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Random distributions of correlated scatterers averaged over orientation are considered, r
corresponding to isotropic fluids of statistical mechanics particles (with volume v, number CIO
concentration p, and volume fraction w pv). For minimum separation of centers small 1"
compared to wavelength and acoustic particle parameters close to the embedding medium's, ( 4

the incoherent differential scattering from unit volume and the corresponding attenuation
N coefficient are proportional to the fluctuations (variance) in number concentration. For

C arbitrary convex hard particles (e.g., ovals or simple polyhedra, repulsive at contact) with
( shape parameter c>3, the variance is expressed in terms of a quotient S(c;w) of polynomials in

w that has a maximum S,, (c) at wl (c). Spheres (c = 3) were considered earlier. For c > 3,
the fluctuations ard S6 and wt are smaller than for spheres; for c < 3 (which we consider

1 formally), they are larger thandor spheres. The results are interpreted by comparing leading
terms with the second virial coefficients for more general statistical mechanics models.

' Scattering data for suspensions of discoidal red blood cells versus w under different flow
conditions can be fitted adequately by S(c;w) for different values of c< 3. The low values of c
suggest weaker repulsion between deformable cells, and attractive interparticle forces mediated
by flow and aggregative trends.

PACS numbers: 43.80.Cs, 43.20.Fn "-
=V1RIBUTION STAITEM' A~
Approved for public releas*z

Disnoutcn UrAt=ted

INTRODUCTION inverting data showing a peak at 0 < to , < 1/3 to obtain an

Earlier papers'" analyzed the average field in random effective c(w^ ). For c > 3, we expect the upper bound on u,

distributions of correlated scatterers corresponding to fluids to be less than for spheres ( =0.63).

of hard statistical mechanics particles (with volume v, For a hard sphere, the cocentered exclusion volume

number concentration p, and volume fraction w = pc). The (that excludes all other sphere centers) equals 8v. The aver-

low-frequency scattering and the corresponding attenuation age exclusion volume for hard (repulsive at contact) convex

depend on the fluctuations (variance) in number concentra- particles' is v, (c) = 2(c + l)v, and for c> 3 the fluctu-

tion. Using the scaled particle' approximate equation of ations are smaller because v, > 81, (less elbow room); this

state E. we expressed the variance in terms ofa simple quo- also holds for nonconvex bodies' 2 " with aneffectivec>3. If

tient S(u') of polynomials that vanishes at the extremes of u'. we use the form v, (c) for c < 3, we may interpret the larger

For spheres' (as well as aligned ellipsoids), S(ta) has a max- fluctuations in terms of an effective u, < 8v arising from ad-

imum S. zO 4 7 at w, ZO. 129. Now we consider a gener- ditional neighbors at small separations; comparison of lead-

alization S(c:u') for isotropic fluids of nonspherical particles ing terms with the second virial coefficients 4 for nonhard

averaged over orientation, with c as a parameter. For arbi- particles suggests attractive weakly repulsive models.

trary convex particles (such that a line segment connecting Values of v,. > 8v with effective c > 3 do not imply con-

any two points in v is wholly within ), c is determined by the vexity; see Isihara's results' 2 for nonconvex particles formed

volume, surface, and average over angles of the mean of the from two hard spheres. Although the work by Gibbons' is

principal radii of curvature. " For such cases, Gibbons'' based on convex particles, Rigby 3 found adequate accord

applied scaled particle theory in terms of Isihara's' results between E(c) for the nonconvex tangent dumbbell' - and

for two different convex particles to obtain E(c), which we Monte Carlo computations. Similar accord is shown

use to construct S(c;w). between S(c;w) for different values ofc - 3 and reduced ul-

Convex hard particles require c)3, with c = 3 as the trasonic backscattering data" versus w for suspensions of

special case of spheres, and c > 3 as a nonsphericity param- discoidal red blood cells under different flow conditions

eter. For c > 3, we show that S, and w , are smaller than for (stationary or stirred, or in uniform or turbulent flow). The

spheres. We also consider 3 > c;,0 formally, in which range lower effective c values suggest weaker repulsion between

they are larger: 0.047 <S, 5 0. 148 and 0.129:5 w , <0.333. the cells (flexible deformable biconcave discoids), and at-

(The Appendix analyzes E and S for c <0.) The behavior of tractive interparticle forces mediated by flow and aggrega-

S(c;w) is uniform in w for all c>0, and its simplicity suggests tive trends; values nearer 3 may arise from flow alignment.
Although additional factors may be involved, comparisons

Work supported in part by the Office of Naval Research and the Natioial with available data' indicate utility of S(c;w) for other than
Science Foundation. hard convex particles.
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For minimum separation (b) of particle centers small If the center of the obstacle is at r, with respect to the
compared to wavelength (ir2/k) and acoustic particle pa- phaseorigin (r = 0), then we replace u(r) by u(r - r, )e"-%.

rameters close to the embedding medium's, scattering For large r>r,, we have !r - r, I =r- i-r,, and
aspects are particularly simple. The fluctuation function S - .r, )e = u,&,--f( ,l1)e' k  i "(e'r ) (7
and the isolated particle scattering (total and differential) u(r - r,)e =u,,b,-f(Pk)e' (e /r), (7)
ai.a absorption cross sections suffice for the coherent attenu- where (b, e'' is the phase factor introduced by the inci-
ation coefficient, and for the incoherent scattering from unit dent wave.
volume (except for translational and transducer factors). For a configuration of N obstacles in a volume V, the
Although the required forms can be obtained by simplifying multiple scattered solution has the form "

earlier results, key steps of direct derivations are included to
facilitate applications and indicate limitations. We also con- F = ,+ Y U, (r - r,). (8)
sider the analogous two-dimensional problem of parallel cyl- I
inders and obtain the corresponding S(c;w) by using a The multiple scattered contribution of the sth obstacle U,
scaled convex disk'" E(c); these results also apply for mono- may be expressed functionally in terms of the single scat-
layers' of bounded particles. The one-dimensional and the tered amplitudes of all obstacles and the configurational
lattice gas forms of S are included for comparison. For all variables (locations, orientations, etc.). Multiplying TF by an
cases, the function E corresponds to the equation of state appropriate probability distribution function and integrat-
times v (which leads to simpler forms), but we use no special ing over all variables, we write the average wave (the coher-
label for the normalized version. ent field) as

I. SCATTERING ASPECTS (0) = + (U,). (9)

We consider a plane wave 6e The difference of the average of I T- and the coherent inten-

6 = e"". k-r = krk4r = kr cos 0 = kz, (1) sity I (T') 2 is the incoherent scattered intensity

incident on an acoustically penetrable obstacle of volume t, 1= (TI1J 2) - (1)
with center at r = 0 (the phase origin taken as the center of
the smallest sphere enclosing ). The corresponding solution U, 2) + - (U,)Z(U1)). (10)
of Helmholtz's equation exterior to v has the form d, = (b + u I
with u as the scattered wave. For large kr, For present purposes, we need consider only I explicitly.

u (r) r,(2) We replace U, in (10) by the single scattered wave u, 6,
with implicit averages over orientation, etc. Thus the single

where f(U'l) is the conventionally normalized scattering summation reduces to fdr, p with p = N/V as the average
amplitude for directions of incidence k and observation i. number of particles in unit volume for the homogeneous
The energy transferred via interference of 6 and u is repre- cases of interest. The double summation reduces to
sented by p2fdr, fdr, g( r, - r, I) with p2g as the pair distribution

Imflk,k)4,-r/k a o,, + or,, function averaged over orientation. In terms of R = r, - r,
(3) for the separation of centers, we recast the integral over r, as

f an integral over R, and use g(R) 1 for even moderately
o- = !f(k) -" dfl() =Jo (rL)d[ largeR. We restrict r, to a relatively small central region V,.

of V, a region containing the average number (n) = p V,. of
where,, irradiated and detected particles, and work with the farfield
cross section, and a(ilk) = MAf(1) 12 is the differential scat- frm an ()the resul

tering cross section. form as in (7). The result
The obstacle is specified by two relative acoustic param- I(i,1) = p V j f(j,k) " 2W(r,k )/r-,

eters C'and B', such that f'- = C'/B'with 7y' as the relative (11)
index of refraction in v. For the simplest cases, C' is the W(i,k) = I +p [g(R) - l]e ' " - Ar)R dR
relative compressibility and I/B' the relative mass density; f
more generally, the parameters are complex with Im C' > 0 is a standard form for x-ray scattering by dense gases or
and [m B' < 0 to account for absorption. For small C' - I liquids."'" The function W(P,k) is the statistical mechanics
and B' - 1, and largest diameter (2a) small compared to structure factor, and g - I is the total correlation function.
wavelength, we use Rayleigh's form' 7  For minimum separation of centers small compared to

f(i,k) [C' - I - (B - ) -lk]k 2v/4r (4) wavelength (small kb), to lowest order in k,

for arbitrary shaped v. To lowest orders in k, from (3), l(,l) = a (,) V, /r, (12)

o = (lmC'+ limB')kv, (5) A(?,k)-par(i,k)W, W= I +p[g(R) - 1]dR,

(,k) = IC' - I - (B' - I)(P.k)1 2k 4 V2116 2 ,  
f

where W is the low-frequency limit of the structure factor.-- (I C' - I1- + IB' - 112/3)k4 2/4", (6) The corresponding attenuation of the coherent intensity
where or, follows by integration, essentially as in Rayleigh's I ( (z)) 12 C(z) for single path propagation of ('F) in V
developments. " may be obtained by Rayleigh's procedure" for the ideal gas
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case. Thus, from ( 12), the net incoherent scattering from the with K as Boltzmann's constant, Tas absolute temperature,
particles in unit volume is as isothermal compressibility, and p as fluid pressure. The

final equality relates W to a derivative of the equation of state
A(ik)df = pW, -A,, (13) p/KT = E /v. Using the scaled particle' forms of E for hard

spheres, circular cylinders, and slabs (E, with i = 3, 2, and
and the energy they absorb equals 1),

Y = poI. (14) w(1 + w + w) I w
The sum )E , - E,- I(1er 0- w), (1 O - ~ -U,

r=I'+A,=p(9,, +a,W) (15) (22)

provides the attenuation coefficient for the coherent intensi- it follows from w - pv and dE/dw = I/W that
ty in the form dC(z)/dz = - rC(z), from which (I - u) 4  (I - I)

C(z) = e - for C(O) = 1. See Ref. 2 for full development W ( = T ' - = ( I u)
of (().23)

The following is not restricted to three-dimensional (23)

forms of W and the single particle scattering functions in Form E, is the exact Tonks' equation of state, and E, was
(6). Analogs for two-dimensional cases of normal incidence rederived by 2' Wertheim and by Thiele from the Percus-
on parallel cylinders are based on Yevick integral equation forg. The result W, follows directly

a(7(.k) - C'- 1 - (B' - I )4k 'k iiz/8. by integrating4 the Zernicke-Prins g, and both W, and W,
(16) also follow from the Percus-Yevick equation.

, (,C' - 1- B" - 1-/2)k 'v'/4. The packing functions W(w) decrease monotonically
wNhich represent cross sections per unit length wkith c as an from unity to zero as it increases from zero to unity. How-
area. Similarly for one-dimensional problems of normal inci- ever, as emphasized before,' the fluctuation functions
dence on parallel slabs. S(O ') i, W(O) vanish at the extremes ofu' and have a max-

ar(.lk) = C' - I - (B' I )i.k 'k t-/4. imum S. (w,) at it = u', corresponding to dS/aa'
(17) =S'=0andS"= - S" Thusor,= C ' 1_ I - B' - I "-)k '-12.

which represent cross sections per unit area with i' as slab S, I
thickness, here only i - k (backscattering) and i = k (I + 2u) 2 (
(forward scattering) apply. The corresponding absorption iv, = [(73)' - 71/12&0.129. S. z0.0469:
cross sections (per unit length or unit area) are given by (5) u,( I- )
in terms of the present i's. S, 1 +

w. = (7"' - 2)/3 z0.215, S. 0.0856:
II. STATISTICAL ASPECTS S, I - w), w, = 1/3 . S. = 4/27 =0148.

The differential incoherent scattering and the attenu- (26)
ation via scattering are governed by the form See Fig. I for plots versus w. Although we may consider the

A =pWO, = Sa/1' S = iW. U' =pi'. (18) full range 0u,v I for some purposes, the upper bound is

where a is either the differential or total scattering cross physically realizable only for slabs. For spheres and cylin-
section. and i is the volume fraction occupied by particles. ders we use the experimental values for densest random
The packing function W, determined in (12) by the integral packing~w,,, U 0.63andiv,, z0.84 (correspondingtoamor-
of the correlation function g - 1, is proportional to the2' phous solids). By geometry. the results for spheres also ap-
variance v (the mean-square deviation) of the number n of ply for aligned ellipsoids, and the results for circular cylin-
particles in V, . ders also apply for aligned elliptic cylinders.4

In addition to the above cases i = (3,2.1). we also
v = ((n-- (n))) = (n 2)- (n) 2 = (n)W. (19) showed ' that the symmetrical function S = ( I -w)

Thus which arose in an earlier development22 could be derived

S = wW =v/V = ((nW) - ) . (20) from the scaled particle' E for a random lattice gas: (27)
E,,= - In( I-wu), Wi,=lI- w; (27)V

henceforth the fluctuation function, is proportional to the S,, = w( I - w), w, = 1/2. S, = 1/4. (28)
mean-square fluctuation in the number of particles around
the mean (n) =pV,.. Shape is not specified, and u' = I is realizable for special

Under appropriate conditions, a distribution of particles processes and compliant particles that pack to fill all space.'
may be regarded as a large scale fluid. The variance v, and Since S, is not a special case of the closed forms derived in
therefore W, can then be related to statistical thermodynam- Secs. IV and V, it still serves for less correlated contexts.22

-

ical functions by (See Fig. 2.)
The fluctuation function determines the behavior of A

_pKT = KT(-P-" = w, (21) vs w, but the total attenuation r involves an additional term if
(n) \ap W, absorption is present. We rewrite (15) as2 '
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where, corresponding to i = (3, 2, 1, 0), the second deriva-

0 / tive IS, I = IS" (w, ) approximates or equals (2.84, 2.21,

//2, 2). Thus absorption shifts the maximum of r to larger w.
/ Because 6 is small, it follows that for sparse concentrations

/ \the attenuation is dominated by scattering losses. However,
/\ since W decreases with increasing w, there is a value w = w,
/ determined W(w, ) = 3 for which absorption and scattering7 losses contribute equally to the attenuation and Lr' = 20. w,;
7 for w > u),, absorption dominates. On the other hand, if 6 is

/ \not small, then there is in general no maximum of r with
/ \variation of w. If 3> 1, then absorption dominates the at-

tenuation foi- all w.

t/ \

III. SECOND VIRIAL COEFFICIENT

" ,To facilitate derivation and interpretation of the gener-
alizations of S given in the next sections, we consider the

2 leading terms of the expansions of E and W in powers of p
2 C. 4 C.6 0 .8 (virial series4). An ideal gas distribution corresponds to

E = pi and W = I (as well asv= (n) and S -i w). The first
FIG. 1 Plots of the fluctuation functions S of (24)-(26) %ersus solume departures from the ideal gas values are proportional to the
fractioti the highest. central, and Iow est cur% es are S,. S,. and S,. respec-

tivel... (See Fig. 21 of Ref. 7 for comparison of's, w ith analogs we derised second virial coefficient 4 B.,
from other mode. ) In order to show complete curve shapes (here. as well E, /t, = p + pB2 + , W, I - p2B +"
as in all subsequent graphs ersus vi. the full range .i Is displa~ed. but (31)
[he phsicall realizable upper bound for i- is smaller in general. 2B. =v..

with t, = 2't', and v, = 074a'1/3. 7ra, 2a, v). The second
term of W, for i = (3. 2, 1 ) also follows directly from (12)

V7 = 1711 - a ,S(tu) = [5tc + S(1c) la,. 5 = a,,/r,. by using the hole approximation for the radial distribution

(29) function: g(R) = 0 for R <b, and g(R) = I for R -b, with

The occurrence of a maximum - at iu, -- depends on the b = 2a as the minimum separation of particle centers.

magnitude of6 and the requirements it - i' < iv,. For The size of the normalized exclusion volume r,/t,

small 6. to first order in small terms, = 2' = (8, 4, 2, 1 ) determines the departure from the ideal
gas results. Although (31 ) is restricted in general to small w,

I-r Zou. S a, S i, Z u,. + or, /a, S > . comparison with S, shows that as v,. Iv, increases, the fluctu-

(30) ations decrease for all w (less available space); the peak S,
decreases and its location u,, shifts to smaller values
(sparser concentrations). As the ratio ',. /v, doubles in size,
the ratios ofajacent pairs ofS, , values (0.55,0.57, 0.5,1) and
of adjacent pairs of w, , values (0.60, 0.645, 0.67) are of the

7order of half. Thus the second virial coefficient B, not only
./ indicates nonideal gas behavior at small iv, but also supports

// major trends of the maximum fluctuations S, and of their
locations w . The generalizations of S derived in subse-

0 quent sections exhibit similar relations with B..
Th- exact second virial coefficient B. for an isotropic gas

ofL ': "to, - convex hard particles was derived by Isihara,'

/ who.i , ,ined the exclusion volume of a fixed particle by/
/ moving ,,iother in contact around it at fixed relative orienta-

/ tion, and then averaging over orientation. The resulting
averge exclusion region v,. = 2B 2 equals

v, =2(v + sT) =2v( + c),
ST, ) ( 32 )

C C 2c= , + r
C V 87"

C.2 C.4 0.6 0.8 1 with v and s as the volume and surface area of the particle,~and as the average over all angles of the mean of the parti-

FIG. 2. Plots of the ideal gas function S = w (the diagonal line), of the cle's principal radii of curvature (ro + r/2. For spheres.

lanice gas S, (the simple parabola) of (28), and of the set shown in Fig. I to
delineatetherelativescalesofthefluctuationeffectsandtheirdecreasewith c = 3 and t, = 8t, as before; for all other bounded convex
increasing exclusion volume (decreasing elbow room). particles, c > 3 and v, > 8v. Isihara's result for t,,, (and for the
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average exclusion volume for two different convex particles) hara I obtained the exact B, for the infinite set of nonconvex
was obtained independently by Hadwiger," and their publi- hard particles (dumbbells) formed from two identical
cations and those of Kihara"' provide additional relations spheres for all values of the center separation b > 0. (Only
and various illustrations. the degenerate case b = 0 for a single sphere corresponds to a

The nonsphericity parameter c > 3 in (32) does not rep- convex particle, c = 3.) From his results, 2 we write
resent a unique shape. For example, for spheroids (both ob- b/a = (0,1,2,3,4,.cj, c= (3,3.329,4.444,6.031,6.8,7),
late and prolate), lsihara' obtained the single form (3Q)

b/a 4, c=7- 16(a/b)2/5.
3( sin c,) I- - 

_ ln2 l + f]
-1 s - In The parameter c increases smoothly from the lower bound 3

4- C\ I L fX c (I e )1 to the upper bound 7 (for which each dumbbell reduces to
a," 1 (-.(3",two independent spheres).

We can obtain effective values c < 3 (as well as c > 3)

from (38) by comparison with forms of B, for more general
with a and a' as the largest and smallest semidiameters. Thus models than hard particles. Although hard particles exert no
for the same value of a'/a, both the oblate and the prolate forces on each other except repulsion at contact (pair poten-
shapes give the same value for c (corresponding essentially tial infinite for R-,b, and zero for R > b), other statistical
to an interchange of the forms s and 7. and using the appro- mechanics models"4 include attractive forces for small sepa-
priate 's). For near spheres, a za', and' lo ration (square well potential, negative for b<R -Ab), as

c z 3 -r 4(e -+- e")/15. (34) well as longer range weaker repulsion and smoother attrac-

For near disks and near needles. a> a'. and tion (Lennard-Jones potential, etc.). Analogs for the pres-
ent development can be based on the integral in (12) with

c - 3/4 -, 3ala'8 (35) g(R) independent ofp. In particular. the square well poten-

is N ithin 4c of (33) for a/a' > 3. In this range, c increases tial corresponds to supplementing the hole approximation.

linearly with a/a', in accord with Isihara's almost linear discussed after (31), with g(R) -- 1 = r for b < R .lb

cure based on (33). From the complete form (33), we have (representing additional neighbors at small separation) to

a/a' - (0.5,4.3,2.1.5). construct

cz (7.65.6.55.5.48.4.45.3.54.3.18), (36) 2B, = 2'T', [I - (.4'- 1)F,], i= (32.1). (40)

\, here c decreases to the sphere value 3 for a/a' - 1. For F, = 0. we have 2' ', as before: we may also obtain the

For nonsmooth con,ex particles, from Hadwiger s" val- lattice gas result by using.4 = 2 and F, 1/2'. For spheres.

ties (of i. v. and ) for the regular polyhedra ofj faces, we from (40) and (38),

co ,trLCt -2BI 8r1 -1 (,' - 1)F] 2c( - c)

j - (4.6.8.12.20). cz (6.7.4.5,4.32,3.56,3 45). (37) c= 3 - 4(.4 - I F. (41)

The Iala-xst c corresponds to tetrahedra; the progression so that. e.g., if .4 - 2. then c (2.1.0) corresponds to
through cubes. octahedra, dodecahedra, ends with icosahe- ?8F 1.2.3). etc. The size of F can be related to an effec-
dra with c only 15%- larger than for spheres. tive interparticle attractive potential, and the size of.4 to the

It is clear that the value of the nonsphericity parameter range over which it acts. (Changing the sign of F yields c 3

for an) particular polyhedron can be matched by that for a corresponding to fewer neighbors and repulsion for

phcrod pair. Thus the tetrahedron value cz6.7 corre- b < R 4b.n) Equation (41) serves br interpretation, but no

sponds to spheroids with a/u z 5.14: the markedly jagged b < R S io (41ilabe rves o el.

poly hedron is equivalent to a markedly flattened or elongat- closed form of S is available for this model.

ed spheroid, and all three shapes yield I',/I= 15.4, about
twice the value for spheres. [The closed form S of the next v. = 2' - s = '(2 + c), c = sr/t = s 127-r
section shows that the corresponding values of SA and wA (42)

are of the order of half the sphere values, as may be inferred s f- r dO 2,-T

from the discussion following (31 ). ] This aspect is stressed
to indicate the limitations ofc as a shape parameter: we may area (or volume per unit

invert data in order to obtain c from measurements of B, for length), . as the length of the perimeter, and i as the average

particles having the same volume v, but more than c is re- of the radius of curvature (r I). For circles. c = 2 and

quired to determine particle shape. For that matter, an effec- v,, = 41% for all other two-dimensional convex hard figures,

tive c -, 3 isolated by measurements need not correspond to a c > 2 and t,,. > 4v. As before, a particular value of c does not

convex particle (or to a hard particle). represent a unique shape.

Existing results for B, for other than hard convex parti- For ellipses,

cles, 1: -14 can be written formally as f/s
c = (Sa/a'ir-) / 2-, 1 - c' - -sin'0) "-d0, (43)

B, = v,./2=v(c+ 1) (38)

to obtain associated values ofv, and c. Although c = si/v; 3 with / as the complete elliptic integral of the second kind.

is an exact relation for convex hard particles, an effective For near circles,

c> 3 in (38) does not imply convexity. In particular, Isi- c z (2a/a')(1 - c2/2 - C4/32). (44)
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and, for near strips,

c:z(8a/a'ir2 ){l + [ln(4a/a') - l](a'/a)}, a a'. (45)

From (43), the values for a set of ellipses

a/a' = (6,5,4,3,2,1.5), (46) /
c= (5.24,4.47,3.73,3.07,2.38,2.13),

decrease to the circl value c = 2 for a/a' = I.

For nonsmooth shapes, we consider j-sided regular
polygons in terms of i /

c = (2j/n)tan(irrj), (47) /
and obtain "o\ \

j = (3.4,5,6,8,12), (48)

c: (3.31,2.55,2.31,2.2.2.11,2.05).

The triangle value cz 3.3 also arises for the ellipse with a/ -
a'z 3.45: the corresponding v,. /v 5.3 is about 33% larger c;

than for circles. c. 2 c. 4 c.6 0.8
From (38) and (40). the two-dimensional square well

analog of (41) is FIG. 3 Plots of the generalized three-dimensional fluctuation function

2B, = 4t'[ 1 - (A - 1) r I = v(2 + c), S(c:u,) of(51 ) with the parameterc ranging from 0 (the highest curve) to 8
(49) (the lowest) in steps of 1. The darker curve (c - 3) is the same as S, for

c = 2 - 4(A - -- ) r hard spheres (or aligned ellipsoids): the lower curves (c , 3) apply for

(59). and the higher curves (c< 3) for (60) with the highest (c 0) as S,
so that. e.g.. if .4 =2. then c (1.0) corresponds to The maxima (the peaks S. )and their locations (u, ) (in the u- scale are
12F - ( 1.2 ). etc. plotted in Figs. 4-6.

IV. GENERALIZED THREE-DIMENSIONAL S

Gibbons ' applied scaled particle theory" in terms of
Isihara's result' for the average exclusion volume for two
different particles to obtain S =vu, I - it, I - 3u'/4 (56)

E= u[l -U'(C - 2) -4- u( 1 - c + c/3)]/t 1 '), solely in terms of its location on the volume fraction axis. Weinclude

(50) d S(c;v)

From dE/du' = E' = I/ W, we construct S ---- du,2

S(C;-) = u'(c;ti)') 4  (51) (1 - .)[ 5 + (c - +)(1 +6i'. )S~~t') tLI' [1i' )+(c -,] = - ______________________

1+ (C - l) 1 "
The present E and S correspond to convex hard particles if
c,, 3 as in (32). and reduce to the sphere results E, and S, for (I +3u,, )2(I +6u,. - l5u. ) (57)

c = 3. To Ot't) we obtain (31) in terms of (32). At u, 81w.
= 1/2. to facilitate applications of (30). See Figs. 3-6 for plots of all

S(c;1/2) = I/8(c + 1)= (/t',. )-/2 (52) key aspects of (51)-(56).

exhibits the direct dependence on the normalized exclusion We can apply the above to all convex hard particles.
volume. including the spheroids and polyhedra considered in (36)Tflumn fand (37), subject only to the restrictions of the scaled parti-

The fluctuation funtio 0 u ' is stationcle development. For example, for spheroids with a/a' = 4,
3(c .- I )uw: + (4 - c)u - 1 = 0 (53)

cZ5.47 8, u,,, z0.0932, S, -0.0314. S':, z - 3.14.
corresponding to dS/dw = S' = 0, and has a maximum (58)
S(c;u'. ) at

(4 +The maximum for spheres as in (24) is about 50% larger
w, (c) = + ) and occurs at a packing fraction about 38% larger; the pres-

6(c - 1) ent - S' is about 10% larger than the sphere value 2.84.
2 As indicated in Sec. I1l, the differences arise from the larger

4 + c + (4 + 20c + c2)'' 2  (54) size ofthe exclusion volume for spheroids averaged over ort-
From (53) we also have entation: The present v,./v z 13 is about 62% larger than 8

for spheres, and there is less room for fluctuations. As men-
c = I + (I - 5w, )/, (I + 3w,) (55) tioned after (26), the sphere form S, also holds for aligned

and eliminate c from S(c u', ) = S, to express the maxi- ellipsoids; thus the above also serves for comparisons of
mum aligned and randomly oriented spheroids.
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FIG 4. Peak S. v, c, based on (51) in terms of (54). corresponding to FIG. 6. Peak S. vs i. (with c rmplicit). based on (56). corresponding to

Fig. 3. Fig. 3.

Although S(c:i,) has the same value for both the oblate though we expect S(c:w) and S ( w) to suffice for small and
(4. 4. 1 )a' and prolate (4, 1. 1 )a' cases for given w, the large w. respectively, the transition region need not be uni-
prolate corresponds to four times as many particles in unit form and could entail a phase change. [For spheroids aver-
volume: forthesamepackingfraction. both (n) =pV,. (the aged over orientation within acoustically transparent
average number in the central region V, ) and the variance spheres of radius 4a'and volume u,. we have A = S,(w, )or/
v (n) W = SV /t are four times larger for the prolate 1,,1x S,"-/2v. so that the scattering is sixteen times larger for
case. However, the normalized scattering cross sections the oblate than for the prolate case. The present scattering
A -- So/ cc Sc (and particle volumes) are four times larger maxima A , and A. , are about 2.68 and 10.7 times larger
for the oblate case. For special processes. the present isotrop- than the sphere constrained analogs. aiid occur at w. about
ic results may be restricted to moderate values of w; with 72% of the sphere value. ]
increasing packing the particles may impede each others ro- Although the derivation of E and S as in (50) and (51)
tational freedom, and transitions to aligned distributions is based on convex hard particles, the simplicity ofthe results
may arise. For such processes involving hard ellipsoids, al- suggests heuristic applications to other cases for which no

closed forms in u' aro available. Rigby'" used E of (50) and
Isihara's' - value for the nonconvex contact dumbbell
(b = 2a) with equivalent c as in (39), and reported satisfac-
tory accord with Monte Carlo computations. Similar accord
is shown between S of (51 ) for different values of c < 3 and

backscattering data" for suspensions of particles under dif-
ferent flow conditions. We therefore consider S(c:,:'. for-

I 'mally for all c 0: In this range, S is nonsingular for all W, and
has a maximum S, 4/27 corresponding to u,, < 1/3 as in

S \ (54)-(57) The bounds are attained for c = 0, which repro-
d duces S, of (26). (The range c < 0 is analyzed in the Appen-

\ dix.)
:r To display the dependence of w , and S, on c, we in-

clude two sets of examples, one for c>3, and the other for
3 >c>O. Thus, covering the illustrations in (36) and (37),
and including (39) formally,

c; c = (8,7,6,5,4,3),
o 100a,, z (7.38,8.03,8.83,9.82,11.I,12.9), (59)

Ii F

2 4 6 8 to 100S, (2.36,2.62,2.94,3.35.3.9,4.69),

where the final entries correspond to S,. The second set is
FIG 5. Peak location u,. vs c. based on (54). corresponiding to Fig. 3. formal, with interpretations suggested by (41 ):
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c = (2.5,2,1.5,1,0.5,0),

100w ^ (14,15.5,17.4,20,24.2,3.33), (60) C -

100S, :z (5.23,5.92,6.9,8.2,10.3,14.8),/

where the final entries correspond to S,. The essential -
aspects of the two sets, and of the general form S(c;w) of
(51), change uniformly with c in the range c>0. ;

For very large c, we have w - l/(c + 7). The general- /

ization

it,, -[4+c+3(c- 1)/(4+c)] (61) ,

is within 2% of (54) for c) 1. At c = I, we obtain a simple . / x.

polynomial for S. 5 -, \ \\

c= 1, . = 0.2, S. =0.082, S=u(1 -w) 4 . (62)

For e near 0.

. ( - c + 2c')/3, (63) ...

and S reduces to the simple polynomial S, of (26) at c = 0. C.2 2.4 C.6 0.8

V. GENERALIZED TWO-DIMENSIONAL S FIG. 7. The generalized two-dimensional fluctuation function S( u' of

Boublik'" applied scaled particle theory' in terms of re- (65) with the parametei c ranging from 0 (the highest cure) to 0 (the
suits for two different hard convex disks to obtain loV.cst) in steps )f !. The darker cure (c 2) is the same asS. for hard

circular c3lIinder, (or aligned elliptic cylinder%): the Iow% er cur%.es (c .2)
w[ -I r(C -- 2)/21 apply for (73). and the higher curses (c- 2) for (74) wNth the highe,t

E (64) ( o) asS'.
(I - ') -

From E' -/ f", we construct

S(c:u') = = Wlc:) - I - i')) (65) The maximum for circles (or aligned ellipses4 ) as in (25) is
I - (C - I )w about 29% larger and occurs at a packing fraction about

The present E and S correspond to convex hard figures if 18% larger. I For the constrained average over orientation

c 2 as in (42). and reduce to the circle results E. and S. for within acoustically transparent circles' of radius 4a' and vol-

c -- 2. To O(u') we obtain (31) in terms of (42). At i, ume v,, we use S, of (25) and A = Sa/. c, S.tw)t,/c.

1/3, with v,= 4u. The present scattering maximum A
= S. or/t, is about 3.1 times larger than for the circle con-

S( c:I/13) 1- 8/2712 - c = 8/c. 27 (66) strained maximum, and occurs at i'. about 85% of the cir-
exhibits the direct dependence on the exclusion region. cle value. ]

The fluctuation function is stationary (S' - 0) if

3(c - I )tc r 4u' - 1 0 (67)

and has a maximum S. at U

ti. (C)= 1 3c) 2 -2 . I (68)

3(c - I) 2 +- . -4c)

c - I + (I -- 4 . )/3u' (69)
we eliminate c from S, = S(c:w, ) to obtain U

\ \

S. -3 i( I - t,. ). (70) CE
L.

The corresponding second derivative a-
S" = (I -,. )v 14 -6(c - I w / I/-

[I 4 (c - )u = - 18w, (I - 2w, (71)

is required for (30). See Figs. 7- 10 for plots ofall key aspects
of (65)-(70).C

We can apply the above to any of the cases in (46) and T ,
(48). e.g.. for elliptic cylinders with ala' = 4, 0 2 4 6 8 10

c=3.7 2. t'. -0.182. S, z0.0666, S,", -- 2.084.
FIG. 8. Peak S. vs c, based on (65) in terms of (68). corresponding to

(72) Fig. 7.
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where the final entries correspond to S, as before for (60).
The essential aspects of the two sets, and of S(c;i,) of (65),
change uniformly with c in the range c-0. (See Appendix for
c <0.)

For very large c, we have w,- I / 3c. More generally,
-o we use the complete form in (68), but approximations for c

near I and 0 are of interest. Thus, for c z 1,

aw z[4 + 3(c - 1)/41 . (75)

i,_ Ll At c 1, we obtain the analog of (62).M2 7
C c= 1. w, =0.25, S. z0.105, S=u'(I -u). (76)

For c;z0,

w, ( - c/2 + 5c2/8)/3 (77)

and S reduces to S, at c = 0.

I T APPENDIX
2 4 6 6 1

For c<0, in terms oft=c- I and d= -t>0 (for
brevity). S is singular at t, = l/d. In three dimensions, E is

I
, 

Q teak Ilo'ation w c. baed on ( 68 . correspondig to Fig. 7 nondecreasing and Sis non-negative for all w. and we consid-
er the full range for insight. In two dimensions, E decreases

We proceed as for (51) and consider (65) for all c ,0. and Sbecomes negative for it> u,,,, and we restrict consider-
Thus. covering the illustrations in (46) and (48). and more ation to it, < ita.
generally on a formal basis for c > 2, We rewrite the three-dimensional equation of state E of

c = (7.6.5.4.3.2). (50) as

lOOu, (1.49, 15.7. 16.7. 17.8, 19.4, 21.5). (73) E 1 + u'( - 1) + 02(t i -+ I)/3]/( i ,

100S. z(4.85. 5.27, 5.79, 6.44, 7.32. 8.56). (Al
which corresponds to hard convex particles for t 2. Here,

where the final entries correspond to S. For 2 > c0, for- w2ive forres ad ies for tHe
mall. wth nterrettios sugesed y- ' 41),t = 2 gives E, for spheres, and t = - I gives E, for the

mall,,. with interpretations suggested by (49), bound c = 0 considered in the text. The first two derivatives

c= (1.5, 1, 0.75. 0.5, 0.25. 0), with respect to t are

100wi z(23, 25, 26.3, 27.9. 30.1, 33.3), (74) E' -(I + W- I

100S. Z( 9 .4 2 , 10.5, 11.3, 12.2, 13.3, 14.8). (1 - w)4  W(

E" 2(2 +t+tu,)(l +tw) W'2
(I - ) 5  W2

If t> - 1, then E increases monotonically to oc as u, in-
.2 ,/ creases to 1. If - t = d> I then at u,, = - I/t = I/d there

/ is a point of inflection (E' = E" = 0) for which E = w/
/ 3(1 - u') = 1/3(d - I ); however (for any real value oft).

/ E cannot vanish for it > 0, and is nondecreasing for increas-
ing w. The point of inflection suggests a phase transition, and- / the corresponding singularity of Wand S = i W at iv, sug-

/ gests the critical region (infinite compressibility Z).
/ The fluctuation function

U.o / S = wW= u,(1 - u,) 4/(l +tw) (A3)

is stationary (S' = 0) at
/v , ={ (- (5+t +± [(5+/1)2 + 12t ':"'}/61t. (A4)

/ Both roots are of interest fort - d, as are both values of
/S' -- w)'(5W+t +6tw)/(lI twu)', u = u,,

/ (A5)
PeS i00 0 :5 0.2C 025 c.30 0.35 For all - = d > 1, we see that S is singular at i', = I/d.

W 9T z-EPK and that as u, increases past Ud to unity, S decreases mono-
FIG 10)PeakS. vs Owithcimplicit),basedon(70),corrcspondingto tonically to zero: we therefore need discuss only i' < it,,. The
Fig. 7 square root in (A4) vanishes if - I = doz 1.202; the asso-
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