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[.  INTRODUCTION

Neural networks are a type of distributed pfocessing system [1].
They consist of a large number of cells, or processing nodes, which are
massively interconnected together. The cells receive signals from each
other, from other networks or subnetworks, and from the external
environment. They generate further signals which are distributed through
the networks and to the external environment. The history of neural
network modelling and the major concepts are reviewed in references (2]
- [8], and the status of the field is examined in [9]. The two major
reésons for using neural networks are: first, their intrinsic parallel
processing capability; and second, the associative adaptation obtained by
varying the strength of the interconnection endpoints according to the
current and past activity across the network. The parallel capability
opens up a nev-v area of applications to previously unsolvable problems
while the adaptation permits the networks to modify their overall
behavior to fit the requirements of their environment.

The nodal activity and the strength of the interconnections are the

variable parameters treated in the neural models. The interconnection




pattern of a neural network is usually considered fixed, and the signal
transmission paths are passive (an example of an exception to ihis is the
Grossberg masking field [10].) The pathways introduce, at most, some
time delays and attenuation, both of which are neglected in many, but not
all, of the major neural models [4].

The output signal of a cell is a positive real scalar quantity. It is
the number of pulses per second, aQeraged over some nominal time, where
the puises are the spike-like bursts emanating from the cell. This is the
biological model. No significance has been attached to the s_pike patterns,
but recent reséarch [11,12] indicates that this assumption is not always
true. Mathematically, this suggests that the output signal may possess
phased subsignals over some basis set, and that future treatments should
include comblex amplitudes to account for phase, and/or semidigital
out.puts to account for superpositions of basis functions as being the net
signal.

There are many approaches being investigated. Those which attempt
to follow the biological models use simpie processor rules in the nodes:

the inputs are weighted, summed and thresholded to produce the outputs,




and the co_nnection strengths are increased on active input channe’ls if the
receiving node is also active. This is the generic additive model with a
Hebbian learning law [13]. Variations include shunting [14] and error-
connection schemes [15,16). Other apprbaches are complex programmable
nodes with multiple outputs and nonlocal rules, but with-relatively few
nodes and simple nearest-neighbor interconnects such as the hgpercﬁbe
system consisting of a group of interconnected microprocessors (17].
Despite these numerous variations, there is a major commonality
among the models when they are viewed from their functionalv properties
and actual performance. They are parallel, recurrent, adaptive systems.
There is no single unified model. Each model is designed to handle a
particular type of processing problem (Table 1). A major researcﬂ issue
is simply how to relate the capabilities and performance of various
models to actual problems and applications: how, for example, can an
optical image be processed so that the objects can be reliably located and
identified, or more generally, how can invariant features be extracted

from a complex signal distribution?




TABLE 1. Neural network models

Model

Characteristic Use

Adaptive resonance [8]
Back propagation [15]

BAM, ABAM [13]
Crossbar/Hopfield [18]
Kohonen (8]
Neocognition [8]
Boltzman/Cauchy (8]
Symbolic substitution [19]
Adaline [16]
Perceptron [20]
Avalanche [4]

Shunting [4]

Masking fields [10]
Counter propagation [8]

Higher-order learning units [8]

Hypothesis testing
Supervised learning

Stable adaptation
Optimization
Mapping
Recognition
Optimization
Digital/optical logic
Nulling

Nulling

Time sequencing
Competiti.ve
Groupings
Probability mapping

Invariant filters




The functional properties of current neural network models are
expressed mathematically as a fi;'st-order time derivative of the internal
activity of the ith cell set equal to a collection of terms. Each term
carries a specific interpretation, and the terms and certain combinations
of the terms endow the networks with their functional properties._ A
neural network model, in gengrai, is described by: |

1. A statement of the iixed interconnect matrix.

2. Arule or set of rules describing the nodal activity's temporal

behavior and its inputs.

3. A learning law describing how the strength of é_n interconnection

point changes in time.

4. The thresholding function'.\

5. A stability function.
Since the basic interconnect matrix is fixed, it is rarely discussed as a
separate entity. Instead, it is combined with the second and thiré
variables of nodal activity and interconnect strengths, respectively. But

for nets which perform fixed logic, [21] for example, the interconrect

matrix is the dominant parameter, because in such systems the



interconnect strengths are fixed and the nodal signals are flexible. We
will be concerned witﬁ variable systems, and will not discuss the
interconnect matrix in detail.
II. FUNCTIONAL PROPERTIES

The internal activity of the ith cell follows the general dynamical
form

da;
-EITL = {Loss Term} + {Excitation} + (Inhibitation} + {Adaptation}). (1)

(While other forms are possible, thi§ is by far the most accepted version.)

The loss term describes a relaxation mechanism leading to the steady
state. [t is a simple exponential decay:

{Loss Term} = - A aj. (2)

It can be interpreted as attenuation, absorption, or subtraction. An
alternate interpretation is obtained by combining the loss term with the
time derivative on the LHS of Eq. (1) and noting that to first order they
approximate aj evaluated at a time t + (1/A). This can be read as a
statement of causality, or as indicating a feedback loop with a finite time

delay of 1/A.




The ne <t term is res‘ponsible for providing excitation. [t can be fixed
or adaptive, linear or nonlinear, but its basic feéture is that it is a
positive and (usually) increasing function of the inputs at a given cell. A
somewhat similar term, but with a negative signal provides an inhibitory
Input. A variation is to use a combined product term where the numerator
Is designated as the excitatiqn and the denominator is the inhibiting
factor which serves as a type of loss as well. Both excitating and
inhibiting contributions can be fixed or adaptive. Often, these
contributions are in the form of an input signal distribution with a
matrix-vector type of connection to the cell. The adaptation is
universally assumed in all models to occur by providing a mechanism for
varying the strength of the interconnections. The choice of variation,
called the learning law, depends on the particular neural network model,
since these terms vary in form in different model. Specific discussions

are given in the next section.




1. MAJOR MODELS

A. Model Equations

The five most common neural models are the generic additive model,
the shunting models, the two-slab bidirectional associative memory
(BAM), th.e back propagation, and the Kohonen model. Their nodal equations

are:
1. CGeneric Additive Model

éi=-Aai+li+ _Zmijs(aj) (3)
J=1

where S(aj) is the thresholding function and mjj governs the learning

law, to be discussed later. [j is an input signal from the external

environment.

2. Shunting Model (Membrane Equation)

éi=-Aai+(B-ai)Qi-(C"ai)Pi (4)

where Qj is the excitatory input; Pj is the inhibitory input, and A, B, and

C are constants.




3. BAM Model (Two Slabs)

ai=-Aai+li + Zml] S(DJ) . (5)
all j
bi=-Ab; + Ji + X, mi;Sa) . (6)
) ) ) Y
all
where [j and Jj are the input signals.

4. Back Propagation

I Y ‘s(a(.n")) (nthsiap)y ()
! all j ' J

5. Kohonen Model

ai = Z mij Ij . (8)
all j

There are several learning laws as well. Most are based on Hebb’s
observation of pairwise association (22].
8. Learning laws
The learning laws operate on a much slower time scale than the

nodal activity. The most prevalent law is an outer product of the output
9




signal of the ith cell and its jth input signal, with an exponential decay
relaxation term [13]. However, some learning laws act on a still larger
time scale. For these, each increment of the weight is the steady-state
outer product, and these increments are summed over a training cycle
time larger than the relaxation time. This is used in the back propagation
model, and in the Kohonen quel. and is similar to the covariance product
sums used in adaptive phased array radar.

Another important variant is the Grossberg competitive law [8] in
which the relaxation time is proportional to the output signal strength of

the receiving cell.

The major learning -laws are:

1. Covariant

mij = S(aj) s@j . (9)
2. Hebbian
Tl Dmij + S(aj) s(a) (10)

10




3. Competitive

ﬁ'\ij = S(ai) ['mij + 5(31)] (11)

and the Oja variation [23]:
n'qij= S(a;) [-S(ai) mij+s(aj)] (12)

4, Backward Propagation

n
Error signals 8(1 ) for n-th path are:

5N 2 g (a@) T oD g (13)
i BT} i
am® = «5Ms (a(.”")) , (14)
ij i j
s(iN) =5 (aEN)) [Ti -5 (aEN))] - (15)
where N indicates the final output slab; S' = agﬁj) ,and T; isa
training signal.
5. Kohonen
Amjj = «(Ii‘mij)zi (16)

1




where zj =1 if aj = max {ak}, and is zero otherwise.
C. Ihresholding Function

The threshold function describes the formation of a cell's output
signal as a function of its internal activity. Early neural models used a
linear response, but the current second-generation models are a nonlinear
response. This simple innovaﬁtic‘)n is of fundamental importance because it
removes the inadequacy of neural networks to provide essential
nonlinear learning [24].

Threshold functiéns:

1. Step Function

1, ai>0
S(a;) = (7
! 0, aiSO
2. "Offset”
+ aj . ai>0
S(a) = |3 = !
@y = [a1] o . aso (18)
12




3. Hebbian

() S(a;) = tanh a;
2’ |

(i) s(a) = — > . (19)
I+ a

Bias terms and scale factors c¢an be incorporated in the threshold
functions.

D. Stability

Another major feature is the stability of a network [25]. It is

believed desirable for the network to approach a single optimum state
after being given an initial input distribution. Various global quantities
with quadratic minima have been defined [1], [16] and used with success
to design networks that will produce optimizations in a stable manner.
These Lyapunov fun;tions [25], "energy” functions [8], and error functions
(1] are of great theoretical interest, but for the purpose of this paper the
nodal activity equation and the learning law are adequate guides.

In Equations (1) - (19) the term types are (excluding third rank and

higher tensors (30, 31, 32])

13




aj : linear
S(aj) . thresholded

2 mij S(aj) : matrix-vector products
J

and the operations include multiplicatioh. division, addition, subtraction,
differentiation, and integration.
E. Discussion

) it ' funct] [ by t o]

The generic additive model and the two-slab BAM both use the
Hebbian learning law. These nets associate inputs because one input
distribution is encoded as the interconnects of each node activated by
another distribution. Later exposure of either input will reactivate the
other input. If part of an input is missing, it will be filled in because the
recalied input will, in turn, attempt to reactivate all of the nodes in the
first input. Sequences can be encoded on a pairwise basis AB, BC, CD,
etc. and superimposed to form an asymmetric memory métrix. Temporal
order can be restored either by adjusting the nodal activity time constant
or by using a Hebbian learning law which responds to the covariance of

the first time derivatives of the nodal output signals (differential

14




Hebbian). Sequences can be recognized by using an avalanche network: 2
set of "grandmother” cells (cells tuned to recognize specific patterns) is
arranged so that each cell's output excites only the next cell in the
sequence. All the cells receive the timé-varging input. If the input
matches the desired sequence, the corresponding set of cells will
r‘einforce each other in turn, '_amd produce a recognition signal at the end of
the sequence. Still other variations are possible. The back propagation
and the Kohonen models both incorporate an adaptive fan-out of the input
distribution. The Kohonen system self-organizes so that each cell
responds best to specific sub-inputs which are closely grouped in the
feature space, and thus this model yields goodstatistical approximations
‘ to the overall input distribution. The back propagation model also
receives a training input. It forms an error signal as the difference
between the actual final output and the training signal of those nodes.
This error is propagated back through the interconnect system to form
new error signals at every node. The weights are incremented in
proportion to the covariance of the errors and the input at each cell. It is

a remapping network with good statistical invariance to input signals.

15




The shunting networks use 3 variety of learning laws. They are very
powerful, general-purpose nets which effectively deal with random and
patterned noise, and also automatically renormalize and enhance their
activity prior to the slower adaptation processes performing the adaptive
encoding.

IV. OPTICAL IMPLEMENTATIQN

In this section we explain how some of the system equations can be

described in an optical system. There are two major problems intrinsic

to the project that cannot be easily resolved. The first concerns the

identification of the activity aj with optical quantity, which can be
either amplitude or intensity. aj , being positive in the neural network
model, should be interpreted as an intensity w.hich, however, does not
appear in optics without manipulation. In other words, the anmiplitude in
optics must be replaced by [lntensitg]‘/2 and this may or may not be
justified. If aj is considered as an amplitude, a complex quantity, then
the phase factor does not admit any interpretation in neural network

models. Since this problem cannot be resolved easily and the

generalization of aj as a complex quantity cannot be done at the present

16




time, we will use the stowly varging part of the amplitude in optics as
the desired positive number.

Another problem concerns the relaxation time which must be smaller
than nanoseconds, whereas in neural networks the time scale is on the
order of milliseconds. This difference makes the two systems, neural
nets and optical wave equati_c_)ns, never physically equivalent. Again,
we can only keep the problem in perspective.

A. Ihresholding

The Sigmond function S(aj) is the output for a given input aj in
the cell. This can be accomplished in several different ways. One method
is to take advantage of the amplified medium. Four-wave mixing [26], or
a laser amplifier [27] can both achieve this goal. However, all of these
methods transfer the energy from external beams to the amplified beam.
The disadvantage of setting l:lp the external sources overwhelm whatever
advantage that can possibly be gained.

The right choice of nonlinear material can provide a bistable

characteristic curve in Fig. 1, where Eijn and Egyt are the incoming and

17
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outgoing amplitudes, respectively. This optical bistable device is easy to

set up and a theory can be summarized in one equation (20), [28].

2
'E I 4 (1-r) J:
out| _

> [RZ eo<"-io< _ R2 g~ e (20)
e CE
N

where

R:=(1+,/F)f€-:(1-f;) (21)

and r is the reflectivity at the medium. The nonlinear part of the
dielectric constant € enters through

o v oo = 2L e (22)
where L/A is the ratio of the cavity length and wavelength.

Although Eq. (20) is an approximate solution, the accuracy is good
enough for our purpose. The next question concerns the material. This
subject has been reviewed elsewhere [239]. Many are available depending
on the requirement on the thresholding or the switching time. [f no

strenuous conditions are imposed, then any material with nonlinearity

19




will suffice. In the definition of dielectric constant € = €ow + 47X,

and

X = Xy +.XgE + X3 E - E + .. . (23)
The case where X3 =0 and X2 = 0 defines cubic nonlinear terms.
when X2 is present, the effect of the quadratic nonlinearity frequency
doubling, etc. will dominate ;he desired bistable effect.

we should point out that the nonlinear optical material considered
here and the photorefractive material used later can both perform the
thresholding of this secti_on, and the association memory of the next
section . The reason for adhoption of the usual nonlinear bistable material
described in EqQ. (20), for example, GaAs, CdS, etc. for thresholding while
associative memory is considered along with the photorefractive material
like BaTiO3z, etc. is .a matter of convenience for practical purposes. For
example, it has been reported (30] that GaAs can perform the four-wave
mixing just as well as the photorefractive material, with vastly improved

speed at the expense of a much larger required intensity. In this report

we follow the conventional application in the literature.

20




B. Adaptive Term and Photorefractive Medium
The index of refraction of a photorefractive material ¢an be

written as

icpa ( *A u) '
= + .
n nO + na e Al 4 AZA'S exp kg r + c. ¢

i<pb »* > ‘
+n e A']A3+AA exp kp- r + ¢ c

b 2 4
1Pe * »
+ . +
N © AIAZ exp ke r c. C.
P A* ik 4
+ - r + C.C
ny © 3A4 exp kg c (24)
where ng ... ng etc. are the optical nonlinearities and 93 ... P4 are

constants. Equation (24) is simply the index of refraction according to

the cubic nonlinearity with the specific conditions due to the arrangement

K. -k =-k. + K ,_."'za(k]=-k2.k3=-k4) (25)

'|<"=-|<=E-ksi<'. (26)

21




when n is substituted into the Maxwell equation and each component of

exp ikijx (i=1,2,3,4) is identified, we obtain [26]

3 ] 3 _
('é; * 'c"é?)Al = QA4 - QA3 - Q3A (272)
(—@--L-Q-)A s QA - QA - alA
9z cdt)72 T 173 . T274 37 (270)
3 | 3
o - 1Lo - - - - 27¢
(az c 8t) %3 ArAz = Q8 = QA (279)
2 .13 - - - i,
(82 = at) Ag = - QA - QA - QA (27d)
where Qj (i=1,2,3,4) obey the Debye equations
¥ ¢ A (A A+ AA ) (28a)
+ S e +
49 o \ 174 273
. 82 ( »* » ) (
N = —£ (A A 28b)
B8 9 7 B T A%
22




= = A A 28¢
3303 + 03 » (A, (28¢)
5aq +q =24 (A A*) . (284)
474 4 o \ 3 4/ -

and lpb=S 1= 2 |Aj]|2.

Notice that the Maxwell equations imply Q, = 0. InEq. (28) the

éi factor is often introduced, as is done here, to reflect the buildup time

of a hologram from various beams in the medium. Equations (27) - (28)
look very similar to the BAM model but with some important differences.
First is the use of complex numbers introduced throughout the formalism.

The phase factor is crucial in optics although the corresponding network

activity aj are supposed to be real. Another factor is the difference
between aj and S(aj) that must be addressed by means of thresholding.
In view of these difficuities, we cannot take this set of equations and try
to identify them as a part of BAM. The photorefractive interference, as
discussed however, will be used as a "component” of the BAM to function
or perform as the adaptive term. This is to be illustrated in the next

section.

23




we follow here one example set up by Yariv et al. [31] The pump

beam in Fig. 2 is to be identified as S(aj) and 5*(bj). Then the

nontinear part of the index of refraction is

An = Z s"(a)) (b)) - Ajj (29)
b
where .
+,(I<‘ -72) 2
-e v 27 (30)

and An is stored in a hologram. When E' in the direction of S(a)

shines on the hologram, then a diffraction beam Egirr

-kb. r

is produced, and

J = J-E'(r') s*(aj) Sbj) d3r exp {ik (xx + yy)/r}

24
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is the overlapping integral. The reflected field moves opposite to S(bj)

« S™(a) S(b), and this reflected beam excites An again to produce a

field proportional to

AN Egut = J [S0))]|2 %) . (32)

The net result, if all contribu_tions are considered, can be expressed as

(AE)i = Z mij S(Dj) (33)
j

and
Tmij + mjj = S™@) S0 . (34)
In actuality, mjj e S$™(a) S(b), but the time derivative in Eq. (34) is
added to reflect the time delay between S™(a) and S(b) iurn-on and the
production of (AE)j. Equations (33) and (34) for (AE)j show how the |
adaptive term can be produced with the output proportional to J , the
overlapping integral. This scheme has the advantage for application

of training and learning, i.e., the stored information An is retrieved by

the incident wave Ej.
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For our purpose of demonstration of the adaptive term in BAM, a

simpler setup can be given as follows. The holograph is set up as

an =2, s* @, SO | (35)

by two pump beams. A probe beam S*(bj) is then refracted from

the diffraction grating to produce the conjugate beam (As(aj))c.

Or, in our notation,

(As(ai)) = Z mi;S () (36)
C ) ) .

and
r'(mij) v omiyj = S” (a)) S(bj) (37)
Again, the time derivative is added for consideration of buildup time for

the diffracting.

A short summary of discussion is given here. We demonstrate how

an optical beam called (AS(a))c can be produced for a given set of
(aj,bj) as shown in Fig. 3, when bj -'. S(bj) . aj = S(aj) by the

thresholding processes. (S(aj))c then is numerically equal to £j mjj S(bj)
with mjj defined in Eq. (37).
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A major point to be made is that currently the only optical effect
which has been found useful for implementing associative memories is the
photorefractive effect. There is no other way to do it without going to
hybrid systems.

C. Shunting Mechanism

The shunting term is of the form given by

a; Z S(aj)
) .

which is proportional to the product of the two ampiitudes aj and S(aj)

in contrast to the triple product for the adaptive case. It seems one
should be able to use the X2 term to generate this term. This cannot be
carriedvout because this nonlinear term has its dominant effect on the
phase in the wave propagation and not on ‘the absolute magnitude of the
amplitude.

We have examined the technique of optical correlation in the
literature and found that our need is much simpler, since no spatial

information is contained in aj. To accomplish the shunting term we use

the geometry in Figure 4 where a photorefractive crystal is present, and
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the two pump beams aj and Zj S(aj) form a grating according to the

(€, -%) -7

shunting term

An = % Zai S(a)) ¢ (38)

J

> o

iK.r
Then a beam of constant amplitude ce © will be scattered from An,

with the resultant amplitude proportional to Ac¢:

i(ki--k..-ﬁc).',:
A eC Za. S(a,) e
c T

(39)

We note that this term is just the shunting amplitude with specific

_ _ - - -
direction (k; - kj - kC).

D. Amplification
when the optical system is designed, absorption in the system,
intrinsic or external, cat;mot be avoided. At certain stages of operation
the optical amplitude must be amplified to sustain the operation. Four-
wave mixing in a nonlinear medium can accomplish this goal.
Ey and Ep in the diagram of Fig. S are the pump beams. E4 is the

conjugated beam at z =Ly and E3 is the probe beam, which satisfy
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E4 |2 ] (sin pi)?

) 2 2 (40)
3
L cos ) + (&(-sin L)
(x cos il 2% SN A
where
2 2
po= \/(z E1Ey)" + (aks2) (41)
X = |¥EE|,
) , - - - - .
where ¥ is the coupling constant and Ak = |k +ko ~k3 -kg4| is the

phase mismatching, which in general is zero. Consequently, E4/Ez can
take almost any value when AkL << 1,

In summary, we have demonstrated the optical elements performing
'ghe following tasks for a given set of (aj, bj):
(1) Thresholding to convert
aj » S(aj) , bj = s(bj)
(2) Production of neural adaptive changes
A = £mij S(bj)
where
mij + Tmij = S@) s").
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(3) Performing the shunting as dictated by
a z S(a.)
i- j
J
(4) Producing the amplified signal, which is accomplished by

integrating all elements as described in this section.

V. CANDIDATE IMPLEMENTATIONS OF THE NEURAL NETWORKS
A. conceptual Architectures for Optical Neural Networks
The objective of this section is to devise candidate
implementations of the neural netwovrks discussed in the first section
using the optical effects discussed in the second section. Where possible,
éll-optical architectures are chosen that do not have detector arrays and
electronically converted video data. However, some hybrid techniques
have been used where they appeared to be the only method available.
B. Building Blocks
The photorefractive effect has been used as the preferred method
for associative memory. The usual approach of storing a hologram made
from the mutual interference of two input images suffers the drawbacks
of low output during recall. This is because the output is a dirrrqcted

reconstruction. An elegant solution which provides full-strength

reconstruction has been shown by Stoll and Lee, and their technigue
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will be used here. Basically, their system consists of a
cascaded pair of matched filter correlators whcih encode given
pairs of images by multiplying them with a different reference
angle for each pair. Thus a given reference beam exits

between the matched filters, and it is amplified by a nonlinear

crystal prior to its reading of the second matched filter.

Their system has a fundamental difficulty that prevents its use as a
fully adaptive optical associative system: The associative encoding
process and the ensuing readout process are performed separately. Thus
the encoding activity does not account for the modification of the output
signals as the associative matrix is formed. This is a problem found with
almost all adaptive associative sg'stems using the photorefractive effect.
It can be resolved by use of polarization-switching dynamic volume
holograms as first shown by Psaltis [8]. By combining the Psaltis
technique with Stoll and Lee’'s system, an adaptive optical associative
architecture can be devised and is shown in Figure 6. Its operation is as
follows: Two photorefractive crystals A with a gain crystal B are

arranged in the Stoll and Lee configuration with a reference beam 6
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being provided to each crystal A . The input distributions SA and Sg
to be associated pass through nonreciprocal Farédag rotaters C as in the
Psaltis system. © has a polarization at 909, SaA and SB are placed at
-450, The rotaters C produce a +459 rotation to SA and SB so that
when they enter the photorefractive crystals A they are also polarized
at 900. They interfere with _;he ©-beam to produce tHe desired volume
holograms in the crystals A . As the holograms form, SA and SB are
diffracted from them. The diffracted beams, due to the large angles
between the SA , SB and © beams, are polarization-switched to the
orthogonal 00 polarization state as in the Psaltis arrangément of
Reference 8. These diffracted beams pass through the gain crystal B and
are incident upon the photorefractive crystals again, where they contact
with the volume holograms and are again diffracted to form the output
beams KBA and KAB . These beams also undergo polarization-switching
from 00 to 909, They pass through the rotations C and emerge at a
polarization angle of +4309, orthogonal to the SA and S beams. They
can then be separated by a polariziné beamsplitter. They are the adaptive

inputs to the slabs generating the signals SA and Sg . Thus the
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adaptive contributions are available during the encoding process. After
the system reaches equilibrium, new pairs of slab inputs (not shown) can
be presented with the angular reference beam © reset to a new angle.

The remaining building blocks are less complex. Figure 7 shows the
threshold crystal. [t can be a bistable device, or a pumped BaTi03
operating in the saturation re_gime. Figure 8 shows how an optical
feedback loop provides the necessary time delay factor to generate the
toss term in the nodal activity. Shunting can be achieved by the technique
discussed earlier, or a hybrid implementation used in which a SLM is
inserted into 1;he time delay loop to vary the sblitting coefficient k in
proportion to the local average of the slab activity.

With these building blocks, the following optical architectures can be
schematically developed for the additive, BAM, and backpropagation nets.
Inspection of the defining equations for the BAM and additive models
shows that they are basically equivalent if we set | = J. Accordingly,
only the BAM architecture is discussed here. [t is shown in Figure 9. It

consists of the adaptive bdilding block with provisions for adding the
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input distributions to the adaptive terms and thresholding the run. This
is done in the loops shown below the adaptive optics.

The backpropagation architecture is more complex and requires
additional explanation. It is shown in Figure 10. Two adaptive systems
are arranged in a square. Two additional photorefractive crystals A and
two mére thresholding crystals B are used. The new thresholding
crystals are operated so that an incident beam will be turned off rather
than on at the threshold. Their threshold level is higher than the regular -
t’hreshold crystals T'. The crgstalé A form a grating proportional to the
produ.ct of their inputs. Their inputs are in turn diffracted from this
grating. The diffracted S' beam, containing the square of S' rather than
s' its_elf, is used as an approximation to the exact form from
backpropagation theory. While cumbersome, this architecture satisfies all
the basic requirements of an optical implementation of the standard

three-layer feedforward backpropagation algorithm.
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