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Summary

During the tenure of this research grant the principal investigator (PI) worked in the areas of

random iterated function systems (IFS) and computer image generation. Random IFS afford a

powerful new technique for generating images. The image is constructed as the attractor for a random

dynamical system in R2 or Rs , typically a Markov process or some spin-off of such a process. The

image generation algorithm proceeds by simply generating the appropriate random dynamical system

(via a random number generator) and plotting the points along a single orbit. The random dynamics

evolve through compositions of independent identically distributed (i.i.d.) affine transformations.

The images obtained in this way include fractals, landscape, natural scenes, simple geometrical

shapes, smooth curves and surfaces, rough curves and surfaces, wavelets, B-splines, Beziir curves and

interpolants. In fact this technique produces one of the most efficient and parallelizable algorithms for

high-speed curve and surface generation.

Key questions are how to find the appropriate random dynamics to generate a given target

image (the "encoding problem"), and how to adapt the algorithm so as to produce different classes of

images. There were several research accomplishments in these directions under this grant. They are

listed here, and elaborated on below in the sections which follow.

I) Encoding via the Collage Property:

Together with J.-P. Vidal (Ph.D. student, Carnegie Mellon University) the PI developed an

automated encoding scheme. This encoder works by sequentially collaging a given polygonalized target

image by affine copies of itself. It essentially solves a puzzle by moving and adjusting the pieces locally

in an iterative fashion, so that they efficiently collage the target. (This is not quite the same as a

puzzle - since the pieces are allowed to overlap here.)

H) Encoding via Convexity:

Together with J.-P. Vidal the PI discovered an important property satisfied by the extreme

points of (the convex hull of) the attractor for an IFS. Namely, every extreme point is the image of

some extreme point under one of the affine maps. Equivalently, the set of extreme points is invariant

under the inverse dynamics. Thus by examining the extreme points of the attractor, one can extract

information about the affine maps which generate it. This extreme point phenomena was observed by

the PI to hold as well for more general iterated function systems than affine - for example Julia sets

for iterates of complex polynomials.
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III) Encoding via Discrete Optimization:

Together with M. Perrugia (Ph.D. student, Carnegie Mellon University) the PI studied the

discrete Markov chain obtained by truncating the continuous process in R2 to the centers of the pixels

in which it lands. It was shown that as pixel dimension decreases to zero, stationary distributions for

the discrete truncated chains converge weakly to that of the continuous IFS process. This then enables

one to approach the encoding problem through discrete optimization.

IV) Encoding via the Radon Transform:

The Radon transform of the invariant measure for an IFS satisfies a difference equation, with

difference parameters related to the affine maps of the IFS. Knowing the target image as a color or

grey-level image amounts to knowing the invariant measure, and from this one can obtain its Radon

transform via plane wave scans. So for this approach encoding becomes the inverse problem of

recovering the parameters of a difference equation from measurements of its solution (the Radon

transform).

V) Mixing Images:

Together with M. Barnsley (Iterated Systems, Inc.) and M. Soner (Carnegie Mellon

University), the PI developed a framework for mixing image textures. For example one could start

with a given leaf texture and tree texture, and then create a tree with those leaves growing on its

branches. The mixing involves constructing a stochastic process which jumps between various Markov

processes, transferring states from one to the other via a graph structure. The nodes of this graph

represent simple (un-mixed) IFS processes, and the edges represent crossovers, whereby a point in the

orbit of one process gets replaced by the corresponding point in the orbit of an adjacent process.

VI) Real-Time Animation and Vectorization:

IFS images can be animated by continuously varying the IFS parameters (the coefficients of

the affine maps and the probabilities assigned to them). The IFS algorithm is highly parallel, and

animation is also parallel since there are no dependencies between one image and the next. (That is,

they can all be generated simultaneously.) The PI used the vectorization and multi-processor

capabilities of the CRAY Y-MP/832 at the Pittsburgh Supercomputing Center to optimize IFS

animation, thereby generating the frames in real-time (30 frames/sec.). This work also demonstrates

the continuous dependence of the image on the IFS parameters, as continuous variation of parameters
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leads to a continuous flow of images.

VII) Wavelets and Curve Generation

Most recently the PI discovered how to set up a random IFS to generate wavelets and various

curves arising from sub-division methods. These include B-splines, Beziir curves and line averaging

interpolants. In fact for a whole variety of computer image generation algorithms involving recursive

tree traversal, the PI has shown how one can construct a simple random process which generates the

same image. The image then evolves as the orbit of a single trajectory. This involves products of i.i.d.

row stochastic matrices, as described below.

Introduction

The basic IFS image generation algorithm is illustrated in Figure 1. The leaf is generated as

follows. Pick any point X0 E R2. There are four affime transformations T: x @- Ax + b listed on the

top of this Fig., and four probabilities pi underneath them. Choose one of the transformations at

random, according to the probabilities pi - say Tk is chosen, and apply it to X0, thereby obtaining

X= = TkX0 . Then choose a transformation again at random, independent of the previous choice, and

apply it to X,, thereby obtaining X2. Continue in this fashion, and plot the orbit {Xn}. The result is

the leaf shown. By tabulating the frequencies with which the points Xn fall into the various pixels of
__,n

the graphics window, one can actually plot the empirical distribution n+k-E06X using a grey scale

to convert statistical frequency to grey level. The darker portions of the leaf correspond to high

probability density.

I. Encoding via the Collage Property

Given a target set C, the affine mappings T i for the IFS to (nearly) reproduce it are obtained

through the following optimization problem

MAXIMIZE [areTC n Ri_1) - A area(TiC\C)]
afline contractions Ti

where Ri are the residual sets Ro = C,

R, = RjI\TjC
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and A is an adjustable parameter. This optimization problem is solved sequentially for T1 ,T 2.... The

motivation behind this technique, and an adaptive algorithm developed by J.-P. Vidal for solving this

problem were described in my Second Annual Report (dated 12 April 1989), and in my Research

Progress and Forecast Report for the First Additional Period of Research (dated 14 October 1988).

H. Encoding via Convexity

The PI has shown that the extreme points of the attractor C for an IFS are invariant under the

inverse dynamics. That is, every extreme point is the image of some extreme point under one of the

affine mappings. Equivalently

E C T,E (1)

where E is the set of extreme points of (the convex hull of) C, and Ti are the affme maps for an IFS

which generates C. This is illustrated in Figure 2. Since an affine map T: R2 -- R 2 is completely

determined by its action on three points, this condition (1) can be used to partially or fully determine

the maps Ti from knowledge of the image C. In fact condition (1) was observed by the PI to hold in

more general settings of Julia sets, where the maps T are the inverse branches of a complex

polynomial f(z). In this case f(E) C E, where E is the set of extreme points of the Julia set.

J.-P. Vidal implemented an algorithm for finding all possible sets of affine maps Tj which are

consistent with (1). This was described in my First Annual Technical Report (dated 15 April 1988),

and in my Research Progress and Forecast Report for the First Additional Period of Research (dated

14 October 1988). It was published in [5]. (See the list of publications at the end of this report.)

II. Encoding via Discrete Optimization

The PI, together with M. Perrugia, studied a discrete IFS model, whereby a continuous IFS

process is generated, and every point along the orbit is sequentially replaced with the center of the pixel

in which it lies. It was shown that if the continuous IFS is strictly contractive, then as pixel size -- 0

any sequence of stationary distributions for the discrete IFS converges weakly to the (unique)

stationary distribution for the continuous IFS. The discrete IFS need not have a unique stationary

distribution, and conditions ensuring ergodicity of the discrete IFS when pixel size is sufficiently small

are the subject of M. Perrugia's Ph.D. thesis.

The discrete IFS leads to a discrete formulation for the encoding problem. Given the
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stationary distribution r satisfying rP = v, where P is a transition probability matrix having

precisely N non-zero entries in each row, recover P. Typically the dimensions of P (say

(1024) 2 x(1024)2 for a high resolution screen) are much larger than N (which is on the order of 10).

There is in fact more structure on account of the afflne-ness, so that the non-zero entries of P are

constrained to form generalized diagonals. This was described in my Second Annual Technical Report

(dated 12 April 1989).

IV. Encoding via the Radon Transform

Given a random variable X E R , the Radon transform R(A,z) is defined by

R(A,z) = P(X. A < z),

where A E R2 is a unit vector and z E R. If X has the stationary distribution for an IFS with affine

maps Ti: x o-- Aix + bi and probability weights pi, then the invariance condition can be expressed as

R(A,z) - E piR(Ai,z,) (2)

where

Aj A = z - bi A
Al , z IIA!AII

(If A!A = 0 then define

R(A,,z,) = X{b . A<z)

The PI has been developing an algorithm for recovering the maps Ti and weights pi via (2),

through knowledge of R(A,z). It proceeds by finding eigenvectors of the matrix parts A1 , through

invariant half-planes. In fact this work was what led to discovery of the extreme point invariance

condition described above in 51. Indeed one can use (2) to analyze supporting hyperplanes X. A' < z

of the image, for which (A',z') will be on the boundary of the support of R(A,z).

There is a similar difference equation for the Fourier transform (i.e., characteristic function)

V(u) = eix ' u, u ER 2.



Namely,

ip(u) -- . i p -e' u(Aiu). (3)

The PI, together with R. Shenk (GA Tech.), has also been developing an algorithm for solving the

encoding problem based on (3).

V. Mixing Images

Mixing theory involves an MxM transition probability matrix P = (pij) and M2 (Borel)

probability measures oij E 9(G), where G is the semi-group of affine transformations R2 - R2. One

imagines that M computer screens are each generating a stochastic process (Xn(i): n > 0), for 1 < i <
M. (That is, i indicates screen number.) Let (ln(i): n > 1) be an i.i.d. sequence of "switching

variables" distributed like the rows of P; that is,

P(1n(i) = j) =p

The mixed process then evolves as

Xn+1(i) = g.+(ij)Xn(j), wherej = 1n+l(i ) .

Here (gn(ij): n > 1) is an i.i.d. sequence distributed like pij. Thus if one represents the screens as

nodes of a directed graph, with processes evolving in them, then the (n+l)"° point generated in node i

is gn.+.(ij) applied to the nt h point from node j. The index 1,+1(i) represents the crossover from node j
to node i, along edge (j,i). Figure 3 illustrates a typical mixing scenario. This structure generates the

coupling necessary to mix the individual images that would have been generated in each screen by the

maps (gn(i,i): n > 1) alone. The details of this work appear in the Second Annual Technical Report

(dated 12 April 1989), the Research Progress and Forecast Report for the First Additional 'eriod of

Research (dated 14 October 1988), the First Annual Technical Report (dated 15 April 1988) and the

Research Progress and Forecast Report (dated 11 Sept. 1987). It was published in [1], [3], [5].

VI: Animation and Vectorization

Suppose one has two IFS, each corresponding to a specific image. One can set up a continuous
flow of images from one to the other by interpolating the IFS parameters. What makes IFS animation
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even more special is the ease with which one can rotate, scale, change perspective or vantage point,

zoom in and out, or perform any affine transformation on an image. This is because the

transformations can be built directly into the IFS.

IFS animation is highly parallel. The images for the various frames can all be generated

simultaneously, since there are no dependencies among the different frames. Furthermore the same

sequence of random numbers can be used for all the images. The PI was able to exploit the vector and

multi-processor capabilities of the CRAY Y-MP/832 at the Pittsburgh Supercomputing Center to

generate real-time animation. This was described in the Second Annual Technical Report (dated 12

April 1989), and a demo video tape was sent in to the Program Director. It was published in [2].

VII: Wavelets and Curve Generation

Many algorithms for generating computer images today involve a recursive tree-traversal.

These include wavelets and solutions to dilation equations, sub-division refinement methods for

generating B-splines and Beziir curves and line averaging methods for interpolants. Using ergodic

theory the PI is able to produce random algorithms, in a very general setting, which generate the same

images as the recursive ones. These images become attractors of random dynamical systems, and

evolve simply as the trajectory of a single orbit. The random algorithms are very fast, involving only

affine arithmetic, and are efficiently and highly parallelizable.

In sub-division and line averaging methods for curve generation one is given mxm row

stochastic matrices P(O), ..., P(N -1) (i.e., all row sums are one - negative entries allowed) and a set

of "control points" vi, ..., vm E Rd. These points form the vertices of a "control polytope" C C Rd ,

which one can associate with the mxd matrix

(This correspondence is well-defined if one thinks of C as an "ordered" polytope.) If P = (pij) is an

mxm row stochastic matrix then one can identify an action of P on C; namely, PC. Equivalently PC

is the polytope with vertices vi, .... vm, where

V = Ep.jv .
I s t

Under suitable conditions on the P(i)'s it can be shown that
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P(i..---POiOC

converges to a singleton as n --+ oo, for any sequence (ii 2, ...). By choosing the P(i)'s appropriately

one generates a smooth curve A (the "attractor") as

A - U(lim P(i,) ... P(i1)C: all sequences (i,i 2, ... ))

Let Hm C Rm be the hyper-plane

Hm = {xE Rm : Ex =
i

and let U denote the projection Rm - R' - 1 which lops off the last component

X1 X I

Given any mxd matrix C there is a unique affine transformation T: R - 1 - Rd making the following

diagram commute.

U

H, 4 R'm- 1

Rd

Denote T = T(C). It can be written out in coordinate form

Tx = [vj-vm I ... I vM_1-vm]x + vm

where v1, ... , viM are the row vectors of C. Similarly if P is an mxm row stochastic matrix then there

is a unique affine transformation T: Rm -'1 -, R" - 1 making the following diagram commute.



Rm-1II
Hm )Rm-1

In fact T = T(PH'), so that the matrix part of T is given by A = (pj - P.i)m.1 and the
i,j=1

translational part of T is the column vector (pmj)m-'

The P's random algorithm for generating the curve A follows. The inputs are the row

stochastic matrices P(i) and the control polygon C. Define T(i) from P(i) via the commutative

diagram above.

Algorithm (Sub-Division Methods):

initialize x = (the fixed point of T(0)) E R' - 1

for n = 1, 10000

plot T(C)x E Rd

choose i E {0, ..., N-1} randomly

x 4- T(i)x

This algorithm is illustrated in Figure 4. The curves in Figs. 4a)-e) are all quadratic B-splines.

They correspond to different placements of the control points v i . Observe how this algorithm

parallelizes. Instead of running an orbit of length 10000 on one processor, one can run (say) 10

processors, each generating only 1000 points of an orbit.

Wavelets are compactly supported functions W(x), x E R, having the special feature that the

family {W(2jx-k): j _ 0, k E Z) of translates and dilations are orthogonal (in the L2-sense). These

functions W(2jx-k) are local in both space and frequency, and thus afford a new type of basis for

orthogonal expansions.

Daubechies' wavelets are constructed through solutions g(x), x E R, of certain dilation

equations

g(x) = Eakg(2x-k)
k (4)

E g(x-k) = I
k
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Precisely, W is given in terms of g as

W(x) = J(-1)kal-&g(2x-k) (5)

If the coefficients ah are chosen in a very special way, then W will have the desired orthogonality

property. Precisely ak = 0 for k < 0 or k > m, where m - 2p-1; and the 2p coefficients a0 , ... , am

have to satisfy the 2p conditions

E%,= 1, F-2k+1 =1

E(-)kkak = 0; 1 = 1, p-

Eakak+2 9 = 0; 1 = 1, p-1

Then W = Wp given by (5) will have the desired orthogonality property.

Wavelet generation can be put into the preceding framework by taking N = 2, and setting

P(0) = (a2,_i-)iMyf, PM1 = (a~ji),,"=l; (6)

and taking as control points

vj =ej ER' - ' , 1<j_5m-1,

where ej are the standard unit vectors, and

Vn = 0.

Define T(0), T(1) in terms of P(0), P(1) via the commutative diagram above. Then the PI's random

algorithm for generating the solution g of the dilation equations is as follows.

Algorithm (Solution of Dilation Equations):

initialize a = 0, x - (the fixed point of T(0)) E R" - 1

for n = 1, 10000

xm = I - Exh
k=1

plot (a8x1 ), ... , (a+m-1, xm)
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choose i E 10,1) randomly

a - i)

x -- T(i)x

This is illustrated in Figures 5 and 6. The corresponding algorithm for generating wavelets,

based on (5), is as follows.

Algorithm (Daubechies' Wavelets):

initialize a = 0, x = (the fixed point of T(0)) E Rm - 1

for n = 1, 10000

m-1xm =l - £xt

k=1
min(m,m -)

plot (a + , ) (-1)k-'atx+), -m+1 < I < m
k=max(0,1-1)

choose i E {0,1} randomly

x -- T(i)x

This is illustrated in Figures 7 and 8.

In all of these algorithms it is not necessary to initialize x as the fixed point of T(0). Rather

one can initialize x arbitrarily (say x = 0 E Rm-l), and skip the plotting until n = 10 or 20. The

point is that no matter how x is initialized, the IFS orbit will quickly move into the attractor. This

work was published in (6], [7], [8].

What Next?

There are many important follow-up problems to attack and algorithms to develop for IFS

theory. Listed below are some objectives the PI has already begun working on.

1. Conditions ensinig ergodicity: When generating curves using sub-division methods one is

given mxm row stochastic matrices P(0), ..., P(N-1) as described above. If these matrices have all

non-negative entries then under an irreducibility-type condition it can be shown that the random

algorithm above for sub-division methods converges. More precisely, it can be shown that the

underlying Mszkov chain is ergodic. In fact it suffices to show that
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1 loglIA(il) .. A(i.)I < 0 (7)

for any sequence (i1,i 2, ...), where A(i) is the (m-1)x(m-1) matrix part of the affine map T(i)

constructed above (via the commutative diagram).

On the other hand if the matrices P(i) are allowed to have some negative entries, then

conditions ensuring (7) are not as apparent. In particular for line averaging schemes where P(O),P(1)

are given by (6), what conditions on the coefficients ak ensure (7)? Or if the coefficients a& depend on

some parameters 0, what are the critical values of 0 for which the underlying Markov chain switches

from recurrence to transience? This is the most significant and pressing question. Partial answers are

given in (6, Thin. II], where conditions are presented under which there will exist some operator norm

making A(0), ..., A(N -1) strict contractions. But more work needs to be done on this question.

2. Surface generation: The work on curve generation for sub-division methods and wavelets

needs to be extended to surfaces. Surface generation, like curve generation, can be set up through

refinement schemes; and the P1's technique produces random algorithms which generate the same

surfaces as the recursive algorithms. This needs to be carried out.

3. Dimension analysis: The fractal dimensions of the curves and surfaces produced by the

above random algorithms need to be determined. Fractal dimension is a major characteristic of surface

roughness. In special cases the dimension of an IFS attractor is known, and this analysis needs to be

extended to the setting of sub-division methods described above, involving row stochastic matrices

P(0), ..., P(N-1). Knowing the dimension can also lead to determination of critical parameter values,

as described in 1. above.

4. Extreme points of attractors: Let J be the Julia set for a complex polynomial f(z), and let

E be the set of extreme points of (the convex hull of) J. As mentioned in SII above, the PI has

observed in some computer-graphical experiments that f(E) g E. This needs to be investigated, to see

whether this invariance property applies to more general dynamical systems than affine IFS.

5. Animation encoding: As a natural follow-up to the work on fractal animation described

above in IVI, the Pl has been looking into encoding for animation. Here the data compression ratios

are enormous, since the encoding of two "endpoint" images suffices to generate the intermediates.

Furthermore in certain respects animation encoding is easier than still image encoding. This is because

a dynamic sequence of images often conveys additional information about the individual still images,

such as segmentation. Velocity tracking of boundaries and key features of an image can be used to

decide where to position the temporal IFS linear interpolation points (i.e., where to break the
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animation up into "piecewise linear" video segments), and how to identify the images as IFS mixtures.

Animation is potentially the most exciting application of IFS encoding.
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TI 0.8 0'1 0.1 T ' ( 0.5 o +( .4s

T3(z) = 0.355 -0.355)z (0.26 T4 = 0.355 0.355 ( + 0.378
0.355 0.355 0.+06678 -0-3b5 0.355 0.434

pi 0.5 p2 =0.168 p3 =0.166 p4 =0.166

Figure 1: Maple Lead

This image was generated using the basic IFS algorithm. The affine maps listed above were composed

randomly, according to the respective probabilities shown beneath them. The darker pixels had a

higher proportion of points in the orbit fall into them. (The window here is 0 <- x,y :5 1.)
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0. (. ~ + (.25) T3(z) 0 ( 5 0.5) + (0125)T-0.5 0.5 z+ 0.625 -0.5 0.5 z+ 0.375

PI=0.5 p= 0.5

Figure 2: Convex Hull of an Attractor
Each extreme point is the image of some extreme point under T, or T2 . The interior angles of this
convex hull are all 135. This is because the maps T, and T 2 are conformal. (The window here is
- < x,y < 1.)
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The switching among screens is generated by the transition probability matrix

1/3 1/3 0 1/31
0 0 1 0[1/2 0 1/2 01

L0 0 1/2 1/2j
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read vI, v21 V3, v 4

initialize x = y = z = 0

for n = 1, 10000

plot [v-v 4 I v2-v v3 -v 4]x + V4

choose i E {0,1) randomly

if i = 0

then x - x +

y - ix + 1 y + 1 z
4 4

z.- -x-y

else z-- x y+ z

1 1y 2-- x+ y

x4-0

Figure 4: Random Algorithm to Generate Quadratic B-Splines

Pick any points v1 , v1, v3 , v4 and this random algorithm produces their quadratic spline fit. This

curve passes through v1, v2 + 2 , v4 and is tangent to the lines vlv 2, v2 v3 , v3v4 respectively, at

these points. The row stochastic matrices here are given by

1 0 0 01 0 1/2 1/2 01
P(0) 1/2 1/2 0 0 P(I) 0 1/4 3/4 0

0 3/4 1/4 0 ' 0 0 1/2 1/2

0 1/2 1/2 0 0 0 0 1

This algorithm can be optimized by running it in parallel, breaking up the loop above into many

smaller loops.
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initialize a = x = 0; y = 0.6154

for n = 1, 10000

z=l-x-y

plot (ax), (a+l, y), (a+2, z)

choose i E {O,1} randomly

if i = 0

then a - 0.5a

y 4- 0.8 - 0.6x - 0.3y

x -- 0.8x

else a,- 0.5a + 0.5

x 4- 0.5x + 0. 8 y

y 4- 0.5 - 0.3y

Figure 5: Random Algorithm to Generate the Solution of the Dilation Equations

This random algorithm plots the solution of the dilation equations (4) with (non-zero) coefficients

a0 = 0.8, a, = 0.5, a2 = 0.2, a3 = 0.5

2 3
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initialize a = x = 0; y = 1.368

for n =1, 10000

SI - x- y

plot (ax), (a+1, y), (a+2, z)

choose i e {0,I} randomly

if i = 0

then a 4-0.5a

y -- 0.366x + 0.5y + 0.683

x -0.683x

else a -0.5a + 0.5

Z 4-X

x .- 1.183x + 0.683y

y -1.366z - 0. 866y + 1.183

Figure 6: Random Algorithm to Generate the Solution of the Dilation Equations

This random algorithm plots the solution of the dilation equations (4), used to construct Daubechies'

wavelet W4 . The (non-zero) coefficients are

I + -3 3 + -3 3 - 43 1 - 43
so 4 a- 1 -4 ' 2 = 4 as 4

g

0I
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initialize a = x = 0; y = 1.366

for n = 1, 10000

b= -0.183x; b2 = -0.5x - 0.1 8 3 y; b3 = 0.866x - 0. 3 17y - 0.183

b 4 = 0.5x + 1.183y - 0.5; bs = .683(1-x-y)

plot (a-1, bl), (a-0.5, b2 -bl), (a, b3 -b 2 ), (a+0.5, b4 -b 3 ), (a+l, b5 -b 4 ), (a+1.5, -b 5 )

choose i E (0,1) randomly

if i = 0

then a - 0.5a

y - -0.366x + 0.5y + 0.683

x - 0.683x

else a *- 0.5a + 0.25

Z -- X

x - 1.183x + 0.683y

y 4- -1.366z - 0. 8 6 6 y + 1.183

Figure 7: Random Algorithm to Construct Daubechies' Wavelet W4

This wavelet is constructed out of the curve from Fig. 6 above, via (5). There is no need for a

recursive tree algorithm - ergodic theory does all the running around.

g

A -

0-1v
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initialize r = zo = z6 =x = 0; x2 = 1.286; x3 = -0.386; x4 =0.095

ao = 0.470; a, = 1.141; a2 = 0.650; 83 = -0.191; a4 - -0.121; a5 = 0.050

for n = 1, 10000

X5 1 - X 1 - X2 - X 3 - X 4 ; 8O 4- -aO; 02 2- -a2; a4 4 -4

for I = -4, 5

m, = max(O, 1-1), m2 = min(5, 5-1); y = 0

Fork = mI1m2

y - y + akxk+

endfor

plot (r + 2, y)

endfor

choose i E {0,1} randomly

r 4-- 0.5r + 0.25i; a0 -- - a0 ; a 2 - -a2; a 4 -- -a4

for = 1,5

Se - xf; xe - 0

endfor

for t =1,4

m = max(O, 21-6); m 2 = min(5,21-1); j 21 + i - 1

for k = MI, M 2

x4 - xj + akzj- k

endfor

endfor

endfor

Figure 8: Random Algorithm to Construct Daubechies' Wavelet WS

The (non-zero) coefficients ak are given by

0 = 0.470, &1 = 1.141, a = 0.650, &3 = -0.191, 4 = -0.121, as = 0.050



Figure 8
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Published Articles under this Grant

1. Barnsley, M. F., Berger, M. A. and Soner, H. M., Mixing Markov chains and their images, Prob.
Eng. Inf. Sci. 2 (1988), 387-414.

2. Barnsley, M. F. and Berger, M. A., Pictures worth a million words, in Projects in Scientific
Compatinf. 1988-1989, Pittsburgh Supercomputing Center, 34-35.

3. Berger, M. A., Encoding images through transition probabilities, Mathl. Comput. Modelling 11
(1988), 575-577.

4. Berger, M. A., Images generated by orbits of 2-D Markov chains, CHANCE 2 (1989), 18-28.

5. Berger, M. A., Random affine IFS: mixing and encoding, submitted (Trans. Amer. Math. Soc.).

6. Berger, M. A., Random affine IFS: smooth curve generation, submitted (SIAM Review).

7. Berger, M. A., Ergodic theory, tree traversal and computer image generation, submitted (Proc.
Nat'l Acad. Sci.)

8. Berger, M. A., Wavelets as attractors uf uynamical systems, submitted (Bull. Amer. Math. Soc.)

9. Berger, M. A., Review of Fractals Everywhere, Stochastics and Stochastic Reports, in press.

10. Berger, M. A. and Soner, H. M., Random walks generated by affine mappings, J. Theor. Prob. 1
(1988), 239-254.

Article [2] above was prepared by science editor Michael Schneider (Pittsburgh Supercomputing
Center).
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Interactions under this Grant

The PI gave the following presentations:

1. Sixth International Conf. on Math. Modelling, held at Washington Univ., Aug. 10-14, 1987 (host:
Dr. I. Rodin).

2. Invited talk for the seminar run by the Pittsburgh Supercomputing Center in October, 1987 (host:
Dr. &. Rokies).

3. AFOSR at Boiling Air Force Base on Feb. 24, 1988 (host: Dr. A. Nachman).

4. Invited talk in Michael Barnsley's minisymposium on chaos at the annual SIAM meeting in
Minneapolis, July 10-15, 1988 (host: Dr. M. Barnsley).

5. Invited talk for the seminar run by the image processing group (Grenander, McClure, Geman and
Gidas) in the Division of Applied Mathematics at Brown University, Feb. 15, 1989 (host: Dr. B.
Gidas).

6. NIST in Gathersburg, MD on March 29, 1989 (host: Dr. F. Sullivan).

7. NSF in Washington, DC on March 30, 1989 (host: Dr. R. Chin).

8. Special 3-day Lecture Series at Allegheny College, April 10-12, 1989.

9. Invited Address, SIAM Conference on Dynamical Systems, May 7-10, 1990 (host: Dr. H. Stech).

10. Invited talk at the meeting on Lyapunov Exponents, Mathematisches Forschungsinstitut
Oberwolfach (Black Forest, Federal Republic of Germany), May 27-June 2, 1990 (host: Dr. L.
Arnold, Bremen).

11. Invited talk at the First IFIP Conference on Fractals, FRACTAL 90, Lisbon, Portugal, June 6-8,
1990 (host: Dr. H.-O. Peitgen, Bremen).
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Participating Professionals

Some of the P1's research on image encoding was carried out with

(1) Michael Barnsley (Prof. of Math., GA Tech.);

(2) Bill Eddy (Prof. of Statistics, CMU);

(3) John Elton (Prof. of Math., GA Tech.);

(4) Jeff Geronimo (Prof. of Math., GA Tech.);

(5) Mario Perrugia (Ph.D. student, Statistics, CMU - partially funded by AFOSR);

(6) Ron Shonkwiler (Prof. of Math., GA Tech.);

(7) Jean-Philippe Vidal (Ph.D. student, Comp. Sci., CMU - funded by AFOSR).

Some of the P1's research on mixing was carried out with

(1) Michael Barnsley;

(2) John Elton;

(3) H. Meti Soner (Prof. of Math., CMU).

Some of the PI's research on wavelets was carried out with

(1) Steve Demko (Prof. of Math., GA Tech.);

(2) Shmuel Friedland (Prof. of Math., Univ. III.-Chicago);

(3) Tim Kelley (M.S. student, GA Tech. - funded by AFOSR).

Computing support was provided by the Pittsburgh Supercomputing Center (CRAY Y-

MP/832 and animation equipment), the Statistics Dept. at CMU (micro-Vax and animation/camera

equipment), the Computer Graphics Lab in the School of Math. at GA Tech. (Masscomp 5600 Series

and Encore multi-processing machine), and a SUN SPARC station in the PI's office at GA Tech.


