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Abstract. Using stochastic flows a minimum principle is obtained whcn a diffusion is
controlled using stochastic open loop .onitrols. An cquation for the adjoint process is then
-- ,rived using an explicit formula for the integrand in a certain stochastic integral.

I.. Introduction.

There have been many proofs of minimum principles in stochastic control. For a small

sample sice the works of Kushinerj.151, Bismut-tj llaussmann lib{If4Davis and

'Varaiya JGJ~ and the book by Elliottj-1 In this papcr we consider a diffusion and stochastic

open loop controls, that is, controls which are adapted to the filtration of the driving

B~rownian motion process. For such controls the dynamical equations have strong solutions,

and the results on the different; ability of the solution, due originally to lBlagovescenskii and

Freidlin-111, can be applied. The wor;: of {uinita'EHi-and Bismut-M2 on stochastic flows

C

be calculated explicitly. The minimum principle follows by differentiating this quantity.

If the optimal control is Markov the stochastic integral representation result of 191' is

applied to give an expression for a quantity associated with the adjoint process. Stochastic

calculus is then used to derivc the equation satisfied by the adjoint process.

Accesion For,

NTIS CRA&M
DTIC TAG

- 7 vail and/or
Dist Special



116

ACKNOWLEDGEMENTS. Dr. Kohlmann wishes to thank the Department of Statis-

tics and Applied Probability of the University of Alberta for hospitality and support during

the spring of 1987, when this work was carried out. Both authors gratefully aknowledge

the support of the Natural Sciences and Engineering Research Council of Canada under

grant A-7964. The work of the first author was also partially supported by the Air Force

Office of Scientific Research, United States Air Force, under grant AFOSR-86-0332 and

European Office of Aerospace Reicarch and Development, London, England.



117

2. Dynamics.

Suppose the state of a system is described by a stochastic differential equation:

d6 = ~t, tu~dt + g(t, t)dwj

.f ERd,  o0= x0, 0 < t<T. (2.1)

The control parameter u will take values in a compact subseL U of some Euclidean space Rk.

We shall make the following assumptions.

Al: f : 10,T) x Rd x U -, Rd is Borel measurable, continuous in u for each (t,z),

continuously differentiable in z and for sorue constant K

(I + 1x) - ' If(,,x,,)I + 1 (t, z,,)l <_ K.

A 2 : g: 10,T] x Rd -- Rd®R" is a matrix valued, Borel measurable function, continuously

differentiable in x, and for some constant K2

Ig(t,z)l + Ig.(t,z) __ K.

The columns of g will be denoted by 9 (k) for k = n.

A 3 : w = (w w,...,w) is an n-dimensional Brownian motion on a probability space

(fl, F, P) with a right continuous, complete filtration (Ft}, 0 < t < T.

DEFINITION 2.1. The set or admissible controls L will be the F,-predictable functions on

10, T x fl with values in U. These are sometimes called 'stochastic open loop' controls, 13].

REMARKS 2.2. For each u E U there is, therefore, a strong solution of (2.1), and

we shall write ,,t (z) for the solution trajectory given by

C.,(z) = z + j (r, .(), u,)dr + g(r, .(x))dw,. (2.2)

Then, because u is a (predictable) parameter, the result of Blagovenscenskii and Freidlin

Ill extends to this situation, so the Jacobian z() DA exists and is the solution of

D:.t = I + f( f(r,,(x),u,)D,,dr + g(k) (r, 'r(x))Ddw*. (2.3)
P k=l
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Here I is the d x d identity matrix. In fact, if the coefficients f and g are Ck the map

X- (X) is Ck".

Consider the matrix valued procese H defined by:

ftnUt' k (x)) )d,
., 1 I-:.,(fc(r, ,(z),U,)-

g- , H (r, C, (x))
k=1

Then using the Ito rule we see d(H, Du, = 0 and 1'J D,, = I, so HII = (D"-

Write It '(z0)l1, sup I Q% (xo)1- Then, as in Lemma 2.1 of [121, for any p,
0<0<t

1 < p < oo, using Gronwall's and Jensen's inequalities

IIC':(Xo)HiT- C ± ,I (r, Eo,r (xo))d-r1

almost surely for some constant C. Therefore, using Burkholder's inequality and hypoth-

esis A 2 , !IV(zo)IiT is in IP for all p, 1 < p < oo. Write

IID'IIT spI OIlITl = sup l I,#O<A<T

HIP ilr " up I If .1
j O<A<T

Then, becausc f, and g are bounded, an application of Gronwall's, Jensen's and Burk-

holder's inequalities again implies

ID'T llr and 11H'1T are in LP for all p, I < p < o0.

COST 2.3. Suppose for simplicity that the cost associated with the process is purely

terminal and given by a bounded C' function

C (QT (XC)).

A 4 : We suppoS7 Ic(-)I + Ic.(z) + Ijc, (z)l K31l + IxIl) for some q < oo.
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The expected cost if a control u E U. is used is, therefore,

We shall suppose there is an optimal control u' C L so

J(u) -< J(u) for all u E U.

NOTATION 2.4. If u is an optimal control write e' fo e'* , D' for D " etc.

RtMARKS 2.5. Consider a d-dimensional semimaxtingale of the form

zj = z, + At

where A is a predictable bounded variation process. Then Kunita's formula [141 for the

composition of proccssca can be applied, (see also Bismut [51), and we have

(z,) +z + f f ( z,.,), ud

d (zrA +,, (1,)),dk. (:,.5)
k=I

DEFINITION 2.6. Consider perturbations of the optimal control u" of the following kind;

For s C 0,TI, h > 0 such that 0 < s < a + h < T, and A E F, define, for any other

admissible control ' E U,

u' (t,w) if(t,w) V [s, s+hlxA

u.') '(t,w) if(t,w) E (3,s + h] x A.

Applying (2.5) we have, similarly to Theorem 5.1 of 141, the following result.

THEOItEM 2.7. For the perturbation u of u' consider the process

z = X + O(Z) (f(r, ;., (z,),u,) - f(r, ;,, (z,), u))dr. (2.6)
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Then the proces s (z() is indistinguishable from C 'j (r).

PROOF. Substituting (2.6) in (2.5) we see

Z= + f (r, () )dr

~ ] L'~a~r) ("~hL)' (.~r, ;,. ~i~u~) f~r -( )), t)dr

=z+ f~r (z,),-,) dr + g g(r, ,.(Zr)) dwr.

lowever, the solution to (2.2) is unique so (G, (zr) = U4 (z).

REMARKS 2.8. Note that u(t) = u'(t) if t > a + h so zj = z+ if t > + h.

Therefore

(. z() = . (z,4 ) + (x))

if > s +.
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3. A Minimum Principle.

Now

J(u') = Ec( ;T (.o))]

= E c(c;,T (X))J where - 0, (rO),

because, by uniqueness, COX (-o) = C. (X). Similarly,

J(-) = Elc(C (xo))]

= El(e".rC ))

= Elc(C;, (,+h ))I.

Thercfore,

J(u) - J(u') = E[(C;, (z.+A)) - C( T (z))J.

Blccause ',T (i) is diffcrentiable this is

= E~j c ( ;r(Zr))aE (r)~ ( aZz.. (fCr,(z,(z),ur)-f(r,*v(zt),u))drI.

(3.1)

This gives an explicit formula for the change in the cost resulting from a 'strong' variation

in the optimal control. It involves only a time integration. The only remaining problem is

to justify the differentiation of the right hand side of (3.1).

Write r(a, r, z,) = c((; .(z,)) aC (zea (Z .-

Then

J(u) - J(u) E (r(s, r,z)- r(s, r, x))(f(r, :,, (z,), u,) - f(r, ,. (z,), u;)) dr

+ 1+A E[(r(sr,x) - I(r,r,z))(f(r, E,.(zr), Ur) - f(r, u))jdr

+ j E[r(rrx)(f(r, (z7), ur) - f(l, C,, (zr), Ur)

- f(r, (,, (), ur) + f(r, C,r (), u,;))]dr

+[ (ro() (f( ),u,,(o), u)) da

1: ( h) + 12 (h) + 13 (h) + 14 (h), say.
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Now,

IT,(h)l < j S Ir(,., ,)- r(:,5,,)1K + IIc-(zo)Ilo+&)]dr

<K 4 h sup E[Ir(r,,) - r(s,r,)t(1 + lIC(Xo)ll,h)]
O<r<o+h

l12(h)l < K5 j E lr(3,r,x) - r(r,r,,x)I( + 11CA(xo)11.+, dr

< Kfh sup E[lr(s,r,z,) - r(r,r,,)l(1 + i1C1(xo)l1,+h]
a<r<a+h

13 (h)l < g( i r ,T I jx -. d

< Kah sup E[Ir(,,x)] li - -.11,+h.

The differences lr(j, ,,,z,)-r,,) , r,)-rr,,r,)j and ix- zlio+h are al uniforly

bounded in some V., p > 1, and

im r(s,r,z) - r(,r,)j=o a. .
r'-

lim lr(s,T,) - r(r,r,,)l = o a.s.

lir iz - z.ll,+, = 0.
h---a

Therefore,

lim Ir(s, r,z,) - r(s, r,,z)ll, = 0

lim llr(.,r,x) - r(r, r,z)ll = 0
and lim l(lIlz - zll.+k)lp = 0 for some p.

4--o

Consequently, lir h- Ik(h) = 0, for c = 1,2,3.

The only remaining problem concerns the differentiability of

14 (h) = E rr, r,x)(f(r, C., (xo), u,) - f(r, Co', (ZO), u;)) dr.

The integrand is almost surely in LC1(0,TI) so lir h-1 14 (h) exists for almost every s E
A--*

LO,TI. However, the set of times (j) where the limit may not exist might depend on the
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control u. Consequently we must restrict the perturbations u of the optimal control u" to

perturbations from a countable dense set of controls. In fact:

1) Because the trajectories are, almost surely, continuous, F, is countably generated

by sets {Ai,}, i = 1,2... for any rational number p E 10,TI. Consequently F is

countably generated by the sets {Ai,}, r < f.

2) Let Gt denote the set of measurable functions from (fl,F) to U C Rk. (If u E _

then u(t,w) C Gj.) Using the L'-norm, as in 17], there is a countable dense subset

II, = {ui,,) of G,, for rational p E 10,T]. Uf Hi = U 11, then H1 is a countable

dense subset of G. If ui, E 1i, then, as a function constant in time, ui, can be I

considered a an admisible control over any time interval It, T for t > p.

3) The countable family of perturbations is obtained by considering sets Aj, E F,

functions uj, E Ili, where p < t, and defining as in 3.1

. { (s, w) if (8, w) [i, T" x Aj,
uj'(,W) { ui,(s, w) if (s, w) G [tTl x Ai,.

Then for each i,j,p

lim -  
' E[r(r.,,x)(f(, ,. (ro), u,) - f(r, ;., (-o), u')) dr (3.2)

A,.--O i

exists and equals

E [r(,, )(f (xo), ui,) - f (3, ;,. (XO), u*)) IA,1

for almot all s E [0,TI.

Therefore, considering this perturbation we have

n h-' (J(s,) - J(,)) = E[r(,. .)(. ., (zo). u,,) -f(,. C,o u'))i,]

> ) for almost all & E [0,TI.

Consequently there is a set S C 0,TI of zero Lebesgue measure such that, if s S, the

limit in (3.2) exists for -kll i,j,p, and gives

EtI(a, a, )(f(, ,, (-o), u,,) - f(s, G,, (Xo), U'))IAI >0.



124

Using the monotone class theorem, and approximating an arbitrary admissib!e control

u E U we can deduce that if s S

S (Xo), U) fs o,, (Xo), u 1))IA >0 for any u C U and A E F,.

(3.3)

Write

p,(z) = E[C T(XO)) O;,T(Z) F.] =ErC(s,,,z) I F.1 (3.4)

where, as before, x = 0 (zo). Then p, (z) is the adjoint variable and we have in (3.3)

proved the following minimum principle:

THEOREM 5.1. If u* E V is an optimal control there is aset S C [0,T of zero Lebesgue

measure such that ir s S ,

P.(W)f (3,, U')_ :5P, (X) f(3,, ,) a.s.

'that is, the optimal control u" almost surely minimizes the Hamiltonian and the adjoint

variable is p, (z).

REMARKS 3.2. Under certain conditions the minimum cost attainable under the

stochastic open loop controls is equal to the minimum cost attainable under the Markov,

feedback controls of the form u(s, &0'., (xo)). See for example 121, 101. If um is a Markov

control, with a corresponding, possibly weak, solution trajectory {"", then UM can be

considcred as a stochastic open loop control UM(W) by putting

u(w) = UM(s, o (ZO, W)).

This means the conirol in effect 'follows' its original trajectory 6'14 than any new trajectory.

That is the control is similar to the adjoint strategies considered by Krylov [131. The

significance of this is that when we consider variations in the state trajectory , and

derivatives of the map x - , (z), the control does not react, and so we do not introduce

derivatives in the u variable.
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If the optima! control u" is Markov the process * is Markov and

po(z) = Ejr(s,s,x) I F1

= E[r(j,s,r) I x]. (3.S)

4. The Adjoint Procese.

Suppose the optimal control u° is Markov. As noted above, u' can and will be

considered as an open loop control. The Jzcobian exista, as does and

higher derivatives.

THEOREM 4. 1. Suppose the optimal control u' is Markov. Then

p.(x) = Ecq( .,r (zo))DoX I- jPr(eo,(xo))(r;.,(o).u;)dr

+ ] pz(r, ,. (zo))g(,. ., (xo))dwr

- /'pz(r, o,. (zo))g(r, o. (xo))gc (r, Eo, (zo))dr.

PROOF. Write fc(r) for ft(r, ',, (zo),u;) and g(r) for g(r,$, (xo)), etc. By unique-

ness of the solutions to (2.1)

03"T (x ) C= W, " ( x o z)) (4.1)

so, differentiating,

DoX" = D,,T Do,, (4.2)

where Do,T = D ,T etc. (without the 1).

From (3.4) and (3.5)

p.(x) = E[c,(,r (xo))D.,, I F.J

so from (4.2)

p.(x)Do,, = Elc( ,r (xo))Dor I F. (4.3)
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and this is a (P, {F,)) martingale. Write x = ,,(zo), D = Do,,. From the martingale

representation result [g], the integrand in the representation of p.(x)D as a stochastic

integral is obtained by the Ito rule, noting that only the stochastic integral terms will

appear. These involve the derivatives in x and D. Therefore

p.(-)D = E[(or (xo))Do,T + ]0 p.(r,,, (-o))g(r)dwDo,,

+ ', j " (zo))9g( ) (r)Do,, d.". (4.4)

Recall from (2.4) that 1o, = D - 1 so forming the product of (2.4) and (4.4), using the Ito

rule:

p,(x) = (p.(x)D)hIo,,

- Eje((COT (o))DoT I- p, (., (xo))ft (,)d

- p f ., (o))g d.' n (r)dw + -" p,(E;, ( ko))(g k (,))2d,

+ jpz(,-, ,,(zo))gC,-)dw, + ~ p(E&, Czo))g k) (,-)dw,,

- 31p=(r , , (xo))g(rg k) (r)d - p,, (-o))(g &) (,)) 2 dr

+ . j (r, %0, (zo))g(r)dwr. ->Jps~, (o)) g(rg~ r~
k=1 0

=E~c(( ;.T (:o))DoT -o "Pr (C;, (xo)) f4(r) dr

+ p. (,r, ,, (,o))g,-)d,,- P.(,r, .,r (XO))g9(') 9() (,.)d,.

so establishing the result.

This verifies by a simple, direct method the formula of Hlausman 1101.
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