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ABSTRACT

The distributed nature of information in a distributed system is one of the major

issues that protocols for cooperation and coordination between individual compo-

nents in a such systems must handle. Individual sites customarily have only partial

knowledge about the general state of the system. Moreover, different information

is available at different sites of the system. Consequently, a central role of commu-

nication in such protocols is to inform particular sites about events that take place

at other sites, and to transform the system's state of knowledge in a way that will

guarantee the successful achievement of the goals of the protocol. -

This thesis takes a ew initial steps towaris the study of the role of knowledge

in distributed systems. e present a general framework for defining knowledge in a

distributed system, and identify a variety of states of knowledge of sets of processors,

which seem to capture some basic aspects of coordinated actions in a distributed

environment. This machinery is applied to the analysis of a number of problems: we

generalize and extend the well-known eoordinated attack problem, which deals with

the effects of unreliable communication on coordination in a distributed system; we

analyze a generalized version of the cheating wives puzzle, obtaining insight into

the subtle differences between broadcasting messages via different communication

channels, and into the the subtle interaction between knowledge, communication

and action. Finally, we apply this machinery to the study of fault-tolerance in

systems of unreliable processors, providing considerable insight into the Byzantine

agreemen~t problem, and obtaling improved protocols for Byzantine agreement and

many related problems. ( <j¢. )
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CHAPTER 1

INTRODUCTION

Distributed systems of computers are rapidly gaining popularity in a wide variety
of applications. The cooperation and coordination between computers at distinct
locations made possible in a distributed system greatly enhances the usefulness of
the individual computers in the systemr. Such cooperation and coordination is car-
ried out by the execution of distributcd protocls (sometimes also called distributed
programs or plans) at the different sites of the system. However, the distributed
nature of control and information in such systems makes the design and analysis
of distributed protocols a complex task. Unfortunately, at the current time the
design of distributed protocols is more an art than a science. Basic foundations,
general techniques, and a clear methodology are urgently needed to improve our
understanding and ability to deal effectively with distributed systems.

Whereas the tasks that distributed protocols are required to perform are nor-
mally stated in terms of the overall behavior of the system, the actions of an indi-
vidual processor in a distributed system can only depend on its local information.
This local information varies from site to site, and generally provides only a partial
view of the state of the system. In determining the interaction between the indi-
vidual processors, a distributed protocol must ensure that the states of knowledge

attained by the system during an excution of the protocol allow the achievement of
the protocol's goals. Thus, reasoning about the system's state of knowledge seems
to be an important part of the design of distributed protocols. Indeed, designers of
such protocols frequently find it useful to reason intuitively about processors' states
of knowledge at various points in the execution of a protocol. However, formal
descriptions of distributed protocols, as well as actual proofs of their correctness
or impossibility, have traditionally avoided any explicit treatment of knowledge.
Rather, the intuitive arguments about the state of knowledge of components of the
system are customarily buried in combinatorial proofs that are often unintuitive
and hard to follow. Consequently, essentially the same proof is often repeated with
slight variations for closely related iaodels of distributed systems.

This thesis attempts to take a few initial steps towards making reasoning about
knowledge in a distributed environment more explicit, and towards understanding
the relationship between knowledge, communication, and action in a distributed
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2 INTRODUCTION CHAP. I

system. Explicitly reasoning about the states of knowledge of processors in a dis-
tributed system, it is hoped, will provide L more general and uniform setting that
will offer genuine insight into the basic structure and limitations of protocols in
such systems. Clear semantics for knowledge in a distributed system should reveal
subtleties that may not be otherwise apparent, sharpen our understanding of ba-
sic issues, and improve even the high level intuitive reasoning about knowledge so
intimately involved in the design of distributed protocols and plans. In the long
run, we hope that a theory of knowledge, communication, and action will prove
rich enough to provide general foundations for a unified theoretical treatment of
distributed systems.

The general concept of knowledge has received considerable attention in a variety
of fields, ranging from Philosophy [Hi] and Artificial Intelligence [Mc], to Game
Theory [A] and Psychology [C1M1. A study of knowledge in distributed systems can
greatly benefit from work done in those fields and the paradigms presented by them.
Furthermore, given that it is somewhat easier to formally model the "knowers" and
their knowledge in a distributed system, work on knowledge in distributed systems
promises to shed light on aspects of knowledge that are relevant to related fields.

In the next section we look at the "muddy children" puzzle, which illustrates
some of the subtleties involved in reasoning about knowledge in the presence of
many "knowers" or "agents". In Section 1.2 we introduce a hierarchy of states
of knowledge that a group may be in. Section 1.3 focuses on the relationship be-
tween knowledge and communication by looking at the coordinated attack problem.
Section 1.4 contains an outline of the thesis.

1.1 The "muddy children" puzzle

A crucial aspect of distributed protocols is the fact that a number of different
processors cooperate in order to achieve a particular goal. Thus, since more than
one individual is present, an individual may have knowledge about other individu-
als' knowledge in addition to his knowledge about the physical world. This often
requires care in distinguishing subtle differences between seemingly similar states
of knowledge. A classical example of this phenomenon is the "muddy children"
puzzle - a variant of the well known "wise men" or "cheating wives" puzzles. The
version given here is taken from [B]:

Imagine n children playing together. The mother of these children has told
them that if they get dirty there will be severe consequences. So, of course, each

child wants to keep clean, but each would love to see the others get dirty. Now
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it happens during their play that some of the children, say k of them, get mud

on their foreheads. Each can see the mud on others but not on his own forehead.

So, of course, no one says a thing. Along comes the father, who says, "At least

one of you has mud on your head," thus expressing a fact known to each of them

before he spoke (if k > 1). The father then asks the following question, over and

over: "Can any of you prove you have mud on your head?" Assuming that all the

children are perceptive, intelligent, truthful, and that they answer simultaneously,

what will happen?

There is a "proof" that the first k - 1 times he asks the question, they will all

say "no" but then the kth time the dirty children will answer "yes."

The "proof" is by induction on k. For k = 1 the result is obvious: the dirty

child sees that no one else is muddy, so he must be the muddy one. Let us do
k = 2. So there are just two dirty children, a and b. Each answers "no" the first

time, because of the mud on the other. But, when b says "no," a realizes that he

must be muddy, for otherwise b would have known the mud was on his head and

answered "yes" the first time. Thus a answers "yes" the second time. But b goes

through the same reasoning. Now suppose k = 3; so there are three dirty children,

a, b, c. Child a argues as follows. Assume I don't have mud on my head. Then, by

the k = 2 case, both b and c will answer "yes" the second time. When they don't,

he realizes that the assumption was false, that he is muddy, and so will answer
"yes" on the tird question. Similarly for b and c.

Let us denote the fact "At least one child has a muddy forehead" by m. Notice

that if k > 1, i.e., more than one child has a muddy forehead, then every child can

see at least one muddy forehead, and the children initially all know m. Thus, it

would seem, the father does not need to tell the children that m holds when k > 1.

But this is false! In fact, had the father not announced m, the muddy children

would never have been able to conclude that their foreheads are muddy. We now

sketch a proof of this fact.

First of all, given that the children are intelligent and truthful, a child with

a clean forehead will never answer "yes" to any of the father's questions. Thus,

if k = 0, all of the children answer all of the father's questions "no". Assume

inductively that if there are exactly k muddy children and the father does not

announce m, then all children answer "no" to all of the father's questions. Note

that, in particular, when there are exactly k muddy foreheads, a child with a clean

forehead initially sees k muddy foreheads and hears all of the father's questions

answered "no". Now assume that there are exactly k + 1 muddy children. We prove
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by induction on the number of questions asked that all of the children answer "no"
to all of the father's questions. Assume inductively that all of the children have

answered "no" the father's first n questions (for n = 0 this condition is vacuously

true). Recall that a clean child will necessarily answer "no" to the father's n + 1 t

question. Next observe that before answering the father's n + 1 st question, a muddy

child has exactly the same information as a clean child has at the corresponding

point in the case of k muddy foreheads. It follows that the muddy children must

all answer "no" to the father's n + i s' question, and we are done. (Note that a very

similar proof shows that if there are k muddy children and the father does announce

rm, his first k - 1 questions are answered "no".)

So, by announcing something that the children all know, the father somehow

manages to give the children useful information! How can this be? Exactly what
twas the role of the father's statement? In order to answer this question, we need

to take a closer look at knowledge in the presence of more than one knower; this is

the subject of the next section.

1.2 A hierarchy of states of knowledge

Although in different contexts knowledge may be assumed to mean different

things, one property generally required of knowledge is that only true things be

known, or, more formally, that knowledge satisfy the axiom

Kio D (p;

i.e., if an individual i knows Wp, then Wp is true.1 In Chapter 2 we will discuss specific

interpretations for knowledge that seem to be particularly useful in the context of

distributed systems. For the purposes of our discussion in the next few sections,

the only properties we require of an individual's knowledge is that it be a function

of the individual's view of the past and that it satisfy the above axiom (we make

this precise in Section 2.2).

Given a reasonable interpretation for individuals' knowledge, how does the no-

tion of knowledge generalize from an individual to a group? In other words, what

does it mean to say that a group G of individuals knows a fact W? More than one

possibility is reasonable, with the appropriate choice depending on the application:

Ia I (read "the group G has Implicit Knowledge of W"): We say that G has

implicit knowledge of 'p iff someone who would have complete knowledge of what

I Notions that do not satisfy the Kilo D 'p axiom are customarily thought of as belief.
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each member of G knows would know V. Thus, roughly speaking, V0 is implicit

knowledge in G if the knowledge about V is distributed among the members of

G. For instance, if one member of G knows ik and another knows that ?k D (o,
the group G can be said to have implicit knowledge of V.

* Sso (read "someone in G knows s"): We say that SGo holds iff some member
of G knows so. More formally,

SGo = V Kiv.
ieG

" Eso, (read "everyone in G knows so"): We say that Eoso holds iff all members

of G know o. More formally,

EGo = A Ki(o.
ieG

* EkoW, k > 2 (read "Wo is Ek-knowledge in G"): EkoW is defined by

Ec',V = EGso,

Eo+IV = EGEkW, for k > 1.

s is said to be Ek-knowledge in G if "everyone in G knows that everyone in G
knows that ... that everyone in G knows that so is true" holds, where the phrase
"everyone in G knows that" appears in the the sentence k times. Equivalently,

E~soE A Kit Ki2 *K~o
iseG, 1<j<:k

* CG (read "so is Common Knowledge in G") Roughly speaking, o is said to

be common knowledge in G if so is true, and is Ek-knowledge for all k > 1. In

other words,

Cosos - A Eo A E Ao ... A Eo A...

In particular, Caso implies all formulas of the form Kit Ki, ... K,,so, where the

ij are all members of G, for any finite n, and is equivalent to the (infinite)

conjunction of all such formulas.

(The subscript G will be omitted when the group G is understood from context.)

Clearly, the notions of group knowledge introduced above form a hierarchy, with

CWo D .. D Ek+1 D ... D EW D So D Io D o.
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However, depending on the circumstances, these notions might not be distinct.
For example, consider a model of parallel computation in which a collection of n

processors share a common memory. If their knowledge is stored in memory then

we arrive at a situation in which Cp =- Ep =e = SW - I. By way of

contrast, in a distributed system in which n processors are connected via some

communication network and each one of them has its own memory, it is clear that
the above hierarchy is strict. Moreover, in such a system, every two levels in the

hierarchy can be separated by an actual task, in the sense that there will be an

action for which one level in the hierarchy will suffice, but no lower level will. It
is quite clear that this is the case with Ep D Sp D IV, and, as we are about to

show, the "muddy children" puzzle is an example of a situation in which Ek+eP
suffices to perform a required action, but Eep does not. In the next section we
will present the coordinated attack problem, in which Cp will suffice to perform a
required action, but for no k will EkW suffice.

Returning to the muddy children puzzle, let us observe the state of the children's

knowledge of m: "At least one forehead is muddy". Before the father speaks,

Ek-m holds, and Ekm doesn't. To see this, consider the case k = 2 and suppose
that Alice and Bob are the only muddy children. Clearly everyone sees at least one

one muddy child, so Em holds. But the only muddy child that Alice sees is Bob,

and, not knowing whether she is muddy, Alice considers it possible that Bob is the
only muddy child. Alice therefore considers it possible that Bob sees no muddy

child. Thus, although both Alice and Bob know m (i.e., Em holds), Alice does

not know that Bob knows m, and hence E 2 m does not hold. A similar argument

works for the general case. We leave it to the reader to check that when there are

k muddy children, Ekm suffices to ensure that the muddy children will be able to

prove their dirtiness, whereas Ek-im does not. (A more detailed analysis of this

argument, as well as a more general treatment of variants of the muddy children

puzzle more closely related to distributed systems, appears in Chapter 5.)

Thus, the role of the father's statement was to improve the children's' state of

knowledge of m from Ek-m to E'm. In fact, the children have common knowledge

of m after the father announces that m holds. Roughly speaking, the father's public

announcement of m to the children as a group results in all the children knowing m

and knowing that the father has publicly announced m. Assuming that it is common

knowledge that all of the children know anything the father announces publicly, it

is easy to conclude that m is common knowledge once the father announces m.

Once the father announces m all of the children know m and know that the father

announced m. Every child therefore knows that all of the children know m and
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know that the father publicly announced m, and therefore E2 m holds. It is similarly
possible to show that once the father announces m E'm holds for all n, so Cm
holds (see Section 3.1 for further discussion). Since, in particular, Ekm holds, the
muddy children can succeed in proving their dirtiness.

A large part of the communication in a distributed system can also be viewed
as the act of improving the state of knowledge (in the sense of "climbing up a
hierarchy") of certain facts. This is an elaboration of the view of communication in
a network as the act of "sharing knowledge". Taking this view, two notions come
to mind. One is fact discovery - the act of changing the state of knowledge of a
fact V from being implicit knowledge to levels of explicit knowledge (usually S-,
E-, or C-knowledge), and the other is fact publication - the act of changing the
state of knowledge of a fact that is not common knowledge to common knowledge.
An example of fact discovery is the detection of global properties of a system, such
as deadlock. The system initially has implicit knowledge of the deadlock, and the
detection algorithm improves this state to S-knowledge (see [CL] for work related
to fact discovery). An example of fact publication is the introduction of a new
communication convention in a computer network. Here the initiator(s) of the
convention wish to make the new convention common knowledge.

In the following chapters we will devote a considerable amount of attention to
fact publication and common knowledge. As we shall show, common knowledge is
inherent in a variety of notions such as agreement, conventions, and coordinated
action. Furthermore, having common knowledge of a large number of facts allows
for better and shorter communication. Since these are goals frequently sought in
distributed computing, the problem of fact publication - how to attain common
knowledge - becomes crucial. Common knowledge is also a basic notion in everyday
communication between people. For example, shaking hands to seal an agreement
signifies that the handshakers have common knowledge of the agreement. Also, it
can be argued that when we use a definite reference such as "the president" in a
sentence, we assume common knowledge of who is being referred to (cf. [ClM]).

In [C1M], Clark and Marshall present two basic ways in which a group can come
to have common knowledge of a fact. One is by membership in a community, e.g.,
the meaning of a red traffic light is common knowledge to the community of licensed
drivers. The other is by being copresent with the occurrence of the fact, e.g., the
father's gathering the children and publicly announcing the existence of muddy
foreheads made that fact common knowledge. Notice that if, instead, the father

had taken each child aside (without the other children noticing) and told her or
him about it privately, this information would have been of no help at all. Indeed,
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the children would probably think it was rather strange of him to tell them such an

obvious fact.

In the context of distributed systems, community membership corresponds to

information that the processors are guaranteed to have by virtue of their presence

in the system (e.g., information that is "inserted into" the processors before they

enter the system). However, it is not obvious how to simulate copresence using

message passing in a distributed system. What is the analogue of making "public"

announcements in a distributed system? As we shall see, there are serious problems

in attempting to do so.

1.3 The coordinated attack problem

To get a flavor of the issues involved in attaining common knowledge by simu-
lating copresence in a distributed system, consider the coordinated attack problem,

taken from the operating systems folklore (cf. [Gall, [Gr], [YC]):

Two divisions of an army are camped on two hilltops overlooking a common

valley. In the valley awaits the enemy. It is clear that if both divisions attack

the enemy simultaneously they will win the battle, whereas if only one division

attacks it will be defeated. The divisions do not initially have plans for launching

an attack on the enemy, and the commanding general of the first division wishes to

coordinate a simultaneous attack (at some time the next day). Neither general will

decide to attack unless he is sure that the other will attack with him. The generals

can only communicate by means of a messenger. Normally, it takes the messenger

one hour to get from one encampment to the other. However, it is possible that

he will get lost in the dark or, worse yet, be captured by the enemy. Fortunately,

on this particular night, everything goes smoothly. How long will it take them to

coordinate an attack?

We now show that despite the fact that everything goes smoothly, no agreement

can be reached and no general can decide to attack. (This is, in a way, a folk

theorem of operating systems theory; cf. [Gall, [Gr], [YC].) Suppose the messenger

starts out in cziap A carrying the message "Let's attack at dawn", and delivers

it to camp B an hour later. General A does not immediately know whether the

messenger succeeded in delivering the message. And because general B would not

attack at dawn if the messenger is captured and fails to deliver the message, gen-

eral A will not attack unless he knows that the message was successfully delivered.

Consequently, general B sends the messenger back to general A with an acknowl-

edgement. Suppose the messenger delivers the acknowledgement to general A an
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hour later. Since general B knows that general A will not attack without knowing
that B received the original message, he knows that A will not attack unless the ac-

knowledgement is successfully delivered. Thus, general B will not attack unless he
knows that the acknowledgement has been successfully delivered. However, for gen-
eral B to know that the acknowledgement has been successfully delivered, general
A must send the messenger back with an acknowledgement to the acknowledgement
.... Similar arguments can be used to show that no fixed finite number of acknowl-

edgements, acknowledgements to acknowledgements etc. suffices for the generals to
attack. Note that in the discussion above the generals are essentially running a
handshake protocol (cf. [Gr]). The above discussion shows that for no k does a
k-round handshake protocol guarantee that the generals be able to coordinate an
attack.

In fact, we can use this intuition to actually prove that the generals can never
attack and be guaranteed that they are attacking simultaneously. We argue by
induction on n - the number of messages delivered by the time of the attack -

that n messages do not suffice. Clearly, if no message is delivered, then general
B will not know of the intended attack, and a simultaneous attack is impossible.
For the inductive step, assume that k messages do not suffice. If k + 1 messages
suffice, then the sender of the k + 1 t message attacks without knowing whether

his last message arrived. Since whenever one general attacks they both do, the
intended receiver of the k + 1 st message must attack regardless of whether the
k + 18t message is delivered. Thus, the k + 1 st message is irrelevant, and k messages
suffice, contradicting the inductive hypothesis.

After presenting a detailed proof of the fact that no protocol the generals can
use will satisfy their requirements and allow them to coordinate an attack, Yemini
and Cohen in [YC] make the following remark:

... Furthermore, proving protocols correct (or impossible) is a difficult and cum-

bersome art in the absence of proper formal tools to reason about protocols. Such
backward-induction argument as the one used in the impossibility proof should

require less space and become more convincing with a proper set of tools.

Yemini and Cohen's proof does not explicitly reason about knowledge, but it
uses a many-scenarios argument to show that if the generals safely attack in one
scenario, then there is another scenario in which one general will attack and the

other will not. We feel that understanding the role knowledge plays in problems

such as coordinated attack is a first step towards simplifying the task of designing
and proving the correctness of protocols.
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A protocol for the coordinated attack problem, if one did exist, would ensure

that when the generals attack, they are guaranteed to be attacking simultaneously.
Thus, in a sense an attacking general (say A) would know that the other general
(say B) is also attacking. Furthermore, A would know that B similarly knows that

A is attacking. It is easy to extend this reasoning to show that when the generals
attack they in some sense have common knowledge of the attack. However, each
message that the messenger delivers can add at most one level of knowledge about
the desired attack, and no more. For example, when the messenger first arrives at
camp B, general B knows about A's desire to coordinate an attack, but A does not
know whether the message was delivered, and therefore A does not know that B
knows about the intended attack. And when the messenger returns to camp A with
an acknowledgement, A knows that B knows about the intended attack, but, not

knowing whether the messenger delivered the acknowledgement, B does not know
that A knows (that B knows of the intended attack). This in some sense explains
why the generals cannot reach an agreement to attack using a finite number of

messages. We are about to formalize this intuition. Indeed, we will prove a more
general result from which the inability to achieve a guaranteed coordinated attack
will follow as a corollary. Namely, we will prove that communication cannot be
used to attain common knowledge in a system in which communication is not guar-

anteed, and formally relate a guaranteed coordinated attack to attaining common
knowledge. Before we do so, we need to define some of the terms that we use more
precisely.

1.4 Outline of the thesis

In this chapter we have discussed some of the motivation for studying knowl-
edge in a distributed environment, considered two puzzles - the muddy children

puzzle and the coordinated attack problem - which illustrated some of the sub-
tleties involved in reasoning about knowledge in a distributed environment, and
introduced a variety of states of knowledge that correspond to the knowledge of

a group of individuals. In the next chapter we give a brief formal definition of a
distributed system and present a general framework for ascribing knowledge (and
belief) to processors in such a system. Chapter 3 deals with the general problem of
fact publication - attaining common knowledge of new facts, resulting among other
things in a formal proof of a generalization of the coordinated attack problem,
and establishing a close relationship between common knowledge and simultane-
ous actions. Chapter 4 iLtroduces states of knowledge that are related to common
knowledge that correspond to various types of coordinated actions, and states of
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knowledge relative to a relativistic notion of time. Results about the inability to
attain some of these weaker states of knowledge when communiaction is unreliable
further generalizes the coordinated attack problem. Chapter 5 is a case study of
the relationship between knowledge, action, and communication. An analysis of
variants of the cheating husbands puzzle (essentially the muddy children puzzle)
that include broadcasts of a message over a variety of communication mediums is
performed, within the context of a fictional story. Chapter 6 applies the formalism
developed in Chapter 2 to the study of systems of unreliable processors and the
Byzantine agreement problem. It is shown that an analysis of when facts that are
implicit knowledge become common knowledge in such a system provides consider-
able insight into the fundamental structure of fault-tolerant protocols, resulting in
improved protocols for Byzantine agreement problem and many related proolems.
Chapter 7 includes some concluding remarks.



CHAPTER 2

MODELING KNOWLEDGE IN DISTRIBUTED SYSTEMS

In order to be able to explicitly reason about knowledge in a distributed sys-

tem, one needs to have the means to make precise statements about the state of

knowledge of the system at any given point. We need a way of determining both
what individual processors know and what states of knowledge groups of processors

have. Given that for different applications we are interested in different interpreta-
tions of knowledge, this chapter will present a very general framework for ascribing

knowledge to processors in a distributed system. We start by presenting a model of
a distributed system in Section 2.1. In Section 2.2 we discuss how knuwledge (and

beliefs) can be ascribed to processors in such a system. Section 2.3 introduces a
special class of interpretations of knowledge in a distributed system that will prove
to be very useful later on. Finally, in Section 2.4 we discuss some of the implications

of our definitions.

2.1 A general model of a distributed system

We view a distributed system as a finite collection {PI P2,1•••, P, } of two or more

processors that are connected by a communication network. We assume an external

source of "real time" that in general is not directly observable by the processors.

The processors are state machines that possibly have clocks, where a clock is a

monotone nondecreasing function of real time. The pro -essors communicate with

each other by sending messages along the links in the network. At a given real

time, a processor's message history is the sequence of messages it has sent and
received (in the order they were sent/received) up to (but not including) that time.

If the processor has a clock, then the messages are also marked by th-' time on the

processor's clock at which they were sent or received. Every processor's message
history is always finite. (In particular this implies that only a finite number of

messages can be delivered in the system in a finite amount of time.)

A processor is assumed to be in a distinguished "sleeping" state until it "wakes

up" or joins the system at some point in real time. The real time at which the

processor wakes up , alled the processor's initial time. The processor's internal

state when it wakes up is called its initial state. Before waking up, a processor

sends and receives no messages. Thus, a processor's message history when it wakes

12
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up is empty. After it wakes up, we assume that a processor follows (or txecutes)

some deterministic protocol.1 We give a formal definition of protocols shortly.

A protocol is a function specifying what actions a processor takes (which in our
case amounts to what messages it sends) at any given point as a function of the
processor's initial state, message history, and the range of values that its clock has
read since the processor "woke up". (We restrict our attention to deterministic
protocols for notational and conceptual clarity. A nondeterministic protocol can be
thought of as a family of deterministic protocols, each corresponding to a particular

sequence of nondeterministic choices. Our negative results will immediately carry
over to nondeterministic protocols, due to this observation.) A joint protocol for G
is a tuple consisting of a protocol for every processor in G.

A processor's message history function determines the processor's message his-
tory as a function of real time. A processor's clock time function determines the
processor's clock time as a function of real time. A run r of a distributed system
is a complete history of its behavior, from the beginning of time until the end of
time. This includes each processor pi's initial timr t0(pi, r), its initial state (its state
at time to(p,, r)), message history function, clock time function, and the protocol
pi follows. A run is consistent iff the actions taken by each processor at all times
are precisely those that are specified by its protocol (cf. [HF]). We never consider
inconsistent runs. A point is a pair (r, t), where r is a run and t is a real number
corresponding to the (real) time t.

Corresponding to every distributed system, given an appropriate set of assump-
tions about the properties of the system and its possible interaction with its en-
vironment, there is a natural set S of the possible runs of the systerr. This set
essentially contains all the relevant information about the system. The relative be-
havior of clocks, the properties of communicatioi, in the system, and many other
properties of the system, are directly reflected in the properties of this set of runs.
We will identify a distributed system with such a set S of its possible runs. As we
shall see in the sequel, identifying a distributed system with a set of runs S allows
us to define properties of a system formally in a rather clean way. A (possibly joint)
protocol is said to be executed in S if there is a run of S in which it is executed.

1 For the purposes of our discussion through Chapter 5 we are essentially assuming

that processors are reliable, i.e., they are guaranteed to follow their protocols in good
faith. Modeling systems in which processors may be faulty, and furthermore modeling

knowledge in such systems, adds another layer of complexity, as we will see in Chapter 6.
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Intuitively, a processor's view at a given point describes everything that the
processor may have observed by that point in the run. More formally, we define

a processor pj's view at a point (r, t), denoted v(pj, r, t), to be a distinguished

"inactive" view if t < t0 (pi, r), and otherwise to consist of pi's initial state, message
history, and the range of values its clock has read since it woke up, together with the
protocol pj is following in r. We include the protocol as part of the view because a
processor may often have access to the protocol it is following.

2.2 Ascribing knowledge to processors

Whst does it mean for a processor to know a fact V? In our opinion, there is
no unique "correct" answer to this question. Different interpretations of knowledge
in a distributed system are appropriate for different applications. For example, an
interpretation by which a processor is said to know P only if V appears explicitly
in a designated part of the processor's storage (its "database") seems interesting
for certain applications. In other contexts we may be interested in saying that a
processor knows W if the processor could deduce V from the information available
to it (sry by using a logical system such as the axioms of [SaIIHi],[Lel, or [HMI,
possibly with a specified limitation on computational resources; cf. [Kon]). We will
shortly define yet another interpretation of knowledge in a distributed system in
which, roughly speaking, a processor will be said to know W if the processor's state

implies that W holds.

Although the notion of knowledge may have a number of interesting interpre-
tations, there are two properties that we require any notion of knowledge in a
distributed system to satisfy. First of all, a processor's knowledge at a given point
must be a function of its view of the run by that point. At two points in which
the processor has the same view, the processor should know exactly the same facts.

Secondly, under no circumstances should a fact V be false and be known to be true
at the same time (i.e., only true facts can be known; this is exactl the content of
the requirement that Kjp D Wp hold). In order to make these intuitions precise. we

proceed as follows.

We assume the existence of an underlying logical language of formulas for rep-
resenting ground facts about the system. A ground fact is a fact about the state

of the system that does not explicitly involve processors' knowledge. Formally, a

ground fact 'p will be identified with a get of points r('o) _ S x (-oo, oo). Given

a run r E S of the system and a time t, we will say that ' holds at (r, t), denoted
(rt) :: V, iff (r, t) E r( p).
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We extend the original language of ground formulas to a language that is closed
under knowledge operators (for every formula 'p and processor pi, Kio is a formula),
common knowledge operators (for every formula 'p and subset G of the processors,
CG'p is a formula), and boolean connectives. 2 (In Chapter 4 we will also add
temporal operators.)

Intuitively, an epistemic interpretation for the system is a specification of what
every processor knows (or, more precisely, believes) at any given point as a function
of the processor's view of its history at that point. More precisely, an epistemic
interpretation 2 is a function assigning to every processor pi at any given point (r, t),
a set A0(r, t) of facts in the extended language that pi is said to "know". V(r, t)
is required to be a function of p,'s view at (r,t). Thus if v(p,,r,t) = v(p,,r',t) for
two points (r,t) and (r',t'), then A4(r,t) = C(r', t').

Given an epistemic interpretation 1, we now specify when a formula V of the
extended language holds at a point (r, t) (denoted (1, r, t) H V). If ' is a formula
of the original language (a "ground" formula), then 'p holds at (r, t) iff (r, t) E r(Wp)

(i.e., iff 'p holds at (r, t) according to the original semantics). If 'p is a conjunction
or a negation, then its truth is defined based on the truth of its subformulas in
the obvious way. If 'p is of the form Kjo, then 'p holds (i.e., (-,r,t) J= Kjo) iff
t' E K/C(r,t). If 'p is of the form C'Ok, then (I-,r,t) 1= CGOb iff for all sequences
P, Pi2 ,..., pi of members of G, it is the case that (1, r, t) 1= Ki, K 2 ... Ki. 0.

When talking about a processor's knowledge, we are not interested in epistemic
interpretations that state that a processor knows a fact V, when 'p is in fact false!
(Otherwise we are dealing with belief or some related notion, but not strictly with
knowledge; cf. [HM].) Given an epistemic interpretation 2 and a set of runs S, we
say that 2 is a knowledge interpretation for S if for all processors pj. times t, runs
r E S and formulas Vp in the extended language, it is the case that (2, r, t) H KjV'

implies that (27, r, t) H Vp, I.e., a knowledge interpretation for S is an epistemic
interpretation that for the runs of S satisfies the axiom Ki'p D 'P.

We say that a processor pi supports Co'o at (2, r, t) if pi knows all the fo-
rumlas of the form Ki, Ki2 ... Ki. V that constitute CG'p (that is, for all sequences
ip,,p?,2 ... ,pi. of members of the group G, (2,r,t) f= KiK K,2 ... K. w holds).

2 When appropriate, operators for implicit knowledge and other states of knowledge

should also be added, although for simplicity we do not add them here. We will comment
on implicit knowledge later in the next section, and make strong use of it in Chapter 6.

For a formal treatment of implicit knowledge, also see [HM].



16 MODELING KNOWLEDGE IN DISTRIBUTED SYSTEMS CHAP. 2

Lemma 2.1: Let T be a knowledge interpretation for S and let r E S. For all

processors pi E G at all points (r, t), it is the case that pi supports C0 'p at (1, r, t)
iff (1,r,t) 1= CcW.

Proof: The 'if' direction follows directly from the definition. For the other direc-

tion, assume to the contrary that pi E G supports CGc and that (I, r, t) J& COW.

Since (1, r, t) & Cco, there must be some formula 0 of the form Ki, Ki,2 "" Ki. V

such that (1, r, t) 1 ik. But since pi supports CG;o at (1, r, t), we must have

(1, r, t) h Kib0. It follows that the interpretation (1, r, t) does not satisfy Ki / D tfi

and thus I is not a knowledge interpretation for S, contradicting our original as-

sumption.

2.3 State-based knowledge interpretations

There are many possible knowledge interpretations for a given set of runs S. A

very important class of interpretations that will form the basis of our discussion in

a large part of this thesis is the class of state-based interpretations relative to S. In
a state-based interpretation 1,, a state a(pj, r, t) is associated with every processor

pi at any given point (r, t). This state is required to be a function of p3 's view

at (r,t). Thus, if v(pj,r,t) = v(pj,r',t') then necessarily o(pj, r,t) = a(pi,r',t').

Roughly speaking, under this interpretation a processor in state o knows 'p iff '

holds whenever the processor is in state O in a run of S. More formally, a state-

based interpretation 4, is the unique interpretation satisfying: ' E XT, (r, t) iff

(.,r',t') H wp for all points (r',t') with r' E S, satisfying o(pi,r,t) = o,(pj,r',t').

Under a state-based knowledge interpretation, a processor does not know 'p exactly

if it is possible for the processor to be in the same state, and at the same time for

'p not to hold.3 Thus, under a state-based interpretation 4. we have:

(1,r,t) 1= Ki' iff (17,r',t') H 'p for all (r',t') satisfying or(pi,r,t) = o(pi,r',t').

Given the definition of E0 'p from Ki'p, we now also have that (4 , r, t) I- E0 'p

iff (1,r',t') = 'p for all (r',t') satisfying or(pj,r,t) = a(pj,r',t') for some pj E G

Given S, G, and a, we say that the point (r', t') is reachable from (r, t) if there

exist points (r,,t,),... ,(rm,tm) with ri E S, and processors pj,,... ,pJ,.-, E G,

such that (r,t) = (r,,t,), (r.a,tin) = (r',t'), and o(pj,,r,,t,) = o(pj,,ri+t,tj+,)

for 1 < i < m. (Notice that reachability is an equivalence relation, it is reflexive,

3 Particular state-based interpretations were first suggested to us independently by

Cynthia Dwork and by Stan Rosenschein.
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symmetric, and transitive.) It is now easy to check from the definition of ECP that

E o holds for all m at the point (r, t) iff V holds at all points reachable from (r, t).

We thus have:

(1,r,t) H CG o iff (T,,,r',t') 1= o for all (r',t') reachable from (r,t).

State-based interpretations are used by many researchers in the field (cf. [ChM],

[HF], [R], [PR]). It is interesting to note that, for the runs of S, a state-based

knowledge interpretation for S satisfies all the axioms of S5. In particular this

means that a processor's knowledge is closed under deduction: If the processor

knows V and knows that V D 0 then it knows 0. Furthermore, processors are fully

introspective: each processor knows what facts it knows and what facts it doesn't

know. (See Appendix A for the axioms of 55, and see [Hi], [HM], [Sal and [FHV]

for general models for theories of knowledge satisfying 55.)

A state-based interpretation ascribes knowledge to a processor without the pro-

cessor necessarily being "aware" of this knowledge, and without the processor need-

ing to perform any particular action in order to obtain such knowledge. In particu-

lar, if our assignment of states does not distinguish between possibilities at all, i.e.,

there is a single state A such that for all pi, r, and t, a(pj,r,t) = A, the processors

are still ascribed quite a bit of knowledge: Every fact that is true in all runs at all

times is common knowledge to all the processors under this interpretation. It is

interesting to note that the hierarchy of Section 1.2 collapses under this interpreta-

tion, and IV _ Ep - CV. On the other hand, an interpretation which we will find

useful in the sequel is the total view interpretation, which makes the finest possi-

ble distinction among views. In the total view interpretation the state o(pj, r, t) is

defined to be v(pj,r,t) - p3 's view at (r,t).

Another popular state-based interpretation is one in which a(pj, r, t) is defined

to be pj's internal state at (r, t) (recall that processors are state machines). Under

this interpretation a processor might "forget" facts that it knows. In particular,

if a processor can arrive at a given state by two different message histories, then,

once in that state, the processor's knowledge cannot distinguish between these two
"possible pasts". However, in the total view interpretation, a processor's state

encodes all of the processor's previous states, and therefore processors do not forget

what they know; if a processor knows V at a point (r, t), then at all points (r, t')

with t' > t the processor will know that it once knew W. Thus, while there may be

temporary facts such as "it is 3 on my clock" which a processor will not know at

4 o'clock, it will know at 4 o'clock that it previously knew that it was 3 o'clock.
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Once we have an assignment of states to processors, we can extend this assign-

ment to groups G of processors by taking the state of G at a given point to consist
of a description of the states of the members of G at that point. More formally, we

define:
o(G,r,t) = {(pi,,(p,,r,t)) : Pi E G}.

It is natural to consider what happens if we ascribe "state-based" knowledge to

G. The group G will be said to know all of the facts known to all of its members,
as well as all of their consequences. Thus, the group's knowledge in this case
corresponds to what we have called implicit knowledge in Section 1.2. Recall that
we denote this knowledge by IG',, read the grotup G has implicit knowledge of V.

More formally, we say that (1 ,r,t) 1= Ip iff (1,r',t') = W for all points (r',t')
such that o(G, r, t) = o(G, r', t'). I ius, in the case of state-based interpretations of
knowledge, implicit knowledge provides a modular way of defining the knowledge
of elements of a system in terms of their components' knowledge. 4

2.4 Discussion

This chapter has presented a general framework for modeling knowledge. An
interesting property of our framework is that it uses a model of a distributed sys-
tem as the (semantic) object relative to which knowledge is defined. Given that
in the process of designing protocols for a distributed system, one usually starts
out from a model of the system, it seems very natural to define knowledge in this
way, rather than starting out from some abstract model theory for knowledge (e.g.,

[HiISa],[FHV],[HM]) and then having the burden of relating this model to the sys-
tem. In fact, this idea is by now quite popular in the field (d. [ChM],[FI],[HF],PR]).
However, work on abstract models of knowledge may often prove relevant to our
interests. For example, it can be shown that there is a direct correspondence be-
tween state-based knowledge interpretations and a particular well-behaved kind of

Kripke structures (cf. [HM]) or knowledge structures (cf. [FHV]). Epistemic inter-
pretations and knowledge interpretations were deliberately defined in a very general
way. In any particular application, a particular knowledge interpretation should be
chosen. Indeed, the models for knowledge used in [ChM],[HFI, and [PR], among
others, immediately fit into our framework. We would argue that this framework is
sufficiently general to accomodate any reasonable notion of knowledge.

4 The knowledge ascribed to a set of processes by Chandy and Misra in [ChM] essentially

corresponds to the implicit knowledge of its members, as defined here. See also [R].
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Given a particular interpretation for knowledge in a particular system, it be-
comes possible to determine what the system's state of knowledge at any given
point is. It is then possible, for instance, to specify attaining a specific state of
knowledge as the goal of a particular communication protocol. For example, the
goal of standard handshake protucols (cf. [Gr]) seems to be to guarantee that the
sender of a piece of data will repeatedly attempt to send the data (and not discard
the data) until it knows that the data was delivered to its destination. Indeed,
Papageorgiou (cf. [P]) makes essential use of such specifications, and it is not clear
how one would otherwise state the goals of the communication protocols he de-
signs. Thus, it appears that formalisms based on knowledge may prove to be a
powerful tool for specifying and verifying protocols. Furthermore, it seems quite
reasonable that such a formalism will readily applicable to the synthesis of protocols
and plans. (Temporal logic has already proved somewhat successful in this regard;
cf. [CE], [MW].) Halpern and Fagin in [HF] take this idea one step further. They
suggest a notion of of a knowledge-based protocol in which the actions performed by
a processor are a function of the facts known to the processor. Since a processor's
knowledge is determined by the processor's view, and since in normal protocols a
processor's actions are a function of the processor's view, it turns out that in any
fixed system an implementable knowledge-based protocol is equivalent to a normal
protocol. However, a knowledge-based description of a protocol seems to communi-
cate the protocol at a much higher level. In some cases it seems to focus attention
to the basic structure and essential ingredients of the protocol, making it easier to
communicate and to port from one system to another. We will find knowledge-based
protocols useful for our analysis in chapters 5 and 6.



CHAPTER 3

ATTAINING COMMON KNOWLEDGE

As we have seen in the introduction, common knowledge seems to play an impor-
tant role in certain situations, e.g., in everyday agreements between people and in

coordinating actions. In this chapter we address the problem of attaining common
knowledge in a distributed environment. Sections 3.1 shows that when communi-

cation is not guaranteed no amount of successful communication can bring about
common knowledge. Section 3.2 goes on to show that, formally speaking, common
knowledge cannot be attained at all in practical distributed systems. Section 3.3
discusses the implications of the results of Section 3.2, and Section 3.4 presents a
sense in which something very similar to common knowledge can in fact be attained
in practical systems.

3.1 Unreliable communication

Following the coordinated attack example, we first consider systems in which
communication is not guaranteed. Intuitively, communication is not guaranteed in
a system S if messages sent in S might fail to be delivered in an arbitrary fashion,
independent of any other event in the system. Making this intuition precise is
somewhat cumbersome (cf. [HF]), and we will not attempt to do so here. For our
purposes, a weaker condition, which must be satisfied by any reasonable definition
of the notion "communication is not guaranteed", will suffice. Roughly speaking,
if communication in the system is not guaranteed then it must always be possible
that all messages past a certain point will not be delivered.

A run r' is said to eztend a point (r, t) if the histories of (r, t) and of (r', t)
are identical. More formally, r' extends (r, t) if all processors have the same initial
times, initial states in both r and r', and all processors' message history functions
and clock time functions up to (but not including) time t are identical in r and in
r'. Given a system S, we say that communication in S is not guaranteed if the

following condition holds:

(*) For every run r E S, real time t, processor pi, and set M of messages, there is a
run r' E S that extends (r, t), such that at (r', t) processor pi does not receive

any message from the set M and pi does receive all the messages m M that

20
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it receives at (r, t), all processors pj 6 pi receive exactly the same messages at
(r',t) as they do at (r, t), and no messages are delivered in r' after time t.

Thus, (r, t') and (r', t') are identical for all t' < t, and at time t all processors pj 34 pi
receive the same messages in r and r', while processor pi might miss some in r' that
it receives in r (namely, those in M). The coordinated attack problem suggests that
when communication is not guaranteed, common knowledge is not attainable. In
fact, the following lemma shows that in such a system, communicated messages play
no role in determining what facts are common knowledge and when facts become
common knowledge.

Lemma 3.1: Let S be a system in which communication is not guaranteed, and
let I be a knowledge interpretation for S. Let r,, r E S be runs such that r extends
(r1 , t,), and let t > ti. Then for all formulas W it is the case that (2, r,, t) H C€ iff

Proof: Fix p. Denote by r- the run extending (r1 , t) in which no messages
are delivered after time t,. Notice that it follows from (*) that r- E S. We will
now show that for all runs r extending (r1 ,t,), it is the case that (I,r,t) H CW iff
(27, r-, t) H CV. The proof is by induction on the number n(r) of messages delivered
in r in the interval [t,, t). The case n(r) = 0 is trivial, because all processors have
identical views at (r, t) and at (r -, t). Assume inductively that the claim holds for
all runs r' E S extending (r,, t,) with n(r') < k, and assume that n(r) = k + 1. Let
t' < t be the latest time in which a message is delivered in r before time t. Let pi and
m be such that m is delivered to processor pi at time t' in r. Since communication
in the system is not guaranteed, there is a run r' E S extending (r, t') such that all
processors pj 36 pi receive the same messages at (r', t') and at (r, t'), processor pi
does not reccivc m at (r', t'), and no messages are delivered in r' after t'. Since only
k messages are delivered in r' between t, and t', by assumption (1,r-,t) H CW iff
(1, r', t) H CW. Let pj : pi be another processor. By Lemma 2.1, pi supports C€
at (r',t) iff (I,r',t) 1= CV. However, pi's view at (r',t) is identical to its view at
(r, t). Therefore, pj supports C€p at (r, t) iff pj supports C'p at (r', t). Again by
Lemma 2.1 it follows that (27, r-, t) = Cp iff (2, r, t) H CV, which concludes the
proof of the inductive step. The claim follows by induction.

We say that a formula k is undetermined in a system S at a given point (r, t) if
it is possible at that point that 0 will never hold. More formally, / is undetermined
in S at (r, t) if for some run r' E S extending (r, t), it is the case that for no t' > t
does 0 hold at (r', t'). A formula V is said to be determined in S at (r, t) if it is not
undetermined. As an easy corollary to Lemma 3.1, we have:
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Theorem 3.2: Let S be a system in which communication is not guaranteed

such that CV is undetermined in S at (r, t,). If r E S extends (r,,t,) and t > t1,

then Cp does not hold at (r, t).

Proof: From the fact that CWo is undetermined in S at (r, t,) it follows that there

is a run r' E S extending (r, t,) such that CVp does not hold at (r', t') for any t' > ti.

Let r E S be a run that extends (r,,t,), and fix t > t,. By Lemma 3.1, C'p holds

at (r',t) iff it holds at (r1 ,t) iff it holds at (r,t). Thus, C~p does not hold at (r,t).

Since r and t > t, were chosen arbitrarily, the theorem follows.

The proofs of Lemma 3.1 and Theorem 3.2 apply to weaker conditions than

communication not being guaranteed. A system S is said to be a system with

unbounded message delivery times if the following condition holds:

(**) For all runs r E S, real times t and t', processors pi, and sets M of messages,

there is a run r' E S that extends (r, t) such that at (r', It) processor pi receives

all and only the messages m M that it receives at (r, t), and all processors

pi 0 pi receive exactly the same messages at (r', t) as they do at (r, t), and no

messages are delivered in r' after time t and before time t'.

Asynchronous systems are often defined to be systems with unbounded message

delivery times. Intuitively, condition (**) says that it is always possible for no

messages to be delivered for arbitrarily long periods of time, whereas (*) says that

it is always possible for no message to be delivered at all from some time on. In
some sense, we can view (*) as a limit case of (**). Not surprisingly, it is easy to

check that we can replace (*) by (**) in the proofs of Lemma 3.1 and Theorem 3.2,

so we also get:

Corollary 3.3: If S is a system with unbounded message delivery times and Cp

is undetermined in S at (r,,t,), then in no run r E S extending (r,,t,) does Cp

ever hold at a time t > t.

Returning to the coordinated attack problem, we are now in a position to relate

the generals' problem to the problem of attaining common knowledge, and present

a simple formal proof of the impossibility of their agreeing to attack. We do this as

follows: The description of the coordinated attack problem in Section 1.3 describes

a specific state of affairs. Without loss of generality, we denote the real time in

which the generals are in this situation by t,. Formally, we consider the generals

as processors and their messengers as communication links between them. The

generals are assumed to each behave according to some predetermined deterministic

protocol; i.e., a general's actions (what messages it sends and whether it attacks)
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at a given point are a deterministic function of his message history and the time on
his clock. In particular, we assume that the generals are following a joint protocol

(P, P'), where general A follows P and the general B follows P'. Thus, we identify
the generals with a distributed system S. The runs of S are simply all possible runs
of (P, P') from t, on.

Proposition 3.4: In the coordinated attack problem, any protocol that guaran-
tees that if either party attacks then they both attack simultaneously, is a protocol
in which necessarily neither party attacks (!).

Proof: Let (P, P') be a joint protocol for the generals, and assume that it guar-
antees that no general will attack alone. Since the generals are said not to initially
have plans to attack the enemy, we can also assume that (P, P') is such that no
general will attack in the absence of any successful communication. Let t, and S
be defined as above. For pi E {A,B}, r E S, and t > t1 , define a(pi,r,t) by:

o(pi, r, t) - f oattacking if pi has started attacking by (r, t);
not attacking otherwise.

or is clearly defined as a function of a general's view. Let 1, be the state-based
knowledge interpretation relative to S corresponding to a. The system S is clearly
one in which communication is not guaranteed, since it is always possible that no
messenger will succeed in delivering any message from some point on. In the run
r- E S in which no messages are successfully delivered, no general will attack.
Consider the fact 0 ="both generals are attacking". Since for all r E S it the case
that r- extends (r,t1 ), it follows that 0 is undetermined at (r,t,) for all r E S.
Because Ck D t4, the fact that 4' is undetermined at (r,t,) for all r E S implies
that Ctb is undetermined at (r, t,) for all r E S. Since (P, P) guarantees that
whenever one division attacks both attack simultaneously, it follows that at all
points (r, t) E S x [t,, oo) it is the case that both generals are ascribed the same
state, i.e., o(A, r, t) = a(B, r, t). Consequently, all of the points reachable from a
point (r, t) in which the generals are in an attacking state have the property that
both generals are in an attacking state. From Section 2.3 we thus have that Co
holds when the generals attack. Because communication is not guaranteed in S and
Co is undetermined at (r, t,), Theorem 3.2 implies that Co does not hold at (r, t).
It follows that the generals can never attack!

The requirement of a simultaneous attack in the coordinated attack problem is a
very strong one. It seems that real life generals do not need a protocol that guaran-

tees such a strong condition, and can probably make do with one that guarantees a
non-simultaneous attack. Theorem 3.2 does not imply that a protocol for achieving
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this does not exist. However, in Section 4.2 we will use a variant of this argument
to show that no protocol can even guarantee that if one party attacks then the
other will eventually attack! We might also consider weakening the condition to

one where if one party attacks, then with high likelihood the other will attack. This
in fact is achievable. We discuss it in further detail in Section 4.4.

3.2 Reliable communication

The previous results show that, in a strong sense, common knowledge is not

attainable in a system in which communication is not guaranteed. However, even
when communication is guaranteed, common knowledge can be elusive. To see
this, consider a system consisting of two processors, R2 and D2, connected by a
communication link. R2 and D2 use a common (global) clock, communication
(delivery) is guaranteed, and furthermore, it is (say commonly) known that any
message sent from R2 to D2 reaches D2 either immediately or after exactly e seconds.
At time ts, R2 sends D2 a message m that does not contain a time stamp, i.e., does
not mention ts in any way. The message m is delivered to D2 at time tD. Let
sent(m) be the fact "the message m has been sent". D2 doesn't know sent(m)

initially. How does {R2, D2} 's state of knowledge of sent(m) change with time?

At time tD, D2 knows sent(m). Because it might have taken e time units for
m to be delivered, R2 cannot be sure that D2 knows sen(m) before ts + e. D2

knows that R2 will not know that D2 knows sent(m) before ts + e, and because for
all D2 knows m may have been delivered immediately (in which case ts = tD), D2
does not know that R2 knows that D2 knows sent(m) before tD + e. Now, R2 must

wait until ts + 2e before he knows that tD + e has passed. This line of reasoning

can be continued indefinitely, and an easy proof by induction shows that before

time ts + ne, the formula (KRKD)nsent(m) does not hold, while at ts + ne it does

hold. Thus, it "costs" e time units to acquire every level of "R2 knows that D2
knows". Recall that C(sen(m)) implies (KRKD)nsen(m) for every n. It follows

that C(seni(m)) will never be attained!

Now consider what would happen if R2 sends D2 the following message m':

"This message is being sent at time ts (and will reach D2 by ts + e at the lat-

est); M."

Since they are using a common clock, the fact that R2 sent m' to D2 would become

common knowledge at time ts + e!

What is the essential difference between these two situations? It seems that

what made achieving common knowledge easy in the latter case was the possibility
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of simultaneously making the transition from not having common knowledge to
having common knowledge. The impossibility of doing so in the former case was
the driving force behind the extra cost in time incurred in attaining extra levels
of knowledge. In fact, Lemma 2.1 already implies that when C first holds all
processors must come to support CV simultaneously. In particular, this means that
all of the processors' views must change simultaneously. However, there is a sense
in which practical systems cannot guarantee such simultaneity. Intuitively, the
uncertainties regarding relative readings of clocks and message transmission times
in practical systems imply that there will always be two processors pi and pi and
two runs such that pi's behavior in both runs is identical, and in one of the runs
pi performs all actions 6 time units later than in the first, for some 6 # 0. (This 6
may, in some cases, be very small.) We now make this claim precise.

Given a system S and a knowledge interpretation ., we say that common knowl-
edge is attainable in S w.r.t. I if there is a (joint) protocol P = (P1 ,. .. , P) executed
in S and a fact W such that in all the runs of S in which the processors follow P it
is the case that W is not common knowledge before any processor "wakes up" (i.e.,
(i,r,t) 1= -,CV for all times t < min to(p, r)), and Cp holds at some later point
in the run. Thus, roughly speaking, P "makes V common knowledge".

A system S is said to have essential temporal imprecision if for all (joint) pro-
tocols P = (P,... ,P,) executed in S, there exist runs r1 ,r 2 E S in which P is
executed, processors pi,pj, and a real number 6 9 0 such that for all t it is the case
that v(pi,r,,t) = v(pi,r 2 ,t) and v(pj,r,t) = v(pj,r 2 ,t + 6).

Dolev, Halpern, and Strong show in [DHS] that a system in which (i) there is
an uncertainty regarding the relative "initial times" in which the processors start
running, and (ii) there are upper and lower bounds on message transmission times
along the links in the system, with the upper boumds strictly larger than the lower
bounds, is a system with inherent temporal imprecision (even if the processors'
clocks are guaranteed to Qm at the same rate!). It can thus be argued that all
practical distributed systems have essential temporal imprecision.

As an easy consequence of the definitions, we now have:

Theorem 3.5: If S is a system with essential temporal imprecision, then common
knowledge is not attainable in S.

Proof: Assume the contrary, and let P = (Pi,..., P,) be a protocol executed in
S and let V be a fact such that before Co does not initially hold in the runs of P
and such that Cp does hold at some point in all runs r E S in which the processors
execute P. Given that there is essential temporal imprecision in S, let pi, pj, 6,
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r, and r2 be as in the definition above. In particular, the processors follow P in

r, and in r2. Lemma 2.1 implies that in all runs of P, processors pi and pi start

supporting Cp simultaneously (i.e., at the same real time). Let t' be the (real) time

in which pi and pi first support CWo in r. In particular, pj does not support CWo

at any earlier time in r. Since v(pi,r 1 ,t') = v(pi,r 2 ,t') we have that pi first starts

supporting CVo at time t' in r2 as well. However, since v(pj, r, t') = v(p., r , t' + 6),

processor pi does not support CW before (r 2 , t' + 6). It follows that pi and pj do

not start supporting CVo at the same time in r2, contradicting Lemma 2.1. M

In fact, a stronger notion of imprecision holds in practice: for all runs of the

system there is another run in which pi's behavior is identical to the current run,

and pj's behavior is shifted by 6. More formally, we say that a system S has

temporal imprecision in all run if for all runs r E S there exists a run r' E S,

processors pi and pj and real number 6 # 0 such that for all times t it is the case

that v(pi, r, t) = v(pi, r', t) and v(pj, r, t) v(pj, r', t + 6). (Although, again, the 6's

involved may be very small.) A proof similar to that of Theorem 3.5 now shows:

Theorem 3.6: If S is a system with temporal imprecision in all runs, I is a

knowledge interpretation for S and (I, r, t) = -,CW, then (1, r, t') -'CW for all
t, > t.X

Theorems 3.5 and 3.6 imply that, strictly speaking, common knowledge cannot

be attained in practical distributed systems! In such systems, we have the following

situation: a fact Wo can be known to a processor without being common knowledge,

or it can be common knowledge (in which case that processor also knows W), but

due to (possibly negligible) imperfections in the system's state of synchronization

and its communication medium, there is no way of getting from the first situation

to the second!

Observe that we can now show that, formally speaking, even people cannot at-

tain common knowledge of any new fact! Consider the father publicly announcing

m to the children in the muddy children puzzle. Even if we assume that it is com-

mon knowledge that the children all hear whatever the father says and understand

it, there remains some uncertainty as to exactly when the children each come to

know (or comprehend) the father's statement. Thus, it is easy to see that the chil-

dren do not immediately have common knowledge of the father's announcement.

Furthermore, for similar reasons the father's statement can never become common

knowledge.
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3.3 A paradox?

There is a close correspondence between agreements, coordinated actions, and
common knowledge. We have shown that in a precise sense, reaching agreements and
coordinating actions in a distributed system amount to attaining common knowl-

edge of certain facts. We also proved that common knowledge cannot be attained
in practical distributed systems! However, it is well known that operations such

as reaching agreement and coordinating actions are routinely performed in many

actual distributed systems. And it might seem as if the designers of such systems
do not find it necessary to worry about common knowledge.

Where is the catch? How can we explain this apparent discrepancy between our
formal treatment and practical experience? It seems that our insistence on defining
knowledge in such a way that facts that are known must be true at the same instant
in absolute time is at the root of the problem. After all, absolute time often does

not seem to be the relevant notion of time in many distributed applications. But

does it make any sense to define knowledge in a distributed system in any other
fashion? We .onsider this a major open question. We will touch upon it in the next

chapter when we discuss knowledge of facts relative to a relativistic notion of time.
Another weakness of the impossibility result is the fact that it relies on a very fine-
grained view of practical systems, which forces us to conclude that simultaneity
is not attainable. This is similar to the claim that actual bits in a computer do
not exclusively contain the values 0 or 1, but can sometimes be in an undefined

or incoherent intermediate state. While true, this fact does not seem tu have an
overwhelming effect on many aspects of computing. It can be taken care of on the

hardware level, and for all practical purposes software designers can successfully
use a model of the machine in which bits do in fact attain only the values 0 and 1.

Similarly, slight abstractions of practical systems that do guarantee simultaneity in

many cases model the actual system very well, in which case we may identify the
system with its abstraction for all practical purposes. The next section presents a

formal argument with a similar flavor.
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3.4 Internal knowledge consistency

Strictly speaking, common knowledge is not attainable in practical systems be-

cause such systems cannot guarantee to perform actions at different sites absolutely

simultaneously. However, the operations performed in many practical distributed

systems do not require events at different sites to be simultaneous. Indeed, it is

often the case that from within the system it is not possible to determine the exact

relative (real time) difference between events that occur at different sites. We say

that a run of the system is 6-insensitive if given the information available to the pro-

cessors, the (real) time difference between any two events that happen at different

sites of the system can be determined with precision no better than 6 (cf. {HMM]).

A system S is said to be 6-insensitive if all of its runs are. In a 6-insensitive system,

it is not possib'.e to distinguish from within the s3 stem between the clocks being per-

fectly synchronized and the clocks being synchronized to within 6. Thus, it seems
that when the clocks in such a system are sufficiently synchronized, treating them

as if they were perfectly synchronized should have no noticeable negative effect on

the system. The processors' views of the system would be perfectly consistent.

We define an epistemic interpretation 2? to he a pseudo-knowledge interpretation

for S if for all runs r E S there is a run r' E 9 such that all processors' views in

r are identical to their views in r', and I is knowledge consistent with r'. (More

formally, for all r E S there is a run r' E S such that for all processors pj and

times t > to(pi,r) there is a time t' > to(Aj,r') such that v(plr,t) = v(pj,r',t').)

Notice that a knowledge interpretation for S is in particular also a pseado-knowledge

interpretation for S. The converse is not true. However, from within the system it

is impossible to determine whether or not a pseudo knowledge interpretation is in

fact a knowledge interpretation. Therefore, basing actions on "pseudo-knowledge"

is as good as basing them on true knowledge.

Our discussion above can be formally stated as:

Proposition 3.7: Let S be a set of runs such that in every run r E S clocks

are synchronized to within the insensitivity of r (i.e., for some 6, r is 6-insensitive

and clocks are synchronized to within 6 throughout r). Let I be an epistemic

interpretation for S. Let So C S be tie set of runs of S in which all clocks are

perfectly synchronized. If I is a knowledge interpretation for So, then 2 is a pseudo-

knowledge interpretation for S. X

Since pseudo-knowledge cannot be distinguished from "real" knowled,'-, Propo-

sition 3.7 shows us that if clocks are synchronized to within the insensitivity of

the system, then we might as well work under the assumption that all clocks are
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perfectly synchronized. Thus, the reasoning is essentially carried out in a simpler
abstract model of the system, in which the processors have a global clock. The
Proposition shows that such reasoning will be internally knowledge consistent: ev-
ery fact that a processor "knows" will be consistent with the processor's view of the
system.

Consider the children hearing their father announce m. As we have argued in
Section 3.2, they do not truly attain common knowledge of m. However, since the
uncertainty regarding when they comprehend the father's statement is very small,
to the extent that they practically cannot tell whether or not they in fact came to
know m simultaneously, they can be said to attain pseudo-common knowledge of
m. Working under the assumption that they have common knowledge of this fact
will never fail them. This explains how people can routinely rely on the assumption
that they attain common knowledge of a multitude of facts without suffering any
negative consequences.



CHAPTER 4

RELATED STATES OF KNOWLEDGE

Lemma 2.1 and the proof of Proposition 3.4 show that the state of common

knowledge is closely related to events that are guaranteed to occur simultaneously

at different sites of the system. Analyzing the attainability of common knowledge

in various systems can be used to study the ability to perform various simultaneous
coordinated actions. In fact, Chapter 6 uses such an analysis to study the design of

fault-tolerant protocols for simultaneous actions in systems of unreliable processors.

However, most coordinated actions that are carried out in a distributed system are

not required to take place simultaneously. This chapter considers states of knowl-
edge related to common knowledge that similarly correspond to other levels of

coordination of actions in a distributed system. These are states of knowledge that

are much more easily attainable than common knowledge in many systems of inter-

est. Section 4.1 starts out by reconsidering the state of common knowledge under

state-based interpretation, providing us with the necessary machinery for defining

many related states of knowledge. Section 4.2 studies the states of knowledge that

arise from broadcasting a message using synchronous and asynchronous channels,

and relates them to coordinated actions that are not guaranteed to be performed

at all sites simultaneously. Section 4.3 considers the effect of defining knowledge

relative to a relativistic notion of time, and compares the states of knowledge aris-
ing there with those that are defined relative to absolute time. Finally, Section 4.4

looks at the states of knowledge arising when actions are only likely to be coordi-

nated, capturing among other things the state of knowledge that actually arises in

the coordinated attack problem.

30
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4.1 Common knowledge revisited

Throughout this chapter we will restrict our attention to state-based interpre-

tations of knowledge, since they seem to be the most appropriate for the kinds of

applications we will be interested in. It is useful to start by reconsidering the notion

of common knowledge under such interpretations, from a slightly different point of

view. Recall the children's state of knowledge of the fact m in the dirty children

puzzle. If we assume that it is coirmon knowledge that all children comprehend m
simultaneously, then after the father announces m, the children attain Cm. How-

ever, when they attain Cm it is not the case that the children learn an infinite

collection of facts of the form Enm separately. Rather, after the father speaks, the
children are in a state of knowledge T characterized by the fact that T implies that

m holds and that every child knows that T holds. Thus, T satisfies the equation

%F---mAE%.

The following Theorem shows that this phenomenon arises in quite the same
way in state-based knowledge interpretations:

Theorem 4.1: Let 1, be a state-based interpretation for S. Then for all runs
r E S and times t it is the case that

(,r,t) C = AEGC .

Proof: The formulas CaoW D Wo and ECSO, D Coso are clearly valid for all knowl-

edge interpretations. It remains to show that CGo D EGC,,p is valid. Since ",

is a state-based knowledge interpretation, we have from Section 2.3 that (P is com-

mon knowledge at a given point (r, t) iff W holds in all points that are reachable

from (r,t). If a(i,r,t) = a(i, r',t') for some pi E G then (r',t') is clearly reachable

from (r, t). Furthermore, because reachability is an equivalence relation in our case,

any point reachable from (r, t) is clearly also reachable from (r', t'). Since we have
from Section 2.3 that (1",r,t) 1= EGO iff (IT.,ri,t1) 1- 0 for all (r',t') such that

a(i, r, t) = o(i, r', t') for some pi E G, the result directly follows.

Thus, under a state-based interpretation, CGWo is a "fixpoint" of the EG operator,

in which o holds. An equivalent definition for Coo in the case of a state-based

interpretation 4", is as the weakest solution for X in the equation

X - p A EX,
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by which we mean that any solution for X in this equation implies CaV. (Notice

that the above equation may have many solutions. For example, both false and

CG(S0 A b) solve it.) Cco is what is called the greatest fizpoint of this equation.

As our discussion of common knowledge in the case of the muddy children puzzle

suggests, expressing common knowledge as a greatest fixpoint of such an equation

seems to correspond more closely to the way it actually arises. While it is beyond

the scope of this thesis to give a detailed formal semantic definition of a logic with

fixpoint definitions, we sketch a semantics for a propositional state-based logic of

knowledge with fixpoints in Appendix B.

In the case of state-based knowledge interpretations, the following axioms are

valid for common knowledge (for logical systems with these and other axioms, see

[Mi], [Le], [HM], and the analogous axioms for the PDL "*" operator in [KP]):

(1) The "fixpoint" axiom:

CGP D AEGCGV.

(2) The "induction" axiom:

CG(P D EGp) D (v D CJV).

(3) The "consequence closure" axiom:

(CG' A C,((, D 0t)) D CGO.

The induction axiom states that if it is common knowledge that whenever P

holds everybody knows Wp, then when W holds, p is common knowledge. It is called

an induction axiom because from the antecedent C( D EV) we can prove by

induction that Vp D En o holds for all n. Roughly speaking, it traces our line of

reasoning when we argued that the children in the muddy children puzzle attain

common knowledge of the father's statement.

Another interesting property of common knowledge under state-based interpre-

tations is:

"CGW D C-CGW.

Notice that it is possible to deduce this fact from Lemma 2.1 using the induction

axiom. Axiome (1)-(3) completely characterize common knowledge in the logical

systems of [Le], [HM].
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4.2 e-common knowledge and 0-common knowledge

Since attaining common knowledge in practical distributed systems is problem-
atic, it is natural to ask what states of knowledge can be obtained by the communi-
cation process. In this section we consider what states of knowledge are attained in
systems in which communication delivery is guaranteed but message transmission
times are uncertain. However, before we can do so, we need to extend our language
to allow reasoning about time. We introduce temporal operators to the language
by adding the following clause to the inductive definition of formulas in the lan-

guage (cf. Section 2.2): If V is a formula and 6 is a real number, then 0p and O(p
are formulas. Roughly speaking, OV stands for "eventually V", while O6'V stands
for "b time units from now V". We then extend our semantic definitions so that
(I, r, t) = OW iff for some t' > t it is the case that (1, r, t') = (p; and (1, r,t) = O6V
iff (I, r, t +6b) j= V. (This definition corresponds to linear time semantics for tem-
poral logic; cf. [MP].) It is customary to define 0(p (read "always V") as the dual of
OW, i.e., O3p def _now.

In dealing with distributed systems in which communication is not instanta-
neous, we are not so interested in facts whose truth value might change between the
time a message regarding them is sent and when it is received. A fact V is called
stable if it has the property that once true it remains true forever. More formally,
p is stable if V D OV is valid. Notice that given any fact 4, the following facts are
stable: "o held at some point in the past", "0 holds and will hold throughout the
future", "40 holds at time t on pi's clock", and "0 holds throughout time interval
A". (For the relevance of stable facts to distributed systems, see also [CL].) More-
over, if 4' is stable then so are *0 and 064'. However, it is not in general the case
that knowledge of stable facts is stable. For example, given a general state-based
knowledge interpretation 1" and a stable fact 4', it is possible (I, r, t) H Kib and
(1, r, t') & Kio4 for some t' > t. This does not happen in the total view interpre-
tation, since in this case a fact is stable iff all processors know that it is stable,
and processors do not forget what facts they knew. Thus, in particular, they don't
forget stable facts. Under the total view interpretation, if o is stable, then so are
KiV, EV, CV, etc. For the remainder of this section we will restrict our attention
to the total view interpretation.

We begin by considering synchronou broadcast channels of communication: ev-
ery message sent is delivered to all processors in the system (including the sender),
and processors receive the message up to e units of real time apart. e is called the
broadcast spread of such a channel. Recall that the properties of the system are
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common knowledge to all the processors in the system. In particular, the proper-
ties of the broadcast channel are common knowledge. Let us now consider the state

of knowledge of the system (under the total view interpretation) when a processor

Pi receives a broadcast message m; pi knows sent(m), but he knows more: pi also

knows that within e time units everyone will (receive m and) know sent(m). But he

knows even more: pi also knows that within e everyone will know sent(m) and they
will all know that within another e everyone will know sent(m). This argument can

be continued, and it leads us to the notion of e-common knowledge, denoted CE.

CeV is defined to be the greatest fixpoint of the equation:

X- A OA EX.

Again, we refer the reader to Appendix B for a rigorous definition. However, as the
above discussion suggests, C'V can also be equivalently expressed by the following

infinite conjunction:

C-- p A ODEp A OEE(OEEp) A ... A (OEE)"p A.-..

For any message m delivered in an e-spread synchronous broadcast channel,
sent(m) becomes e-common knowledge as soon as m is delivered to any processor.

Returning to R2 and D2's communication problem, we can view them as a syn-
chronous broadcast system, and indeed they attain Ccsent(m) immediately when

R2 sends the message m. The interested reader is invited to check that R2 and D2

in fact achieve e/2-common knowledge of sent(m) at time ts + e/2.

In a system in which all clocks run at the rate of real time, if a processor knows

that W will hold "tomorrow", for an arbitrary fact V, then (under the total view

interpretation) "tomorrow" the processor knows that W holds, i.e., the processors'

knowledge satisfies the axiom Ki 0 V D OKiV. (This is also the case in the

logical systems of [Sal and [Le].) Similar statements hold for O and E. In this

case (OEE)V D OkcE', and it follows that C V D Ok'EkW. So, if C'p holds in

such a system, then Ekp will eventually hold (within ke time units, to be precise).

It is now interesting to compare common knowledge and e-common knowledge.

Whereas CV is a static state of knowledge, which can be true of a point in time irre-

spective of its past or future, C'V is a notion that is essentially temporal. Whether

or not it holds depends on what processors will know within e, within 2e, etc. In

fact, since C' D V and C'V D OC'W, if C'V holds, then so (as well as C'W)

must hold ne time units from now, for all n > 0. Note that if v is a stable fact
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then Cp D CE'; as we have shown, there are cases where a stable fact becomes
e-common knowledge and cannot become common knowledge (e.g., R2 and D2 at-
tain C'sent(m), and cannot attain C(sent(m))). Thus, for stable facts, common
knowledge is strictly stronger than e-common knowledge The axioms (1)-(3) of
Section 4.1 remain true of C"p, when we replace E by ()E and C by C". Further-
more, both C and CE are conjunctive, i.e., the formulas CV A Ctk D C( A ik)
and CV0 A Ceb D CC(o A t) are valid. (Thus, in particular, the uncertainty
about information sent in separate messages in a synchronous broadcast channel
need not be any worse than the broadcast spread.) However, whereas the formula
-CV D C-,CV is valid for common knowledge, its analogue, -,C'0 D Ce-,C'W is
not valid.

Just as common knowledge is closely related to simultaneous actions in a dis-
tributed system, e-common knowledge is closely related to actions that are guaran-
teed to be performed within e time units of one another. E.g., in an "early stopping"
protocol for Byzantine agreement (cf. [DRS]), all members of G are guaranteed to
decide on a common value within e time units of each other. It follows that once
the first processor decides, the decision value is e-common knowledge in G.

Our discussion of knowledge in a distributed system is motivated by the fact
that we can view processors' actions as being based on their knowledge. Con-
sider an "eager" epistemic interpretation I under which a processor that receives
an e-broadcast message m immediately supports C(seng(m)). Clearly, I is not a
knowledge interpretation, because it is not knowledge consistent (a processor might
be said to "know" that another processor knows aent(m), when in fact the other
processor does not!). However, once the last processor receives m, which happens
at most e time units after the first processor starts supporting C(aent(m)), it is easy
to see that C(sent(m)) does indeed hold! In a sense, Lemma 2.1 says that attaining
common knowledge requires a certain kind of "natural birth"; it is not possible to
attain it consistently unless simultaneity is attainable. But if one is willing to give
up knowledge consistency (i.e., abandon the Kiv D V axiom) for short intervals of
time, something very similar to common knowledge can be attained.

The period of up to e time units in which the processors' "knowledge" is incon-
sistent might have many negative consequences. If the processors need to act based
on whether C(sent(m)) holds during that interval, they might not act in an appro-
priately coordinated way. This is a familiar problem in the context of distributed
database systems. Committing to a transaction roughly corresponds to joining an
agreement that the transaction has taken place in the database. There, it is the
case that different sites of the database commit to transactions at different times
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(although all within a small time interval). When a new transaction is being com-

mitted to there is a "window of vulnerability" during which different sites might
project inconsistent views of the database. However, once all sites commit to the
transaction, the view of the database that the sites project becomes consistent (at

least until the next transaction).

Having discussed states of knowledge in synchronous broadcast channels, we
now turn our attention to systems in which communication is asynchronous: no

bound on the delivery times of messages in the system exists. Consider the state

of knowledge of sent(m) in a system in which m is broadcast over an asynchronous

channel: A channel that guarantees that every message broadcast will eventually
reach every processor. Upon receiving m, a processor knows sent(m), and knows
that eventually every other processor will receive m and know sent(m), and that

eventually every other processor will receive m and ....

This state of knowledge, where it is common knowledge that if m is sent then
everyone will eventually know that m has been sent, gives rise to a weak state of

group knowledge which we call eventual common knowledge.

Recall that the temporal logic symbol 0 stands for "eventually". We denote

CK p by Kfo and define E*= A Kf¢. (Note that in the total view interpreta-
i

tion, where processors do not forget stable facts, if p is stable then E~p = Ep.)

0-common knowledge (read eventual common knowledge), denoted by CO, is defined
as (the greatest fixpoint of):

C°O A E"C"p.

The axioms (1)-(3) from section 4.1 are also valid for COW (once we replace E by

E0 and C by CO). As with CE, the formula -'C'W D C0 -'CY'p is not valid. Note

that EOW does not imply E*W, so the fact that C°o holds does not imply that E 2'P

will ever hold.

Given our experience with C and CE, it would be natural to conjecture that
COW is equivalent to W A OE'p A OECEp A .... However, this infinite conjunction

is strictly weaker than C*'W! The reason for that is that 0 and O' do not interact

with infinite conjunctions in the same way. I.e., if each of an infinite number of facts

are guaranteed to hold e time units from now, then their conjunction will also hold.

However, if an infinite number of facts are each guaranteed to hold eventually, then
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it is not necessarily the case that at any given time in the future they will all hold

simultaneously.'

An easy consequence of the definition of CO is that if a processor knows COo,

then C'cp holds and all the processors eventually know it. As common knowledge

corresponds to simultaneous events and e-common knowledge to events that occur

within e of each other, 0-common knowledge corresponds to events that are guaran-

teed to happen at all sites eventually. For example, in some of the work on variants

of the Jyzantine Agreement problem discussed in the literature (cf. [DDS]), the

kind of agreement sought is one in which whenever a correct processor decides on a

given value, each other correct processor is guaranteed to eventually decide on the

same value. The state of knowledge of the decision value that the processors can

be said to attain in such circumstances is precisely *-common knowledge. Also, in

asynchronous broadcast channels, sent(m) is *-common knowledge at the instant

m is sent.

C* is the weakest temporal notion of common knowledge that we have intro-

duced. In fact, we now have a hierarchy of the temporal notions of common knowl-

edge. For a stable fact p and el _ ... _5 e :_ Cn+i 5 "", we have:

Having defined C' and C*, it is interesting to ask how these states of knowl-

edge are affected by communication not being guaranteed. Recall that Lemma 3.1

and Theorem 3.2 imply that if communication is not guaranteed, then common

knowledge is independent of the communication process: communication does not

affect what facts axe common knowledge and when facts become common knowl-

edge. Interestingly, an analogue of Lemma 3.1 does not hold for C' and CO. It

is not, in general, the case that CI is undetermined at (r, t) iff in the absence of

any further communication C'0 will never hold (the same applies to CO b). For

example, consider a system consisting of R2 and D2 connected by a two-way link.

Communication along the link is not guaranteed, R2 and D2's clocks are perfectly

synchronized, and each one of them follows the following protocol: At time 0, send

the message "OK". For all k > 0, if you have received k "OK" messages by time

k on your clock, send an "OK" message at time k; otherwise, send nothing. Let

1 However, COW is equivalent to -a different infinite conjunction of formulas. Define

o= and -@,+I = 'On A 0E,.. Then it is possible to show that C's -A §- (cf. the

discussion in Appendix B).
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="some message was not delivered within one time unit". Fix e = 1. Notice that
Ctik is undetermined at time 0, since in the fortunate event that all messages are
delivered within one time unit, ik will never hold, and similarly Ct'If will never hold.
However, if at any point tk does hold, then so does COb. E.g., if R2 fails to receive
an "OK" message between time k - 1 and time k, then R2 knows tb at time k. R2
therefore does not send an "OK" message at time k, and it follows that D2 knows
k at time k + 1 at the latest. And because b D (OE is guaranteed, it is easy to
see that by the induction axiom 0 D CO. (Since Ctq D C*O, the same example

shows the claim for C*O.)

Note that in the above example successful communication in a system with
unguaranteed communication helped to prevent C b (resp. C*b) from holding. But
can successful communication in such a system contribute to CESO or COW coming
to hold? A partial analogue to Theorem 3.2 shows that this is not possible:

Theorem 4.2: Let b be a stable fact, let S be a system in which communication
is not guaranteed, and let r,, r- E S be runs such that r- extends (r,, t,) and no
messages are delivered in r- at or after t. If (r-, t) = -,C'b (resp. (r-, t) 1 -,G%)
for all t > t,, then (r,t) k' -,C 0 (resp. (r1 ,t) = -'C*t) for all t > t,.

Proof: We sketch the proof for C*,b. The proof for C10 is analogous. We prove
by induction on n that there is no run r E S that extends (r., t,) in which C*O holds
at a time t > t, and exactly n messages are delivered to their destinations up to (but
not including) the time the first processor knows C*O. The case n = 0 follows from
our assumption, since as long as no messages are delivered all processors' knowledge
is the same as in r-, and in r- no processor ever knows C*4'. Suppose we have
proved the claim for n < k, and assume that r extends (r,,t,) and attains C*0

using k + 1 messages. Let t be the real time at which the first processor (or one of
them, in case of a tie), say pi, comes to know C*b in r. If no message was delivered
to pi before time t in r, then pi knows C°t/ at (r,t) iff pi knows C*b at (r-,t), a
contradiction. Let t' < t be the latest time before t in which pi receives a message
in r, and let m be one of the messages pi receives at t'. Let r' be a run that extends
(r, t') in which no messages are delivered after time t', and all messages delivered
at (r. t') are delivered at (r', t') (such a run exists by (*)). Since pi's view at (r, t)
and at (r',t) are the same, pi knows C*t/ in (r',t). Thus, in partic-.lar, if pj : pi is
another processor, then for some t" > t it is the case that pj knows C*O at (r', t").

Let r" be a run that is identical to r' until (and including) time t', except that pi
does not receive the message m at (r", t'), and in which no message is delivered

after t'. Since pj's view at (r',ti") and at (r",t") are identical, pj knows C*t at
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(r", t"). But at most k messages are delivered in r" before t", contradicting the

induction hypothesis.

Theorem 4.2 shows that communication cannot be used in order to attain C*tk
or CEtk when these states of knowledge are not guaranteed to hold in the absence of
communication. Thus unreliable communication cannot be used for planning and

carrying out coordinated actions in a way that guarantees the participation of all
sites. This allows us to prove Corollary 4.3, which characterizes the graveness of

the generals' problem in the coordinated attack example:

Corollary 4.3: In the coordinated attack problem, any protocol that guarantees
that if either party attacks then the other party will eventually attack, is a protocol
in which necessarily neither party attacks.

Proof: The proof is analogous to that of Proposition 3.4. Assume that (P, P') is a
joint protocol that guarantees that if either party attacks then they both eventually
attack. Let S and t, be as in the proof of Proposition 3.4. Let 0 ="general A
either has started attacking or will eventually attack, and general B either has
started attacking or will eventually attack". By the problem description, C*Ib is

undetermined at (r,t 1 ), for all r E S. Because of the properties of (PP'), it is
clear that an attacking general knows C*Ik (under the total view interpretation as
well as under the interpretation 4, used in the proof of proposition 3.4). Thus, by

Theorem 4.2, the protocol (P, P) guarantees that neither general will ever attack!

Recall that the proofs that unreliable communication cannot affect what facts
are common knowledge carried over to (reliable) asynchronous communication. Our
proof in Theorem 4.2 clearly does not carry over. In fact, a message broadcast over a

reliable asynchronous channel does become eventual common knowledge. However,
it is possible to show that asynchronous channels cannot be used in order to attain

e-common knowledge:
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Theorem 4.4: Let 0 be a stable fact, let S be a system with unbounded delivery

times, let t > t, and let r,,r- E S be runs such that r- extends (r,,t,) and

no messages are delivered in r- in the interval [t,t + e). If (r-,t) K C'b then
(r,,t) Vcto.&
Sketch of Proof: The proof essentially follows the proof of Theorem 4.2, except
that the delivery of messages in the runs r' and r" constructed in the course of

the proof are delayed until after time t + e, rather than not being delivered at all.

Details are left to the reader.

Thus, asynchronous communication channels are of no use for coordinating ac-

tions that are guaranteed to be performed at all sites within a predetermined fixed

time bound.

4.3 Time stamping: using relativistic time

Real time is not always the appropriate notion of time to consider in a distributed

system. Processors in a distributed system often do not have access to a common
source of real time, and their clocks do not show identical readings at any given real

time. Furthermore, the actions taken by the processors rarely actually depend on

real time. Rather, time is often used mainly for correctly sequencing events at the

different sites and for maintaining a "consistent" view of the state of the system. In

this section we consider states of knowledge relative to relatitstic notions of time.

Consider the following scenario: R2 knows that R2 and D2's clock differ by at

most 6, and that any message R2 sends D2 will arrive within e time units. R2 sends

D2 the following message m':

"This message is being sent at ts on R2's clock, and will reach D2 by ts+e+6
on both clocks; m."

Let us denote ts + e + 6 by To. Now, at time To on his clock, R2 would like

to claim that sent(m') is common knowledge. Is it? Well, we know by now that

it is not, but it is interesting to analyze this situation. First, let us introduce a

relativistic formalism for knowledge, which we call time-stamped knowledge: We

denote "at time T on his clock, pi knows p" by KiTW. T is said to be the time

stamp associated with this knowledge. We then define

EGw A Kr.
iEa

Er T corresponds to everyone knowing V individually at time T on their own clocks.

Notice that for To as above, sengm') D ETOsent(m'). It is natural to define the
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corresponding relativistic variant of common knowledge, CT, which we call time-

stamped common knowledge:

CT pE ~A T CT W.C - v A Er i.

So, once m' is sent, R2 and D2 have time-stamped common knowledge of sent(m')

with time stamp To. It is easy to check that C' satisfies axioms (1)-(3) of Sec-

tion 4.1. Interestingly, the formula -,C'V D CTCl0p is valid. In this respect, C'

resembles C more than C' and C* do.

It is interesting to investigate how the relativistic notion of time-stamped com-

mon knowledge relates to the notions of common knowledge, e-common knowledge,

and C}-common knowledge. Not surprisingly, the relative behavior of the clocks in

the system plays a crucial role in determining the meaning of C'.

Theorem 4.5: Under the total view interpretation,

(a) If it is common knowledge that all clocks show identical times, then at T on any

processor's clock, CTp = CV.

(b) If V is a stable fact and it is e-common knowledge that all clocks are within e

time units of each other, then at T on any processor's clock, CTP D Ce V.

(c) If c is a stable fact and it is (-common knowledge that all clocks read T at

some time, then at time T on any processor's clock, CTp D C*V.

Theorem 4.5 demonstrates the conditions that allow interchanging the relativis-

tic CT with C, C ', and C*. Note that a weak converse of Theorem 4.5 holds as

well. Suppose we allowed the processors to set their clocks to a common agreed

upon time T when they come to know CV (resp. come to know C'V, C*p). Then

it is easy to see that whenever Cp (resp. C'W, C*o) is attainable, sc is C T V.

In many distributed systems time-stamped common knowledge seems to be a

more appropriate notion to reason about than "true" common knowledge. Although

common knowledge cannot be attained in practical systems, time-stamped common

knowledge is attainable in many cases of interest and seems to correspond closely to

the relevant phenomena that protocol designers are confrnted with. For example,

in distributed protocols that work in phases, we speak of the state of the system at

the beginning of phase 2, at the end of phase k, and so on. It is natural to think of

the phase number as a "clock" reading, and consider knowledge about what holds

in the different phases as "time-stamped" knowledge, with the phase number being

the time stamp. In certain protocols for Byzantine agreement, for example, the

nonfaulty processors attain common knowledge of the decision value at the end of

. m~ . ........ I
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phase k (see Chapter 6 for details on the relationship between knowledge and the

Byzantine agreement problem). In practical systems in which the phases do not end

simultaneously at the different sites of the system, the processors actually attain

time-stamped common knowledge of the decision value, with the time stamp being

"the end of phase k".

4.4 Likely common knowledge and other variants

The properties of the communication channels in a system play an important role

in determining the type or quality of the information that can be obtained by the

processors in a system. In particular, we have seen that common knowledge cannot

be attained in many systems of practical interest. Sections 4.2 and 4.3 dealt mainly

with the states of knowledge tha arise when there is ancertainty regarding when

messages are delivered. In systems in which communication is not guaranteed, such

as in the case of the coordinated attack problem, it is uncertain whether messages

are delivered at all. However, it is often the case that successful communication is

highly likely in that every message broadcast is highly likely to be delivered to all

the processors.

First, let us consider systems ir, which message delivery, when successful, is

immediate. The fact a message broadcast in such a system is likely to be de-

livered to all processors can be formally captured by the formula C(sen(m) D

"Likely"E(sent(m))). (The notion of "likely" here is essentially that of [HR].) The-

orem 4.2 implies that a message broadcast in such a system never becomes even

eventual common knowledge. The notion of common knowledge that the proces-

sors in such a system attain when a message is broadcast is called likely common

knowledge, denoted CL. If we denote "Likely Ep" by ELO, then CL%0 is defined by:

CLp -- % A ELCL%0.

By definition, CL satisfies the fixpoint axiom (1) of Section 4.1. If we denote "Likely

/" by Lo, it is not in general the case that likelihood satisfies a consequence closur,

axiom. Namely, it is not necessarily the case that if both Lp and L('p D 0b) hold,

then Ltp holds (cf. [HR]). As a result, C' satisfies neither the induction axiom (2)

nor the consequence closure axiom (3). However, it does satisfy a weak induction

axiom:
(2') C(%p D EKp) D (wp D CLp).

Here, Vp D ELp needs to be common knowledge for 'p to imply CL'w. Note that

if it is common knowledge that a me-sage is likely to be delivered to all processors
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immediately, then the weak induction axiom suffices for a processor that receives a
broadcast message m to conclude that sent(m) is likely common knowledge.

Another consequence of the fact that L does not satisfy consequence closure is
that although L(W A 1P) D LWp A LO, the converse does not hold. Thus, the infinite
conjunction W A ELp A (EL) 2 p A ... is strictly weaker than CLWo as defined above.

Note that (EL) 2 W (= LELEp) does not necessarily imply L 2E2 o. Indeed, just as
with C*o, CLWo does not necessarily imply L 2 E 2p. In fact, E 2pV does not necessarily
hold at any level of likelihood!

In the coordinated attack problem, if (it is common knowledge that) it is likely
that a messenger sent from camp A to camp B will deliver the message to camp
B within an hour, then any message general A sends general B becomes likely
common knowledge an hour after it is sent. Likely common knowledge is a very
useful notion. We mentioned earlier that when we say "the president" we assume
common knowledge of who the term "the president" refers to. Likely common

knowledge actually captures this situation in a better way, since there might be
some out-of-touch person who does not know who the president (of the company)

is. Thus, when we use a definite reference such as "the president" we are essentially
treating a fact that is likely common knowledge as if it were common knowledge.

In fact, in practically all the cases in which people believe that they attain common
knowledge of a fact, it can be argued that they have only likely common knowledge,
where the "likely" qualification in this case corresponds to the (commonly known)
likelihood that all the members of the group are aware and clever enough to conclude
that the fact is (likely) common knowledge. In some cases, of course, this likelihood

may be very close to certainty.

We have defined likely common knowledge for an abstract notion of "likely". It
is often the case that the degree of likelihood of message delivery is quantified, e.g.,
in terms of a given probability 7r. (Note that identifying a system with the set S
of its runs facilitates such definitions. The standard techniques of measure theory
and probability theory immediately apply.) Given any specific flavor of likelihood
we can clearly define a variant of likely common knowledge that corresponds to it

as the greatest fixpoint of a'x appropriate equation. Thus, we may have variants
of common knowledge corresponding to "With probability one", "With probability
7r", "Unlikely", and so on. The temporal and likelihood aspects of message delivery

seem to be orthogonal in nature. In some cases it seems natural to combine them.

This is useful, for example, in communication that is characterized by a probability
distribution. Consider a communication scheme in which at any giver time step

each pending (as yet undelivered) message is delivered with probability 1/2. The
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state of knowledge of a message R2 sends D2 in such a system can be described
by notions of common knowledge corresponding to "with probability 1/2, within
one time step", "Likely within 100 time steps" (where "likely" here corresponds
to "with probability ! 1 - 1~"), "with probability one, eventually", or "with
geometric probability distribution G(1/2) over time". These different notions allow
us to characterize different aspects of the system's communication properties, and
to work with different levels of abstraction.

4.5 Discussion

This chapter has introduced a variety of states of knowledge, discussed their
roles, and analyzed the relationship between them. A pattern that arises from the
presentation here is that the properties of a communication channel determine a
particular state of knowledge that is the result of broadcasting a message over such
a channel. Similarly, the relative manner in which an event is guaranteed to oc-
cur in all sites of the system closely corresponds to a related state of knowledge.
Many of these states of knowledge seem to be approximations of common knowl-
edge, accounting for things such as an uncertainty in the relative times in which
events take place, or an uncertainty as to whether they will take place. (Common
knowledge is attained by events that are guaranteed to take place simultaneously
at all sites.) Thus, proving statements about the inability to attain such states of
knowledge in particular circumstances is a general way of proving the inability to
be guaranteed to perform coordinated action of the corresponding kind under the
same circumstances. For instance, our results imply that if communication is not
guaranteed, then no protocol can guarantee to achieve even eventual coordinated
attack. Furthermore, if communication is asynchronous, then no protocol can guar-
antee that the generals sometimes attack, and that whenever they attack they do
so within a fixed predetermined amount of time of each other. However, our results
are more general than the coordinated attack problem, and they immediately apply
to problems such as transaction commit in distributed databases (cf. [Gr]).



CHAPTER 5

THE CHEATING HUSBANDS STORIES

As the previous chapters have illustrated, the success of certain cooperative

actions in a distributed environment often depends on the attainment of various

states of knowledge by the group of agents involved. In this chapter we perform a

case study of a slightly different aspect of the subtle interplay between knowledge,

communication and action, by analyzing the effect of broadcasting a particular set

of instructions using different communication channels in various settings. In order

to enhance readability, the analysis is carried out within the context of a fictional

story, and the presentation is to a great extent self-contained.

5.1 Introduction

The "cheating wives" puzzle, a well-known puzzle from the folklore (cf. [GSI),
has long been one of the primary examples of the subtle interdependence between

knowledge and action. (We have already presented it as the muddy children puz-

zle in Chapter 1.) We will now reveal the contents of recently discovered scrolls,

allegedly written by the great scholar Josephine of the lost continent of Atlantis.
These scrolls describe how modernizing the means of communication in Atlantis

over the generations affected the resolution of the recurring problem of unfaithful

husbands there. They provide some indication of the issues involved in the inter-

action between knowledge, action and communication. In particular, one of the

central issues that are illustrated involves what knowledge an agent who knows

something about how other individuals' actions are related to the facts they know,

can obtain by observing the other individuals' actions.

The original cheating husbands problem is re-introduced in section 5.2.1 Sec-

tion 5.3 describes what happens when an asynchronous communication channel is

used to communicate the protocol to be followed. Section 5.4 involves different types

of synchronous communication, and includes a discussion of the conditions under

which a "cheating husbands"-like protocol can tolerate "faults" (disobedient wives).

Section 5.5 deals with ring-based communication. Section 5.6 treats the question

' Martin Gardner independently presented this puzzle in terms of "cheating husbands"

in the thoroughly amusing [Gar].

45
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of how allowing wives to communicate a small amount of extra information allows

a substantially faster solution to the problem. Some conclusions are presented in

section 5.7.

5.2 The cheating husbands puzzle

Josephine's account of the history of a major city in Atlantis starts with the

following incident:

The queens of the matriarchal city-state of Mamajorca, on the continent of

Atlantis, have a long record of opposing and actively fighting the male infidelity

problem. Ever since the technologically-primitive days of queen Henrietta I, women

in Mamajorca have been required to be in perfect health and pass an extensive logic

and puzzle-solving exam before being allowed to take a husband. The queens of

Mamajorca, however, were not required to show such competence.

It has always been common knowledge among the women of Mamajorca that

their queens are truthful and that the women are obedient to the queens. It

was also common knowledge that all women hear every shot fired in Mamajorca.

Queen Henrietta I awoke one morning with a firm resolution to do away with the

male infidelity problem in Mamajorca. She summoned all of the women heads-of-

households to the town square and read them the following statement:

There are (one or more) unfaithful husbands in our community. Al-

though none of you knew before this gathering whether your own husband

was faithful, each of you knows which of the other husbands are unfaithful.

I forbid you to discuss the matter of your husband's fidelity with anyone.

However, should you discover that your husband is unfaithful, you must

shoot him on the midnight of the day you find out about it.

Thirty nine silent nights went by, and on the fortieth night, shots were heard.

Josephine does not explicitly say how many unfaithful husbands were shot,

how many unfaithful husbands were in Mamajorca at the time, how some cheated

wives learned of their husbands' infidelity after thirty nine nights in which nothing

happened, or whether any more husbands were shot on later nights. The inter-

ested reader should stop at this point and try to answer these questions based on

Josephine's account.

Let us consider the questions Josephine leaves unanswered. Since Henrietta I was

truthful, there must have been at least one unfaithful husband in Mamajorca. How

would events have evolved if there was exactly one unfaithful husband? His wife,
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upon hearing the queen's statement, would have concluded that her own husband
was unfaithful, and would have shot him on the midnight of the first night. Clearly,
there must have been more than one unfaithful husband. (Recall that the wives
are all perfect logicians. 2 ) If there had been exactly two unfaithful husbands, then
every cheated wife would have initially known of exactly one unfaithful husband,
and would have reasoned as follows: "If the unfaithful husband I know of is the
only unfaithful husband, then his wife will shoot him on the first night." Therefore,
neither one of the cheated wives would shoot on the first night. On the morning
of the second day each cheated wife would realize that the unfaithful husband she
knew about was not the only one, and that therefore her own husband must be
unfaithful. The unfaithful husbands would thus both be shot on the second night.
In fact, similar reasoning is used by the wives in general, and the following theorem,
well known in the folklore, resolves our doubts regarding Josephine's presentation
of the facts:

Theorem 5.1: If there had been n unfaithful husbands in Mamajorca at the time
Henrietta I announced her ruling, they would all have been shot on the midnight of
the nth day.

Proof: The discussion above shows the claim for n = 1. Assume that the claim
holds for n = k. Thus, if there were k unfaithful husbands they would be shot on
the kth night. We wish to show that if there were n = k + 1 unfaithful husbands they
would have been shot on the (k + 1)st nigA.t. Assume therefore that there were k + 1
unfaithful husbands. Every cheated wife knows of exactly k unfaithful husbands.
Because of the wives' logical competence, they know that if there are exactly k
unfaithful husbands then those husbands will all be shot on the kth night. Before
the kth night, a cheated wife cannot determine that her husband is unfaithful, and
therefore no shots are fired in any of the first k nights. Since the kth night is silent,
every cheated wife concludes on the morning of the (k + 1)s t day that there must
be more than k unfaithful husbands, and that her own husband must therefore be

2 The fact that the wives are perfect reasoners plays a crucial role in all of the cases

we treat. The nature of the situation changes substantially if we relax this assumption,
since wives must then reason about the logical capabilities of other wives. Some prelimi-
nary steps towards dealing with such a situation are presented in [Kon], where Konolige
considers a version of the wlise men puzzle - a well known puzzle that is a special case
of the cheating husbands problem - which he calls the not-so-wise men puzzle, in which

the knowers are not perfect logicians.
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unfaithful. The unfaithful husbands are shot on the (k + 1)t night. The theorem
follows by induction.

Notice the subtlety of the situation: On the first day, immediately after the
queen delivers her statement, a wife who knows of k unfaithful husbands knows
that every cheated wife knows of at least k - 1 unfaithful husbands, and knows that
their wives know of at least k - 2 unfaithful husbands, and that their wives know
of at least k - 3 unfaithful husbands .... It follows that every wife thinks that it is

possible that a cheated wife thinks that it is possible that a cheated wife thinks it is
possible ... that a cheated wife knows of no unfaithful husbands other than her own.
Thus, for all k > 1, it is not common knowledge that there are at least k unfaithful
husbands. The queen's statement, however, is common knowledge. This follows
from the fact that the queen announced it publicly, thereby making it common
knowledge that all of the wives heard her announcement.3 It follows that after the
queen speaks, it is common knowledge that there is at least one unfaithful husband.
Given the wives' famous logical capabilities, it is common knowledge that if there is
only one unfaithful husband then he will be shot on the first night. Therefore, once
the first night is silent it becomes common knowledge that there are at least two
unfaithful husbands. Similarly, after k silent nights (but not earlier!), it is common
knowledge that there are at least k + 1 unfaithful husbands and that every wife
knows of at least k unfaithful husbands other than her own. So although a wife
that knows of k unfaithful husbands knows that there will be no shots before the
kth night, her state of knowledge changes following every silent night, even though
there is no "communication" at all!

3 For a discussion of this point, see Chapter 1.
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5.3 Asynchronous communication

Josephine's description of Mamajorca continues with the following account:

Queen Henrietta I was highly regarded by her subjects for her wisdom in run-
ning the monarchy. She ordered her daughters to continue her moral fight against

male infidelity.

Her daughter, Henrietta II, succeeded her. In order to facilitate communication
with her subjects, Henrietta II installed a mail system from her court to all of

the households in Mamajorca. Her first letter to her subjects told them about the
properties of the new mail system: every letter she sends her subjects is guaranteed
to eventually reach each and every one of them. Thus, she will not need to gather
them in the town square for announcements anymore. Eager to fulfill her mother's
wish, Henrietta II's second letter to her subjects was an exact copy of her mother's
original statement.

Henrietta II suffered great disgrace and died in despair. She ordered her daugh-
ters not to repeat her mistake.

Josephine suggests that despite the fact that Henrietta II gave the wives of
Mamajorca exactly the same instructions as her mother, her mother was honored,
whereas she was disgraced. Again, Josephine refrains from explicitly stating why
this happened. Let us consider the possible outcomes of Henrietta II's action. Had
there been exactly one unfaithful husband at the time, his wife would have shot him

on the first night after receiving the queen's letter, and the queen would have been
saved from disgrace. If there had been exactly two unfaithful husbands, however,
each of their wives would know about the existence of one unfaithful husband,
and that if the husband she knows about is the only unfaithful one, then his wife
will shoot him on the day she receives the letter. Because the mail system is

asynchronous, with messages only guaranteed to be delivered eventually, neither
wife would ever know that the other had already received the queen's letter. Thus,

neither wife would know that her husband is unfaithful: she would always consider
it possible that her own husband is faithful and that the cheated wife she knows

about has not shot yet because the queen's letter has yet to reach her. An immediate

consequence of the above argument is:

Theorem 5.2: If there is more than one unfaithful husband, and the original in-

structions are broadcast over an asynchronous channel, then no unfaithful husbands

are shot.
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Because the letter is broadcast using an asynchronous channel, the queen's let-
ter becomes eventual common knowledge: once the queen sends it, every wife will
eventually receive the letter, and when she does she'll know that all wives will even-
tually receive the letter, and know ... (see Chapter 3). However, at no time does
a wife know that all other wives have received the letter. Thus, a wife can never
determine whether the silent nights are a result of other wives' reaction to receiving
the letter or a result of the fact that they have yet to receive the letter. This prop-

erty of asynchronous communication comes up in a similar fashion in the analysis
of the Byzantine agreement problem in asynchronous networks (cf. [FLPI). There,
the asynchronous nature of the system prevents a processor from ever determining
whether it has not received messages from another processor because the other pro-

cessor did not send any (and thus is faulty), or because the messages are still on
their way.

Notice that even if all of the wives happened to receive the queen's letter simul-
taneously, this would not help. The fact that a wife must always consider it possible
that other wives have not yet received the queen's letter is sufficient to prevent her

from being able to figure out whether her own husband is unfaithful.

5.4 Synchronous communication

Josephine proceeds to describe the controversial actions that ensued:

Henrietta III succeeded her mother, Henrietta II. She decided to upgrade the
mail system that her mother had installed in order to avoid her mother's problem.

Thus, she improved the mail system so that any letter sent by the queen was

guaranteed to reach all of her subjects no later than one day after it was sent.

Henrietta III knew that unless her subjects were aware of the improvement in
the mail system, she would repeat her mother's mistake. Thus, Henrietta III's first

letter to her subjects announced the new advances in the mail delivery system, and
her second one was an exact copy of Henrietta I's statement.

Henrietta III was considered a more effective monarch than her mother, but she

will always be remembered for the great injustice she brought upon Mamajorca.

If only she had told her subjects to wait a few days before shooting, however, she

could have attained her grandmother's fame!

A mail system that guarantees that every letter sent is delivered no more than
b - 1 days after it is sent is called weakly synchronous with bound b. If we call the

sending day the first day, then such a letter is delivered to all wives no later than
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on day b. Before we continue, we remark that in Henrietta III's days no calendar

had been established in Mamajorca.

Let Ep denote "everyone knows p", and

Em+lp ef E(Ep), for m > 0.

Notice that an easy proof by induction shows that if there are n unfaithful husbands,
and En("the queen sent the letter") becomes true at some point, then at least one
cheated wife will shoot her husband, and the first shot will be fired at most n days
after En("the queen sent the letter") first holds. In our case, a letter sent by the
queen is guaranteed to be delivered to all of the wives in less than b days. Thus, once
the letter is sent its contents become b-common knowledge: within b days every wife
receives the letter and knows that within b days every wife will receive the letter
and know that within b days ... every wife will know the contents of the letter (see
Chapter 1). Thus, kb days after the queen sends the letter, Ek("the queen sent the
letter") holds, so it is certain that at least one unfaithful husband will be eliminated.

Although Henrietta III was probably not familiar with the concept of b-common
knowledge, apocryphal records indicate that she was able to prove the following

proposition:

Proposition 5.3: In the weakly synchronous case with the bound on delivery
being b, a wife that knows of exactly k unfaithful husbands will know that her own
husband is unfaithful once kb silent nights pass after the day she receives the queen's
letter.

Proof: A wife knowing of k = 0 unfaithful husbands requires kb = 0 silent nights
to conclude that her own husband is unfaithful. By the queen's statement, that
wife does not know that her husband is unfaithful any earlier than that. Assume

inductively that a wife knowing of k unfaithful husbands requires kb silent nights
to conclude that her own husband is unfaithful, and suppose Mary knows of k + 1
unfaithful husbands. Mary knows that if her own husband is faithful, then every
cheated wife knows of exactly k unfaithful husbands, and, by the induction hypoth-

esis, will shoot her husband on the following night should kb silent nights go by after
the cheated wife receives the letter. For all Mary knows, it is initially possible that
her husband is faithful, and the letter may reach the first cheated wife to receive
it b - 1 days after Mary receives it. Thus, she must consider it possible that no
shots will be fired before the (k + 1)bth night after she receives the queen's letter.
However, should that night be silent, Mary will know that her husband is unfaithful.
The claim follows by induction.
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Thus, Henrietta III was guaranteed not to suffer her mother's disgrace. However,
what she didn't realize was that noisy nights might confuse some of the wives.

Consider, for example, the following scenario: The queen's letters are guaranteed

to arrive in less than 2 days (i.e., b = 2), and Susan knows that Mary's husband is

unfaithful. Suppose Susan receives the queen's letter on a Monday, and hears Mary

shoot her own husband at midnight on Tuesday night. Unfortunately, now Susan

will not be able to figure out whether or not her own husband is faithful. Susan does

not know whether the queen originally sent the letter on Sunday or on Monday, and
thus considers it possible that Mary received the queen's letter on either Sunday,

Monday or Tuesday. In particular, Susan considers both of the following scenarios

possible:

" Mary received the letter on Tuesday and, knowing that Susan's husband is

faithful, shot her own husband on Tuesday night.

" Mary received the letter on Sunday and, knowing that Susan's husband is un-
faithful, waited to see if Susan would shoot her husband on Sunday or Monday

night. Since Susan did not shoot, on Tuesday Mary concluded that her own

husband was unfaithful, and shot him.

Thus, Susan cannot determine whether her own husband is faithful based on Mary's

actions. Furthermore, she will never obtain any more information on the subject

and will remain in doubt forever.

We call the first day on which the queen's letter is delivered to a cheated wife

the first significant day. Given Proposition 5.3, it is easy to see that cheated wives
that receive the queen's letter on the first significant day will be the first to shoot

their husbands. Do any other cheated wives shoot their husbands?

Every wife has an interval of b - 1 days in which a noisy night would leave her

in doubt regarding her husband's fidelity. To see this, recall that a wife knowing

of, say, k > 0 unfaithful husbands does not initially know whether there are k or

k + 1 unfaithful husbands in all. Furthermore, for all she knows the first significant

day may happen anywhere between b- 1 days before she receives queen's letter and

b - 1 days after she receives it. "If there are k unfaitbf-A husbands," she reasons,

"then at least one of them will be shot on the ((k - 1)b+ i)th night after the day his
wife receives the letter, that is, between the ((k - 2)b + 2 )nd and the kbth night after

the day I receive the letter. If, however, there are k + 1 unfaithful husbands, one of

them will be shot between the ((k- 1)b+2)nd and the (kb+ 1)st night after the day I

receive the letter." Thus, if the first shot occurs between the ((k - 1)b+2)nd and the

kbth night after the day she receives the queen's letter, a wife initially knowing of
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exactly k unfaithful husbands will be left in doubt regarding her husband's fidelity.

Since a cheated wife that receives the queen's letter after the first significant day
will hear a shot in her interval of uncertainty, we have:

Theorem 5.4: Using weakly synchronous broadcast, cheated wives that receive
the queen's letter on the first significant day shoot their husbands ((n - 1)b days
after the first significant day, where n is the number of unfaithful husbands). All
other cheated wives remain forever in doubt about their husbands' fidelity.

How could Henrietta III have changed the instructions slightly and avoided the

problem? Josephine seems to suggest that this could have been done by requiring
a cheated wife to wait a few days after learning of her husband's infidelity, before
shooting him. First notice that the wives' reasoning is slowed down considerably if
the shooting happens only after a delay:

Proposition 5.5: In a weakly synchronous mail system with bound b, if every
wife is required to wait d days from the day she discovers her husband's infidelity
before shooting him, then a wife that knows of exactly k unfaithful husbands will
know that her own husband is unfaithful once k(b + d) silent nights pass from the
day she receives the queen's letter (and, as long as all preceding nights are silent,
no earlier!).

Proof: Analogous to the proof of Proposition 5.3. For k = 0 the statement is
trivially true. Assume inductively that it holds for k and that Mary knows of k + 1
unfaithful husbands. Mary knows that if there are exactly k+ 1 unfaithful husbands,
then every cheated wife knows of k unfaithful husbands. Thus, a cheated wife that
receives the queen's letter on the first significant day (i.e., at least as early as any
other cheated wife) will know that her husband is unfaithful once k(b + d) silent

nights pass from the day she receives the letter. Ordinarily she would wish to shoot
on the (k(b + d) + 1)st night, but since she must delay d day.3, she will shoot her
husband on the (k(b + d) + d + 1)st night after receiving the letter. Since Mary
must consider it possible that the first significant day occurs as many as b - 1 days
after she receives the letter, Mary will know that her own husband is unfaithful

once k(b + d) + d + 1 + b - I = (k + 1)(b + d) silent nights pass and no earlier. The
lemma follows by induction.

Josephine's claim is confirmed by the following theorem:

Theorem 5.6: If the delay is sufficiently long, more precisely if d > b - 1, then
all cheated wives shoot their husbands and no wife remains in doubt.
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Proof: We use Proposition 5.5 in a fashion similar to that in which Theorem 5.4
uses Proposition 5.3. First, some notation is needed. Let F be the first significant
day, let D be the day Mary receives the letter, and let S be the day preceding the
night of the first shot. Notice that the proof of Proposition 5.5 implies that if n > 1
is the number of unfaithful husbands, then S = F + (n - 1)(b + d) + d+ 1. Assume
that Mary knows of exactly k > 1 unfaithful husbands. Initially, as far as Mary is
concerned, there are two possibilities:

e Mary's own husband is faithful. In this case Mary knows that D - (b- 1) F <
D + (b - 1). (Notice that Mary must consider the whole interval possible.) Since
the number of unfaithful husbands is k, it follows that S = F+(k- 1)(b+d)+d+1.
Substituting h for D + (k - 1)(b + d) + d + 1, Mary has:

h-(b-1) 5 S < h+(b-1).
* Mary's own husband is unfaithful. In this case Mary knows that D - (b - 1) <

F < D (We must have F 5 D, since otherwise, the first cheated wife to receive
a letter does so after Mary does, contradicting the assumption that Mary's
husband is unfaithful.) Also, S = F + k(b + d) + d + 1, because there are k + 1
unfaithful husbands. Substituting h as above, Mary has:

h+(d+l) !5 S < h+(b+d).
Therefore, if d + 1 > b - 1 (i.e., d > b - 1), then Mary can distinguish these

possibilities (given that she knows S, h, b, and d), and thus is guaranteed to be
able to determine whether her husband is unfaithful. It is easy to present scenarios
that show that no smaller delay suffices. One such scenario is the example following
Proposition 5.3 above. There b = 2 and d = 0 = b - 2.

Josephine remarks:

... Of course, the shrewd residents of the Wisegal district of Mamajorca avoided

any eventual doubts by bribing the mailperson.

We assume that the social attitude towards bribes in Mamajorca was quite differ-
ent from the attitude towards infidelity. Consequently, (it was common knowledge
that) bribery would be kept a secret between a bribing wife and her mailperson. It
is also known that delivering mail was not an acceptable profession for the wives
of Mamajorca. Thus, it was common knowledge that no wife knew of a wife that
bribed the mailperson. Given these circumstances, the following proposition clari-
fies Josephine's statement:
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Proposition 5.7: In the weakly synchronous case, a wife that bribes the mailper-

son into telling her when the queen had originally sent the letter, does eventually

know whether her own husband is faithful.

Proof: Let the bound on delivery be b. Using Proposition 5.3, it is easy to show

by a straightforward induction that if there are k unfaithful husbands then the first

shot occurs between the ((k - 1)b + 1)st night a_,k' the kbth night after the queen

sends the letter. Thus, a wife that knows of k unfaithful husbands and bribes her

mailperson, knows that her husband is unfaithful if no shot is heard before the kbth

night, and knows that he is faithful otherwise. The crucial point is that a wife

that bribes her mailperson knows which night is the kbth night, and thus eventually

knows whether her husband is faithful.

Josephine continues with the reign of Henrietta IV:

Henr; 'tta IV, who succeeded her mother as queen, concluded that the lack of

a calendar was the reason behind the injustice of her mother's scheme. She sum-

moned the women of Mamajorca to the town square and announced the initiation

of a calendar beginning that day. "From this day on," she said, "the mail system

will be strongly synchronous: every letter sent from the queen will bear the mailing

date, and will be guaranteed to be delivered to all of her subjects within less than b

days." At a later date, Henrietta IV sent her subjects a letter bearing the mailing

date, and containing an exact copy of Henrietta I's original instructions. A thou-

sand silent nights followed, and on the thousand and first day, Henrietta IV decided

to send another letter. She had finally realized that as a result of Henrietta III's

great injustice, the wives of Mamajorca lost much of their faith in the monarchy

and its orders. It was still common knowledge that the queens were truthful, and

the vast majority of her subjects were obedient, but it was no longer clear that

all wives would obey the queen's orders. Henrietta IV's letter contained one line:

"There is at least one obedient wife whose husband is unfaithful."

Henrietta IV's wisdom was greatly appreciated throughout Atlantis, and her

success restored her subjects' faith in the monarchy.

Let us see why the obedient wives could not figure out whether their husbands

were faithful before receiving Henrietta's second letter:

Proposition 5.8: In the strongly synchronous case, if there is exactly one cheated

wife, and she is disobedient, all of the other wives are in danger of shooting theil

husbands on the second night.
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Clearly, if the other wives had not suspected that the cheated wife might be
disobedient, all of the faithful husbands would have been shot, v ihereas the unfaith-
ful husband would have survived! Notice that once this is a possibility, even if all
wives are in fact obedient they cannot shoot. To see this, consider the case in whicb-

there are exactly two cheated wives. On the second day each cheated wife cannot
determine whether the first night was silent because her own husband is unfaithful
or because the other cheated wife was disobedient. Thus, no shots are fired on the
second night. Similarly, no shots will be fired on any later nights. It is now easy to
show by induction that such is the case if there are k cheated wives, for all k > 1.
So hou did the queen's second letter help?

Theorem 5.9: In the strongly synchronous case, if it is common knowledge that
there is at least one obedient cheated wife, then all obedient cheated wives will

shoot their husbands.

Proof: The argument here is very similar to that of Theorem 5.1, with a slight
twist. If there is only one unfaithful husband, then his wife is the only cheated
wife. Since there is at least one obedient cl-eated wife, she must be obedient, and
therefore will shoot her husband on the day she receives the second letter. If there

are exactly k = 2 cheated wives, then each obedient cheated wife reasons as follows:
"If my husband is faithful then the cheated wife I know of must be obedient", and
therefore will shoot her husband when she receives the letter, at most b - 1 days
after the queen sent it (on day b at the latest). Thus, if by day b + 1 no shots
are fired, an obedient cheated wifc knows that her own husband is unfaithful, and
shoots her husband on that night. Assume inductively that if there are exactly
k > 2 unfaithful husbands then all obedient cheated wives shoot their husbands
on the (b + k - 1 )st night. If there are exactly k + 1 unfaithful husbands, then
each obedient cheated wife knows of k unfaithful husbards, and knows that if her
own husband is faithful then at least one unfaithful husband will be shot on the
(b + k - 1)st night. Thus, once that night is silent, she knows that (even though
she might be the only obedient cheated wife) her husband is unfaithful, and shoots
him on the (b + (k + 1) - 1)st night. The theorem follows by induction.

Observe the difference between the bribed dates case, described in Proposi-
tion 5.7, and the strongly synchronous case of Theorem 5.9. If all of the wives
bribed the mailperson, then all of the unfaithful husbands would be s!ot, and no

wife would remain in doubt regarding her husband's fidelity. However, it takes

(n - 1)b + 1 days to eliminate n > 2 cheating husbands. Before the end of the

process the wives would not necessarily know that justice would be dane, and at

the end it would not be known whether any wife remains in doubt regarding her
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own husband's fidelity. In the strongly synchronous case, it takes b + n - 1 nights

to eliminate n > 2 unfaithful husbands, and it is common knowledge that justice is

done. The difference between the two cases can be best understood by noting that
in the first case every wife knew on what day the queen sent the letter, but no wife

knew that others knew, whereas in the strongly synchronous case the day on which
the queen sent the letter was common knowledge.

5.5 Ring-based communication

Josephine describes the outcome of a similar approach to the male infidelity

problem in the neighboring city-state of Mamaringa, in which the households were

arranged in a ring:

The queens of the neighboring matriarchal city-state of Mamaringa commonly

adopted customs and rules from Mamajorca. Thus, Mamaringa was similar to

Mamajorca in all respects, except that its households were built in a ring around

the great Mt. Rouge. The location of each household in the ring was common

knowledge, as was the fact that mail was delivered in clockwise order around the

ring.

The queens of Mamaringa tried to eliminate the infidelity problem by sending

Henrietta I's letter once around the ring, using the state-of-the-art mail system

in every generation. None of the queens of Mamaringa suffered the disgrace of

Henrietta II, and none attained the honor of Henrietta IV. They will all be forever

remembered as cruel and unjust queens.

It is assumed that the queens of Mamaringa hoped that the extra knowledge of

the order in which letters are delivered would be helpful in justly eliminating all

unfaithful husbands. However, the asymmetry introduced by this knowledge makes

a big difference, as the following theorem shows:
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Theorem 5.10:

(a) In asynchronous delivery around a ring, the last cheated wife to receive the letter
will shoot her husband. All others will not.

(b) In weakly synchronous dclivery around a ring, some cheated wives will shoot

their husbands, but some might not.

(c) In strongly synchronous delivery around a ring, some cheated wives will shoot

their husbands, but some might not.

Proof: (a) We prove by induction that in the asynchronous case a cheated wife
knowing of k cheated wives that are all notified before her, and knowing that no
cheated wives will be notified after her, will shoot her husband k nights after she
receives the queen's letter (and no earlier). For k = 0 the claim is trivial. Assume
inductively that the claim holds for k and that Mary knows of k cheated wives in the
ring before her, and none after her. Once she receives the letter Mary knows that
the last of the k cheated wives she knows about has received the letter no later than
the same day Mary did. Thus, if Mary's husband is faithful then the last cheated

wife she knows of will shoot her own husband no later than k nights after Mary
received the letter. Once that fails to happen, Mary shoots her own husband on the
(k+ 1)t night after receiving the letter. The claim follows by induction. To see that
no other cheated wife shoots her husband, notice that because of the asynchronous
nature of delivery, a wife knowing of a cheated wife later in the ring does not know
when that cheated wife will receive the letter, and thus cannot deduce from the

night on which a later wife shoots that her own husband is unfaithful (although in
some cases she will be able to deduce that her own husband i faithful).

(b) The proof of Proposition 5.3 can be used to show that some unfaithful hus-
bands will be shot in this case. We need to show that injustice might occur, i.e.,
that some unfaithful husbands might be spared. Consider the following scenario:
the bound on delivery is b = 2. Mary knows of only one cheated wife, Susan, who
lives farther down the ring than Mary. Mary receives the letter on Sunday and

hears Susan shoot her husband on Monday. Mary cannot distinguish between the
following possibilities:

* Susan received the letter on Sunday, and knowing that Mary's husband was
unfaithful, she waited to hear if Mary would shoot on Sunday night. When she

didn't, Susan discovered that her own husband was unfaithful, and shot him
Monday night.
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9 Susan received the letter on Monday, and knowing that Mary's husband was
faithful, discovered that her own husband was unfaithful and shot him that
night.

Thus, Mary does not know whether her husband is unfaithful in the above scenario,
and does not shoot her husband. If her husband is in fact unfaithful, this constitutes
a case of injustice.

(c) The proof of Proposition 5.3 again ensures us that some husbands will be shot.
To show that a case of injustice can arise with strongly synchronous delivery around
a ring, consider the situation described in (b) above, with Sunday being the official
sending date of the letter. Mary still considers both of the above scenarios possible,
and Mary's husband is spared. Thus, if Mary's husband is unfaithful, a case of
injustice occurs.

Notice that in the asynchronous case knowing the order of delivery does help a
cheated wife (in this case only the last cheated wife) discover that her husband is
unfaithful. In this case the extra knowledge can be considered "helpful". However,
more surprising is the fact that the wives' knowing the order of delivery allows an
unjust solution in the strongly synchronous case, where none existed without such

knowledge! Thus, by introducing an asymmetry in the wives' reasoning, this extra
knowledge has a negative effect on the solution.

5.6 Quick elimination

Queen Margaret opened a new era in Mamajorca. She made the mail system
an ezpress mail system: All letters sent from her court were guaranteed to be
delivered to all of her subjects on the day they were sent. Her first letter notified
her subjects about the great advance in their communication capabilities.

Margaret was an impatient queen. She knew that using her mail system she
could successfully execute Henrietta I's instructions. However, knowing that there
were many unfaithful husbands in Mamajorca, and not wanting to wait very long
for them to be eliminated, she decided to look for a faster way to solve the problem.
She did so by giving her subjects instructions that allowed wives to shoot into the
air at midnight. Margaret's scheme was very successful; the unfaithful husbands
were eliminated from Mamajorca in just a few days.

Notice that in Henrietta I's solution, n unfaithful husbands are eliminated on
the nth night following the queen's announcement. Margaret sought a solution that
would require writing fewer than 0(n) nights. Given that shooting in the air at
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midnight is allowed, what is the minimal number of nights in which the unfaithful
husbands can be eliminated? Margaret's problem can be restated as follows: Given
a distributed system in which the processors share a memory consisting of a single
toggle bit, each processor has a value, and it is known that the values are at most
one apart, how many rounds of communication are needed for the processors with
the minimal value to know it? El Gamal and Orlitsky (cf. [EO]) have treated similar
questions independently in a more general setting. The following theorem answers
this question in Margaret's case:

Theorem 5.11: There is a protocol that allows shooting in the air in which the

cheating husbands are all shot by the third night. That is the best possible.

Proof: Let us first show that a protocol in which a wife's actions depend only on

the number of unfaithful husbands she initially knows of and the actual run of the

protocol must require at least three nights. Such a protocol P can be viewed as a

set of protocols P(k), k > 0, each specifying how a wife initially knowing of exactly

k unfaithful husbands should act. If for some k > 1 both P(k- 1) and P(k + 1) do

not prescribe any shooting on the first night, then clearly P(k) must require at least

three nights, since a wife knowing of k unfaithful husbands cannot know whether

her own husband is faithful after the first night. If P(k') includes shooting in the

air on the first night for some k' > 1, then P(k') must require at least three nights

when there are k + 1 unfaithful husbands. A wife knowing of exactly k' unfaithful

husbands shoots in the air on the first night, and cannot determine whether her

own husband is unfaithful before the second night. Thus, for all k > 1, one of P(k),

P(k + 1), or P(k + 2) must require at least three nights.

The following protocol solves the problem in three nights:

(a) A wife Lkowing of k0 unfaithful husbands, with ko = 0 (mod 3), fires

her gun at midnight on the first night. If k0 = 0 she shoots her husband,

otherwise she shoots in the air.

(b) If there was no shot on the first night, then a wife knowing of k, unfaithful

husbands, with k, - 1 (mod 3) should shoot her husband on the second

night.

(bl) If there was a shot on the first night, then a wife knowing of k2 unfaithful

husbands, with k2 = 2 (mod 3) should shoot her husband on the second

night.

(cOO) If both first nights were silent then all wives shoot their husbands on the

third night.



SECT. 5.7 QUICK ELIMINATION 61

(c10) If there was a shot on the first night, and no shots on the second night,
then the first night shooters shoot their husbands on the third night (if
he is still alive).

Let us briefly check that this protocol is correct; i.e., we now show that if there
is at least one unfaithful husband, then all unfaithful husbands are shot, and no
faithful husbands are shot. We first consider the case where there is at least one
faithful husband. Thus, if n = k + 1 is the number of unfaithful husbands, then
some wives know of k + 1 unfaithful husbands, and some of k. If k = 2 (mod 3),
then the wives whose husbands are faithful will shoot in the air on the first night.
The cheated wives will shoot their husbands on the second night according to step
(bl). If k = 0 then the cheated wife will shoot her husband on the first night and
no other shooting occurs. If k _= 0 (mod 3) and k > 0, then the cheated wives
shoot in the air on the first night, the other wives are silent on the second night,
and the cheated wives shoot their husbands on the third night. If k - 1 (mod 3)
then the first night is silent, and the cheated wives shoot their husbands on the
second night by (b). We now need to show that if all wives are cheated then the
husbands are shot. This is simple, since in all cases a wife that hears no shots other
than on nights she shoots ends up shooting her husband (check!).

Notice that Margaret could have appended the above protocol to Henrietta I's
letter; using it, a cheated wife always shoots her husband on the midnight of the day
she discovers his infidelity. In fact, a slightly more elaborate lower bound argument
of a similar flavor shows that it is the only protocol Mary could have appended
to Henrietta I's letter that is guaranteed to terminate in three nights. We remark
that by slightly charging steps (a) and (c10) in the above protocol it is possible to
obtain a protocol that works correctly even if there are no unfaithful husbands. (Of
course, in the modified protocol a wife knowing of no unfaithful husband will not
shoot her husband on the first night, and thus such a protocol cannot be appended
to Henrietta I's letter.) Details are left to the reader.

a
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5.7 Discussion

The cheating husbands problem is one in which communication, knowledge,

and action interact in subtle ways. We have presented a case analysis of variants

of this problem given different communication mediums and different degrees of

clock synchronization. This problem demonstrates how sensitive the success of an

operation can be to the known properties of the communication medium. It also

shows how knowledge can be obtained in indirect ways by observing the actions

of elements in the system, once we know something about how their actions are

related to the facts they know. In fact, as we see in the bribery of the mailperson

in Proposition 5.7, obtaining knowledge about the delivery times of a single letter
can in some cases dramatically improve a wife's capability to act.

The queens' instructions in all cases can be viewed as knowledge-based protocols

in the !ense of rHF], since the actions that a wife is required to take depend on her

knowledge. The basic high-level "knowledge-based" protocol that the wives follow

is:

Do not discuss the matter of your husband' fidelity with anyone. How-

ever, should you discover that your husband is unfaithful, you must shoot him

on the midnight of the day you find out about it.

Consider a scenario in which the queen's letter reaches all of the wives on the

day it is sent. The actual way in which the above protocol will be carried out

(' C plemented") will depend on the known properties of the mail system. As our

analysis shows, the elimination of the n+ 1 unfaithful husbands may take n+b nights,

it may take nb nights, and it might never happen at all, depending on whether the

mail system is commonly known to be strongly synchronous, weakly synchronous,

or asynchronous, and the order of message delivery is unknown. Thus, the execution

of the protocol and its success depend not only on what actually happens (in this

case, all letters being delivered on the same day); they also crucially depend on the

wives' state of knowledge of what happens.

Another interesting point that arises here is that additional knowledge can in

some cases be harmful. The results of Theorem 5.10 show that running the same

knowledge-based protocol in a situation where the wives initially have strictly more

knowledge (they know the order of delivery of a message broadcast around a ring)

can result in a less desirable outcomc. The ignorance present when the order of

delivery is unknown gives rise to states of knowledge that allow the wives to all

successfully determine whether their husbands are faithful.



CHAPTER 6

SYSTEMS OF UNRELIABLE PROCESSORS

Our analysis in the previous chapters focussed on how uncertainties in behavior

of the communication medium and the relative readings of clocks affect the states of

knowledge attainable and the actions that can be performed in the system. In this

chapter we look at how the uncertainty regarding reliability of processors can affect
the actions that can be performed in the system. The systems we consider in this

chapter have a particularly simple and reliable structure in terms of clocks and com-
munication mediums, but the processors in the system are unreliable. We will thus

need to modify the formalism presented in Chapter 2 somewhat for the purposes of

this analysis. Consequently, this chapter is to a large extent self-contained.

6.1 Introduction

The problem of designing effective protocols for distributed systems whose com-

ponents are unreliable is both important and difficult. In general, a protocol for a

distributed system in which all components are liable to fail cannot uncondition-

ally guarantee to achieve non-trivial goals. In particular, if all processors in the

system fail at an early stage of an execution of the protocol, then fairly little will

be achieved regardless of what actions the protocol intended for the processors to

perform. However, such universal failures are not very common in practice, and we

are often faced with the problem of seeking protocols that will function correctly

so long as the number, type, and pattern of failures during the execution of the
protocol are reasonably limited. A requirement that is often made of such protocols

is t-resiliency - that they be guaranteed to achieve a particular goal so long as no

more than t processors fail.

A good example of a desirable goal for a protocol in an unreliable system is called

Simultaneous Byzantine Agreement (SBA), a variant of the Byzantine agreement

problem introduced in [PSL]:

63
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Given are n processors, at most t of which might be faulty. Each processor
pi has an initial value vi E {0, 1}. Required is a protocol with the following
properties:

1. Every non-faulty processor pi irreversibly "decides" on a value v E {0, 1}.

2. The non-faulty processors all decide on the same value.

3. The non-faulty processors all decide simultaneously, i.e., in the same

round of computation.

4. If all initial values vi are identical, then all non-faulty processors decide vi.

Throughout this chapter we will use t to denote an upper bound on the number
of faulty processors. We call a distributed system whose processors are unreliable
a Byzantine environment.

The Byzantine agreement problem embodies some of the fundamental issues

involved in the design of effective protocols for unreliable systems, and has been

studied extensively in the literature (see [Fis] for a survey). Interestingly, although

many researchers have obtained a good intuition for the Byzantine agreement prob-

lem, many aspects of this problem still seem to be mysterious in many ways, and

the general rules underlying some of the phenomena related to it are still unclear.

what facts can become common knowledge at different points in the execution of

a t-resilient protocol. We restrict our attention to systems in which communication

is synchronous and reliable, and the only type of processor faults possible are crash

failures: a faulty processor might crash at some point, after which it sends no

messages at all. Despite the fact that crash failures are relatively benign, and

dealing with arbitrary possibly malicious failures is often more complicated, work

on the Byzantine agreement problem has shown that many of the difficulties of

working in a Byzantine environment are already exhibited in this model. In the

sequel we will use SBA as our standard example of a desirable simultaneous action.

Our analysis provides new insight into the basic issues involved in performing

simultaneous actions in a Byzantine environment. For example, it shows that the

pattern in which failures occur completely determines the number of rounds re-

quired to attain common knowledge of facts about the initial state of the system.

Consequently, we obtain a complete characterization of the patterns of failures that

require a t-resilient protocol for SBA to take k rounds, for 2 < k < f + 1. This

generalizes the well-known fact that SBA requires t + 1 rounds in the worst case

(cf. (DLM],[DS],CD],[FL,[H],[LFI). Our proof is a simplification of the well-known



SECT. 6.2 INTRODUCTION 65

lower bound proof for SBA. Interestingly, our analysis immediately suggests a pro-
tocol for SBA that is optimal in all runs. That is, it halts as early as possible, given
the pattern in which failures occur. In many cases this turns out to be much earlier
than in any protocol previously known. This is the first protocol for SBA that is
optimal in all runs. In fact, it is the first protocol for SBA that ever halts before
the end of round t + 1. The t + 1 round lower bound on the worst case behavior of

* protocols for SBA has often been misinterpreted to mean that SBA cannot ever be
reached in less than t + 1 rounds.

The analysis presented in this chapter applies to a large class of simultaneous
actions, not only to SBA. For example, we present the bivalent agreement problem,
in which clause (4) of SBA is replaced by a requirement that the protocol have
at least one run in which the processors decide 0, and at least one run in which
they decide 1. We derive a protocol that always reaches bivalent agreement in two
rounds. This contradicts a "folk conjecture" in the field that states that performing
any non-trivial task simultaneously in a byzantine environment requires t + 1 rounds
in the worst case.

The main contribution of this chapter is to illustrate how a knowledge-based
analysis of protocols in a Byzantine environment can provide insight into the fun-
damental properties of such systems. This insight is very useful in the design of
improved t-resilient protocols for Byzantine agreement and many related problems.
The analysis also provides some insight into how assumptions about the reliability
of the system affect the states of knowledge attainable in the system. We briefly
consider some other reliability assumptions and apply our analysis to them.

Section 6.2 contains the basic definitions and some of the fundamental properties
of our model of a distributed system and of knowledge in a distributed system.
Section 6.3 investigates the states of knowledge attainable in a particular fairly
general protocol. Section 6.4 contains an analysis of the lower bounds corresponding
to the analysis of Section 6.3, simplifying and generalizing the well-known t+1 round
worst-case lower bound for reaching SBA. Section 6.5 discusses some applications of
our analysis to problems related to SBA, and Section 6.6 includes some concluding

remarks.



66 SYSTEMS OF UNRELIABLE PROCESSORS CHAP. 6

6.2 Definitions and preliminary results

In this section we present a number of basic definitions that will be used in

the rest of the chapter, and discuss some of their implications. Our treatment
will generally follow along the lines of Chapter 2, simplified and modified for our
purposes.

We consider a synchronous distributed system consisting of a finite collection
of n > 2 processors (automata) {piP2,..., pn }, each pair of which is connected by
a two-way communication link. The processors share a discrete global clock that
starts out at time 0 and advances by increments of one. Communication in the
system proceeds in a sequence of rounds, with round k taking place between time
k - 1 and time k. In each round, every processor first sends the messages it needs
to send to other processors, and then it receives the messages that were sent to it
by other processors in the same round. The identity of the sender and destination
of each message, as well as the round in which it is sent, are assumed to be part of
the message. At any given time, a processor's message history consists of the set
of messages it has sent and received. Every processor p starts out with some initial
state a. A processor's vew at any given time consists of its initial state, message
history, and the time on the global clock. We think of the processors as following a
protocol, which specifies exactly what messages each processor is required to send
(and what other actions the processor should take) at each round, as a deterministic
function of the processor's view. However, a processor might be faulty, in which
case it might commit a stopping failure at an arbitrary round k > 0. If a processor
commits a stopping failure at round k (or simply fails at round k), then it obeys its

protocol in all rounds preceding round k, it does not send any messages in the rounds
following k, and in round k it sends an arbitrary (not necessarily strict) subset of

the messages it is required by its protocol to send. (Since a failed processor sends
no further messages, we need not make any assumptions regarding what messages it
receives in its failing round and in later rounds.) For technical reasons, we assume
that once a processor fails, its view becomes a distinguished failed view. The set

A of active processors at time k consists of all of the processors that did not fail in
the first k rounds.

A run r of such a system is a complete history of its behavior, from time 0 until
the end of time. This includes each processor's initial state, message history, and, if

the processor fails, the round in which it fails. An ezecution (sometimes also called
a point) is a pair (r, k), where r is a run and k is a natural number. We will use (r, k)

to refer to the state of r after its first k rounds. Two executions (r, k) and (r', k)
will be considered equal if all processors start in the same initial states and display
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the same behavior in the first k rounds of r and r'. The list of the processors' initial
states is called the system's initial configuration. We denote processor p's view at
(r, k) by v(p, r, k). Furthermore, we will sometimes parameterize the set A of active
processors by the particular execution, denoted A(r, k).

We will find it useful to talk about the pattern in which failures occur in a given
run. Formally, a failure pattern 7r is a set of triples of the form (p, k(p), Q(p)),
where p is a processor, k(p) is a round number, and Q(p) is a set of processors. A
run r displays (or, more precisely, is consistent with) the failure pattern 7r if every
processor that fails in r is the first element of some triple in ir, and for every triple
(p, k(p), Q(p)) in 7r it is the case that processor p fails in round k(p) of r, and in
round k(p) it sends no messages the processors in Q(p), and does send messages to
all processors not in Q(p) to which the protocol prescribes it to send. A protocol P,
initial configuration o,, and failure pattern ir uniquely determine a run. (However, a
run of the protocol may be the result of more than one failure pattern in protocols
that don't require all processors to send messages to all other processors in every
round.) We denote this run by P(u, 7r).

Following Chapter 2, we identify a distributed system with the set S of the
possible runs of a particular fixed protocol P = (P(1),... ,P(n)), where P(i) is the
part of the protocol followed by processor pi. This set essentially encodes all of the
relevant information about the execution of the protocol in the system. Given a
system S, for 1 < i < n let E, be the set of initial states that processor pi assumes
in the runs of S. The system S is said to be a t-uniform system for P if there is a
set of initial configurations r c T1 x.-- x ,, such that S is the set of all runs of the
protocol P starting in initial configurations from r in which at most t processors
fail. t-uniform systems have the property that a processor failure is an event that
is independent of the initial configuration and of the time in which other processors
fail. A system is said to be independent if its set of initial configurations is of the
form , x ... x En. In an independent t-uniform system there is no necessary
dependence between the initial states of the different processors. The properties of
t-resilient protocols can be studied by analyzing particular t-uniform systems for
them. For example, a given protocol is a t-resilient protocol for SBA if all runs of
the independent t-uniform system in which the set of possible initial configurations
is {o, 1}n satisfy the requirements of SBA.

We assume the existence of an underlying logical language for representing
ground facts about the system. By ground we mean facts about the state of the
system that do not explicitly mention processors' knowledge. Formally, a ground
fact W will be identified with a set of executions T'(V) g S x N, where N is the set of
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natural numbers. Given a ran r E S of the system and a time k, we will say that V
holds at (r, k), denoted (S, r, k) - p, iff (r, k) E T(cp). We will define various ground

facts as we go along. The set of executions corresponding to these facts will be clear

from the context. We close this language under the standard boolean connectives

A, -' and D, interpreted as the standard conjunction, negation and implication.

Given a system S, we now define what facts a processor is said to "know" at

any given point (r, k) for r E S. Roughly speaking, pi is said to know a fact b if

ip is guaranteed to hold, given pi's view of the run. More formally, given a system

S, we say that two points (r, k) and (r', k') are pi-equivalent relative to S, denoted

(r, k) 4 (r', V'), iff r, r' E S and ,(pi, r, k) = v(pi, r', k'). (The only case in which

v(pi,r,k) = v(pi,r',k') is possible for k' # k is when v(pi,r,k) = failed.) We

say that a processor pi knows a fact ;b in S at (r, k), denoted (S, r, k) Kio, if

(S,r',k') = 0 for all executions (r',k') E S x N satisfying (r,k) + (r',k'). This

definition of knowledge is essentially the total view interpretation of Chapter 2. We

are about to review some of the properties of knowledge under this definition. Other

properties will be covered in the sequel (see also Chapter 2 and [HM]).

A formula is said to be valid if it is true of all executions in all systems. Given

a system S, a formula is said to be valid in S if it true of all executions of S. It

follows that a valid fact is valid in S for all systems S. We now show that under our

definition of knowledge, Ki satisfies the axioms of the modal system S5. This fact

will follow in a straightforward way from the fact that knowledge is determined by

the ++ relations, which in our case are equivalence relations.

Proposition 6.1:

a) If W is valid in S then KiV is valid in S.

b) The consequence closure axiom is valid:

CONSEQUENCE CLOSURE: (Ki p A Ki(w D tk)) D Ki

c) The knowledge axiom is valid:

KNOWLEDGE AXIOM: Kio D W.

d) The positive introspection axiom is valid:

POSITIVE INTROSPECTION: Ki p D KKip.
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e) The negative introspection axiom is valid:

NEGATIVE INTROSPECTION: "KiV D Ki-Ki.

Proof: For part (a), let (r, k) be an (arbitrarily chosen) execution satisfying r E
S, and let W be a formula that is valid in S. Thus W is true of all executions
(r', k') E S x N, and, in particular, p is true of all executions in S x N that are
pi-equivalent to (r, k). It thus follows that Kip is true of (r, k), and since (r, k)
was an arbitrary execution in S x N, we have that KiV is valid in S. For (b), let

(S, r, k) H KcV A Ki(V D 4'). Then by the definition of (S, r, k) = KiW we have
that both V and (W D 4') hold at all points (r', k) that are pi-equivr-dent to (r, k).
It thus follows that 4' holds at all such points (r', k), and again by the definition
of (S, r, k) 1= 4 we are done. Part (c) follows from the fact that (r, k) +-+ (r, k),
i.e., pi-equivalence is reflexive. Now, by definition we have that if Kiv is true
of (r, k) then (p is true of all executions that are pi-equivalent to (r, k), and in
particular V is true of (r, k). For part (d), let (S, r, k) 1= Kip. Thus, V is true
of all executions (r",k) A (r,k). We wish to show that (S,r',') H Ki V for all
(r', ') 4. (r, k). Since + is an equivalence relation, all executions (r", k) E 5 x N
satisfy that (r, k) 4 (r", k") iff (r', k') ! (r", k"). It thus follows that V is true
of all executions (r", k") ++ (r', k), and we are done. The argument for part (e)
is similar. If (S, r, k) H -'W then (S, r, k) Vz W, and therefore there must be an
execution (r", k) that is pi-equivalent to (r, k) of which W is not true. Let (r', k') be
an execution that is pi-equivalent to (r, k). Because pi-equivalence is an equivalence
relation, we have that (r', k') 4 (r", k"), and hence (S, r', k') H -,KiV. It now
follows that (S, r, k) 1= Ki-'KiW and we are done.

Roughly speaking, clauses (a) through (e) characterize the modal system S5. An
operator satisfying clauses (a) through (d) is said to satisfy the modal system S4 (cf.
[HMI). An interesting consequence of our choice of having a failed processor's view
be a distinguished failed view is the fact that a processor always knows whether
it is active. Furthermore, the only things that a failed processor knows are the
consequences of the fact that the processor has failed and of the formulas that are
valid in S. Given that a failed processor is "out of the game" in our model, we will
focus our attention on the knowledge of the acti,,e processors.

Having defined knowledge for individual processors, we now extend this defini-
tion to states of group knowledge. Given a group G C {p,...., p,, }, we first define
G's view at (r, k), denoted v(G, r, k):

v(G,r,k) de= {(p,v(p,r,k)) : pE G}
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Thus, roughly speaking, G's view is simply the joint view of its members. Extending
our definition for individuals' knowledge, we say that the group G has implicit

knowledge of W at (r, k), denoted (S, r, k) 1= I(, if for all runs r' E S satisfying

v(G, r, k) = v(G,r', k) it is the case that (S, r', k) 1= W. Intuitively, G has implicit

knowledge oF p if the joint view of G's members guarantees that W holds. Notice
that if processor p knows V and processor q knows W D 0, then together they have

implicit knowledge of b, even if neither of them knov% 0 individually. An identical

proof to that of Proposition 6.1 now shows:

Proposition 6.2: The operator Ia satisfies the modal system S5 (clauses (a)

througn (e) of Proposition 6.1, substituting IG for Ki).

We refer the rc-der to Chapter 2 and [HM for a discussion and a formal treat-

ment of I,. In this chapter we are mainly interested in states of knowledge of the
group A of active processors. We say that the set of active processors implicitly

knows W, denoted IVo, exactly if ISo holds for the set G = A. Stated more formally,

(S,r,k) I iff (S,r,k) H I,, for G = A(r,k).

Although IV is defined in terms of IG'P, it is not the case that I and 1G have the
same properties. The reason for this is that whereas G is a fixed set, membership

in A may vary over time and differs from one run to another. Thus, for example,
it is often the case that for G = A(r, k) we have (S, r, k) V= IG(A = G), because

there is some run r' E S such that v(G, r, k) = v(G, r', k) and where G is a strict
subset of A(r', k). Consequently, whereas the negative introspection axiom for IG,

i.e., 'IGV D IG-IGV, is valid, the corresponding formula for I: -'It D I-'Ip, is

not valid! (Notice, however, that I(G C A) holds whenever G C A). For example,

it may b- the case that processor pi sends processor pi a message in round 1 stating

pi's initial state, and fails before sending any other message, and that processor pi

fails in round 1 after sending all of its round 1 messages. Processor pj's initial state

is thus not implicitly known to the set of active processors, but it is consistent with

the active processors' joint view that pi is active, in which case pj's initial state

would be implicitly known. The above discussion can be summarized by:

Proposition 6.3: The implicit knowledge operator I satisfies the modal system

S4 (i.e., clauses (a) - (d) of Proposition 6.1). The negative introspection axiom is

not valid for I.

The fol! *ng lemma describes the relationship between Ki and I:
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Lemma 6.4: Let (p be a formula and let pi E A(r, k).

a) If (S, r, k) = Kilo then (S, r, k) I= Lp.

b) If (S,r,k) Ki V then (S,r,k) 1 KIp.

Proof: For part (a), assume that (S, r, k) 1= Kjp, and let (r', k') be an execution
satisfying v(A(r,k),r',k') = v(A(r,k),r,k). In particular, since pi E A(r,k) we
have that v(pi, r', k') = v(pi, r, k), and thus since Kicp holds at (r, k), we have that
W holds at (r', k'). Since this is true for all such executions (r', k'), we are done by
the definition of (S, r, k) = IVp. For (b), let (S, r, k) 1= Ki,0. By Proposition 6.1(d)
we have that (S, r, k) 1= KiKi V. The fact that pi E A(r, k) implies that v(pi, r, k) 0
failed. Thus, pi is an active processor in all executions that are pi-equivalent to
(r, k). Let (r', k') + (r, k). We thus have that pi E A(r', k'), and that K6cp holds at
(r', k'). Part (a) therefore implies that IV holds at (r', k'), and thus KJIcp holds at
(r,k).

We now show that, roughly speaking, in t-uniform systems once a fact about the
past is not implicitly known it is lost forever; it will inot become implicit knowledge
at a later time. We say that a fact 0 is about the first k rounds if for all runs r E S
it is the case that (,, r, k) i 4 ff (S, r, t) = ¢ for all t > k. Jr particular, facts
about the first 0 rounds are facts about the initial configuration. We now have:

Theorem 6.5: Let S be a t-uniform system, let ?k be a fact about the first k
rounds, and let t > k. If (S, r, k) I= 10 then (S, r, t) K 14.

Proof: Let t > k, and let r and ¢ be such that 4 is about the first k rounds
and (S, r, k) V I0. Let G = A(r, k). It follows that there exists a run r' E S such
that v(G,r,k) = v(G,r',k), and (S,r',k) K ¢. Let r" be a run with the following
properties: (i) (r", k) = (r', k); (ii) all processors in A(r', k) - G fail in round k + 1
of r" before sending any messages; and (iii) from round k + 1 on all processors in

G behave in r" exactly as they do in r. By construction, the number of processors
that fail by time k in r" is no larger than the number in r, and exactly the same
processors fail in r and in r" by any later time. Given that S is a t-uniform system
and r E S, no more than t processors fail in r. It follows that r" E S, since all of the
processors follow the same protocol in r" and ir r, and no more than t processors fail
in r". By construction of r" we also have that A(r", t) = A(r, t) and that the active

processors have identical views in (r", t) and in (r, f). It follows that (S, r", t) H 10
iff (S, r, t) = 10. Since 4 is a fact about the first k rounds and (r", k) = (r', k), we
have that (S,r",t) K 0 because (S,r',k) = 4. Thus, in particular, (S,r",t) K 10
and it follows that (S, r, t) K 10 and we are done.
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Fagin and Vardi perform an interesting analysis of implicit knowledge in reliable
systems (cf. [FVI). Among other things, they prove that the set of facts that are
implicit knowledge about the initial configuration does not change with time. I.e.,
in reliable systems the implication in the statement of the Theorem 6.5 becomes
an equivalence. However, in t-uniform Byzantine systems it is clearly the case that
implicit knowledge can be "lost". For example, if processor pi may start in initial
states a and or', and in a particular run of the system p, starts in state a and fails in
the first round before sending any messages, then whereas I( "p started in state a")
holds at time 0, it does not hold at any later time.

We now introduce the two other states of group knowledge that are central to
our analysis. We define "everyone knows" and "common knowledfe" along the lines
of Chapter 2. In our case, however, these notions will be defined for the set of active
processors. Every (active) processor knows Wp, denoted Ep, is defined by

Ep def A (Pi E A D K,'p).
1<i<n

An immediate corollary of Lemma 6.4 which we will find useful in the sequel is:

Corollary 6.6: EWp D E(Ip) is valid.

def def
We define E'p = EVp, and E"-+' = E(E'W) for m > 1. A fact p is said to

be common knowledge among the active processors, denoted CV, if Em'p holds for
all m > 1. More formally,

C: = W A E~o A E 2 V A ... A E m W A

Common knowledge among the active processors, which we will call simply com-
mon knowledge, will play a crucial role in the sequel. We now study some of its
properties. A useful tool for thinking about E m'p and Cp is the labelled undirected
graph whose nodes are the executions of a system S, and whose edges are the +-+

relations, restricted so that an edge e + e' exists only if p, is active in e (and hence
also in e'). (This graph is precisely the Kripke structure modelling the active pro-
cessors' knowledge in the system; cf. [HM].) The distance between two executions
e = (r, k) and e' = (r', k) in this graph, denoted 6(e, e'), is simply the length of the

shortest path in the graph connecting e and e'. If there is no path connecting e

to e', then 6(e, e') is defined to be infinity. Two executions e and e' are said to be
similar, denoted e ,- e' if 6(e, e') is finite (i.e., if e' and e are in the same connected

component of the graph). Equivalently, (r, k) - (r', k), if for some finite m there are
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runs r1 , r2 ,..., rm-i E S, and processors pi,pi,... ,pi.,, satisfying pi, E A(rj,k)
for j : m - 1, pi,, E A(r', k), and

(r,k) (,k) + ... -" (r,.I, k) (',k).

(The system S is usually clear from context, and thus we do not add a subscript S
to ,,.) It is now easy to check that (S, r, k) H Eo iff (S, r', k) = o for all executions
(r', k) of distance < 1 from (r, k). Notice that similarity is an equivalence relation.
We can now show:

Proposition 6.7:

a) (S,r,k) C'p iff (S,r',k) H cp for all r' E S such that (r,k) .- (r',k).

b) If W is valid in S then Cp is valid in S.

c) C satisfies the axioms of the modal system S5 (see Proposition 6.1).

d) The induction axiom is vdlid:

INDUCTION AXIOM: CQp D EW) D (~ D CV).

e) The fixpoint axiom is valid:

FIXPOINT AXIOM: CVo D V A ECp.

Proof: (a) follows by a straightforward induction on m showing that (S, r, k)
E' W iff (S,r',k) H W for all (r',k) of distance < m from (r,k). Part (b) follows
directly from (a). The proof of part (c) is identical to the proof of Proposition 6.1,i
substituting C for Ki and - for +-#. For (d), assume that both V and C(p, D Eo)
hold at e = (r, k). We prove by induction on m that W holds at all points of distance
< m from e. The case m = 0 follows from our initial assumption. Assume that
the claim holds for m, and let e' be a point satisfying 6(e, e') = m + 1. It follows

. that there is a point e" such that b(e, c") = m and 6(e", e') 1. By the inductive
hypothesis V holds at e". Since C(W D EW) holds at e and e e", part (a) implies
that 0 D EWo holds at e". It follows that EWo holds at e", and since t(e", e') = 1, we
have that V holds at e'. By induction we have that W holds at all points reachable
from (i.e., similar to) e, and by part (a) we have that CWp holds at e, and we are
done. For part (e), the validity of CW D W is immediate. By part (c) we have
that C satisfies the positive introspecton axiom, and hence CW D CC~p is valid.
By definition of Co we have that Co D E0 is valid, and taking t = Cp, we thus
have that CWo D CCW D ECp is valid, and we are done.
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Proposition 6.7 is very useful in relating common knowledge and actions that

are guaranteed to be performed simultaneously. For example, we can use Propo-
sition 6.7(b) and the induction axiom in order to relate the ability or inability to

attain common knowledge of certain facts with the possibility or impossibility of

reaching simultaneous Byzantine agreement. We model a processor's "deciding v"

by the processor sending the message "the decision value is v" to itself, and have:

Corollary 6.8: Let S be a system in which the processors follow a protocol for

SBA. If the active processors decide on a value v at (r, k), then

a) (5, r, k) C("All processors are deciding v"), and

b) (S,r, k) C("At least one processor had v as its initial value").

Proof: Let p be the fact "all processors are deciding v". Given that the protocol

guarantees that SBA is attained in S, it is the case that whenever some processor
decides v all active processors do, and thus the formula W D Eo is valid in S. Thus,

by Proposition 6.7(b) C( D EW) is also valid in S. The induction axiom states

that C(W D Ep) D (w : CW). Combining these two facts we have that W D Cp

is valid in S, and thus if (S, r, k) = W then (S, r, k) H C o and we are done with

part (a). For (b), let 0 be "at least one processor had v as its initial value", and

notice SBA guarantees that V D i/ is valid in S. Thus, by Proposition 6.7(b), so is

C(o D tk). The consequence closure axiom states that (CW A C(W D 0)) D CO
is valid, and we conclude that CV D Ctk is valid in S. By part (a) we have that

(S, r, k) W implies that (S, r, k) = C(p), from which we can now conclude that

(S, r, k) = Co and we are done. M

The reasoning used in proof of Corollary 6.8 is typical of the way Proposi-
tion 6.7(a) and (b) together with the consequence closure and induction axioms are

used to prove that certain facts are common knowledge. We will use such reasoning

again in later proofs.
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6.3 Analysis of a simple protocol

In this section we take a close look at t-uniform systems Sp in which all proces-
sors follow a simple and fairly general protocol 15:

For k > 0, in round k + 1 each processor sends its view at time k

(i.e., after k rounds) to all other processors.

This protocol was named the mazimal information protocol by Hadzilacos (cf.
[H). We are interested in determining what facts about the run become common
knowledge at the different stages of the execution of this protocol. Intuitively, the

protocol 95 should provide the processors with "as much knowledge as possible"
about the initial configuration and the pattern of failures, and should facilitate the
ability of the system to perform actions that depend on the initial configuration.
One of the relevant properties of this protocol is that it requires every processor to
send messages to all other processors in every round. This ensures that the failure
of a processor will be known to all processors at most one round after the round in
which the processor fails.

A fact V is called stable if once it becomes true it remains true forever (cf.
Chapter 2). For example, facts about the first k rounds, and in particular facts
about the system's initial configuration, are stable. Since a processor's knowledge
is based on the processor's view, and an active processor's view grows monotonically
with time, it is the case that if Wp is stable then (as long as at least one processor
remains active) so are Ep and Cp. As we have seen, IV is not necessarily stable.

A round in which no processor fails is called a clean round. A round that is not
clean is called dirty. If every processor that fails in round k fails to send round k
messages only to processors that are not active at time k, then round k is said
to be seemingly clean. Notice that a clean round is in particular seemingly clean,
and the active processors cannot distinguish between a clean round and a seemngly
clean round. The reason we are interested in seemingly clean rounds is that if, for
some k, round k of a run in which the processors all follow 1' is seemingly clean,
then every active processor's view at the end of round k includes the view of the
active processors at time k - 1. In particular it follows that any stable fact that is

implicit knowledge at time k - 1 is known to everyone at time k. Consequently, at
time k all processors know exactly the same facts about the initial configuration.
Furthermore, Theorem 6.5 together with the fact that EW is stable when Wp is,
imply that at any point after a clean round, all of the processors have identical

knowledge about the initial configuration. Therefore, once it is common knowledge

that there was a clean round, it is common knowledge that the processors have an

EL. . i I I
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identical view of the initial configuration. The above discussion is made precise by
the foll -wing theorem:

Theorem 6.9: Assume that t < n - 1.

a) Let W be a stable fact such that (So, r, k - 1) = I%0.
If round k of r is seemingly clean then (S,, r, k) 1= E%0.

b) Let W be a fact about the initial configuration.

If (Sp, r, f) C("a seemingly clean round has occurred") then (So, r, t) j= IV
iff(S,r,t) CV' .

Proof: By definition, (Sp,r, k-l) = Ip iff(S,,r, k-i) = Io' for G = A(r, k-i).
If round k is seemingly clean then all processors active at time k receive round k
messages from all of the processors in G, and hence the view of each active processor
at time k has a copy of v(G, r, k - 1), and it follows that every active processor at
time k knows V. For part (b), let W be a fact about the initial configuration and

let 4 be the fact "a seemingly clean round has occured". Let (r', t) be an execution
satisfying (So,r',e) 1= 4. By Theorem 6.5, if (S,,r',t) H Ip then (So,r',k) H Ip

for all k < R. Given that 4 holds at (r', k), let round k of r' be a seemingly clean
round, where k < t. Since (Sp, r', k -1) = IVo, by part (a) we have that (S,, r', k) 1=
Ep. E4 ' is stable because W is, and therefore (So, r, t) J= EW. By Corollary 6.6 we
have that (So, r', f) [- E(IW). We have just shown that 4 D (Ip D E(IW)) is valid
in SO. Thus, by Proposition 6.7(b) we have that C(O D (14 D E(I 4 ' ))) is also valid

in Sp. Now assume that r is a run satisfying (r, t) 1= CIP. By the consequence closure

axiom for C (Proposition 6.7(c)), we have that (So,r,t) 1= C(I4 ' D E(I ' )). And
by the induction axiom we have that (So, r, t) 1= I4 D C(I4 ' ). Since C(I4 ' ) D CV
is valid, we also have that (S,, r, t) 1= I4 D CV' . Finally, since C4' D IV is valid,
we have that (S0, r, t) I- I =- CV' , and we are done.

As a corollary of Theorem 6.9 we can now show:

Corollary 6.10: Let W be a fact about the initial configuration.

a) (S,,r,t + 1) =IV iff (S,,r,t + 1) [- CV.

b) (S,,r,n - 1) V1 iff (S,,r,n- 1) H CV.

Proof: Notice that the "if" direction in both cases is immediate, since CO D 10

is valid for all facts 4. We now show the other direction. All runs of S. have
the property that no more than t processors fail during the run. Given that a

processor falure occurs in a unique round, we have that one of the first t + 1 rounds

of every run of So must be clean. Since a clean round is in particular seemingly

clean, Proposition 6.7(b) implies that at time t + 1 it is common knowledge in all
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runs of So that a seemingly clean round has occured. Part (a) now follows from
Tbeorem 6.9(b). For the proof of part (b), we need a slightly stronger vaxiant of
Theorem 6.9(b), which states that if it is common knowledge that there has either
been a clean round or that there is at most one processor then IV holds iff CVp does.
The proof of this fact is completely analogous to that of Theorem 6.9(b), given that
IV = CW is trivially true when there is at most one active processor.

As a consequence of Theorem 6.9 and Corollary 6.10 we have that any action
that depends on the system's initial configuration can be carried out simultaneously
in a consistent way by the set of active processors at any time k > min{t + 1, n - 1}.
This is consistent with the fact that there are well-known t-resilient protocols for
SBA that attain SBA in t + 1 rounds. Interestingly, none of the known protocols for
SBA attain SBA in less than t + 1 rounds in any run. It is therefore natural to ask
whether a protocol for SBA can ever attain SBA in less than t + 1 rounds. Clearly,
once it is common knowledge that a clean round has occurred, SBA can be attained.
And as we shall see, there are cases in which the existence of a clean round becomes
common knowledge before time t + 1. When the existence of a clean round becomes
common knowledge depends crucially on the pattern of failures, and on the time
in which failures become implicitly known to the group of active processors. For
example, if a processor p detects t failures in the first round of a run of P, then
the second round of the run will be clean, and at the end of the second round all
active processors will know that p detected t failures in round 1. It follows from the
induction axiom and Proposition 6.7(b) that at the end of round 2 it will be common
knowledge that all processors have an identical view of the initial configuration
(check!). Clearly, the processors can then perform any action that depends on the
initial configuration (e.g., SBA) in a consistent way. In the remainder of this section
we show a class of runs of So in which the processors attain common knowledge of
an identical view of the initial configuration at time k, for every k between 2 and
t + 1. In the next section, we will prove that this is in fact a precise classification
of the runs according to the time in which common knowledge of an identical view
of the initial configuration is attained.
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Intuitively, if there are more than k failures by the end of round k, then from
the point of view of the ability to delay the first clean round, failures have been
"wasted". In particular, if for some k it is the case that there are k + j failures by
the end of round k, then there must be a clean round before time t + 1 - j (in fact,
between round k + 1 and round t + 1 - j). This motivates the following definitions:
We denote the number of processors that fail by time k in r by N(r, k). We define
the difference at (r, k), denoted d(r, k), by

d(r,k) d=f N(r,k) - k.

We also define the maximal difference in (r, t), denoted D(r, 1), by

defD(r,) t= max d(r, k).L-<t

Observe that d(r, 0) = 0 for all runs r, since N(r, 0) = 0. Furthermore, in a t-
uniform system it is always the case that d(r, k) <_ t - k, since N(r, k) <_ t. Let
D be a variable whose value at a point (r, k) is D(r, k), and let d(k) be a variable
whose value at any point in r is d(r, k). By Theorem 6.9(b) we have that if at time
t + 1 - j it is common knowledge that D > j, then it is common knowledge that
a clean round has occurred, and that all processors have an identical view of the
initial configuration. We are about to show that the protocol 5 guarantees that if
it ever becomes implicit knowledge that D > j then at time t + 1 - j it is common
knowledge that D > j (and, therfore, that a clean round has occurred). This leads
us to the following definition: Given a system S, the weateftLness of (r, £) with
respect to S, denoted W(S, r, 1), is defined by:

(Sr, )def
W(S, r,t)= max{j: (S,r, t)=I(D > j)}.

In words, the wastefulness of (r, t) is the maximal value that the difference d(r, .) is

implicitly known to have assumed by time t. Finally, we define the wastefulness of

a run r, denoted W(S, r), by:

W(S, r) ef max W(S, r, t).
1>0

We now formally prove the claims informally stated above. We start with a some-
what technical lemma discussing the properties of wastefulness in the case of SO:
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Lemma 6.11: Let t <n -1.

a) If (S,, r,f) I(D > j) then (S,,r,f) I(d(k) j) for some k < f.

b) If I(d(k) >_ j) holds at time k then at time k + 1 either E(d(k) > j) holds or
I(d(k + 1) ->j) does.

c) W(S,,r,k + 1) W(S., r, k) for all k > O.

Proof: For part (a), let r E S, satisfy (So,r,t) 1= I(D > j), and assume that

for no k is it the case that (S,,r,f) 1= I(d(k) > j)). Let r' be a run of 15 such
that (r', 0) = (r, 0), and in which the only messages not delivered are those that are

implicitly known at (r, t) not to have been delivered. It is easy to check that r' E So,
since no more than t processors fail in r'. Because it is not implicit knowledge at
(r, f) that d(k) _ j for any k, it follows that D(r', t) < j. If we show that the
group G = A(r, 1) has exactly the same view in (r, f) and in (r', £) we will be done,

since this will contradict the assumption that (So, r, t) = I(D > j). We now prove
that A(r, 1) has the same view in (r, 1) and in (r', t). This is done by showing by
induction on k that the set of processors that are implicitly known at (r, 1) to have

been active at time k < f have the same views at time k in both r and r'. Define
G(t) = A(r, 1). For k < t, assume inductively that G(k + 1) is defined, and for all
processors pi E G(k + 1) let g(pi, k) be the set of processors from which pi receives

a message in round k + 1 of r. Define

G(k) Ite U g(pi, k).
pEG(k+1)

Let G'(t) = G(e), and for k < f define g'(pi, k) and G'(k) from G'(k + 1) in an
analogous fashion (substituting G, g, and r by G', g', and r'). We now show

by induction on I - k that if k < f then for all Pi E G(k + 1) we have that

g(pi, k) = g'(pi, k) and that G(k) = G'(k). Let k < f and assume inductively

that G(k + 1) = G'(k + 1). (Notice that we have defined G(1) = G'(t).) Let

pi E G(k + 1). The sets G(k) are the sets of processors implicitly known at (r, t)
to have been active at time k. The sets g(pi, k - 1) are the sets of processors that

send a message to pi in round k. By requiring messages to contain the sender's
complete view, the protocol 0 guarantees that a processor is implicitly known at

(r, 1) to have been active at time k iff the processor's view at (r, k) is implicitly

known. Thus, the precise identity of g(pi, k) for Pi E G(k + 1) is implicitly known
at (r, t). It follows that processor pi sends a message to pi in round k + 1 of r iff

pj sends pi a round k + 1 message in r'. It thus follows that g(pi, k) = g'(pi, k).

Since this is true for all pi E G(k + 1), we have that G(k) = G'(k), and the claim
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is proven. Notice that G(k) -) G(k + 1). We now show by induction on k that for
all pi E G(k) it is the case that v(pi, r, k) = v(pi, r', k). The case k = 0 follows
from the fact that (r, 0) = (r', 0) and G(0) - G'(0). Assume inductively the claim
holds for k; we prove it for k + 1. Let pi E G(k + 1). Observe that pi's view at
(r, k + 1) is determined by its view at (r, k) and by the view of the group g(p,, k)
at (r, k). Since by the inductive hypothesis we have that g(pi, k) = g'(pi, k), and
that v(g(pi, k), r, k) = v(g'(pi, r', k), and that v(pi, r, k) = v(pi, r', k), it follows that
v(pi,r,k + 1) = v(pi,r',k + 1). It now follows that v(G(f),r,t) = v(G(t),r',f), and

we are done with part (a).

For part (b), assume that (So, r, k) 1= I(d(k) > j). If round k + 1 is seemingly
clean then E(d(k) > j) holds at (r, k + 1). Otherwise there must be (at least one)

processor, say q, that fails in round k + 1 by not sending a message to at least one

processor, say p, that is active at time k + 1. Thus, in particular, p knows at time

k + 1 that q has failed. Now, by requiring all processors to send messages to all of
the other processors in every round, 7) ensures that all processors that fail by (r, k)

are known by everyone at (r, k + 1) to have failed. It follows that d(k + 1) j i is

implicit knowledge at that time.

For part (c), assume that W(r, k) = j. Then by part (a) there is some k' < k
such that (Sp, r, k) J= I(d(k') > j). Without loss of generality let k' be the largest

such number. If k < k then by (b) we have that at time Pc + 1 < k everyone knows

that d(k') > j. But E(d(k') > j) is a stable fact because d(k') > j is, and in this

case 1'(r, k + 1) > j, and the claim of (c) holds. If k' = k then part (b) implies

that at time k + 1 either everyone will know that d(k) > j or it will be implicit

knowledge that d(k + 1) > j. In both cases we will have W(r, k + 1) > j, and we

are done.

We now have:

Theorem 6.12: Let t <n -1.

a) WV(Sp,r) > j iff (Sp,r,t + 1 - j) C(W(Sp,"the current run") >j).

b) Let W be a fact about the initial configuration. If V(Sp, r) = j then

(S0,,r,t + 1 - j) f- Iw iff (So,,r,t + 1 - j) 1= C'p.
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Proof: The "if" direction of part (a) is immediate from the fact that CWo D W is
valid. We now show the other direction. Assume that W(S.0, r) > j. We claim that
there must be a seemingly clean round between the first time in which I(D > j) first
holds and time t + 1 -j. For some t > 0 it must be the case that W(S,,r,t) > j,
and hence (So,r,t) = I(D > j). By Lemma 6.11(a) there is some k < t for which
(So,r,f) 1= I(d(k) > j). Let k be the largest such k. Since d(k') > j is a fact
about the first k' rounds, we have by Theorem 6.5 that (Sp,r, k') J= I(d(k') > j).
Since d(k') > j implies that at least k' + j processors must have failed by time k',
we have that k' < t -j. Furthermore, (Sp, r, k' + 1) J I(d(k' + 1) > j) implies that
no new processor failure becomes visible to the active processors in round k + 1,
which implies that round k' + 1 must be seemingly clean. Since "d(k') > j" is

a stable fact, it follows from Theorem 6.9(a) that (S,, r, ' + 1) f= E(d(k') j),
and hence that (S,,r,e) j E(d(k') > j) for all I > k' + 1. In particular, sincet + 1- j _> V +l1, we have that (So,,r, t+ 1- j) = E(d(k') >! j). Let 0 be

the fact "W(S,, "the current run") > j. By Corollary 6.6 we have that E(d(k') >

j) D E(I(d(k') > j)), and since (d(k') j) D 0 is valid, we also have that
(So, r, t + I - j) EO. It follows that (Sp, r', t + 1 - j) = 0 D E0 for all runs

r' E S,. Given that t < n, the only executions that are similar to an execution
(r', t + 1 -j) are of the form (r", t + 1-j). Thus, by Proposition 6.7(a) we have that
(SOr', t + 1 -j) I= C(OJ D Etk) for all r' E S, and the induction axiom implies
that all executions (r,t + 1 -j) satisfy 0 D C,, which is the claim of part (a). For
part (b), recall from the proof of part (a) that if D >_ j then there must be a clean
round by time t + 1 - j. By part (a), if W(S0, r) = j then at time t + 1 - j it is
common knowledge that I(D >_ j) and therefore in particular that D > j. It follows
that at time t + 1 - j it is common knowledge that a clean round (and hence also a
seemingly clean round) has occurred. The claim now follows from Theorem 6.9(b).

Thus, certain patterns of failures help the processors to reach common knowl-
edge of an identical view of the initial configuration early. In particular, if the
wastefulness of the run is j, then the active processors obtain common knowledge
of a common view of the initial configuration at time t + 1 -j. We now make precise
our heretofore informal claim that it is the pattern of failures that determines the
wastefulness of the runs of S,. Given a system S, a fact W is said to be about the
failure pattern (S,r,k) 1= W iff (S,r',k') = V for all runs r,r' E S that have the
same failure pattern. Observe that d(k) and D are facts about the failure pattern
by this definition. We can now show:
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Lemma 6.13: Let o be a fact about the failure pattern. Let a and a' be initial
configurations, let 7r be a failure pattern, and let r = P(a, W) and r' = P(Y', r).
Then (S ,r,t) f IVo iff (So,r',t) t- IV, for all t > 0.

Sketch of proof: Assume that (S,r',k) K IVp, and let G = A(r',k). It fol-
lows that there is a run r" such that v(G, r', k) = v(G, r", k), and (Sp, r", k) so.
Let Q be the set of processors on whose initial states a and a' disagree. Clearly
v(G, r', k) contains the view at time 0 (i.e., initial state) of none of the processors
in Q. Thus, without loss of generality r" = 15(a', 7r") for some 7r". An induc-
tive argument along the lines of the proof of Lemma 6.11(a) will now show that
v(G,r,k) = v(G,15(o,,7r"),k). (Note that A(r,k) = A(r',k) = G).) But because s
is a fact about the failure pattern, it follows that (So, 1(a', r"), k) V so, and hence
(S#, r, k) K Io, and we are done with one direction. The other direction of the
argument is symmetric. D4

We can now define the waste~ftnes of a failure pattern ir, denoted w(w), to

be W(Sp, r) for a run r of the form r = #(o, ir) for some a'. Lemma 6.13 implies
that w(7r) is independent of the initial configuration a chosen, and therefoie w(r)
is well-defined. Theorem 6.12 can now be read to state that if the failure pattern of

a run is 7r, then at time t + 1 - w(7r) the active processors have common knowledge
of a common view of the initial configuration. A closer inspection of the proofs
of Theorem 6.5(c) and of Theorem 6.12 actually shows that if w(7r) = j the at
time t + 1 - j there is a particular k' such that the active processors all know that
d(k') > j, and for no t > k' is it the case that an active processor knows that
d(t) > j. By Theorem 6.12(a), w(7r) = j iff "w = j" is common knowledge at time
t + 1 - j. It follows that the identity of this number k' is also common knowledge

at time t + 1 - j. Consequently, the active processors obtain common knowledge
of a common view of the first k' rounds of the run, and not only of the initial
configuration. Furthermore, since k' is determined by the implicitly known values
of d(k), Lemma 6.13 implies that the value of k' is uniquely determined by 7r.

One of the consequences of Theorem 6.12 and Lemma 6.12 is:

Corollary 6.14: There is a i-resilient protocol for SBA that reaches SBA in
t + 1 - w(7r) rounds in all runs of the protocol in which the failure pattern is 7r, for

all failure patterns 7r in which and at most t processors fail.

Proof: The protocol (uniform for all processors pi) is:
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for t > 0 perform the following at time t:

if K(D > t + 1 -t)
then halt (and send no messages in the following rounds);

decide 0 if K("some initial value vi was 0");

decide 1 otherwise.
else send the current view to all processors in round f + 1.

The K in the text of the protocol means "the processor knows", i.e., it is Ki
in pi's copy of the protocol. By Theorem 6.12(a) all correct processors halt after

t + 1 - W(S-,, r) rounds. By Theorem 6.12(b) the active processors have common
knowledge of the fact that they have an identical view of the initial configuration.
Thus, tb,-ir decisions are identical. The decision function clearly satisfies the re-
quirements of SBA.

The above protocol is not a protocol in the traditional sense of the word, but
rather a knowledge-based protocol, to use the terminology of Halpern and Fagin in

[1F): a processor's actions at any given point are determined by the processor's
knowledge. As they point out, not every knowledge-based protocol can be imple-
mented. However, if the only knowledge required in the protocol is knowledge about
the past, it is implementable. Thus, the above protocol can be directly translated
into a standard protocol.

Notice that in runs in which many failures become visible early it is the case
that SBA is attained by this protocol significantly earlier than time t + 1. We are
aware of no other protocol for SBA that stops before time t + 1 in some cases. In
the next section we will show that the protocol of Corollary 6.14 is optimal in the
sense that for any given pattern of failures, it attains SBA no later than any other
protocol for SBA does.

Corollary 6.8 and Theorem 6.12 imply that the stopping condition K(D > t +
I - 1) implies C(D > t + 1 - f). In fact, we will be able to show that this protocol
is equivalent to the following protocol:

for t > 0 perform the following at time t:

if C("some initial value was 0")
then decide 0 and halt
else if C("some initial value was 1")

then decide 1 and halt
else send the current view to all processors in round t + 1.
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The number of bits of information requaired to describe a processor's view at
round k is exponential in k. Thus, messages in the above protocols might be too
long to be practical. The only properties that we really needed for the analysis
were that the protocol require all processors to send all other (active) processors a
message in every round, and that every procc-sor relay all the information it has
about the initial configuration and about the patteri of failures in the message. By
modifying the protocol slightly so that messages pt-ify only the sender's view of
the initial configuration and of the failure pattein, we get • protocol for SBA with
the same properties in which the length of each message is O(n + t log n).

6.4 Lower bounds

We are about to show that the only non-trivial facts that can become common
knowledge in a run r of a t-uniform system S before time t + 1 - W(S, r) are facts
about the wastefulness of the run. We do this by showing that all executions (r, f)
with W(S, r, i) < t - t are similar. We first prove a lemma that is necesary for our
proof of this fact. Roughly speaking, this lemma says that if D(r, t) < t and
p is the last processor to fail in r, then (r, f) is similar to an execution in which p
doesn't fail, and all other processors behave as they do in r. To make this precise
we make the following definition- Given a failure pattern r, the failure pattern r-P
is defined to be 7r - (p, k(p)., Q(p)) if ther-e is a triple of the foin (p, k(p), Q(p)) in r,
and to be ir otherwise. Given a run r = P(o, -), we define r-P to be P(o, r-P). If
P does not require all processors to send messages to all other processors in every
round, r can be said to display a number -.,f failure patterns. I.e., we may have
P(o, 7r) = P(o, ,r') for 7r 5 ,r'. However, it is easy to check that if P(o, r) = P(r, ,r')
then V(a, r-P) = P( 0 , ,r'-P), so that r - P is well defined. We can now show:

Lemma 6.15: Let t < n - 2, and let S be a t-uniform system for P, with r =

P(r, r) E S. If D(r, f) < t - £ and no proce.,;sor fails in r in a later round than p
does, then (r,t) -,- (r-Pe).

Proof: If p does not fail in r then r = - and the claim trivially holds. Thus,
let k be the round in which p fails in r, and notice that by assumption no processor
fails in r at a later round. If k > t then (r, t) = (r-P, t) and thus clearly (r, t) -
(r-P,t). We still need to show the claim for k < t. We Co this by induction on

J = - k.

Case j = 0 (i.e., k = e): Let qi $ qi E A(r,e) be two processors active at (r,e).
Such proceLsors exist by the assumption that t < n - 2. Clearly, qi's view at
(r, t) is independent of whether or not p sent a message to qi in round t. Thus,



SECT. 6.4 LOWER BOUNDS 85

(r, t) . (r', t), where (r', t) differs from (r, f) only in that p does send a message to
qj in round £ of (r', t). (If p sends qj a message in round t of r, then r = r'.) Now,
since p does send qj a message in round t of (r', t), processor qi's view at (r', t)
is independent of whether p fails in (r', t) (it is consistent with qj's view at (r', t)
that p sends messages to all processors in round t), and thus (r', t) - (r-P, f). By
transitivity of -.' we also have that (r, 1) -, (r-P, 1).

Case j > 0 (i.e., k < f): Assume inductively that the claim holds for j - 1. Again,
let Q = {q1 ,..., q. } be the set of processors active at (r, t) to whom p fails to send a
message in round k of (r, t). We prove our claim by induction on s. If s = 0 then no
processor active in (r, f) can distinguish whether p failed in round k or in round k + 1.
Thus, (r, f) - (r', 1), where (r', e) differs from (r, 1) only in that rather than failing
in round k, processor p fails in round k + 1 of (r', t) before sending any messages.
Since I - (k + 1) = j - 1, we have by the inductive hypothesis that (r', t) , (r-P, ).
By transitivity of - we have that (r, t) - (r-P, t). Now assume that s > 0 and that
the claim is true for s - 1. Let r, be a run such that (r., k) = (r, k), processor q, fails
in round k + 1 of r, before sending any messages, and no other processor fails in r,
after round k. Clearly D(r.,f) _ t -I, since d(r., k) = d(r, lV) _ t-I for all k'< k,
and d(r,k+ 1) = N(r,,+ 1)-(k+ 1) = N(r,k)+ I -(k+ 1) = d(r,k)_< t-.
Notice also that no processor fails in (r., f) after round k + 1. Thus, r = rq-, and
by the inductive assumption on j - 1, we have that (r., t) - (r, f). Let pi E A(r1 , t).
Clearly pi's view at (r, t) is independent of whether p sent a message to q. in round
k of (r.,t). Thus, (r.,t) - (r' ,t), where r.' differs from r, in that p does send a
message to q. in round k of r' . Again by the inductive hypothesis for j - 1 we have
that (r', t) . (r', t), where r' = r'-'. Processor p fails to send round k messages
only to s - 1 processors in r', and thus by the inductive hypothesis for S - 1 we
have that (r', t) , (r-P, t). By the symmetry and transitivity of .- , we have that
(r, f) - (r-P, 1), and we are done.

The proof of Lemma 6.15 is a generalization and simplification of the basic
inductive argument in the lower bound proofs of [DS], [LF], and [CD]. Notice that
the run r-P in the statement of Lemma 6.15 has the following properties: (i) if r is
not free of failures, then the number of processors that fail in r- P is one fewer than
in r; (ii) D(r-P,t) _< t - 1, and (iii) (r-P,0) = (r,0). We can now use Lemma 6.15

to show:
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Theorem 6.16: Let t < n - 2 and let S be an independent t-uniform system.

a) If t < t then all failure-free executions (r, t) E S x {e} are similar.

b) If W(Sr,_) < t - e and V(S,r',e) < t - t, then (r,f) - (r',e).

Proof: (a) Assume that f < t and let (r, ) and (,, t) be failure-free executions.

We wish to show that (r, t) - (9,e). Let Q = {q,,. . . , q.} be the set of processors
whose initial states in r and , differ. We prove by induction on s that (r, t) - (f, f).

If s = 0 then (r, t) = (9, t) and we are done. Let s > 0 and assume inductively that

all failure-free executions that differ from (,, t) in the initial state of no more than

s - 1 processors are similar to it. Let (r., t) be an execution such that (r, 0) = (r., 0),

in which q, fails in the first round without sending any messages, and no other
processor fails. Clearly D(r., I) = 0 < t - e, and by Lemma 6.15 we have that

(r8 , t) - (r, t). Let pi E A(r8 , t). Given that S is an independent t-uniform system,

processor pi's view at (r., t) does not determine whether the initial state of q, in r.
is as in r or as in 9. Thus, (r.,t) - (r',t), where r'. differs from r, only in that the
initial state of q, in r' is as in f. Again by Lemma 6.15 we have that (r', 1) - (r, t),

where (r',0) = (r',0), and (r',f) is failure-free. Since (r',t) differs from (F,t) only

in the initial states of s - 1 processors, by the inductive assumption we have that
(r',) - (9,t), and by the symmetry and transitivity of - we have (r,f) - (F,t),

and we axe done with part (a).

(b) If )"(S, r, f) < t - I then in particular it is not implicit knowledge at (r, t) that

d(k) > t - f for some k < 1. It follows that (r,f) - (f, ), for some f E S satisfying

D(f , f) < t - f. Using Lemma 6.15, a straightforward induction on the number of

processors that fail in (f, R) shows that (f, f) - (f, t), where (f, R) is failure-free. By

transitivity of - we have that (r, t) - (9, t). The same argument applies to (r', £),
and the claim now follows from part (a). M

Observe that the assumption of independence of the set of initial configurations

is essential to this lower bound. Lemma 6.15 can also be used to characterize non-

independent systems. Lemma 6.15 and Theorem 6.16(a) generalize and somewhat

simplify the t + 1 round lower bound on the worst-case behavior of SBA in our model

(see [DLM1, [DSI, [FL1, [H], [CD1). As we will see in the sequel, Theorem 6.16(b)

allows us to completely characterize the runs in which t + 1 rounds are necessary
for attaining SBA, as well as those that require k rounds, for all k. More generally,

Proposition 6.7(a) and Theorem 6.16(b) provide us with a lower bound on the time

by which facts can become common knowledge in t-uniform systems. Formally, we

have:
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Theorem 6.17: Let t < n - 2, and let S be an independent t-uniform system. If

(Sr',I) V£ o holds for some r' E S satisfying W(S,r') t - f, then (S,r,f) & CV
for all r E S satisfying W(S, r) < t - t.

Theorem 6.17 and Theorem 6.12(b) completely characterize when non-trivial
facts about the initial configuration become common knowledge in the runs of S,.
In a precise sense, they imply that the only fact that is common knowledge at (r, k),

for k < t - W(Sp,r), is that the wastefulness is less than t + 1 - k. Formally, we

have:

Corollary 6.18: Let t < n - 2, let So be an independent t-uniform system for

P0, and let W(S,,r) :_ t - f. Then (Sp,r,t) 1= CV iff for all r' E So such that

W(S,, r', 1) _< t - t it is the case that (S,, r',L) e ) .

Furthermore, Corollary 6.8 and Theorem 6.17 immediately imply:

Corollary 6.19: Let t < n - 2, let P be a t-resilient protocol for SBA, and let S
be a t-uniform system for P, with r E S. Then SBA is not attained in r in fewer

than t + 1 - W(S, r) rounds.

Corollary 6.19 proves that SBA cannot be attained in the runs of 0 any earlier
than it is attained by the protocol of Corollary 6.14. However, it still seems possible
that using another protocol SBA will be attainable in fewer rounds than in the pro-
tocol of Corollary 6.14. We now show that this protocol is optimal in a rather strong

sense: for any given initial configuration and failure pattern, no protocol attains

SBA in fewer rounds than the protocol of Corollary 6.14. This fact follows from
the following theorem, which states that the wastefulness of a run resulting from a
given initial configuration and failure pattern is no greater than its wastefulness in

SO. Given Corollary 6.19, this will imply that the protocol of Corollary 6.14 always
attains SBA at the earliest possible time, given the initial configuration and failure

pattern.
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Theorem 6.20: Let S be a t-uniform system for a protocol 'P, let r = P(a, 7r),
and let 9 = 5(u, 7r). Then W(S, r) < W(Sp,9).

Proof: We will show a more general fact from which the theorem will follow.

Given an initial configuration a', and a failure pattern 7r', let r' = PT(a', 7r') and
f' = P(a', 7r'). Notice that A(r, k') = A(9, k') for all k'. We claim that for all k

and all pi E A(r, k) it is the case that if v(p,, #, k) = v(pi, ', k) then v(pi, r, k) =

v(pi, r', k). We argue by induction on k. The case k = 0 is immediate. Let k > 0

and assu.- indu'tively +ht + re claim holds for a.l processors in -,, ,I 1) at timc

k - 1. Thus, if v(pi, , k) = v(pi, ,', k) and pi sends a round k message to pi in F,
then pi has the same view at (9, k - 1) and (9', k - 1), and pj also sends pi a round k

message in 9'. In this case both 7r and ir' determine that round k messages from
pi to pi are delivered. By the inductive assumption pi also has the same view in
(r, k - 1) and in (r', k - 1). It follows that P requires pj to act identically in round k
of both r and r'. And if pi is required to send pi a round k message in r then it is
required to send pi the same message in round k of r'. Processor pj does not send
a round k message to pi in f only if ir determines that pj cannot send pi such a
message. But then for similar reasons 7r' must also determine that pj does not send

pi a round k message. It follows that in this case p, does not send pi a round k

message in r or in r'. Thus, for all processors pj it is the case that pi receives a

round k message from pj in r iff pi receives an identical message from pj in round k
of r'. The inductive assumption also implies that v(pi, r, k - 1) = v(pi, r', k - 1),

and it now follows that v(pi,r, k) = v(pi,r', k) and we are done with the claim. We

now show how the theorem ,. 1, -,s from this claim. Assume that W(S, r) = j and
that W(Sp, ) < j. Then th( , .i a time k such that (S,r,k) J= I(D > j), and

(So,f,k) V= I(D > j). Let G = A(f,k) (notice that G = A(r,k) as well). It follows
that there is a run f' E So such that v(G, f, k) = v(G, ', k) and D(', k) <j. Let

a' and 7r' be the initial configuration and failure pattern in '. Let r' be P(a', r').

Since v(G, f, k) = v(G, ', k), our claim implies that v(G, r, k) = v(G, r', k). But
since D(r',k) = D(P',k) < j and A(r,k) = G, we have that (S,r,k) V= I(D > j),

contradicting our original assumption. N

Theorem 6.20 and Corollary 6.19 now imply that the protocol of Corollary 6.14 is

indeed optimal in the strong sense we intended: given any initial configuration and

failure pattern, it attains SBA as early as any t-resilient protocol for SBA can. In
light of Theorem 6.20, we can talk about the inherent wastefulness w(7r) of a failure

pattern 7r, defined to be V(Sp,P(a,ir)). That w(ir) is well defined follows from

the fact that runs r of S. have the property that WV(Sp, r, k) depends only on the

pattern of failures and is independent of the initial configuration. This can be proved
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by a somewhat tedious but straightforward induction on k, and is left to the reader.
Theorem 6.16 through Corollary 6.19 can now be viewed as statements about the
effect of the failure pattern on the similarity of executions and on what facts can

become common knowledge at various times in the execution of an arbitrary t-
resilient protocol. Corollaries 14 and 19 tell us that exactly t + 1 - w(7r) rounds are

necessary and sufficient to attain SBA in runs of any t-resilient protocol for SBA
that have pattern failure 7r (in the rest of the chapter we will use 7r to refer to the

failure pattern of the run in question). This provides a complete characterization
of the number of rounds required to reach SBA in a run, given the pattern in which

failures occur.

We have seen that the only facts that can become common knowledge before
time t + 1 - w(7r) are facts about the wastefulness of the run. In the previous section
we saw that in runs of So the processors attain common knowledge of an identical

view of the initial configuration at time t + 1 - w(7r). Thus, we have a complete
description of when facts about the initial configuration become common knowledge.
It is interesting to ask the more general question of when arbitrary facts become
common knowledge. As we have remarked in the previous section, the proofs of
Lemma 6.11 and Theorem 6.12 can be used to show that at time t + 1 - w(7r) in a

run of Sp the active processors do not attain common knowledge only of the fact that
they have a identical view of initial configuration, Rather, there is a natural number
k > 0 such that at time t + 1 - w(7r) they attain common knowledge of an identical

view of the state of the system at time k. We denote this number k by k,(ir). There
is some number, say f1, of processors that are commonly known at time t + 1 - w(ir)
to have failed by time k,(7r). Let t, = t - f,. Roughly speaking, time k, (1r) + 1 can
now be regarded as the start of a new run, and for appropriate definitions of d'(k)

and w,(7r), we get that at time (k,(r) + 1) + t, + 1 - w1 (7r) the system will attain
common knowledge of a common view of the state of the system at time k1(ir) + 1.

Interestingly, it can be shown that (k,(7r) + 1) + tI + 1 - w,(7r) = t + 2- w(7r). That

is, one round after the processors attain common knowledge of (a common view

of) the state of the run at time k(7r), they attain common knowledge of a common
view of the state of the run at k,(7r)-+ 1. In fact, again we have some number k" > 0

such that the processors have common knowledge at time t + 2 - w(7r) of a common
view of the state of the system at time k. Denoting this number by k2, the above

analysis can be repeated. We leave further details to the interested reader.

The result of the analysis discussed in the preceding paragraph is that at any

point after time t + w(r) in a run of P the active processors have common knowledge

of a common view of the first k rounds, for a number k that can be computed given
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the failure pattern 7r. Following every round after time t + 1 - w(7r) the active
processors attain common knowledge of a common view of at least one additional
round. Consequently, there is a window of common plausibility of a number of
the most recent rounds about which no non-trivial facts are common knowledge,
and a common view of all preceding rounds is common knowledge. The size of
this window at a given point is t minus the number of processors that (at that
point) are not commonly known to have failed. This classification of what facts
are common knowledge in the runs of Sp provide good upper bounds on when a
simultaneous action that depends on the first k rounds can then be carried out by
all active processors in a consistent way. TIhe lower bound results of this section
can imply that these bounds are tight in all runs, and thus we have a complete
characterization of when simultaneous actions that depend on the first k rounds
can be carried out, as a function of the failure pattern.

6.5 Applications

Throughout the chapter we have shown how our results regarding when common
knowledge of various facts is attained in a Byzantine system affect the SBA problem.
In this section we discuss some further consequences of the analysis presented in the
previous sections. This is intended to illustrate the types of applications that the
analysis can be used for. We start by considering some problems that are closely
related to SBA.

The problem of Weak SBA, which differs from SBA in that clause (4) is changed
so that the active processors are required to decide on a value v only if all initial
values were v and no processor fails, was introduced by Lamport as a weakening of
SBA. However, Theorem 6.16(b) immediately implies that the active processozs do
not have common knowledge of whether any processors failed before time t+1 -w(r),
in any run of a t-resilient protocol for WSBA with failure pattern 7r. And since SBA
can already be performed at time t + 1 - w(ir), we have that t-resilient protocols
cannot attain WSBA any earlier than they can SBA. Theorem 6.16 also describes
why the variant of SBA used in this chapter (which was introduced by [FL]) is
essentially equivalent to the original version of the Byzantine Generals problem of
[PSL], in which only one processor initially has a value, and the processors need
to decide on this value if the processor does not fail, and on a consistent value

otherwise.

It has been a folk conjecture that a t-resilient protocol that guarantees that a
non-trivial action is performed simultaneously must require t + 1 rounds in the worst
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case. "Wo now show that this is not the case. Let bivalent agreement be defined by
clauses (1)-(3) of SBA, nd replacing clause (4) by:

4'. At least one run of the protocol decides 0, and at least one run decides 1.

Thus, a t-resilient protocol for bivalent agreement is a protocol P with the property
that all runs of the independent t-uniform system S for 'P in which the set of iniLial
configurations is {0, 1}' satisfy clauses (1)-(3), and at least one run of S decides

0, and at least one run decides 1. Proposition 6.7 implies that any action that is
guaranteed to be performed simultaneously requires some fact to become common
knowledge before the action can be performed. Theorem 6.12(b) implies that at
the end of round 2 of Sp it is common knowledge whether or not the wastefulness
of the run is t - 1 (i.e., whether t processors were seen to have failed in the first
round). Thus, we can easily derive a t-resilient protocol for bivalent agreement:
Each processor follows )5 for the first two rounds, and then decides 0 if it knows
that t processors failed in the first round, and 1 otherwise. This protocol attains
bivalent agreement in two rounds, and Theorem 6.17 implies that there is no faster

protocol for bivalent agreement so long as t < n-2. Furthermore, it implies that in a
precise sense this is the only two-round protocol for bivalent agreement. We leave it
to the reader to check that if t > n- 1 then there is a protocol for bivalent agreement
that requires only one round. Thus, bivalent agreement is a truly easier problem
than SBA. We note that [FLP] and [DDS] prove that in an asynchronous system
there is no 1-resilient protocol for an even weaker variant of bivalent agreement.

We have stressed the connection between common knowledge and simultaneous
actions. Interestingly, the lower bounds on the time required for attaining common
knowledge imply worst-case bounds on the behavior of t-resilient protocols that
perform coordinated actions that are not required to be performed simultaneously.

For example, Eventual Byzantine Agreement (EBA) is defined by clauses (1), (2),
and (4) of SBA: the processors' decisions need not be simultaneous (cf. [DRS]).
There are well-known protocols that attain EBA after two rounds in failure-free
runs (for which w(ir) = 0). However, using Proposition 6.7 and Theorems 6.17
and 6.20 it is not hard to show that a t-resilient protocol for EBA must require t + 1
rounds in some runs with w(ir) = 0. More generally, these theorems show that such
a protocol must require t + 1 - j rounds in some runs with w(7r) = j. This is a slight
refinement of the well-known fact that EBA requires t + 1 rounds in the worst case
(cf. (DRS]). Many very relevant and interesting aspects of EBA are not covered by
our analysis. We believe that an analysis of EBA should involve a study of when
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the states of E-common knowledge and eventual common knowledge (cf. Chapter 2)

are attained in a Byzantine environment. This is an interesting open problem.

As our investigation centered around t-resilient protocols, we now briefly discuss

some other pobsible reliability assumptions. Recall that Corollary 6.10 states that

all active processors are guaranteed to have an identical view of the system's initial
configuration at time t + 1 in every run of a t-uniform system for P5 . This follows

simply from the fact that at time t + 1 it is common knowledge that one of the
previous rounds was clean. Instead of t-resiliency, we could require that a protocol

for SBA be guaranteed to attain SBA so long as no more than k consecutive rounds
are dirty. In the system corresponding to all the runs of 95 in which at most k
consecutive rounds are dirty, it is common knowledge at time k + 1 that a clean

round has occurred, and )5 can be converted in to a protocol for SBA that is
guaranteed to attain SBA in no more than k + 1 rounds. This means, for example,
that if processors in a Byzantine system are known to fail at least two at a time, SBA

can be achieved in t/2 + 1 rounds. Having a bound of k consecutive dirty rounds
seems in many cases to be a more appropriate assumption about a system than

having a bound of t on the total number of failures possible, since the latter is not
a local assumption. Of course, these two assumptions are not mutually exclusive,

and we may often have a small bound on the possible number of consecutive dirty

rounds, and only a much larger bound holds for the total number of failures. The
bound on the number of consecutive dirty rounds implies a good upper bound on

SBA in the case of crash failures.

Another way we can consider varying the reliability assumptions about the sys-

tem is by restricting the number of possible processor failures that can occur in

a round. For example, let us consider the assumption that at most one processor
can fail in any given round of the computation, and at most t processors might fail

overall. We are interested in the question of whether such assumptions allow us to

attain SBA quickly. Unfortunately, the lower bound proofs of Lemma 6.15 and The-

orem 6.16 work very well for this reliability modei. In fact, since all of the runs of

such a system are guaranteed to have wastefulness 0, even bivalent agreement can-

not be attained in any run of the system in less than t + 1 rounds! SBA and WSBA

clearly require t + 1 rounds in all runs of the system. We now present a somewhat
artificial variant of this assumption that provides us with a non-uniform reliability

assumption whose behavior is interesting and somewhat counter-intuitive: We say

that a protocol for SBA is one visible failure resistant (1-VFR) if it is guaranteed

to attain SBA so long as no more than one processor failure becomes visible to the

active processors in any given round. The set of possible runs of a protocol P that
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display such behavior will bc called a visibly restrained system for P. It is possible
to show that in the visibly restrained system for the simple protocol )5 of Section 6.3
it is common knowledge at time 2 whether round 1 is clean, and therefore WSBA
can be attained in two rounds. However, SBA can be shown to require n - 1 rounds
in runs of Pb in which one processor fails in every round except possibly the (n - 1)st
round. (If one adds a bound of t < n - 2 on the total number of failures possible,
n - 1 is replaced by t + 1.) Interestingly, there is a 1-VFR protocol for SBA that
is guaranteed to attain SBA in three rounds (in all runs)! Thus, for the 1-VFR

reliability model, our simple protocol is no longer a most general protocol. The
reason for the odd behavior of 1-VFR protocols is that the patterns of failures of
the runs that satisfy 1-VFR are intimately related to the structure of the protocol.
Thus, the protocol can restrict the patterns of failures possible and make effective
use of the 1-VFR assumption.

6.6 Discussion

We have analtzed th states of knowledge attainable in the course course of the
execution of various protocols in th system, for the case of a particular simple model
of unreliable distributed systems that is fairly popular in the literature. Motivated
by Chapters 1 and 2, the analysis focused mainly on when various facts about the
0 6tcrr,, bcconcrInnmmon kno;;-lcdge givcn an tipper bound of t on the number of pos-
sible faulty processors. This problem is shown to directly correspond to the question
of when simultaneous actions of various types can be performed by the processors
in such a system. In particular, this is a generalization of Simultaneous Byzantine

Agreement anld related problems. By deriving exact bounds on the question of
when facts become common knowledge, we immediately got exact bounds for SBA

and many other problems. An interesting fact that came out of the analysis was
that the pattern in which processors fail in a given run determines a lower bound
on the time in which facts about the system's initial configuration become common
knowledge, with different patterns determining different bounds. Ironically, facts
become common knowledge faster in cases when many processors fail early in the
run. The somewhat paradoxical argument for this is that, given an upper bound
on the total number of failures possible, if many processors fail early then only few
can fail later. The protocol can make effective use of the fact that the rest of the
run is relatively free of failures. As a by-product of the analysis, we were able to
derive a simple improved protocol for SBA that is optimal in all runs.

Our analysis shows that the essential driving force behind many of the phenom-
ena in unreliable systems seems to be the inherent uncertainty that a particular site
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in such a system has about the global state of the system. We come to grips with

this uncertainty by performing a knowledge-based analysis of such a system. We
stress that our analysis was by and large restricted to protocols for simultaneous ac-

tions in a rather clean and simple model of unreliable systems: synchronous systems

with global clocks and crash failures. We believe that performing similar analyses

for nastier models of failures will prove very exciting, and will provide a much better
understanding of the true structure underlying the richer failure models, and of the
differences between the failure models. The ideas and techniques developed in this

chapter should provide a sound basis on which to build such an analysis, although
it is clear that a number of additional ideas would be required.

In summary, the analysis in this chapter makes explicit and essential use of
reasoning about knowledge in order to obtain insight into a well-known problem

in distributed systems. The generality and applicability of our results suggest that
this is a promising approach.



CHAPTER 7

CONCLUSIONS

Knowledge seems to play an important role in distributed computing. A ma-

jor advantage protocol designers obtain by intuitively reasoning about processors'

knowledge in a distributed system is the fact that personal experience from everyday
life can be used to facilitate the design of distributed protocols. This thesis suggests

that it is worthwhile to carry this approach one step further, and ascribe knowledge
to processors in a precise and formal way. This is useful because there are many
subtleties involved in distinguishing relevant states of knowledge that may initially
seem similar but are in fact very different. Understanding what the relevant states
of knowledge are and how they relate to one another is a major problem for future

work. We have shown a close relationship between certain states of knowledge and

the ability to perform coordinated actions of various kinds. In particular, the in-

ability to perform certain types of actions under particular conditions was captured

in a rather general way by our negative results in Chapters 3, 4, and 6 regarding the

inability to attain the related states of knowledge in those circumstances. Thus, it
seems that reasoning about the attainability of states of knowledge under various

conditions may be a good way to study the properties of sustems of various kinds.

Whereas our treatment dealt mainly with a rather general model of distributed

systems, it seems desirable and promising to investigate particular types of dis-
tributed systems that are of interest from the point of view of the states of knowl-

edge that runs of various protocols attain in such a system. A good example of this

is the work of Chandy and Misra in [ChM], in which they capture some essential

properties of totally asynchronous systems by performing a knowledge-based anal-
ysis of such systems. Our analysis in Chapter 6 also provides a general setting and

some new insights into the properties of a particular model of systems of unreliable

processors. Much more work in this direction needs to be done.

Using the language of knowledge to specify, present, and perhaps synthesize

distributed protocols seems attractive in a number of ways. First, it is often an in-
tuitive way to think anout the protocols. Furthermore, it may be a more unified aad

portable way of communicating the protocol. The work of Afrati, Papadimitriou,
and Papageorgiou in [APP] shows a case in which it is not clear how to specify the

goals of a protocols other than in terms of attaining a particular state of knowledge,
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and Halpern and Fagin in [HF] define and discuss knowledge-based protocols in a
formal way. This is another area requiring further work.

In Chapter 2 we presented a very general framework for ascribing knowledge

to processors in a distributed system. However, in later chapters we used only
state-based interpretations in which processors are ascribed a great deal of knowl-
edge without being required to perform any kind of computation to attain it. The
reason for that was that we were working on a rather coarse level of investigation,
looking at problems in which the computational complexity was negligible, and the

information-theoretic aspects played a major role. However, for many applications
in fields such as AI and cryptography the computational problems involved are of
major importance. In such circumstances it is essential to develop a good theory
for computationally-based knowledge. We regard this as one of the harder problems
in the area, and one in which progress is urgently necessary. Fagin and Halpern in
[FH] take a significant first step towards such a theory for AI applications. Gold-
wasser, Micali, and Rackoff in [GMR] present a theory of Knowledge complexity,
that promises to be a good starting point for developing a computationally-based

theory of knowledge for cryptography.

In summary, the study of knowledge in distr:buted environments is still in its
infancy, but promises to provide insights into many aspects of distrbuted environ-
ments. We have shown that it is possible to make reasoning about knowledge in
a distributed environment precise, and used such reasoning to obtain new insight
into some well-known problems. I would like to close this thesis with two quotes.
The first - a fortune cookie that I got while working with Cynthia Dwork on the
material of Chapter 6:

"Imagination is more important than knowledge",

and the second a quote from Marc Chagall at age 90:

"All I know is that one understands only what one loves".

Of course, these sayings suggest further inspiring directions for future work...



APPENDIX A

SYSTEMS OF MODAL LOGIC

This appendix contains a brief summary of the axioms of the modal systems S4

and S5, refered to in the thesis. For a more detailed exposition of these systems and

their role in modal logics of knowledge, see [HM]. We use M for a generic modal

operator (corresponding to Ki, CG, 1G, etc.).

The system S5 consists of the axioms:

Al. M( p D 4') D (Mw D MO) (consequence Closure)

A2. Mpo D w (Knowledge)

A3. MW D MMp (Positive Introspection)

A4. -Mwo D M-MWo (Negative Introspection)

And the rules of inference:

R1. From - and F (Wp D ik) infer 4 (Modus Ponens)

R2. From - 0 infer I- MWp (Generalization)

Under the total view interpretation of knowledge, K,, C,, and I, all satisfy

the axioms of S5. In systems of unreliable processors (the case of Chapter 6), the

common knowledge operator C corresponding to "common knowledge among the

active processors" also satisfies the axioms of S5.

The system consisting of axioms Al-A3 and inference rules R1 and R2 is called

S4. The implicit knowledge operator of Chapter 6, corresponding to "implicit knowl-

edge among the active processors" satisfies the axioms of S4, but does not satisfy

the axiom A4, and hence does not satisfy S5.
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A LOGIC WITH FIXPOINT DEFINITIONS

In this appendix we present a logic with greatest fixpoint definitions and illus-

trate how common knowledge and variants of common knowledge can be formally

defined as greatest fixpoints. Our presentation follows Kozen's in [Koz]. For other

treatments of modal logics with fixpoint constructions, we refer the reader to [Koz]

and (Fit].

Before we define the logic, we need to review a number of relevant facts about

fixpoints. Given a set S, we will be considering operators f mapping subsets of S

to subsets of S. A subset A of S is said to be a fixpoint of f if f(A) = A. A greatest

(respectively, least) fixpoint of f is a set B that is a fixpoint of f and that for all

fixpoints A of f satisfies A C B (resp. B C A). It follows that if f has a greatest

fixpoint B, then B = U{A : f(A) = A}. The operator f is said to be monotone

if f(A) C f(B) whenever A C B. The Knaster-Tarski theorem (cf. [T]) implies

that a monotone operator has a greatest (and a least) fixpoint. Given an operator

f and a subset A, define f°(A) = A and f'+1 (A) = f(f'(A)). f is said to be

continuous if f(Ui A,) = Ui f(Ai) for all sequences A 1,A 2 , .... Given a monotone

and continuous operator f, the greatest fixpoint of f is the set

fl f (S).
n<w

Similarly, the least fixpoint of f is U fn(0).
n<u;

We can now define a state-based propositional logic of knowledge for a given

distributed system, with temporal operators and a greatest fixpoint definition con-

struct.

B.1 Syntax

The primitive nonlogical symbols of our language consist of a set D = {P, Q,...}

of primitive propositions, a single distinguished propositional variable Z, and aux-

iliary propositional variables X, Y, X 1, Y1,.... Formulas of the language are defined

inductively by:
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a) Z is a formula.

b) P is a formula for all primitive propositions P E -1P.

c) -SO is a formula if so is a formula.

d) SO A b is a formula if both So and b are formulas.

e) 6O is a formula if So is a formula and 6 is a real number.

f) 'OV is a formula if SO is a formula.

g) K,'p is a formula if SO is a formula and i E {1,... , n}.

h) vX.SO[Z/X] is a formula if sV[Z] is a formula in which all occurrences of Z are
positive (i.e., are within the scope of an even number of negation signs -,), X is
an auxiliary variable that does not occur in so[Z], and 'p[Z/X] is the result of
replacing all occurrences of Z in 'p[Z] by X.

B.2 Semantics

Given a distributed system represented by its set of runs S, let $ = Sx (-oo, o).
A model M is a triple (S, 7r, a), where S is as above, ir : S x P - {true, false} is

an assignment of truth values to the primitive propositions at the points of S, and
S: {1,... , n} x S -+ E is an assignment of the states (from a set of statcs E) to the

processors at the points of S. Formally, a formula 'p in our language is interpreted
as an operator VM from subsets of S to subsets of S. The operator WM is defined
inductively as follows:

a) Z M-(A) =A.

b) -"p(A) ={s E S : 7r(s, P) =true}.

c) (-"p) M (A) = S - so"(A).

d) ('p A 4') (A) = soI(A) n ¢M (A).

e) (O6'p)M(A) = {s E A: s = (r,t) and (r,t + 6) E W'p(A)}.

f) ( OW) M (A)= U (O6 so)"(A).
6>0

g) (K cp) m (A) = {s E A: for all s' E S, a(i,s) = a(i,s') implies s' E Wm (A)}.

h) (vX.so[Z/X]) M (A) - U{B: 'pM (B) B}.

We define M, (r, t) W 'p if (r, t) E Wp"(0) It can be checked that for formulas
'p in which no variables or greatest fixpoint operators appear, this definition is
consistent with our previous definition. I.e., M, (r, t) , 'p if" (1a, r, t) 1 so.
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We can extend the syntax of our language by defining V, D, and - in terms of A
and -,, defining Eo ("everyone knows V") and E*p ("everyone will eventually know
V") as KIV A K2 V A.-. A Km p and OKIlp A *K 2,o A"". A >K,c respectively, and
defining the least fixpoint construct pX.[Z/X] as -,vX.'-,p[Z/-,X]. (Notice that
if all occurrences of Z in V[Z] are positive, then all occurrences of X in -,p[Z/-,X]
are also positive.)

We state without proof the following facts (cf. [Koz]):

(i) If all occurrences of Z in V[Z] are positive then (W[Z])m is a monotone operator.
By the Knaster-Tarski theorem, this implies that vX.[Z/X] is well defined.

(ii) If all occurrences of Z in V[Z] are positive then (p[Zj)M is also continuous, and
thus

(vx.w[Z/x]) -- = (awZir)))

n<w

(iii) A formula in which Z does not appear is called closed. If V is a closed formula
then V' is a constant operator, i.e., there is a set B C S such that V(A) = B
for all subsets A of S. (In this case we denote Vm (A) by W'.) In particular,
(true)m = S and (false) ," = 0.

Given the machinery at our disposal, we can now define CV as vX.(( A EX),
define C'o as vX.(V A OEEX), and define C*V as vX.(V A E*X). By continuity,
we get that

CV = V A (V A Ep) A (V A EV A EEV) A ....

The analogous fact holds for CE" and C*o. Notice that in the case of CV and C~'
we have that

C = V A EV A EEW A ... , and that

C - pA E)A E) 2 VA ....

However, C*(p is not equivalent to V A E*o A (E*) 2 A.... We encourage the reader
to check that CW, C'V, and C*o indeed satisfy the axioms (1)-(3) of Section 4.1,
and that Cp satisfies -'CW D C-Cp.

It is straightforward to extend the above framework to include reference to sets
G of processors, in order to define variants of common knowledge parameterized by
G. It is also possible to extend it to include explicit individual clock times in order
to define CTWp, and to add likelihood, probability, etc., in order to define all of the
other variants of common knowledge introduced in the thesis.
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