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1. INTRODUCTION
2

Let Z1, Z2,..., Z. be a random sample of size n from the logistic L(O,-) population

with probability density function
f*(z) = e-z/(1+e-Z) 2, - < z <in, (1.1)

and cumulative distribution function

F *(z) = 1/(1 + e"z), i < z < w. (1.2)

Let ZI:n _ Z2 :n . Zn:n denote the order statistics obtained by arranging the above

sample in increasing order of magnitude. Then the density function of Zi:n (1_in) is

given by 4'

f i = i n! 1* ii 1 1- F (zi)} i

.-.<zi<®,  (1.3)

d 0
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and the joint density function of Zi:n and Zj:n (l<&) is given by

n! 1 - -- , jfij:n(Zi,Zj) = ,il)!(ji -1)!(n-j! F (zi)) IF (zj)-F (zi) I 1-FI(z)

f (zi)f (Z), --u<zi<zj<x. (1.4)

Let us now denote the single moments E(zin) by ai(k) for 1<in, k>1, and the product

moments E(Zi Z. ) by a! . for 1<i<jn. For convenience, let us also denote E(Zi:n)
imn Jn i,j:n -(in

by a i:n and E(Z2 .) by *,i'n for 1(i~n. Further, let us denote Cov(Zi:nZ* ) by fin
-~ -:n byJin ~j:n by01,,j:n

Order statistics Zi:n and their moments have been studied in great detail by several

authors including Birnbaum and Dudman (1963), Gupta and Shah (1965), Tarter and

Clark (1965), Shah (1966, 1970), Gupta et al. (1967), Malik (1980), George and Rousseau

(1987), and Balakrishnan and Malik (1990). Birnbaum and Dudman (1963) derived

explicit expression for the cumulants of order statistics and tabulated the means and

standard deviations for sample sizes up to ten and for some large sample sizes as well.

They then summarized these quantities in graphs to facilitate interpolation to other

sample sizes. Gupta and Shah (1965) derived exact expressions for the moments of order

statistics in terms of Bernoulli and Stirling numbers of first kind and used them to

tabulate the first four moments for sample sizes up to ten. They also expressed the

cumulants in terms of polygamma functions, as was originally pointed out by Plackett

(1958). It should be mentioned here that Plackett (1958) used these explicit expressions

of the moments of logistic order statistics to develop a method of approximating the

moments of order statistics from an arbitrary continuous distribution. Distribution of the

sample range has been studied by Gupta and Shah (1965) who also provided a short table

of its percentage points for n=2 and 3. By generalizing this result, Malik (1980) derived

the exact formula for the cumulative distribution function of the rth quasi-range, viz.,
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Zn-r:n-Zr~l:n for r=0, 1 ..... , [V]. In an independent study, Tarter and Clark (1965)

reproduced some of the results of Gupta and Shah (1965) and then studied the

distribution of the sample median in detail. George and Rousseau (1987) recently

examined the distribution of the sample midrange, viz., (Zl:n+Zn:n)/2 , and established

several relationships in distribution between the midrange and sample median of the

logistic and Laplace random variables. A series expression for the covariance of two order

statistics has been provided by both Gupta and Shah (1965) and Tarter and Clark (1965).

Shah (1966) tabulated the covariances for sample sizes up to ten and Gupta, Qureishi and

Shah (1967) extended this table for sample sizes up to twenty five. It should be

mentioned here, however, that by means of some recurrence formulas Kjelsberg (1962)

had already derived exact numerical results for the covariances from samples of size five

or less.

By using the fact that f (z) and F (z) given in Eqs. (1.1) and (1.2) satisfy the

relation

i*()= F *(z){1-F *(z)), (1.5)

Shah (1966, 1970) established several recurrence relations satisfied by the single and the

product moments of order statistics. Recently, Balakrishnan and V-tik (1990) prepared

tables of means, variances and covariances for sample sizes up to 'I "'- oy applying these

relations in a simple and systematic recursive way. Some of the results in the references

cited above have also been summarized in a review article by Malik (1985).

The truncated logistic distribution plays a role in a variety of applications, as has

been mentioned by Kjelsberg (1962). Order statistics and their moments from a general

truncated logistic distribution have been studied by Tarter (1966). He derived exact and

explicit expressions for the means, variances and covariances of order statistics in terms
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of a finite series involving logarithms and dilogarithms of the constants of truncation. By

following the lines of Shah (1966, 1970), Balakrishnan and Joshi (1983 a,b) established

several recurrence relations satisfied by the single and the product moments of order

statistics from a symmetrically truncated logistic distribution. Then, Balakrishnan and

Kocherlakota (1986) generalized these results to the doubly truncated logistic distribution

and displayed that these recurrence relations could be used systematically in order to

evaluate the means, variances and covariances of all order statistics for all sample sizes.

In this paper we present a detailed discussion of order statistics from the logistic

distribution and some of their properties. In Section 2 we give the percentage points and

modes of order statistics. In Section 3 we derive exact and explicit expressions for the

single and the product moments of order statistics. These work in terms of gamma

function and its successive derivatives. In Section 4 we present some recurrence relations

satisfied by the single and the product moments of order statistics which would enable

one to compute the means, variances and covariances in a simple recursive way. The

distribution function of the sample range, as derived by Gupta and Shah (1965), is

presented in Section 5 and the distribution of the rt h quasi-range derived by Malik

(1980) is also given here for the sake of completeness. In Section 6 we give some relations

between moments for the case of the doubly truncated logistic distribution that are due

to Balakrishnan and Kocherlakota (1986). In Section 7 we present details of tables that

are available in this context. Finally, in Section 8 we describe Plackett's (1958) method

of approximating the moments of order statistics from an arbitrary continuous

distribution by using the moments of logistic order statistics.

2. PERCENTAGE POINTS AND MODES

The distribution function of ZI:n is given by

*n
Fl:n(zl) = 1-1-Fz(,i) . (2.1)
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From (2.1) we obtain the 100a percentage point of Zi:n to be

Z 1 () = ta1i-{i-a)9/n} - £n(l-a)1In ,O<a<l. (2.2)

Next, the distribution function of Z,: is given by

* rsin

Fn:n(zn) = I~F (z,)J (2.3)

From (2.3) we obtain the 100a percentage point of Zn:n to be

Zn:n(a) = &(a1/n) - &(1 al 1 ), O<a'zl. (2.4)

Similarly, the distribution function of Zj:, (2<i~n-1) is given by

Fi:n(zi) = I* (in-i+1)

FF (zn)

-Bin1) .f U - (1-U)n-i dui. (2.5)
0

Now, let Ba(i,n-i+1) denote the 100a percentage point of the Beta(i,n.-i+l) distribution.

From (2.5) we then have the 100a percentage point of Zi:n (2(i~n-1) to be

Zi:n(a) -= & Ba(i,n-i+1) - &f{1-Ba(i~n-i+1)}, O<a<i. (2.6)
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By using the symmetric relation satisfied by the incomplete beta functions, we observe

from Eqs. (2.2), (2.4) and (2.6) that the 100a percentage point of Zi:n is simply the

negative of 100(1-a) percentage point of Zni+l:n. While the percentage points of ZI:n

and Zn:n may be obtained easily from (2.2) and (2.4), respectively, the percentage points

of Zi:n for 2_in-1 may be obtained from (2.6) either by using the extensive tables of

incomplete beta function prepared by Karl Pearson (1934) and Pearson and Hartley

(1970) or by using the algorithm given by Cran, Martin and Thomas (1977). Gupta and

Shah (1965) have tabulated some percentage points of all order statistics for sample sizes

up to 10 and some selected order statistics for sample sizes up to 25.

Next, by differentiating the density function of Zi:n in (1.3) with respect to zi and

using the relation in (1.5), we get

dfi : n(zi )  n! j ilr . -ir•
dz i  -1 n--i)! I F (zi) /  I 1- F (zi) i- ( n + l )F (zi)"

(2.7)

Upon equating (2.7) to zero and solving for zi, we obtain the mode of Zi:n (li~n) to be

In  -&i(n-4+1) - £n (pi/%), (2.8)

where pi=l-qi=i/(n+l). Due to the symmetry of the logistic distribution, we observe

once again that the mode of Zi:n is simply negative of the mode of Z,-4+1:, .
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3. MOMENTS AND CUMULANTS

From (1.3) we have the moment generating function of Zi:n (1<i<n) to be

Mi:n(t) = EletZi:n

= 
+ 1( n-i+l ) i.+tz

( )n+l-

= B(i+t,n-i+l-t)/B(i,n-i+l)

=r(i+t) r(n--i+1l-t)(31 (3.1)

where B(.,.) and r(.) are the usual complete beta and gamma functions, respectively. An
*

alternate expression of Mi :n(t) involving Bernoulli numbers and Stirling numbers of first

kind has been given by Gupta and Shah (1965). From the expression of the moment

generating function in (3.1), we obtain the following:

ai:n= E(Zi:n) = 0(i)- o(n-i+l1), (3.2)

i:n -(:n) - 0(i) + 0(n-i+l)-+-{t(i) - in-i+l)}, (3.3)

and

=i,i:n = Var(Zi:n) = ib'(i) + 0.'(n-i+1), (3.4)

where

and

,(Z) = d &r(z) = r,, (z )
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are the digsmma and trigamma functions, respectively. Thus, from Eqs. (3.2) - (3.4),

one may compute the means and variances of order statistics either by using the

extensive tables of digamma and trigamma functions prepared by Davis (1935) and

Abramowitz and Stegun (1965) or by using the algorithms given by Bernardo (1976) and

Schneider (1978). Gupta and Shah (1965) have given exact expressions for the first four

moments of order statistics for sample sizes up to 10 and the values of mean and variance

have been tabulated recently by Balakrishnan and Malik (1990) for sample sizes up to 50.

We may note here that the moment generating function in (3.1) may be used to obtain

higher order single moments also by involving polygamma functions.

From (3.1) we get the cumulant generating function of Zi:n (l<in) to be

Ki:n(t) i:n(t)

- n r(i+t) + en r(n-i+1-t) - n r(i) --n l(n-i+l). (3.5)

From (3.5) we obtain the kth cumulant of Zi:n (1<i<n) to be

(k) - dk r +t + dk & e (n-i+l-t)

- O(k-1)(i) + (_1)k O(k-1)(n-i+l), (3.6)

where
dk

0(k-1)(z) = t nr(z) for k=1,2,...,

and

*(,(z z)= 4iWz



It is clear from (3.6) that for k=1,2,...,

*(2k-1) *(2k-1)
i:n n-i+l:n (3.7)

and
*(2k) *(2k) (3.8)
i:n = ,n-i+ln" 

81:

These may also be observed simply by using the symmetry of the logistic distribution.

By applying the series expansions for 1 (z) and o(k-1)(z) given by

t=l

and

(k-1)(z)= (_l)k(kl)! 1 1 k2,
(+_l)k _

(+ 1

we obtain from (3.6) that for n-i+1>i

i:n i 1- + + .... + (3.9)

and

*(k)=f (_l)k(k_l)!{ I kI

1 (/+i-1)k + (-
1)k -L }. (3.10)l~~~_ (I~n._~

The above formulae for the first four cumulants were originally given by Plackett (1958).

From (3.9) we get

+ +:n -
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which was also given by Gumbel (1958). The exact and explicit expression for the

cumulants of logistic order statistica given in Eqs. (3.9) and (3.10) will later be used in

Section 8 for developing some series approximations for the moments of order statistics

from an arbitrary continuous distribution.

From the joint density of Zi:n and Zj:n (1i<j<n) in (1.4), we have the joint

moment generating function of Zi:n and Zj:n to be

* =Ee t 1iZi:n+t2 Zj n
Mi,j:n(tllt2) = i

n! Ze t 1z i+t2zj F * (i1

IF(zj) - F (z )I I {1F(z)

f (zi) f (zj) dzi dzj. (3.11)

Making the transformations

u-F (zi)= 1 and v=F (z)I

1+e 1+e-Z

and thence, noting that

z i u z j=_
1 - and e _-v

Pe



we can rewrite Eq. (3.11) as

l v t! t

0 0 (1-u) 21-

S(v-u)' 1 (i-v)n-J du dv.

By expanding (1-u) as an infinite series in powers of u, we obtain

M.. = n! (t 1 -04(1  1 v
l,j:n(tlvt2) =i)(1!WJ

t-=0 0 0

t +i-1+t 1 n-j-t2

u 1 (v-u)j-i- v 2(1_v) 2du dv, (3.12)

where

(ti +1-i)(4 = 1 if 1---0

= t1 (t+1) .. (t1 +1-1) if 151.

By noting that

fu' + du =v ~ B(t +i+1,j-)1
0

we may rewrite Eq. (3.12) as
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*n! w(t 1+-1)( 0

Mij.n(tllt2 ) =(ril)!iTi-=j7! -I--t-- B(t 1 +i+4-i)

J v *j+1+2+1- (1-v)- -2 dv

0

niI!pJ~ T B(t +i+L i-i)

B(j+t 1 +t2 +t4n-j -t2 + 1)

a(t +1-]1) r(t +i+t)

1'(t1+t2 +j+i)rJ(n-j+1-t2) (3.13)
F(U+1+t 1 +t)

From the above expression for the joint moment generating function of Zi:n and ZJ:nl one

can obtain the product moments as folows:

a (k~k) EZk1  k2  a 8lk * '

01  t 2
2

(3.14)
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The case k1=k2 =1 is of particular importance and, in this case, we get

a,j:n = '(j) + { i)- 0(n+l {.j) - 0(n-j+l)l

+ I "'+'-1)({j+ - n-j+l)} (3.15)

1=l (n+I)M

Shah (1966) tabulated the covariances of order statistics for sample sizes up to ten

while Gupta, Qureishi and Shah (1967) extended up to 25. Recently, Balakrishnan and

Malik (1990) provided tables of means, variances and covariances for sample sizes 50 and

less. It should also be mentioned here that Balakrishnan and Leung (1988 a,b) derived

series expressions similar to the ones given in Eqs. (3.2)-(3.4) and (3.15) for the single

and the product moments of order statistics from a generalized logistic distribution and

provided tables of means, variances and covariances for sample sizes up to 15.

4. RECURRENCE RELATIONS FOR MOMENTS

In this section we shall present some recurrence relations satisfied by the single and

the product moments that were established by Shah (1966, 1970) and show that one may

evaluate these moments for all order statistics from all sample sizes in a simple and

systematic recursive marnaeL.

Relation 4.1: For n1 and k=0,1,2,...,

a*(k+l) a *(k+l) k+1 a*(k) (4.1)1:n+l 1:n n 1:n

with a*(0) 1 for n=1,2 .....1:n
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E f. From (1.3) we have for n>1 and k>O

U

a*k = -n J zk {1F(z)} - f*(z) dz. (4.2)

By using the relation (1.5) in Eq. (4.2), we get

a *(k = n cc zk F *(z) {1-F*(z)}Udz

which, upon integrating by parts, yields

*(k) - n z k+1 F*()-F ()n- f *(z)dz
'1:n ETT [fj Fzj1F )J f()d

- z k+l {1-F*(z)}n f*(z) dz]

--W

n _*(k+l) _*(k+l)

+kl al:n -al:n+l 1

The recurrence relation in (4.1) is obtained by rewriting the above equation.

Relation 4.2: For 1<i<n and k=0,1,2 ......

a*(k+l) - a*(k+l) (k+ n+l a(k) (4.3)
i+1: n+1 ai:n+1 I i(n-1+ i:n 
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Eif. From (1.3) we have for 1<i<n and kM0

a*(k) n! aD k{F *(z)} 1-F *(z) n-- *(zd
a*(k) _ n! k i-

i:n - (i-1)(n--i)! Z Fzf*()

(4.4)

By using the relation (1.5) in Eq. (4.4), we get

a*(k) n! k IF*(z)l 11-F*(z)} dzi:n - (i-l)!(n-i)!J2{Fz {F()

which, upon integrating by parts, yields

•n -(i-(n-i)!(k-1) [(n-i+) J zk l {F*(z)} 1-F*(z) ( f*(z)dz
-M

-i j zk+ l {F*(z)} 1F(z)} l  f*Z)dz]

-0

i(n-i+l) a*(k+l) -*(k+l)}(k+l)(n+l) 1 !+1: n+1 Ui:n+l "

The recurrence relation in (4.3) follows by rewriting the above equation.

With the values of aG(j) (j=1,2,...,k) known, one may be able to use Relations 4.1

and 4.2 in a simple recursive way to compute the first k single moments of all order

statistics from all sample sizes. Thus, for example, by starting with the values of

a1:)-O and 1(12)-2/3, one may employ Relations 4.1 and 4.2 to evaluate the first
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two single moments and, thence, the variances of all order statistics from all sample sizes

in a simple and systematic recursive process. These computations may be checked by

using the identities (David, 1981, p. 39; Arnold and Balakrishnan, 1989, p. 6)

n

Sc ( j )  = n q), j=1,2,...; (4.5)i=0

see also Balakrishnan and Malik (1986).

Relation 4.3: For 1<i<n-1,

*2)+n+l 1 *(2) 1

*(ii+):n+ = a + n i i,i+l:n i:n_ ai:n. (4.6)

Pro. For lin-1, we may write from (1.4) that

aI:n = E(Zi:n Z0 + l :n)

- (1)(n--1)! z1 {F(zl)} f*(zl) K(zl) dzl, (4.7)

where
® r • n-i-l

K(zl) = I 1-F (z2 )I f*(z 2 ) dz2  (4.8)

zI
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By using the relation (1.5) in Eq. (4.8) and integrating by parts, we get

K(z) = l-F*( l) ' ni + 1F*(z n-i+1

W rn-i-i *

+ (n-i) J z2 I1 -F(z 2 )} f (z2 ) dz2
zi

- (n-i+1) z2 I1-F*(z2 )} f*(z2)dz2
zi

Upon substituting the above expression of K(zl) in (4.7) and simplifying the resulting

equation, we get

_ (_ 2) (n-i) (n-i+l) *(2)*i:n .nioi, (n+l) ai:n+l

+ (n-i* N (n-i+ln+

(n-i)ai0+I:n - (nl) ii+l:n+l"

The recurrence relation in (4.6) follows by rewriting the above equation.

Relation 4.4: For lin-1,

* (2)  n+l *n(2)  (4.9)ai+1 2n+2:n+1 m 2:n+l + MIT i+l:n + aii+l:n i+l:n (4
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roof. For 1<i<n-1, we may write from (1.4) that

*0

ai+l:n = E(Zi:n Zi+1:n)

n!n-i-

(i-1) !(nf-i-1)! J 2 
I -F*(z 2 )J f (z2 ) K(s 2 ) dz2'

(4.10)

where

K(z 2 ) =J I F (Zl) f*(zl)dz (4.11)

By using the relation (1.5) in Eq. (4.11) and integrating by parts, we get

K(z 2 ) - z2 {F *(z2 ) - z2 F*(z2 )}

-i f2s, {F(, 1 )} f(z,) dz1

z2
+ (i+1) ,i {F(zl)) f(zl) dz1

Upon substituting the above expression of K(z 2 ) in (4.10) and simplifying the resulting

equation, we get

ti~l a *(2) i(i+ *(2)
i+:n - i+1:n (n+ 1 ) i+2:n+l

i(i+1)2:
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The recurrence relation in (4.9) is obtained by rewriting the above equation.

In particular, by setting i=n-1 in Relation 4.4 we get for n2

** (2) +n+1 1 * * *

an,n+l:n+1 n+l:n+1 n n-T an:n + n-l,n:n - Cnn.

It should be mentioned here that the recurrence relations in (4.6) and (4.12) are

sufficient for the evaluation of all the product moments of order statistics from all sample

* 2
sizes. By starting with the result that a1, 2 :2 =a 1 :1=O (Govindarajulu, 1963; Joshi, 1971),

the recurrence relations in (4.6) and (4.12) will enable one to compute all the immediate

upper-diagonal product moments aii+l:n (li_(n-1) for all sample sizes in a simple

recursive way. All the remaining product moments, viz., a i j :, for 1<-i<jn and j-i_2,

may be determined systematically by employing the well-known recurrence relation

(David, 1981, p. 48; Arnold and Balakrishnan, 1989, p.10)

(i-l)ai,j:n + (J-i)ail,j:n + (n-j+l)aiil,j l:n = nailn I

(4.13)

that is true for any arbitrary distribution. These computations may then be checked by

using the identity (David, 1981, p. 39; Arnold and Balakrishnan, 1989, p. 10)

n-1 n
n *2 (4.14)

S ai,j:n = ( 2 )a 1 :1 ;

i=1 j=i+l

see also Balakrishnan Pd Malik (1986).
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By proceeding on similar lines, we may also establish the following recurrence

relations.

Relation 4.5: For 1i<jn and j-i>2,

n+ I ai~~ * 1iJl n _ a~i,j:n+l "- 0ij-1:n+1 n-j + - a . - .

(4.15)

Relation 4.6: For Wi<jn and j-i>2,

* * n+.11 * * * 1
i+l,j+l:n+l - i+2,j+l:n+l + -+ I "j:n i,j:n- i+l,j:n"

It should be pointed out here that one may employ Relations 4.5 and 4.6 to

determine all the product moments other than the immediate upper-diagonal product

moments, viz., aij:n for 1<i<jn and j-i2, instead of the recurrence relation in (4.13).

5. DISTRIBUTIONS OF SOME SYSTEMATIC STATISTICS

In this section we first present the distribution of the sample range as derived by

Gupta and Shah (1965). Then, we give the expression of the distribution of the rth

quasi-range derived by Malik (1980).

Let us denote the sample range Zn:n - ZI:n by Wn . The cumulative distribution

function of Wn can be written down as (David, 1981, p. 12)

Pr(Wn5w) = n J {F*(z+w) - Ff (} z)dz, O<w<. (5.1)
n-
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Expanding the term {F (z+w) - F*(z)} binomially, we get from (5.1) that

U-1Ilk

Pr(Wn _w) =n I (_I) k (nkl) J {F*(z+w)} l  {F(z)} f (z)dz
k=O -

n-1 -Z
= n I (_l)k (nl) e (zk+2 (5.2)

k=O k ~--W+ewe-)f1k (1+-)

By substituting u=1/(1+e"We z ) in the integral in (5.2), we get

n-1
Pr(Wn_(W) = n H) (.)k (nkl) e- ( k+ l )w Ak,n(W), Ow<,, (5.3)

k=O

where, with a = e-W-l,

I

Ak'n(w) = Un-1 (i+au)-k- 2 du

n-1
-_ ( n-) &(l+a) + (-1)1 (n i) U£_kIl{(+a)k-li}]

t=01jk+l

n-I
I [(_,)k (n-) w + () (n -(-k-l)w

(=0

I#k+l

(5.4)
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In the expression of Akfl(w) in (5.4), (n-) should be set to zero if - -n-2. By

substituting the expression of Ak,n(w) in (5.4) into Eq. (5.3), we derive the cumulative

distribution function of the sample range Wn as

n-1

Pr(Wn5w) l n (_I)k (nkl)[(-l)k (n-- e-(k+l)w
n 1ew)k=0 +

n-I

+ ( 1 )I (ni1) .-7-1w - e(k+1)w}], Ow<w.
1=0

tI#k+l

(5.5)

In particular, for n=2 and 3, we obtain from (5.5) that

Pr(W2 <w) = {I - e 2w - 2we'w}/(1-.e7W)2 (5.6)

and

Pr(W3 5w) = {1+9---e-2we-W4weW(l+e-W)}/(l--e-w)3. (5.7)

Gupta and Shah (1965) tabulated the probability integrals of the range for n=2 and 3

from (5.6) and (5.7), repsectively.

By differentiating the distribution function of the sample range in (5.5) with respect

to w, we derive the density function of the sample range Wn as
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f (w) n 2 ew n- (1 k(1)1(~ ~ ) we-(k+i)w
n (1--e~n k=0

n-i

+ (_,)1(14) 7rUe'w - e-(k+i)w]
1=0

I#k+i

n-i

+ 1 I (-1)k (11-1 r* 1)k (n-) e-(k+i)wl-klw
(1.w)nk.O L k+i

n-i

- & -)-(&i 4 {f.**W(k+i)e-**k+i)w] 0 W<w,'
1=0

I4k+i
(5.8)

where, as before, (k+,) should be set to zero if k>n-2.

Proceeding exactly on similar lines, Malik (1980) derived the cumulative

distribution function of the rt quasi-range W nr =Z n-:n - Z r+i:n (=i..[j])to be

2 r -k
r H1 (n-i) n-2 r+k-1

Pr(Wr w) = i=O [ (_i)J rn-2r+ki1] e- r+j+i)w
r ! r(r-k)! J

k=O [ =0

r-k + 1r-k

1~-)n+ + 1 (1 )r+j [n-r+k+ 1-i
_,-wn rt r+j+i

+ Ij (-i)m [n-r+k+t-i] e rnrr-i-)w-i]

m# r+j+i

05W<OD,(5.9)
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where [n-r+j+ - should be set to zero if j>n-2r+k+1-2. The distribution function ofrj+1'
the sample range in (5.8) may be derived as a special case from (5.9) by setting r=O.

6. RESULTS FOR TRUNCATED DISTRIBUTIONS

In this section we start with order statistics from a doubly truncated logistic

distribution and present the results of Balakrishnan and Joshi (1983 a) and Balakrishnan

and Kocherlakota (1986). In addition to generalizing the relations given in Section 4,

these results will enable one to evaluate the single and the product moments of all order

statistics from all sample sizes in a simple recursive manner.

Let Zl:n < .... <Zn:n be order statistics from a random sample of size n from a

doubly truncated logistic distribution with probability density function

S1 6-Z  %
f**() [ '= 0l~e")2 'Q-z<-P1

f**(z) = - Q) (1+e) (6.1)

0 ,otherwise

and cumulative distribution function

F*(z) - 1+ {+..z Q}, Q1 zP 1, (6.2)

where Q and 1-P are the proportions of truncation on the left and the right of the

standard logistic density function in (1.1). Under this notation,

QI=& I P1-- & , (6.3)
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and let

Q2 =  -, p 2 = PI-P)- (6.4)

From (6.1) and (6.2) we observe the relations

f (z) = (1-2Q)F**(z) - (P-Q)(F**(z)} 2 +Q2' (6.5)

f (z) = (2P-1){1-F (z)} - (P-Q)1-F (z)} 2 + P21 (6.6)

and

f ** (Z) = (2P-1)F**(z){1-F**(z)) + (P+Q-1){1-F**(z)} 2 + P2 .

(6.7)

*k a:*k) 1inklanthprdc
Let us now denote the single moments E(Z i :n) by 01i (lin,k_1) and the product

moments i:nZj:n) by ai j:n (_i<jn). For convenience, let us also use ai :n for
a*.(') and .. for i:.n2 Then, these moments satisfy the following recurrence1 n d ai ,i:n for n

relations.

Relation 6.1: For k=0,1,2,...,

a**(k+l) = Qk+1 + 1 D fk+1 - Qk+1l + (2P-l){ a*(k+l)_ Qk+1l
1:21- 1k + q 21 1 ] • (.1:1 81
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Prof. For k>O, let us consider

1:1 = zk f (z) dz.

Upon using (6.6) in the above equation and then integrating by parts, we get

=**(k) -(c2P-l){ak+. )_ Qk+1} - (P..)){ *(k+l)_ Qk+1}

+ P{pk+I- Qk+1}] (6.9)

The recurrence relation in (6.8) follows by rewriting Eq. (6.9).

Relation 6.2: For k=0,1,2 .... I

**(k+l) = pk+l- 1 ' [ k+1 - Q k+ + (1-2Q){Pk+1 - a **(k+l)

- (k+l)a**(k)] (6.10)

Proof. For k_>0, let us consider

* * ( k)  zk f**(z) dz.'1:1



-27-

Upon using (6.5) in the above equation and then integrating by parts, we get

a *c): 1 = 1l - Qk+1} + (1-2Q){Pk+1 -a **(k+l)1

- (P-Q){1 :+ *Tk++)}] . (6.11)

The recurrence relation in (6.10) is obtained by rewriting Eq. (6.11).

Relation 6.3: For n>2 and k=0,1,2,...,

S**(k+l) = Qk+l 1 p **(k+l)_ Qk+ + ) Qk+l
1:n+l1 1 '- p 2 11:n-1 + l 1:n

k+la**(k)] (6.12)

Prof. For n2 and k>0, let us consider

k) = nr'zk {1 - F(z)l f (z) dz.
1:n

"1

Upon using (6.6) in the above equation and then integrating by parts, we get

*(k)  p **(k+l) Qk+1} + (2 P1){1**(k+l)_ Qk+l}
1 n [ -21 1:n1 -a 2{-. 1 Qk+1(

_ p. a'** (k +1)\, 1:n1 _ Qk+l}1 (6.13)
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The recurrence relation in (6.12) follows by rewriting Eq. (6.13).

Relation 6.4: For k=0,1,2, .... I

**(k+l) **(k+1)+ 3 [D I~k+1 _a**(k+l)l +P 1**(k+l) _ a**(k+l)I
:3 C'1:3 P1 ' 2l1 - al:1 J + -:2 1:2 J

_ .k+1 **(k)] (6.14)
" 02:2 J

.rQg. For k>O, let us consider

P1

Upon using (6.6) in the above equation and then integrating by parts, we get

=*k 1 [(2P-1){ *(k+1) -**(k+ 1)} (~ **(k+l) _ a **k+l)}

+ 2P2 {pk+l - a* k+I)}] (6.15)

21 1: 11:3 1

The recurrence relation in (6.14) is obtained by rewriting Eq. (6.15).

Relation 6.5: For n3 and k=0,1,2 ......

**(k-l) **(k-l) -+- n+'l f2 **(k''l) **(k+l) 2P-1
*2:n+ 1 - l:n- a2: - l:n-1 -n

(*(kl) **(kl) k1 **(k) (6.16){ n"~k1 -1:n}I - n(n-I)j02 nj (6.16
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Ptg For 0 3 and k>O, let us consider

** )= n(n-i) PIzk F ** (z) {1-F (z)}n- f **(z) dz

Upon using (6.6) in the above equation and then integrating by parts, we get

*(k) =n-1 [(2P 1){c4*(k+l) -**(k+ 1)} _ (p_.)n{ 4*(k+l) - *kl

+ P2 4 k1 -~ +} .l ~ (6.17)

The recurrence relation in (6.16) follows by rewriting Eq. (6.17).

Relation 6.6: For 2<i~n-1 and k=0,1,2..

** (k+1)= n+1 [ k+1 a*(k) nPl2  { *(k+) **(k+l~

- n4Q(n+1)(P+Q-1) - i(2P-1)} ain~

+ (+ ic ~)].(6.18)
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EM For 2<i~n-I and W , let us consider

*(k) _ n! I k IF*(z~li- I -F*(z~jnl f**()

Upon using (6.7) in the above equation and then integrating by parts, we get

() 1 ri ~.i 2-)I**(k+1) _ 1kl
1F- * + 1~~ 2i:n+1

-(n-i+l)(n-i+2)f+, l **kl_**(kl
n+L %fi:n+ 1 i-i: n-i1

+nP2 {a *(k+1) - **(k+1)ll(-9

If we now use the well-known relation (David, 1981, p. 46; Arnold and Balakrishnan,

1989, p. 6)

in (6.19) and simplify the resulting equation, we derive the recurrence relation in (6.18).

Rilaio .7: For 0 2 and k=0,1,2..

an+1 = n+ -(TF$!ij [(k+1)an:ink nP2{P I -i -i1

- n1if(n+1)(P+Q-1) - n(2P-.1)} a*k+l)

+ (k . (6.20)
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Proof. For n 2 and k>0, let us consider

=- nzk {F(z)} f(z) d

Upon using (6.7) in the above equation and then integrating by parts, we get

**-(k) 1 [rn (2P-1) f **(k+1) _**(k+1)
n:n -TT an+ nl:n+l-an:n+1 I

+ 2 P+Q-1){a92**(k+) **(k+l)+ I-.-p n:n+l an-l: n-11

+ nP2{Pk+l _ (6.21)2 -an- : n-l1 (.1

If we now use the well-known relation (David, 1981, p. 46; Arnold and Balakrishnan,

1989, p. 6)

2f**(k+l) _a**(k+l) =(If)**(k+l) **(k+l)l

an: n+ 1 n-1: n-1 - an:n+1 -an-l: nj

in (6.21) and simplify the resulting equation, we derive the recurrence relation in (6.20).

By starting with the values of 4'*j) (j=1,2 .....,k), one can employ Relations

6.1 - 6.7 in a simple and systematic recursive way to compute the first k single moments

of all order statistics from all sample sizes for any choice of Q and P.

We may also establish the following recurrence relations satisfied by the product

moments of order statistics.
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Rlti _.: We have

** **(2 ) + 3 r [1**( a 2)1
a, = a: + 2 P 2 1Pla:) -

+ (2P-1){a;' 2:2 - a**(2)}- a;l)] . (6.22)

Proof. Let us start with

a** (1) EZ* Z*0
1:2 1 E1:2 2:2)

= 1 2 z1 f (l) K(zl) dzl, (6.23)

1

where
P 1*

K(zl) = J f (z2 ) dz2 . (6.24)
z 1

Upon using (6.6) in (6.24) and integrating by parts, we get

K(zl) =(2P-1) z 2 f **(z2) dzi2 ' - z 1 -F (l)1

z 1

+ " 2 P1  
I  f *, **2

-( P -- ) 2 2  I'-F **(z )1 * (z2) dz2 - l -F ( l I

zI

+ P 2 (Pl -Zl)"
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Upon substituting the above expression of K(z1) in (6.23) and simplifying the resulting

equation, we derive the recurrence relation in (6.22).

Relatio 6-: We have

****(2) + 3 rc(i **(2) _ l**(141

2,33= c~3:3 + (P L'2:2 -&%l4: - iilJ

- (1-2Q){c4( 2 ) - 22](6.25)

EMI Let us start with

c'2: E 1 :2 Z2:2)

= 2 Z2 f**(z 2) K(z2) dz2' (6.26)

where

K(z2) = f**() dzj . (6.27)

Upon using (6.5) in (6.27) and integrating by parts, we get

K(z2) (1-2Q+{ 2 F *(z 2 ) 2 ,f* '(zl) dz1}

-(P-Q)[z 2{IF **(z 2)12 -2 2 z1 F (z,) f**(zl) dz1]

+ Q2 (z2-Ql)'
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Upon substituting the above expression of K(z 2 ) in (6.26) and simplifying the resulting

equation, we derive the recurrence relation in (6.25).

Rel.aion.10: For 1_in-2,

**(2) + l1 [,n **a nQ 4P2ai ,ilnl ** ( 2 ) )
li ,i+l:n+l i :n+l + (n--4+1 ) (IP-.q-Q i *,- Ci:n-lJ

(2P-1)ai i+1: - - a n)] "  (6.28)

Pro. For 1<i(n-2, let us consider

a **(I) E(* *0
:n = E(Zi:n zi+l:n)

n! P1 * i-1 **(, zldj

= (i-1)!(n---1)! Sl {F (s1 )} f (il) K(Zl) din1,

(6.29)

where
il • * _ n--i

K(zl) = IJ{F  (z2 ) I  f**(z2) dz2 . (6.30)
z I



- 35 -

Upon using (6.6) in (6.30) and integrating by parts, we get

K(zl) = (2P-1) [(n....)j 22 {l-F*(z 2 )}n f41 (z() dz2 - zl {1-F(zl)}]
zi1

-(P-Q) [(n-i+1)J z 2 I'F*(z2 )}n f (z2) dz2 - zl {l-F(z)}]
z 1

n -- 2 n-i-i]+ 2 [(n-i-1)J z2 {1-F*(z 2 )}n f*() dz2 - zl {1-F*(zl)}n
2 1

Upon substituting the above expression of K(z1) in (6.29) and simplifying the resulting

equation, we derive the recurrence relation in (6.28).

Reation.11: For 0-2,

**= **(2) {~ 1I[T *a(1 *4(2)
On-in~n = *n-1: n+1 +2(P4=J lnl2lrl n-1:n-1 -n-1:n-1j

+ 2 - la:in:n - i } I -:n (6.31)

&zgi. For n02, let us consider

= E(Zn z: *0~n

C'n-1:~n- n *nn:n

= n(n-1) P Z, {F*(zl)}n f**(zl) K(z1 ) dzl, (6.32)
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where

P1

K(zl) - Jlf*() dz2 . (6.33)

z1

Upon using (6.6) in (6.33) and integrating by parts, we get

P

K(z) = (2P-1)I z2 f (z2) dz2 - z1 {l-F (zl)}]

zI

- (P-Q) [21lz2 {I-F (22) ** (z2) dz2  {1-F (Z)}]

z1

+ P2 (P1 - Zl)"

Upon substituting the above expression of K(zl) in (6.32) and simplifying the resulting

equation, we derive the recurrence relation in (6.31).

Relation 6.12: For n2,

** (2) + n+ **(1) n **(2) *

*2,3:n+1 = 3:n+1 + Tr- J L-':n - 1:n-1 - Q11:n-1J

-(-2Q){a 2 :2) al,2:n}] • (6.34)
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EtQf. For n2, let us start with

*(1) E *0
2: = E(Z1 :2  2: 2 )

P 1

= 2 z2 f (z2) K(z 2) dz2, (6.35)

1

where
z 2*

K(z 2 ) f (zl) dz I . (6.36)

Upon using (6.5) in (6.36) and integrating by parts, we get

K(z 2 ) = Q2 (z2-Q 1) + (1-2Q){z 2 F (z2 ) 1, f (zl) dzl}

(p.. )Isr * ,2 i2 ** **

- Q)[z2 IF (2) -2 z F (zl) f (zl) dz].

Upon substituting the above expression of K(z 2 ) in (6.35) and simplifying the resulting

equation, we derive the recurrence relation in (6.34).

elation 6.13: For 2<i<n-1,

) **(2) ..+ =n1 +1** (1) nQ2 . **(2 )

i+ +2:n+ i+:n- i:n+i:n1-

-(1-2Q){a:1i2:n- :i 1:n]. (6.37)
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f~.For 2(i~n-1, let us consider

ai~- E(i~n Zi+i:n)

-(i-l)! (n.-4-)7 Z2 I.4F*(z2)}n f*( K(z2  )d,

(6.38)

where

K(z2) IF { (zj)} f*() dzj (6.39)

Upon using (6.5) in (6.39) and integrating by parts, we get

K(z2 ) = Q2 [1Z2 {F*(z 2 )} - - (i-i) { Z F*(zl)}i f**() dzj]

+ (1-2Q) [z2 {F**(z2)}i - i z2. {F*(zl)}i- f*() dz 1]

-(P-Q)[IZ 2 IF *(z 2 )} ~ - (i+1) 2Z f~ {F*(zl)} f*(zl) dz,]

Upon substituting the above expression of K(z 2 ) in (6.38) and simplifying the resulting

equation, we derive the recurrence relation in (6.37).
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In particular, by setting i=n-1 in (6.37), we obtain the recurrence relation

an+l:n+l n-~+ + nT-qTH Eia~i)F-- n-: - - an-2,n 1:n-1}

1 :n n-l,n:n}]' 6.0

It should be mentioned here that by starting with the result that a1 22 al~

(Govindarajulu, 1963; Joshi, 1971), one may employ Relations 6.8 - 6.13 to compute all

the immediate upper-diagonal product moments, VIZ., i ,i+1:, (1 i~n-1), in a simple

recursive way for all sample sizes. As mentioned earlier in Section 4, this is sufficient for

the evaluation of all the product moments as the remaining product moments, viz., a1 ,j:n

for 1W<5n and j-i 2, may be determined by using the recurrence relation in (4.13).

However, for the sake of completeness we present here some more recurrence relations

satisfied by the general product moments. These results may be established by following

exactly the same steps as used in proving Relations 6.8 - 6.13.

Reain .4 For 1Win-2,

** ** ~~n+l1 pp*() *
ai,n:n±1 = i,n-1:n+1 + 2rP--)Lp2lP1i:n(-11 Oi n-l:n-11

a1  - a**(1)l
+ (2P-1)1{a in~n - *41n1:nJ i:nj1 (6.41)

Reain .5 For 1~i<j~n-1 and j-i 2,

ai ,j:n+1 = kj,:n+i. + [-n-j a :-1 ij-1:n-1}

+ (2P-.1){7'n- j..i}- n-4 i ~~1) (6.42)
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Relation 6.16: For 3_jn,

** **qn l r **(1) - ** - Q **() 1
a2,j+l:n+l = 'a3,j+l:n+l + [--Lj:n -n2l,j-l:n-I QI j-1:n-I}

- (1-2Q){G:jn- alj:n ] (6.43)

Relation 6.17: For 2i<jn and j-i>2,

** ** n+1 r1 * :Z2n
ai+1,j+l:n+1 ai+2,j+l:n+1 + 1 ) "(JP-L j:n - tij-1:n-1

- ai_,j-1:n-1} - (1-2Q){a; +l,j:n - a: j:n}] "
(6.44)

7. DETAILS OF AVAILABLE TABLES

We list below the tables that are currently available on order statistics and their

moments.

a. Table of 100a% points (for a=0.50, 0.75, 0.90, 0.95, 0.975, 0.990) for all order

statistics for sample sizes up to 10 and for extreme and central order statistics for

sample sizes from 11 to 25 has been given by Gupta and Shah (1965);

b. Table of probability integrals of the sample range Wn for n=2 and 3 evaluated at

w=0.20(0.20)1.00(0.50)4.00 has been given by Gupta and Shah (1965);
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c. Table of means and standard deviations of order statistics for sample sizes up to 10

has been given by Birnbaum and Dudman (1963). Table of covariances of order

statistics for sample sizes up to 10 has been given by Shah (1966). These two

tables have been extended by Gupta, Qureishi and Shah (1967) for sample sizes up

to 25. Recently, Balakrishnan and Malik (1990) have prepared tables of means,

variances and covariances for sample sizes 50 and less in which the values are

reported to ten decimal places;

d. By using the results presented in Section 6, Balakrishnan and Josii (1983 b) have

given tables of means, variances and covariances for the symmetrically truncated

logistic distribution (with Q=1-P=0.01,0.05(0.05)0.20) for sample sizes up to 10;

e. Balakrishnan (1985) has handled the half logistic distribution (case when Q=1 and

P=1) and has presented tables of means, variances and covariances for sample sizes

up to 15. He has also given tables of 100a% points (for at=-0.01, 0.05, 0.10(0.10)

0.90, 0.95, 0.99) for extreme order statistics for sample sizes up to 15. In addition,

he has presented a table of modes of all order statistics for sample sizes up to 15.

8. PLACKETT'S APPROXIMATION

David and Johnson (1954) and Clark and Williams (1958) have developed some

series approximations for moments of order statistics from an arbitrary continuous

distribution. These have been developed by applying the probability integral

transformation and then using the known moments of order statistics from the uniform

distribution. Plackett (1958), instead, has used the logit transformation which transforms
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an order statistics Ti:n from an arbitrary continuous distribution into the order statistic

Zi:n from the logistic L(O, ') distribution to develop some series approximations for the
moments of Ti:n in terms of the moments of logistic order statistics Z.

i~n i:n*
We have already seen in Section 3 that the moments and the cumulants of the

logistic order statistics Zi:n are all available in explicit form. Now, by realizing that the

logit transformation

Z & I FT( t )

FTt M(8.1)

transforms the order statistic Ti:n from an arbitrary continuous distribution with cdf

FT(t) into the logistic order statistic Zi:n and, therefore, expanding Ti:n in a Taylor

series about the point E(Zi:n) i :(' we derive
i~n t(1) n i:nl

T1. -t(o) + t Vl) *(1) + 1 t(2) lZi -t * (1) 2

imn ri:nJ i:n - :n +t(3 )  Zi n -(1) 3 ... t( )(,

(8.2)

where, for n-i+l>i,

+=- +T + .. +
i:n I """n-ij

as derived in Section 3, and t(j ) is the value of the jth derivative of t with respect to Z at

Z at Z - n'. Now, by taking expectation on both sides of (8.2) and upon using
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the exact and explicit expressions for the cumulants of logistic order statistics derived in

Section 3, we obtain the series approximation

ETin] t(O) + I t(2) 43 t~ j~
(8.3)

The derivatives appearing as coefficients in the approximation in (8.3) are easy to

obtain as in the case of approximations due to David and Johnson (1954) and Clark and

Williams (1958). For example, for the standard normal distribution with probability

density function (t) and cumulative distribution function I(t), we have

0() 1 :U14),

t lex r * (1)II

+ i:n

t( 2 ) = t( 1 )  tt( 1) -(2t - 1),

t( 3 ) = ( t(1)) 3 + 2tt( 1 ) t (2 ) + t(2 ) (1 - 21) - 2t(1)l (1--4),

and

t(4) = 5(t(1)) 2 t(2) + t(3) {2tt(1) - (21 - 1)}

+ 2t(2 ){tt(2 ) - 2H (1-4)1 + 2t( 1) (24 - 1) 4 (1 - 4).
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The above given derivatives are all bounded. As pointed out by Blom (1958), suppose we

include the first j-1 terms in the series expansion for E(Ti:n) obtained from (8.2), then

the absolute value of the remainder after J-1 terms is at most

I max I t(j) I EIZi:n. - *(1)I. (8.4)

Since EZi:n *i) 12j is known and also that

1 1
*() j-*(1)12IT

we will be able to present bounds to E(Ti:n) for all values of j.
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