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MODE COMPETITION IN THE QUASI-OPTCAL GYROTRON

I. INTRODUCTION

The quasi-optical gyrotron1- 10 (OG) is a promising millimeter and

submillimeter radiation source that has already demonstrated9 power

levels < 150 kW with pulse durations up to 13 us at electronic

efficiencies < 14%. Potential applications, ranging from heating of

fusion plasmas to short wavelength radars, require stable CV operation at

high power levels within a narrow frequency band. Because of the strong

fields developed inside the cavity, the high density of longitudinal

resonator modes, and the relatively long time of operation, nonlinear

interaction among many modes will inevitably occur.8 '9  In fact, it is

the nonlinear coupling among cavity modes11  that will determine the

existence of a final steady state, its accessibility from the initial

small signal phase, and whether it is a single or a multimode state.

In short, the evolution of the cavity fields can be described as

follows. The injected electron beam initially excites all the cavity

eigenmodes characterized by a start-up current below the beam current.

At small amplitude each mode grows exponentially in time with its linear

growth rate, unaffected by the presence of other modes. Soon one or more

modes reach finite amplitude and start inle-,cting through the induced

modifications in the distribution of the L.2tron beam. When this

happens a single mode may nonlinearly suppress all other unstable modes

and eventually dominate. Equally well, it may destabilize modes that are

linearly stable. In some cases the fastest linearly growing mode may be

overtaken by another, linearly slower mode, causing mode switching. The

final steady state, if one exists, may involve more than one large

amplitude modes. The point to be made here is that the existence of a

final steady state, be it single or multimode, is determined nonlinearly

Manuscnpc approved Febnaary 6. 1990.



and cannot be predicted from the linear behavior.

Finding the regimes in parameter space associated with the desired

type of final equilibrium proves too costly for direct numerical

simulation, given that the performance of the QOG depends on four

independent parameters. It should be stressed that the final equilibrium

cannot always be obtained by examining the linear stability of every

possible single mode at saturation.10  Even if a saturated single mode is

found stable to small perturbations by other modes, there is no guarantee

that the system will eventually evolve to this state. In general, more

than one stable equilibrium exists for a given set of modes, however,

only one of them is accessible from the appropriate initial conditions.

In the case that the final steady state is dominated by a single mode, it

is not necessarily the mode with the largest linear growth rate.

Consequently, all participating modes must be treated on equal basis

until (and if) one dominates. Mode selection and accessibility are

inherently nonlinear processes.

In this work an analytic model of the multimode dynamics is

developed by expanding the nonlinear current in powers of the radiation

amplitude. A set of equations is then obtained for the slow time scale

evolution of the wave amplitudes and phases. The strength of the

nonlinear interactions enters through coupling coefficients of known

analytic dependence on the gyrotron parameters. Numerical simulations of

particle trajectories are then replaced by a set of first order ordinary

differential equations, one for each participating mode. Not only is the

computation time reduced by orders of magnitude but, equally important,

the final equilibria can be predicted analytically from the coupling

coefficients. In this paper we will mainly discuss cases with up to

three interacting modes, coupled up to fifth order in the wave amplitude.
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The coupled equations obtained here can be applied to the description of

phase-locked12 operation of the QOG through the injection of a small

external signal. They can also describe phase locking through the use of
13

a prebunching resonator, via certain modifications resulting from the

use of a prebunched injected electron distribution in place of a uniform

one.
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II. GENERAL FORMALISM

The configuration for the QOG is shown in Fig. 1. The cavity

fields are expressed through the vector potential A(r,t),

1 BA
E B = V x A, (1)

where A is a superposition of eigenmodes of the Fabry-Perot resonator,

1 - -io)mt
A(r,t) = - E Am(t) Um(r) e e. + cc , (2a)

2m

Um(r) u (r) coskmx (2b)

In the orthogonal coordinates (x,y,z) with x along the resonator axis and

z along the electron beam axis, the transverse profiles u pq(r) are given

by the Hermite-Gaussian functions

u Pmqm(r) = h pm(y) hqm (z) hPm(z) = H (z-) exp (W 2 )

(3)

v(x) - V (1+x 2/bm2) 1 / 2  is the radiation spot size, V is the radiation

waist, bm a kmW 2/2 is the Rayleigh length and Hp (z) are the Hermite

polynomials. The vavenumber km is equal to wm/c, where the cavity

frequencies %m take the values

nc 2(po+ qm + 1) -1 lc

C."--L [-~1+ tan ( -(m + pmq ) , (4)
m L I n L m NI

where L is the cavity length and pm and qm are integers; the notation pm,

qm is used for labeling frequencies, a. % op q . AccQrding to the weak

4



coupling approximation, the slowly varying amplitudes Am (t) are complex

quantities with magnitude Am(t) and phase *m(t),

i+m(t)
Am(t) = Am(t) e . (5)

The superposition (2), involving various frequencies %, may also contain

various modal structures pmqm for a given frequency (i.e. degeneracy).

(a) Particle Equations

We use the guiding center description for the transverse particle

coordinates

x x + p cos e, y =yg + p sin e,
(6)

Px Pgx -P, sin 0 Py Pgy + P, cos e

where (xg yg) and (p gxPgy) denote the guiding center position and

momentum, pI is the magnitude of the transverse momentum, e is the

gyroangle, p = Pl/% c is the Larmor radius, 9c - go/y is the relativistic

cyclotron frequency, where Q = IeIB0 /mc, and the relativistic factor y

2 2 1/21 + (pI/mc) + (pz /mc) I1 . By averaging the exact Lorentz force

equations in the vector potential representation over the fast (cyclotron)

time scale, the slow-time-scale nonlinear relativistic equations of motion

are cast in the form

du1
d = E % a J'(k p) sin ( +n * *n) cos k x (7a)
dt n nn g

de o 0 6) n J1 (knp)
- + E n an k p cos (*n + #n) cos k x (7b)

dt y n nn g

5



In Eqs. (7) time has been normalized to wo 0 ( 0/Y0 1, length to

ko- 0 C/wo, a. . eIAn/mc2 is the normalized radiation amplitude, u is the

normalized momentum u = p/mc = yv/c and the relativistic factor y = (1 +
2 U2)1/2

u I+ .2 The angle *m is the relative phase between the m-th mode

and the particle, *m = e - 0mt, evolving in time as

d*n n n J 1 (knp)
S -6 n + E - an  kn P  cos (* n + *n ) cos knXg , (8)

dt n U n

where 6wn = (on - o/Yo) (o is the zero-order frequency detuning. The

prime (') signifies the Bessel function derivative in respect to the

argument. The evolution of y is found combining Eqs. (7a) to (7b), to

obtain

d u1

d= E n-an JI(knP) sin + ) cos knx . (9)
dt n y n 1 n n g

Two approximations are implicit in Eqs. (7)-(9). The guiding center drift

has been ignored and the axial relativistic momentum u z is taken as

constant. They are both justified for an  << 1, kW >> 1, since dx /dt -

dy O(a n 2 ) and duz/dt - O(an/kW), which are much smaller than du/dt "dgld

dO/dt " O(an).

(b) Field Equations

Substituting Eq. (2) into Maxwell's equations and ignoring second

order derivatives a Aat << A 2 , the slow-time evolution of the vectorn n n

potentials is given by

6



(i~ +~ -i 4n s)wn

niOn -U e +cc =n (JNL2 2 An( 2t 2 ) Une + cc.
n fiatnU nc

(10)

The second term in the right-hand side of Eq. (10) is zero by definition

for the vacuum eigenmodes defined in Eq. (2b), thus, all the information

for the slow evolution of the fields is carried in the nonlinear

transverse current JNL* Equatin (10) can also be derived from the

general expression governing coherent wave interaction,
14

at -x c JNL'()

in the limit of standing waves inside the resonator (zero group velocity,

Vg = 0) and near vacuum dielectric constant c (weak beam limit: wb 216)o2 <<

1), (de/dwO)n =- 2%n .

Multiplying both sides of Eq. (10) by exp(iw nt) and taking the fast

time average over -re°  2n/oo isolates the nth mode on the left-hand side.

Introducing the normalized variables used in Eqs. (7), and letting an

leIAn/mc = an exp (i*n), we have

an  i 4n IeI
U~ (r) aa n i ,ne rW (12a)n at 2Wo2mc3 jNL(r; n)

where
1 I 0 int

JNL(r;o~n) - '0 dt jNL(rt) e (12b)

0

Multiplying both sides by the mode profile Un and integrating over the

cavity volume lead to

7



n 2 3 _ e d3 r Un(r) jNL(r!M n (13)
at 2Q n  - o2 mc3 Vn

Above V = I d3r U n2 is the weighted cavity volume, and the

phenomenological term w n/Qn was added to account for resonator losses due

to boundary effects, where the cavity n is defined by

d 2 W n 2
-a n  i - an. (14)
dt n

The current is expressed in terms of the nonlinear distribution

function fNL'

JNL(r,t) = -lel nb(r) tde du z  duul -cose fNL(r,u,t) • (15)
0 f1 0 Z

Letting fNL(r,u,t) =n 0  n b(rl) fNL(uluz,z;t), substituting (15) in Eq.

(13), and expressing r1 a (x,y) and u -a (ux,Uy) in the guiding center

representation Eq. (6), the right-hand side of Eq. (15) becomes

-i 2 c dxg dy dz n(xy) h (y ) h (z) cos knx

W mc V~ J0 g~ n~ bgn~gnO m

dO J duul u- cosO J(kn P) fNL(Ul,UZez;Wn) , (16)

where again fNL(r;w n) = (I/T o ) 0 dt fNL(rt) exp(iin t). Expression (16)

is finally recast in terms of the injected beam current

8



I b te cO.n. dxg f dyg9 n b(xgYg)9 (17)

as

& n) an = - 2ni < JNL(wn) > (18)
at 20

The dimensionless, volume averaged current on the right-hand side of Eq. (18),

< 1 L1 dt e iotr dr U(r) (r,t)
ujL~n) * V - J J jNL~rtu z  Cb Vn  '%1o  J

(19a)

0 I dr Un(r) JNL(r;n)
u abVn Jv
uz ab Vn 'V

is given, in terms of fNL from Eq. (16), by

I V rL -

<JNL(On)> a _2 o g n b(Xg yg) hpn(yg) cos kbngxgg'bV n u z 0n

dz hq(Z) dO Jduz JoduLuj Jl(knP) - cose fNL(Ul,uz,e,z;on)

(19b)

where I = JeJIb/mc3 is the dimensionless beam current (Budker parameter),

and ab = I dx dyg nb(xg yg) is the effective beam cross section.

9



III. NONLINEAR ELECTRON DISTRIBUTION

The nonlinear electron distribution in phase space fNL(Ul,uz,e,z,t)

viii be obtained in the form of an asymptotic expansion in powers of the

small amplitudes an << 1. Once the form of fNL in the multimode field (2)

is known, the nonlinear transverse current JNL is obtained from Eq. (19).

The evolution of fNL along the particle trajectories Eqs. (7) is given by

the collisionless kinetic equation

afNL afNL d8 8fNL duz afNL du1 afNL
-+ uz - -+ - ---- O. (20)at zz dt ae dt auz  dt 8u1

By formally expanding fNL and ordering in powers of aj , a - O(a n ) << 1

= f(O)+ a f(l) + + aj f(j)

one obtains a hierarchy of equations

L f(j) = L1 f(j- 1 ) a Df(J-1 ) , (21)

where

LO - +2 +-, (22a)
a~t z az cae0

L; Ca x i n a 1 J1 (knp) i'n a
=Zan i-J1 ( p) n g-ng

L1= n J~n)cosknxg e n-+ coskxe.
au1  2u1  kn a n

(22b)

Operator L° is the total time derivative L 0 d/dt along the unperturbed

orbits of eletrons gyrating in the external magnetic field B
0

10



U
l- 0 - 2 c u = U I fz' = z - - , ' - w ,(23)

Yn

(the characteristic curves of L0 f = 0 in the theory of partial

differential equations) where e' s o(t'), e * e(t) and T = t - t'.

Replacing the exact trajectories in the right-hand side of (21) by the

unperturbed orbits (23), (integration along the characteristics), it

follows that

f(J) = d d Df( j - l  [u'('), e'(T), z'(t) ] , (24)

J0

We exploit the fact that the interaction time of an electron inside the

cavity, of the order of the transit time ti = W/OZ , is much shorter than

the characteristic growth time t c  d(lna )/dt for the fields. Keeping

an constant during the integration (24) yields

f~)= - i(()- ntj )

f E) a n sin k n xg e (25)
n

fi& J, ak sin x e (k (25)
-Zn) n n

Jod -j h n(z~- I e n (Jik)L.. ikn) 1f0- 1) +cc,

o 2i a.u (knp) 2u1 Be

where Tj a t -tJ_ 1 and we used

*n(tj_ 1) - e(tj_ 1) - ntj_1 = ej - ntj + 6b)n j

It is now convenient to change variables, introducing the set Co ,

C i, defined by

Z U u Z U

o I zo-z Iz z
C- i C yw - . 1 + r w2 + + T

(26)

11



where dC (u /YW) d j and r (x= 0) = C-1" Successive iterations of

Eq. (25) yield

f(J) = d 1 L1 ( l) Jd 2L1 ( 2) J...... Jd- L1( T) f(O)

(27)

.yV CO 1 C i-i(0
(-1)j(~- fdClL1(C) Jd 2L,(C) L .... d~ L 1( f

z

where f(O) is the injected beam distribution, and L1 is written as

tj -1 - i(e - %t t+ Vn t.)S jd L1 (Cj) a E an e cos knxg
Lng

(28)

J-1 d~j hn ( j ) e vnCV1+knpak 
+ cc•

L n2i u1  (knp) 2ui ae

The quantity vn = (Wv/uz ) 6n, the product of the frequency detuning times

the transit time through the cavity is the most important parameter for

the mode coupling coefficients. The integrations, Eqs. (27) and (28), are

carried out in Appendix A. The expressions for f(J), j=1,2,3 are given by

(A1)-(A3). For j > 4 the full expressions are getting rather complicated.

However, one may exploit the existing ordering inside f(J) in powers of

the large parameter 11 = (kW/y)(uI/uz ) >> 1. It is then easier to find an

approximation for f(J) to any order in j, Eq. (A6), by keeping the

dominant contribution. Additional simplifications occur during the

gyroangle averaging in obtaining the nonlinear current, given by Eqs. (A7)

and (A8).

12



IV. MODE COUPLING EQUATIONS

Substituting expression (A7) for the nonlinear current inside the

right hand side of Eq. (A8) and keeping terms up to fifth order in complex

amplitudes am = am  exp(i+m), the general mode coupling equations assume

the form

dan 2ui Y010
dt U zo a b V n  {i,j,...,m}

-~l + C (3) - ; + C()- m(9
m;n am klm;n ka1am ijklm;n i k (29)

A mode of given frequency n interacts through all possible frequency

combinations satisfying the resonant condition

Aij...m;n 1 (i ± Oj % ) -m n = 0 (30)

a
denoted by E; the notation (i,j,...,m) implies summation over all

permutations among i,j,...,m (except n) inside Eq. (29), for a given set

of resonant frequencies (30). A negative index -m will imply -t0m, -m'

-vm and an  in place of % , m, v M and an respectively.

The dominant contribution to the coupling coefficients CO ) is

given by

2u 1 2 df(O)

(CM V Sm~ du -2 - v~z W CV (C ) Ium;n GO Sm;n JO Y zo -® -oi ®C dUl

zo

(31a)

13



M 3 V [i ( & iam t + klm;n)] 2 Y 3

zo

x f dz v n(z) rdL. v k(C1 i dj vl( 2) - fo 3 vm(C3) dfO-®O u1  - u l - du,

(31b)

C m(5) = 5W6 S exp[i(&oijkl t +ijklm;n)] u2 5

i j k l m ~ n G i ) i j kJ dn -L ( -I )
zO

__z Jvd v(z r - '7' vj(2 - dC5 vm(s)

-= au - -au -- = du1

(31c)

where
, -iv

vm( a J, (kmp) hm() e v , (32)

#ij...m;n a (+i ± *j ± ... ± #m) - +n is the combined slow phase, and the

nonlinear filling factor is given by

L D 2 -1 x2 1 2 -1

Si..o 2f dxgdYg n (x g.Y + 2) 2 (i _ 2,, ...- ) ( + 2 1

hi(y ) h (y )...h n(y ) cos ki x cos k x ... cos kn x g. (33)

The results appearing in Eqs. (29)-(33) apply for any spatial

profile and velocity distribution of the electron beam, as well as any

radiation modal structure in the open resonator.

14



V. THREE MODE INTERACTION

Equations (29) are quite general, involving all possible resonant

combinations of modes. In many cases it has been observed that only a

small number of modes participates in the final equilibrium with finite

amplitude. In this section the three mode synchronous interaction,

satisfying the condition

vk + v i =2 vm , or w + w * 2w, (34)

will be considered in more detail. This is a special case of the four

mode interaction, with w = n in Eq. (30). Hence the frequencies Wk , wl

are symmetric around %, wk =  % - dw, l = w + dw, where dw is any

frequency interval allowed by the mode spacing in the cavity. The

possible resonant frequency triads entering C( 3 ) are

*l +(35)

W m + 4m

and all 3! permutations of each arrangement, while the possible

arrangements for C(5 ) are given, setting i = k and j =1, by

w m- + -'I +

(36)

(' wl k + "l 5

15



with all the 5! permutations of each.

There has been a tendency recently to employ the following

renormalized parameters in gyrotron theory: amplitude F n= a n/Y 01 3

E n/B o~ol detuning A n = (2/0LO2)6 ~n , interaction length uj =

k OW(0 1 0 2/20 zo) and current I = 1 0 (Bi/V 0 )( Q/y0010o ) where V 0  . (n/2)k 03LW2

and I10 =1Ib (As)e/m e c x 3 10 . Setting k il (,2, (, (0,3 and

separating real and imaginary parts, Eqs. (29) are recast in the form

dF 1 2 2 it

--F 1  -Rer 1 F 1 + E F 1 F + e m, Re1G123 e )
dt 20i 1= mMal~F 2 F

3 2 2 3 F 2  2 ( ~ 4+ F IF IF MReD + EF F 2F 3Re(Dl2 e-"' (37a)
1-l1 1 1 m 1. M=1 2 3 m2

dF 2  02 2 3i#2
- +- F 2 =Rer 2 F 2 + F 2F MReG 2m+F 1 F2 F 3 Re(G2 3 1 e
dt 2Q 2  M=12 2

3 32 2 31 ~ 1
2  2F 3 RDmi i)+ F 2F IF MReD 2m+ E F 2F 3RDm21e , (37b)

1=1 Mal m= 1

dF 3  3 3 2 2(
- -R~r3F F 3F MReG im + F2F1Re(G 312  J-

dt 20 3 Ma1l m 2 F

3 F3 F 2 F 2 ReD 3 F F 2 F 2 F Re(D e- I, (37c)
+ ElE 3 1 m 31m. 2 1 m~ 312

where r is the complex linear growth rate. The evolution of the slow phase

#1 + + *3 - 2# 2 is given by

16



d#-d-= 8+ Imr 1 + r 3 - 2 r 2 )

dt

F F1 2 I(G 11 + G 31- 2G 21) - F 321. (G13 + G 33- 2G 23) + F 2 2 I(G 22- G 12- G 32)

-F I.(G 123 e iF ' ' IM(G 312 e i#) + F, F 3 rm(G 23 1 ei 9
F1  F3

E 3Im lim + 31 2D2 1m) F1
2 F 2

1=1 *=1

3~ 2(3 Im(D3e + F1 2  Im(D.312 e i F - 1 F 3 Im(D3231 e
F1  Fi3

(37d)

where 68 - (w, + o)3 - 2.)/o-. Note that only one combined slow phase

appears for each triad.

The dependence on the gyrotron parameters I, p and A is contained

in the coupling coefficients. It will be shown now that when P >>

YLo/2, it can be eliminated as an independent parameter by proper

scaling. The computation of r, G, and D, carried out in Appendix B,

yields

rn - I s S1 r(on)

Gnm - IsS 3  
2 G(v ) , (38)

Dnml -IsS5 e D(v nvmvl)

2 4 2 l nlwhere - (kW) (0o /20o )Jl'(koPo) and Is

2 332I(010 /80)(koV) (o 1 0/ZO) 3 [ Jl' (k oPo)]2 . The nonlinear filling factors S1 ,

S3 , and S5 are given in (Bll). The quantities r, G, D ,given for a cold

beam by the integrals (B16)-(B18), depend on the desynchronism parameter

17



vm alone, the.product of the interaction length M vith the detuning amY

m =IA m (39)

This suggests the folloving scaling transformation, valid vhen w= n w and
nnOn = Q'

I = 2 1so

F = &F , (40)

T = t/2Q

putting the mode coupling equations in the final reduced form

F , = I(SRerl1+ 3 E 1m ReGlm + S3 F2 2F3 Re (1 23 e- it)dx M=l

3 3 3 F"F22 R D' , 3.2 ^e
FIFFm Relim + S 5 E Fm2F2 2F3 Rei123 (41a)1=1m-1 m=lm

dF2 F F iS + S3 3 F F  2 G S3 FF 2F 3 R(G123 e it)

* 2 + ~ .E ,2R'2 + S FF 3R

d £2 nul 2 e 23 3.3 .3.
5 F2 2F 2 Re + S2 Re 3 eit) (41b)

Re21m S5 E Fm F F2F &231
1=1 m=1 m=l

dF3 + I 1Rer 3F3 + S3 E Fm2 ReG3m + $3F22Fl Re . 312 e-
{d3 3  S3 m-1 3 2 312

S5 1E E F3FIF m ReD31m + S5  Fm2F2 F1 Re(D e12 e (41c)
1-1iM.1 M=1m 21 m1

It follows, from (41), that the normalized start-up current is I n

1/S rn.
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The beam parameters I, Ozo' 010 the interaction length u, the

cavity 0 and the three frequencies combine into only 3 control parameters:

I, V1 and v2 (03  is related to the other two frequencies through the

resonant condition). The interaction length u does not appear explicity,

but only implicitly through I and v. For simple density profiles, such as

a pencil or a thin annular beam, the filling factors may also be expressed

as powers of a single factor s,

S. = , s = cos k 0 h() , (42)

with i and yg the effective values of xg and yg. Thus, they could also

be absorbed in the scaling factor, redefining

= s

V s2 1 (43)

Since I is given analytically in terms of the gyrotron parameters, it

suffices to compute tables of r, G and D as functions of VN once, to

completely know the coupling coefficients for any combination of the

parameters I, u, Szoo 0i and frequencies wm. Note that the beam spatial

profile enters only in the nonlinear filling factor Sj; in case of

complicated beam profiles S can be computed independently from Eq. (33).

The discussion so far has been limited to a cold beam. In case of thermal

effects the general expressions (A) and (A8) are applicable and the

control space will increase by two parameters, the pitch angle spread and

the energy spread.

Equations (37) and their reduced form, Eqs. (41), are the basic

result in this paper, and describe three mode interaction up to fifth
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order in magni-tude in the OG. The diagonal terms Gnn describe the

effects of nonlinear saturation (or self excitation) for each mode. The

cross-coupling terms Gnm describe a phase-independt- . nonlinear damping

(positive or negative) among different modes. The interaction through the

G nm terms does involve the slow phase and describes mode locking effects.

The fifth order terms D nm are necessary to stabilize the system in

regimes where most of the third order interactions are positive and

mutually destabilizing. They are also required to account for potential
15.

amplitude bistability, i.e., the existence of two equilibria of the same

frequency but of different amplitude.

Similar results, to third order in amplitude, have been obtained

for the conventional gyrotron 11, using a somewhat different approach. The

present derivation of the coefficients is considerably simpler, since it

requires a (j+l)-fold integration for the j-th order, compared to the
11

(2j+l)-fold integration required in the single particle approach. Mode

coupling equations, identical in structure, first appeared in the

16
treatment of LASER cavities
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VI. RESULTS AND CONCLUSIONS

The normalized linear growth rate Rer(vn) is given in Fig. 2.

Tables of the third order coupling coefficients G(vn ,vm) for Gaussian

profile modes and a cold pencil electron beam have been obtained by

numerical evaluation of the expressions (B5)-(B7). The contour plots for

the real and imaginary parts of Gnm, G1 2 3 and G2 3 1 within the regime 0 <

Vn' Vm < 3 are shown in Figs. 3a, 3b, and 3c respectively (the

coefficients G3 1 2 are given in terms of G1 2 3 , G3 1 2 (v1 ,v2 ) = G1 2 3(v3 ,v2) ).

Dotted lines represent regions of negative values for G, corresponding to

mutually stabilizing influence among interacting modes in that region.

The mode coupling is destabilizing in the regions with solid lines,

corresponding to positive G. Note the absence of symmetry in the coupling

coefficients, where, in general, Gnm * Gmn. Contour plots for the fifth

order coupling coefficients D(Vn ,Nm,vl) as functions of v m v 1 for

selected values of vn appear in Figs. 4(a)-4(d).

According to the final number of participating equilibrium modes,

Eqs. (41) demonstrate three types of equilibria: (a) single mode, where

one mode dominates the other two (b) two mode equilibria, where one mode

is of negligible amplitude and (c) equilibria among three modes of

comparable amplitudes. The complete set of equilibria among a given set

of frequencies is given by the zeros of the right-hand side of (42).

Since Fn are defined positive, only solutions with F1, F2 , F3 > 0 are

acceptable. It is well known that every stable equilibrium of a nonlinear

dissipative system, such as the system represented by Eqs. (41), is

associated with a region of initial conditions in amplitude space (basin

of attraction) that eventually fall into this equilibrium. Which

equilibrium the system will choose to settle in cannot be analytically
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predicted, in the absence of invariants of the motion. This can only be

done by integration of the set of ordinary differential equations (41).

The simplest case, a single mode equilibrium for the n-th mode, is

found from

dFn 2 n
Sn F n Rern + ReGnn F 2 + ReD = 0 (44a)

dr n nnn n 4 O

dtn

- =Imrn - Fn 2 ( ImGnn + ImDnn n F . (44b)
dt

Equations (44) are obtained by dropping the cross-coupling terms from

(37); the combined phase * is irrelevant in that case. Acceptable, non-

trivial solutions Fn  > 0 for the steady-state amplitude should always

exist, since a single mode saturates through particle trapping. The fifth

order saturation term Dnnn is therefore important on two counts. First,

it is necessary for saturation in regimes where the third order Gnn is

positive and causes self-excitation instead of suppression. Second, it is

required to account for amplitude bistability, when two acceptable

equilibrium values Fnl and Fn2 exist for a given mode, since the third

order nonzero solutions, Fn  = ± (r n/G nn) 1/2, can provide at most one

acceptable solution F > 0. At steady-state the slow phase *n varies at a

constant rate, Eq. (44b); d+n/dt expresses the nonlinear frequency shift

from the linear frequency wn.

Equations (37) are used to provide some examples of mode

competition in a QOG driven by a cold pencil beam in a typical parameter

regime, with beam current Ib = 13 A, Yo = 1.146, 01o/'zo = 1, W/X = 5,

cavity 0 - 40,000 and cavity length L = 48cm, corresponding to a frequency

separation dw/ 0 - 0.003. In Figs. 4(a)-4(c) we examine mode interaction
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among the first three frequencies w1 < w2 < w3 above wo' counting only the

odd resonator modes wn separated by do/w 0 = 0.006. In Fig. 5(a) initially

F2o >> Flo, F 3o* The mode F2 quickly reaches a quasi-steady state, which,

however, is unstable. The mode F3, which initially grows much slowly than

its uncoupled linear rate due to nonlinear suppression from F2 , eventually

overtakes and suppresses F2 (mode switching in the cavity). In contrast,

the steady state reached from Flo >> F2o' F3o, shown in Fig. 5(b), is

stable since a large amplitude F1 suppresses F2 and F3 to negligible

amplitude. However, the single mode equilibrium of F1 is not accessible

from the usual start-up initial conditions, where all three modes have

small comparable amplitudes Flo = F2o 2 F3o << 1. Figure 5(c) shows that

the final state in this case has F3 as the dominant mode. Note that F2

has been completely suppressed in Fig. 5(c), although its linear growth

rate differs from F2 by a few percent. Since F3 wins the competition with

F1 and F2, we next examine the coupling of F3 with the next two

frequencies F4 and F5. It is seen from Fig. 6 that the final steady state

involves three modes with comparable amplitudes. Note that F5 has been

excited despite being linearly stable. Figure 7 shows the mode

competition among the first three modes in a cavity of reduced length, L =

24cm, and increased frequency separation dw/w 0 a 0.012 among odd modes.

In conclusion, the general analytic formalism for multimode

interaction in the QOG has been developed in this paper. Applications of

the coupling equations to interactions involving three main modes have

demonstrated the ability to model nonlinear effects, such as nonlinear

destabilization, suppression, and mode switching. A new scaling has been

introduced, during the derivation of the coupling equations, that reduces

the number of the control parameters. The ratio of operation to start-up

current I, and the desynchronism parameters v. for the participating modes
2
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become the only free parameters. The inclusion of coupling terms up to

fifth order in amplitude was shown to stabilize the system in the hard

excitation regime (where the third order coupling coefficients are

positive.) The coupling coefficients up to fifth order have been

tabulated for a cold pencil beam. These results will be generalized in a

future paper to include thermal spreads in velocity, and arbitrary beam

current profiles. The set of equations will also be expanded to include

interactions among a large number of modes, by forming all the possible

resonant frequency combinations.
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Appendix A: Computation of the Nonlinear Current

Substituting operator (28) inside (27) and performing the successive

iterations yields

kW - i(n+ n af ( O )
_ a- nCl 1- + cc ,(Al)

(1ule,r&;t) = - n an e ]dI. X n( 1 ,Ul1 ) - +cc,(l
21 n auI

2

f() Ulelr;t) E ;i n a am{

e ipn-Imt e dn) (v m)C d 1 X n a- f X

+ [n, m

+ e ) X- 1 C

} f(O)

[nm] u 1  + cc, (A2)

and
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(3)f' (uL, e,C,t 0 E E E a n am a 1

n m 

+ [ n, m, i] + [ n, -in, i] + _ n, -in, -i]+

e e dU 1- e )(_ C3 1

+ [ n, -i, -i +]n m _q -, -

e(n *m "* ) e i~ n 1 Jd - d 1, ld Jd 3 X1

+ _n -, 1 1 3f )

+ -o-, *11 + cc, (A3)
')au 1

where the explicit 0, t dependence is contained in =n e - %t

xCp~u 1)=-J -n-) cos k x h (Q)e ivnX-( (,u1) a * C'
uzo 0

Xn(n'u.L Xn 1kTu1 -T 9
0 0 0

In obtaining (A1)-(A3) we used the invariance: "n+ VnC = const., along

the unperturbed trajectories. The notation [-n, mn, -1 1 inside (A2)-(A3)
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means an integral similar to the preceding fully written term except that

a negative index -n in place of n implies -"n' -n' Xn an in place of "n'

Vn, X-n, an, etc.

The dominant contribution in each integral comes from the

derivative a/auI acting on vm'

_ % (* k oVu I  2nA uiL

= (ui), where I(u1) - k 2 u 1 . (A4)

au1  0o % uz yu uz

Therefore, the most important terms inside f(J) are those with the

(a/au )J derivative. Neglecting, for the same reason, terms like ay/3u1 I

auIk /au ~ 1 << av m/au one obtains from (0)

3 3
(3) Yf''(uO e,lct) =- I-s a aE E E 1 n 5m sl an m 1

zo

e4n m ) e m J d 1 v - JdC2 vm ~I d 3 v, -

au au1  6  au1

+ -n m, -I + -n, -M, 1 ] + [ -n, -m, -] + cc , (A5)

& u iv C
where v (jJ- Ihm(Q)e ins* = cos kx h (y).m 1mj 9n in

0

One can show by induction, proceeding along the same lines, that
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)(u "J.~.. -, - -
f(j ,et) ... s s m a a ... a

Z) i1m . 1m 1 2 2  3
zo 1 3 1 2 33

i(,l in2 + n *m3-""-*m ) i( 1 -V, 2 +V "t j )C
e e

a a ~2a ;1- af (0)
dc v-M - V2  au C3 V-M. - Id' v m
d 3l 1 v- l uI 2 -u 3 aul j au,

+ (ml1, -m2 , m3, .... , -m } + cc , (A6)

where ( ... ) implies all the permutations among the mn' s.

When the j-th nonlinear piece f(J) of fNL is substituted inside (15)

and combined with cose = (1/2 )(ei
8  + e-ie), the resulting expression

contains even e-harmonics, 1, e±2i8, .... e±(j+l)iO, for j odd, and odd e-

harmonics, e± i , e ±3 i , ..., e±(J +l )i8 , for j even. Consequently, coupling

interactions involving even number of modes vanish completely during the 0-

integration. The first nonlinear correction is of third order in amplitude,

the second of fifth, and so on. It should be emphasized that this is a

consequence of assuming a uniform in 0 initial distribution f(0)(u);
however, for a prebunched distribution of the form f(0)(u,8) = fo(U) + fl(u)

eie + ... + cc, both even and odd terms survive and the nonlinear effects

enter to second order in amplitude. Splitting the slowly varying fNL(Wn)

component off the nonlinear distribution, by multiplying each f(J) with

exp(iwn t) and averaging over the fast time, substituting fNL(wn) inside

(19), and finally averaging over the gyroangle 9 and over the resonator

volume, one obtains
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I r

<JNL(Vn) 0 Yo..2. ..2..
% Vn  zo ( l 2," 3 , ... P J;n)

a() - + C( 3 )  a a a + ... + C() a a a

1m ;n m m1,m2 ,m 3 ;n am1  m2 m3  ml m2  m3 ... mj ;n am1  am2 - ~

(A7)

C ..m j ;n - . .m j ; n "ex p a w m J0 d _

(A8)
T h e q u a n t i t i e s & 1* 2 . .m~ , V m , 9 m2 a n d S m 2 a r em 31 .m ;n V .. m ;n 1 m 2 .mj;n
defined in a similar manner as in equations (30), (32) and (33)
respectively. Of all the possible comoinations [ml±m2 m3±. ..m.J only
those with (j-1)/2 positive and (j+1)/2 negative signs have survived the
e-integration and contribute to ();for example, the term [-l,-m,-n] in

f(3, Eq. (A5), has vanished from C 3 . Also note that the complexconjugate terms in (A1)-(A6) drop out during the fast time averaging; they
contribute to the JNL(-cn) component.
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Appendix B: Computation of the Three-Mode Coupling Coefficients

The three-mode coupling coefficients in Eqs. (37) are computed from

the general expressions in (31), keeping the frequency combinations (35)

and (36), and yielding,

r. K C 1 )  G =K (3)
-n;n' nm -mm-n;n'

(-m,m, -n}

123 -2-23;1, G312 -2-21;3 2-3-1;2
(-2,-2,3) (-2,-2,1) (2,-3,-11

D K E C(5 )  D - K E C(5 )

= -mm-2-23;1 , nm -mm-ll-n;n'
(-m,m,-2,-2,3) {-m,m,-ll,-n}

vhere K = 2ni . (Bl)
U zo Crb V

A cold pencil beam is employed for simplicity, vhere the velocity

distribution f(O) and the density profile n(Xg9 yg9) are given by

f(O). 61 u ( (L(uI  Ulo )  ( z -Uzo) , n(Xg9 y) 6(X-) (y2 .

2 u 

The calculations are simplified by the following observation involving the

derivatives of 6(ul-ulo). If A(u), B(u) are any functions of u satisfying

dnA/dun << dnB/dun for every n, then

du A B 6 d A B A dB A(u) Fdu B -
du j - du Bu 0 du
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and by induction

du A B e&8 A(u j du B 126
du n  0 ) dun

One can see that dc-- (, .u, J(k e ei n won  vhere
dunJ(knp) du Idu1
n

koW 0±. 2 u
o a n(ULo) - >> . (B2)

Yo Ozo YoiLo

Therefore, moving everything but the exponentials exp(iv n) in front of the

velocity integrals, one obtains

1 2,Io u.L Jno

r- 0  2io) (koW) j 2 S ( (B3)
n 2 %Vn Uzo zo no

3 2 Io U 0 Y 342

G= m . V- k 4(J no Jmo )2S 3 nm (B4)
%bVn Uzo z

5 5

D u 5 2n1 0k) (JnoJloJo)2 S5 D nlm , (B5)
nlm % bVn Uzo zo

vhere Jno a J1 (kn0o)' Po = Uio/9 and

rn Jdui [d v n d i- &(U,- Uo) ' (B6)

Sau I

G ~ ~ d JdC v-I1d2vm rCV

Jmdu .dcv -n-u .' ~ ( 3 VM
o-nm - 0 u)I _ au I

x- 6(u- Uo) (B7)
au1
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Dnlm d dui dC vn Jd v * - vl jC3 v-1
10 nui -u

d d 4 V - d v 6 -u - u1o), (B8)

where

Siv
Vn(Q e hn()

We limit the mode coupling among fundamental Gaussian modes where the

transverse profiles u0 0 are

z2

uoo(YgZ) = ho(Yg) ho(z) , ho(z) - exp _ L ) ' (B9)

for all frequencies .n. The normalized volume in that case is given by

L

VnM 2j dxj dyf dz kx exp(2 2  2 n k 2L V 2, (BlO)

o -m .. + x 2 ) W() 2

&2

V n n

ab 1 and v e e

For the pencil beam at x = - L/2, and according to Eq. (4), cos k x = 0 forg n

n even and cos kfl x g 1 for n odd. In other words, the electron beam passes

through a null of the electric field for modes with an even number of half

wavelengths between the mirrors, or through a maximum, for an odd number of

half wavelengths. The j-th order nonlinear filling factor Si, Eq. (33), is
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then reduced to

L/2 2 -l -(j+l)y 2

2 -

S. S -n x fdy x9v ) + x~) e .(B11)

Since the frequency separation among the coupled frequencies wn is very

small, it is important only when the detuning 6 n , vn appears explicitly.

Thus, one may set kn  = ko, letting J1'(knp) = J1 (k0P) a J0  V n =

(n/2)k 0
3LW2 and 0n = Q for all modes. To further simplify (B6)-(B1O), one

may notice that, according to (A4) and for wn = o'

dvn  kV U
-n - r1(u1) - -

du, Y u z

is independent of frequency. Since the &-function causes every derivative

to be taken at ui  u o, one may employ v n , m VI as independent

variables and use

ri 0(+ a M(B12)
oau3 av 3I n m l

to show that

r n  no r(vn) (B13)

Gnm ='n G(vn,vm) , (B14)

D nlm =  o ' nvvB13)
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vhere

V 
2

rod - (Vd vd.) - --
V" d C Vn -n a Vn- Vnon 2

2
no

n2
=- vno e  (B16)
2 n

G(vn,v,) = Z d- n d t ' vn  d1 VJ-n M t C2 v m M d03 V-m

(-n,m,-m)_ _¢D..

H S(vn- &( N6(, ) '(B17)

D(Vn, 1 ,,mml

w w o 
0D 

rCid ^ l ^ M

Jjjd dvid Jd n J C nH ]d. v1  dCl v-1

J dC4 v
m M Jd ;v M_ &(vl- v

1 ) 6(vn - vn °) & r- vm ). (B18)

It is clear from (B16)-(BI8) that r, G and D depend only on the initial

values for the detuning parameters Nno" Combining (B13)-(B15) vith (B16)-

(B18), converting the amplitudes an  into the normalized Fn,  an = Fn

(YoO1o 3 ), and absorbing the factors (yo o3 ) in the coupling coefficients,

finally yields
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2nI 0 00 1 )2 j2
rn % o o (koW) 1 r(vn) (B19)

2LIo l 3

Dnl, o ( o.) o)4 "o (kW)6 So G(v ,nv1  (B20)
bV zo zo

o o z1 (y . 3o)" .o (ko,) io S D(v ,V,.,
Dnlm- ab Vn Ozo0 0 0 0 5 n

(B21)

and, in general, for the j-th order coupling coefficient,

2uo C lo . j-
Dml.. .j - b -°  Yoio) TIo (koV) J + l oJ+1 D(v I .. v

(B22)

Defining the scaling factor

Yolo 3

_ k0W J1 (k opo) o , (B23)

and the new normalized current

'i001 2 01 B~ 5 2 3

s !o =V o 2 3(koW) [J1(k opo)] = 8 o[Jl(kopo)]2 (koW)3,

Is V0  yozo 3  8Q O o(B24)

puts Eqs. (B19)-(B21) in the form given in Eq. (38).
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Fig. 2 - Plot of the linear growth rate r. against the mismatch o
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Fig. 3 - Contour plots for the real parts of third order coupling coefficients (a) 6. (b) G123 and (C) 6 231.
Dashed lines signify negative values.
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Fig.. 3 (Continued) - Contour plots for the real parts of third order coupling coefficients (a) G,, (b G123 and
(c) G231. Dashed lines signify negative values.
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Fig.. 3 (Continued) - Contour plots for the real parts of third order coupling coefficients (a) G. (b) G,23 and
(c) G231. Dashed lines signify negative values.
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Fig. 4 - Contour plots for the real parts of the fifth order coupling coefficients Dj, on the v = const. plane

for (a) v = 0.8 (b) P. = 1.9 (c) P, = 2.9. The contour plots in (d) are drawn for Pm = P,
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Fig. 4 (Continued) - Contour plots for the real parts of the fifth order coupling coefficients D,, on the a, =
const. plane for (a) P. - 0.8 (b) P, = 1.9 (c) P, = 2.9. The contour plots in (d) are drawn for am
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Fig. 4 (Continued) - Contour plots for the real parts of the fifth order coupling coefficients D)d.m on the v, =
const. plane for (a) a, 0.8 (b) v, = 1.9 (c) v, - 2.9. The contour plots in (d) are drawn for 1,, = a,.
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amplitudes F in (a)-(c) corresponds to different initial conditions.
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(b)Fig. 5 (Continued) - Mode competition in the QOG for the first three modes above o. The time evolution of

the amplitudes F in (a)-(c) corresponds to different initial conditions.
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Fig. 5 (Continued) - Mode competition in the QOG for the first three modes above w.. The time evolution of
the amplitudes F in (a)-(c) corresponds to different initial conditions.
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