpolation and bicubic FMG interpolation is employed.

The precise formulas for numerical flux derivatives were used in all the experiments
reported here. However, there will not be any significant difference in the performance
of the algorithms if the N scheme numerical flux derivative formulas will be used for the
S,S1 and S2 schemes. This has been observed in a comparison of the solution error and
residual behaviour in both cases.

We shall compare the solutions obtained by different discretisations and discuss the
choice of the difference scheme for a particular problem.
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6.1 Linear equation

We shall first examine the performance of the algorithms and the quality of obtained
numerical solutions in case of the linear equation

-(o+)Au+ au+. .:-- s (6.3)

6.1.1 Smooth solution -

First we study how effective different algorithms are in case of smooth solutions, avoiding
any influence of discontinuities. For this purpose we provide equation (6.3) with such
boundary conditions that there will be no boundary layers. Since all the difference
schemes we experiment with here are upstream, we do not expect the appearance of
even a numerical boundary layer.

Homogeneous case

Consider the following version of equation (6.3)

-(0+)AU + .5u. + ; 0, (6.4)

with boundary conditions given 'by . .

u = sin( - 2z). (6.5)

It is easy to see that (6.5) is also the exact solution of (6.4). This solution is constant
along the characteristics and varies in other directions. We want first to compare per-
formance of the upstream, N, 2D and S schemes on this model problem. The S scheme
is employed here in three versions: with Van Leer's limiter and two Roe's limiters. The
expermnts with this model problem are presented in Table 6.1.

Each column of Table 6.1 starting from the second presents the history of the LI
norm of the solution error (the difference between the numerical and the differential
solution). 2FMG algorithm is employed (i.e., N = 2). The first column indicates the
stage of the multigrid algorithm the error is displayed at: the first number stands for
the currently finest level and the number in parentheses says how many multigrid cycles
have already been performed on this level (zero means that the error is displayed just
after the bicubic interpolation to this level). Columns 1,2 correspond to the cases where
the upstream and N schemes are used respectively. Both these schemes demonstrate first
order convergence. However, the solution error in case of the N scheme is almost three
times smaller. The 1FMG algorithm will produce results of the same quality in both
these cases (This can be seen , e.g., by comparing the results of row 5(1) with those of
5(2) and 5(6); the latter practically show the discretization error). Column 3 presents the
experiments with the 2D scheme and Columns 4,5 and 6 correspond to the experiments
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Difference
scheme Upstr N 2D S S S

2(5) .241 .119 .0429 .0497 .0588 .0471
.3(2) - " 154 .0632 .00971 .0145 .0232 - .0191-

- 4(2) -.0870 .0326 .00251 .00398 .00688 .00638 -
5(0) .0846 .0317 .00243 -.00376 .00656 .00597
-5(1) .0475 -.0161 .00054 .00150- .00266 .00275
5(2) .0467 .0165 .00065 .00113 .00213 .00235

5(6) .0468 .0166 .00060 .00097 .00194 .00219
1[ 1 2 1 3 4 1 5 1 6Z

Table 6.1: Linear homogeneous problem; slowly varying solution.

with Van Leer's limiter and Roe's 01 and 02 limiters respectively. The second order
convergence can be observed in all these cases.

Table 6.2 presents the experiments with the same equation (6.4) but with different,
more oscillatory boundary conditions:

U = sin(5(y - 2z)) (6.6)

and has the same structure as Table 6.1.

Difference _
scheme Upstr N 2D S S S
Limiter - - - VL' 02 02

2(5) .721 .759 .972 .779 .771 .788
3(2) .644 .577 .860 .557 .561 .553
4(2) .584 .434 .382 .267 .317 .202
5(0) .569 .429 .358 .274 .322 .208
5(1) .515 .327 .131 .0994 .155 .0806
5(2) .496 .298 .123 .0728 .121 .0705

5(6) .490 .294 .0835 .0675 .113 .0542

[z1 12 !__ 4 15 ThI 6,,

Table 8.2: Linear homogeneous problem; oscillatory solution.

The upstream and N scheme seem to give a very poor approximation to such a
solution, however the 2D and S schemes with all the limiters start to demonstrate a

-' --,---- ~~~~.. .m.. ....... *.'-;:r .. ... .- ""--"J' " "7 "" '
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second order convergence on the finer levels. However, about 3 cycles are needed on the
finest level to achieve a second order accurate solution. Performing more than 2 cycles on
each coarser level does not change the situation, because the coarse grid solution provides
a poor approximation for the finer grid one (for detailed analysis of this situation see
Sec.2.3 in [41).

Inhomogeneous cease

Consider the following inhomogeneous equation

- (0+)AU + .5u. + u, = (6.7)

with boundary conditions
U= sin(z + y). (6.8)

Choose the right-hand-side to be

S = 1.5 cos(X + Y). (6.9)

Then (6.8) will be the exact solution of (6.7).

Table 6.3 has also the same structure as Table 6.1.

Difference N N
schem Upstr horn. inhor. 2D • S S S
Limiter - - - - kVL 0_ 1_

2(5) .165 .309 .0867 .107 .0776 .0782 .0750
3(2) .0844 .148 .0267 .0277 .0215 .0209 .0242
4(2) .0414 .0717 .00957 .00765 .00596 .00562 .00795
5(0) .0393 .0683 .00914 .00733 .00572 .00542 .00753
5(1) .0200 .0332 .00369 .00154 .00136 .00128 .00303
5(2) .0205 .0347 .00394 .00191 .00144 .00139 .00321

5(6) .0205 .0347 .00393 .00178 .00140 .00136 .00231

IZ1 ZZ2 3 Z i4 5 6 1

Table 6.3: Linear inhomogeneous problem.

Once again the algorithm employing the upstream scheme demonstrates a first order
convergence, as resulting from Column 1. Columns 2 and 3 present the experiments
with two versions of the N scheme - without weighting of the right-hand-side (we shall
call it homogeneoue) and inmnogenos (which was constructed as an intermedite
stage towards the second order accurate S scheme, see Sec.4.3). The homogeneous N
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scheme demonstrates first order convergence and its solution error is even larger than
that of the upstream scheme. However, the inhomogeneous N scheme leads to the much
smaller error and even seem to demonstrate the higher order convergence on coarse grids.
This is because the streamwise component is second order small in this case (due to the
weighting of the right-hand-side), but it can dominate the cross-stream first order error

7 on some coarse grids. The alg6ritlims based upon the2D and S-schieme. (modified for the
inhomogeneous case) using any-one of-the three limiters produce-second order- accurate
solutions. In the cases of the2D and S schemes with-Van Leer's and Roe's-b 1 limiters
this is already clearly achieved by _FMG algorithiL When Roe's. 02 limiter is employed:
the convergence may be just a little slower.

6.1.2 Resolution of contact discontinuities

We shall examine the performances of these algorithms in case of contact discontinuity.
Consider Eq.(6.4) with boundary conditions given by

U = H(O.5y - z + 1), (6.10)

where H is the Heaviside function: H(x) = 0 for z < 0, H(x) = 1 for x > 0.

It is easy to see that (6.10) is also the exact solution of (6.4) under these boundary
conditions, and it contains a jump discontinuity along the line y = 2z - 2.

Figures 6.1(a-f) present the numerical solutions to this problem obtained by 2FMG
algorithms employing different discretization schemes. The results of the 1FMG algo-
rithm can hardly be distinguished from those of 2FMG algorithm (except the case of the
S scheme with Roe's 1 limiter), therefore we omit them. Figures 6.2(a - f) correspond
to the same numerical experiments, but present a plot of the solution along the gridline
y = 1.75 for 1 <z < 3. The line with "cross" pointrepresents solutions obtained on
level 4, and the line with "diamond" points represents the level 5 solutions - the same
as in Figure 6.1.

Figures 6.1a, 6.2a and 6.1b, 6.2b correspond to the upstream and N schemes respec-
tively. The contact discontinuity is resolved better in case of the N scheme. However,
this result is still unsatisfactory because the width of the transition layer decreases only
by factor V4 when the grid becomes twice finer, i.e., the number of gridpoints in the
transition layer increases by roughly a factor of V/i, as can be observed in Figure 6.2b.
Figures 6.1c and 6.2c correspond to the 2D scheme. The spurious oscillations can be
observed in the solution.

Figures 6.1(d - f) and 6.2(d - f) correspond to the S scheme using Van Leer's
and Roe's 01 and 02 limiters respectively. The transition layer is slightly wider in
case of Roe's OL than Van Leer's limiter. The discontinuity profile produced by the
S scheme with Roe's 01 limiter did not converge enough. This is because the large
amount of artificial compression is introduced by such a limiter in the neighborhood of the
discontinuity, which badly affects the smoothing properties of the scheme. The solution
can be improved by local relaxation sweeps in the neighborhood of the discontinuity.

-. ~~.t ...
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Figure 6.1: Contact discontinuity; (a) - Upstream scheme, (b) - N scheme.
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Figure 6.1: continiued; (c) -2D scheme, (d) - S scheme with van Leer's limiter.
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Figure 6.1: continued;' S scheme with: (e) - Roes 0b1 limiter, (f) - Roe's V42 limiter.
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Figure 6.1: continued; (g) - S scheme with Roe's 0b2 limiter, limit solution.
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(a)()-• .- U) _ --- b-

1.0 1.0

0.5 0.5

0.0 0.01

1 t.5 2 2.5 3 x 1 1.5 2 2.5 -

(c) (d)

U U

1.0L 1.0

0.5 0.5

DZ 0.0

S 1.5 2 2.5 3x 1 1.5 2 2.5

Figure 6.2: Contact discontinuity;, gridline y = 1.25 for 1 _ z 3, x - level 4, -

level 5: (a) - Upstream scheme, (b) - N scheme, (c) - 2D scheme, (d)- S scheme with
Van Leer's limiter.



6.1 Linear equation 51

• .- a - --- . -_

_(e) t(f)
* 1 " . o. -

JU

t01.0 : .. .

S.C.5

0.01 0.0

1 1.5 2 2.5 3 X 1.5 2 2.5 3 X

(g)
U

0.5

0.0

I 1.5 2 2.5 3 x

Figure 6.2: continued; S scheme with: (e) - Roe's h limiter, (f) - Roe's Ih limiter, (g)
- Roe's 02 limiter, limit solution.



52 Chapter 6 - Numerical experiments

q..

\ b
oiI

1 1.5 2 2.5 3 x

Figure 6.3: Contact discontinuity; (a) - Upstream scheme, (b) - N scheme; S scheme
with: (d) - Van Leer's limiter, (e) - Roe's 0 limiter, (g) - Roe's 0 limiter, the limit
solution.

FqPres 6.lg and 6.2g present the numerical solution to the same problem obtained
by few relaxation sweeps in downstream direction on the finest grid using the S scheme
with Roe's 02 limiter. The transition layer created is very sharp. It is possible to obtain
the same result by one downstream relaxation sweep, just performing several Newton
iterations at each grid point. Note that downstream relaxation sweeps can be performed
locally in the neighborhood of the discontinuity together with direction free relaxation
all over the domain.

Figure 6.3 presents together the same (level 5) numerical solutions which appear on
Figures 6.2a, b, d, e, g.

The sharpest discontinuity profile here corresponds to the limit solution of the S
scheme with Roe's 02 limiter. The S scheme with Van Leer limiter resolves the discon-
tinuity slightly better then with Roe's 01 limiter, but the discontinuity profiles in both
cum are sharp (having O(h) width). The first order schemes are obviously inferior to
the second order schemes in terms of the discontinuity resolution.
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As follows from the argument in Chap.2, the two factors which determine the error
in discontinuity location are: the smooth region error at the points L and R (see Figure
2.3) and the error of extrapolation. Since t"e solution in this example is a piecewise
constant, points L and R can be chosen far enough from the discontinuity so that the
numerical fluxes at these points will be exact. The extrapolation by constant is exact in
this cae as well. Therefore, there should be a zero error in the discontinuity loca on.
Indeed, we have observed, that the discontinuity location in the limit-solutions in tese

- cases can be recovered upto the round-off error. " .

6.2 Nonlinear equation

We consider here the following version of Eq.(6.1):

- (0+)Au + (u/2), + Ug = a. (6.11)

This equation can be rewritten in the quasilinear form

- (O+)Au + uuz + uY = S. (6.12)

It is easy to see form (6.12) that the characteristic directions are given in this case by the
vector (u, 1), i.e. it depends on the solution (For the description of the possible solutions
see in Sec.2.1.2).

6.2.1 Smooth solution

In case the boundary conditions are given by (6.8) and

a = cos(z + y)(1 + sin(z + y)) (6.13)

it is easy to see that (6.8) is also the exact solution of (6.11).

Although we choose boundary conditions so that there will be no boundary layers
created, numerical boundary layers may appear. This is because some of the difference
schemes we shall use are not exactly upstream.. In order to avoid any influence of potential
numerical boundary layers in our study of interior behavior, the error was measured only
in the subdomain

-{(z,Yy) : 1/25 _5 5/2, 0:_ y :5 4/3} (6.14)

Numerical experiments with this model problem are presented in Table 6.4.

Again the algorithms employing upstream and homogeneous N schemes produce first
order accurate solutions, as can be seen from Columns 1,2. The inhomogeneous N
scheme seems to demonstrate higher order convergence on coarser grids because of the
same reason as in the case of linear inhomogeneous problem. The IFMG based upon
the Si and S2 scheme leads to second order accurate solutions (see Columns 4-7). The

• ....... ..... .. . . . - - ,- , . . . . . . . . . . . ..- . . . .-un.
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Difference N N
scheme Upstr nhom.. Si SI S2 S2 S1&2
Limiter - - - -kV. ,/.VL 0?

-2() .189 .299- -.159 - .158 :j.158 .286 .285 .186
3(2) .0968 .146 .0438' .0410 !.0414 .118- .116 .0524 -

4(2)- .0477 .0705 .0128- .0105 -.0107 ".0326 .0318 .0139
" - - ~5(0) .0487 .0669 .0134 .0107 .0110 .0334 .0326-. .0134 . .

5(1) .0232- .0331 .00436 .00229 .00227 .00829 .00813- .00359
5(2) .0241 .0338 .00474 .00271 .00281 .00911 .00889 .00355

5(6) .0242 .0339 .00472 .00265 .00273 .00909 .00889 .00345
iZ 1 ] 2 3 J4 Li5 6 7 8

Table 6.4: Nonlinear inhomogeneous problem; slowly varying solution.

reason for the larger errors demonstrated by the S2 scheme is the additional viscosity
(the e correction) which becomes non-zero when the characteristic directions are non-
constant. This additional viscosity causes that the S2 scheme demonstrates errors on the
coarse grids even larger than those obtained by the first order accurate inhomogeneous
N scheme. Note that the choice of the limiter in this problem does not affect the results.
Column 8 presents the results obtained by the "blended" S1&2 scheme which contains the
S1 scheme with the weight 9/10 and the S2 scheme with the weight 1/10. This scheme
demonstrates the second order convergence as each one of its components separatly,
however, its errors are much closer to those of the S1 scheme than of the S2 scheme.
Note that the S1&2 scheme when used with Roe's 01 limiter is monotonic in case of a
homogeneous problem.

Table 6.5 presents numerical experiments with Eq.(6.11) and with the right-hand-side

s = 3 cco(3(z + y))(1 + sin(3(z + y))) (6.15)

and with the boundary conditions

u = sin(3(z + y)), (6.16)

which is the exact solution of. this problem as well.

Again the upstream and homogeneous N scheme demonstrate the first order con-
vergence for this problem (Columns 1,2) The inhomogeneous N scheme leads to much
smaller errors and seems to be higher order accurate on the coarsers grids (Column 3).
The Si scheme starts to demonstrate second order convergence on the finer levels, but
mare than 2 cycles on the finest level achieve a second order accurate solution (Columns
4,5) (see also Columns 46 in Table 6.2 and Sec.2.3 in [41). The 52 scheme does. not.
clearly demonstrate the second order convergence even on the finest levels used in this
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Difeee N N 1 1I
scheme Upstr (horn.) (inhom.) Si Si S2 S2 S1&2
Limiter I - 0b,. 1 VL b2  01

--- 2(5) .668 .780- - .615 .611- .613- .573 .573 -.553
3(2) .456 .484 .297 .292- .294 -. 457 .456 .332

- 4(2) .209 .243 .107--- .0963 .0971 .303 .300 .125
- - _5(0) -201: -.234-. .104 .0935 .0943 .290 .288 .121

5(1) .125 .121 .0442 -.0357 .0363 .180 .177 .0469
5(2) .121 .119 .0392 .0285 .0295 .124 .121 .0388

5(6) .121 .116 .0360 .0238 .0252 .107 .106 .0341I i1 2 3 1 4 1_ 5 ( 6 7[ 1

Table 6.5: Nonlinear inhomogeneous problem; oscillatory solution.

experiment (Columns 6,7) and leads to much larger errors than the S1 scheme. The
S1&2 scheme starts to be second order convergent on the finest levels and leads to errors
slightly larger than those of the Si scheme. The choice of the limiter does not affect the
results.

6.2.2 Discontinuous solution

Consider again Eq.(6.11) with s = 0.

Shock wave

If we choose (6.10) to be the boundary conditions for this problem, it will be the exact
solution for it as well. Figures 6.4(a - c) present plots of the numerical solutions to this
problem by the 2FMG algorithm employing the S1,52 and SI&2 schemes respectively.

The choice of limiter in this problem has no influence on the results. The shock
profiles in case of the S1 and Sl&2 schemes are similar, however the one created by
the S2 scheme is less sharp because of the larger cross-stream viscosity due to the e-
correction. All the profiles have O(h) width.

Rarefaction wave

Consider the same homogeneous "uation as before with boundary conditions

u 1 - 2H(z- 1.5), (6.17)
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Figure 6.4: Shock wave; (a) - Si schieme, (b) - S2 scherne.
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Figure 6.4: continued; (c) - S1&2 scheme.
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(a)

Figure 6.5: Rarefaction wave; (a) - non-physical solution, (b) - SI scheme with Roe's
01 limiter.
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(d)

-- - - _ .--
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where H is again the Heaviside function. Its plot is presented on Figure 6.5a. Such
a solution can be obtained also by the upstream, N or S1 schemes (as well as by the
Spekrejse scheme). This is because these schemes demonstrate zero residuals on such
a grid function. However, this solution is non-physical, it violates the entropy law -
there are characteristics which go out from the discontinuity and not from the boundary.
Figur'e6.5b presents the solution .to this problem obtained by 2FMG algorithim based
upon the SI scheme with 01 limiter. We can observe that an unadmissible discontinuity
starts- to develop. Figure 6.Sc presents the solution to this problem obtained by the
same algorithm based upon the S2 scheme. (The clhoice of the limiter does not affect the
result in this case as well.) This solution does not contain a nlon-physical discontinuity.
This is due to the e correction which adds some additional viscosity to the scheme when
characteristic directions are not constant.

Figure 6.5d presents the solution obtained by the 2FMG algorithm employing the
blended S1&2 scheme. No discontinuity is created as well as in the case of the 52 scheme.

6.2.3 Non-constant solution containing discontinuities

In order to examine the accuracy of the method in smooth regions in the presence of
discontinuities and to test the discontinuity locating technique, we shall construct a
model problem with a knowvn non-constant solution which contains a shock at a known
location. Regarding y as a time-like direction, consider the following hyperbolic problem

(u2/2), + u, 0 , (6.18)

with initial conditions given along the z axis by

ulI-o = uo = .5sin(rx) + .5. (6.19)

Let us compute the exact solution to this problem. It is constant along characteristics
and therefore characteristics are straight lines. Therefore, for every point (z, y) we can
find the point (z0 , 0) where the characteristic line which goes through it crosses the z-axis
by solving the implicit equation

M0 = X - Uo(x0)y. (6.20)

Of course, the solution is not unique. But if the entropy condition is imposed, or if
the non-viscous Dmit of the viscous equation (6.11) is considered, the solution becomes
unique. It is easy to see that inside the rectangle (6.2) it will contain one shock wave
(see Figure 6.6) going along the line

y = 2z- 2. (6.21)

Consider again the domain (6.2), and let (6.19) be the boundary conditions for
Eq.(6.11).
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Figure 6.6: Characteristic lines and shock wave in the exact solution.

I Differ.

scheme SI Si S2 S1&2
Limiter 01 O'Vh vcVL jj
Error Sol._ Sh.Lo [lSh.Loc SoL. Sh.Loc Sol. Sh.Loc

2(5) .0621 - .0556 - .150 - .0632
3(2) .0100 .105 .00765 .111 .0622 .200 .0136 .0969
4(2) .00304 .0141 .00274 .0165 .0188 .0240 .00405 .0109
5(0) .00297 .00427 .00266 .00362 .0188 .0134 .00383 .00654
5(1) .00089 .00283 .00090 .00246 .00642 .0116 .00112 .00131
5(2) .00085 .00215 .00069 .00224 .00603 .00827 .00114 .00184

5(6) .00078 .00225 .00069 .00243 .00594 .00591 .00108 .00159

i I1 2 3 L 4

Table 6.6: Nonlinear problem; varying solution contafinng a shock wave.
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The numerical experiments presented by Table 6.6 and Figure 6.7 are performed with
this model problem. The 2FMG algorithm is used. In order to avoid any influence of
numerical boundary layers and the shock we measure the solution error L, norm in the
following subdomain

-- - "={(x,y):i/2:<< 2,0<y<_2z-3rmax(,2z--l)<<43/. -(6.22)

- The intersection point between the shock and a grid line parallel to the x axis is calculated
S- axcording to the method described in Chap.2. The segment LR is taken to be 6 meshsizes

long with its middle dose to the assumed shock location. The extrapolation by a constant
is used. The error in shock location is measured for 1 5 y _ 2, where the discontinuity
is strong enough.

Each pair of columns in Table 6.6 presents one experiment. The first column in each
pair displays the history of the L, norm of the solution error and the second - the L, norm
of the shock location error. Again we can conclude that a second order accurate solution
(in smooth regions and also in terms of the discontinuity location) can be obtained by
the 2FMG algorithm using either the S1 or the S2 schemes. However, the Si scheme
leads to smaller errors than the S2 scheme. The choice of the limiter does not affect the
solution. The SI&2 scheme leads to a solution error slightly larger than the S1 scheme,
but to a smaller error in the discontinuity location. Figures 6.7(a - c) present plots of
the numerical solution obtained by the 2FMG algorithm in the same cases which are
presented in Columns 2-4 of Table 6.6.

The solution plots corresponding to the Si scheme with Roe's tPi (Column 1) and
Van Leer's (Column 2) limiters are undistinguishable. Therefore, we omit the first one.
In spite of the fact that the monotonicity of the solution is not guaranteed when the
Si scheme is used with Van Leer's limiter, we do not observe any oscillations on Figure
6.7a. Also we can see that the S2 does not provide the shock resolution as sharp as
the SI scheme. The 2FMG algorithm which uses the Si&2 scheme leads to the solution
presented by Figure 6.7c. The shock resolution is comparalle with that of the SI scheme.
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Figure 6.7: Non-constant solution containing a shock wave; (a) - Si scheme with Roe's
01 limiter, (b). , 2 scheme with Roes 1 0 limiter.
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Figure 8.7: continued; (c) - S1&2 scheme with Roe's th limiter.
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6.3 Choice of discretization

Both S1 and S2 (as well as the blended S1&2 scheme) are second order accurate schemes
when used with any of the limiters considered above.

In case we wint to obtain smaller erro r in smooth regions, sharper shockresolutio-
and -better -discdntinuity location - the Sf scheme should be used. The Sl scheme is
-also provei to produce monotonic solution when ued -with Roe's OI limiter in case of
homogeneous problems. However, non-physical discontinuities can appear inthe solution -

in case of a rarefaction wave aligned with the grid.

The S2 scheme is proven to be monotonic with any of the limiters considered above.
It does not admit non-physical discontinuities. However, it leads to much larger solution
and discontinuity location errors and provides shock resolution inferior to that of the S1
scheme.

An interesting possibility is therefore to use the blended Si&2scheme, i.e. to average
the S1 and S2 schemes with certain weights. This allows us to achieve a more accurate
solution and better resolution of discontinuities but still without admitting the non-
physical ones. The S1&2 scheme is monotonic in case of homogeneous problems when
used with Roe's 01 limiter. Another alternative can be to use the S2 scheme for the first
multigrid cycle on each level and the S1 scheme for the second one. The solution error
and discontinuity resolution in this case will be very similar to those of the S1 scheme.
However, non-physical discontinuities will not develop.

The choice of a limiter does not influence significantly the resolution of shocks and
the solution error for both S1 and S2 schemes. In case better resolution of contact
discontinuities is desirable, the compressive limiters (Van Leer's or Roe's #2) should
be used. However, sharp edges in the solution can be created because of the artificial
compression. When the S1 scheme is used with a compressive limiter, the monotonicity
of the solution is not guaranteed.

We can conclude that the choice of discretization may depend on which features of
the solution are of more interest to us.
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Discussion and conclusions ---

7.1 Summary

A fast multigrid solver for a scalar 2D steady-state conservation law is developed.

Two main problems were solved in order to achieve the goal of this work:

1. A new genuinely 2D discretization scheme based on the compact "9-point box"
stencil was constructed. This scheme provides a separation between treatment of stream-
wise and cross-stream directions. The artificial viscosity is added in the streamwise
direction only. High resolution can be introduced in the cross-stream direction. As a
result, numerical solutions produced by these schemes are monotone with sharp reso-
lution of oblique discontinuities and a local relaxation process applied with -this type
of discretization is stable. The solutions also demonstrate second order convergence in
smooth regions in the case of a homogeneous problem. This property is extended to
inhomog-neous equations by a simple weighting of the right-hand side.

2. We have shown that a captured-shock solution (provided the discrete scheme
employeC is conservative) contains information about the discontinuity location up to
the same order of accuracy which is actually achieved in the smooth regions. This
assertion has two important implications. The first is the possibility of performing a
post-pro, essing: once the discontinuity is recognized in the solution, its location can
be extracted with a higher-order accuracy. The second implication is that the usual
multigri_ correction interpolation (bilinear etc.) can be used in the neighborhood of
discontinuities as well as in the smooth regions. Indeed, it expresses the correct movement
of the dL continuity provided a conservative residual transfer (Full Weighting) is used.

Numerical experiments confirm that second order accurate (both in smooth regions
and discontinuity location) molutions can be usually obtained by the 2FMG algorithm,
even with direction-free relaxation. The limit solutions can also be obtained by just few
downstream relaxation sweeps on the finest level

7.2 Remark on double discretization

Our original intention was to use the double discretization technique, i.e. to employ two
difierent schemes in the. relaxation and in the residual calculation. The scheme used in
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the relaxation process must be stable, but may be low order accurate. The scheme used
for the residual calculation must be higher order accurate, but may be unstable. This
approach is usually good for smooth solutions. However, there is a certain difficulty to
apply it in the presence of discontinuities. Two different schemes lead usually to solutions
whith have different discontinuity profiles. Therefore, the residuals calculated by means
of one scheme on the -solution apprximation: obtained br relaxing another scheme may
attain large values in the neighborhood -of discontinuities. If we transfer these large
residuals together with others to the coarser grid, the -numerical process may become
divergent. However, in case both difference schemes used are conservative the summation
of the residuals inside the transition layer along gridlines crossing the discontinuity will
give small numbers. Therefore, if this "residual cancelling" is performed each time before
going to the coarser grid, the multigrid algorithm employing the double discretization
will produce higher order accurate solution in smooth regions as well as higher order error
in discontinuity location. However, such an algorithm requires to detect transition layers
representing discontinuities in the solution and to perform residual cancelling accross
these layers on each grid before transfering residuals to the coarser one. This is the
reason why we decided to use the same higher order accurate and stable scheme both
for the relaxation and the residual calculation.

7.3 Extension to Euler equations

Our next objective is to extend these methods to the steady-state Euler equations. This
is not expected to be complicated, because a discretization of the convection operator
is the main concern of the approach of [31 for the case of this system too. Moreover,
it seems to be possible to design a stable local relaxation process for the Euler system,
based on the ideas of [3].

7.4 Efficiency comparison

We shall compare now the number of operations neccessary to perform in order to eval-
uate a residual at one grid point of the Spekreijse scheme and of the S1 and S2 schemes
developed in this work. The results of the comparison are summarized in Table 7.1.

We can conclude, that the S1 and the Spekreijse schemes are comparable in terms of
efficiency for residual calculation. The S2 scheme is more expensive. However, we want
to note the following.

* The schemes constructed in this work are based on narrow stencils. Therefore,
they introduce smaller cross-stream viscosity than the schemes of the same order
of accuracy based on the "dimenional splitting" approach (see Sec.2 in [4]). This
means that the solution of a certain quality can be obtained by our schemes on a
grid coarser than the one needed for the Spekreijse scheme.
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Difference Spekreijse Si ii
scheme ekje SI $

evaluatior 8 5 5
a&b12 2

evaluation 8 12 12
r.h.s.

evaluation 1 1+4 1+4
limiter

evaluation 8 2(4) 2(4)
gridpoint

index caic. 9 9+4 9+4
other

floating-point 25 26(44) 54(72)
operations

Table 7.1: Efficiency comparison: after the "+" sign - the number of additional opera-
tions needed to achieve second order accuracy in case of an inhomogeneous problem; in
the parenthesis - the number of operations which may be required in the neighborhood
of discontinuities; otherwise given is the number of operations required in the smooth
regions.
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* A pointwise relaxation with the S1 and S2 schemes is stable. To perform a Newton
iteration at one point requires (in addition to the residual calculation) the evalu-
ation of the numerical fluxes derivatives with respect to the central point value.
This is much less expensive than the residual calculation (especially if the approx-
imate formulas for derivatives are used). The evaluation of the numerical fluxes

--derivatives in case of the Spekreijse scheme is approximately as expensive a in

- case of the-S1 and S2-schemes. However,-a 4-point block relaxation is needed when
-relaxing the Spekrejse scheme (see [20]). This means, that one Newton iteration
shoufd be performed..for -a, system of 4 -nonlinear -equations each time, instead of -

being applied for 4 separate equations as in the S1 or S2 schemes. This requires to
invert a 4 x 4 matrix for every 4 gridpoints. This matrix contains at least 4 zero
elements, and upto 8 in case of a smooth solution. This additional matrix inversion
increases the computational cost of the Spekreijse scheme when comparing to the
S1 and S2 schemes.

* The really important point here is that there was not found any (neither local
nor global) stable relaxation which can be applied with the Spekreijse scheme in
case of the steady-state Euler system. Therefore, it was possible to achieve the
second order accuracy only by employing - defect correction method (see [19]),
which is not a fully-efficient way to deal -with non-elliptic problems (see Sec.2 in
[41). Indeed, many cycles were required for the Spekreijse scheme to reach second
order accuracy.

We can conclude that the multigrid solver for a scalar 2D conservation law based on
the discretization schemes developed here is slightly more efficient than the one based on
the Spekreijse scheme. However, when extended to the Euler system they are expected
to be much more efficient than the solver developed in [19].

7.5 Some properties and future development

The versions of the S1 and S2 schemes which were shown to be monotonic for the case
of a homogeneous equation seem to be TVD (total variation diminishing). Although
we do not prove this, it must follow from the monotonic property for these schemes
exactly as in the ID case. This means that, when these schemes are used to solve a
time-dependent problem, convergence of the solution is theoretically justified for a finite
time interval. This does not contradict the result of [9], because when used to discretize
a time-dependent problem, both the S1 and the S2 schemes will retain only first order
spatial accuracy. However, discontinuities will be sharply resolved in the solution. The
second order accuracy can possibly be obtainet! by treating the time derivative as the
right-hand-side of an inhoogeneous problem (see Sec.5), but such a discretization will
not have the TVD property anymore.

Note that the use of TVD schemes has a theoretical advantage for time-dependent
problems and-finite time evolution only. However, when constructing a certain scheme
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for practical purposes it may be enough to require that it can be rewritten as to another
scheme which is not necessarily of the positive type, i.e. it can have small negative
coefficients (0(h) compared-with the positive coefficients) at some points.

We can also distinguish between smooth regions and the neighborhood of disconti-
nuities, and use different schemes for each of the=n a more complicated scheme with
"lihfters near discontinuities only, and a simplified scheme in the smooth regions. These

simplificAtions can lead -to a substantia computationil cost- reductioin of the method- in
smooth regions. Also, additional local relaxation sweeps may be performed in the neikh-
borhooid of strong disc6ntinuities, increasiig the efficiency of the method for little eitra--
cost.

It must be possible to construct a third-order accurate upstream scheme based on
the same "9-point box" stencil: 4 upstream points are enough to obtain an 0(h 3) cross-
stream truncation error, while the third order accuracy in other directions can be achieved
again by a certain weighting of the right-hand-side of the equation. An approach sim-
ilar to ENO (essentually non-oscillatory) in [13] can be introduced in the cross-stream
direction. However, some technical details still have to be verified.

Another interesting possibility is to construct upstream difference schemes based
on thiner, but longer stencils. This approach will improve resolution of characteristic
components and discontinuities and can possibly lead to a very high order accuracy
compact schemes.



Bibliography

- [1] Van Albada, G.D., Van Leer, -B.;,Roberts,- W.W.,-J., A comparative study of corn--
putational methods in cosmicgas dynamics, ICASE, Report No. 81-24 (198L).

[2] Brandt, A., Multigrid solvers for non-elliptic and-smigular perturbation stea-
dy-state problems, The Weizmann Institute of Science, Rehovot, Israel, 1981.

[3] Brandt, A., Multigrid techniques: 1984 Guide with applications to fluid dynamics,
The Weizmann Institute of Science, Rehovot, Israel, 1984.

[4] Brandt, A., The Weizmann Institute research in multilevel computation: 1988 Re-
port, Proc. 4th Copper Mountain Conference on Multigrid Methods, SIAM, to ap-
pear.

[5] Boerstoel, J.W., Kassies, A., Integrating multigrid relaxation into a robust fast-
solver for transonic potential flows around lifting airfoils, AAIA 6th CFD Confer-
ence, 1984.

[61 Davis, S., A rotationally biased upwind difference scheme for the Euler equations,
ICASE, Report No. 83-87 (1983).

[7] Davis, S., Shock capturing, ICASE, Report No. 85-25 (1985).

[8] Eckhaus, W., Boundary layers in linear elliptic singular perturbation problems,
SIAM Review, 14 (1972), 225-270.

[9] Goodman, J.B., LeVeque, R.J., On the accuracy of stable schemes for two dimen-
sional conservation laws, Math. Comp. 45 (1985), 15-21.

[10] Guckenheuner, J., Shocks and rarefactions in two space dimensions, Archive for
Rational Mechanics and Analysis 59 (1975), 281-291.

[11] Harten, A., The artificial compression method for computation of shock and contact
discontinuities: III. Self-adjusting hybrid schemes, Math. Comp. 32 (1978), 363-389.

[12) Harten, A., High resolution schemes for hyperbolic conservation laws, J. Comp.
Phys. 49 (1983), 357-393.

[13] Harten, A., ENO schemes with subcell resolution, ICASE, Report No. 87-86.

[14) Van Leer, B., Towards the ultimate conservative difference scheme, I. Monotonicity
and conservation combined in a second order scheme, J. Comp. Phys. 14 (1974),
361-370..

71



1. 'BIBLIOGRAPHY

[15] Osher, S., Solomon, F., Upwind difference schemes for hyperbolic systems of con-
servation laws, Math. Comp. 38 (1982), 339-374.

[16] Osher, S., Chakrivarthy, S., High resolution schemes and the entropy conditions,
ICASE, Report No. 172218, 1983.

[17) Sidilkover, D., Multigfid solvers for singular perturbation steady-state problems, V

M.Sc. Thesis, The Weizmann Institute of Science, Rehovot, Isriel, 1983. -

14 Sidilkover, D., Numerical solution to steady-state iproblems with discontinuities,.
Ph.D. Final Report, The Weizmann Institute of Science, Rehovot, Israel; 1988.

(19] Spekreijse, S., Multigrid solution of the steady Euler equations, Ph.D. Thesis, CWI,
Amsterdam, Netherlands, 1987.

[20] Spekreijse, S., Multigrid solution of monotone second-order discretization of hyper-
bolic conservation laws, CWI, Report NM-R8611, 1986.

[21] Sweby, P.K., High resolution schemes using flux limiters for hyperbolic conservation
laws, SIAM J. Numer. Anal., 21 (1984), 995-1011.

[22] Vol'pert, A.I., The spaces BV and quasilinear equations, Math. USSR - Sbornik, 2
(1967), 225-267.

[23] Woodward, P., Colefla, P., The numerical simulation of two-dimen-ional flow with
strong shocks, J. Comp. Phys. 54 (1984), 115-173.

.. . .... ... . . . . ....,;, " m' -'m-. . . . . ..i I r .,.r.I .r- i s.-----------------


