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~ In this report, we give a brief summary of the work done By the PIs and their
students on the design and analysis of robust feedback systems, Under this contract,
we have conducted research on a number of problems in syst¢gm and control theory.
In particular, we have obtained significant new results on H control theory, robust
stability analysis of feedback systems, robust stabilization of uncertain systems, ap-
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1 Introduction

Our (PIs’ and their students’) research work in systems and control has been supported
for the last 3 years by the AFOSR. We have made significant contributions to Hy, control
theory, robust control - analysis and synthesis, control of infinite-dimensional systems, control
of time-varying systems, etc. Qur work on these problems naturally divides up into 2 parts:
work done Professor Khargonekar and his group and the work done by Professor Tannenbaum
and his group. While they have addressed related problems, their work and approaches are
complement each other, and it is easiest to describe the research accomplishments under the
AFOSR contract into two separate parts.

We have published most of the work under the contract in various journals and conferences
as can be seen in the attached list of publications. For reasons of space and time, we will
only present brief descriptions of the results and give appropriate references where the results
may be found. We have strictly restricted the discussion to our own work and references to
our own papers since a complete discussion of related references will make this report too
long and unwieldy. The interested reader is referred to our published papers where extensive
discussions and lists of related references may be found.

2 Work done by Professor Khargonekar and his group
2.1 State-Space Approach to H,, Control Theory

Motivated by robustness considerations, Zames introduced the problem of H., optimal con-
trol. The essential idea was to design a controller to optimize performance for the worst
exogenous input. Thus, while in Kalman filtering and the LQG problem, the power spec-
trum of the exogenous input (noise) is assumed known (usually white noise), in the H,,
control problem the power spectrum is assumed unknown and the controller is designed for
the worst case.

Early research in H,, control theory was conducted using frequency domain methods.
The key tools were the Youla-Jabr-Bongiorno-Kucera parametrization of all stabilizing con-
trollers, inner-outer factorizations of transfer functions, Nevanlinna-Pick interpolation the-
ory, Nehari distance theorem, the commutant lifting theorem, etc. This frequency-domain
operator theoretic approach is currently a very active area of research and a number of dif-
ferent avenues are being explored. The work done by Professor Tannenbaum and his group
is along these lines and a summary of results obtained along this approach may be found
elsewhere in this report.

A major new development in H,, control theory in the last two years has been the
introduction of state-space methods. This has led to a rather transparent solution to the
standard problem of H,, control theory. This solution is remarkably similar to the classical
LQG solution with appropriate differences that reflect the differences in the H,, and the
LQG performance criteria. As a result it is possible to give a simple interpretation to the
so-called Ho central controller. Analogous to the LQG theory, the solutions are given in




terms of solutions to algebraic and differential matrix Riccati equations.
Consider the finite-dimensional linear time-invariant system X

d
= = Fe+Gw+ G,
z = Hyz+ Jnw+ Jiu,
y = Hyz+ Jnw+ Jpu (1)

Here z,w,u, z,y denote respectively the state, the excgenous input, the control input, the
regulated output, and the measured output. Kalman made pioneering contributions to the
problem of designing a controller for optimizing the variance of z when w is a stochastic
process. This classical solution, commonly known as the LQG theory, has had a very
significant influence on linear multivariable control theory over the last 30 years.

The standard problem of H,, control theory is: Given the linear system ¥ and a positive
number v, find a causal (dynamic) controller K such that the closed loop system is well-
posed, internally stable, the closed loop input-output operator

Tow:Lg— Ly:wr 2

is bounded, and the induced norm

o] = sup{f,l",,}fﬁ  lwll, # 0} < 7.

A controller K is called admissible iff it is causal, the closed loop system is well-posed
and internally stable. If K is also an FDLTI system

d
E% A + By,
u = C¢+ Dy (2)

then the closed loop system i. we'i-posed iff (I — J,2D) is invertible and the closed loop
system is internally stable iff the = sed loop system matrix

F 4 Gz(I - DJzz)_lDJzz GQ(I - DJzz)—lC
B(I - JzzD)_‘Hz A+ BJgg(I - DJzz)-lC

has no eigenvalues in the closed right half complex plane. Moreover, in this case, if we
let T,.(s) denote the closed loop transfer function matrix, then

1Tewll = I 2wl == sup{&(Tru(s)) : Re(s) 2 0}.

It is a well known fact that under suitable assumptions, the LQG controller is also the
unique solution to the problem of minimizing the quadratic norm of the closed loop transfer
function matrix T, over all internally stabilizing controllers. Thus, the key difference be-
tween the LQG and the H,, control problems is in the choice of norm on transfer functions.




This is intimately related to the underlying assumptions on the exogenous signals as men-
tioned in the introduction. Also, it turns out that the H,, norm arises naturally in many
robust control problems.

In order to present the most important concepts clearly, we will make certain simplifying
assumptions. Most of these assumptions can be easily removed.

Al Ju = Jn = 0.

A2 J,[H Ju]=[0 I].

A3 In |G Jy|=[0 1]

A4 (F,G,, H,) is stabilizable and detectable.

A.5 (F,G,, H,) is stabilizable and detectable.
A.6 The controller K is an FDLTI system.

Assumption A.l implies that there is no direct transmission from the exogenous input to
regulated output and from the control input to the measured output. The latter assumption
ensures that any proper rational matrix K(s) leads to a well-posed feedback system. As-
sumption A.2 is quite common in the LQG literature and amounts to assuming that there is
no cross term in the formula for ||z||* and the penalty on the control input u is normalized,
ie.,

IzlI? = 2’ Hy Hyz + v'u.

Assumption A.3 is the dual of assumption A.2 and is analogous to the standard assump-
tion in the Kalman filtering problem tkat the process noise and the measurement noise are
uncorrelated and that the measurement noise is nonsingular and normalized . Assumption
A.4 is a technical assumption and guarantees that the corresponding controllers are admis-
sible. Assumption A.5 is necessary and sufficient to guarantee the existence of an internally
stabilizing controller for the system X.

The assumption A.6 also causes no loss of generality as shown by Khargonekar and Poolla
[1989]. They showed that the infimum of the norm of T},, over all causal internally stabilizing
nonlinear controllers is no less than that over all FDLTI internally stabilizing controllers.

2.2 The State-Feedback H, Control Problem

We will first consider the state-feedback H., problem. In other words, in the system X, let
us assume that

Hg = I and le = 0 :" (3)




(It should be noted that the state-feedback problem does not satisfy the assumption A.3
above.) Under the assumption Ji; = 0, Petersen considered the problem of finding a real
matrix L such that F + G;L is asymptotically stable and

|Hi(sI — F —G,L) Gyl < 7-

He obtained a necessary and sufficient condition for the existence of L in terms of an
algebraic Riccati equation with an indefinite quadratic term. This was quite an interesting
result and led to a number of subsequent developments.

In view of the fact that frequency-domain H,, control theory results usually led to (ap-
parently) high dimensional controllers, Khargonekar, Petersen, and Rotea [1988] investigated
whether static gains were actually H,, optimal. This problem was motivated by the one of
Kalman's key insights that control is a function of the state. Thus, we expected tle following
result to be true:

Theorem 2.1 Consider the system ¥ and suppose (8) holds. Then
7* = inf { |Tiwll : K is an internally stabilizing dynamic state-feedback controller }
= inf { [|[Tewllo : K is an internally stabilizing static state-feedback gain. }

Theorem (2.1) was proved by Khargonekar, Petersen, and Rotea [1988] under the con-
dition that J;; = 0. It was generalized further by Khargonekar, Petersen, and Zhou [1987],
Zhou and Khargonekar [1988], Doyle, Glover, Khargonekar, and Francis [1989].

The following theorem shows how one can obtain state-feedback control laws by solv-
ing certain algebraic Riccati equations. It is taken from Doyle, Glover, Khargonekar, and
Francis (1989]. Results analogous to Theorem (2.2) were also obtained in our earlier papers
Khargonekar, Petersen, and Zhou [1987], Zhou and Khargonekar [1988).

Theorem 2.2 Consider the system T. Suppose assumptions A.1, A.2, and (8) hold. Then
there ezists an admissible controller K such that

ITaulleo < (4)
if and only if there ezists a (unique) symmetric matriz P such that

GG,
72

F'P + PF + P( - G3G,)P + H H, =0, | (8)

F+ (G—fg—l‘ — G3G,)P is asymptotically stable, and P > 0. In this case, the control law
u=—-G,Pz (6)
internally stabilizes £ and (4) holds.




There are a number of interesting features to this result. Note that the control law is
obtzined by solving an algebraic Riccati equation which is analogous to the classical results of
Kalman on the linear-quadratic optimal control problem. The algebraic Riccati equation (5)
is similar to the corresponding equation in the linear-quadratic optimal control problem
except that the quadratic term in (5) is indefinite. Indeed, (5) is identical to the ARE that
arises in linear quadratic optimal game problems. This is intuitively appealing since in the
H,, control problem the inputs w and u act as opposing players: the exogenous input w tries
to maximize (the norm of ) of z while u is designed to minimize it. This connection between
linear-quadratic games and H,, control theory has been discussed and explored in a number
of recent papers. See, e.g., Khargonekar, Petersen, and Zhou [1987], Limebeer, Anderson,
Khargonekar, and Green [1989], and the references therein.

The paper by Limebeer, Anderson, Khargonekar, and Green [1989] contains analogues of
Theorem (2.2) for linear time-varying systems.

Note that as 4 goes to oo, the controller (6) approaches the LQR solution. In other
words, as the H,, norm constraint on the closed loop transfer function is relaxed, the control
law given by (6) approaches the corresponding LQR control law.

The results of Khargonekar, Petersen, and Zhou [1987], Zhou and Khargonekar [1988]
also apply to the general singular case (J3 is aot necessarily full rank). In these papers
the singular case is taken care of by introducing certain small perturbations to make the
problem nonsingular. Since we are dealing with a strict inequality in (4), the existence of
an appropriate small perturbation is not difficult to establish.

Theorem (2.2) naturally leads to the H,, analog of the inverse problem of optimal control
formulated by Kalman. This inverse problem of H,, control theory was considered by Fujii
and Khargonekar [1988] who showed that state-feedback H,, controllers inherit the nice
robustness properties of the LQR controllers and in a certain sense are even more robust.

2.3 The H, Filtering Problem

In the LQG theory, state-feedback linear-quadratic optimal control and Kalman filtering
problems turn out to have dual structures. The situation is somewhat similar in the H,,
case. Filtering problems were first considered by Doyle, Glover, Khargonekar, and Francis
[1989] under the assumptions that (i) the process is stable, and (ii) the initial state in known.
Recently, Nagpal and Khargonekar [1989] have developed a fairly complete H,, estimation
theory. Here we will give a brief summary of some of their results.

Consider the FDLTI system

dz

T Fz + Gw,
zZ = Hl.‘L', :
y = Hyx+ Jyw. (7)

In this section, we will assume that (F, G,) is reachable, (F, H,) is detectable, and A.3 holds.
The problem is to estimate the output z using the measurements y. Nagpal and Khar-
gonekar [1989] have considered both the filtering (estimator is required to be causal) and the
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smoothing (estimator is allowed to be noncausal) problems. So, let F be a causal estimator
and let

z = F(y).
The estimator F is called unbiased if
y(r)=0 Vr<t=:(r)=0 Vr<it.

Let us now define an H,, i.e., a worst case, performance measure. There are two cases to
consider: (i) initial state is known (and, without loss of generality =0), and (ii) the initial
state is unknown. In the latter case, it is assumed that the best a priori estimate of z(0) is
zero. In other words, the estimator initial state is taken to be zero. Let 0 < T < oo. Define

(. T) ;=.;up{”‘” ”22“2 w € L,[0,T},0 # lwl],, 2(0) = 0}, (8)

and

= l=—2ll, - 2
J2(f’ R’ T) i sup{ ["w": + $6R30]1/2 TWE L2[07 T],z(O) = ZTo, “wllz +zOR‘tO # 0}(9)

In the definition of Jz, R is taken to be positive definite. The key difference between J;

and J; is that Jz mesures the worst case performance over all possible w and z(0). The

expression [||w||? + zoRzo]'/? is a total measure of energy in the exogenuos variables w, z(0).
The following results are taken from Nagpal and Khargonekar [1989].

Theorem 2.3 Consider the FDLTI system (7). Let v > 0 be given and let T = oo. Then
there ezists an unbiased linear filter such that

Jo(F,R,T) < v (10)
if and only if there ezists a bounded symmetric matriz function Q(t),t € [0, 00) such that
OLETCIN

Q(t) = FQ(t)+Q(t)F — Q(t)H, HaQ(t) + Q(0) = R™*,(11)

and the system

&) = [F — Q) (HyHy — ”‘H‘

Jle(t)

is ezponentially stable.
Moreover, if these conditions hold then one filler that satisfies the performance bound
(10) is given by

£(t) = Fi(t) + Q(t)Hyly(t) — Haz(2)), £(0) =0, (12)
3(t) = Hyz(t). (13)




Theorem 2.4 Consider the FDLTI system (7). Let z(0) = 0. Let ¥ > 0 be given and let
T = oo. Then there ezists an unbiased linear filter such that

J(F,T) <7 (14)
if and only if there erists a real symmetric matriz Q) such that

) ) H,
FQ+QF - QH,H,Q + Q_;zmg-FGlGl':O, (15)

the matriz (F — Q(H,H; — 5—};5”—')) has no eigenvalues in the closed right half plane, and
Q20

Moreover, if these conditions hold then with Q(t) replaced by Q, the filter given by (12)
and (13) satisfies the performance bound (14).

These results are the H,, analog of the well known Kalman filtering results. The key
differences are in the Riccati differential equation (11) and the algebraic Riccati equation
(15) which are very similar to the covariance equations for the Kalman filtering problem with
the exception of the term QH,H1Q/~*. Thus, in H,, filtering, the states to be estimated
influence the filter itself unlike in Kalman filtering where the optimal estimate of any state-
functional is obtained from the optimal state-estimator. Note that as ¥ — oo, the H, filters
approach the standard Kalman filters.

There is another qualitative interpretation of the term QH,H;Q/4*. It can be regarded
as additional process noise. As a result, the H*® filter has robustness (in the sense of
satisfying (10) or (14)) to variation in the spectra of the exogenous signals at the expense
of performance if the exogenous input w is actually a zero mean Gaussian white stochastic
process.

The paper by Nagpal and Khargonekar [1989] contains similar results on H,, filtering
and smoothing for infinite as well as finite horizon cases for linear time-invariant as well as
linear time-varying systems.

2.4 The Output-Feedback H, Control Problem

Let us now consider the output feedback problem. A key result from the linear-quadratic-
Gaussian control theory is that in the output feedback case, the optimal controller is the
Kalman filter for the optimal state-feedback law. The above mentioned results on the state-
feedback H, control problem indicate that something similar may be true in the output
feedback H,, problem. The following result is taken from Doyle, Glover, Khargonekar, and
Francis [1989].

Theorem 2.5 Consider the linear system L. Suppose assumptions A.1-A.6 hold. Then
there ezists an admissible output feedback controller K such that with the control law u = Ky,
the closed loop transfer function satisfies

"wanoo <7 (16)




if and only if the following conditions hold:
1. there exists a (unique) real symmetric matriz P such that

G] Gl

;)P + H Hy =0,

F+ (%?—’- — G3G,)P is asymptotically stable, and P > 0;

2. there exists a (unique) real symmetric matriz Q such that

H H ' ,
s H2)Q + GGy =0, (17)
F + Q( — H,H,) is asymptotically stable, and Q > 0; and
3. p(;?» <1
If these conditions hold then one controller that satisfies the inequality (16) is given by
di G\G;
-‘5 = [F+ ; 2L Pl 4 ZQH(y — Hai) + Gau
u = —G,P%, (18)
where
QP
=(I- ?) .

(Here p(.) denotes the spectral radius.)

The notation in the above theorem is meant to be suggestive. Note that the above con-
troller (18) has many similarities to (and some differences from) the classical LQG controller.
It is called the H,, central controller and has many interesting interpretations and properties.

As v goes to oo, this controller approaches the LQG coutroller.

It is shown in Doyle, Glover, Khargonekar, and Francis [1989] that the above controller
is an H estimator for the state-feedback control law (6) in the presence of the disturbance

w= +z More specifically, let
G,P

r=w-— -7;—2
Then the equations for system ¥ become

dz GIGI
= = (F+

y H:z + J217'- (19)

)3' + Gir + G,u,




Then if we consider the problem of estimating the state-feedback law (6)
u=-G; Pz

and apply Theorem (2.4) to the above system, then the resulting filter is precisely the
output feedback controller in Theorem (2.5).

The above result is also closely connected to the separation principle in the rwk sensitive
control problem. See Doyle, Glover, Khargonekar, and Francis [1989] for further details along
these lines.

As mentioned previously, in Limebeer, Anderson, Khargonekar, and Green [1989], we
have extended these results to linear time-varying.

2.5 Robust Control: Synthesis Problems

The primary reason for the use of feedback in control systems is the fact that almost all
control systems operate in uncertain environments. There are two types of uncertainties
that affect control systems: plant uncertainty and signal uncertainty. Plant uncertainty arises
due to errors in modeling, changes in parameters, inexact and incomplete data, modeling
approximations while signal uncertainty arises due to exogenous signals such as disturbances,
sensor noise, etc. Control theory attempts to provide systematic techniques and methods
to solve control problems where uncertainty is a dominant issue. Indeed, from this point of
view, robust linear control and adaptive control methodologies are different solutions to this
problem. Now one can regard an adaptive controller as a nonlinear time-varying controller.
Therefore, a fundamental question of interest is:

Given a feedback control problem for a linear multivariable system, what advantages (if
any) do nonlinear time-varying (NLTV) controllers offer over linear time-invariant (LTI)
controllers?

Our work with a number of colleagues T. Georgiou, A. Pascoal, K. Poolla, R. Ravi, M.
Rotea, and A. Tannenbaum on various aspects of this problem has led us to formulate a
qualitative principle which captures known results obtained so far.

THE PLANT UNCERTAINTY PRINCIPLE (Khargonekar-Poolla [1989])

In robust multivariable control problems, nonlinear time-varying controllers yield (signif-
icant) adavantages over linear time-invariant controllers if and only if there is (significant)
parametric or structured uncertainty.

The strong and simultaneous stabilization problems have been considered in many papers
in the literature. It is well known that in general, not every LTI plant can be stabilized by
a stable controller. Also, not every pair of LTI plants can be simultaneously stabilized by
an LTI controller. In contrast to the above situation, Khargonekar, Pascoal and Ravi [1988)
have proved the following result:

Theorem 2.6 Let F := P\, P,, ..., P, be a finite collection of finite-dimensional linear time-
varying (LTV) plants such that each P;;i = 1,..,n is internally stabilizable. Then, F can
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be simultaneously (internally, and in the L,-sense) stabilized by a stable finite- dimensional
LTV controller.

As a corollary, it was also shown that any finite-dimensional LTI plant can be internally
stabilized by a stable, periodic controller. Further, every finite collection of finite-dimensional
LTI plants can be simultaneously stabilized by a stable periodic controller.

The papers by Khargonekar [1989] and Khargonekar and Poolla [1989] contain a complete
discussion of known results on the Plant Uncertainty Principle and a number of related
references.

In a parallel direction, we also investigated robust control synthesis using Liapunov func-
tion methods - 'quadratic stabilization’ and robust control of uncertain systems. In Khar-
gonekar, Petersen, and Zhou {1987, 1990] we showed that there is a very deep connection
between H, control quadratic stability and stabilization and He control theory. Actually,
this connection goes back to some early work of Popov, but it had apparently been over-
looked in the more recent robust control literature. In Khargonekar, Petersen, and Zhou
[1987, 1990], we gave a complete and constructive solution of the problem of quadratic sta-
bilization by LTI control by output feedback - an unsolved problem then in the uncertain
systems literature. Related technical results were obtained in Khargonekar and Zhou [1988].
An interesting result supporting the plant uncertainty principle was recently obtained by
Khargonekar and Rotea [1988b], Rotea and Khargonekar [1989] where we showed that for
systems with norm bounded uncertainty, quadratic stabilizability via NLTV controllers im-
plies quadratic stabilizability via LTI controllers in the state-feedback case. Related results
were obtained in Rotea and Khargonekar [1988] where we showed that if the plant states are
available for feedback then quadratic stabilizability by linear dynamic state-feedback implies
quadratic stabilizability by nondynamic state-feedback.

In Khargonekar and Gu [1989] we have given a new state-space solution to a robust
stabilization problem for systems with combined parametric and dynamic uncertainty under
a minimum phase assumption. This is an important problem area where very few results
are currently available.

It is well known that control design invloves tradeoffs among competing objectives. In
Khargonekar and Rotea [1989], we have recently given a complete solution to the multi-
ple objective optimal control problem (in the sense of Pareto optimality) in the H; norm
case. Our results include a complete characterization and construction of all Pareto opti-
mal controllers. These are the most general results available on the problem to-date. The
computations invlove only solving algebraic Riccati equations and are easily implementable
using stnadard matrix algebra packages such as MATLAB. An interesting conclusion from
this work is that the (state) dimension of the Pareto optimal controllers often exceed the
(state) dimension of the controlled plant. This is in sharp contrast to the existing results in
the LQG and H, control problems, where the controller dimension can always be chosen to
not exceed that of the controlled plant. This is a result on the controllers complexity and
raises a host of issues for future research.

Motivated by problems in adaptive control, a complete solution to a certain robust syn-
thesis problem for positive real functions was given in Anderson, Dasgupta, Khargonekar,
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Kraus, and Mansour [1989]. Roughly speaking, given a polytope of polynomials, it is desired
to find a fixed polynomial (or a stable rational function) such that the ratio of the fixed
polynomial and any polynomial from the given polytope is a positive rational function. We
gave a necessary and sufficient condition for a solution to exist and also a construction for a
solution if it exists. This result brought out an interesting connection to ihe growmg body
of literature on Kharitonov mathods for robust stability analysns

We have obtained some key results on the construction of coprime factorizations for linear
time-varying systems. These are presented in Khargonekar and Rotea [1988]. It was shown
that a given a linear time-varying system admits a coprime factorization if and only if it
can be stabilized by dynamic output feedback. In a related direction, a generalization of the
Youla parametrization for a class of multirate digital control systems was obtained by Ravi,
Khargonekar, Minto, and Nett [1989]. This result may open up anew research direction on
the design of multirate control systems - a very important problem from a practical point of
ViEw.

2.6 Robust stability analysis

In Barmish and Khargonekar [1988, 1990] we formulated and solved a robust stability analy-
sis problem for SISO systems containing uncertain real parameters and unstructured uncer-
tainty. This paper still remains one of a handful of papers dealing with robustness analysis
for simultaneous parametric and unstructured uncertainty. The result was an algorithm
to check the stability of a SISO feedback system containing uncertain real parameters and
multiplicative unmodeled dynamic uncertainty.

In a very recent paper Barmish, Khargonekar, Shi, and Tempo [1989], we have discovered
that the robustness margin can be a discontinuous function of the problem data. Although
the ramifications of this result will not be clear for at least a few months, it certainly seems
likely that this will open a new research direction robust stability analysis. In particular, it
raises the issue of ‘conditioning properties’ of robust stability margin problems.

2.7 Infinite-dimensional and sistributed systems

In Gu, Khargonekar, and Lee [1988, 1989] we have developed a new approach to the problem
of finding finite-dimensional approximations for (possibly unstable) infinite-dimensional sys-
tems which converge in the Lo, norm. Qur approach uses the FFT algorithm and singular
value decompositions and seems to be computationally less demanding than the approaches
based on the Hankel operator theory. Indeed, we have implented these numerical algorithms
on an IBM PC, and applied them to some simple examples, where they seem to give very
good results. They may also have applications in digital filter design.

In Georgiou and Khargonekar [1989], we have developed a new algorithm for spectral
factorization of matrix valued functions using the Nevanlinna-Pick theory. At this point, the
computational potential of this algorithm is unexplored and it remains a subject for future
investiagtion.
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1 Introduction

Referring to the list of publications below in Section 7 since the start of
funding on October 1, 1987, Tannenbaum and collaborators have produced
22 refereed journal papers which have appeared or been accepted for publi-
cation (papers 1-22), 4 refereed papers which will appear as a book chapters
(papers 23-26), 14 conference papers (27-40). All of the conference papers
were either refereed or invited. One paper (paper 41) has appeared in which
Tannenbaum’s Ph. D. student supported by AFOSR-88-0020, Hitay Ozbay,
appears as sole author. Finally a monograph, Feedback Control Theory (writ-
ten in collaboration with John Doyle and Bruce Francis, and to be published
by MacMillan) on robust control was begun under AFOSR-88-0020 and will
be completed under AFOSR-90-0024.

A complete list of these papers (including the monograph) is given in
Section 7. This constitutes the list of papers produced under AFOSR-88-
0020 by Tannenbaum and various collaborators. The grant ended March 31,
1990 after two and a half years of funding. The research program is being
continued under AFOSR-90-0024.

Several of the later papers were also written during the intersection of
AFOSR-88-0020 and the new contract AFOSR-90-0024, and so both con-
tract numbers appear on these papers.

Hitay Ozbay completed his Ph.D. in August 1989. Since then two grad-
uate students Brian Schipper (masters) and Evgeny Berzon (Ph.D.) have
been supported on the contract on a half time basis. Brian Schipper will
complete his masters degree work in the spring of 1990, and then Berzon
will receive full time support on the new contract AFOSR-90-0024.

We now sketch the work done by A. Tannenbaum and collaborators on
this contract. All the papers which have not been sent in the past will be
sent to AFOSR under separate cover. (Many of the papers on the list have
already been sent to AFOSR in the past.) In our summary, we will highlight
a few of the key results and concepts. All the details may be found of course
in the papers listed in Section 7.

2 H®* Control of Distributed Systems

During this contract, the H*® problem in its most general form (the four
block problem or standard problem) has been solved for arbitrary
lumped and stable distributed systems (8], {11}, [14]. (As this contract is




ending, the solution is being extended to unstable distributed systems with
a finite number of unstable poles. This work will be described in our yearly
report for AFOSR-90-0024.)

In solving such problems, we have introduced a new class of opera-
tors called skew Toeplitz, which seem ideally suited for studying H*
design problems, especially for distributed parameter systems (1}, [3], [5],
[7]), [13]. These operator theoretic methods are quite powerful since they
allow one to synthesize optimal and sub-optimal compensators just using
the input/output operators. An important new feature of this approach is
that the complexity of the computations only depends on the the weighting
matrices (modelling the disturbances) and not on the plant (which may be
distributed). Since the weighting matrices are typically taken to be rational
of low order, this approach seems to fit in very well even in the finite dimen-
sional case for plants with large state spaces (e.g., finite element models of
large space flexible structures.). Computer implementations for our proce-
dures have been worked out at at the Systems Research Center of Honeywell,
Minneapolis, and the University of Minnesota. Actually, for problems even
involving finite dimensional systems our algorithm seemed to converge much
more quickly than competing computational schemes.

We now would like to describe briefly some of the ideas behind our
approach. Full details can of course be found in the references given above.
We want to indicate how operator theoretic methods may be employed to
solve a very general case of the standard or four block problem in H®
design valid for a large class of distributed, i.e., infinite dimensional systems.

The motivations for studying the H* optimization in systems theory lie
in the most natural problems of control engineering such as robust stabiliza-
tion, sensitivity minimization, and model matching. It can be shown that,
in the sense of H* optimality, these problems are equivalent, and can be
formulated as one standard problem.

Now it is quite well-known that an optimal solution of the siandard
problem can be reduced to finding the singular values and vectors of a cer-
tain operator (the so-called four block operator) which will be defined
below. Depending on the specific problem considered, the corresponding
four block operator can be simplified to a 2-block (mixed sensitivity) or a
1-block (sensitivity) operator. )

Besides appearing in the most general H* synthesis problems, the four
block operators also have a number of intriguing mathematical properties in
the sense that they are natural extensions of both the Hankel and Toeplitz
operators. For this reason they fit into the skew Toeplitz framework devel-




oped in [5). Once again for the full details of our arguments and details
about the skew Toeplitz theory applicd to this problem we refer the reader
to zbove references. Here we will just consider the four block problem for
single input / single output systems.

More precisely, invoking the Youla parametrization and employing stan-
dard manipulations involving inner-outer factorizations, for a large class of
distributed systems we may reduce the standard problem mentioned above
to the following mathematical one. Let w, f,g,h,€ H>, where w, f,g,h
are rational and m is nonconstant inner. (All of our Hardy spaces will be
defined on the unit disc D in the standard way.) Set

. w—m
=mf{n[ s d ] lloo : g € H™}. (L
Then we want to give an algorithm for calculating the quantity u, and for
finding the corresponding qop: € H®, i.e., @opt is such that

— w — MYopt f
= ”[ g h]”oo

Note that for f = g = h = 0, this reduces to the classical Nehari problem.
Our program will be to identify s as the norm of a certain “four block
operator,” and then give a determinantal formula for its computation.

2.1 The Four Block Operator

We will now define the four block operator We set H(m) := H> © mH?,
L(m) := L2 9 mH?, and we let Py(m) : H? —» H(m), Py m) : : L% > L(m)
denote the corresponding orthogonal projections. Let §: H* — H 2 denote
unilateral shift, T : H(m) — H(m) the compression of §, and let U : L -
L? denote bilateral shift, with T(m) : L(m) — L(m) the compression of U.
Then for w, f,g,h € H™ rational, we set

A= Primyw(S)  Prmyf(U)
) 9(S5) h(U) '

Note that

4= | YD Phm) f(T(m))Pr(m)
9(S) h(U)




(Clearly A: H2 @ L? — L(m) @ L2%)

Using the commutant lifting theorem, one may prove the following:
Proposition 1 Notation as above. Then ||A|| = p.

Thus in order to solve the four block problem we are required to compute
the norm of the operator A.

In order to do this, we will first need to identify the essential norm of
A (denoted by [{A||¢). o will denote the essential spectrum, and A(D) will
stand for the set of analytic functions on D which are continuous on the
closed disc D. We can now state the following result [11]:

Theorem 1 Notation as above. Let w, f,g,h € A(D), and set

a := max{] w1 ] B @

B = max{| 0 o) ] I:¢ € aD) 3)

7 2= sup{| [ ol ] I:¢ € aD}. (4)
Then

llAlle = max(e,B,7)- (5)

2.2 Singular System

In this section, we will study the invertibility of certain skew Toeplitz oper-
ators [5] which occur as the basic elements in our procedure for computing
the norm and singular values of the four block operator. We will show that
the calculation of the singular values of the four block operator A amounts
to inverting two ordinary Toeplitz operators, and essentially inverting an
associated skew Toeplitz operator. The Fredholm conditions on the invert-
ibility of the skew Toeplitz operator (which is essentially invertible), and the
coupling between the various systems (expressed as matching conditions)
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constitutes a certain linear system of equations called the singular system
which allows one to determine the invertibility of A.

Let p > max(a,3,7). Note that when [[A]| > ||A][e, [[A]|? is an eigenvalue
of AA*. By slight abuse of notation, { will denote a complex variable as
well as an element of 8D (the unit circle). The context will always make
the meaning clear. Of course, if { € 8D, then ¢ = 1/(.

We take w, f, g, h to be rational, and so we can express w = a/q, f = b/q,
g =c¢/q, h = d/q, where a,b,c,d, g are polynomials of degree < n. Then we

have that
A= [ PLim(3)(S)  Prmy(2)(D) ]
B A G B O (N

Now p? is an eigenvalue of AA* if and only if

AAT(m)aT(m) 0 v]_ )
0 P q(U)qU)" | | v
[ Prmya(S)  Prim)b(U) ] [ a(SyP  Pe(U) ] [ u } _o
c(S) da(l) b(U)* P(m) d(U) v ’
for some non-zero

[Z] € L(m)® L?

where P : L2 — H? denotes orthogonal projection.
Set
uy = Pu, u_:=(I-P)u

and
vy := Pv, v_:= (I - P, v44 = (I = Py(my)v.

Then we can write (6) equivalently as

[ P2g(T(m))g(T(m))* = H(T(m)b(T(m))*  ~b(T(m))Pr(myd(U)*

—d(U)b(T(m))* P2o(U)q(U)" - d(U)d(U )

_ [ a(T)a(T)" a(T)Pym)e(S)" ] [ uy ] o
c(S)a(T)" c(S)e(S)* V4

Let V := U*|L? © H?. If we apply (I — P) to both rows of (7), we see that
the basic block operator applied to

I

u
v

](7)




is
C_ [ u- ] = (8)

P e(V*)gu(V) = (V)b (V) —b(V*)d.(V) ,
—d(V™)b.(V) P2a(V*)gu(V) — d(V*)du(V)

)

Next applying (I — Py (m)) to both rows of (7), we see that the basic operator
applied to v44 is

CyTivgy = P{(p?|q]* - [c]? - [d?)Trvyy ). (9)

Finally, applying Ppy(m) to (7), we derive that the basic operator applied to

Uy
Pr(m)v+

is

Uy —
AP w
p*q(T)g(T)* - b(T)B(T)* - a(T)a(T)" =b(T) P (myd(S)" '
-d(T)6(T)" p*(T)g(T)" - d(T)d(T)* - «(T)e(T)"

Uy
Pyimyvs |-

The operators C_,C44,C4 are all skew Toeplitz (see 5] for the precise
definition). In [7]. [8], [11], [14] we show how to invert C_ and Cy44 under
the assumption p > |l 4||., and how to essentially invert C.

Based on the inversion formulae of C_,C44, and the essential inversion
of the skew Toeplitz operator C,, the singular system can be constructed
and the following theorem can be proved:




Theorem 2 There ezists an ezxplicitly computable 5n x 5n Hermitian ma-
triz M(p) such that p > max{a, 3,7} is a singular value of the four block
operator A if and only if

det M(p)=0

Remarks. See [11] for the precise formula for M(p), and [14], [38] for the
coresponding formula in the MIMO case. Notice that the size of matrix
M(p) only depends on the MacMillan degree of the weighting filters and not
on the plant. Hence we can solve the H* problem for distributed systems.
Computer code for carrying out the whole procedure has been written at
the Systems Research Center of Honeywell.

2.3 Optimal Compensators

The above method also gives a way of computing the optimal compensator
in a given four block problem. Indeed, from the above determinantal formula
one can compute the Schmidt pair v, 7 corresponding to the singular value
8 := ||A|| when s > ||4|l.. We will indicate how one derives the optimal
interpolant (and thus the opimal compensator) from these Schmidt vectors.
In order to do this, notice

Ay = sy
Thus, there exists Gopt € H* with

(W = Gopt)t1 + f1p2 = sy
g1 + hbe = sk

(5] (3]

One can show, that ¥; # 0, so that

where

s — fiba

Jopt = W — T‘

Note from gopt, using the Youla parametrization, we can derive the cor-
responding optimal controller in a given systems design problem. See also
[25] for an extension of the theory of Adamjan-Arov-Krein (valid for the
Hankel operator) to the singular values of the four block operator and their
relationship to more general interpolation and distance problems.




2.4 Suboptimal Compensators

We would like to describe now our techniques for constructing suboptimal
compensators for distributed plants. Indeed, using the one-step dilation
procedure, we have given a way of explicitly parametrizing all the suboptimal
controllers for such generalized interpolation problems [10]. We have also
studied in this context finite dimensional suboptimal controllers for infinite
dimensional systems in [18], [34], [39]. Such techniques are of course very
important in the practical implementation of distributed controllers.

For simplicity, we will consider, the sensitivity minimization problem.
Thus we arc required to find to find an internally stabilizing controller C
such that the following optimum performance is achieved

. -1 .
C atalﬂlfizv'ng “”/(1 + PC) “oo = H

where P is the plant to be controlled and W is the weight modelling the
disturbances. Assuming that the weight is an outer function and the plant
P is stable we can transform this problem to a Nehari problem (in the
usual way of first invoking the Youla parametrization for the controller C =
Q1 - PQ.)™, Q. € H®, (1 — PQ.) # 0; and then finding an inner/outer
factorization for P = mP,, where m is inner and P, is outer):

= inf ||W - .
p= i W - mQlle
Now given a tolerance ¢ > 0, we say that C, is suboptimal, (or approz-

imately optimal), with tolerance ¢, if it internally stabilizes the system and
satisfies the bound

W1+ PC) Moo Sp+e=:p.

We are thus led to consider the following problem: given p > 4, find the sev
of all @ € H* such that

W — mQllo < p. (11)

(Notice that from such a suboptimal interpolant @, we can solve for the
corresponding suboptimal controller.)

In [10], we give a parametrization of ail such suboptimal interpolants.
Indeed, suppose that the weight is rational: W(z) = p(z)/q(2) where p(z) =
Po+zpi+ ...+ 2", and ¢(2) = g+ 21 + ... + 2"¢n, (i.e., n is the
maximum of the degrees of p and ¢, so some of the above coefficients may




— T 7

well be zero). Let S denote the unilateral shift on H? and define the space
H(m) = H> © mH?. Then the compressed shift associated with H(m) is
defined as T := Py(m)S|H(m), Where P,y denotes orthogonal projection.

First, consider the optimal case: p = . The optimal interpolant Qop,,
which makes || Boptl|oc = p, where

Bopt = W — mQope,
can be computed using Sarason’s theorem which states that
p= WD, W(T) = p(T)(T)™".
The essential norm can be defined as follows:
(W (T)lle = sup{|W(¢)| : ¢ singular point of m}.

Assuming that g > ||W(T)||., we have that W(T) attains its norm at a
singular value p = u. In this case there exists a singular vector h,, for the
skew Toeplitz operator

Ap = p*q(T)g(T)" ~ p(T)p(T)"
(* denotes adjoint) which makes
Ayh, = 0.

The vector h, can be computed explicitly from the problem data W = p/q
and m in terms of a determinantal formula; see [7], [10], and {18). Then B,,,
can be found via Sarason’s result as

2‘I(T).ho

By = .
pt p p(T)‘ho

Let us now consider the case where: p > u. It is obvious that in this
case A, is invertible and its inverse can be computed explicitly; again, the
formula is given in [10]. This is going to be used in the characterization of
all the suboptimal solutions Q, € H* which make

”W - sz”oo <p. (12)

This characterization is obtained using the one step extension procedure
of Adamjan-Arov-Krein. Here we want to summarize the method briefly.
Set m,(2) := zm(z) and let T, denote the compression of S to H(m,) =




H(m)@® Cz. For a € C fixed, the problem of finding Bop(z,a) = (W -
am - myQ5,:)(2) such that

[ Bopt (-, @)lloo = I(W — am)(T,)[| = p

can be solved using the technique described above for the optimal case. From
one step extension theory, we know that the set of all such a € C form a
circle, say I'. Furthermore, the equation of T can be explicitiy calculated.
Then the set of all suboptimal solutions Q, € H* satisfying (12) is obtained
in terms of B,yi(z,¢(u)):

W —mQ, = Bopi(z,¢(u)),

where ¢(z) is a linear fractional map taking the unit circleto ', and u € H*,
ll#|loo < 1is the free parameter. The explicit characterization is as follows.
Set

91 := (P2 ¢(T) Pe(m)a(S)* ~ P(T) Pr(m)p(S)™)m,
g2 := qop(T)(1 ~ m m(0)),

and
hi:= A'q1, he:= Al

For a given a € T define
ha(2) := m(z) — h1(2) — Thy(2),
and

p*q(S) ha

Hn ) Sy — o

Then we have the following result.

Theorem 3 The set of all functions of the form

B(z) = W(z) - m(2)Q,(2)
With Q, € H®, such that ||B||c < p, is given by

2 =
peq(S) ha o
E ce————— <
{B(220) = 2rgyhy —agg oot € el < 1)

where r and n are certain ezplicitly computable constants. (See [10] and [18]
for the formulae.)
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From the above parametrization can obtain the structure of all subop-
timal H* controllers. Using the notation of Theorem 3, we set By(z) :=
B(z,a). We can find the controller from C = Q.(1 — PQ.)"!, the Youla
parametrization, where Q. is such that

B, = W - PWQ..

Therefore,
C=PYB'W-1).
We now study B,,
P q(2)ha(z) — pth(z)
B(2)ha(2) = hp(2) - go2"T
where hy(z) and h,(z) are polynomials of degree < n — 1 and §(z) =
z"g(z~1), similarly p(z) = z"p(z~!). Then,

P,C = }_ (ﬁ(z)ha(z) - h,,(z) - qoz"@ p(z) B 1)

Ba(z) =

M\ PRHhal?) — PPhe(2) | 4(2)

_1 (—A(z)ha(z) = p(2)he(2) + P%q(2)hg(2) = qoz"p(z)a)
m (P?§(2)ha(2) — p*hy(2))a(2) ’

where A(2) = p%§(2)q(z) — #(2)p(z). Recall that ho(z) = m(z) — hy(2) -
@hy(z). It is easy to see from the inversion of the skew Toeplitz operator
A,, that hy and h; have the following form:

() = L EHEAE,

- fa(2) + m(2)Fa(2)
_ fa(2) + m(z)F2(2
h,2(2) = A(Z)
for some fy, F1, f2, F> polynomials of degree < 2n. This leads us to the
following expression:

_(_=\3) Gu(2)
P,C = (p2q(z)¢7(2)) 14+ m(2)Gy(2)

where

Fa(z) - ’\(z)
4(2)fa(2) + he(2)A(2)

Gu(z) = §(2)
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Fa(2) = Fy(2) + TFy(2), and fu(2) = fi(2) + Tfal2).

and
E=:+77
" .

Note that

“Mz) _ P22 _WEHWETH
P*e(2)i(z)  ple(2)d(z) p?

We summarize the above formulae with the following.

Corollary 1 The set of all controllers which internally stabilize the plant
P, and satisfy the bound

W1+ PC) o < p

for p > p, have the form

_(W(W(Y) Gu(z)  ._
aa-( i 'Q1+mumaa&“”

u € H®, |lulloo £ 1, where Gy(z) is a linear fractional transformation in
the free parameter u:

_ 1(2) + pa(2)u
Gl = o T el

with 1, ...,p4 polynomials of degree < 3n. They can be computed ezplicitly
from the equations given in [10] and [18] via f,, Fy, f2, F3,7 and . O

In (18], [34], [39], we discuss how to employ these methods in finding
finite dimensional suboptimal controllers for distributed systems. In partic-
ular, in [34] these techniques are used for the mixed sensitivity design of a
flexible beam modelled by the Euler-Bernoulli equation. (This work is being
continued under AFOSR-90-0024, and a full journal paper is being prepared
on this subject.)
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2.5 Other Results in H* Control

We have also verified a formula which combines the state and frequency
approaches to H*-optimal design in the one block (sensitivity minimiza-
tion) case [2]. Indeed, the formula utilizes the fact that the weighting filter
is taken to be rational while the plant may be distributed. Work on our
new contract AFOSR-90-0024 is being continued to extend this to the more
general two and four block frameworks. This type of formula combines the
advantages of both the state space (Ricatti equation) and frequency domain
(input/output) approaches to H* theory.

Moreover in {25], we have given a precise interpolation theoretic descrip-
tion of the singular values of the four block operator generalizing the classical
results of Adamjan-Arov-Krein. We believe this type of result should prove
very useful in approximation theory (along the lines of the present applica-
tions of the Adamjan-Arov-Krein result).

A general description of our interpolation operator theoretic approach
to distributed parameter systems is given in [4] and [24]. A monograph be-
ing written jointly by J. Doyle, B. Francis, and A. Tannenbaum (which was
started under AFOSR-88-0020 and which will be completed under AFOSR-
90-0024), Feedback Control Theory (to be published by MacMillan), de-
scribes from a basic point of view some of the uses of interpolation techniques
in robust control theory.

3 Nonlinear Systems

A large portion of the work on AFOSR-88-0020 has been devoted to robust
nonlinear design. This work is being carried over into AFOSR-90-0024 as
well. We believe that we now have a viable nonlinear generalization of the
(linear) H* theory in both the weighted sensitivity minimization (one block)
and mixed sensitivity (two block) frameworks. This is based on a iterative
commutant lifting theorem [12], (31], [35] which gives an explicit design
procedure for nonlinear systems and captures the H*-control problem for a
large class of nonlinear plants. We have also defined a notion of rationality
for nonlinear systems, and we have proven that the iterative commutant
lifting procedure produces rational controllers (in this nonlinear sense) if we
start from rational data [9]. We have thus been able to write computer code
for this procedure along the lines that was done for the four block problem
using the theory of skew Toeplitz operators.

We would like to explain a bit our approach to nonlinear H®°. We will
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concentrate below on the one block problem. Extensions have already gone
through to the mixed sensitivity (two block) problem.

3.1 Analytic Input/Output Mappings

In order to carry out our extension of H°® synthesis theory to nonlinear
systems, we will need to first discuss a few standard results about analytic
mappings on Hilbert spaces.

Let G and H denote complex Hilbert spaces. Set

B, (G):={g€ G:|lgll <o}

(the open ball of radius r, in G about the origin). Then we say that a
mapping ¢ : B, (G) — H is analytic if the complex function (z,...,2,) —
((2191 + ... + 2a9n), h) is analytic in a neighborhood of (1,1,...,1) € C®
as a function of the complex variables zy,...,2, for all g;,...,9n € G such
that ||g1 + ...+ gn]| < 1o, for all h € H, and for all n > 0. (Note that we
denote the Hilbert space norms in G and H by || || and the inner products
by (,).)

We will now assume that ¢(0) = 0. It is easy to see that if ¢ : B, (G) —
H is analytic, then ¢ admits a convergent Taylor series expans ion, i.e.

¢(g) = ¢1(g) + ¢2(g1g)+ A o ¢n(g7"‘ ,g) +--

where ¢, : G X -+ X G — H is an n-linear map.
Clearly, without loss of generality we may assume that the n-linear map

{81y y9n) = #(g1,"+,9n) is symmetric in the arguments g;,---,gn. For
¢ a Volterra series, ¢, is basically the nt*-Volterra kernel.
Now set

ésn(gl ®:---® gn) = ¢n(glv"'agn)'

Then &n extends in a unique manner to a dense set of G® :=G®...® G

(tensor product taken n times). Notice by G®® we mean the Hilbert space

completion of the algebraic tensor product of the G’s. Clearly if ¢, has

finite norm on this dense set, then ¢, extends by continuity to a bounded

linear operator ¢, : G®" — H. By abuse of notation, we will set ¢, := ¢n.
We now make the following definitions.

Definitions 1.

(i) Notation as above. By a majorizing sequence for the holomorphic map ¢,
we mean a positive sequence of numbers o, n = 1,2,... such that ||¢,|| < a,
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for n > 1. Suppose that p := limsupa,!/n < 0. Then it is completely
standard that the Taylor series expansion of ¢ converges at least on the ball
B.(G) of radius r = 1/p.

(ii) If ¢ admits a majorizing sequence as in (i), then we will say that ¢ is
majorizable.

3.2 Nonlinear Control Problem

We will describe in this section the control problem in which we are in-
terested. First, we will need to consider the precise kind of input/output
operator we will be considering.

We assume that all of the operators we consider are causal and majoriz-
able. H 2(Ck) denotes the standard Hardy space of CX-valued functions on
the unit circle (k may be infinite, i.e., in this case Ckis replaced by h?, the
space of one-sided square summable sequences). We now make the following
definition:

Definition 2.

Let S : H*CKX) — H?(CK) denote the canonical unilateral right shift.
Then we say an input/output operator ¢ is locally stable if it is causal
and majorizable, ¢(0) = 0, and if there exists an » > 0 such that ¢ :
B, (H?*(Ck)) — H?(CK) with §¢ = ¢ 0 S on B,(HZ(Ck)). We set

Ci := {space of locally stable operators}.

Since the theory we are considering is local, the notion of local stability is
sufficient for all of the applications we have in mind.

The theory we are about to give holds for all plants which admit coprime
locally stable factorizations. However, for simplicity we will assume that
our plant is also locally stable. Accordingly, let P, W denote locally stable
operators, with W invertible. As before, P represents the plant, and W the
weight or filter on the set of disturbances whose energy is bounded by a fixed
constant. Now we say that the feedback compensator C locally stabilizes the
closed loop if the operators (] + PoC)~! and Co(I + P o C)™! are well-
defined and locally stable. One can show that C locally stabilizes the closed
loop if and only if

C=go(I-Pog! (13)
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for some ¢ € C|. Notice then that the weighted sensitivity (I + Po C) 'oW
can be written as W — Pog, where ¢ := goW. (Since W is invertible, the data
q and § are equivalent.) In this context, we will call such a q, a compensating
parameter. Note that from the compensating parameter ¢, we get a locally
stabilizing compensator C via the formula (13).

The problem we would like to solve here, is a version of the classical
disturbance attenuation problem. This of course corresponds to the “mini-
mization” of the “sensitivity” W — P o ¢ taken over all locally stable ¢. In
order to formulate a precise mathematical problem, we need to say in what
sense we want to minimize W — P o ¢q. This we will do in the next section
where we will propose a notion of “sensitivity minimization” which we seems
quite natural to analytic input/output operators.

3.3 Nonlinear Sensitivity Function

We now define a fundamental object, namely a nonlinear version of sensi-
tivity. We will see that while the optimal H* sensitivity is a real number in
the linear case, the measure of performance which seems to be more natural
in this nonlinear setting is a certain function defined in a real interval. This
new kind of performance criterion is one of the keys concepts developed in
[9] and [12].

In order to define our notion of sensitivity, we will first have to partially
order germs of analytic mappings. All of the input/output operators here
will be locally stable. We also follow here our convention that for given ¢ €
C}, ¢n will denote the bounded linear map on the tensor space (H2(CK))®"
associated to the n-linear part of ¢ which we also denote by ¢, (and which
we always assume without loss of generality is symmetric in its arguments).
The context will always make the meaning of ¢, clear.

We can now state the following definitions:

Definitions 3.

(i) For W, P,q € C; (W is the weight, P the plant, and ¢ the compensating
parameter), we define the sensitivity function S(g),

S(q)(p) := Y_ p"I(W — Pogq)nll
n=1

for all p > 0 such that the sum converges. Notice that for fixed P and W,
for each ¢ € C;, we get an associated sensitivity function.
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(ii) We write S(q) < S5(§), if there exists a p, > 0 such that S(q)(p) <
S(@)(p) for all p € [0,,]. 1f S(q) < () and 5(3) < S(g), we write
S(q) = S(¢)- This means that S(q)(p) = S(§)(p) for all p > 0 sufficiently
small, i.e., S(g) and S(§) are equal as germs of functions.

(iii) If S(q) < S(§), but S(§) £ S(q), we will say that q ameliorates §. Note
that this means S(¢)(p) < S(§)(p) for all p > 0 sufficiently small.

Now with Definitions 3, we can define a notion of “optimality” relative
to the sensitivity function:

Definitions 4.

(i) go € C\ is called optimal if S(g,) X S(q) for all ¢ € C|.

(ii) We say q € C} is optimal with respect to its n-th term ¢y, if for every
n-linear §, € C;, we have

S+ 1+t g1 )25+ g1t Gt gutr +--0).

If ¢ € C) is optimal with respect to all of its terms, then we say that it is
partially optimal.

3.4 Iterative Commutant Lifting Method

In this section, we discuss the main construction of this paper from which we
will derive both partially optimal and optimal compensators relative to the
sensitivity function given in Definitions 3 above. As before, P will denote the
plant, and W the weighting operator, both of which we assume are locally
stable. As in the linear case, we always suppose that P is an isometry, i.e.
P, is inner.

We begin by noting the following key relationship:

(W-Pogh=Wi— Y Y Pil,®...94q,)
l_<_j$kl'1+....+l‘)'=k

Note that once again for ¢ locally stable, ¢, denotes the n-linear part of ¢,
as well as the associated linear operator on the appropriate tensor space.
We are now ready to formulate the iterative commutant lifting procedure.
Let I1 : H*(CkK) — H?(Ck) g P,H?*(CK) denote orthogonal projection.
Using the linear commutant lifting theorem (CLT), we may choose ¢; such
that
(W1 - P = [[IIWA]].
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Now given this ¢;, we choose (using CLT) g, such that

W2 — P2(q1 ® q1) — Prgz|l = ||TI(W2 = Pa(q1 ® q))l-

Inductively, given ¢, ...,¢n-1, set

Ap = (W, - Z Z Pi(¢;, ®...®4¢,))

2<j<n i1+t =n

for n > 2. Then from the CLT, we may choose ¢, such that

|4n ~ Prgn|| = [TTAql- (14)

We now come to the key point on the convergence of the iterative commutant
lifting method.

Proposition 2 With the above notation, let ¢V) := q; + g2 + .... Then
(1)
Ve C.

Note that given any ¢ € C;, we can apply the iterative commutant lifting
procedure to W — P o q. Now set

Sn(g)(p) := Y_ p"II(W — P o g)all.

n=1
Clearly, Su(q) < S(q) (as functions). We can now state the following result

whose proof is immediate from the above discussion:

Proposition 3 Given g € C|, there ezxists § € Cy, such that S(§) = Sn(q).
Moreover § may be constructed from the iterated commutant lifting proce-
dure.

Moreover, we easily have the following result:
Proposition 4 ¢ is partially optimal if and only if S(q) = Sn(q).

Finally, from the above discussion, we can prove:
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Theorem ¢ For given P and W as above, any q € C; is either partially
optimal or can be ameliorated by a partially optimal compensating parameter.

It is important to emphasize that a partially optimal compensating pa-
rameter need not be optimal in the sense of Definition 4(i). Basically, what
we have shown here is that using the iterated commutant lifting procedure,
we can ameliorate any given design. The question of optimality will be
considered next.

3.5 Optimal Nonlinear Compensators

We will mention now some of our results about optimal compensators. Ba-
sically, we want to give conditions when the the iterated commutant liftine
procedure leads to an optimal design. (We have seen that it always leads
to a partially optimal one.) We begin with the following very general result
from [12]:

Theorem 5 There always ezist optimal compensators.

In fact, in several very important cases, we can use the iterated com-
mutant lifting procedure to explicitly construct optimal compensators. We
now quote one of these cases from [12]:

Theorem 6 Let P and W be SISO, locally stable, with the linear part of P
rational. Then the partially optimal compensating parameter q.p¢ constructed
by the iterated commutant lifting procedure is optimal.

In collaboration with colleagues at Honeywell, we have been applying these
methods to certain systems with input saturations (e.g., a saturated double
integrator) in order to attenuate bounded energy output disturbances [35].
Much more work is being performed in this direction which will be part of
AFOSR-90-0024.
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3.6 Nonlinear Beurling-Lax Theory

There were several theoretical results in the area of nonlinear systems during
the AFOSR-88-0020 funding which we mention briefly. These were based on
a nonlinear Beurling-Lax-Halmos theorem [6]. The linear Beurling-
Lax-Halmos theorem characterizes the shift-invariant closed subspaces of a
complex separable Hilbert space H.

In [6], we formulate a theory relative to locally shift-invariant nonlinear
analytic manifolds in Hilbert space, and develop the corresponding repre-
sentation theory. We should note the proof of the nonlinear Beurling-Lax-
Halmos theorem makes use of Poincaré-Dulac type changes of variable from
the theory of nonlinear ordinary differential equations in the parameter space
of the manifold as well as the commutant lifting theorem.

These ideas allow us to give nonlinear analogues of the classical notion
of inner-outer factorization, and should be applicable to certain problems in
nonlinear realization theory, and a number of nonlinear optimization prob-
lems. They also lead to a new linearization result for very general nonlinear
input/output operators, as well as nonlinear analogues of the classical Han-
kel and Toeplitz operators. (In AFOSR-90-0024, we will be exploring the
possibilities of globalizing this theory.)

4 Multivariable Gain Margin Problem

We have found an analytic procedure for solving the multivariable gain mar-
gin problem, based on a novel interpolation scheme which we call spectral
Nevanlinna- Pick interpolation [19], [21], [22], {27], [37]. This involves ma-
trix interpolation in which one bounds the spectral radius, and not the
norm of the interpolants as in ordinary Nevanlinna-Pick theory. (Ordinary
Nevanlinna-Pick is precisely the type of mathematical problem that arises
in standard H® synthesis.) The spectral problem has been solved in both
its matricial and tangential (directional) forms. We would like to give a few
details about these ideas now.

A key observation is that the standard one block A% optimal control
problem in the finite dimensiona! case amounts to Nevanlinna-Pick interpo-
lation (both for SISO and MIMO systems). Indeed, the connection between
interpolation theory and certain questions involving LTI, finite dimensional
plants is the simple fact that the problem of internal stabilization reduces to
Lagrange-type interpolation for such plant. The basis of H*® optimization
theory is that for certain design problems, one is required to interpolate
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on the unit disc (or equivalently, the right half plane) by analytic matrix-
valued functions of bounded norm, which is precisely the Nevanlinna-Pick
interpolation problem.

For SISO systems gain margin optimization works in the same way in
that via a conformal equivalence, one can transform the question of finding
an interpolating function whose range is a certain simply-connected subset
of the complex plane to one whose range is the unit disc, and hence once
more derive an interpolation problem of the Nevanlinna-Pick kind. Now for
MIMO systems, we have shown that if one wants to play the same game
with multivariable generalizations of gain margin, one derives interpolation
not with a norm constraint but with a spectral radius constraint.

4.1 Internal Stability and Interpolation

We would first like to briefly discuss how the problem of internal stabilization
for LTI, finite dimensional plants reduces to one of interpolation.

Let P(s) denote a p x m LTI finite dimensional plant and C(s) an m x p
internally stabilizing compensator. In the usual way we define the sensitiv-
ity function to be S(s) := (I + P(s)C(s))~!. Then invoking the standard
coprime factorizations we get that

S(s)=L-UZ

where L and U are completely determined by P(s), U is an inner matrix-
valued function, and the “free parameter” Z € RH2,, (= the space of mxp
matrices with entries which are real r~tion-] furnctions bounded in the right
half plane H). Now one wants to compute

inf{]|S]|eo : C stabilizing compensator}.

As is well-known this problem can either be reduced to one of tangential
Nevanlinna-Pick interpolation, or matricial Nevanlinna-Pick interpolation
via the tranformation

Uss = UL — (detU)I2Z,

where U%9 denotes the algebraic adjoint of U, and I the identity matrix.
With these preliminary remarks made we are ready to formulate our con-
trol problem which will lead to the spectral Nevanlinna-Pick interpolation.
Let P(s) be a px m MIMO finite dimensional plant. Consider the following
family of plants
Pi(s):= {kP(s): k € K}
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(= {keC:k=1+s,]s]<r}.

Then we may show that C(s) internally stabilizes the closed loop for
the family Pi(s), k € K if and only if there exists a rational matrix-valued
function §(s) which is analytic and bounded in the right half plane such
that § : H — G and which moreover satisfies standard Nevanlinna-Pick
interpolation conditions, where H denotes the closed right half plane U {co},
and

G := {p x p matrices M : det(I + kM) # 0,k € K}.

But now it is easy to construct a conformal equivalence (which is a
linear fractional transformation) ¢ : G — Q where Q denotes the space of
p X p matrices with spectral radius less than one. From standard conformal
mapping theory, the interpolation constraints on S may be tranformed to
similar constraints on ¢oS : H — . In other words, we have a Nevannlinna-
Pick type problem in which instead of bounding the norm of the interpolant
we bound its spectrai radius.

We should also add that a similar trick works for real paranieter varia-
tions (k € [a,b] a real interval with 0 < a < 1 < b), and we can even take
parameter variation spaces of the form

K := {diag(k1,...,kp)}

where the k;’s may be either real or complex (u in the 1 x 1 block case).

4.2 Solution of the Spectral Nevanlinna-Pick Problem

We now outline our solution to the spectral Nevanlinna-Pick interpolation
problem. For simplicity, we will consider just the matricial case. (The tan-
gential case is worked out in [21].) Following standard mathematical practice
we work on the unit disc D rather than (its conformal equivalent) the right
half plane H. Accordingly, we are given n distinct points z1,...,2z, € D,
and n, p X p matrices Fy,...,F,. We want necesssary and sufficient condi-
tions for the existence of a rational matrix-valued function F(z), analytic in

the unit disc such that b
F(z)=F
fori=1,...,n, and such that
sup{sr(F(z)):z€ D} < 1, (15)
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where for a matrix @, s7(Q) denotes its spectral radius. We can now state
the following theorem:

Theorem 7 With the above notation, F(z) ezxists if and only if there ezist

invertible p X p matrices M; for i = 1,...,n such that
I - M;F,M7Y (MM
' (_“ ) > 0. (16)
1- 2i<5 1<i,j<n

We would now like to discuss a bit the derivation of Theorem 7 which
will also give us a numerical scheme for the theorem’s implementation. Let
H denote a separable Hilbert space. Then a contraction A: H — His a
linear bounded operator such that ||A]| < 1. Now given two contractions T
and A on H, we set

pr(A) :=inf{||M AM ™|} : M is invertible and MT = TM}.

The quantity p7(A) is called the T-spectral radius of A.

Now given m € H* an all-pass (inner) rational function, set H(m) :=
H?*omH? and H := H(m)®...® H(m) (direct sum of p copies of H(m)).
For S the unilateral shift on H?, and for Py, : H®> — H(m) orthogonal
projection, let S(m) := Py(m)S|H(m) denote the compressed shift. We set
T:=5m)@&..05m),and U :=5®...6SonK:= H:@...® H?
(direct sums of p copies). We can state the following spectral version [19] of
the commutant lifting theorem:

Theorem 8 Taking T, U, H, K as just defined, let A: H — H be any
contraction such that AT = TA. Then we have that

pr(A4):=
inf{sr(B) : B is a commuting dilation of A, i.e., BU = UB, PyB|H = APy},

where Py : K — H denotes orthogonal projection.

Remarks. First of all, note that Theorem 7 may be derived as a corollary
of Theorem 8 by taking

m(z)::ﬁ i

AII—E,’Z
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Next in [19], it is shown that we can always infimize over rational B. More-
over, under the hypotheses of Theorem 8 (in which we are dealing with finite
block diagonal matrices), one can use gradient search procedures to compute
“scalings” M arbitrarily close to the optimal. Then if one invertibly dilates
such a (nearly) optimal M to an analytic matrix M(z), one is required to
check the validity of matrix inequality (16) for M, := M(z) (i = 1,...,n),
i.e., via these scalings we are reduced to a classical matricial Nevanlinna-Pick
problem.

Actually we have now even found a way to apply such methods to the
structured singular value (in which considers much more general struc-
tured multiplicative perturbation models as in the work of Doyle and Sa-
fonov), which may lead to an analytic procedure for performing u-synthesis.
This will be described in our yearly report for AFOSR-90-0024.

5 Results in Interpolation Theory

We have also made some strides for understanding the minimal entropy so-
lutions for a number of interpolation problems [15], [20]. Indeed, in studying
the spectral properties of the four block operator and its relation to classical
interpolation theory, we have been led to a strong version of the classical
Parrott’s theorem. Parrott’s theorem is one of the key matrix extension
results and has found numerous uses in control theory as well as signal pro-
cessing. Our strengthened version in a certain sense picks out an extension
which is “opposite” to the famous maximal entropy or central solution to
such extension problems. This solution has a natural physical interpreta-
tion in the waves through multi-layered media context, and we are thus
quite excited about some of the applied implications of our result. From the
more theoretical side, this result can be used in generalizing some beautiful
results of Adamjan-Arov-Krein on the connection of the singular values of
the Hankel operator to optimal interpolation by functions with a presribed
number of poles on the unit disc to the four block operator of H* control.

Further, based on the strong Parrott theorem we have proven a strong
version of the commutant lifting theorem [20] which leads to an explicit
parametrization of minimal entropy solutions in dilation theory. This has
already been applied to the classical Nevanlinna-Pick and Caratheodory
interpolation problems.
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6 Other Results

During the course of AFOSR-88-0020, we have have also obtained some new
results on the asymptotic stability of time-varying systems [16]. Some work
has also been done by the Tannenbaum’s Ph.D. student, Hitay Ozbay, on
L! optimization [41]. (Ozbay showed that the problem of minimizing the
effect of the worst disturbance on the output where the signals have finite
one-nnrm is equivalent to the problem with bounded disturbances.)

Finally, we returned to the topic of the studying the properties of global
families of systems [23]. This is an area which we plan to consider in some
depth in AFOSR-90-0024. Indeed, previously our approach was quite al-
gebraic and geometric (as exhibited in [23]). We now plan to use some of
the analytical operator theoretic techniques described above in studying this
important problem.
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