
NAVAL POSTGRADUATE SCHOOL
'q* Monterey, California
Lt

THESIS

A MODEL OF SOFTWARE MAINTENANCE
FOR

LARGE SCALE MILITARY SYSTEMS

by

Isaak Mostov

June, 1990

Thesis Advisor: Luqi

Approved for public release; distribution is unlimited.

Jz -k

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSFICATION/WN G SApproved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

. NAME OF PERFORMING ORGANIZATION 6b. OFFEYMBOL 7a. NAME OF MONITORING ORGANIZATION
omputer Science Dept. (if applicable) Computer Science Dept.

Naval Postgraduate School 37 Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943 Monterey, CA 93943

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROC(RAM PROJECT TASK WORK UN!T
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
A MODEL OF SOFTWARE MAINTENANCE FOR LARGE SCALE MILITARY SYSTEMS

12. PERSONAL AUTHOR(S)
Mostov Isaak

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Master Thesis FROM TO 1990 June 86

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Deapornent of Defence or the U.S. Government

1 . COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Software maintenance, Managing software maintenance, Maintenance-
oriented engineering database, Modelling of maintenance process.

9. ABSTRACT (Continue on reverse if necessary and identify by block number)

- The maintenance of large military software systems is complex, involves users as well as software professionals, and requires
appropriate management, which is one of the most important factors in efficient maintenance. Maintenance management requires in-
formation about the current state of the maintenance process that should be organized within a maintenance-oriented Engineering Da-
tabase. This daabase should include all the necessary data about software changes, system configuration, maintenance task schedul-
ing, etc., and it should be based on a realistic model of the maintenance process.

This thesis proposes a mathematical Model of Software Maintenance that uses graphs to model the relationships between main-
tenance tasks and software components. The Model addresses the dynamic behavior of the maintenance process and supports priority
and precedence of maintenance activities.

The proposed Model of Software Maintenance provides a sound basis for implementation of a maintenance-oriented engineering
database that supports automation of maintenance management, e.g., process control, task scheduling, job assignments, planning and
forecast, gathering and interpretation ofmaintenance statistics and metrics, etc. (/.,> --

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[UNCLASSIFIED/UNLIMITED [] SAME AS RPT. [] DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code] 22c. OFFICE SYMBOL
Luqi (408) 646-2735 1 CS/L q

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All othof ditions are obsolete UNCLASSIFIED

i

Approved for public release; distribution is unlimited.

A Model of Software Maintenance
for

Large Scale Military Systems

by

Isaak Mostov

Major, Israeli Air Force
B.S.C.S., The Hebrew University of Jerusalem

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1990

Author: /(.- A/,
Isaak Mostov

Approved by:
Luqi, Thesis Advisor

Valdis Berzins, Swcond Reader

Robert B. McGhee, Chaimian

Department of Computer Science

• -- ai~ i I i I ~ i ait i i

ABSTRACT

The maintenance of large military software systems is complex, involves users as well

as software professionals, and requires appropriate management, which is one of the most

important factors in efficient maintenance. Maintenance management requires information about

the current state of the maintenance process that should be organized within a maintenance-

oriented Engineering Database. This database should include all the necessary data about

software changes, system configuration, maintenance task scheduling, etc., and it should be

based on a realistic model of the maintenance process.

This thesis proposes a mathematical Model of Software Maintenance that uses graphs to

model the relationships between maintenance tasks and software components. The Model

addresses the dynamic behavior of the maintenance process and supports priority and

precedence of maintenance activities.

The proposed Model of Software Maintenance provides a sound basis for implementation

of a maintenance-oriented engineering database that supports automation of maintenance

management, e.g., process control, task scheduling, job assignments, planning and forecast,

gathering and interpretation of maintenance statistics and metrics, etc.

Acc~sron F'or

[iS CRA&I
DiIC TAB Q]

U:announced 0

L ; s t if ic l o
'

By -_...._

0, ' O ,tribtti"n I

'av itllv - 'y odes

I AvA,I 3-:dI or

iii /~D ist

TABLE OF CONTENTS

I. SOFTWARE MAINTENANCE IN MILITARY SYSTEMS 1

A. SOFTWARE SYSTEMS IN MILITARY USE I

B. MAINTENANCE OF MILITARY SOFTWARE 3

C. SOFTWARE MAINTENANCE ACTIVITIES AND PROCESS 7

D. MANAGING AND CONTROLLING THE MAINTENANCE PROCESS . . I I

E. ENGINEERING DATABASE FOR SOFTWARE MAINTENANCE 13

II. THE MODEL OF SOFTWARE MAINTENANCE 16

A. BASIC CONCEPTS AND UNDERLYING MODELS 17

1. Relation Between Maintenance and Configuration 17

2. The Model of Software Manufacture 18

3. Relations Between Software Components 20

B. CONFIGURATION GRAPH OF THE MAINTENANCE MODEL 22

C. MAINTENANCE STEP STATES 25

D. MAINTENANCE STEP INPUTS 27

E. DESCENDENCE RELATION, GENEALOGY TREES AND SYSTEMS . . 29

F. DESIGNATING PRIMARY INPUT FOR A MAINTENANCE STEP 30

G. DECOMPOSITION OF MAINTENANCE TASKS 31

H. INDUCED MAINTENANCE STEPS 33

I. EXAMPLE OF MAINTENANCE STEP DYNAMICS 36

J. PRIORITY AND PRECEDENCE OF MAINTENANCE STEPS 38

iv

III. UTILIZATION OF THE MODEL OF SOFTWARE MAINTENANCE 42

A. PLANNING AND CONTROLLING THE MAINTENANCE PROCESS .. 43

1. Scheduling Maintenance Steps 44

2. Maintenance Job Assignment 50

3. Maintenance Process Simulation 53

4. Controlling the Maintenance Process 55

B. CONFIGURATION MANAGEMENT AND CONTROL 57

C. GATHERING AND PROCESSING METRICS AND STATISTICS 63

IV. CONCLUSION .. 66

A. RESEARCH CONTRIBUTIONS 67

B. FUTURE DIRECTIONS 68

LIST OF REFERENCES 70

BIBLIOGRAPHY .. 72

INITIAL DISTRIBUTION LIST 75

ACKNOWLEDGMENTS

I owe a considerable amount of gratitude to my advisor, Professor Luqi. Her guidance

and encouragement were instrumental in the completion of this research. She was the one that

made me start this research in the early stages of my studies at the Naval Postgraduate School

and followed with timely advice and support during the long periods of conneption and

development of the Model of Software Maintenance.

I also am grateful to my second reader, Professor Valdis Berzins, for his willingness to

evaluate and discuss raw ideas during the process of crystallization of the more sophisticated

parts of the Model of Software Maintenance.

A special acknowledgment is due to Professor Kim Hefner from the Department of

Mathematics. I owe her a great deal for teaching me the basics of graph theory and for her

unique help in defining the mundane mathematical details of the Model in correct form and

substance.

In addition, I would like to thank Professor N.F. Schneidwind, Professor T. Abdel-

Hamid, Professor Moshe Zviran, Dr. Kraemer, Professor Man-Tak Shing, Lt.Cmdr. J. Yurchak,

USN and Professor Dan Beery for their help in revising parts of my thesis and for their

constructive suggestions.

There is no doubt in my mind that without the help and the cooperation of all of these

people, who contributed their precious time to review my work, it would be impossible to

develop the Model of Software Maintenance to its present state.

Finally, but by no means any less important, I would like to acknowledge the unique

contribution of my wife, Judith. Without her uncompromising support and encouragement it

would be very hard for me to devote the necessary time and energy to complete this research

on time.

vi

L SOFTWARE MAINTENANCE IN MILITARY SYSTEMS

Software maintenance is the longest and costliest phase in the lifecycle of a large scale

computer systems, especially in military use. The United States Department of Defense invested

in software about 5 billion dollars in 1985 (estimated to reach 20 billion dollars in 1990s),

approximately 60-70% of which were spent after it had been tested and delivered to users,

i.e., in software maintenance [Ref. 1]. Due to the amount of resources involved, it is clear that

any improvement in software maintenance is important and beneficial, especially for military

organizations that are dependent on computer systems for their daily operations.

This chapter presents the distinguishing characteristics of military software systems, main

issues that arise in their maintenance and outlines requirements for maintenance-oriented

engineering database aimed to improve the process of software maintenance.

Although in general Software Engineering problems in military computer systems are the

same as in commercial systems, the characteristics of the computer systems used by military

organizations complicate the software maintenance tasks considerably. Understanding the

specific characteristics of large military computing systems helps in understanding the

complexity and addressing the problems of the software maintenance in general.

A. SOFTWARE SYSTEMS IN MILITARY USE

Software systems in military use can be grouped into the following major categories:

• Embedded Software Systems.

* Command, Control and Communication (C3) Support Systems.

* Data Management Systems.

• Local Information Systems.

An embedded software system is one in which software is only a part (and usually not

the major one) of the system. An example for such a system is a guided missile or an aircraft

flight control subsystem. The embedded software system is characterized by the following:

" The capabilities and performance of the system as a whole are determined by various
technologies and not primarily by their software component.

* The system is influenced directly by changes in the battlefield environment (i.e.,
introduction of new adversary weaponry, ECM Systems, etc.) and rapid adaptation to the
new environment is essential.

" Although the system's usefulness and survivability as a whole is influenced by the
operational environment changes, usually it is the software component that is the main
factor in adaptation of the System to the new environment. The main reason for this is
due to the fact that system's intelligence is usually concentrated in its software
component, and therefore it is (relatively) easy to change and install the updated version
in the operational system/equipment.

" In order to improve performance and to make the most efficient use of existing resources
(which are always limited due to size/weight considerations of the whole system), special
low level hardware features and time/space optimization are utilized.

A Command, Control and Communication (C3) support system is one in which a

computer system performs a defined operational task that serves an entire organization. These

systems have the following characteristics:

" The system's architecture and software are customized and are organization-dependant.

" The system becomes a part in the daily function of the organization and performs (or
helps to perform) operational tasks and duties of the organization.

" Failure of the system has an immediate influence upon the organization's operational
capabilities.

* The system has some real time properties and its software is (usually) the single most
important factor in the system's capabilities and performance.

" Due to the characteristics of C3 support systems mentioned above, these systems are very
large, extremely complicated, and require very large resources and effort in development
and maintenance.

The data management systems category includes the traditional database systems which

manage the organization's information. Such systems, however sophisticated and complicated,

do not have a direct and immediate influence upon operational capabilities of the military

2

organization, i.e., they do not have an immediate effect in the "battlefield situation" that the

organization may find itself in. However, they are very important to their organizations and

usually have a very long life span.

The local information systems category includes systems that are targeted for local use

and that have limited (but possibly important) influence on the organization as a whole.

Personal computer based systems with small-scale stand-alone applications serve as a good

example for a computer systems in that category. The local information system category can

be characterized by the following:

" The use of the system is restricted to specific tasks for benefit of some department of
the organization.

• The software in the local information system is relatively small and simple and it is

built by using mostly "off the shelf' products and components.

The first three categories are the most important for any military organization (that has

them) and they are characterized by their staggering costs and longevity. Also, unlike some

commercial applications, the military computer systems in these categories are characterized by

the speed they must adapt to a changing environment, therefore giving a very high priority to

maintenance tasks that incorporate the necessary changes and upgrade the system.

Local information systems do not differ from commercial computer systems, have

virtually no special influence upon problems of software maintenance in the military computer

system, and are not in the scope of this work.

B. MAINTENANCE OF MILITARY SOFTWARE

Due to its characteristics, the military computer system and its software has a somewhat

complicated life cycle. This life cycle can be divided into two major parts: initial development

and the following maintenance.

The development cycles of software and hardware components of the systems are very

similar (at least for specification, requirement and system design phases). After all, there is not

3

much difference in the methodology of developing "from scratch" electronic components and

of "bug proof" software. In both cases, initial requirements and constraints are translated into

functional specifications. An architecture of the system is designed to implement the functional

specifications and then the design is built and tested against the initial requirements and

constraints. If any of the requirements and the constraints are not met, the development team

goes back to the "drawing board" and improves or changes its initial design. After the system

has been completed and accepted by the user organization, the development teams are dispersed

or diverted to other systems. Sometimes the team begins to work on an improved version of

the delivered system.

The maintenance phase of the system's life cycle introduces the major differences

between the system's software and haraware components.

The electronics and the mechanics of the systeir are maintained according to various

organizational policies in order to insure the designed capabilities and performance. Usually,

no engineering changes are done to the system unless a disastrous design problem has been

discovered after system delivery, and, specifically, the system design is usually not changed

by any maintenance ictivity.

This is not the same with the software. Since software is the most flexible part of a

system, it is usually the case that software is changed to accommodate alteration in the

operation environment and to improve the system's performance and reliability. This process

is called software maintenance. Software maintenance is defined as "performance of those

activities required to keep a software system operational and responsive after it is accepted and

placed into production"' [Ref. 21, and it is intended to correct undiscovered faults, to improve

performance or other attributes, or to adapt the product to a changed environment [Ref. 3]. Due

to the fact that the maintenance phase begins after the software system is delivered to the user

The meaning of "placing the system into production" here corresponds to "making the system

operational".

4

organization (i.e., when it actually becomes property of user organization), the user becomes

responsible for the system capabilities and performance and can change it at will.

The need for changes in military computer system arises from operational experiences

that are accumulated while operating the system for some period of time. These changes also

include specifications and performance discrepancies and previously undiscovered bugs. Usually,

(especially in the case of the C' Support Systems) software changes are induced by the system

itself due to the impact it has upon an organization's operational philosophy, methods, and

procedures. The trend of these changes is to integrate new and compatible functions to the

system.

Thus, besides the regular "bug fixing", software maintenance consists of engineering

changes to the original design of the system and is actually a redesign of the system [Ref. 4].

These engineering changes to the original design are complex, unpredictable and cannot be

accommodated without some iterative process [Ref. 3].

Although the problems in software maintenance are relevant to military and non military

software systems alike, software maintenance of military systems is complicated by the

following:

• Due to high performance demands and packaging problems, military computer software
systems are built placing more emphasis on efficiency thaL on future maintainability.
This phenomenon holds true even with the latest advances in software engineering
practices and tools.

0 Since military software systems are intcgrated with hardware to a very large extent and
have direct interfaces with specific devices (especially in embedded systems), some
modules (or even entire systLms) are implemented using low level languages.

• Due to stringent timing constraints found in most embedded and C3 systems, any change
of software due to required maintenance may compromise the real time performance of
the system as a whole.

* The field testing of weaponry systems and platforms is expensive and may result in
physical destruction of the bystem. This fact strengthens the need for the best possible
testing of the embedded software prior to new release. It also imposes problems in bug
detection and repair. especially for fatal bugs in critical software that "surface" in
situations that are oifficult to predict and simulate.

5

" The average military software system is very large and complica%:d (e.g., C3 Support
Systems). In these systems every engineering change to one of the modules may have
a "ripple" effect upon other parts of the system.

* Sometimes, due to external factors, a number of different versions of the same system
are in operational use by the military organization (e.g., old avionics systems with limited
memory capacity are used along with newer systems with upgraded memory and software
capabilities). This imposes maintenance on a number of software versions that may be
incompatible but are interrelated in their components.

It should be noted that the above characteristics are not unique for the military

computing systems. Some commercial software systems may also possess such characteristics,

although they are very few in the abundance of existing commercial computing systems and

software.

The maintenance problems are further complicated by the following characteristics of the

software maintenance team (see [Ref. 5], (Ref. 6] and [Ref. 71):

" The maintenance team is small (compared to the development team that built the system),
e.g., some large scale systems that were developed involving hundreds of man-years are
maintained by teams with (usually) less then 10 programmers. Combined with the high
volume of the maintenance tasks (especially in the large and complex software systems),
this leads to severe limitations on the number of available maintenance programmers
and causes a backlog in maintenance activities.

* Few (if any at all) maintenance team members have been involved in any way in the
original development phase of the system, thus resulting in low relative development
experience. This may result in deficiencies in the team's knowledge about the system,
especially on the engineering and architectural levels.

As a result, the task of the software maintenance team is hard and time consuming, and

therefore costly. Programmer turnaround as well as trend of maintenance to raise the software

complexity level of the military system while increasing its longevity contribute to the high

cost of software maintenance [Ref. 81.

Sometimes this high cost is responsible for the decision to abandon the current software

system and to develop a new one. This new software, although based upon the original

requirements and constraints, is supposed to comply with new requirements and constraints

that were deduced from lessons learned while using and maintaining the original system.

6

C. SOFTWARE MAINTENANCE ACTIVITIES AND PROCESS

Software maintenance activities can be grouped into two major categories [Ref. 9]:

* Software Update.

* Software Repair.

The main difference between these two categories is in the way they reflect upon the

original functional specifications of the system: Software Repair does not change them while

Software Update does.

Software update activity is actually a response to the addition of new requirements or

to the changes of an original system requirement. In military computer systems, it is as

important as software repair and it is usually the single most important factor for the system's

long life span because, as a result of software update activity, the system is being adapted to

the changing operational environment and it continues to provide required services to the

military organization it serves.

It involves heavy interaction with the user (or his representatives) and actually goes

through the classic software development cycle - from requirements through functional

specification and architectural design to implementation and testing. But, unlike the original

development cycle, here the software maintenance team does not have "artistic freedom" and

must take into consideration the existing system's requirements, constraints, capabilities, and

performance. This makes the software update activity the most difficult, demanding and costly

of software maintenance tasks. Surveys of maintenance history of complex software systems

in military use (e.g., [Ref. 6]) had shown conclusively that the majority of maintenance

resources were spent to add new capabilities to system, while the latent defect corrections

consumed considerably smaller maintenance resources.

7

The software repair activities can be further classified into the following categories:

* Corrective maintenance - fixing implementation and design bugs.

• Adaptive maintenance - adapting the system to changes in processing or data
environment.

0 Perfective maintenance - improving the performance and maintainability of the system.

Since there is no software system without at least one bug, the need for corrective

maintenance is easily understood and accepted.

Perfective and adaptive maintenance become necessary in systems where foreseeing all

changes (in processing and data environments) and forecasting system performance were based

upon guesswork. This is usually the case in systems based upon new technologies with a high

level of uncertainty. While building such systems one is concerned with the question "will it

work?" rather than "how fast and good will it be?".

The maintenance process life cycle can be divided into various distinct phases [Ref. 2]

as it is shown in Figure 1-1.

In the first four phases of the maintenance process, the need for a system's change is

formulated and classified. For corrective maintenance problems this is a "touchy" phase because

most of the problems are detected by system users as behavior inconsistencies while the system

is in operational use. The problems that arise may be an "operator mistake" which should be

filtered before the supposed inconsistency is brought to the attention of the maintenance team

[Ref. 10]. In order to deal strictly with real problems, the final problem identification and

classification should be done by someone with knowledge about system requirements and its

expected behavior. Usually, this job requires an experienced maintenance programmer.

For other software activities, i.e., adaptive and perfective maintenance, a formulation of

the required system's change is actually a statement of an additional system requirements.

The requirements analysis phase includes problem research and cost estimation. In this

phase the "bug" may be "hunted down" or its "natural habitat" identified. For non-corrective

8

1. DETERMINATION OF NEED FOR CHANGE.

2. SUBMISSION OF CHANGE REQUEST.

3. REQUIREMENTS ANALYSIS.

4. APPROVALIREJECTION OF THE CHANGE REQUEST.

5. SCHEDULING OF THE MAINTENANCE TASK.

6. DESIGN ANALYSIS.

7. DESIGN REVIEW.

8. CODE CHANGES AND DEBUGGING.

9. REVIEW OF THE PROPOSED CODE CHANGES.

10. TESTING.

ii. DOCUMENTATION UPDATE.

12. STANDARDS AUDIT.

13. USER ACCEPTANCE.

14. POST INSTALLATION REVIEW OF CHANGES.

15. COMPLETION OF MAINTENANCE TASK.

Figure 1-1: Phases in software maintenance process.

9

maintenance this phase should end up with a preliminary design for the affected part of the

system. For all types of maintenance activities the requirements analysis phase should come up

with an estimated cost of this activity and associated actions that are to be taken in order to

incorporate the results of the maintenance activity into the system.

The scheduling decision about a maintenance activity should be based upon the

operational requirements of the system at that particular time. In order to reach an intelligent

decision on this matter, close cooperation with the user is imperative and it should be done

by a Software Configuration Control Board (SCCB) that consists of user representatives, system

engineers and maintenance team management (see [Ref. 11]). The scheduling should take into

account the current backlog of Maintenance activities. It should be noted that some problems

may have utmost importance for the system and may be assigned top priority in the working

schedule. Thus, a scheduling decision for such a problem may cause rescheduling of

maintenance activities that had been already assigned to programmers.

The implementation phases include the design analysis and review, code changes and

their review, and testing of the change (preferably, in full scale mock-up of the operational

environment). The success and cost of these phases depends very much on the quality and the

results of the previous maintenance process phases, especially problem research. The

implementation phases may repeat themselves until the correct solution to the required change

has been found and implemented.

The phases following implementation also include updating all "programming"

documentation related to the changed component of the system together with enforcement of

programming and documentation standards. The actual updating of the programming

documentation should be done in each and every step that results in some change to a system's

design and/or implementation, i.e., after each step is done the appropriate documentation should

reflect the incorporated changes. The significance of the separate documentation step in the

maintenance process is the auditing of the updated documentation and enforcement of standards.

10

The user acceptance and post installation review phases have great importance. Their

main purpose is to make sure that the system's capabilities are preserved (or enhanced), no new

bugs are introduced and the requested change is incorporated into the system. These phases

require close cooperation with the user and may involve updating user manuals.

D. MANAGING AND CONTROLLING THE MAINTENANCE PROCESS

As for the software development life cycle, management of the maintenance team must

identify, control, and record the maintenance process by tracing all of its activities [Ref. 12].

Considering the software maintenance process explained above and taking into account the

additional characteristics of maintenance in military computing systems, it is obvious that

managing and controlling the software maintenance becomes a very complicated task. This task

requires as much help as possible in order to make it feasible for an average human being.

The ultimate goal of software maintenance management is to keep all systems functioning

in a correct and required way, and to respond to all user requests in a satisfactory manner. But

taking into account the problems and complications of software maintenance discussed above,

the more realistic goal of maintenance management is to keep the maintenance process under

control [Ref. 2].

In order to achieve this goal, the maintenance manager must be able to review all

pending change requests, plan for and schedule maintenance according to current priorities of

the required changes. This means that the maintenance manager must process a large amount

of information which must be formalized and accepted throughout the maintenance organization.

The pending requests for system's changes should be submitted formally to the

maintenance management and should include justification of why that change should be made,

and the priority for the implementation of this change to the system. The decision about

requested change implementation must be formally recorded and it should include information

11

about estimated costs and implications of the change. Such a formal decision may serve as a

trigger in change implementation, planning and scheduling.

Taking into account the importace of maintenance activity and the efforts and resources

required, maintenance activities may be grouped together or be performed independently.

Performing maintenance activities on an independent basis has the advantage of bringing

a quick solution to a problem in one part of the system, but it complicates the management's

task of achieving the best possible utilization of human and machine resources. Such solutions

(usually called "patches") should be simple and quick to apply, and they should be used with

care in order to solve some high priority problems (like fixing a bug that blocks the use of an

important system's feature). Usually, after introducing a number of such "quick fixes", i.e.,

"patches", some "clean-up" maintenance activity that will incorporate these fixes into the

"regular" code, should be performed. An independent maintenance activity (usually) does not

introduce new system wide features, it involves a limited number of modules, and sometimes

does not require changes to the user procedures and manuals.

Grouping the maintenance activities together creates (in effect) a new, upgraded edition

of the system that (usually, but not necessarily) differs from a previous version by additional

system-wide features. This usually implies an update of the user's operating procedures and

manuals. Grouping of the maintenance activities allows better planning and utilization of the

available resources for the maintenance team management and the organization as a whole and

is a preferable practice2. Such grouping requires an information base of all the maintenance

activities to be performed and a lot of planning on the part of the management. In order to

perform such planning, the management must have at its disposal information about job

assignments for each task, its current status (completed, at work, not started, etc.), estimated

time to accomplish it, amount of the time spent so far, scheduling constraints, deadlines (if

2 Such grouping of maintenance tasks is sometimes called "scheduled maintenance" and is in

favor with some commercial organization's DP departments as maintenance policy.

12

any), and dependencies upon other tasks. Another type of information that is important for

planning is data about working personnel and programmers potential and current workload.

Due to the fact that every maintenance activity is based upon the current state of the

system, which in turn is based upon the previous states and maintenance tasks performed, for

maximum cost effectiveness, management considerations and judgement should be based upon

the information concerning the history of the system maintenance with the current state having

the strongest, but not exclusive, influence [Ref. 4].

One of the important tools the maintenance management has at its disposal is a software

configuration management and control system. This system is the most significant in

coordinating the activities concerned with the software modules and exercising control over the

system evolution [Ref. 13].

E. ENGINEERING DATABASE FOR SOFTWARE MAINTENANCE

During the maintenance activity a large amount of information is created and processed.

This information includes bug reports and appropriate findings, user change requests and

resulting actions, SCCB decisions, maintenance activity costs (estimates and actual values),

etc. Since this information has great importance for future maintenance cycles, it should be

recorded in a system maintenance journal (see [Ref. 14] and [Ref. 9]), and it should become

an integral part of the system's documentation (in a broad sense).

To use the information in the maintenance journal efficiently, it must be organized as

a database with online access and proper retrieval facilities. In this database bug reports and

requests for system changes can be managed and controlled, and, additionally, every

maintenance activity can be uniquely represented by its causes and reasons, as well as its scope

and effect. This database can and should serve as an MIS framework for the maintenance

process and pro- lde a basis for tools oriented toward software maintenance management. These

tools should provide a means for change control, software system configuration control, etc. In

13

order to do this efficiently, the engineering database should incorporate all the necessary

information about the software configuration as well. This means that there should be a single

and complete data repository that will serve as the engineering database for all maintenance

activities.

The requirements for such an engineering database should include the following

properties:

" The database should support the software maintenance process throughout its life cycle.

" The database must be the main repository for all the operational information concerning
the maintenance process, i.e., for user requests for changes, requirements analysis results,
SCCB decisions, etc.

* The database should allow centralized control over all maintenance activities and provide
automatic actions and operations with the possibility of manual override.

The database should contain all of the system's components configuration modules (each
in his own format, i.e., text, compilable source, etc.) and it should support a full scale
configuration management and control system.

The database should reflect the inter-relationships between the software modules of the
system and support code reusability and inheritance (as it may be required for benefits
of Object Oriented Programming).

The database should provide for automatic consistency checking (based upon the module
constraints network) and provide means and operations for automatic derivation of
executable modules.

* The database should provide the maintenance management with information about the
ongoing state of the software maintenance and provide support for management decisions:
planning, scheduling, task assignment, cost estimation, status checking, etc.

* The maintenance process history should reside within the scope of the engineering
database and be available (online) to authorized personnel.

0 For each type of maintenance action the database must support appropriate views of
information and provide controlled concurrent access to relevant information for
authorized personnel.

0 The database management system should be flexible enough to allow initial configuration

and re-configuration for changes in software maintenance organization.

In order to implement an engineering database that adheres to the above requirements.

an appropriate mathematical model that ties together the software configuration information and

14

the maintenance managerial information should be established. Only after creation of such a

model can an effective and efficient implementation of the database and appropriate tools be

done.

The next chapter of this work presents a Model of Software Maintenance that integrates

the relevant configurational and managerial aspects of the maintenance process management into

one coherent framework. This Model is intended to serve as the theoretical basis for a

maintenance-oriented engineering database that will address the requirements described above.

15

15

IL THE MODEL OF SOFTWARE MAINTENANCE

The main objective of the Model of Software Maintenance is to provide a framework that

integrates information about software maintenance activities with configuration control. The

model is not concerned with the mechanics and the details of the maintenance programmer task

and it assumes organizational paradigms that comply with ANSI/IEEE Guide to Software

Configuration Management [Ref. 11] as follows:

" The management of the software maintenance organization exercises a formal type of
change control, i.e., the system configuration changes only as a result of a maintenance
action authorized by the management.

" The software configuration management system is used as a tool to coordinate
maintenance activities that occur within the context of the system, and the implementation
of the control is done utilizing software libraries.

" All of the verified software objects are contained in a controlled software library (i.e.,
master library) that is under direct control of the maintenance management, i.e., all
changes to components of the master library must be authorized.

" The actual programming work is done using the dynamic (programmer's) library which
is outside the master library, i.e., when each programmer is assigned to perform R
maintenance activity appropriate software objects are copied from the maste. library to
the dynamic one, and the programmer has free access to them; final results of his work
are transfeffed from the dynamic library to the master library when his work has been
tested, verified and accepted.

* The products of the configuration (e.g., executable software objects) are derived from the
system's configuration repository and installed at the "production" site (i.e., "outside" the
configuration repository). These software products are considered to be the "exports" of
the configuration.

* Since product derivation may be required at any point of time, the system's configuration
must be consistent at all times, i.e., at no time may derivation of executable objects be
compromised because of consistency problems of existing completed software objects.

Such organizational paradigms are common to most software development and

maintenance organizations that deal with software systems of large and medium size.

16

A. BASIC CONCEPTS AND UNDERLYING MODELS

The Model of Software Maintenance is based upon the ideas and notations of E.

Borison's Model of Software Manufacture [Ref. 15], the Graph Transformation Model for

Configuration Management Environments [Ref. 16] and the observation about relations between

the maintenance activities and the configuration of the system.

1. Relation Between Maintenance and Configuration

A direct effect of the software maintenance activity is a change in one or more

components of the system. These changes affect the configuration of the system, its semantics,

and its functionality.

The relationship between the software configuration of the system and maintenance

activities applied to it can be formulated as follows: each maintenance activity is a function on

the power set of the system's software configurations; when applied to a subset of a system's

configurations it results in an updated subset of the system's configurations. In a mathematical

sense, the system software configuration is generated by the maintenance activities; for any

change in the system software configuration theie exists some maintenance activity that leads

to its creation.

Therefore, we can model the evolution of the system during the maintenance phase

of its lifecycle as a graph that consists of software objects that comprise the system

configuration, and the maintenance tasks and activities that are applied to these objects. Such

a graph captures the semantics of the above principles and allows creation of an abstract

mathematical model that incorporates the specifics and necessary information of both software

maintenance management and system configuration management and control into one coherent

framework.

17

2. The Model of Software Manufacture

Borison's Model of Software Manufacture (Ref. 15] views software components as

immutable objects, i.e., they can be created and destroyed, but once created their values cannot

be modified. Any attempt to change such an immutable object creates a new version of this

object that differs from the original one. Once created, the software components are not

destroyed, they remain alive throughout the lifetime of the whole system and may be used later

to spring off new genealogies.

A manufacturing activity (called a step in the model) is a derivation relationship

between two sets of components: an input set and an output set (see Figure 2-1). In the original

Model of Software Manufacturing the manufacturing step "works" on one or more inputs and

"produces" one or more new components. Each invocation of a manufacturing step is

considered distinct, whether or not it operates on different inputs. Both the manufacturing steps

and the software components are given unique labels for the lifetime of the system in order

to distinguish between them.

The model of Software Manufacture views the system as a finite, iabeled, directed

acyclic graph (G) of components (C nodes) and manufacturing steps (M nodes). The graph G

is bipartite, i.e., manufacturing nodes alternate with component nodes.

The graph G is represented by a tuple <C,M,I,O> where C and M are sets of

nodes and I and 0 are sets of edges:

• The set C represents all software components of the system.

• The set M represents the manufacturing steps applied to the components of the system.

* The set I represents the input relations between components and the manufacturing steps.

• The set 0 represents the output relations between the manufacturing steps and the
components.

18

source fl

S C corrp I e t
o J ect f I ie

I itrary

INPUT MANUFACTUPING OUTPUT

COMPONENTS STEP COMPONENTS

Figure 2-1: A Step in the Model of Software Manufacture.

Since no component can be a product of more than one manufacturing step, the set

0 is restricted so that:

(2-1) V MMje M, If 3 Ce C such that (M,C)e 0 and (M,C)e 0, then MK = M)

Also, a set of primitive components (i.e., the pr. -1tive configuration, the one that

is used to set up the system) can be defined as follows:

(2-2) P { Ce C I -3 Me M such that (M,C)e 0

Let D*=(IuO)" be the reflexive transitive closure of the union of the input and

output relations I and 0, then following properties can be stated:

0 The inter-component and inter-manufacturing step dependencies are defined as follows:

(2-3) Component C, depends on component C, <=> (C,,C,)e D

(2-4) Step MK depends on another step KI <=>(M,.Mj)e D"

* For any componen! C the set of manufacturing steps that are affected by a change in C
is defined as follows:

(2-5) M, = { Me M I (C,M)eD'

19

A configuration in the Model of Software Manufacturing is defined as a tuple

<G,E,L> where G is the graph described earlier, EfC is a set of components designated as

exports of the configuration (i.e., components that are designated for a use outside of the

configuration), and L is a labeling function that distinguishes different components of the

system. The graph G contains only those manufacturing steps that are necessary to produce an

export configuration of the system, i.e., the following holds true:

(2-6) V Me M 3 Ce E such that (M,C)e D"

The original Model of Software Manufacture presented briefly above is too general,

oriented towards use of tools and application of derivation transformations to some components

in order to create others, and is concerned only with manufacturing steps that result in export

components. Also, the components in the Model of Software Manufacture are not limited to

conventional software modules (e.g., source code files) and actual parameters for tool

invocations are considered to be "legal" components of the model. The manufacturing steps

have no concrete existence, they are taken to be the derivation relations between inputs and

outputs.

The Model of Software Manufacture is not suited for the specifics of maintenance

tasks, and it must be refined in order to serve as a model for software maintenance process.

3 Relations Between Software Components

The Graph Transform Model [Ref. 16], classifies software objects into two

categories: re-derivable and n~o-re-derwable. Re-derivable objects can be automatically

reconstructed by applying some tool to some set of software objects. All other objects are

considered non-re-derivable (e.g., "source" objects). The software objects may have attributes,

which can specify computational procedures that should be applied to the components in order

to perform specific transformations.

20

There exist two important relations between non-re-derivable and re-derivable

objects: is-component-of and derives. These relations have a direction and are easily modelled

using digraphs (see Figure 2-2).

sets-Spec

FILE

OM ILAT set s-T bOdy
I. L Vi

06JECI

FILE 3o'fl4
V1

LIN~IN

gP"DCl

EXECUTABLE jV1

FILE

front *rC
V1

"DEAIVES' &CONPONT-CIF1
RELAT IONSHIP PEAIOS

Figure 2-2: Example of Relations Between Software Objects.

The relation "derives" is defined between non-re-derivable and re-derivable objects

and it represents a transformation of one or more software objects into another (e.g.,

compilation of source modules into linkable object modules). The "derives" transformations are

typed transformations that are applied to objects of a specific type. These transformations are

very specific, they are known a-priori, and can be applied automatically using the information

about the type of the software object and the attributes of the object itself. The "derive"

transformations are associated with the use of software tools in the process of programming,

and they usually are invisible to the management or users of the system.

The "is-component-of' relation is defined between non-re-derivable objects only and

it represents the use of one component by another component of the system (e.g., use of

packages in the ADA programming language). To denote the "is-component-of' relation we will

use a convention in which the "is-component-of' relation between components C, and C, means

that C, is a component of C,.

21

The "is-component-of' relations between components are defined by the software

system overall design and module decomposition. These relations may be specified in the

component itself (e.g., using compiler directives in programming languages - "include" in C,

"with" in ADA, "COPY" in some COBOL dialects) or explicitly stated as attributes representing

additional information required for deriving transformations (e.g., library specifications in linking

commands). In both cases the relation information is defined a-priori, and is stable relative to

the dynamics of the software changes due to the maintenance process. These stable relationships

may change as a result of maintenance, but these changes are few and far in between compared

to the changes in the components themselves.

B. CONFIGURATION GRAPH OF THE MAINTENANCE MODEL

The Model of Software Maintenance is comprised of two basic elements: system

components and maintenance steps.

The system components are immutable and non-re-derivable software objects. The system

components of the Model of Software Maintenance correspond to the components in the Model

of Software Manufacture, with the exception that the components must have concrete existence

as software objects of the system. Programming tools and their invocation parameters are not

considered to be system components in the model. System components are henceforth called

components.

The maintenance steps correspond to manufacturing steps of the Model of Software

Manufacture with the following differences:

" A maintenance step is a "representation" of the organizational activity concerned with
initiation, analysis and implementation of one request for a change in the system.

* A maintenance step may be atomic (i.e., applied to at most one system component and
produces at most one output component), or be composed from a number of atomic
steps.

* A Model of Software Maintenance allows for the existence of empty steps that do not
produce output components.

22

• The model also allows for existence of "dead moves" (i.e., steps that do not lead to
production of "useful" components). The existence of such steps is motivated by the need
to keep correct records of all maintenance activities, including those that have taken a
"wrong turn".

0 Deriving Uansformations are not considered to be maintenance steps and are not
represented in the Model.

Additionally in the Model of Software Maintenace, for each maintenance step a scope

of a change is defined as all sub-systems (or systems') to which the step is applied.

The system configuration is an acyclic directed graph (digraph) G of components (C

nodes) and maintenance steps (M nodes), in which the components and steps are connected by

two relations: inputs (I arcs) and outputs of the maintenance steps (0 arcs). The output

relations of maintenance steps are defined between a maintenance step and the non-re-derivable

component it produces. The input relations are defined between a maintenance step and the

system components which are necessary to produce an output component that is consistent with

the rest of the system. Naturally, no component that has an output relation with a maintenance

step can have an input relation with the same step, i.e., no input and output "feedback"

relations are allowed. This extends to any path of relations, thus avoiding cycles and complying

with the requirement that G is acyclic. It should be noted that input and output relationships

between components and atomic maintenance steps define a bipartite digraph.

We will represent the input and output relations by sets of the components for which the

relations hold. We will use notation in which for a maintenance step M (where q stands for

the step's label, e.g., an index in an enumeration) its input and output sets are denoted Is and

0, (respectively). I., and 0, are sets of system components which have input and output

relations with the step M, respectively (see Figure 2-3).

The exact definition of a system will be provided later.

23

Maintenanc as fOllows:

(2-) minennc sep M , y Inpu 1, 0 n M'q 11V

(s-9 ornn- Il ma ntena Intnnce sopuMtfput 0ten'M'=1

(2-10) ~ hI cnompo Ce :Ithnpu set stp OuptSe .ip

(2-1r2)-P: An epl of a Maintesuc tht(Mep.

(213 Let formaie boe o the tasitiveinclosur ofd tenion of the input and Sotpute

Manrnnela and 0,llthen

a)-7 Cmonentc dtepes on ompo0 nen C1 <= 1.,C)eD

b)-8 Ste is dnepyed onf aothe stp0. MMD

(2-St of spoetp affc=1te byachage iomoet . eMICM.

(2t1 shul bfe Mote th3atCuc thaetie (21)e 0 (2-n3 ofthe Modtel of Softwar

Maintnanc Pr sia to prprte (2C 1 (2-3 of Mscthth oCrigna Boio0)MdloSfwr

Mauatsu, uponothichathprpris(-1-(23)o the Model of SoftwareManencisbed

24

C. MAINTENANCE STEP STATES

During the execution of the maintenance process the maintenance activity, which

corresponds to a step in our model, can be in several possible states (see description of the

maintenance process in previous chapter). These states represent some of the dynamic aspects

of the maintenance process initiated as a result of a system change request.

For the purposes of the Model of Software Maintenance the following five states of a

maintenance step are def'med:

• Invoked.

" Pending.

* Implementing.

* Completed.

" Abandoned.

Each of the above states corresponds to several phases of the maintenance process

described in [Ref. 2], and corresponding sub-states can be defined for each of the above states

in the implementation of the model. For brevity we call a maintenance step by the name of

the state it is in, e.g., "pending step", "implementing step", etc.

Transition of a maintenance step from one state to another (see Figure 2-4) is performed

as a result of an explicit decision made by maintenance organization management. By

controlling the states of the maintenance steps, the maintenance management exercises direct

control over both the software maintenance process and the system configuration.

In the "invoked" state the maintenance step is created according to a requirement for a

change in the system. In this state the originated change undergoes analysis which estimates

the resources required for the step's implementation, designates inputs and defines the scope

of the step. At this stage the maintenance activity is not yet approved for implementation, and

it is not yet linked to any component of the system. If the maintenance activity is not approved

by SCCB, then the maintenance step state becomes "abandoned".

25

PEND I NG I IPW f NG

Figure 2-4: Maintenance Step States and State Transitions.

In the "pending" state the maintenance step is approved but it has not yet started its

implementation phase. In order to be implemented, the pending maintenance step must be

scheduled and assigned to a programmer. Scheduling of a maintenance jtep should resolve all

possible inconsistencies that may arise as a result of concurrent implementation of the pending

steps. A maintenance step in the "pending" state can be "abandoned" (i.e., transferred to

"abandoned" state) and forgotten there.

In the "implementing" state the actual implementation and testing of the requested change

is performed. At the transition to this state from the "pending" state, the binding of input

components occurs, and the output component is created. At this stage, the output component

is a placeholder for the future component contents of the maintenance step results, i.e., the

output component is "empty" at the beginning, and its contents are produced during the

implementing phase of the maintenance step. It should be noted that this behavior does not

compromise the immutability of the components, since the immutability feature is applied after

the component is created, i.e., after the "implementing" state has been completed. Also, note

that the "implementing" state can be "rolled back" into the "pending" or "abandoned" state, and

26

in such a case the output of the step is invalidated and is no longer a component of the

system.

The "implementing" state changes into the "completed" state after the requested change

implementation is done and tested. At the transition to this state the output component's

contents are frozen and entered into the system component repository and it becomes an

approved member of the system. Then the step itself terminates and becomes part of the

permanent record of the system.

The "abandoned" state is the final state for all maintenance steps that were not approved

by the SCCB or "killed" by the management in the "pending" and "implementing" states.

It should be noted (see Figure 2-4) that only the maintenance steps in the "implementing"

state can be "rolled back" into "pending" state. By doing so all the work that had been

performed to implement this maintenance task may be lost due to later changes in the system

that may affect the "rolled back" step. Therefore such decisions should be made with insight

and great care.

D. MAINTENANCE STEP INPUTS

The nature of an atomic maintenance step is to incorporate a single change in a single

component of the system. We will call such a component a primay input of the atomic

maintenance step (see 3), and we will limit the number of primary inputs for an atomic

maintenance step so, that:

(2-14) V maintenance step M 3 at most one primary input Ce IM.

In order to capture the semantics of dependencies of some system components on other

components (as defined in (2-13)), we will introduce the notion of non-primary inputs of a

27

maintenance step. The non-primary inputs of the maintenance step M belong to k , the input

set of this step, and they are defined by its result:

(2-15) For a maintenance step M the set I., consists of the primary input and all other
components that are used in creation of the component CeO,, and in the deriving
mmsformations that produce other software objects from it.

It immediately follows from (2-15) that:

(2-16) If 3 an "is-component-of' relation between C, and Ce O, then Ce l4.

The non-primary inputs may be determined manually or automatically using knowledge

based techniques. If the primary input C, of a maintenance step Kq is a primitive component

(i.e., Ce P as defined in (2-12)), then the non-primary inputs of M can be computed from the

"is-component-of" relations of system components with the component C, (see Figure 2-3).

Otherwise the inputs of the previous step M, with CeO,, may be used to compute the set I*.

Facilities for updating the input set of a maintenance step in the pending and implementing

states must be provided in the implementation of the Model.

It should be noted that the existence of the inputs for the maintenance step is not a

necessary condition (see (2-7)). There may exist a maintenance step without inputs that

produces an output component. Also, there may exist a maintenance step with non-primary

inputs only that produces an output component. An example for a such case is the creation of

a new component by merging the contents of a number of existing components, although it

should be noted that there exists another way to represent such merging: one component can

be the primary input of the maintenance step that performs the merging, while other

components that are used in the merging process, become the non-primary inputs of the

merging step.

28

E. DESCENDENCE RELATION, GENEALOGY TREES AND SYSTEMS

We will define a descendence relation by saying that primary input C, of a maintenance

step M is an ancestor of the resulting component Ce O,, and that the component C)e 0. is a

descendent of C,.

Descendence is a transitive relation, i.e.,:

(2-17) Component Ce OW is a descendent of C, iff C, is the primary input of a step M,
or the primary input of K is a descendent of C,.

In order to distinguish between types of descendence relations for later use, we will call

the non-recrsive descendence a direct descendence.

The descendence relation defines evolution genealogy (called genealogy for shorthand)

subgraphs of the configuration graph G. These subgraphs are created using only the primary

input and output relations of the maintenance steps. Because the graph G is acyclic, and due

to the restriction of at most one primary input for a maintenance step, each element of the

genealogy subgraph is a tree. Thus, the following hold true:

(2-18) All descendants of a component C belong to the genealogy tree T that has C as
its root or one of its nodes.

(2-19) There exists a unique path between component C and any of its descendants.

We call a genealogy tree with a component C as its root a C genealogy tree and we will

denote it as Tc. A genealogy tree can be a subtree of other genealogy tree(s), or be a spanning

tree, which is defined as follows:

(2-20) T1, is a spanning tree <=> -'3 Tj, i*j such that T, c Tj.

Using the notion of genealogy trees we can define software systems (or products), and

we will say that a software system S is uniquely identified by a set of genealogy trees that

comprise it, i.e., S = (T,1. It should be noted that the whole system is defined by a set of all

spanning genealogy trees, and in the case of a sub-system, the genealogy trees T, are not

necessary spanning. Since sub-systems themselves can be viewed as systems, we will not

29

distinguish between them unless it is required. The following rules apply to both systems and

sub-systems alike, since software products can be viewed as either systems or sub-systems.

We will say that software system S is eomplete if the following holds true:

(2-21) V Tr= S, if 3 Tj I Ce T depends on Cre Tj or C. is a component of C, then the
tree T:eS.

We can express the relations between components and systems as follows:

(2-22) Component C, e S <-> 3 Tk I C, T. and T, e S.

We also can define the scope of a change for a maintenance step (denoted as K,) that,

as mentioned earlier in this chapter, represents software (sub)systems to which the maintenance

step is applied:

(2-23) if K, is a scope of step Mq with primary input C, then K.tjS1ICe Si.

The inclusion K., g vSj in the above rule means that there may be a situation in which

(by a virtue of a maintenance management decision) an influence of a maintenance step will

be limited to particular (sub)systems.

F. DESIGNATING PRIMARY INPUT FOR A MAINTENANCE STEP

Designating a component C as an input to a maintenance step means that this step will

take the component C or one of its descendants as a primary input. Such a designation is

possible only for pending maintenance steps, and it does not prevent the use of this component

by other maintenance steps, i.e., it does not "lock" the input component.

The actual binding of primary input with the designated component can be performed

only if the input component is available and it is done at the transition time of the maintenance

step from the "pending" state to the "implementing" state, after the step is scheduled and

assigned to a programmer. After the primary input is bound to the implementing maintenance

step, its non-primary inputs are determined.

30

The primary input component is available for a maintenance step if it is a primitive

component or it was created by some completed maintenance step, i.e., it exists and is not

currently being worked on:

(2-24) A component C is available iff CE P or 3 completed M such that CE Om.

Components that are currently under work by some uncompleted maintenance step may

be used as non-primary inputs of a step, and they are considered available the moment they

are created by an implementing maintenance step.

The designation of a primary input component to a maintenance step can be specific or

generic. When specific designation is done, the maintenance step will be applied to some

specific component that already exists in the system, e.g., to a specific version of the primitive

component. There is no possibility of specifically assigning a component that is not produced

yet.

In the case of a generic designation of component C, the maintenance step will be

applied to the available descendent of C. As mentioned earlier, the actual binding of the

primary input to a component that belongs to the genealogy tree of C will take place when the

maintenance step begins its implementation phase. For example, in the case of a generic

designation, if there are several maintenance steps with the same designated input component

C, then the first maintenance step is applied to the component C, the second is applied to the

descendent of C, and so on.

It should be noted that, because of the possibility of creating "parallel" genealogies that

originate from the component C, the generic designation may not be unique.

G. DECOMPOSITION OF MAINTENANCE TASKS

Sometimes, after analysis of a requested change that initiates a maintenance step. it

becomes apparent that the implementation of the original change leads to changes in several

system components. The original request for a change is represented as a maintenance step.

31

However, because a maintenance step can be applied to at most one primary input and

produces at most one output component, the maintenance step invoked by the original request

for change becomes a composite maintenance step; it "spawns" a number of new atomic

maintenance steps. In such cases, it is important to record a relation between the composite step

and the steps that are "spawned" by it. We will call this process "step decomposition", the

relation "spawned", the composite step a "spawning step" and the newly invoked steps

"spawned". The step decomposition process is recursive, i.e., spawned steps may themselves

be composite maintenance steps.

In order to eliminate the possibility of unnecessary relations between composite steps and

their spawned steps, the composite maintenance step may not produce any new component by

itself, i.e., it is an empty step.

The composite step decomposition takes Dlace when the step's implementation is

authorized and it creates a set of spawned steps. These spawned maintenance steps are created

directly in the "pending" state, i.e., they are considered to be authorized by the virtue of

authorizing the composite step. The spawned steps behave normally, meaning that the,, do not

differ from non-spawned maintenance steps and they may have relations with one another or

some other maintenance steps. Because the spawning step is an empty step, there are no

dependency relations between the spawned steps and their spawning steps.

In order to provide consistency in treating composite and atomic steps, the following

constraints are imposed on some state transitions of the spawning and the spawned steps:

(2-25) The spawning step is transformed automatically from pending to implementing
states when one of its spawned steps performs this transition.

(2-26) The spawning step performs an automatic transition from implementing to
completed state when all of its non-abandoned spawned steps have done so.

(2-27) Abandoning a spawning step will automatically abandon all of its spawned steps.

(2-28) The transition of a spawning step to abandoned state is done automatically when
all of its spawned steps are abandoned.

32

It should be noted that, since all spawned steps are intended to implement a specific

maintenance task, a single maintenance step (atomic or composed alike) can be spawned

directly by only one composite maintenance step, i.e., the graph formed by a spawning

relationship is a tree.

H. INDUCED MAINTENANCE STEPS

An engineering change in a key component of a software system may compromise the

consistency of systems that belong to the scope of the step by affecting other components of

these systems in such way that some action is required in order to keep them consistent. For

example: a change in the specification of some ADA package requires some action to be

performed on all other components that use this spe-ific package before any new software

product can be successfully derived.

We will define an induced maintenance step as a step that must be performed in order

to keep the system's consistency due to a result of another maintenance step. The importance

of induced maintenance steps is in alerting the mainviiners and the management to changes in

key modules of the software product and enforcing constraints on performing any uncoordinated

maintenance step on the affected components.

It should be noted that a change in one component may trigger a change in another,

which may in turn trigger a change in third component, and so on, i.e., the changes may be

triggered recursively. We will call a component that originated the change propagation a

triggering component, and the step that uses it as its primary input an inducing step.

Additionally, the propagation of the changes triggered by an inducing step must be

restricted to the scope of the inducing step.

In order to define specifically the relevant maintenance steps that are affected by a

change in component C, we will introduce the concepts of latest descendent and latest

33

maintenance step. The latest descendent of a primitive component is a component that is not

used as primary input by any maintenance step, i.e.,:

(2-29) C, is a latest descendent of Cj iff C, is a descendent of C, and -3 K such that
C, is the primary input of K1l.

The latest maintenance step is defined as follows:

(2-30) Step M is the latest step with respect to C, iff the component Ce O, is latest
descendent of Cj.

We refine the original definition of the set Mc (see (2-13)) using the notion of the latest

maintenance step as follows:

(2-31) Mc, the set of maintenance steps affected by a change in triggering component
C,, consists of latest steps M which have Cj as their non-primary input and O,
belongs to the scope of an inducing step that implements the change in C,.

Since a change in one system component may lead to the inconsistencies with the

primitive components (i.e., the components that were not produced by any maintenance step),

the above definition is not sufficient and we will introduce the notion of an affected

component. A system component, whose consistency with the rest of the system is affected by

a change in some other component, is called an affected component and the following holds:

(2-32) A component C, is affected by a change in C, iff C, belongs to a scope of an
inducing step that implements the change in C, and either Cle Om where step
ME MCJ or both Ce P and Cie P and C is a component of C,.

Analogous to the definition of the set Mcj (see (2-31) above), we can define a set of all

components that are affected by a change in a component C, (noted as Ccj), using the recursive

nature of the propagation of a change, as follows:

(2-33) A component C belongs to the set Ccj if C is affected by a change in C, or C
is affected by a change in CE Cc*

If Ce 1 is a primary input and the set C,, is not empty, then the inducing step M

induces maintenance steps M .)4 , where n=l,2,..,ICCJI. An induced maintenance step v,, takes

The notation M,., is used as a labeling for induced maintenance steps.

34

an affected component CE Cq as its primary input, and produces as its output a new component

which is consistent with the direct descendent of the component C,.

Uncoordinated propagation of the induced steps may cause the transient state of the

systems configuration to be inconsistent. For example, a change of the package specifications

without coordinated change of the package body may cause some incompatibilities and

compromises the consistency of the whole system.

In order to keep the system configuration consistent, the inducing maintenance step

together with its induced steps are performed as an atomic step, i.e., an inducing step and all

of its induced steps (including those that were created recursively) should appear to perform

their transitions from "pending" to "implementing" states and from "implementing" to

"completed" states simultaneously. The following rules impose a semi-atomic behavior of

inducing/induced steps by introducing the necessary constraints:

(2-34) An inducing step Mq with primary input C, can start its implementation phase iff
all steps Me Mcj are completed.

(2-35) An induced step M,(.) with primary input Cle Ccj can start its implementation
phase iff the inducing step Kl with primary input C has already done so.

(2-36) An inducing step Kt with primary input C, can become completed iff all induced
steps M..) with primary input Cle Ccj are completed.

(2-37) Any "roll back" transition of the inducing step causes the same transition to be
performed on all its induced steps.

(2-38) An induced step can be "rolled back" only by "rolling back" all of its inducing
steps.

(2-39) Abandoning an inducing maintenance step causes all of its induced steps to be
abandoned.

(2-40) An induced step can be abandoned only by abandoning its inducing step.

The meaning of rule (2-34) is that the inducing step cannot begin its implementation

before it assures that all steps that it affects (see (2-31)) are already completed. and the primary

inputs for its induced steps are available (see (2-24)). Rules (2-35) and (2-36) mean that the

induced maintenance steps cannot begin their implementation before their inducing maintenance

35

step, and the inducing step cannot complete the implementation phase before its induced steps.

Other rules mean that the induced step has no reason to exist by itself, without its inducing

step.

Because of the dynamic nature of the system's configuration, the influence of an inducing

maintenance step K! with primary input C, (i.e., the contents of the set Cc) may vary. The

contents of the set CC, become static as a result of scheduling of the step M. Since the induced

steps M.) depend drectdy upon the contents of Cc,, they are invoked immediately after the

inducing step Mq is scheduled Cot execution.

L EXAMPLE OF MAINTENANCE STEP DYNAMICS

A simplified example of maintenance step dynamics is presented in Figure 2-5. The

example represents maintenance activities applied to a system that consists of five components:

sets-spec, sets-body, graphsspec, graphs_body, and front-end. The system in the example

represents graphs using sets, performs operations on them and presents the results to the user

through procedures in the front-end module.

The example shows influence of a simple maintenance step on the system configuration,

creation of distinct evolution genealogies, and creation and propagation of the induced

maintenance steps.

The set of primitive components of the system consists of the following five modules:

P = (setsspec.Vl, sets body.Vl, graphs spec.V1, graphs body.V1, front end.Vl)

The "is-component-of' dependencies of the primitive components are defined and shown

on the left side of the primitive components in the figure.

In the example, a request for a change in one of the front end procedures initiates a

maintenance step M, with the designated primary input frontend.VI. After the step is

scheduled and implemented, it creates the new component front end.V2, which is a direct

descendent of the frontend.VI component.

36

Figure 2-5: Example of Maintenance Steps Dynamics.

The non-prnmary inputs of the step M, are determined using "is-component-of" relation

and they consist of components graphs_spec.V1 and sets spec.Vl.

A request for a change in the component graphs bodly.Vi initiates maintenance step M2,

which results in the production of a new component graphs~bodlyN2. Another request for a

change that corresponds to the maintenance step M has a component graphsbodly.Vi as its

specific designated input and it results in a component graphs body.V2a, giving rise to an

evolution genealogy which is "paraliel" to the one created by the maintenance step M2.

The component sets_spec.V1 is used as a non-primary input in a number of maintenance

steps, and a change in it will affect the following Bet of components:
C.5 , {sets bedy.V1, graphs spec.V1, graphsjody.V2, graphsbdy.V2a, frontend.V2}

Thbis set is computed recursively, starting with the set of components that are directly

affected by sets spec.Vl (i.e., the set (sets bodly.Vl, graphs spec.V1, front_end.V2})", and

then for each component in the set adding the components which it affects.

37

sftsI I I | |nn sa

•~V ,. , •m mralmmunonnnmmnmn n nunmmnasw uumnn

A maintenance step M that implements a change in the sets spec.Vl component induces

the following maintenance steps:

* Step M,(,) that produces component sets_body.V2.

• Step M, 2) that produces component gaphsspec.V2.

" Step MO,) that produces component graphs body.V3a.

* Step M .) that produces component graphs body.V3.

" Step MI(,) that produces component front-end.V3.

The step M is completed only after all the maintenance steps it had induced (i.e..

MoI-..M.(S) are completed. Thus, the implementation of the inducing and induced maintenance

steps is performed atomically, keeping the whole system consistent, i.e., any software object

derived from the system components will be consistent with the latest changes incorporated in

the system.

J. PRIORITY AND PRECEDENCE OF MAINTENANCE STEPS

During the life cycle of the software system, constraints that reflect the urgency and the

partial ordering of the maintenance tasks arise from real life situations. These constraints

influence the process of software maintenance, and they must be represented in the Model of

Software Maintenance in order for the latter to be a realistic model.

We will represent the urgency of the maintenance tasks by assigning a small positive

integer value as a priority value to each maintenance step that is needed to implement the task.

The priority values of the maintenance step represent the relative urgency of the maintenance

tasks, and they suggest an implementation ordering of the maintenance steps.

The priorities are assigned manually to the maintenance steps by an appropriate forum

that includes the user (or his representatives) and the maintenance team management (e.g.,

SCCB), and they may be changed during the maintenance process according to the state of the

system maintenance and external constraints. The process of assigning priority values to

38

maintenance tasks may use different methods and algorithms and is external to the Model of

Software Maintenance itself.

Since the priorities are assigned to the maintenance steps according to the maintenance

task, the following property should be preserved:

(2-41) If maintenance steps K and M, are intended to implement parts of the same
maintenance task, then steps I and M. are assigned the same priority value.

In the case of assigning priorities to composite or inducing maintenance steps, the

following defines the priorities of the spawned and the induced steps:

(2-42) If composed/inducing step M is assigned a priority value N, then all maintenance
steps MK that are spawned/induced by the step M are assigned the same priority
value N.

The priority mechanism should not be misused, e.g., all maintenance steps should not be

assigned the same priority. It is advisable to keep the range of the priority values as small as

possible without altering their meaning.

In addition to the partial ordering that arises from assigning the priority values to

maintenance steps, there may exist additional constraints that impose ordering constraints

between two or more steps. These constraints may represent specifics of a maintenance task

or inter-step dependencies that cannot be expressed by the input and output relations of the

maintenance steps as defined in (2-4) and (2-13). The intent of such ordering constraints is to

impose a sequential rather than a concurrent execution of the maintenance steps.

To account for the execution ordering ranking, we will introduce the "precedes" relation

which is defined between pending atomic maintenance steps as follows:

(243) If atomic step Mq precedes atomic step M, then the step MK must be completed
before the step M. begins implementation.

Because of the semi-atomic nature of induced maintenance steps (see (2-34) - (2-40)),

the following holds true:

(2-44) If inducing step M precedes (or is preceded by) step M, then all induced steps
M,..) precede (or are preceded by) the step MT

39

(2-45) If induced step M,) precedes (or is preceded by) step MK, then its inducing step

M precedes (or is preceded by) the step ,.

(2-46) An iducing step M cannot precede its induced steps M,, and vice versa.

Naturally, similar constraints apply to composite steps and the steps that are spawned by

them, i.e.,:

(2-47) If atomic step M precedes composite step M, then the step M precedes all the
maintenance steps spawned (directly or recursively) by the step K.

(2-48) if composite step K precedes Step M,, then all steps Spawned (directly or
recursively) by the step M precede the step KI,.

The "precedes" relation is transitive, asymmetric and irreflexive, i.e.,:

(2-49) If step M precedes M, and step M, precedes NK, then step M precedes step M.

(2-50) If step K precedes K!, then step K cannot precede I,,.

(2-51) V Steps MeM, M, cannot precede itself.

The transitive and the asymmetric properties of the "precedes" relation imply that the

graph of the "precedes" relation is acyclic, i.e., the situation in which step K!, precedes K, step

K, precedes MK, and step MK precedes step K, is impossible. Also, the situation in which a

spawned maintenance step precedes its spawning step is illegal.

Unlike the priority values that suggest an implementation ordering, the "precedes" relation

imposes a strict ordering between two or more maintenance steps, e.g., in (2-43) the step K,

will be implemented before the step I, even if the priority of the step I, is higher than that

of the step MK. Therefore the ordering imposed by the precedes relation is "stronger" then the

one we would obtain using only the priority values of the maintenance steps.

The "precedes" relation must be consistent with the dependency relation between

maintenance steps (as defined in (2-13)), since the dependencies that propagate through the

primary inputs impose the "precedes" relation between the steps:

(2-52) If 3 Cc= C such that Cie O,, and C, is the primary input of step N,. then the step
M, precedes step M.

40

Also, there exist implicit precedence relations that concern inducing maintenance steps

(see (2-34)) which can be stated explicitly as follows:

(2-53) If 3 inducing step M with primary input C,, then V steps K e Mcj stepM,
precedes maintenance step Il.

Recall that the "precedes" relation is not concerned solely with step dependencies that

propagate through inputs of a maintenance steps. It deals also with the constraints that are

external to the system configuration.

The "precedes" relations between maintenance steps should be defined by the maintenance

management, and it is their responsibility not to misuse this mechanism. An incorrect use of

the "precedes" relation will lead to introduction of many unnecessary constraints in the

scheduling of the maintenance steps. On the other hand, the correct use of the "precedes"

relation should improve the effectiveness of the maintenance process.

41

ilL UTILIZATION OF THE MODEL OF SOFTWARE MAINTENANCE

Chapter U presents a Model of Software Maintenance that integrates the configurational,

behavioral and managerial aspects of software maintenance and provides a conceptual

framework for implementation of a maintenance-oiented engmeering database introduced in

Chapter I.

The main purpose of this chapter is to show how the Model of Software Maintenance

can be used for the benefit of the maintenance organization as a whole, and the maintenance

management in particular. The intent is to show the usefulness of the Model of Software

Maintenance as a basis for a decision support system oriented towards the management of the

maintenance teams and organizations. Such a system should be able to provide the management

(among others) with timely information and appropriate tools to support planning of the

maintenance schedules, tracking them with verifying milestones, providing maintenance process

status and progress reports, and locating trouble areas in the planned schedule before it gets

out of hand [Ref. 17]. It should also allow the management to assign maintenance tasks to

individuals and track their progress throughout the maintenance process. It should address the

issues of system configuration management, change control and to support adequate

communications between different participants of the maintenance process, i.e., system users,

members of SCCB, management and programmers [Ref.18].

This chapter will address the utilization of the Model of Software Maintenance in

following areas:

" Planning and controlling the maintenance process.

• Configuration management and control of the maintained software.

" Gathering and processing metrics and statistics about the maintenance process.

42

In some of the above areas complete and detailed algorithms that provide a specific way

to use the Model and the corresponding information will be presented. In other areas a way

to make use of the Model will be shown without going into details. The reason for this

approach is the aspiration not to tie the Model of Software Maintenance at this time to

particular methodologies used by software development and maintenance organizations.

The need for a maintenance-oriented engineering database was described by Swanson

in 1976 [Ref. 9] who also defined the basic entities of such a database and a set of basic

maintenance summary reports. For the purposes of this chapter, we will assume existence of

a maintenance-oriented engineering database that is built upon the Model of Software

Maintenance. Such a database contains all of the system's components, the information about

the maintenance tasks and steps, and the relationships defined by the Model of Software

Maintenance. We also assume that the entities of the engineering database (e.g., system

components, maintenance steps) have all the necessary attributes as shown in Figure 3-1. These

attributes define the minimal information required for the algorithms that will be presented later

in the chapter and do not preclude definition of additional attributes.

It should be noted that some attributes of the basic entities defined by Swanson can be

computed automatically, using the properties of the relationships between system components

and maintenance steps defined by the Model of Software Maintenance. For example, the

number of source lines changed duiing a maintenance activity can be determined by comparing

the primary input component and the output component of a maintenance step.

A. PLANNING AND CONTROLLING THE MAINTENANCE PROCESS

As explained in Chapter 1, the software maintenance process is difficult to plan or predict

due to its inherent complexities and characteristics. The Model of Software Maintenance allows

an integrated approach to the problem of maintenance planning and leads to the definition of

relatively simple algorithms that provide decision support for the management of the

43

Component Database Enttty Attributes:

Unique component ID.
- Date of component creation.
- Component contents.
- Type of programming language used to create the component.
- Component size (e.g., in Lines of Code (LOC)).

Maintenance Step Entity Attributes:

- Unique maintenance step ID.
- Date of maintenance step creation.
- Software change requirement description.
- SCCB decision concerning the maintenance step.
- Maintenance step description.
- Programmer assigned to implement the maintenance step.
- Estimated execution effort for a maintenance step.
- Actual effort spent on execution of a maintenance step.
- Maintenance step execution starting time.
- Maintenance step execution completion time.

Figure 3-1: Required Attributes for Engineering Database Entities.

maintenance teams and organizations. These algorithms can help managers plan the required

size and expertise of the maintenance team, predict completion of a specific maintenance task,

estimate the time to clear the backlog of maintenance request given a team of programmers,

etc.

This section will address maintenance step scheduling, programmer's job assignment,

maintenance process simulation and process execution control aspects of maintenance process

planning and control.

1. Scheduling Maintenance Steps

Scheduling maintenance steps is one of the activities that the management must

undertake in order to maintain the system efficiently and consistently. In the Model of Software

Maintenance, maintenance step scheduling serves as the authorization to execute a step. For the

steps with a generic primary input, it results in a generic-to-specific input resolution.

44

Scheduling of the maintenance steps must take into account the current state of the

maintenance process, all of the requests for change that are cleared for implementation by the

SCCB, the urgency of the required changes to the system, and the imposed sequencing

constraints. It also must assure that the consistency of the system (as it is defined in the

Model) will be preserved. Since scheduling is based on the changing state of the system

configuration, the scheduling decisions depend on time.

The necessary constraints for the correct maintenance step scheduling in the context

of the Model of Software Maintenance can be met by the following guidelines:

(3-1) Maintenance task scheduling can be performed only on pending maintenance
steps.

(3-2) A necessary condition for a maintenance step to be scheduled is that its primary
input is available (see rule (2-24)).

(3-3) A step MK can be scheduled for implementation iff -3 a step Mq I Mq is
implementing or pending and Mq precedes M.

(3-4) If step MK precedes step MK, then the step Ki will be scheduled before the step
K,.

(3-5) If -'3 a "precedes" relationship between steps MK and MK, and step Mq precedes
another step NI, that has a higher priority than MK, then the step M, will be
scheduled before the step Ki.

(3-6) If rules (3-4) and (3-5) do not apply, then the step with the higher priority value
will be scheduled first.

It should be noted that by the definition of the specific input designation, specific

inputs are always available for the maintenance steps. Therefore rule (3-2) influences only

pending maintenance steps with a generic primary input designation. If there are several

maintenance steps with the same generic primary input, then, since scheduling one of these

maintenance steps "ties up" the primary input component (i.e., makes it unavailable to others),

none of the other maintenance steps with the same generic input can be scheduled at this time.

Decisions about which of the maintenance steps with the same generic primary

input should be scheduled before others are based on rules (3-4)-(3-6). For cases in which a

45

decision based solely on these rules cannot be reached, the decision process can be augmented

using a "rule of thumb" type of sclh uling with the oldest pending step first, etc.

A scheduling algorithm that is based upon the Model of Software Maintenance and

that satisfies the above constraints is presented in Figure 3-2. This algorithm utilizes graph

theory, and it determines vertex basis of an acyclic digraph that represents the relevant

relationships between maintenance steps. Since the vertex basis (i.e., a minimal set of vertices

that reach all vertices of a digraph) of an acyclic directed graph is unique (Ref. 191,

maintenance steps that belong to the vertex basis can be scheduled concurrently without mutual

interference or input deadlocks.

In the first phase of the algorithm, a digraph D is created using all existing atomic

pending maintenance steps as its vertices. The "precedes" relations between the pending steps

are represented as arcs of the digraph D, and (in the second phase) vertex priority values are

computed for each vertex by assigning it the maximum of priority values of all vertices that

it can reach.

In order to represent the existing "precedes" relations between implementing and

pending steps, a dummy vertex M. is introduced (in the third phase of the algorithm), and the

relevant relations are mapped as arcs between the dummy and the pending steps. Assuming that

the vertex priority values are non-negative integers with zero representing the lowest priority

value, in order to prevent the need to recompute vertex priority values the M. vertex is

assigned priority zero.

Phase four of the algorithm performs generic-to-specific input resolution. In order

to do so, the digraph D is partitioned into generic subdigraphs D, in such a way that each

subdigraph contains only those maintenance steps that have the same generic primary input

component. It should be noted that in this partition uD_ D and Dir-D, = 0 for iej. For each

subdigraph D,, a single maintenance step that is to be scheduled before all other steps in the

subgraph is determined, using the vertex priority values that were computed earlier and

46

1. Create digraph D as follows:

a. V M,, M pending atomic step with available primary input <=> Mqe V(D).
b. V M4 ME D, step M, precedes step M, <=> arc (M.,)E A(D).

2. Compute vertex priority values:

a. Assign to each vertex MeD a priority value of a step M,.
b. V MqE D, ssign vertex priority value of M, to the vertex highest priority value

of set {MrD / 3 path from M, to M,'.

3. Map "precedes" relation between implementing . I pending steps:

a. Add dummy vertex M. to D with priority value 0.
b. V M,4eD,((3 implementing MeM IM, precedes M,) => arc (M.,M4)eA(D)).

4. Perform generic-to-specific input resolution:

a. Partition the digraph D into subdigraphs Di such that all vertices in each
subdigraph have the same generic primary input.

b. V D, D determine step M e D, that should be scheduled before all other steps
MED,, using computed vertex priority values and rules (3-2)-(3-6).

c. V ME Di, pvq add arcs (M,,M,) to D.

5. Check conflicts with inducing steps:

a. Find the vertex basis B of d'qraph D.
b. V M,-B with primary input C,, compute Cc,. If Cc,* 0 , then V MpEB, with

primary input Ce Cc, add arcs to digraph D as follows:

1) If priority of step M, > priority of step M,, t -en add arc (M,,M,).
2) If priority of step M, < priority of step M, then add arc (M4 At,).

6. Compute scheduling step sequence:

a. Find the new vertex basis B' of digraph D and remove the dummy vertex M.
from it.

b. Sort B' in descending order of the computed vertex priority values.

7. Expand inducing steps:

a. V AEB' with primary input C,, if Cc,*0, then V Cjc-Cc, create induced steps
M,, with primary input C and priority value of vertex M, as it was computed
in phase 2.

b. V inducing steps Me B' place all M,, immediately following the step M.

Figure 3-2: Maintenance Step Scheduling Algorithm.

47

applying rules (3-2)-(3-6). These rules should be applied with respect to the whole digraph

D, i.e., they should not be limited to subgraph D, while considering some maintenance step as

a candidate. If an automatic decision cannot be reached (especially due to the non-uniqueness

of a generic input designation in the case of parallel genealogies), manual intervention may

be required. Once the proper maintenance step is determined, arcs between the appropriate

vertex and other vertices in the subdigraph D, are added to digraph D. Since the chosen vertex

in each D, has no incoming arcs, the digraph D remains acyclic.

At this point, the digraph D represents all atomic maintenance steps and all explicit

and implicit precedence relationships between them. The vertex basis B of digraph D consists

of all pending maintenance steps that are not preceded by some other steps, and, therefore can

be scheduled for execution at this point in time. Since the digraph D is acyclic, its vertex basis

is unique, i.e., there are no other maintenance steps that can be scheduled at this point in time

since they do not belong to the vertex basis of digraph D.

If an inducing maintenance step belongs to the vertex basis of digraph D, then a

conflict may arise between this inducing step and some other maintenance steps which are also

in the vertex basis and that have a primary input component which is influenced by the

inducing step. In order to eliminate such conflicts, the fifth phase of the algorithm constructs

additional dependency arcs in D between steps in B. The direction of these arcs is determined

by comparing the computed priority values of the conflicting steps - from the vertex with a

higher priority value towards the vertex with the lower priority value. Since the vertices in B

do not reach one another, and due to the transitivity of the "less-then-or-equal" relationship

between priority values, the resulting digraph D is still acyclic.

In the sixth phase a new vertex basis B' (which is also unique due to the acyclic

nature of D) is computed. The dummy vertex M. is removed from B% and its maintenance

steps are sorted in descending order of the computed vertex priority values.

48

Phase seven is the last phase of the algorithm in which the inducing steps in B'

are expanded, i.e., necessary induced steps are created. The induced steps are assigned the

priority value of their inducing step and are placed directly following it in the sorted step

sequence. The resulting sequence of maintenance steps represents all maintenance steps sorted

in the decreasing order of their computed priorities. These can be executed simultaneously

without compromising system consistency, provided that necessary synchronization concerning

induced and inducing maintenance steps is done. This sorted sequence is to be used for the

execution of maintenance steps, for the programmer's job assignments, and planning.

Since the conflicts between maintenance tasks that may hamper their execution are

resolved at scheduling time, the execution of the scheduled maintenance steps is fairly simple.

The main phases of maintenance step execution are shown in Figure 3-3. Note that in cases

with a specific primary input the first phase of the algorithm is redundant. The third phase of

the maintenance step execution algorithm requires determination of non-primary inputs of the

maintenance step. An algorithm to determine the input set of a scheduled maintenance step is

shown in Figure 3-4.

In order to compute the input set of a maintenance step for non-primitive primary

input the algorithm is propagating non-primary inputs from a maintenance step that created the

primary input component. In case of primitive primary input, the "is-component-of" relationship

is used to determine the non-primary inputs. The third phase of the algorithm enforces system

consistency in case of induced step input set determination. It should be noted that in such

cases while the direct descendent of C has not been completed yet, there already exists a

"placeholder" for it in the configuration graph G. Since Ce, Cci, it is used as a primary input

by some other induced step that is triggered by a change in the component C,. The contents

of the direct descendent of component C, will be produced when all induced steps triggered

by C, are completed (virtually simultaneously, due to the semi-atomic behavior of induced

steps).

49

1. If primary input C of the step M, is generic, then take the latest descendent of C as
a specific input.

2. If Mhe step M, is induced by some other step M., then wait until step M, starts
implementation.

3. Compute the non-prinmary inputs of Mr

4. Start implementation of the maintenance step M,.

5. if the step M, is not induced by any other maintenance step and it is itself an
inducing step (i.e. set Cc * 0), then wait until all induced steps Me,, are completed.

6. Complete Mr

Figure 3-3: Maintenance Step Execution Phases.

As mentioned earlier, there may be a need for manual intervention in order to

resolve ambiguous primary input designations and to make sure that all non-primary inputs are

accounted for. Phase four of the algorithm in Figure 3-4 explicitly allows for such interventions

whenever necessary.

2. Maintenance Job Assignment

Assigning maintenance jobs (steps) to a programmer is one of the basic tools for

planning and control of the maintenance process. The job assignment process deals with

matching scheduled maintenance steps to available maintenance programmers. Effective job

assignment planning requires access to information about the programmer work force, thus

allowing integration of some of the organizational aspects of the maintenance team within the

Model of Software Maintenance analogous to coupling of technical aspects of software

productions with human resource aspects as formulated by Abdel-Hamid and Madnick [Ref. 20).

We can view the available human resources (i.e., the maintenance programmer work

force) as a set H that consists of entities 1-Ie H where each H represents a programmer that

is a full or part time member of the maintenance team. i.e., H=--H- I H, represents a

maintenance programmer I.

50

1. Set ,,, = (C, / C, is primary input of M1 .

2. Create a temporary set of components S as follows:

a. if Cge P (i.e., C, is primitive) then S = (C, / C, is a component of C.
b. Otherwise S = Ip such that Cie Op.

3. V Ce S perform the following:

a. if M, is an induced step triggered by a change in C, and Ce Ccju(C), then add
the next direct descendent of C, to Imr

b. Otherwise add C, to Im,.

4. Verify that I,,., contains all the necessary components, update manually if necessary.

Figure 3-4: Determining Input Set of a Maintenance Step M,.

For each entity H-e H necessary minimal attributes can be defined as follows:

* Potential workload per unit of time (e.g., month).

" Actual workload per unit of time.

" Subject/System/Language expertise.

These attributes will be used later by the job assignment algorithm. Additional

attributes for maintenance programmers (e.g., expertise levels) may be defined as well and they

may be used in refinements of this algorithm or for additional purposes.

A general algorithm for assigning currently scheduled maintenance steps to

programmers is presented in Figure 3-5 . The algorithm begins by scheduling pending

maintenance steps, and then for each scheduled step that has not been assigned yet it

determines the programmers that have the expertise to perform the required maintenance

activity. If a programmer with the required expertise and a free potential workload is found,

the algorithm assigns the maintenance step to him and updates the programmer workload. This

algorithm does not guarantee a solution optimized with respect to use of the available

programmer work force or any other criteria, but it seems that it can be modified to do so.

51

1. Compute set M,. = (M, / M, is currently scheduled but not yet assigned).

2. V scheduled steps M1eM,, perform the following:

a. Determine set Hal, = (Hi / HX i has the expertise to do M,1.

b. If 3 HAH, with free workload potential then

1) Assign M, to Hi.

2) Add estimated effort to execute M, to the actual workload of H.

c. Otherwise can't plan on executing M, at this time.

Figure 3-S: Job Assignment Algorithm.

The job assignment algorithm takes into account the following restrictions:

" Not every programmer can perform every maintenance job.

* Workload potential of the maintenance programmer is finite.

It should be noted that the job assignment algorithm explicitly shows that due to

the previous constraints, there may exist some scheduled maintenance tasks that cannot be

performed at a given point in time. Such cases should be addressed by the management of the

maintenance team/organization, possibly outside the scope of the Model of Software

Maintenance.

Note that although the algorithm presented in Figure 3-5 does not explicitly

mentions possibility of assignment of the same maintenance step to more than one programmer,

it can be modified accordingly to support such feature.

Assigning a maintenance steps to programmers is equivalent to defining a

relationships between two disjoint non-empty sets: a set of the currently scheduled maintenance

steps (i.e., the set fMq I M is currently scheduled)) and the set H that represents available

human resources. These relationships define a bipartite digraph, and therefore the job

assignment becomes a matching problem. Such problems have been well studied, and

algorithms for finding optimal solution according to some defined criteria are known (e.g., the

52

"Hungarian method") [Ref. 21]. Use of such algorithms on top of the job assignment algorithm

shown in Figure 3-5 can provide solutions that may maximize the number of assigned

maintenance tasks, minimize the total time to complete all scheduled maintenance tasks,

optimize work force utilization, etc.

3. Maintenance Process Simulation

The job assignment algorithm presented in the previous section is based upon the

set of currently scheduled maintenance steps and provides planning for a particular unit of time

(e.g., month). In cases when the set of currently scheduled maintenamnce steps is too small to

complete the planning for this unit of time (i.e., to provide scheduled jobs for all available

programmers for the whole unit of time), the need for simulation of the maintenance process

arises. Such simulation is useful for other needs as well, e.g., completion forecast of a

particular maintenance task, analysis for the maintenance team size, future trends planning, etc.

A general algorithm for simulation of the maintenance process is presented in

Figure 3-6. This algorithm is based upon presuming completion of a maintenance step with

the smallest execution time span. This is coupled with the iteration of the pending maintenance

step scheduling and the programmer job assignment until the simulation goals are met. The

scheduling and job Pssignment cycles of the simulation use algorithms presented earlier in this

chapter.

The accuracy of the maintenance process simulation depends among other factors

on the following assumptions:

" Execution time estimates for all maintenance steps are correct.

* Maintenance steps are not aborted during the simulation.

* The work force pool remains static during the simulation.

" There are no new maintenance steps introduced during simulation.

53

While simulation limits have not been reached perform:

a. Assign jobs to programmers.

b. Find all assigned maintenance steps with minimal estimated execution time.

c. Simulate completion of all maintenance steps found in previous phase.

d. Re-assign (and re-schedule) maintenance tasks.

Figure 3-6: Maintenance procem simulation.

The last two of the previous assumptions may be changed in order to achieve better

simulation or perform sensitivity analysis. For example, we can define a new hypothetical

maintenance team and check how hiring/firing of programmers may affect the maintenance

process. We also can simulate influx of new pending maintenance steps (by using some

predetermined scenario that may be based upon the maintenance history of the system) in order

to achieve a higher degree of reality in the simulation of the maintenance process.

Additional improvement of simulation precision can be achieved by incorporating

new programmer training process factors into the simulation model. For example, using the

ideas and notation of [Ref. 22] and [Ref. 23], we can define for a new programmer an

"Average Assimilation Delay" at a granularity level of the amount of the workload potential

per unit of time (e.g., man-hours per month) which is going to be spent on learning and "social

orientation". We can introduce an effective workload function W(Ht) that will compute for a

programmer HKe H the effective workload potential (i.e., workload potential without the effort

spent for learning) as it depends on time of employment t. Also, we can introduce an additional

function W'-(H,t) that will provide the effective workload potential for an experienced

programmer HIE H that is tutoring a new programmer (e.g., K). In analogy, additional workload

potential functions can be introduced that take into account fluctuations of a workload potential

for the work force depending on time of the year. holidays, etc. Naturally, all of the effective

54

workload potential functions mentioned above are dependent on organizational policies,

structures and experiences.

Incorporating both the programmer's expertise data and the effective workload

functions into the maintenance process simulation will enable a thorough analysis of the

dynamics of maintenance team staffing. Coupled with other staffing decision factors described

by Abdel-Hamid in [Ref. 22], this analysis may help in reaching correct decisions about the

a staffing policy for the maintenance team.

The ability to simulate the future of the maintenance process based upon the current

state of the maintenance process is a very important capability for the management of the

maintenance team. It may provide a sound basis for a variety of decision support tools targeted

to improve the efficiency and cost-effectiveness of large systems' maintenance.

4. Controlling the Maintenance Process

In essence, controlling the software maintenance process does not differ significantly

from controlling a software project. The issue of control of software development and

maintenance is to minimize surprises along the way (see [Ref. 24]). For the purpose of

simplicity, we will view the control of the maintenance process as checking progress against

plans and flagging possible crisis situations.

The Model of Software Maintenance defines structure which allows a high degree

of control over the maintenance process. This is mainly due to the tight integration between

the configurational and managerial aspects of the maintenance process management [Ref. 18].

In the context of an engineering database this integration can provide automated support for

the control of the maintenance process. This support allows it to provide the required services

that were mentioned in the beginning of the chapter, e.g., to provide maintenance process status

and to track maintenance progress.

55

Previously in this chapter principles and algorithms for planning of the maintenance

process were described. Since all the necessary data about the operational planning of the

maintenance process is contained within the maintenance-ortiented engineering database, and

since the Model of Software Maintenance defines distinct execution states for each maintenance

step and all possible relationships between the maintenance steps, we can see that the necessary

information about the current state of all maintenance steps is stored in the engineering database

as well. This information is automatically updated conforming to the ongoing changes as the

result of the execution of maintenance tasks. Software configuration management facilities of

the engineering database discussed in the next section of this chapter provide an additional level

of direct control over the maintenance process. For example, start of a maintenance step

implemenion or completion of a maintenance task are automatically recorded in the

engineering database, and any deviation in the dates of these events may be detected

immediately (by checking the relevant dates against the plans).

As a result, various control reports about the ongoing state of the maintenance

process can be generated utilizing the information in the maintenance-oriented engineering

database. Some examples of such reports are listed below:

* Current state of the maintenance tasks, i.e., what maintenance steps are awaiting
decisions, what steps are in the pending state, how many maintenance steps are currently
under execution, what maintenance tasks have been completed in a given unit of time,
etc.

" Summary reports about the completed maintenance tasks with all relevant information
(e,g., estimated and actual programmer resources).

• Exception reports, e.g., what maintenance steps where to be completed for a given
deadline but are not.

Assuming a programmer effort report facility within the engineering database

environment that records efforts the programmers spent for each maintenance step they

performed, additional control over the maintenance process can be provided by allowing

compilation of reports like the following:

56

" Over-expenditure of maintenance effort, i.e., in which maintenance tasks the effort spent
exceeds planned effort.

• Late start of maintenance task execution, i.e., what maintenance steps should have started
the implementation phase but have not done so.

The required reports can be produced automatically (triggered by some event or

criterion) or periodically (e.g., weekly or monthly), and since the most of the information about

the progress of the maintenance process is gathered automatically, the effort required to produce

the necessary reports is relatively small. Also, the required reports that reflect the current state

of the maintenance process are highly available, i.e., they may be produced at any time.

B. CONFIGURATION MANAGEMENT AND CONTROL

The importance of proper configuration and control procedures for the success of the

software maintenance was described earlier in Chapter I. According to the ANSI/IEEE Guide

to Software Configuration Management [Ref. 11], software configuration management provides

a common point of integration for planning, controlling and implementation activities of a

software project during its lifecycle, is practiced within the management context of the software

project, and provides the maintenance management with the visibility of the maintenance

process and means to control it.

The Model of Software Maintenance described in Chapter II was developed with the

recognition of the importance of software configuration management issues. It uses system

software configuration as one of the bases of the model and it supports concepts required to

provide the necessary configuration management and control tools for a maintenance-oriented

engineering database.

The Model of Software Maintenance supports basic features required for any successful

maintenance configuration management and control system (see [Ref. 17] and [Ref. 25]):

* Record of system evolution history is provided automa, :dly since all components and
maintenance steps with their input and output sets are retained within the engineering
database.

57

" "Forking" of a component evolution line into two or more independent evolution
lines/trees is supported by the Model.

" Support of product release is provided since the Model captures all the necessary
relationships between the components, their grouping into systems/products, and it defines
and imposes consistency as well.

" Version tracking is supported as part of the system evolution record.

" Gathering of the necessary information for management activities (e.g., maintenance
planning, progress tracking) is provided since all the required data is defmned within the
Model framework.

* Support of different products within the same configuration management environment is
provided directly by the Model together with component reusability within scope of
different systems/products.

As previously defined, components of the Model of Software Maintenance are non-re-

derivable components, implicitly assumed to be source code modules. But besides the source

code modules, the Model can also support additional types of software modules (also are non-

re-derivable in terms of [Ref. 161) as its components, e.g.,:

* Specifications.

" User documentation.

" Programmer documentation.

" Test data and test generation procedures.

" Data dictionaries.

Inclusion of these types of software modules within the framework of the Model of

Software Maintenance expands the notions of both the configuration management and the

control to all components and related software modules that are manipulated during the

maintenance process. It is implicitly supported by the Model's system/product definition

mechanisms. Proper manipulation of these new types of software components may be further

augmented by introduction of additional relationships.

Consider a depends-on relationship between a system component and its documentation.

Such relationship can be used to trigger documentation updates as a result of changes in its

58

related component, thus enforcing consistency in the documentation domain of the maintained

software system. The "depends-on" relationship can be used to tie components with their

specifications, test data, test generation procedures, etc. Also, reverse links can be defined,

e.g., a "depends-on" relationship between the specifications and the components that implement

them. Although the "depends-on" relationship is not defined within the Model of Software

Maintenance, it can be implemented within the framework of an engineering database based

upon the Model and tailored to the specifics of the target environment.

Since the Model of Software Maintenance was built upon to comply with the ANSI/IEEE

Guide to Software Configuration Management [Ref. 11], it supports the following:

* Baseline concept.

" Software product promotions/releases.

" Software product versions/revisions.

" Software product structure.

* Software libraries.

* Software product generation.

In the Model of Software Maintenance a baseline B of a system S (denoted as Bs) is

a set {C,} of unique representatives of the genealogy trees that comprise the system S, i.e.,:

(3-7) B' = CICE Tk and TeS) and V C,,CJcB s C,,CjeT, => C,-=-Cj.

A baseline of a system must be complete and consistent, i.e., the following holds:

(3-8) V C, e B3, if Ce P, then V C, such that C, is a component of C, Cj e B3 .
Otherwise 3 K such that Ce O,, and V Cj non-primary inputs of I,, Cj 6 Bs.

A baseline is unique in the context of a system, i.e.,:

(3-9) V B-k,BS. of a system S, if V Cre B% 3 Cje Bs. such that C=--C and IBSkl = IBS.1.
then Bs, = Bso.

The baseline concept is important for configuration management and control. It introduces

the dynamic aspects of system evolution, provides foundation for change management, and

serves as a basis for coordinating engineering activities concerned with software evolution.

59

The evolution of a software system can be viewed as an ordered set of its baselines, where the

ordering is based upon the time of a managerial decision to introduce (or roll-back to) a

baseline (and not on the time of baseline creation, since it does not take into account the

possibility of roll-backs to previously defined baseline). It should be noted that the baseline

ordering is not directly related to the component ordering of the digraph G which is the basic

structure of the Model of Software Maintenanz-, i.e., there is no direct relationship between

topological ordering of components, and the ordering of baselines these components belong to.

The software product promotion/release concept is supported by enforcing the formality

of the managerial decisions concerned with the changes made to the baselines of the software

product. In plain words, definition of a baseline (by defining components that belong to it)

requires an explicit managerial decision, part of which is to decide whether the new baseline

is to be released to the user or not.

Use of the baseline concept allows implicit support of the versions/revisions concept.

From the moment the new baseline is identified, all changes between the new baseline and the

previous baselines are identified as well, and any new functional capabilities added to the

system (leading to a new version) can be identified and appropriately documented.

The software product structure is supported by a system/product concept of the Model

of Software Maintenance which also supports the hierarchical decomposition of software

products by the use of intermediate subsystems. For example, a software configuration item (CI

in terms of the IEEE Guide to Configuration Management) can be defined as a system S that

consists of subsystems S, (i.e., S=uS, and SnSj--0 for i*j) where each subsystem is a set of

genealogy trees (i.e., S, - IT}). Such represen.ation defines a three level product hierarchy,

and it can be expanded to include more levels of hierarchy by defining intermediate subsystems

as required.

The concept of multiple software libraries (i.e.. Controlled, Dynamic and Static libraries

of the IEEE Guide to Configuration Management) is implicitly supported by the Model of

60

Software Maintenance. The main configuration repository of the Model (i.e., the digraph G

defined in Chapter I) corresponds directly to the master (Controlled) library, and the Model

of Software Maintenance centers on its structure and operations. The Dynv'nic library in which

the hands-on software maintenance/development is performed and the Static library that holds

the released versions and revisions of the software product are outside of the direct scope of

the Model. These libraries can (and should) be defined by the configuration management

according to organizational policies and practices. They should not influence the structure and

operation of the master library except for trivial interfacing between them.

The Model of Software Maintenance supports the following operations on the managed

components within the master (Controlled) library:

• Checkouts of software components to programmers according to their requests.

* Authorized check-in from programmer as a result of completion of the implementation
phase (i.e., when the maintenance step makes the transition from implementing to
completed state).

" Baseline definition and baseline rollback as a result of an explicit managerial decisions.

* Status accounting and history reports.

It should be noted that since there are no locks on the entities of the master library, and

all the changes to it must be authorized in advance by a managerial decision within the

consistency constrains imposed by the Model, there are no concurrent update conflicts. Thus

the READ ONLY access to components within the master library is always supported as

illustrated above by the absence of authorization for component checkout.

Although the Model of Software Maintenance deals only with the non-re-derivable

components, it implicitly supports the concept of software product generation. The Model's "is-

component-of" relationships, system/product structure definition and the consistency enforced

by the Model allow automatic generation of software products. Since the actual generation of

the software product requires additional information that is application dependent and concerns

both the target machine (e.g., machine type, memory size, etc.) and the product specifics, it is

61

outside the scope of a general model (like the Model of Software Maintenance), and it should

be implemented within the scope of the configuration management system. Since the maintained

components may be of different types (e.g., written in different programming languages),

different generation procedures may be required. In a such case, a sophisticated product

generating sub-system (that should be a part of the configuration management and control

system) could be implemented. Such a subsystem may utilize the configuration knowledge base

ideas described in (Ref. 16], and its capabilities can be augmented by a rule-based expert

subsystem that utilizes the component's attributes (e.g., component's programming language type

can be used to determine the appropriate compiler to be used), and has additional advanced

features (e.g., caching of intermediate compiled software product components for overall

efficiency of the product generation). Naturally, since the Model of Software Maintenance

enforces baseline consistency of software products, the resulting generated software product

is consistent with itself (i.e.. within the scope of its constructing components), and it will reflect

the authorized maintenance work.

Since the Model of Software Maintenance deals with all facets of the maintenance

process information flow (from user request for a change, throughout SCCB deliberations until

the maintenance step implementation and completion), the model actually supports the system

configuration management and control actions throughout the entire process of software

maintenance. The model also combines into one coherent framework the information and the

control of the configuration management and control functions. It allows automation of the

mechanics of the pure configuration management and control process (e.g., change initialization,

status accounting, change control and tracking, etc.), and on-line tools to observe and control

the dynamics of software maintenance process as a whole.

A configuration management and control system based upon the Model of Software

Maintenance has additional aspects: due to the discipline imposed by the model it supports

improved communication and coordination with the user (e.g.. throughout well defined

62

procedures for change initiation), and it improves visibility of priorities of the requested

changes and corresponding decisions about maintenance step implementation. As a result,

software problem reports and change initiations are promptly and properly recorded, the

implementation analysis and decision phase is enforced for all maintenance activities, and

planning and control functions become part of the maintenance process. Also, since all changes

to the system's configuration must be approved by appropriate maintenance management levels,

all concurrency conflicts (e.g., concurrent update of the same system component) are solved at

these levels and they do not filter down to the programmer work force. Another beneficial

aspect of a configuration management and control system based upon the Model of Software

Maintenance is to help improve the Quality Assurance (QA) of the maintenance process by

explicitly enforcing consistency (e.g., baseline consistency) and implicitly enforcing checks and

formal decisions associated with the QA activity.

C. GATHERING AND PROCESSING METRICS AND STATISTICS

One of the important aspects of the maintenance-oriented engineering database is the

maintenance process information gathering and processing. This information is very helpful in

evaluating the effectiveness of the maintenance process and/or maintenance techniques as

defired in [Ref. 9). Also, it allows identification of error-prone components and a more

accurate prediction of future maintenance costs than is usually available [Ref. 26].

Since the Model of Software Maintenance views system components as immutable objects

(see Chapter I) and deletion of these components is prohibited, it is obvious that the Model

retains historic information. Therefore, a maintenance-oriented engineering database built upon

the Model of Software Maintenance can serve as a historic database of the system evolution.

Because both the system components and the maintenance steps are elements of the Model of

Software Maintenance, the information in this historic database pertains to aspects of

maintenance process history (i.e., system evolution) and to component contents.

63

Since software faults are treated as change requests, and the engineering database contains

the information about the faults themselves and all maintenance steps that were performed in

order to eliminate them, we can see that the maintenance-oriented engineering database contains

the necessary quality accounting information as well.

Processing the data contained in the maintenance-oriented engineering database can

provide the necessary information to evaluate the performance of the maintenance process for

the organization as a whole or for a particular maintenance team, system, etc. Besides the basic

maintenance summary reports defined by Swanson in [Ref. 9], additional computations and

summary reports can be produced utilizing the data in the engineering database, e.g.,:

" Average number of lines of code (LOC) changed per maintenance task for system as a
whole or for particular subsystems.

" Average programming effort required for the execution of a maintenance task for the
whole system or for particular subsystems.

• Maintenance programmer productivity for the whole system or as function of a particular
component, subsystem or programming technology (e.g., computer language).

" Programmer fault insertion rates as a function of time, subsystem, component or
programming technology (e.g., computer language).

" Annual rate of user change requests as a function of time or subsystem.

" Annual Change Traffic (ACT) values for the whole system and/or the system
components.

* Maintenance effort distribution as a function of subsystems or system components.

" System/subsystem development spoilage as function of time.

" Changes in system complexity (e.g., McCabe cyclomatic measure) as a function of system
evolution.

As shown above, the required computations and reports can be produced for the whole

system, for particular subsystems and components, or for a particular programming technology

(e.g., computer languages and tools). This feature may be very useful for systems that consist

of components that employ different programming technologies and techniques, which is a very

likely feature in a large software system.

64

The analysis that can be performed using the historic information in the engineering

database can be of great help in high level prediction/planning of the maintenance process.

For example, we can estimate the financial impact of system maintenance utilizing COCOMO

[Ref. 81 and using correct ACT values that were computed from the information in the

engineering database. In general, maintenance process historical information can help

management to predict more efficiently the maintenance costs. As a result, it may also help to

reduce the cost of system maintenance - two important goals of maintenance team/organization

management.

Most of the information required for the maintenance metrics and statistic is

collected/recorded automatically during the execution of a maintenance process and already

exists in the engineering database. Therefore, unlike current practices of metrics and statistics

data gathering that may consume a considerable effort [Ref. 24], there is a very low overhead

involved in retrieving the necessary data for the required metrics and statistics computations.

Also, the availability of the necessary data allows ad hoc generation of statistical reports that

reflect the current state of the maintenance process.

65

IV. CONCLUSION

This thesis presents a Model of Software Maintenance for large scale computer systems.

In the first chapter of this work the issues of software maintenance were examined with

emphasis on the specific maintenance problems of military software, and the need for a

mainteance-oriented engineering database is established. Also a need for a consistent

underlying model for the engineering database is identified. Such a model, called the Model

of Software Maintenance, is proposed in the second chapter of the thesis. The third chapter

shows how to utilize the proposed Model for the purposes of maintenance process management,

assuming that the Model serves as a theoretical basis for a maintenance-oriented engineering

database. In particular, algorithms are provided for maintenance task scheduling, programmers

job assignment, maintenance process planning, etc. Also, benefits of integration and automation

of different aspects of the maintenance process (e.g., gathering and processing maintenance

metrics and statistics) are shown.

Special emphasis was given in the development of the Model of Software Maintenance

to comply with the existing standards, e.g., the Guidance on Software Maintenance document

from the USA National Bureau of Standards and the ANSI/EEE Guide to Software

Configuration Management were consulted and followed as closely as possible throughout the

Model definition.

Also, special attention was given in definition of the Model of Software Maintenance to

stay within the theoretical aspects of mathematical modelling without incorporating specific

organizational and implementation aspects into the Model. This was done to keep the model

abstract enough to be used as a basis for engineering database implementation in different

organizations, each with its own organizational structure and policies.

66

The Model of Software Maintenance was developed using an integrated approach to

software maintenance. Change control, configuration management and control, relationships

between software components, managerial aspects of controlling the maintenance process and

managing available human resources are consolidated into one framework. This feature of the

Model is unique, i.e., we do not know about any other model of software maintenance or

production that does so. The existing practical approaches to change control and configuration

management (i.e., implementations of change control and CM systems) address single aspects

of the software maintenance and provide little integration capabilities with other facets of

maintenance process.

A. RESEARCH CONTRIBUTIONS

The main contribution of this research is the development of the Model of Software

Maintenance.

The Model of Software Maintenance provides a unique, integrative framework that

describes the dynamic, configurational and managerial aspects of software maintenance process.

It imposes a well defined structure on the maintenance process, provides control over the

process lifecycle, allows automatic gathering of maintenance statistics, preserves maintenance

history, and allows rollback of the "ill fated" maintenance tasks influence.

The Model of Software Maintenance provides a mathematically sound basis for

implementation of a maintenance-oriented engineering database, and it allows derivation of

algorithms required for effective and efficient utilization of such database. Some of these

algorithms were introduced in Chapter I of this thesis, some are still to be developed in the

future. The resulting engineering database is capable of supporting the required information flow

and control necessary for successful management of the maintenance process.

The Model of Software Maintenance also imposes a well defined discipline on the

process of software maintenance within the scope of the organization that uses the software

67

system, and, as a result, it contributes to improved communication between users and the

system maintainers.

B. FUTURE DIRECTIONS

It appears that at this stage of its development the Model of Software Maintenance is

complete and consistent by itself.

It seems logical to advise that future theoretical efforts within the framework of the

Model should concentrate on improvement of the existing algorithms and development of

nLatabase, e.g., access to the data, processing of the raw data using specific algorithms and

processing data requests for the database users (e.g., SCCB members, maintainers, managers,

etc.).

Since all of the entities in the Model of Software Maintenance can be represented as data

entities, it seems that the heart of the functional database kernel can be implemented using a

regular database' system (e.g., currently available commercial DBMS). The functionality of the

kernel should be provided by additional software that is built upon the DBMS services. This

software should implement the necessary algorithms (e.g., maintenance step scheduling, job

assignment, etc.) traversing the mathematical structures of the Model of Software Maintenance.

The flexible engineering database kernel interfaces should be responsible for the task of

adapting the kernel to specific organizations. Such adaptation depends on the details of the

organizational structure and peculiarities of the maintenance process in each organization. Since

these specifics are difficult to foresee, the kernel interfaces must be flexible and sufficiently

general. Naturally, a choice of database technology for the functional kernel (e.g., relational or

object oriented) should not impede the flexibility and generality of the kernel interfaces.

Regular here means usual information database and is in contrast to the maintenance oriented
engineering one.

68

The implementation of the maintenance-oriented engineering database based upon the

Model of Software Maintenance should address issues of the database schema design,

appropriate database technology choice, the database operation and evaluation.

Although the Model of Software Maintenance is oriented (as its name suggests) towards

the maintenance phase of the software system life cycle, it can also be adapted to software

development, especially when an evolutionary software development approach is used. Because

this thesis concentrates on the maintenance aspects, no attempt was made to pursue this issue

within the scope of this research. Doing so in the future may be a good idea, especially after

the Model proves itself in a successful implementation.

69

LIST OF REFERENCES

1. Arthur L.J., Software Evolution - The Software Maintenance Challenge, John Willy &
Sons, Inc, 1988.

2. Martin RJ., and Osborne W.M., Guidance on Software Maintenance. National Bureau
of Standards, U.S. Departments of Commerce, December 1983.

3. Schneidwind N.F., The State of Software Main:enance, IEEE Transactions on Software
Engineering, Vol. SE-13 No. 3. March 1987.

4. Lehman, M.M. and Belady L.A., Program Evolution, Process of Software Change,
ACADEMIC PRESS 1985.

5. Lientz B.P., Issues in Software Maintenance, ACM Computing Surveys, Vol.15, No 3,
September 1983. pp. 171-178.

6. Day R., A History of Software Maintenance for a Complex U.S. Army Battlefield
Automated System, IEEE Proceedings of Conference on Software Maintenance. IEEE,
November 1985. pp. 181-187.

7. Lientz B.P. and Swanson E.B., Software Maintenance Management, ADDISON-WESLEY
1980. pp. 81.

8. Boehm B.W., Software Engineering Economics, PRENTICE-HALL 1981.

9. Swanson E.B., The Dimensions of Maintenance, Proceedings of 2nd International
Conference on Software Engineering. IEEE. October 1976. pp. 492-497.

10. Lientz B.P. and Swanson E.B., Problems in Application Software Maintenance,
Communications of the ACM, Vol. 24, no 11, November 1981 pp. 763-769.

11. IEEE Guide to Software Configuration Management, ANSI/IEEE Std. 1042-1987,
Technical Committee on Software Engineering of the Computer Society of IEEE, 1988.

12. Campbell R.H., and Terwilliger R.B., The SAGA Approach to Automated Project
Management, Advanced Programming Environments, Proceedings of an International
Workshop, Trondheim, Norway,June 1986. SPRINGER-VERLAG pp. 142-155.

13. Berzins V., and Luqi, Software Engineering with Abstractions: an Integrated Approach
to Software Development using ADA, ADDISON-WESLEY 1989.

14. McClure C.L., Managing Software Development and Maintenance. VAN NOSTRAND
REINHOLD Co. 1981. pp. 141.

70

15. Brison E., A Model of Software Manufacture, Advanced Programming Environments,
Proceedings of an International Workshop, Trondheim, NorwayJune 1986. SPRINGER-
VERLAG pp. 197-220.

16. Heimbigner D. and Krane S., A Graph Transform Model for Configuration Management
Environments, Proceedings of ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments. 1988. pp. 216-225.

17. Taylor B., A Database Approach to Configuration Management for Large Projects,
IEEE Proceedings of Conference on Software Maintenance. IEEE, November 1985. pp.
15-23.

18. Branch M.A., Jackson M.C., and Laviolette M.C., Software Maintenance Management,
IEEE Proceedings of Conference on Software Maintenance. IEEE, November 1985. pp.
62-67.

19. Roberts F.S., Discrete Mathematical Models, Prentice-Hall, Inc. 1976. pp. 42-49.

20. Abdel-Hamid T.K. and Madnick S.E., Lessons Learned from Modeling the Dynamics of
Software Development, Communication of the ACM, Volume 32 Number 12. December
1989. pp. 1429-1455.

21. Dossey JA., and others, Discrete Mathematics, Scott, Foresman and Company, 1987. pp.
233-272.

22. Abdel-Hamid T. K., The Dynamics of Software Project Staffing: A System Dynamics
Based Simulation Approach, IEEE Transactions on Software Engineering vol. 15, No 2,
February 1989.

23. Abdel-Hamid T.K., A Study of Staff Turnover, Acquisition, and Assimilation and Their
Impact on Software Development Cost and Schedule, Journal of Management Information
Systems. Summer 1989, Vol 6, No. 1. pp. 21-40.

24. DeMarco T., Controlling Software Projects: Management, Measurement & Estimation,
Yourdon Press, Prentice-Hall, Inc. 1982.

25. Home C.G. And Seeger R., An Advanced Configuration Management Tool Set, IEEE
Conference on Software Maintenance. IEEE, 1988. pp. 229 - 234.

26. Schaefer H., Metrics for Optimal Maintenance Management, IEEE Proceedings of
Conference on Software Maintenance. IEEE, November 1985. pp. 114-119.

71

BIBLIOGRAPHY

1. Abdel-Hamid T. K., The Dynamics of Software Project Staffing: A System Dynamics
Based Simulation Approach, IEEE Transactions on Software Engineering vol. 15, No 2,
February 1989.

2. Abdel-Hamid TX., A Study of Staff Turnover, Acquisition, and Assimilation and Their
Impact on Software Development Cost and Schedule, Journal of Management Information
Systems. Summer 1989, Vol 6, No. 1. pp. 21-40.

3. Abdel-Hamid T.K. and Madnick S.E., Lessons Learned from Modeling the Dynamics of
Software Development, Communication of the ACM, Volume 32 Number 12. December
1989. pp. 1429-1455.

4. Arthur L.J., Software Evolution - The Software Maintenance Challenge, John Willy &
Sons,lnc, 1988.

5. Berzins V., and Luqi, Software Engineering with Abstractions: an Integrated Approach
to Software Development using ADA, ADDISON-WESLEY 1989.

6. Boehm B.W., Software Engineering Economics, PRENTICE-HALL 1981.

7. Borison E., A Model of Software Manufacture, Advanced Programming Environments,
Proceedings of an International Workshop, Trondheim, NorwayJune 1986. SPRINGER-
VERLAG pp. 197-220.

8. Branch M.A., Jackson M.C., and Laviolette M.C., Software Maintenance Management,
IEEE Proceedings of Conference on Software Maintenance.IEEE, November 1985. pp.
62-67.

9. Campbell R.H., and Terwilliger R.B., The SAGA Approach to Automated Project
Management, Advanced Programming Environments, Proceedings of an International
Workshop, Trondheim, Norway,June 1986. SPRINGER-VERLAG pp. 142-155.

10. Day R., A History of Software Maintenance for a Complex U.S. Army Battlefield
Automated System, IEEE Proceedings of Conference on Software Maintenance. IEEE,
November 1985. pp. 181-187.

11. DeMarco T., Controlling Software Projects: Management, Measurement & Estimation,
Yourdon Press, Prentice-Hall, Inc. 1982.

12. Dossey J.A. and others, Discrete Mathematics, Scott, Foresman and Company. 1987.

13. Douglas B.S., Conceptual Level Design of a Design Database for the Computer-Aided
Prototyping System, Master's Thesis. Naval Postgraduate School, Monterey. California.
March 1989.

72

14. Heimbigner D. and Krane S., A Graph Transform Model for Configuration Management
Environments, Proceedings of ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments. 1988. pp. 216-225.

15. Home C.G. and Seeger R., An Advanced Configuration Management Tool Set, IEEE
Conference on Software Maintenance. IEEE, 1988. pp. 229 - 234.

16. IEEE Guide to Software Configuration Management, ANSI/IEEE Std. 1042-1987,
Technical Committee on Software Engineering of the Computer Society of IEEE, 1988.

17. Lehman, M.M., and Belady LA., Program Evolution, Process of Software Change,
ACADEMIC PRESS 1985.

18. Lientz B.P., and Swanson E.B., Software Maintenance Management, ADDISON-
WESLEY 1980.

19. Lientz B.P., and Swanson E.B., Problems in Application Software Maintenance,
Communications of the ACM, Vol. 24, no 11, November 1981 pp. 763-769.

20. Lientz B.P., Issues in Software Maintenance, ACM Computing Surveys, Vol.15, No 3,
Sep. 1983. pp. 171-178.

21. Luqi, Computer Aided Maintenance of Prototype Systems, Technical Report NPS-52-
88-037, Naval Postgraduate School, Monterey, CA. September 1988

22. Luqi, Software Evolution via Prototyping, Technical Report NPS-52-88-039, Naval
Postgraduate School, Monterey, CA. September 1988

23. Martin R.J., and McClure C.L., Software Maintenance, Prentice-Hall, Inc. 1983.

24. Martin RJ., and Osborne W.M., Guidance on Software Maintenance, National Bureau
of Standards, U.S. Departments of Commerce, December 1983.

25. McClure C.L., Managing Software Development and Maintenance, VAN NOSTRAND
REINHOLD Co. 1981.

26. Parkih G. (ed.), Techniques of Program and System Maintenance, Winthrop Publishers,
Inc. 1982.

27. Rand P.H., Seven Ways to Cut SOftware Maintenance Costs, Datamation, July 15 1987.
pp. 128-131.

28. Richardson G.L., and Butler C.W., Organization Issues of Effective Maintenance
Management, AFIPS, Proceedings of the National Computer Conference, Vol. 52. 1983.
pp. 157-161.

29. Roberts F.S., Discrete Mathematical Models, Prentice-Hall, Inc 1976.

30. Schaefer H., Metrics for Optimal Maintenance Management, IEEE Proceedings of
Conference on Software Maintenance. IEEE, November 1985. pp. 114-119.

73

31. Schneidwind N.F., The State of Software Maintenance, IEEE Transactions on Software
Engineering, Vol. SE-13 No. 3. March 1987.

32. Swanson E.B., The Dimensions of Maintenance, Proceedings of 2nd International
Conference on Software Engineering. EE. October 1976. pp. 492-497.

33. Taylor B., A Database Approach to Configuration Management for Large Projects, IEEE
Proceedings of Conference on Software Maintenance.IEEE, November 1985. pp. 15-23.

34. Tichy W.F., Design, Implementation and Evaluation of a Revision Control System,
Proceedings of 6-th Software Engineering Conference. IEEE. September 1982.

35. Tichy W.F., RCS - A System for Version Control, Software - Practice and Experience,
Vol. 15(7). July 1985. pp. 637-654.

74

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Center for Naval Analysis
4401 Ford Avenue
Alexandria, Virginia 22302-0268

4. Research Administration, Code 012
Naval Postgradu.;e School
Monterey, California 93943

5. Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

6. Commanding Officer 3
System Maintenance Division
Israeli Air Force
via Israeli Air Attache
Embassy of Israel
3514 International Drive, N.W.
Washington, D.C. 20008

7. Prof. Luqi, Code CS/Lq 3
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

8. Chief of Naval Research
800 N. Quincy Street
Arlington, Virginia 22217

9. Carnegie Mellon University
Software Engineering Institute
Department of Computer Science
Attn. Dr. E. Borison
Pittsburgh, Pennsylvania 15260

75

10. Commanding Officer
Naval Research Laboratory, Code 5150
Attn. Dr. Elizabeth Wald
Washington, D.C. 20375-5000

11. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
Attn. Dr. B. Boehm
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

12. Atm: Mr. William McCoy
Code K54, NSWC
Dahlgren, Virginia 22448

13. Defense Advanced Research Projects Agency (DARPA)
Director, Naval Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

14. Defense Advanced Research Projects Agency (DARPA)
Director, Prototype Projects Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

15. Defense Advanced Research Proiects Agency (DARPA)
Director, Tactical Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

16. Chief of Naval Operations
Attn: Dr. R. M. Carroll (OP-01B2)
Washington, D.C. 20350

17. Dr. Robert M. Balzer
USC-Information Sciences Institute
4676 Admiralty Way
Suite 1001
Marina del Ray, California 90292-6695

18. Editor-in-Chief, IEEE Software
Attn. Dr. Ted Lewis
Oregon State University
Computer Science Department
Corvallis, Oregon 97331

19. IBM T. J. Watson Pesearch Center
Attn. Dr. A. Stoyenko
P.O. Box 704
Yorktown Heights, New York 10598

76

20. International Software Systems Inc.
12710 Research Boulevard, Suite 301
Attn. Dr. R. T. Yeh
Austin, Texas 78759

21. Kestrel Institute
Attn. Dr. C. Green
1801 Page Mill Road
Palo Alto, California 94304

22. MCC AI Laboratory
Attn. Dr. Michael Gray
3500 West Balcones Center Drive
Austin, Texas 78759

23. National Science Foundation
Division of Computer and Computation Research
Attn. Tom Keenan
Washington, D.C. 20550

24. Naval Ocean Systems Center
Attn: Linwood Sutton, Code 423
San Diego, California 92152-5000

25. Naval Ocean Systems Center
Attn. Les Anderson, Code 413
San Diego, California 92152-5000

26. Naval Sea Systems Command
Attn: Capt A. Thompson
National Center #2, Suite 7N06
Washington, D.C. 22202

27. NAVSEA, PMS-4123H
Attn. William Wilder
Arlington, Virginia 22202-5101

28. New Jersey Institute of Technology
Computer Science Department
Attn. Dr. Peter Ng
Newark, New Jersey 07102

29. Office of Naval Research
Computer Science Division, Code 1133
Attn. Dr. Van Tilborg
800 N. Quincy Street
Arlington, Virginia 22217-5000

77

30. Office of Naval Research
Computer Science Division, Code 1133
Attn. Dr. R. Wachter
800 N. Quincy Street
Arlington, Virginia 22217-5000

31. Office of Naval Research
Applied Mathematics and Computer Science
Attn. J. Smith, Code 1211
800 N. Quincy Street
Arlington, Virginia 22217-5000

32. Software Group, MCC
9430 Research Boulevard
Attn. Dr. L. Belady
Austin, Texas 78759

33. University of California at Berkeley
Department of Electrical Engineering and Compute Science
Computer Science Division
Attn. Dr. C.V. Ramarnoorthy
Berkeley, California 90024

34. Attn: Dr. Mike Reiley
Fleet Combat Directional Systems Support Activity
San Diego, California 92147-5081

35. Chief of Naval Operations
Attn. Dr. Earl Chavis (OP-162)
Washington, D.C. 20350

36. Steve Huseth
Honeywell Systems & Research Center
Mpls, Minnesota 55418

37. Attn: George Sumiall
US Army Headquarters
CECOM
AMSEL-RD-SE-AST-SE
Fort Monmouth, New Jersey 07703-5000

38. Attn: Joel Trimble
1211 South Fern Street, C107
Arlington, Virginia 22202

39. Attn: Dr. David Hislop
United States Laboratory Command
Army Research Office
P. 0. Box 12211
Research Triangle Park. North Carolina 27709-2211

78

40. Attn: Dr. Phil Hwang
NSWC, U-33
Silver Spring, Maryland 20903-5000

41. Attn: Dr. Abraham Waksman
Computer Science and Artificial Intelligence
Department of the Air Force
Boling Air Force Base, D.C. 20332-6448

42. Professor Valdis Berzins, Code CS/Be
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

43. Professor Kim Hefner, Code MA/HK
Department of Mathematics
Naval Postgraduate School
Monterey, California 93943

44. Professor Tarek Abdel-Hamid, Code AS/Ah
Department of Administrative Sciences
Naval Postgradtuate School
Monterey, California 93943

45. Dr. Amiram Yehudai
Tel Aviv University
School of Mathematical Sciences
Department of Computer Science
Tel Aviv, Israel 69978

46. Prof. D. Beery
Department of Computer Science
University of California
Los Angeles, California 90024

47. Professor Moshe Zviran, Code AS/Zv
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943

48. Capt J. A. Hernandez, Jr.
IRMD/ASD/Code 743
Marine Corps Logistics Base
Albany, Georgia 31704

49. Major Isaak Mostov 2
Israeli Air Force
via Israei Air Attache
Embassy of Israel
3514 International Drive, N.W.
Washington, D.C. 20008

79

