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)Random distributions of correlated scatterers averaged over orientation are considered,
corresponding to isotropic fluids of statistical mechanics particles (with volume v, number
concentration p, and volume fraction w = pv). For minimum separation of centers small
compared to wavelength and acoustic particle parameters close to the embedding medium’s,
the incoherent differential scattering from unit volume and the corresponding attenuation
coefficient are proportional to the fluctuations (variance) in number concentration. For
arbitrary convex hard particles (e.g., ovals or simple polyhedra, repulsive at contact) with
shape parameter ¢>3, the variance lS expressed in terms of a quotient S(c;w) of polynomials in
w that has a maximum S (c) atwj (c). Spheres (c = 3) were considered earlier. For ¢ > 3,
the fluctuations and S and w ,< are smaller than for spheres; for ¢ < 3 (which we consider
formally), they are larger than for spheres. The results are interpreted by comparing leading
terms with the second virial coefficients for more general statistical mechanics models.
Scattering data for suspensions of discoidal red blood cells versus w under different flow
conditions can be fitted adequately by S(c;w) for different values of ¢ < 3. The low values of ¢
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suggest weaker repulsion between deformable cel]s and attractive interparticle forces mediated

1

by flow and aggregative trends. | . <

PACS numbers: 43.80.Cs, 43.20.Fn

DISTRIEUTION STATEMENT K

Approved for public release

INTRODUCTION

Farlier papers' ™ analyzed the average field in random
distributions of correlated scatterers corresponding to fluids
of hard® statistical mechanics particles (with volume v,
number concentration p, and volume fraction w = pv). The
low-frequency scattering and the corresponding attenuation
depend on the fluctuations (variance) in nurber concentra-
tion. Using the scaled particle® approximate equation of
state E., we expressed the variance in terms of a simple quo-
tient S(uw') of polynomials that vanishes at the extremes of w.
For spheres” (as well as aligned ellipsoids ), S(w) has a max-
imum S. =0.047 atw. =0.129. Now we consider a gener-
alization S(c.ww) for isotropic fluids of nonspherical particles
averaged over orientation, with ¢ as a parameter. For arbi-
trary convex particles (such that a line segment connecting
any two points in vis wholly within v), ¢ is determined by the
volume, surface, and average over angles of the mean of the
principal radii of curvature.* ' For such cases, Gibbons"'
applied scaled particle theory in terms of Isihara’s” results
for two different convex particles to obtain E(c), which we
use to construct S(c.w).

Convex hard particles require ¢>3, with ¢ = 3 as the
special case of spheres, and ¢ > 3 as a nonsphericity param-
eter. For ¢ > 3, weshow that .S, and w, aresmaller than for
spheres. We also consider 3 > ¢;0 formally, in which range
they are larger: 0.0475 S5, £0.148and 0.129Sw, 5$0.333.
(The Appendix analyzes E and S for ¢ < 0.) The behavior of
S(c;w) is uniform in w for all ¢30, and its simplicity suggests
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inverting data showing a peak at 0 <w , <1/3 to obtain an
effective c(w, ). For ¢ > 3, we expect the upper bound on w
to be less than for spheres ( =0.63).

For a hard sphere, the cocentered exclusion volume
(that excludes all other sphere centers) equals 8v. The aver-
age exclusion volume for hard (repulsive at contact) convex
particles® is v, (¢) = 2(c + 1)v, and for ¢> 3 the fluctu-
ations are smaller because v, > 8¢ (less elbow room); this
also holds for nonconvex bodies'*!* with an effective ¢ > 3. If
we use the form v, (¢) for ¢ < 3, we may interpret the larger
fluctuations in terms of an effective v, < 8v arising from ad-
ditional neighbors at small separations; comparison of lead-
ing terms with the second virial coefficients'* for nonhard
particles suggests attractive weakly repulsive models.

Values of v, > 8v with effective ¢ > 3 do not imply con-
vexity; see Isihara’s results'* for nonconvex particles formed
from two hard spheres. Although the work by Gibbons'' is
based on convex particles, Rigby'’ found adequate accord
between E(c) for the nonconvex tangent dumbbell'* and
Monte Carlo computations. Similar accord is shown
between S(c;w) for different values of ¢ 23 and reduced ul-
trasonic backscattering data'® versus w for suspensions of
discoidal red blood cells under different flow conditions
(stationary or stirred, or in uniform or turbulent flow). The
lower effective ¢ values suggest weaker repulsion between
the cells (flexible deformable biconcave discoids), and at-
tractive interparticle forces mediated by flow and aggrega-
tive trends; values nearer 3 may arise from flow alignment.
Although additional factors may be involved, comparisons
with available data'’ indicate utility of S(c;w) for other than
hard convex particles.
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For minimum separation (&) of particle centers small
compared to wavelength (72/k) and acoustic particle pa-
rameters close to the embedding medium’s, scattering
aspects are particularly simple. The fluctuation function S
and the isolated particle scattering (total and differential)
ai.] absorption cross sections suffice for the coherent attenu-
ation coefficient, and for the incoherent scattering from unit
volume (except for translational and transducer factors).
Although the required forms can be obtained by simplifying
earlier results, key steps of direc* derivations are included to
facilitate applications and indicate limitations. We also con-
sider the analogous two-dimensional problem of parallel cyl-
inders and obtain the corresponding S(c;w) by using a
scaled convex disk'* E(c); these results also apply for mono-
layers” of bounded particles. The one-dimensional and the
lattice gas forms of S are included for comparison. For all
cases, the function E corresponds to the equation of state
times v (which leads to simpler forms), but we use no special
label for the normalized version.

. SCATTERING ASPECTS
We consider a plane wave de
& =™, ker = krker = krcos 6 = kz. (1)
incident on an acoustically penetrable obstacle of volume v
with center at r = O (the phase origin taken as the center of
the smallest sphere enclosing ). The corresponding solution

of Helmholtz's equation exterior tor hastheformv = ¢ + u
with u as the scattered wave. For large k7,

u(r) ~f(EK) (e*/r), (2)

where f(£.k) is the conventionally normalized scattering
amplitude for directions of incidence k and observation .
The energy transferred via interference of ¢ and u is repre-
sented by

Imfikk)47/k =0, + 0.,

1o
)

(3)
- - f!f(i-.f()::dﬂ(f) :faﬁ.li)dn.

where o, is the absorption cross section, o, is the scattering
cross section, and o(i.k) = 1 f(e, k)| is the differential scat-
tering cross section.

The obstacle is specified by two relative acoustic param-
etersC’'and B, such that '~ = C'/B’ with 7}’ as the relative
index of refraction in v. For the simplest cases, C’ is the
relative compressibility and 1/B the relative mass density;
more generally, the parameters are complex with Im C’ > (
and Im B’ <0 to account for absorption. For small C’ — 1
and B’ — 1, and largest diameter (2a) small compared to
wavelength, we use Rayleigh's form'’

SiEK) =(C" = 1— (B' = Diklk v/4n (4)
for arbitrary shaped v. To lowest orders in &, from (3),

o,=(ImC’+ |Im B'|)kv, (5)

o(8k) = |C' — 1 — (B’ — 1) (k) |k v/ 1677,

o, =(|C' =11 +|B' — N3k v /4r, (6)

where o, follows by integration, essentially as in Rayleigh’s
developments.'®
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If the center of the obstacle is at r, with respect to the
phase origin (r = 0), then we replace u(r) by u(r —r, )™
For large r>r,, we have Ir —r, | =7 — fr , and

u(r —r)e*" = u b, ~f(Fk)e /ey, ()

ik(k  #)er

where ¢, = ¢ is the phase factor introduced by the inci-
dent wave.

For a configuration of N obstacles in a volume V, the
multiple scattered solution has the form'”

N
V=6+ 3 Ulr—r,). (8)
sl

The multiple scattered contribution of the sth obstacle U,
may be expressed functionally in terms of the single scat-
tered amplitudes of all obstacles and the configurational
variables (locations, orientations, etc. ). Multiplying ¥ by an
appropriate probability distribution function and integrat-
ing over all variables, we write the average wave (the coher-
ent field) as

(W) =8+ S(U,). (9)

The difference of the average of |¥|* and the coherent inten-
sity {{W)!” is the incoherent scattered intensity

I'= (Wi — (¥

=Seup + 3(SWUn - UHSEn). 10

For present purposes, we need consider only 7 explicitly.

We replace U, in (10) by the single scattered wave u, &,
with implicit averages over orientation, etc. Thus the single
summation reduces to fdr, p with p = N /V as the average
number of particles in unit volume for the homogeneous
cases of interest. The double summation reduces to
p’Sdr sdr, g(r, —r,|) with p’g as the pair distribution
function averaged over orientation. In termsof R=r, —r,
for the separation of centers, we recast the integral over r, as
an integral over R, and use g(R) ~ 1 for even moderately
large R. We restrict r, to a relatively small central region V.,
of V, a region containing the average number {(n) = pV, of
irradiated and detected particles, and work with the farfield
form as in (7). The result

(k) = pV. | f(R.K) P W(E k) /7, an

W(tk) =1 +pf[g(R) —1]e*e-DR4R

is a standard form for x- ray scattering by dense gases or
liquids.>” The function W(#.k) is the statistical mechanics
structure factor, and g — 1 is the total correlation function.
For minimum separation of centers small compared to
wavelength (small kb), to lowest order in &,

I+ k) = AGRK) V. /7,

(12)

A(rk)—po(r KW, w=1 +pJ[g(R) — 1]dR,
where W is the low-frequency limit of the structure factor.

The corresponding attenuation of the coherent intensity

[{(¥(2))|*=C(2) for single path propagation of (W) in V
may be obtained by Rayleigh's procedure'™ for the ideal gas
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case. Thus, from (12), the net incoherent scattering from the
particles in unit volume is

fA(f.f()dQ:pWa\EA\, (13)
and the energy they absorb equals

Yy =po,. (14)
The sum

r=y+4 =plo, +o W) (15)

provides the attenuation coefficient for the coherent intensi-

ty in the form dC(z)/dz= — 7C(z), from which
C(z) =¢ 7~ for C(0) = 1. See Ref. 2 for full development
of (¥).

The following is not restricted to three-dimensional
forms of W and the single particle scattering functions in
(6). Analogs for two-dimensional cases of normal incidence
on parallel cylinders are based on

o(#k) = C'—1— (B — Dk k 'v"/87,

o, =0C" =1+ B = 17/0)k /4
which represent cross sections per unit length with ¢ as an
area. Similarly for one-dimensional problems of normalinci-
dence on parallel slabs,

o(tk) = C' =1 (B' — )ik *k“vi/4.

o =(C" ' —1°+ B’ -1 5Yk7/2.

(16)

(17)

which represent cross sections per unit area with v as slab
thickness: here only # = —k (backscattering) and f =k
{forward scattering) apply. The corresponding absorption
cross sections (per unit length or unit area) are given by (5)
in terms of the present v's.

Il. STATISTICAL ASPECTS

The differential incoherent scattering and the attenu-
ation via scattering are governed by the form

A=pWo=So/v, §S=uW, (18)

where o is either the differential or total scattering cross
section, and w is the volume fraction occupied by particles.
The packing function W', determined in ( 12) by the integral
of the correlation function g — 1, is proportional to the™
variance v (the mean-square deviation) of the number n of
particlesin }_,

w =pur,

v=((n—-(n))) =(n") — (n) = ()W, (19)
Thus
S=wW=w/V. = ((n’) = (n)n/V,, (20)

henceforth the fluctuation function, is proportional to the
mean-square fluctuation in the number of particles around
the mean (n) =pV,.

Under appropriate conditions, a distribution of particles
may be regarded as a large scale fluid. The variance v, and
therefore W, can then be related to statistical thermodynam-
ical functions by

Y pKTE = Kr(fﬂ)r

= W’
(n) ap

21

oTiC
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with K as Boltzmann’s constant, T as absolute temperature,
& as isothermal compressibility, and p as fluid pressure. The
final equality relates W toa derivative of the equation of state
p/KT = E /v. Using the scaled particle® forms of E for hard
spheres, circular cylinders, and slabs (E, with i = 3, 2, and
1),

‘:w(1+w+:U') E, = w L E = w_
(1 —w) (1 —w)- I —uw
(22)
it follows from w = pv and dE /dw = 1/W that
\4 —_ |‘
;:————(lAu')ﬂ, sz——(l u)' W, =(1—uw)
(1 +2w)- I+ w

(23)

Form E| is the exact Tonks’ equation of state, and E, was
rederived by”' Wertheim and by Thiele from the Percus-—
Yevick integral equation for g. The result W, follows directly
by integrating® the Zernicke—Prins g, and both W, and W,
also follow from the Percus-Yevick equation.

The packing functions W(w) decrease monotonically
from unity to zero as w increases from zero to unity. How-
ever, as emphasized before,' the fluctuation functions
S(w) = wW(w) vanish at the extremes of w and have a max-
imum S. (w,) at w=uw, corresponding to dS/udu

=S8"=0andS" = —.S",. Thus
w(l —wy?
(F+2u)®
Lo (24)
w, =737 = 71/12=0.129. S. =0.0469:
s, = w(l —uw) _
Lrw (25)
w. = (7" =2)/3=0.215. S. =0.0856;
Si=w(l—w), w. =1/3, S. =4/27=0.148.
(26)

See Fig. | for plots versus w. Although we may consider the
full range O<w+1 for some purposes. the upper bound is
physically realizable only for slabs. For spheres and cylin-
ders we use the experimental values for densest random
packing.w,, =0.63andw,, =0.84 (corresponding toamor-
phous solids). By geometry. the results for spheres also ap-
ply for aligned ellipsoids, and the results for circular cylin-
ders also apply for aligned elliptic cylinders.*

In addition to the above cases i = (2.2.1). we also
showed' that the symmetrical function S = w(l —~w)
which arose in an earlier development™” could be derived
from the scaled particle™ E for a random lattice gas:

Ei= —-In(l—-w), W,=1—-w: (27
wy =172, §, =1/4. (28)

Shape is not specified, and w = 1 is realizable for special
processes and compliant particles that pack to fill all space.'
Since S, is not a special case of the closed forms derived in
Secs. IV and V, it still serves for less correlated contexts.*’
(See Fig. 2.)

The fluctuation function determines the behavior of A
vs w, but the total attenuation 7 involves an additional term if
absorption is present. We rewrite (15) as™

Se=w(l —w),

Victor Twersky: Scattering by distributions of particles 1611
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FIG. 1. Plots of the fluctuation functions S of (24)-(26) versus volume
fraction w. The highest. central, and lowest curves are S,. .. and S respec-
tively. (See Fig. 21 of Ref. 7 for comparison of S, with analogs we derived
from other model ) In order to show complete curve shapes (here, as well
asin all subsequent graphs versus w) the full range 0w+ isdisplayed. but
the physically realizable upper bound for i smaller in general.

rr=0o,w + o Sw) = [dw+ Stwylo,. S=o0,/0,.

(29)
The occurrence of a maximum 7 atw = w depends on the
magnitude of d and the requirements . = w ' <w,. For

small . to first order in small terms,

rr zow. +0S., w =w., +o,/0,. 8" >w. .

(30)
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FIG. 2. Plots of the ideal gas function S = w (the diagonal line), of the
lattice gas S, (the simple parabola ) of (28), and of the set shown in Fig. 1 to
delineate the relative scales of the fluctuation effects and their decrease with
increasing exclusion volume (decreasing elbow room).
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where, corresponding to i = (3, 2, 1, 0), the second deriva-
tive |S7 | = 1S " (w, )| approximates or equals (2.84, 2.21,
2, 2). Thus absorption shifts the maximum of 7 to larger w.
Because & is small, it follows that for sparse concentrations
the attenuation is dominated by scattering losses. However,
since W decreases with increasing w, thereis a value w = w,
determined W(w, ) = & for which absorption and scattering
losses contribute equally to the attenuation and vr = 20, w, ;
for w > w, , absorption dominates. On the other hand, if 6 is
not small, then there is in general no maximum of 7 with
variation of w. If § > 1, then absorption dominates the at-
tenuation for all w'.

1Il. SECOND VIRIAL COEFFICIENT

To facilitate derivation and interpretation of the gener-
alizations of S given in the next sections, we consider the
leading terms of the expansions of £ and W in powers of p
(virial series'). An ideal gas distribution corresponds to
E=prand W =1 (aswellasyv = (n) and § = w'). The first
departures from the ideal gas values are proportional to the
second virial coefficient’* B.,

E/v,=p+p B+ .
2B, =v¢,,

W =1 _p2B.+ .
(31)

with v, = 2'v, and v, = (74a’/3, 7a’, 2a, v). The second
termof W, for i = (3, 2, 1) also follows directly from (12)
by using the hole approximation for the radial distribution
function: g(R) =0 for R < b, and g(R) =1 for R b, with
b = 2a as the minimum separation of particle centers.

The size of the normalized exclusion volume v /v,
= 2" = (8, 4,2, 1) determines the departure from the ideal
gas results. Although (31) is restricted in general to small w,
comparison with §, shows that as v, /v, increases, the fluctu-
ations decrease for all w (less available space); the peak S,
decreases and its location w, shifts to smaller values
(sparser concentrations). As the ratio v, /v, doubles in size,
the ratios of ajacent pairs of S, , values (0.55,0.57,0.59) and
of adjacent pairs of w, , values (0.60, 0.645, 0.67) are of the
order of half. Thus the second virial coefficient B, not only
indicates nonideal gas behavior at small w, but also supports
major trends of the maximum fluctuations S, and of their
locations w , . The generalizations of S dertved in subse-
quent sections exhibit similar relations with B..

Th~ exact second virial coefficient B, for an isotropic gas
of & t1e-v convex hard particles was derived by Isihara,”
who i nined the exclusion volume of a fixed particle by
moving uuother in contact around it at fixed relative orienta-
tion, and then averaging over orientation. The resulting
avergge exclusion region v, = 2B, equals

v, =2(v +sF) = 2v(l +¢),

ce=%, 7=f(r, +ry 2
v 87
with v and s as the volume and surface area of the particle,
and 7 as the average over all angles of the mean of the parti-
cle’s principal radii of curvature (r, + r,)/2. For spheres.
= 3 and ¢, = 8v as before; for all other bounded convex
particles,c > 3and v, > 8v. Isthara’s result for v, (and for the

(32)
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average exclusion volume for two different convex particles)
was obtained independently by Hadwiger,” and their publi-
cations and those of Kihara'® provide additional relations
and various illustrations.

The nonsphericity parameter ¢ > 3 in (32) does not rep-
resent a unique shape. For example, for spheroids (both ob-
late and prolate), Isihara® obtained the single form

3 . 1 g2
c:"—(l Lsin '€ )[l N 1 —-¢€ ]“(1 +6)],
4 61 — € 2e l—¢€

e (o)
a

with g and @’ as the largest and smallest semidiameters. Thus
for the same value of ¢'/a. both the oblate and the prolate
shapes give the same value for ¢ (corresponding essentially
to an interchange of the forms s and 7. and using the appro-
priate t's). For near spheres, a =a’. and™'"

cxd+4(et + €M/15. (34)
For near disks and near needles. ¢ >»a’. and
¢~3/4 + 73asa’'8 (35)

iy within 4% of (33) for a/a’ R 3. In this range, ¢ increases

linearly with a/a’. in accord with Isihara’s almost linear

curve based on (33). From the complete form (33), we have
a/a = (6.543.2.1.5).

< (36)
= (7.65.6.555.48.4.45.3.54,3.18),

where ¢ decreases to the sphere value 3 fora/a’ = 1.

For nonsmooth convex particles. from Hadwiger's” val-
ues (of 1. 5, and 7) for the regular polyhedra of j faces, we
construct

J = (468.12.20). ¢=(6.74.54.32.3.56.545). (37)

The largest ¢ corresponds to tetrahedra; the progression
through cubes, octahedra, dodecahedra, ends with icosahe-
dra with ¢ only 159 larger than for spheres.

[t is clear that the value of the nonsphericity parameter
for any particular polvhedron can be matched by that for a
spheroid pair. Thus the tetrahedron value ¢=6.7 corre-
sponds to spheroids with a/e = 5.14; the markedly jagged
polyhedron is equivalent to a markedly flattened or elongat-
ed spheroid, and all three shapes yield v, /v =15.4, about
twice the value for spheres. [ The closed form S of the next
section shows that the corresponding values of S, and w4
are of the order of half the sphere values, as may be inferred
from the discussion following (31).] This aspect is stressed
to indicate the limitations of ¢ as a shape parameter; we may
invert data in order to obtain ¢ from measurements of B, for
particles having the same volume v, but more than c is re-
quired to determine particle shape. For that matter, an effec-
tive ¢ > 3 isolated by measurements need not correspond 10 a
convex particle (or to a hard particle).

Existing results for B, for other than hard convex parti-
cles,'” ' can be written formally as

B.=v./2=v(c+1) (38)

to obtain associated values of v, and c. Although ¢ = s7/v>3
is an exact relation for convex hard particles, an effective
¢>13in (38) does not imply convexity. In particular, Isi-
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hara'? obtained the exact B, for the infinite set of nonconvex
hard particles (dumbbells) formed from two identical
spheres for all values of the center separation b > 0. (Only
the degenerate case b = Ofor asingle sphere corresponds toa
convex particle, ¢ = 3.) From his results,'” we write

b/a=(01234x), c=(33.3294444,6031,68.7),
s 9
b/a>4, c=17— 16(a/b)*/5. (39

The parameter ¢ increases smoothly from the lower bound 3
to the upper bound 7 (for which each dumbbell reduces to
two independent spheres).

We can obtain effective values ¢ <3 (as well as ¢ > 3)
from (38) by comparison with forms of B, for more general
models than hard particles. Although hard particles exert no
forces on each other except repulsion at contact (pair poten-
tial infinite for R<b, and zero for R > b), other statistical
mechanics models'* include attractive forces for small sepa-
ration (square well potential, negative for b < R<Ab), as
well as longer range weaker repnlsion and smoother attrac-
tion (Lennard-Jones potential, etc.). Analogs for the pres-
ent development can be based on the integral in (12) with
g{(R) independent of p. In particular. the square well poten-
tial corresponds to supplementing the hole approximation,
discussed after (31), with g(R) -1 =T for b<R- b
(representing additional neighbors at small separation) to
construct

2B, =2, [l = (4" = DT ]. i=(321). (40)

For I, == 0. we have 2'r, as before: we may also obtain the
lattice gas result by using 4 = 2and I', = 172" For spheres.
from (40) and (38).

2B, =8l — (47— D] = 2e(l + ),

c=23 44— DT, (4D

so that, e.g.. if 4 =2, then ¢ = (2.1.0) corresponds to
28T = (1.2.3). ete. The size of T can be related to an effec-
tive interparticle attractive potential, and the size of 4 to the
range over which it acts. (Changing the sign of I' vields¢ > 3
corresponding to fewer neighbors and repulsion for
b < R-.4b.) Equation (41) serves for interpretation. but no
closed form of § is available for this model.

For two-dimensional hard convex particles.'” we write

=20 sr=0(2 4 ¢). =S =s/2m

(42)
§ = fr, dO = 2,

with ¢ as the cross-sectional area (or volume per unit
length), s as the length of the perimeter, and 7 as the average
of the radius of curvature (r)). For circles, ¢ =2 and
v, = 4u; for all other two-dimensional convex hard figures,
¢>2and v, >4v. As before, a particular value of ¢ does not
represent a unique shape.

For ellipses,

¢ = (8a/a'm™)4 7, A:J k(l—ezsin:())'":d(). (43)
i)

with 4 as the complete elliptic integral of the second kind.
For near circles,

¢=(2a/a’)(1 —€/2 —€'/32). (44)
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and, for near strips,

c=(8asa'm){1 + [In(4a/a’) — 1](a’/a)*}, a>a’. (45)
From (43), the values for a set of ellipses
a/a’ = (6,5,4,3,2,1.5), (46)

€=(5.24,4.47,3.73,3.07,2.38,2.13),

decrease to the circlc valuec =2 fora/a’ = 1.

For nonsmooth shapes, we consider j-sided regular
polygons in terms of

¢ = (2j/m)tan(n/}), (47)
and obtain

J=(3.4.5,6,8,12),

€=(3.31,2.55,2.31,2.2,2.11,2.05).
The triangle value ¢ = 3.3 also arises for the ellipse with a/
a' = 3.45; the corresponding v, /v =5.3 is about 33% larger
than for circles.

From (38) and (40). the two-dimensional square well
analog of (41) is

2B, =4[l — (A" - D] =v(2 +¢).

c=2—-44"- 1T

(48)

(49)

so that, eg.. if 4 =2 then ¢ = (1.0) corresponds to

120 = (1.2). etc.

IV. GENERALIZED THREE-DIMENSIONAL S

Gibbons'' applied scaled particle theory® in terms of
Isihara’s result” for the average exclusion volume for two
different particles to obtain
E=w[l+wc=2 +uw(l—c+c/N/(1—w)'.

(50)
FromdE /duw = E' = 1/W, we construct
wil —w)?
[1+(c—Du)
The present E and § correspond to convex hard particles if
¢.3asin (32). and reduce to the sphere results £, and S, for
¢ =3 To O(«’) we obtain (31) in terms of (32). At w
= 1/2.

S(c:1/2)y = V/8(c+ 1) = (v/v.)° /2 (52)
exhibits the direct dependence on the normalized exclusion
volume.

The fluctuation function S(c:w) is stationary if

Je-DHw' + 3 +cw—-1=0 (53)
corresponding to dS/dw =8’ =0, and has a maximum
St . ) at

S(eiw) = wWcw) = (51)

_(44+20c+c)" —(4+0)

w- (c)
6(c—1)
2
= . 54
4+c+(4420c+cH)'" 4

From (53) we also have

c=14+ (1 -5w, )/w,(1+3w,) (55)
and eliminate ¢ from S(cuw, ) = S, to express the maxi-
mum
1614 J Acoust Soc. Am., Vol. 81, No. 5. May 1987
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FIG. 3. Plots of the generalized three-dimensional fluctuation function
S(cu) of (51) with the parameter ¢ ranging from 0 (the highest curve) to 8
(the lowest) in steps of 1. The darker curve {¢ = 3) is the same as S, for
hard spheres (or aligned ellipsoids): the lower curves (¢ > 3) apply for
(59). and the higher curves (¢ < 3) for (60) with the highest (¢ - 0)as S
The maxima (the peaks S. ) and their locations (1 ) on the e scale are
plotted in Figs. 4-6.

S. =w.(l —w.)Y(- Jw. )rs4 (56)
solely in terms of its location on the volume fraction axis. We
include
_ d°S(cu)

du- -

(T—w. ) [S+c-D(l+ 6. )]
- 14 (c—Duw, |’

(43w, (1 4+ 6w. — 157 ) (57)

8w .,
to facilitate applications of (30). See Figs. 3-6 for plots of all
key aspects of (51)-(56).

We can apply the above to all convex hard particles.
including the spheroids and polyhedra considered in (36)
and (37), subject only to the restrictions of the scaled parti-
cle development. For example, for spheroids with a/a’ = 4,

w, ~0.0932, S, =00314, S —-314
(58)

A

c=5.478,

The maximum for spheres as in (24) is about 50% larger
and occurs at a packing fraction about 38% larger; the pres-
ent — S, is about 10% larger than the sphere value 2.84.
As indicated in Sec. 111, the differences arise from the larger
size of the exclusion volume for spheroids averaged over ori-
entation: The present v, /v=13 is about 62% larger than 8
for spheres, and there is less room for fluctuations. As men-
tioned after (26), the sphere form S, also holds for aligned
ellipsoids; thus the above also serves for comparisons of
aligned and randomly oriented spheroids.
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FIG. 4. Peak S. v~ ¢, based on (51) in terms of (54), corresponding to
Fig. 3.

Although S(c:) has the same value for both the oblate
(4. 4, 1)a’" and prolate (4, 1. 1)a’ cases for given w. the
prolate corresponds to four times as many particles in unit
volume; for the same packing fraction. both (n) = p}. (the
average number in the central region V, ) and the variance
v={(n)yW =SV_/v are four times larger for the prolate
case. However, the normalized scattering cross sections
A = So/v« Sr (and particle volumes) are four times larger
for the oblate case. For special processes, the present isotrop-
ic results may be restricted to moderate values of w; with
increasing packing the particles may impede each others ro-
tational freedom. and transitions to aligned distributions
may arise. For such processes involving hard ellipsoids, al-
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FIG. 5. Peak location w. vs ¢, based on (54), corresponding to Fig. 3.
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though we expect S(c:e) and S, (1) to suffice for small and
large w, respectively. the transition region need not be uni-
form and could entail a phase change. [For spheroids aver-
aged over orientation within acoustically transparent
spheres* of radius 4¢” and volume v, we have A = S, (w.)o/
v, « S0°/v,, so that the scattering is sixteen times larger for
the oblate than for the prolate case. The present scattering
maxima A . ,and A. , are about 2.68 and 10.7 times larger
than the sphere constrained analogs. sud occur at w - about
72% of the sphere value.)

Although the derivation of £ and S as in (50) and (51)
is based on convex hard particles, the simplicity of the results
suggests heuristic applications to other cases for which no
closed forms in w aro available. Rigby'® used F of (50) and
Isihara's'® value for the nonconvex contact dumbbell
(b = 2a) with equivalent c as in (39), and reported satisfac-
tory accord with Monte Carlo computations. Similar accord
is shown between S of (51) for different values of ¢ <3 and
backscattering data'* for suspensions of particles under dif-
ferent flow conditions. We therefore consider S(c:*) for-
mally for all ¢ >0: In this range, S is nonsingular for all w, and
has a maximum S, <4/27 corresponding tow , <1/3 asin
(54)-(57). The bounds are attained for ¢ = 0, which repro-
duces S, of (26). (The range ¢ < Qis analyzed in the Appen-
dix.)

To display the dependence of w, and S, on ¢, we in-
clude two sets of examples, one for ¢>3, and the other for
35 ¢>0. Thus, covering the illustrations in (36) and (37),
and including (39) formally,

c=(8,7,6,54,3),
100w, ~(7.38,8.03,8.83,9.82,11.1,12.9),
100S ,, =(2.36,2.62,2.94,3.35.3.9.4.69),

(59)

where the final entries correspond to S,. The second set is
formal, with interpretations suggested by (41):
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¢=(2.52,15,1,05,0),

100w , = (14,15.5,17.4,20,24.2,3.33),

1008 ,, =(5.23,5.92,6.9,8.2,10.3,14.8),
where the final entries correspond to S,. The essential
aspects of the two sets, and of the general form S(cw) of
(51), change uniformly with ¢ in the range c>0.

For very large ¢, we havew , ~1/(c + 7). The general-
ization

w, ~[4+c+3c-D/Gd+e)] ! 61)
is within 29% of (54) for c>1. At ¢ = 1, we obtain a simple
polynomial for S,

(60)

c=1, w. =02, §. =0082, S=w(l—w)' (62)
For ¢ near O,
wa =(1 —¢+2c7)/3, (63)

and S reduces to the simple polynomial S, of (26) at ¢ = 0.

V. GENERALIZED TWO-DIMENSIONAL S

Boublik ' applied scaled particle theory” in terms of re-
sults for two different hard convex disks to obtain

I e e — Y/
E:.([l wic ‘.)/-]’ (64)
(L —w)-
From £’ = |/W, we construct
Steuw) = wh(cue) :—“(—]L (65)
I + (¢ - Duw

The present £ and S correspond to convex hard figures if
¢ -2asin (42), and reduce to the circle results £. and S, for
¢ =2 To O(u) we obtain (31) in terms of (42). At w
- 1/3,

S(e:1/3) = 8/27(2 + ¢) = 8o/ 27

exhibits the direct dependence on the exclusion region.
The fluctuation function is stationary (S = 0) if

(66)

e -Duw' 4w -1=0 (67)
and has a maximum §' . at

“_(C);(lwc)'tzz 1 68

He—1y 2+ ¢l +3¢)

Using

c=14+ (1 —duw. )/ (69)
we eliminate ¢ from §. = S(cuwe - ) to obtain

S, =3 (1l —w. ) (70)
The corresponding second derivative
ST = - (l—w.)Y[4+6(c—Du. |/

(1+(c—Duw.]= - 18w. (1 -2, ) (71)

is required for (30). See Figs. 7-10 for plots of all key aspects
of (65)-(70).

We can apply the above to any of the cases in (46) and
(48), e.g.. for elliptic cylinders with a/a’ = 4,

c=3728, w. =0.182, §, =0.0666, S” =~ --2.084.
(72)
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FIG. 7. The generalized two-dimensional fluctuation function Stcac) of
(65) with the parameter ¢ ranging from 0 (the highest curve) to 6 (the
lowest) in steps of 1. The darker curve (¢ = 2) is the same as S for hard
cireular cylinders (or aligned elliptic eyvlinders): the lower curves (¢ 2)
apply for (73), and the higher curves (¢« 2) for (74) with the highest
(¢ Mass§,.

The maximum for circles (or aligned ellipses*) as in (25) is
about 29% larger and occurs at a packing fraction about
18% larger. |For the constrained average over orientation
within acoustically transparent circles® of radius 4a” and vol-
ume v, we use S, of (25) and A = S.0/v;a S-(ws)e /v,
with ©, = 4v. The present scattering maximum A.
= 5. 0/v is about 3.1 times larger than for the circle con-
strained maximum, and occurs at 1 . about 85% of the cir-
cle value. ]
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FIG. 8. Peak S. vs ¢, based on (65) in terms of (68). corresponding to
Fig. 7.
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FIG. 9. Peak location - vs e based on (68), corresponding to Fig. 7.

We proceed as for (51) and consider (65) for all ¢2-0.
Thus. covering the illustrations in (46) and (48). and more
generally on a formal basis for ¢ > 2,

c=(7.6,543.2).
100w . =(1.49,15.7.16.7. 17.8, 19.4, 21.5). (73)
100§ . = (4.85.5.27,5.79, 6.44, 7.32, 8.56).

where the final entries correspond to S.. For 2> ¢30, for-
mally. with interpretations suggested by (49),

¢=(15,1,0.750.5,0.25.0),
100w , = (23, 25, 26.3, 27.9, 30.1, 33.3). (74)
100§ . =(9.42.10.5, 11.3,12.2, 13.3, 14.8).
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FIG 10.Peak S. vsw . (withcimplicit), based on (70), corresponding to

Fig. 7.
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where the final entries correspond to S|, as before for (60).
The essential aspects of the two sets, and of S(cy) of (65),
change uniformly with ¢ in the range ¢ 20. (See Appendix for
c<0.)

For very large ¢, we have w, ~ 1/y3c. More generally,
we use the complete form in (68), but approximations for ¢
near 1 and 0 are of interest. Thus, forc= 1,

wsy=[4+3c—1)/41". (75)
At ¢ = 1, we obtain the analog of (62),
c=1, w. =025 S, =0.105, S=w(l —w)'. (76)
For ¢ =0,

w, =(l —c/24 5¢/8)/3 (77)

and S reduces to S, at ¢ = 0.

APPENDIX

Forc<O,intermsof t=c—1andd= —1>0 (for
brevity). Sis singular at w, = 1/d. In three dimensions, E is
nondecreasing and S'is non-negative for all i, and we consid-
er the full range for insight. In two dimensions, £ decreases
and .S becomes negative for w > w,. and we restrict consider-
ation to w < wy,.

We rewrite the three-dimensional equation of state E of
(50) as

E=uw|[l +w—1)+uw =1+ D3/ —=w)'.
(Al)

which corresponds to hard convex particles for 1>2. Here,
1 =2 gives E, for spheres, and 1 = — 1 gives E, for the
bound ¢ = 0 considered in the text. The first two derivatives
with respect to w are
R <7 R
gt w)t

)

(1—-w)y W
(A2)
E" = 2@+ 1+l +me)y W
(1 —w)? w2’
If t> — 1, then E increases monotonically to « as u' in-
creasesto 1.If —r=d> 1thenatw, = — 1/r = 1/d there

is a point of inflection (E' = E" =0) for which £ = u/
3(1 —w) = 1/3(d — 1); however (for any real value of 7).
E cannot vanish for w > 0, and is nondecreasing for increas-
ing w. The point of inflection suggests a phase transition, and
the corresponding singularity of Wand S = wW at w, sug-
gests the critical region (infinite compressibility <).

The fluctuation function

S=wW=uw(l —u)/(l + tw)*
is stationary (S’ = 0) at
w, ={-G+n£[5+07+12]""}6r. (A4)

(A3)

Both roots are of interest for t = — d, as are both values of
ST =—(-wS+r+owy/+mw), w=w, .
(AS)

For all — 1 =d> 1, we see that S is singular at w, = 1/d,
and that as w increases past w, to unity, § decreases mono-
tonically to zero; we therefore need discuss only w < w,. The
square root in (A4) vanishes if — ¢ =d,=1.202; the asso-
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ciated stationary point w,= —(5+1)/61=2/
(5 —d,)=0.5266 is a point of inflection (§'=5"=0).
after which S increases to « atw, = 1/d,=0.832. Ifd > d,,,
then (A4) has no real roots, and § increases monotonically
from 0 to = asw increases fromOto w,. For 1 <d <4, both
roots of (A4) correspond to extrema (w, =w,,
w_ =w, ) with values satisfying w, <w, <w, = 1/d.
Thus, ifd = 1.2, then there is a local maximumatw , = 1/2
followed by a local minimum at w, = 1/1.8 and a singular-
ity at w, = 1/1.2. If d = 1.1, then w, =0.38, w, =0.81,
and w, =0.91. Ifd decreasesto 1, thenw ., decreasesto 1/3,
and w_ and w, approach 1; in the limit we obtain §, as
before.

The analogous two-dimensional £ of (64) in terms of
t=c—1,

E=w(2+ (- w)/2(1 —u). (A6)
corresponds to hard convex disks for - 1. Here, t = 1 gives
E.forcircles,andr = — Llgives E,asfor (A1). The first two

derivatives with respect to w are

E'=(l+nu)/(1 —uw)',

E"=3+1+2)/(1 —u)'. (A7)
However, although F increases monotonically to =« with
increasing w forr - — 1, the behavior for — ¢ =d > lisquite
different than for (Al). The present w, = 1/d = — /1

(corresponding to £ = 0, and E " negative) represents a lo-

cal maximum £ = d/2(d — 1)°; as w increases. E goes to

zeroatic = 2/(d + 1), and then approaches — = asuw—1,
The corresponding

S=w(l —-w)' /(1 + e (A8)
Is stationary at
w. o= -2+ (330t /3, (A9)
for which
S” = () (4 one)/ (1 ey, w=uw .
(A10)

For all —7=d > 1, we see that § is singular at w, = 1/d.
but that in distinction to (A3} the present function changes
sign for w > w, to approach 0 from - = we restrict consi-
deration to w < w,. The square root in (A9) vanishes at
—t=d,=4/3 and w, = 1/2 is a point of inflection after
which S increases to « atw, = 3/4. If d > 4/3. then (A9)
has no real roots and § increases monotonically from O to x
as w increases from 0 to w,. There are two roots for
led<d/3;eg.ifd=12thenw. =038, w. =0.73, and
w, =0.83. Ifd -1, then §—§, as before.
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