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The Adjoint Process in Stochastic
Optimal Control

ROBERT J. ELLIOTT
DEPARTMENT OF STATISTICS AND APPLIED PROBADILITY
UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA
CANADA T6G 2G1

MICHAEL KOUHLMANN
FAKULTAT FUR WIRSTSCHAFTSWISSENSCHAFTEN UND STATISTIK
UNIVERSITAT KONSTANZ, POSTFACH 5560
D-7750 F.R. GERMANY

Abstract. Using stochastic flows a minimum principle is obtained when a diffusion is
controlled using stochastic open loop controls. An equation for the adjoint process is then
lerived using an explicit formula for the integrand in a certain stochastic integral.

1. Introduction.

There have been many proofs of mmlmum pnnctplcs in stochast.lc c.)orirgl For a small
sample sce the works of Kushner 115] Blsmuﬂ?] Haussmann 110]‘—{11’}'1'1‘2] Daws and
Varaiya [G], and the book by Elliott:{8] In this paper we consider a diffusion and stochastic
open loop controls, that is, controls which are adapted to the filtration of the driving
Brownian motion process. For such controls the dynamical equations have strong solutions,
and the results on the differentiability of the solution, due originally to Blagovescenskii and

ey . cenve (oo A .
Freidlin-[1], can be applied. The worz of Kunita*fi4} and Bismut-{Z] on stochastic flows
cnables the variation in the expected cost, due to a perturbation of the optimal cortrol, to” - the ‘
be calculated explicitly. The minimum principle follows by differentiating this quantity. \F e

If the optimal control is Markov the stochastic integral representation result of {9)'is
applicd to give an expression for a quantity associated with the adjoint process. Stochastic

<pe ) €

calculus is then used to derive the equation satisfied by the adjoint process.
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2. Dynamics.

Suppose the state of a system is described by a stochastic differential equation:

d& = /1t €, u)dt + g(t, &)dw,
G eRY, f=x0, 0SLLT. (2.1)
‘The control parameter u will take values in a compact subsel U7 of some Euclidean space RE.
We shall make the following assumptions.

Ay: [ 2 [0,T) x R x U — R? is Borel measurable, continuous in u for cach {t,z),

continuously differentiable in z and for some constant K
(U + =) S Gz, u)) + et 2, u)] < K

Az: ¢:[0,T|x R¢ — R4®R" is a matrix valued, Borel measurable function, continuously

differentiable in x, and for some constant K,
lg(t, )] + lge {t, 2)| < K;.

The columns of ¢ will be denoted by g(k) fork=1,...,n
A;: w = (w',...,w") is an n-dimensional Brownian motion on a probability space

(N, F, P} with a right continuous, complete filtration {F}, 0 <t < T.

DEFINITION 2.1. The set of admissible controls U will be the Fy-predictabie functions on

[0,T] x O with values in U. These are sometimes called ‘stochastic open loop’ controls, [3].
REMARKS 2.2. For each u € U there is, therefore, a strong solution of (2.1), and
we shall write £ (z) for the solution trajectory given by
t t
Ei(z) =2+ / I{r, 5:", (z),u,)dr + / g{r, E:.r {z))dw,. {(2.2)
L] L]

Then, because u is a (predictable) parameter, the result of Blagovenscenskii and Freidlin

{1 extends to this situation, so the Jacobian —5—'*‘—(:) 4 exists and is the solution of

D‘l "‘I+/ j((r 6-7( ) D:,dr+2/ (k) €nr ))D:,rdwrk‘ (2'3)

k=1
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Here Iis'the d x d identity matrix. In fact, if the coefficients [ and g are C* the map
- €4 (z)is CLL

Consider the matrix valued process H defined by:
t
[} u (k
i = 1= [ el ch’ €8, () )dr

-Z [ 12,0 2 (2.4

Then using the Ito rule we see d(H}, D};) = 0 and H}, D;, = 1, 50 Hy = (D;‘l,)‘1 .
Write |[€%(zo)llt = sup |€§, (o)|- Then, as in Lemma 2.1 of (12], for any p,
<<t :

1 < p < o0, using Cronwall's and Jensen's inequalities

e (eollf < C (1 +lsol +| [ o0 €5 tzohd)

almost surely for some constant C. Therefore, using Burkholder’s inequality and hypoth-

csis Az, ||€*(zo)llr isin LF forallp, 1< p<oo. Write

I1Dllr = sup |D5.|
0<e<T

[ #4r = sup |Hg,]|
0<a<T

Then, because f; and g¢ are bounded, an application of Gronwall’s, Jensen's and Burk-
holder’s inequalities again implies
i

|D*|lr and [[H*||r arein L? forallp, 1 <p<oo

COST 2.3. Suppose for simplicity that the cost associated with the process is purcly

terminal and given by a bounded C? function

(€5 (o))

A¢: We supposn |e(z)]| + [eo(z)] + feaz (2)] € Hall + |29} {for some ¢ < oo,
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The expected cost if a control u € U is used ia, therefure,
J{u) = Ele(&5; (z0)))-

We shall suppose there is an optimal control u* € [/ so
J{u')y < J{u) forall uel.

NOTATION 2.4. Ifu* is an optimal control write £* foc ¢, D* for DY ete.

REMARKS 2.5. Consider a d-dimensional semimartingale of the form
=2, + A

where A is a predictable bounded variation process. Then Kunita's formula {14] for the

composition of processes can be applied, (sce also Bismut [5]), and we have

t
E,(5) =2 + [ [l €5 (20) ul)dr
rl af‘.' - ‘ L ] )
oA j“ —5;—-(2,)11/‘, + Z/ g(l) (r, E” (z,))dwf. (2.5)

k=] ¢

DEFINITION 2.6. Consider perturbations of the optimal control u* of the following kind:
For s € [0,T), h > O such that 0 < s < s+ h < T, and A € F, define, for any other

admissible control i € U,

u'{t,w) if(t,w) g[s,s+h|xA
t(t,w) if(t,w) € s, s+ h] x A.

u(t, w) =;{

Applying (2.5) we have, similarly to Theorern 5.1 of [4], the following result.

THEOREM 2.7. For the perturbation « of u* consider the process

a=s+ [ N e, ) - S G (26)
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Then the process £ () is indistinguishable from £}, (z).

PROOF. Substituting (2.6) in (2.5) we see

¢
boelzt) =I+/‘ J(r &, (2e)yup)dr
+ /“ (af.'gx(z,)) (Of,'gz(z,)>—l (/(r.f:‘,(z,),u,)——f(r,f,", (zr),u:))dr

+ /:‘ g(r, &, , (2¢))dwe

cxt [ 106 e+ g, (2 dur-

Jlowever, the solution to (2.2) is unique so &, (z,) = €34 (z).
REMARKS 2.8. Note that u(t) = u*(t) il t > s+ h 50z = z;4a it > s+h.
Therelore

f:,x (2¢) = f:,( (zo4n) = f:+h,t (f:,u»h (:x:))

ift> s+ h
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3. A Minimum Principle.
Now
J(u') = Ele(&r (20))]
= Ele(§r (z))]  where z = &, (zo),
because, by uniqueness, &1 (zo) = €57 (z). Similarly,
J(u) = Ele(&5:r (z0))]
= Elc(&r ()]
= Ble(&r (zo4a ).

Therclore,
J(u) = J(u*) = E[e(&r (2044 ) = c(&ir (2))].
Because & 7 (-) is differentiable this is

3 EU‘M cc(g,,(zr))af r(z,) (af:giz,))—l (f(r, €, (z,),u,)—f(r,{:,r(z,)'u:))dr]_ ?’
(3.1) 4

This gives an explicit formula for the change in the cost resulting from a ‘strong’ variation.
in the optimal control. It involves only a time integration. The only remaining problem is
to justify the differentiation of the right hand side of (3.1).

Write I'(s,r, 2,) = c¢ (€l (z,))éf_g_(__(afn ; (Zr))
Then

-a+h
Jw-Jw)= | E[(mrz,) Clor,2) (0, €6, (2e)s we) = S (s € (ar), 7)) ] e

+ E'

V1 Z) - L(r,r, :c))(j(r, E:,r (2r), u,) = f(r, f:,r (2r), u:))]dr

[ sl
+ [ B[t aue €, e, w0 - fin €, (e, w0
f(r. €, (), ur) + £(ry €6, (2), u3))]ar

(nr2)(S(r, €, (20), ur) = f(r €, (z0), u7))]dr
=1 (h) + lz(h) + Iy(h) + I¢(h), =may.
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Now,

+A
Ill (h)l < K‘ /‘ E['r("'rvzf) - r(s,f,:l:)](l + “fu(IO)Hn-bh )]dr

SKih sup  B[I0(a,r 5] = (o, 2)l(1+ € (zo)llsn )]
0SrSath

oA
Wl < K [ E[IPourz) - Deraliis+ et (eo)lann)dr

S Ksh sup  E[INs,r,z) = (2] (1 + € (zo)llass
1<r<ath

I (M)] < 1{0/"“‘ E[IF(r,r,r)[ ||1:-.z,l|]dr

< Koh sup  E[I0(ryr,2)l = 2usn ]

s<r<s+A
The differences [T'{s,r,z,)—T(s,r, z)}, {T(s, r, z)=T(r,r, z)| and {jz— z|l,4» areall unifor‘gfnly
bounded in some L?, p > 1, and ‘
lirx‘l {T'(s,r,2,) = T(s,r,z)] =0 au.
. lim|T(s,r,z) = T'{r,r,z)| =0 aus.
i r—a

’Ex_.ng ffx — z.[le4a = 0.
Therefore, ;

hn;l "r(-" rz) = T(s,r,z)ll, =0
Jim ID(s,7,2) = D(r,r,2)lly = 0
and ;!1_."01 l{llz ~ zls4n )l = 0 for some p.

Consequently, hh_‘rg R~ I (R) =0, for k =1,2,3.

‘The only remaining problem concerns the differentiability of

niw= [ " B[ 2l €, (o) w) = 10, € (20), w2

The integrand is almost surely in L*(|0,T]) so Jim A=Y I (h) exists for almost every s €

[0,T]. However, the set of times {s} where the limit may not exist might depend on the
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control u. Consequently we must restrict the perturbations u of the optimal control u* to
perturbations {from a countable dense set of controls. In fact:
1) Because the trajectories are, almost surely, continuous, F, is countably generated
by scts {Ai,}, ¢ = 1,2,... for any rational number p € [0,T]. Conscquently Fy is

countably gencrated by the sets {4}, r < t.

™)
—

Let Gy denote the set of measurable {unctions {rom (1, ) to U C R (fuel
then u(t,w) € Gy.) Using the L'-norm, as in [7], there is a countable dense subsct
H, = {u;,) of G,, for rational p € [0,T]. U H, = {J H, then H, is a countable
dense subset of Gy. If u;, € H, then, as a function’sctonstant in time, u;, can be
considered as an admissible control over any time interval |¢,T] for t > p.

3) The countable family of perturbations is obtained by considering scts A;, € Fi,

functions uj, € Iy, where g < ¢, and defining as in 3.1
uj, (s, w) = {

Then for cach 1,5, p

u' (s, w) il (s,w) ¢ [,T] x Ay,
ujp (s, w) if (s,w) €[t,T] x A,y

[ELY
Ah.‘r% At -/: E[r(r,r,x)([(r, §G.r (;0)1 u;‘,) - f(f, £(;.r (IO)v u‘))] dr (3'2)
exists and equals
E[T(a,,2)(f (s, €, (z0)s usp) = J(o1 €4 (z0)s w' ), ]

for almost all s € [0,T).

Therefore, considering this perturbation we have
tim A (4 () = (') = E[C(s,0,2)(f (o, 6 (z0)s wip) = J(s, 66, (20)s w' ), |
>0 for almost all s € [0,T].

Consequently there is a set S C [0, T] of zero Lebesgue measure such that, if s ¢ S, the

limit in (3.2) exists for all §, 7, o, and gives

E[ls,8,2)(f (s, &, (s0)s usp) = f{s, €, (s0)s wN)a, | 20.
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Using the monotone class theorem, and approximating an arbitrary admissible control

u € / we can deduce thatif s¢ S

E|T(s,5,2)(/ {3, & (20), u) = [(s, &, (zo)s u'))IA] >0 foranyu€c U and A€ F,.
(3.3)

Write
¢, r(z)

pe(2) = Blec(€r (o)) =5

| F.] = E[I'(s,s,z) | /4] (3.4)

where, as before, z = §g, (o). Then p,(z) is the adjoint variable and we have in (3.3)

proved the {ollowing minimum principle:

THEOREM 5.1, Ifu* € U is an optimal contrel there is aset S C {0, T of zero Lebesgue

measure such that if s ¢ S

pa(x) f{s,z,u") < pu(2)f(s,z,u) a.s.

That is, the optimal control u* almost surely minimizes the Hamiltonian and the adjoint

variable is p,(z).

REMARKS 3.2. Under certain conditions the minimum cost attainable under the
stochastic open loop controls is equal to the fninimum cost attainable under the Markov,
feedback controls of the form u(s, &3, (z0)). Sce for example (2], {10]. If uar is a Markov
control, with a corresponding, possibly weak, solution trajectory £%M, then ups can be

considered as a stochastic open loop control upr(w) by putting
up (w) = upm(s, &5 (2o, w)).

This means the conirol in effect ‘follows’ its original trajectory £¥M than any new trajectory.
That is the control is similar to the adjoint strategics considered by Krylov [13]. The
significance of this is that when we consider variations in the state trajectory €, and

derivatives of the map z — £, (z), the control docs not react, and so we do not introduce

derivatives in the u variable.
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If the optimal control u* is Markov the process ¢* is Markov and
pe(z) = E[T(s,3,2) | Fi|

= L[l (s, s,2) | z]. (3.5)

4. The Adjoint Process.
Suppose the optimal control u* is Markov. As noted above, u* can and will be

. LT ar\"
considered as an open loop control. Thcj. Jacobian —;— cxists, as does (—a—;—) and

1

higher derivatives.

THEOREM 4.1. Suppose the optimal control u* is Markov. Then
pi(z) = E:C{(&;,T (xo))Do'z'} - /O Pr(f(;,p (xO})fC(r' &;,r (IO)’ u, }dr
+ [ palri &, (o)a(r, &, (o))
0
- j; px(r &6, (z0))g(r: &o.r (z0))g¢ (v, &o,r (z0))dr.

PROOF. Write f¢(r) for f¢(r, &, (o), u;) and g(r) for g{r, &, (o)), etc. By unique-

ness of the solutions to (2.1)

&o,r (zo) = £5.1 (£, (o)) (4.1)
50, dilferentiating,
Dor = Dyx Do, 14.2)
where Do = Do etc. (without the *).
From (3.4} and (3.5)
pe(z) = Elee(bor (zo)) Dorr | Fi

so from (1.2)

pe(z) Do, = Ele¢(€o (20)) Doy | Fi (4.3)



126

and this is a (P, {F;}) martingale. Write z = &, (z0), D = Do,. From the martingale
represcntation result |9}, the mtegrand in the representation of p,(z)D as a stochastic
integral is obtained by thc Ito rule, noting that only the stochastic integral terms will '

appear. These involve the derivatives in £ and D. Thercfore
re
Ps(z)D = Elc¢(borr (10))Dorl+j Pz(r, &5, (z0))g(r)dw, Do,

+Z/ (€5, (0)}o) (r) Do, k. (44)

k=1

Recall from (2.4) that Hy, = D~} so forming the product of (2.4) and (4.4), using the Ito

rule:
p.(x) = (pa(z) D) Ho,
= Ele¢(€7 (z0)) Dox | - / pe (€3, (z0)) e (r)dr

—" ‘,E(;,J:o( r)dwt + (o (= ()r’dr
S [ rleic sl ) > [ prltis (o6 )

k=l

NI PCTED oy RACHEN T LICTY
—Z/m s (o)) dr_g/,,, (€5, (z0)) (g (1)) ?ar
= Eleg(€57 (z0)) Dor | - /0 " pe(657 (zo) fe(r)dr

b3 n [
+ /o palr &, (olladwr = 3 /o pa(r, €, (z0)a(r)ol® (r)dr

s0 cstablishing the result.

This verifies by a simple, direct method the formula of Haussman [10).
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