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1. INTRODUCTION

Neural networks are a type of distributed processing system [1].

They consist of a large number of cells, or processing nodes, which are

massively interconnected together. The cells receive signals from each

other, from other networks or subnetworks, and from the external

environment. They generate further signals which are distributed through

the networks and to the external environment. The history of neural

network modelling and the major concepts are reviewed in references [21

-[81, and the status of the field is examined in [9]. The two major

reasons for using neural networks are: first, their intrinsic parallel

processing capability; and second, the associative adaptation obtained by

varying the strength of the interconnection endpoints according to the

current and past activity across the network. The parallel capability

opens up a new area of applications to previously unsolvable problems

while the adaptation permits the networks to modify their overall

behavior to fit the requirements of their environment.

The nodal activity and the strength of the interconnections are the

variable parameters treated in the neural models. The interconnection
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pattern of a neural network is usually considered fixed, and the signal

transmission paths are passive (an example of an exception to this is the

Grossberg masking field [10].) The pathways introduce, at most, some

time delays and attenuation, both of which are neglected in many, but not

all, of the major neural models [4].

The output signal of a cell is a positive real scalar quantity. It is

the number of pulses per second, averaged over some nominal time, where

the pulses are the spike-like bursts emanating from the cell. This is the

biological model. No significance has been attached to the spike patterns,

but recent research [11,12] indicates that this assumption is not always

true. Mathematically, this suggests that the output signal may possess

phased subsignals over some basis set, and that future treatments should

include complex amplitudes to account for phase, and/or semidigital

outputs to account for superpositions of basis functions as being the net

signal.

There are many approaches being investigated. Those which attempt

to follow the biological models use simple processor rules in the nodes:

the inputs are weighted, summed and thresholded to produce the outputs,

2



and the connection strengths are increased on active input channels if the

receiving node is also active. This is the generic additive model with a

Hebbian learning law [13]. Variations include shunting [141 and error-

connection schemes [15,16]. Other approaches are complex programmable

nodes with multiple outputs and nonlocal rules, but with-relatively few

nodes and simple nearest-neighbor interconnects such as the hypercube

system consisting of a group of interconnected microprocessors [171.

Despite these numerous variations, there is a major commonality

among the models when they are viewed from their functional properties

and actual performance. They are parallel, recurrent, adaptive systems.

There is no single unified model. Each model is designed to handle a

particular type of processing problem (Table 1). A major research issue

is simply how to relate the capabilities and performance of various

models to actual problems and applications: how, for example, can an

optical image be processed so that the objects can be reliably located and

identified, or more generally, how can invariant features be extracted

from a complex signal distribution?
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TABLE 1. Neural network models

Model Characteristic Use

Adaptive resonance [8] Hypothesis testing

Back propagation [15] Supervised learning

BAM, ABAM [131 Stable adaptation

Crossbar/Hopfield [181 Optimization

Kohonen [81 Mapping

Neocognition 18] Recognition

Boltzman/Cauchy [8] Optimization

Symbolic substitution [19] Digital/optical logic

Adaline [16] Nulling

Perceptron [201 Nulling

Avalanche [41 Time sequencing

Shunting [41 Competitive

Masking fields [10] Groupings

Counter propagation [8] Probability mapping

Higher-order learning units [8] Invariant filters

4



The functional properties of current neural network models are

expressed mathematically as a first-order time derivative of the internal

activity of the ith cell set equal to a collection of terms. Each term

carries a specific interpretation, and the terms and certain combinations

of the terms endow the networks with their functional properties. A

neural network model, in general, is described by:

1. A statement of the fixed interconnect matrix.

2. A rule or set of rules describing the nodal activity's temporal

behavior and its inputs.

3. A learning law describing how the strength of an interconnection

point changes in time.

4. The thresholding function.

5. A stability function.

Since the basic interconnect matrix is fixed, it is rarely discussed as a

separate entity. Instead, it is combined with the second and third

variables of nodal activity and interconnect strengths, respectively. But

for nets which perform fixed logic, (21] for example, the interconhect

matrix is the dominant parameter, because in such systems the



interconnect strengths are fixed and the nodal signals are flexible. We

will be concerned with variable systems, and will not discuss the

interconnect matrix in detail.

1I. FUNCTIONAL PROPERTIES

The internal activity of the ith cell follows the general dynamical

form

dai =(Loss Term) + (Excitation) + (Inhibitation) + (Adaptation). (1)
dt

(While other forms are possible, this is by far the most accepted version.)

The loss term describes a relaxation mechanism leading to the steady

state. It is a simple exponential decay:

(Loss Term) = - A ai. (2)

It can be interpreted as attenuation, absorption, or subtraction. An

alternate interpretation is obtained by combining the loss term with the

time derivative on the LHS of Eq. (1) and noting that to first order they

approximate ai evaluated at a time t + (I/A). This can be read as a

statement of causality, or as indicating a feedback loop with a finite time

delay of I/A.
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The nrAt term is responsible for providing excitation. It can be fixed

or adaptive, linear or nonlinear, but its basic feature is that it is a

positive and (usually) increasing function of the inputs at a given cell. A

somewhat similar term, but with a negative signal provides an inhibitory

input. A variation is to use a combined product term where the numerator

is designated as the excitation and the denominator is the inhibiting

factor which serves as a type of loss as well. Both excitating and

inhibiting contributions can be fixed or adaptive. Often, these

contributions are in the form of an input signal distribution with a

matrix-vector type of connection to the cell. The adaptation is

universally assumed in all models to occur by providing a mechanism for

varying the strength of the interconnections. The choice of variation,

called the learning law, depends on the particular neural network model,

since these terms vary in form in different model. Specific discussions

are given in the next section.
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Ill. MAJOR MODELS

A. Model Eguations

The five most common neural models are the generic additive model,

the shunting models, the two-slab bidirectional associative memory

(BAM), the back propagation, and the Kohonen model. Their nodal equations

are:

1. Generic Additive Model

a - A ai + I ii + YmiS(a) (3)

)X I

where S(aj) is the thresholding function and mij governs the learning

law, to be discussed later. li is an input signal from the external

environment.

2. Shunting Model (Membrane Equation)

a i = A a i + (B - ai ) Qi - C i P i()

where Qi is the excitatory input; Pi is the inhibitory input, and A, B, and

C are constants.
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3. 8AM Model (Two Slabs)

a i = -A i + I : il S(bj) (5)
all j

bj =-Abj + Jj + mij 5(a i) (6)
all i

where li and 6j are the input signals.

4. Back Propagation

a. () I . (n Sa(n - (nth slab) (7)
all j i

5. Kohonen Model

a i  mij lj (8)
all j

There are several learning laws as well. Most are based on Hebb's

observation of pairwise association (221.

B. Learning Laws

The learning laws operate on a much slower time scale than the

nodal activity. The most prevalent law is an outer product of the output
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signal of the ith cell and its jth input signal, with an exponential decay

relaxation term [13]. However, some learning laws act on a still larger

time scale. For these, each increment of the weight is the steady-state

outer product, and these increments are summed over a training cycle

time larger than the relaxation time. This is used in the back propagation

model, and in the Kohonen model, and is similar to the covariance product

sums used in adaptive phased array radar.

Another important variant is the Grossberg competitive law [81 in

which the relaxation time is proportional to the output signal strength of

the receiving cell.

The major learning-laws are:

1. Covariant

mij = S(ai) S(aj) (9)

2. Hebbian

m = - Din.. + S(ai) 5(aj) (10)
iJ I1

10



3. Competitive

j (ai) [mij + S(aj)] ( )

and the Oja variation [231:

m S(ai) [- S(a i) mij S(aj)] (12)

4. Backward PropaRation

Error signals 81n)" for n-th path are:

(n)= n mn.. I . (13)
i all j 'J i

S(n) 8(n) ((1n-4)
1J J

6 (N) = S (a(N)) [T, -S (a(N)) (15)

,85(u)
where N indicates the final output slab; S' 85u and Ti is a

training signal.

5. Kohonen

AMij = o( -mij) z i  (16)
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where zi = 1 if ai = max (ak), and is zero otherwise.

C. Thresholding Function

The threshold function describes the formation of a cell's output

signal as a function of its internal activity. Early neural models used a

linear response, but-the current second-generation models are a nonlinear

response. This simple innovation is of fundamental importance because it

removes the inadequacy of neural networks to provide essential

nonlinear learning [241.

Threshold functions:

1. Step Function

1, ai>O0
s(ai) = {o, a jo (17)

2. "Offset"

ai  , ai > 0

1 ai2 O

12



3. Hebbian

(i) 5(a i ) = tanh ai

(ii) S(ai) = i (19)
1+ a.

Bias terms and scale factors can be incorporated in the threshold

functions.

D. £ZablLLu

Another major feature is the stability of a network [25]. It is

believed desirable for the network to approach a single optimum state

after being given an initial input distribution. Various global quantities

with quadratic minima have been defined [ ], [16] and used with success

to design networks that will produce optimizations in a stable manner.

These Lyapunov functions [25], "energy" functions [8], and error functions

[1] are of great theoretical interest, but for the purpose of this paper the

nodal activity equation and the learning law are adequate guides.

In Equations (1) - (19) the term types are (excluding third rank and

higher tensors [30, 31, 32])

13



a i  :linear

S(ai) thresholded

_X, mij 5(aj) matrix-vector products
J

and the operations include multiplication, division, addition, subtraction,

differentiation, and integration.

E.Disuss

DescriDtion of functions Derformed bu the models

The generic additive model and the two-slab BAM both use the

Hebbian learning law. These nets associate inputs because one input

distribution is encoded as the interconnects of each node activated by

another distribution. Later exposure of either input will reactivate the

other input. If part of an input is missing, it will be filled in because the

recalled input will, in turn, attempt to reactivate all of the nodes in the

first input. Sequences can be encoded on a pairwise basis AB, BC, CD,

etc. and superimposed to form an asymmetric memory matrix. Temporal

order can be restored either by adjusting the nodal activity time constant

or by using a Hebbian learning law which responds to the covariance of

the first time derivatives of the nodal output signals (differential

14



Hebbian). Sequences can be recognized by using an avalanche network: a

set of "grandmother" cells (cells tuned to recognize specific patterns) is

arranged so that each cell's output excites only the next cell in the

sequence. All the cells receive the time-varying input. If the input

matches the desired sequence, the corresponding set of cells will

reinforce each other in turn, and produce a recognition signal at the end of

the sequence. Still other variations are possible. The back propagation

and the Kohonen models both incorporate an adaptive fan-out of the input

distribution. The Kohonen system self-organizes so that each cell

responds best to specific sub-inputs which are closely grouped in the

feature space, and thus this model yields good statistical approximations

to the overall input distribution. The back propagation model also

receives a training input. It forms an error signal as the difference

between the actual final output and the training signal of those nodes.

This error is propagated back through the interconnect system to form

new error signals at every node. The weights are incremented in

proportion to the covariance of the errors and the input at each cell. It is

a remapping network with good statistical invariance to input signals.

15



The shunting networks use a variety of learning laws. They are very

powerful, general-purpose nets which effectively deal with random and

patterned noise, and also automatically renormalize and enhance their

activity prior to the slower adaptation processes performing the adaptive

encoding.

IV. OPTICAL IMPLEMENTATION

In this section we explain how some of the system equations can be

described in an optical system. There are two major problems intrinsic

to the project that cannot be easily resolved. The first concerns the

identification of the activity ai with optical quantity, which can be

either amplitude or intensity. ai , being positive in the neural network

model, should be interpreted as an intensity which, however, does not

appear in optics without manipulation. In other words, the amplitude in

optics must be replaced by [Intensity]l/ 2 and this may or may not be

justified. If ai is considered as an amplitude, a complex quantity, then

the phase factor does not admit any interpretation in neural network

models. Since this proble,'n cannot be resolved easily and the

generalization of ai as a complex quantity cannot be done at the present

16



time, we will use the slowly varying part of the amplitude in optics as

the desired positive number.

Another problem concerns the relaxation time which must be smaller

than nanoseconds, whereas in neural networks the time scale is on the

order of milliseconds. This difference makes the two systems, neural

nets and optical wave equations, never physically equivalent. Again,

we can only keep the problem in perspective.

A. Thresholdina

The Sigmond function 5(ai) is the output for a given input ai in

the cell. This can be accomplished in several different ways. One method

is to take advantage of the amplified medium. Four-wave mixing [26], or

a laser amplifier [27] can both achieve this goal. However, all of these

methods transfer the energy from external beams to the amplified beam.

The disadvantage of setting up the external sources overwhelm whatever

advantage that can possibly be gained.

The right choice of nonlinear material can provide a bistable

characteristic curve in Fig. 1, where Ein and Eout are the incoming and

17
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outgoing amplitudes, respectively. This optical bistable device is easy to

set up and a theory can be summarized in one equation (20), [28].

I E j -u 
4 (01-r) E2 ( 02 eO" - i( R 2 e-OC + i (20)

I Ein 2  R e 2

where

R (~+., P V(r-f (21)

and r is the reflectivity at the medium. The nonlinear part of the

dielectric constant e enters through

0(' + io" 2TCL T (22)
X

where L/X is the ratio of the cavity length and wavelength.

Although Eq. (20) is an approximate solution, the accuracy is good

enough for our purpose. The next question concerns the material. This

subject has been reviewed elsewhere [29]. Many are available depending

on the requirement on the thresholding or the switching time. If no

strenuous conditions are imposed, then any material with nonlinearity

19



will suffice. In the definition of dielectric constant e = c + 4 X,

and

X = X1 + X2E + X3 E E + . (23)

The case where X3 = 0 and X2  0 defines cubic nonlinear terms.

When X2 is present, the effect of the quadratic nonlinearity frequency

doubling, etc. will dominate the desired bistable effect.

We should point out that the nonlinear optical material considered

here and the photorefractive material used later can both perform the

thresholding of this section, and the association memory of the next

section . The reason for adoption of the usual nonlinear bistable material

described in Eq. (20), for example, GaAs, CdS, etc. for thresholding while

associative memory is considered along with the photorefractive material

like BaTiO3, etc. is a matter of convenience for practical purposes. For

example, it has been reported [301 that GaAs can perform the four-wave

mixing just as well as the photorefractive material, with vastly improved

speed at the expense of a much larger required intensity. In this report

we follow the conventional application in the literature.

20



B. AdaDtive Term and Photorefractive Medium

The index of refraction of a photorefractive material can be

written as

~ 0  na eiPa (3* + 2 ; exp ika - r +c. c.

+ n e A A + AA exp ikb r + c. c.

" nb e I~o b  A exp ik r + c. c.

c 12

Snd e A A exp ikd • r + c.c. (24)
d 3 4

where na ... nd etc. are the optical nonlinearities and SPa ... 9d are

constants. Equation (24) is simply the index of refraction according to

the cubic nonlinearity with the specific conditions due to the arrangement

k -k -k 2 k 3 k -k2 1 k3 - k4 ) (25)

1 4 2 a'

k -k =k -k k (26)

21



When n is substituted into the Maxwell equation and each component of

exp ikix (i=1,2,3,4) is identified, we obtain (261

( A1 = QIA 4 - Q2 A3 - Q3A2  (27a)(az cTa-

= Q*AA - Q2 A4 - Q3 A (27b)

(8 1 8.2- 1 -Q4A4 (27c)
1 T 1 1 a - I A Q2 AJ

A Q _i 1  A Q 2A2 - Q A (2 7d)
Ca c t A 4 =  1 1 22 4A3

where Q i Oi=1,2,3,4) obey the Debye equations

IQ + Q "I A A + A2A (28a)

Z(Q " Q2 = d2 AI A 3 A2"A4 (25b)

2 2 2 10 13 24

22



Q +Q AA3 2  (28c)
3Q3 3 = I

16 Q +Q 4  AA) (28d)
4Q4 + 4 =0 [ 31

and I0 = E li = Z IAil 2

Notice that the Maxwell equations imply 6 = 0. In Eq. (28) the

Q factor is often introduced, as is done here, to reflect the buildup time

of a hologram from various beams in the medium. Equations (27) - (28)

took very similar to the BAM model but with some important differences.

First is the use of complex numbers introduced throughout the formalism.

The phase factor is crucial in optics although the corresponding network

activity ai are supposed to be real. Another factor is the difference

between ai and S(ai) that must be addressed by means of thresholding.

In view of these difficulties, we cannot take this set of equations and try

to identify them as a part of BAM. The photorefractive interference, as

discussed however, will be used as a "component" of the BAM to function

or perform as the adaptive term. This is to be illustrated in the next

section.
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We follow here one example set up by Yariv et al. [311 The pump

beam in Fig. 2 is to be identified as 5(ai) and S*(bj). Then the

nonlinear part of the index of refraction is

n= 5_ S(a i) S(bj) Aij (29)

ij

where

A.. e a (30)
i

and Ln is stored in a hologram. When E' in the direction of 5(a)

shines on the hologram, then a diffraction beam Ediff

Ediff = J e (31)

is produced, and

J f E(r) S(a i ) 5(bj) d3 r exp ik(xx + yy)/r

24
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is the overlapping integral. The reflected field moves opposite to S(bj)

5*(a) 5(b), and this reflected beam excites An again to produce a

field proportional to

AnEout = J IS(bj)1 2 S*(a) (32)

The net result, if all contributions are considered, can be expressed as

(AE)i  mij S(bj) (33)

and

rmij + M ij = S (a) S(b) (34)

In actuality, mij c- S"(a) S(b), but the time derivative in Eq. (34) is

added to reflect the time delay between S'(a) and S(b) turn-on and the

production of (AE)I. Equations (33) and (34) for (AE)i show how the

adaptive term can be produced with the output proportional to J , the

overlapping integral. This scheme has the advantage for application

of training and learning, i.e., the stored information An is retrieved by

the incident wave Ei.

26



For our purpose or demonstration of the adaptive term in BAM, a

simpler setup can be given as follows. The holograph is set up as

An = X S*(ai) S (b j) (35)

by two pump beams. A probe beam S*(bj) is then refracted from

the diffraction grating to produce the conjugate beam (AS(aj)) c .

Or, in our notation,

(L S (a i)) m mij Sm (b j) (36)
c

and

r(mlij) + mij S (a i ) 5(bj) (37)

Again, the time derivative is added for consideration of buildup time for

the diffracting.

A short summary of discussion is given here. We demonstrate how

an optical beam called (AS(a))c can be produced for a given set of

(ai,bj) as shown in Fig. 3, when bj -* $(bj) , ai -+ 5(a i) by the

thresholding processes. (S(ai))c then is numerically equal to Ej mij S(bj)

with mij defined in Eq. (37).
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A major point to be made is that currently the only optical effect

which has been found useful for implementing associative memories is the

photorefractive effect. There is no other way to do it without going to

hybrid systems.

C. Shunting Mechanism

The shunting term is of the form given by

ai  S(aj)

which is proportional to the product of the two amplitudes ai and S(aj)

in contrast to the triple product for the adaptive case. It seems one

should be able to use the X2 term to generate this term. This cannot be

carried out because this nonlinear term has its dominant effect on the

phase in the wave propagation and not on the absolute magnitude of the

amplitude.

We have examined the technique of optical correlation in the

literature and found that our need is much simpler, since no spatial

information is contained in ai. To accomplish the shunting term we use

the geometry in Figure 4 where a photorefractive crystal is present, and

29
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the two pump beams ai and Ej 5(aj) form a grating according to the

shunting term

LAn = ' a i S(a) e J (38)

Then a beam of constant amplitude c e C will be scattered from An,

with the resultant amplitude proportional to Ac

AC -- c i S(a e (39)

We note that this term is just the shunting amplitude with specific

direction ( ki - kj- kc).

D. Amplification

When the optical system is designed, absorption in the system,

intrinsic or external, cannot be avoided. At certain stages of operation

the optical amplitude must be amplified to sustain the operation. Four-

wave mixing in a nonlinear medium can accomplish this goal.

E1 and E2 in the diagram of Fig. 5 are the pump beams. E4 is the

conjugated beam at z = LI and E3 is the probe beam, which satisfy
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E4 (sin sL) 2  
(40)E3 l cos jiL 2+ Aksin jiL2

where

= Jf( ElE 2 )2 +((k/2) 2  41)

X I b EiEI

where a' is the coupling constant and k = I + k2 - k3 - 14 j is the

phase mismatching, which in general is zero. Consequently, E4 /E 3 can

take almost any value when AkL << 1.

In summary, we have demonstrated the optical elements performing

the following tasks for a gie set of (ai, bj):

(1) Thresholding to convert

ai -* S(ai), bj -+ S(bj)

(2) Production of neural adaptive changes

A = Z mij S(bj)

where

mij + r mij = 5(a i) S*(bj) .
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(3) Performing the shunting as dictated by

a. XL S(a .)
a I

(4) Producing the amplified signal, which is accomplished by

integrating all elements as described in this section.

V. CANDIDATE IMPLEMENTATIONS OF THE NEURAL NETWORKS

A. Conceptual Architectures for ODtical Neural Networks

The objective of this section is to devise candidate

implementations of the neural networks discussed in the first section

using the optical effects discussed in the second section. Where possible,

all-optical architectures are chosen that do not have detector arrays and

electronically converted video data. However, some hybrid techniques

have been used where they appeared to be the only method available.

B3. Buildina B3locks

The photorefractive effect has been used as the preferred method

for associative memory. The usual approach of storing a hologram made

from the mutual interference of two input images suffers the drawbacks

of low output during recall. This is because the output is a diffracted

reconstruction. An elegant solution which provides full-strength

reconstruction has been shown by Stoll and Lee, and their technique
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will be used here. Basically, their system consists of a

cascaded pair of matched filter correlators whcih encode given

pairs of images by multiplying them with a different reference

angle for each pair. Thus a given reference beam exits

between the matched filters, and it is amplified by a nonlinear

crystal prior to its reading of the second matched filter.

Their system has a fundamental difficulty that prevents its use as a

fully adaptive optical associative system: The associative encoding

process and the ensuing readout process are performed separately. Thus

the encoding activity does not account for the modification of the output

signals as the associative matrix is formed. This is a problem found with

almost all adaptive associative systems using the photorefractive effect.

It can be resolved by use of polarization-switching dynamic volume

holograms as first shown by Psaltis (8]. By combining the Psaltis

technique with Stoll and Lee's system, an adaptive optical associative

architecture can be devised and is shown in Figure 6. Its operation is as

follows: Two photorefractive crystals A with a gain crystal B are

arranged in the Stoll and Lee configuration with a reference beam e
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being provided to each crystal A The input distributions SA and SB

to be associated pass through nonreciprocal Faraday rotaters C as in the

Psaltis system. e has a polarization at 900. SA and S3 are placed at

-450. The rotaters C produce a +450 rotation to SA and SB so that

when they enter the photorefractive crystals A they are also polarized

at 900. They interfere with the e-beam to produce the desired volume

holograms in the crystals A As the holograms form, SA and SB are

diffracted from them. The diffracted beams, due to the large angles

between the SA , SB and e beams, are polarization-switched to the

orthogonal 00 polarization state as in the Psaltis arrangement of

Reference 8. These diffracted beams pass through the gain crystal B and

are incident upon the photorefractive crystals again, where they contact

with the volume holograms and are again diffracted to form the output

beams KBA and KAB . These beams also undergo polarization-switching

from 00 to 900. They pass through the rotations C and emerge at a

polarization angle of +450, orthogonal to the SA and SB beams. They

can then be separated by a polarizing beamsplitter. They are the adaptive

inputs to the slabs generating the signals SA and SB . Thus the
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adaptive contributions are available during the encoding process. After

the system reaches equilibrium, new pairs of slab inputs (not shown) can

be presented with the angular reference beam e reset to a new angle.

The remaining building blocks are less complex. Figure 7 shows the

threshold crystal. It can be a bistable device, or a pumped BaTi03

operating inthe saturation regime. Figure 8 shows how an optical

feedback loop provides the necessary time delay factor to generate the

loss term in the nodal activity. Shunting can be achieved by the technique

discussed earlier, or a hybrid implementation used in which a SLM is

inserted into the time delay loop to vary the splitting coefficient k in

proportion to the local average of the slab activity.

With these building blocks, the following optical architectures can be

schematically developed for the additive, BAM, and backpropagation nets.

Inspection of the defining equations for the BAM and additive models

shows that they are basically equivalent if we set I = J. Accordingly,

only the BAM architecture is discussed here. It is shown in Figure 9. It

consists of the adaptive building block with provisions for adding the
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input distributions to the adaptive terms and thresholding the run. This

is done in the loops shown below the adaptive optics.

The backpropagation architecture is more complex and requires

additional explanation. It is shown in Figure 10. Two adaptive systems

are arranged in a square. Two additional photorefractive crystals A and

two more thresholding crystals B are used. The new thresholding

crystals are operated so that an incident beam will be turned off rather

than on at the threshold. Their threshold level is higher than the regular

threshold crystals r . The crystals A form a grating proportional to the

product of their inputs. Their inputs are in turn diffracted from this

grating. The diffracted S' beam, containing the square of 5' rather than

S' itself, is used as an approximation to the exact form from

backpropagation theory. While cumbersome, this architecture satisfies all

the basic requirements of an optical implementation of the standard

three-layer feedforward backpropagation algorithm.
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