
I

This paper will appear in the Journal of Algorithms (September 1990).

N Recovery in Distributed Systems
Using Optimistic Message Logging04

and Checkpointing*

SDTIC"
ELECTE David B. Johnson
MAY 30 1990 Willy Zwaenepoel

0 0 % Department of Computer Science

Rice University
P.O. Box 1892

Houston, Texas 77251-1892

(713) 527-8101

DMTMr-htrnON STTTMENT A.
Approved for public releasso

Ditbuton Unilrotted

*This work was supported in part by the National Science Foundation under Grant CCR-8716914 and by the Office

f Naval Research under Contract No. ONR N00014-88-K-0140.

mmm

Recovery in Distributed Systems

Using Optimistic Message Logging

and Checkpointing

David B. Johnson

Willy Zwaenepoel

Department of Computer Science

Rice University

P.O. Box 1892

Houston, Texas 77251-1892

(713) 527-4834

Abstract

Message logging and checkpointing can provide fault tolerance in distributed systems
in which all process communication is through messages. This paper presents a general
model for reasoning about recovery in these systems. Using this model, we prove that
the set of recoverable system states that have occurred during any single execution of the
system forms a lattice, and that therefore, there is always a unique maximum recover-
able system state, which never decreases. Based on this model, we present an algorithm
for determining this maximum recoverable state, and prove its correctness. Our algo-
rithm utilizes all logged messages and checkpoints, and thus always finds the maximum
recoverable state possible. Previous recovery methods using optimistic message logging
and checkpointing have not considered the existing checkpoints, and thus may not find
this maximum state. Furthermore, by utilizing the checkpoints, some messages received
by a prucess before it was checkpointed may not need to be logged. Using our algorithm
also adds less communication overhead to the system than do previous methods. Our
model and algorithm can be used with any message logging protocol, whether pessi-
mistic or optimistic, but their full generality is only required with optimistic logging
protocols. /

This work was supported in part by the National Science Foundation under grants CDA-8619893 and CCR-8716914,
and by the Office of Naval Research under contract ONR N00014-88-K-0140.

Imm mmnmnmm -

1 Introduction

Message logging and checkpointing can be used to provide fault tolerance in a distributed system in
which all process communication is through messages. Each message received by a process is saved
in a message log on stable storage [11, 1], and the state of each process is occasionally saved as a
checkpoint to stable storage. No coocdination is required between the checkpointing of different
processes or between message logging and checkpointing. The execution of each process is assumed
to be deterministic between received messages, and all processes are assumed to execute on fail-stop
processors [17].

Typically, these systems use a pessimistic protocol for message logging. Each message is
synchronously logged as it is received, either by blocking the receiver until the message is logged [2,
14], or by blocking the receiver if it attempts to send a new message before all received messages
are logged [8]. Recovery based on pessimistic message logging is straightforward. A failed process
ib reloaded from its most recent checKpoint, and all messages originally received by the process
after this checkpoint was written are replayed to it from the log in the same order in which they
were received before the failure. Using these messages, the process then reexecutes to the state it
had after originally receiving them. Messages sent by the process during this reexecution that are
duplicates of those sent before the failure are ignored.

Other systems, though, use an optimistic message logging protocol [21, 19]. The receiver of
a message is not blocked, and messages are logged asynchronously after receipt, for example by
grouping several messages and writing them to stable storage in a single operation. However, the
current state of a process can only be recovered if all messages received by the process since it was
last checkpointed have been logged. Because other processes may depend on states that cannot
be recovered after a failure, recovery using optimistic message logging is more difficult than with
pessimistic logging. These dependencies between processes arise through communication in the
system, since any part of the state of a process may be included in a message. When a process
receives a message, the current state of that process then depends on the state of the sender from
which the message was sent.

A process that has received a message from some failed process that was sent from a more recent "
state than its latest state that can be recovered becomes an orphan process at the time of the failure.
During recovery, each orphan process must be rolled back to a state before the message that caused ,msrw

it to become an orphan was received. Rolling back this process may cause other processes to

become orphans, which must also be rolled back during recovery. The domino effect [15, 16] is
an uncontrolled propagation of such process rollbacks, and must be avoided to guarantee progress
in the system in spite of failures. Recovery based on optimistic message logging must construct
the "most recent" combination of process states that can be recovered such that no process is an 0
orphan. Since optimistic logging protocols avoid synchronization delays during message logging,
they can outperform pessimistic logging protocols in the absence of failures. Although the recovery
procedure required with optimistic logging protocols is also more complex than with pessimistic
protocols, it is only used when a failure occurs.

odes
SILACEL IN "A" Per Dr. Andre Tilborg A , dvor
ONR/Code 1133 D 9t V GoLrZca l

TELECON 5/29/90 VGi

This paper presents a general model for reasoning about distributed systems using message
logging and checkpointing to provide fault tolerance. With this model, we prove that the set of

recoverable system states that have occurred during any single execution of the system forms a lat-
tice, and that therefore, there is always a unique maximum recoverable system state, which never
decreases. Based on this model, we present an algorithm for determining this unique maximum

recoverable system state, and prove its correctness. Our algorithm always finds this maximum
recoverable system state, by utilizing all logged messages and checkpoints. Previous fault-tolerance

methods using optimistic message logging and checkpointing [21, 19 have not considered the exist-
ing checkpoints, and thus may not find this maximum state. Furthermore, by utilizing checkpoints,

some messages received by a process before its checkpoint was recorded may not need to be logged.
The use of our algorithm also adds less communication overhead to the system than do these other
optimistic methods. Our model and algorithm can be used with any message logging protocol,

whether pessimistic or optimistic, but their full generality is only required with optimistic logging

protocols.

Section 2 of this paper presents our model for reasoning about these systems, and Section 3
describes our algorithm for finding the maximum recoverable system state. Using this algorithm

to recover from a failure in the system is discussed in Section 4. Section 5 relates this work to
other message logging and checkpointing methods, and Section 6 summarizes the contributions of

this work.

2 The Model

This section presents a general model for reasoning about the behavior and correctness of recovery

methods using message logging and checkpointing. The model is based on the dependencies between
the states of processes that result from communication in the system. The state of each process

is represented by its dependencies, and the state of the systerr ir represented by a collection of

process states. The model does not assume the use of any pa-,cI.;urr message logging protocol,
and applies equally well to systems using either pessimistic or opti,,. ic message logging methods.

All processes are assumed to execute on fail-stop processors [17] connected by a communication

network, but reliable delivery of messages on the network is not required.

2.1 Process States

The execution of each process is divided into separate intervals by the messages that the process

receiveb. Each interval, called a state interval of the process, is a deterministic sequence of ex-

ecution, started by the receipt of die awxt message by the process. The execution of a process
within a single state interval is completely determined by the state of the lzocebs at the time that

the message is received and by the contents of the message. A process may send any number of

messages to other processes during any state interval.

Within a process, each state interval of that process is uniquely identified by a sequential state

interval index, which is simply a count of the number of messages received by the process. Processes

may be dynamically created and destroyed, but each process must be identified by a globally unique

2

process identifier. Logically, these identifiers are assumed to be in the range 1 through n for a system
of n processes. The creation of a process is modeled by its receipt of message number 0, and process
termination is modeled by its receipt of one final message following the sequence of real messages
received by the process. All messages sent by a process are tagged by its current state interval
index.

When a process i receives a message sent by some process j, the state of process i then depends
on the state that process j had at the time that the message was sent. The state of a process
is represented by its current set of dependencies on all other processes. For each process i, these
dependencies are represented by a dependency vector

(6.) = (6 1, 62, 63, ... , 6n)

where n is the total number of processes in the system. Component j of process i's dependency
vector, bj, is set to the maximum index of any state interval of process j on which process i currently
depends. If process i has no dependency on any state interval of process j, then bi is set to 1,
which is less than all possible state interval indices. Component i of process i's own dependency
vector is always set to the index of process i's current state interval. The dependency vector of

a process names only those state intervals on which the process directly depends, resulting from
the receipt of a message sent from that state interval in the sending process. Only the maximum
index of any state interval of each other process on which this process depends is recorded, since
the execution of a process within each state interval is deterministic, and since this state interval
naturally also depends on all previous intervals of the same process.

Processes cooperate to maintain their dependency vectors by tagging all messages sent with
the current state interval index of the sending process, and by remembering in each process the
maximum index tagging any message received from each other process. During any single execution
of the system, the current dependency vcctor of any process is uniquely determined by the state
interval index of that process. No component of the dependency vector of any process can decrease
through failure-free execution of the system.

2.2 System States

A system state is a collection of process states, one for each process in the system. These process
states need not all have existed in the system at the same time. A system state is said to have
occurred during some execution of the system if all component process states have each individually
occurred during this execution. A system state is represented by an n x n dependency matrix

b1I 612 b13 ... bin

62[1~] 622 b23 ... b2n

D =b..]= 31 632 b33 ... 63

[2,I 6n2 bn3 ... n, 1

3

where row i, 6ij, 1 < j :5 n, is the dependency vector for the state of process i included in this

system state. Since for all i, component i of process i's dependency vector is always the index of
its current state interval, the diagonal of the dependency matrix, 6ii, I < i < n, is always set to

the current state interval index of each process contained in the system state

Let $ be the set of all system states that have occurred during any single execution of some

system. The system history relation, -<, is a partial order on the set 3, such that one system state

precedes another in this relation if and only if it must have occurred first during this execution.

The relation -< can be expressed in terms of the state interval index of each process shown in the

dependency matrices representing these system statvs.

Definition 2.1 If A = (a..] and B = [0..] are system states in S, then

A -<B Vi <

and
A-<B 4 (A-B) A (A#B).

The system history relation differs from Lamport's happened before relation (101 in that it orders

the system states that result from events rather than the events themselves, and that only state

intervals (started by the receipt of a message) constitute events.

To illustrate this partial order, Figure 1 shows a system of four communicating processes. The

horizontal lines represent the execution of each process, with time progressing from left to right.

Each arrow between processes represents a message sent from one process to another, and the

number at each arrow gives the index of the state interval started by the receipt of that message.

The last message received by process 1 is message a, and the last message received by process 4 is

message b. Consider the two possible system states A and B, such that in state A, message a has

Process 1 0 11 2

/ II I
I It

I /0 /

Process 2 0

time

Process 3 0 4 1 2

b\\

Process 4 0 1 4

Figure 1 The system history partial order. Neither message a nor
message b must have been received first.

4

been received but message b has not, and in state B, message b has been recei-ved but message a

has not. These two system states can be represented by the dependency matrices

A 0 1 1 and B= 0
02 020

System states A and B are incomparable under the system history relation. This is show;' by
a comparison of the circled values on the diagonals of these two dependency matrices. In the

execution of the system, neither state A nor state B must have occurred first, because neither

message a nor message b must have been received first.

2.3 The System History Lattice

A system state describes the set of messages that have been received by each process. For any two
system states A and B in S, the meet of A and B, written A fl B, represents a system state that

has also occurred during this execution of the system, in which each process has received only those

messages that it has received in both A and B. This can be expressed in terms of the dependency
matrices representing these two system states by copying each row from the corresponding row of

one of the two original matrices, depending on which matrix has the smaller entry on its diagonal

in that row.

Definition 2.2 If A = [a..] and B - [13..] are system states in S, the meet of A and
B is A B = [B..], such that

Vi[a . ifaii<_ ii]
li t. i3i. otherwise j

Likewise, for any two system states A and B in S, the join of A and B, written AUB, represents

a system state that has also occurred during this execution of the system, in which each process

has received only those messages that it has received in either A or B. This can be expressed in
terms of the dependency matrices representing these two system states by copying each row from

the corresponding row of one of the two original matrices, depending on which matrix has the larger

entry on its diagonal in that row.

Definition 2.3 If A = [a..] and B = [1..] are system states in 8, the join of A and

B is A U B = [0..], such that

V * [i = ai. if aii ? 3 i 1
[I0 = Oi. otherwise

Continuing the example of Section 2.2 illustrated in Figure 1, the meet and join of states A
and B can be represented by the dependency matrices

.5

1 0 J_ _ 2 0 ._ .

AnB= 1 and AuB= 1 0 1 j1
1_0 20 1_0 20

I_ I- 1- 0 -I 1 2 1

The following theorem introduces the system history lattice formed by the set of system states
that have occurred during any single execution of some system, ordered by the system history
relation.

Theorem 2.1 The set S. ordered by the system history relation, forms a lattice. For
any A,B E S, the greatest lower bound of A and B is An B, and the least upper bound

of A and B is A U B.

Proof Follows directly from the construction of system state meet and join in Definitions 2.2
and 2.3. n

2.4 Consistent System States

Because the process states composing a system state need not all have existed at the same time,
some system states may represent an impossible state of the system. A system state is called
consistent if it could have been seen at some instant by an outside observer during the preceding
execution of the system from its initial state, regardless of the relative speeds of the component
processes [4]. After recovery from a failure, the system must be recovered to a consistent system
state. This ensures that the total execution of the system is equivalent to some possible failure-free
execution.

In this model, since all process communication is through messages, and since processes execute
deterministically between received messages, a system state is consistent if no component process
has received a message that has not been sent yet in this system state and that cannot be sent
through the future deterministic execution of the sender. Since process execution is only deter-
ministic within each state interval, this is true only if no process has received a message that will
not be sent before the end of the sender's current state interval contained in this system state.
Any messages shown by a system state to be sent but not yet received do not cause the system
state to be inconsistent. These messages can be handled by the normal mechanism for reliable
message delivery, if any, used by the underlying system. In particular, suppose such a message m
was received by some process i after the state of process i was observed to form the system state D.
Then suppose process i sent some message n (such as an acknowledgement of message in), which
could show the receipt of m. If message n has been received in system state D, state D will be
inconsistent because message n (not message in) is shown to have been received but not yet sent.
If message n has not been received yet in state D, no effect of either message can be seen in D,
and D is therefore still consistent.

The definition of a consistent system state can be expressed in terms of the dependency matrices
representing system states. If a system state is consistent, then for each process i, no other process j

6

depends on a state interval of process I beyond process i's current state interval. In the dependency
matrix, for each column t, no element in column i in any row j is larger than the element on the
diagonal of the matrix in column i (and row i), which is process i's curi,,t state interval index.

Definition 2.4 If D = [b..] is some system state in 3, D is consistent if and only if

V i, j [6j i <_ bi i] .

For example, consider the system of three processes whose execution is shown in Figure 2.
The state of each process has been observed where the curve intersects the line representing the
execution of that process, and the resulting system state is represented by the dependency matrix

1 J
D=[6..]= 0 (0

L 2 1

This system state is not consistent, since process I has received a message (to begin state interval 1)
from process 2, which was sent beyond the end of process 2's current state interval. This message
has not been sent yet by process 2 and cannot be sent by process 2 through its future deterministic
execution. In terms of the dependncy matrix shown above, since b, 2 is greater than b22, the
system state represented by this matrix is not consistent.

Let the set C C S be the set of consistent system states that have occurred during any single
execution of some system. That is,

C ={D E S I D is consistent}

Theorem 2.2 The set C, ordered by the system history relation, forms a sublattice
of the system history lattice.

Proof Let A = [a..] and B = [13..] be system states in C. By Definition 2.4, since A E C and
B E C, aQj <_ aii and/3Oi _3ii, for all i and j. It suffices to show that A f B E C and A U B E C.

Process 1 0

Process 2 0 1 2 3 4

/ time
/ /

Process 3 0,

Figure 2 An inconsistent system state.

| II •7

Let A n B = [q..1. By Definition 2.2, and because A and B both occurred during the same
execution of the system and no element in the dependency vector of any process can decrease
through execution of the process, then Oji = min(aj,/, 3j), for all i and j. Thus, 1ji <ai and
Oji< i3O, for all i and j. Since A E C and B E C, ji < aj i < aii and Oj < (j, <5 Oj. Thus,
Oji < min(i i,/3i), and kji < Oi , for all i and j. Therefore, A n B E C.

Let A U B = [0..]. By Definition 2.3, Oji = aji or Oji = 3ji, and 0ii = max(aii,,iii), for all i
and j. Since A E C and B E C, Oji :S Oil for all i and j as well. Therefore, A U B E C. '

2.5 Message Logging and Checkpointing

As the system executes, messages are recorded on stable storage in a message log. A message is
called logged if and only if its data and the index of the state interval that it started in the process
that received it are both recorded on stable storage. Logged messages remain on stable storage
until no longer needed for recovery from any possible future failure of the system (Section 2.9).
The predicate logged(i, a) is true if and only if the message that started state interval a of process i
is logged.

When a process is created, its initial state is saved on stable storage as a checkpoint (in state
interval 0). Each process is also independently checkpointed at times during its execution. Each
checkpoint remains on stable storage until no longer needed for recovery from any possible future
failure of the system (Section 2.9). For every state interval a of each process, tLere must then be
some checkpoint of that process on stable storage with a state interval index no larger than a.

Definition 2.5 The effective checkpoint for a state interval a of some process i is the
checkpoint on stable storage for process i with the largest state interval index c such
that E < a.

A state interval of a process is called stable if and only if it can be recreated on demand from
information currently on stable storage. This is true if and only if all received messages that started
state intervals in the process after its state interval recorder in the effective checkpoint are logged.
The predicate stable(i, a) is true if and only if state interval a of process i is stable.

Definition 2.6 State interval a of process i is stable if and only if

Va,C<a<a [logged(i, a)],

where c is the index of the state interval of process i recorded in the effective checkpoint
for state interval a.

Any stable process state interval a can be recreated by restoring the process from the effective
checkpoint (with state interval index E) and replaying to it the sequence of logged messages to
begin state intervals c+ 1 through a, in ascending order.

The checkpointing of a process need not be coordinated with the logging of messages received
by that process. In particular, a process may be checkpointed at any time, and the state interval

I I I8

recorded in that checkpoint is then stable, regardless of whether or not all previous messages re-
ceived by that process have been logged. Thus, if a state interval a of some process i is stable and
its effective checkpoint records its state interval e, then all state intervals a of process i, c < a < a,
must be stable, but some state intervals 3 < , of process i may not be stable.

Each checkpuint of a process includes the complete current dependency vector of the process.
Each logged message only contains the state interval index of the sending process at the time that
the message was sent (tagging the i essage), but the complete dependency vector for any stable
state interval of any process is always known, since all messages t-at started state intervals after
the effective checkpoint must be logged.

2.6 Recoverable System States

A system state is called recoverable if and only if all component process states are stable and the
resulting system state is consistent. That is, to recover the state of the system, it must be possibla
to recreate the states of the component processes, tnd for this system state to be meaningful, it
must be possible to have occurred through failure-free execution of the system from its initial state.

Definition 2.7 If D = [b..] is some system state in S, D is recoverable if and only if

DEC A Vi[stable(i,b 1)] .

Let the set 7Z C S be the set of recoverable system states that have occurred during any single
execution of some system. That is,

- = { D E S I D is recoverable .

Since only consistent system states can be recoverable, 7? C C C S.

Theorem 2.3 The set 7?, ordered by the system history relation, forms a sublattice
of the system history lattice.

Proof For any A, B E ?, A n" B E C and A U B E C, by Theorem 2.2. Since the state interval
of each process in A and B is stable, all process state intervals in A n B and A U B are stable as
well. Thus, A n" B E 7? and A U B E ?Z, and R? forms a sublattice. 0

2.7 The Current Recovery State

During recovery, the state of the system is restored to the "most recent" recoverable state that is
possible from the information available, in order to minimize the amount of reexecution necessary
to complete the recovery. The system history lattice corresponds to this notion of time, and the
following theorem establishes the existence of a single maximum recoverable system state under
this ordering.

Theorem 2.4 There is always a unique ,-,iaxiinum recoverable system state in S.

9

Proof The unique maximum in S is simply

[D,
DERZ

which must be unique since 7 forms a sublattice of the system history lattice. 0

Definition 2.8 A ny time, the current recovery state of the system is the state to

which the system will be restored if any failure occurs in the system at that time.

In this nodel, the current recovery state of the system is always the unique maximum system state

that is currently recoverable.

Lemma 2.1 During any single execution of the system, the current recovery state

never decreases.

Proof Let R = [p..] be the current recovery state of the system at some time. Dependencies
can only be added to state R by the receipt of a new message, which would cause the receiving

process to begin a new state interval, resulting in a new system state. Thus, system state R itself

must remain consistent. Since logged messages and checkpoints are not removed until no longer
needed, state interval pii for each process i must remain stable until no longer needed. Thus system

state R itself must remain recoverable. Since the set 7 forms a lattice, any new current recovery

state established after state R must be greater than R. 0

As discussed in Section 1. the domino effect [15, 16] is an uncontrollC Dropaga1tion of rollbacks
necessary to recover the system state following a failure. Ir this model, an occurrence of the domino

effect would take the form of a propagation of dependencies that pre" nt the current recovery state
from advancing. The following lemma establishes a sufficient condition for preventing the domino

effect.

Lemma 2.2 If all messages received by each process are eventually logged, there is

no possibility of the domino effect in the system.

Proof Let R = [p..4 be the current recovery state of the system at some time. For all state

intervals a of each process k, a > Pkk, if all messages are eventually logged, state interval a of

process k will eventually become stable, by Definition 2.6. By Lemma 2.1, the current recovery

state n ,ver decreases, and thus, by Defi'iition 2.7, new system states R'. R -< R', must eventually

become recoverable and become th new currc:it recovery state. The domino effect is thus avoided,

since the current recovery state eventually increases. 0

2.8 The Outside World

During exetution, processes may interact with he outside world, which consists of everything out-

side the system itself. Example, of interactions with the outside world include receiving input from

10

a human user and writing information on the user's display terminal. All interactions with the
outside world are modeled as messages either received from the outside world or sent to the outside
world. Messages from the outside world received by a process must be logged in the same way as

other messages received by a process.

Messages sent to the outside world, though, cannot be treated in the same way as those sent to
other processes within the system, since messages to the outside world may cause irreversible side
effects. To guarantee that the state of the outside world is consistent with the state of the system
restored during recovery, any message sent to the outside world must be delayed until it is known
that the state interval from which it was sent will never be rolled back. It can then be committed

by releasing it to the outside world. The following lemma establishes when it is safe to commit a

message sent to the outside world.

Lemma 2.3 If the current recovery state of the system is R = [p..], then any message
sent by a process 1 from a state interval a < p, may be committed.

Proof Follows directly from Lemma 2.1 and Definition 2.1. 0

2.9 Garbage Collection

During operation of the system, checkpoints and logged messages must remain on stable storage
until they are no longer needed for any possible future recovery of the system. They may be removed
from stable storage only whenever doing so will not interfere with the ability of the system to recover
as needed. The following two lemmas establish when this can be done safely.

Lemma 2.4 Let R = [p..] be the current recovery state. For each process i, if q,
is the state interval index of the effective checkpoint for state interval pii of process i,
then any checkpoint of process i with state interval index a < q, cannot be needed for
any future recovery of the system and may be removed from stable storage.

Proof Follows directly from Lemma 2.1 and Definitions 2.1 and 2.5. 0

Lemnna 2.5 Let R = [p..] be the current recovery state. For each process i, if ci
is the state interval index of the effective checkpoint for state interval pii of process i,

then any message that begins a state interval a < 6i in process i cannot be needed for
any future recovery of the system and may be removed from stable storage.

Proof Follows directly from Lemma 2.1 and Definitions 2.1 and 2.5. 0

3 The Recovery State Algorithm

Theorem 2.4 shows that in any system using message logging and checkpointing to provide fault
tolerance, there is always a unique maximum recoverable system state. This maximum state is the

11

current recovery state, which is the state to which the system will be restored following a failure. At
any time, the current recovery state could be found by an exhaustive search, over all combinations
of currently stable process state intervals, for the maximum consistent combination, but such a
search would be too expensive in practice. Our recovery state algorithm finds the current recovery
state more efficiently.

The recovery state algorithm is invoked once for each process state interval that becomes sta-
ble, either because a new checkpoint has recorded the process in that state interval, or because

all messages received since the effective checkpoint for that interval are now logged. It uses the
dependency vectors of these stable process state intervals to form new dependency matrices that
represent consistent system states, which are therefore also recoverable. It is a centralized algo-
rithm, using this information collected from the execution of the system. Since all process state
intervals considered by the algorithm are stable, all information used by the algorithm has been
recorded on stable storage. The algorithm is therefore restartable and -an handle any number of
concurrent process failures, including a total failure. The algorithm is incremental in that it uses
the existing known maximum recoverable system state and advances it when possible based on the
fact that a new process state interval has become stable.

For each new state interval a of some process k that becomes stable, the algorithm determines
if a new current recovery state exists. It first attempts to find some new recoverable system state
in which the state of process k has advanced to state interval a. If no such system state exists, the
current recovery state of the system has not changed. The algorithm records the index of this state
interval and its process identifier on one or more lists to be checked again later. If a new recoverable
system state is found, the algorithm searches for other greater recoverable system states, using the
appropriate lizts. The new current recovery state is the maximum recoverable system state found
in this search.

3.1 Finding a New Recoverable System State

The heart of the recovery state algorithm is the procedure FINDREC. Given any recoverable
system state R = [p..] and some stable state interval a of some process k with a > Pkk, FINDREC
attempts to find a new recoverable system state in which the state of process k is advanced at least
to state interval a. It does this by also including any stable state intervals from other processes
that are necessary to mrke the new system state consistent, applying the definition of a consistent
system state in Definition 2.4. The procedure succeeds if such a consistent system state can be
composed from the set of process state intervals that are currently stable. Since the state of process
k has advanced, the new recoverable system state found must be greater than state R in the system
history lattice.

Input to the procedure FINDREC consists of the dependency matrix of some recoverable
system state R = (p*,], the process identifier k and state interval index a > Pkk of a stable state
interval of process k, and the dependency vector for each stable process state interval 0 of each
process x such that 0 > PX. Conceptually, FINDREC performs the following steps:

12

1. Make a new dependency matrix D = [b..] from matrix R, with row k replaced by the depen-

dency vector for state interval a of process k.

2. Loop on step 2 while D is not consistent. That is, loop while there exists some i and j for

which bji > bi-. This shows that state interval 6jj of process j depends on state interval 6,

of process i, which is greater than process i's current state interval 6,, in D.

Find the minimum index a of any stable state interval of process i such that a > b j:

(a) If no such state interval a exists, exit the algorithm and return false.

(b) Otherwise, replace row i of D with the dependency vector for this state interval a of

process i.

3. The system state represented by D is now consistent and is composed entirely of stable process
state intervals. It is thus recoverable and greater than R. Return true.

An efficient implementation of procedure FINDREC is shown in Figure 3. This implementa-

tion operates on a vector RV, rather than on the full dependency matrix representing the system

state. For all i, RV[i] contains the diagonal element from row i of the corresponding dependency

matrix. When FINDREC is called, each RV[i] contains the state interval index of process i in the

given recoverable system state. The dependency vector of each stable state interval 0 of process z

is represented by the vector DV . As each row of the matrix is replaced in the outline above, the

corresponding single element of RV is changed in FINDREC. Also, the maximum element from

each column of the matrix is maintained in the vector MAX, such that for all i, MAX[i] contains

the maximum element in column i of the corresponding matrix.

function FIVDREC(RV, k, a)

RV[k] - a;
for i - 1 to n do AAX[iJ -- max(RV[i], DV'[i]);

while 3 i such that MAX[i] > RV[i] do
a +-- minimum index such that

a> MAX[i] A stable(i,a);
if no such state interval a exists then return false;
RV(iI - a;
for j - 1 to n do AIAX[j] - max(AL4X[j], DVq[j]);

return true;

Figure 3 Procedure to find a new recoverable state.

13

Lemma 3.1 If function FINDREC is called with a known recoverable system state
R = [p..] and state interval a of process k such that a > Pki:, FINDREC returns
true if there exists some recoverable system state R' = [p..], such that R -.< R' and
PIk > a, and returns false otherwise. If FINDREC returns true, then on retu:n,
RV[i] = pij, for all i.

Proof The predicate of the while loop determines whether the dependency matrix corresponding

to RV and MAX is consistent, by Definition 2.4. When the condition becomes false and the loop
terminates, the matrix must be consistent because, in each column i, no element is larger than

the element on the diagonal in that column. Thus, if FIND-REC returns true, the system state

returned in RV must be consistent. This system state must also be recoverable, since its initial
component process state intervals are stable and only stable process state intervals are used to

replace its entries during the execution of FINDREC.

The following loop invariant is maintained by function FINDREC at the top of the while loop
on each iteration:

If a recoverable system state R' = [p..] exists such that R -< R' and p~j >- RV[i], for
all i, then p , > MAX[i].

The invariant must hold initially because any consistent state must have RV[i] MAX[i], for

all i, and any state R' found such that p , >- RV[i] must then have p~j >- RV[i] > MAX[i]. On
each subsequent iteration of the loop, the invariant is maintained by choosing the smallest index

a > MAX[iJ such that state interval a of process i is stable. For the matrix to be consistent, a
must not be less than AIAX[i]. By choosing the minimum such a, all components of DV'? are
also minimized because no component of the dependency vector can decrease through execution

of the process. Thus, after replacing row i of the matrix with DVq, the components of MAX are

minimized, and for any recoverable (consistent) state R' that exists, the condition p~i >- MAX[i]

must still hold for all i.

If no such state interval a > MAX[i] of process i is currently stable, then no recoverable system
state R' can exist, since any such R' must have pj 2! MAX[fi]. This is exactly the condition under
which the procedure FINDREC returns false. [=

Suppose state interval a of process k depends on state interval b of process i, then procedure
FINDREC searches for the minimum a > b that is the index of a state interval of process i that

is currently stable. For the set of process state intervals that are currently stable, the dependency
on state interval 6 of process i has been transferred to state interval a of process i (including the

case of a = 6), and state interval a of process k is said to currently have a transferred dependency

on state interval a of process i.

Definition 3.1 A state interval a of some process k, with dependency vector (6.),

has a transferred dependency on a state interval a of process i if and only if:

(1) a > 6i,

(2) state interval a of process i is stable, and

(3) there does not exist another stable state interval 03 of process i such that a > b _ 6i.

14

The transitive closure of the transferred dependency relation from state interval a of process k
describes the set of process state intervals that may be used in any iteration of the while loop
of procedure FINDREC, when invoked for this state interval. Although only a subset of these
state intervals will actually be used, the exact subset used in any execution depends on the order
in which the while loop finds the next i that satisfies the predicate.

3.2 The Complete Algorithm

Using function FINDREC, the complete recovery state algorithm can now be stated. The algo-
rithm, shown in Figure 4, uses a vector CRS to record the state interval index of each process in

the current recovery state of the system. When a process is created, its entry in CRS is initialized

to 0. When some state interval a of some process k becomes stable, if this state interval is in

advance of the old current recovery state in CRS, the algorithm checks if a new current recovery
state exists. During the execution, the vector NEWCRS is used to store the maximum known

recoverable system state, which is copied back to CRS at the completion of the algorithm.

When invoked, the algorithm calls FINDREC with the old current recovery state and the
identification of the new stable process state interval. The old current recovery state is the maxi-

mum known recoverable system state, and the new stable state interval is interval a of process k.

If FINDREC returns false, then no greater recoverable system state exists in which the state of

process k has advanced at least to state interval a. Thus, the current recovery state of the system

has not changed, as shown by the following two lemmas.

Lemma 3.2 When state interval a of process k becomes stable, if the current recovery
state changes from R = [p..] to R' = [p..], R -< R', then Pk = a.

Proof By contradiction. Suppose the new current recovery state R' has P'kk $ a. Because only

one state interval has become stable since R was the current recovery state, and because process k

in the new current recovery state R' is not in state interval a, then all process state intervals in R'

must have been stable before state interval a of process k became stable. Thus, system state R'

must have been recoverable before state interval a of process k became stable. Since R -< R', then

R' must have been the current recovery state before state interval a of process k became stable,
contradicting the assumption that R was the original current recovery state. Thus, if the current

recovery state has changed, then pA. = a. 0

Lemma 3.3 When state interval a of process k becomes stable, if the initial call to

FINDREC by the recovery state algorithm returns false, then the current recovery

state of the system has not changed.

Proof By Lemma 3.2, if the current recovery state changes from R = [p..] to R' = [pt..]

when state interval a of process k becomes stable, then P-k = a. However, a false return from

FINDREC indicates that no recoverable system state R' exists with p k > a, such that R -< R'.

Therefore, the current recovery state cannot have changed. 0

15

if a < CRS[k] then exit-

NEWCRS - CRS;

if -,FINDREC(NEWCRSk,a) then
for i - 1 to n do if i 5 k then

/3 -- DV'[i];
if/3 > CRS[i] then DEFERi - DEFERq U { (k,a) };

exit;

WORK DEFERO;
/3 ,-- o*-1l;
while -stable(k,3) do

WORK *- WORK U DEFER";/3 ,- /3- 1;

while WORK # 0 do
remove some (x, 0) from WORK;
if 0 > NEWCRS[x] then

RV - NEWCRS;
if FINDREC(RV, x, 0) then NEWCRS 4 RV;

if 0 < NEWCRS[x] then
WORK WORK U DEFER,;
3 - -;
while -'stable(x,/3) do

WORK , WORK U DEFER"; /3 4 /3 - 1;

CRS - NEWCRS;

Figure 4 The recovery state algorithm, invoked when state
interval a of process k becomes stable.

16

Associated with each state interval 13 of each process i that is in advance of the known current
recovery state is a set DEFER, which records the identification of any stable process state intervals
that depend on state interval 2 of process i. That is, if the current recovery state of the system is
R = [p..), then for all i and .3 such that 3 > pij, DEFER records the set of stable process state
intervals that have 0 in component i of their dependency vector. All DEFER sets are initialized to
the empty set when the corresponding process is created. If FINDREC returns false when some
new process state interval becomes stable, that state interval is entered in at least one DEFER set.
The algorithm uses these sets to limit its search space for the new current recovery state.

If the initial call to FINDREC by the recovery state algorithm returns true, a new greater
recoverable system state has been found. Additional calls to FINDREC are used to search for any
other recoverable system states that exist that are greater than the one returned by the last call to
FINDREC The new current recovery state of the system is the state returned by the last call to
FINDREC that returned true. The algorithm uses a result of the following lemma to limit the
number of calls to FINDREC required.

Lemma 3.4 Let R = [p..] be the existing current recovery state of the system, and
then let state interval a of process k become stable. For any stable state interval 0 of
any process x such that 0 > p,,, no recoverable system state R' = [p. *] exists with

PX -0 if state interval 0 of process x does not depend on state interval a of process k
by the transitive closure of the transferred dependency relation.

Proof Since state interval 0 of process x is in advance of the old current recovery state, it could not
be made part of any recoverable system state R' before state interval a of process k became stable.
If it does not depend on state interval a of process k by the transitive closure of the transferred
dependency relation, then the fact that state interval a has become stable cannot affect this.

Let 6 be the maximum index of any state interval of process k that state interval 0 of process X
is related to by this transitive closure. Clearly, any new recoverable system state R! 3 R that now
exists with p' > 0 must have Pk > 6, by Definitions 3.1 and 2.4, and since no component of
any dependency vector decreases through execution of the process. If 6 > a, then system state R'
was recoverable before state interval a became stable, contradicting the assumption that 0 > Pkk.
Likewise, if 6 < a, then R' cannot exist now if it did not exist before state interval a of process k
became stable, since state interval b must have been stable before state interval a became stable.
Since both cases lead to a contradiction, no such recoverable system state R' can now exist without
this dependency through the transitive closure. 0

The while loop of the recovery state algorithm uses the DEFER sets to traverse the transitive
closure of the transferred dependency relation backward from state interval a of process k. Each
state interval 0 of some process x visited on this traversal depends on state interval a of process k
by this transitive closure. That is, either state interval 0 of process x has a transferred dependency
on state interval a of process k, or it has a transferred dependency on some other process state
interval that depends on interval a of process k by this transitive closure. The traversal uses the
set WORK to record those process state intervals from which the traversal must still be performed.

17

When WORK has been emptied, the new current recovery state has been found and is copied back
to CRS.

During this traversal, any dependency along which no more true results from FINDREC can
be obtained is not traversed further. If the state interval 6 of process x that is being considered is
in advance of the maximum known recoverable system state, FINDREC is called to search for a
new greater recoverable system state in which process x has advanced at least to state interval 6.
If no such recoverable system state exists, the traversal from this state interval is not continued,
since FINDREC will return false for all other state intervals that depend on state interval 0 of

process x by this transitive closure.

Lemma 3.5 If state interval 13 of process i depends on state interval 0 of process x
by the transitive closure of the transferred dependency relation, and if no recoverable
system state R = [p..] exists with p., >_ 6, then no recoverable system state R' = [p..]
exists with pSi > /.

Proof This follows directly from the definition of a transferred dependency in Definition 3.1.
Either state interval/3 of process i has a transferred dependency on state interval 0 of process x, or
it has a transferred dependency on some other process state interval that depends on state interval 6
of process x by this transitive closure. By this dependency, any such recoverable system state R!
that exists must also have p'z > 0, but no such recoverable system state exists since R does not
exist. Therefore, R! cannot exist. C

Theorem 3.1 If the recovery state algorithm is executed each time any state inter-
val a of any process k becomes stable, it will complete each time with CRS[i] = pt,, for
all i, where R' = [p..] is the new current recovery state of the system.

Proof The theorem holds before the system begins execution since CRS[i] is initialized to 0 when
each process i is created. Likewise, if any new process i is created during execution of the system,
it is correctly added to the current recovery state by setting CRS[i] = 0.

When some state interval a of some process k becomes stable, if the initial call to FINDREC

returns false, the current recovery state remains unchanged, by Lemma 3.3. In this case, the
recovery state algorithm correctly leaves CRS unchanged.

If this call to FINDREC returns true instead, the current recovery state has advanced as a
result of this new state interval becoming stable. Let R = [p..] be the old current recovery state
before state interval a of process k became stable, and let D = [6..) be the system state returned

by this call to FL .DREC. Then R -< D, by Lemma 3.1. Although the system state D may be
less than the new current recovery state R', D -< R' because the set of recoverable system states

forms a lattice.

The while loop of the recovery state algorithm finds the new current recovery state by searching

forward in the lattice of recoverable system states, without backtracking. This search is performed
by traversing backward through the transitive closure of the transferred dependency relation, using
the information in the DEFER sets. For each state interval 0 of each process x examined by this

18

loop, if no recoverable system state exists in which the state of process x has advanced at least to
state interval 0, the traversal from this state interval is not continued. By Lemmas 3.4 and 3.5, this
loop considers all stable process state intervals for which a new recoverable system state can exist.
Thus, at the completion of this loop, the traversal has been completed, and the last recoverable
system state found must be new current recovery state. The algorithm finally copies this state from
NEWCRS to CRS. 0

3.3 An Example

Figure 5 shows the execution of a system of three processes. Each process has been checkpointed in
its state interval 0, but no other checkpoints have been written. Also, a total of four messages have
been received in the system, but no messages have been logged yet. Thus, only state interval 0 for
each process is stable, and the current recovery state of the system is composed of state interval 0
of each process. In the recovery state algorithm, CRS = (0, 0, 0), and all DEFER sets are empty.

If message a from process 2 to process 1 now becomes logged, state interval 1 of process 1
becomes stable, and has a dependency vector of (1, 1, 1). The recovery state algorithm is executed
and calls FINDREC with a = 1 and k = 1 for state interval 1 of process 1. FIND- REC sets
RV to (1,0,0) and MAX to (1, 1,0). Since MAX(2] > RV[2], a stable state interval a > 1 of
process 2 is needed to make a consistent system state. However, no such state interval of process 2
is currently stable, and FINDREC therefore returns false. The recovery state algorithm changes
DEFER' to { (1, 1) } and exits, leaving CRS unchanged at (0,0,0).

Next, if process 2 is checkpointed in state interval 2, this state interval becomes stable. Its
dependency vector is (0,2, 1). The recovery state algorithm calls FINDREC, which sets RV to
(0,2,0) and MAX to (0,2, 1). Since no state interval a > 1 of process 3 is stable, FINDREC
returns false. The recovery state algorithm sets DEFER3 to { (2,2) } and exits, leaving CRS
unchanged again.

Finally, if message b from process 2 to process 3 becomes logged, state interval 1 of process 3
becomes stable, and has a dependency vector of (1_, 1, 1). The recovery state algorithm calls
FINDREC, which sets RV to (0,0, 1) and MAX to (0, 1, 1). Since MAX(2] > RV(2], a stable

Process 110 a 1

/

Proes2 10 41 '2

b /

Process 3 10 141

Figure 5 An example system execution.

19

state interval a > 1 of process 2 is required. State interval 2 of process 2 is the minimum such
stable state interval. Using its dependency vector, RV and MAX are updated, yielding the value

(0, 2, 1) for both. This system state is consistent, and FINOREC returns true. The maximum

known recoverable system state in NEWCRS has then been increased to (0, 2, 1).

The WORK set is initialized to DEFER' = { (2,2) }, and the while loop of the algorithm
begins. When state interval 2 of process 2 is checked, it is not in advance of NEWCRS, so the
call to FINDREC is skipped. The sets DEFER2 and DEFER' are added to WORK, making
WORK = f (1, 1) }. State interval 1 of process 1 is then checked by the while loop. Procedure

FINDREC is called, which sets both RV and MAX to (1,2, 1), and therefore returns true. The
maximum known recoverable system state in NEWCRS is updated by this call to (1, 2, 1). The
set DEFER' is added to WORK, but since DEFER' 0, this leaves WORK empty. The while
loop then terminates, and the value left in NEWCRS = (1, 2, 1) is copied back to CRS. The system
state represented by this value of CRS is the new current recovery state of the system.

This example illustrates a unique feature of our recovery state algorithm. Our algorithm uses
both logged messages and checkpoints in its search for the maximum recoverable system state.

Although only two of the four messages received during this execution of the system have been
logged, the current recovery state has advanced due to the checkpoint of process 2. In fact, the two
remaining unlogged messages need never be logged, since the current recovery state has advanced

beyond their receipt.

4 Failure Recovery

The recovery state algorithm can be used in recovering from any number of process failures in
the system, including a total failure of all processes. Before beginning recovery, the state of any

surviving processes and any surviving messages that have been received but not yet logged may be

used to further advance the current recovery state. This surviving information is volatile and has
not been included in the computation of the current recovery state, since the current recovery state

reflects only information that has been recorded on stable storage. Thus, the state of each process
that did not fail must be written to stable storage as an additional checkpoint of that process, and
all received messages that remain after the failure that have not yet been logged must be logged on
stable storage. After the recovery state algorithm has been executed for each process state interval

that becomes stable as a result of this, the current recovery state will be the maximum possible

recoverable system state including this additioual information that survived the failure.

To restore the state of the system to the current recovery state, the states of all failed processes

must be restored, and any orphan processes must also be rolled back. Each failed process is restored
by restarting it from the effective checkpoint for its state interval in the current recovery state, and

then replaying to it from the log any messages received since that checkpoint was recorded. Using
these logged messages, the recovering process deterministically reexecutes to restore its state to the

state interval for this process in the current recovery state. Any other process currently executing in
a state interval beyond the state interval of that process in the current recovery state is an orphan.

To complete recovery, each orphan process is forced to fail and is restored to its state interval in

20

the current recovery state in the same way as other failed processes. If additional processes fail

during this recovery, the recovery may be restarted, since all information used is recorded on stable
storage.

5 Related Work

5.1 Optimistic Message Logging Methods

Two other methods to support fault tolerance using optimistic message logging and checkpoint-

ing have been published in the literature. Our work has been partially motivated by Strom and

Yemini's Optimistic Recovery [211, and recently Sistla and Welch have proposed a new optimistic

message logging method [19], based in part on some aspects of both Strom and Yemini's system

and our work. Our system is unique among these in that it always finds the maximum recoverable

system state. Although these other systems occasionally checkpoint processes as ou. system does,

they do not consider the existing checkpoints in finding the current recovery state. Our algorithm

includes both checkpoints and logged messages in this search, and thus may find recoverable system

states that these other algorithms do not. Also, these other systems assume reliable delivery of

messages on the network, using a channel between each pair of processes that does not lose or re-

order messages. Thus, in their definitions of a consistent system state, Strom and Yemini require all

messages sent to have been received, and Sistla and Welch require the sequence of messages received

on each channel to be a prefix of those sent on it. Since our model does not assume reliable delivery,
it can be applied to common real distributed systems that do not guarantee reliable delivery, such

as those based on an Ethernet network. If needed, reliable delivery can also be incorporated into

our model simply by assuming an acknowledgement message immediately following each message

receipt.

In Strom and Yemini's Optimistic Recovery [21], each message sent is tagged with a transitive

dependency vector, which has size proportional to the number of processes. Also, each process is

required to locally maintain its knowledge of the message logging progress of each other process in a

log vector, which is either periodically broadcast by each process or appended to each message sent.

Our system tags each message only with the current state interval index of the sender. Information

equivalent to the log vector is maintained by the recovery state algorithm, but uses no additional

communication beyond that already required to log each message. Although communication of the

transitive dependency vector and the log vector allows control of recovery to be less centralized,

and may result in faster commitment of output to the outside world, this additional communication
may add significantly to the failure-free overhead of the system. Optimistic Recovery also includes

an incarnation number as part of each state interval index to identify the number of times that

the process has rolled back. This preserves the uniqueness of state interval indices across recoveries

and allows recovery of different processes to proceed without synchronization. With our model,

processes must synchronize during recovery to be notified of the reuse of the indices of any roiled

back state intervals.

Sistla and Welch have proposed two alternative recovery algorithms based on optimistic message

logging (191. One algorithm tags each message sent with a transitive dependency vector as in Strom

21

and Yemini's system, whereas the other algorithm tags each message only with the sender's current
state interval index as in our system. To find the current recovery state, each process sends informa-
tion about its message logging progress to all other processes, after which their second algorithm
also exchanges additional messages, essentially to distribute the complete transitive dependency
information. Each process then locally performs the same computation to find the current recovery
state. This results in 0(n 2) messages for the first algorithm, and 0(n 3) messages for the second,
where n is the number of processes in the system. In contrast, our algorithm requires no addi-
tional communication beyond that necessary to log each message on stable storage. Again, this
additional communication in their system allows control of recovery to be less centralized than
in ours. However, the current recovery state must be frequently determined, so that output to
the outside world to be committed quickly. Therefore, the increased communication in Sistla and
Welch's algorithms may add substantial failure-free overhead to the system.

5.2 Pessimistic Message Logging Methods

Our system is more general than that required when using a pessimistic message logging protocol,
but our model can still be applied, and our recovery state algorithm correctly finds the maximum
recoverable system state. A simpler algorithm, though, can be used to find the current recovery
state when using a pessimistic logging protocol. The current recovery state is always composed of
the most recent stable state interval of each process in the system, since the protocol prevents the
system from entering any state in which the system state composed in this way is not consistent.
In the protocols used by the TARGON/32 system [3], its predecessor Auros [21, and the Publishing
mechanism [141, the receiver of a message is blocked until the message is logged, and therefore, each
state interval is stable before the process begins execution in that state interval. In the sender-based
message logging protocol [8], each process is instead blocked if attempts to send a new message
when any messages it has received are not yet logged. This prevents any process from receiving

a message sent from a state interval of the sender that is not yet stable, and thus ensures that
this system state is consistent. Optimistic message logging removes the need for synchronization
between execution and message logging, and thus optimistic metnods should outperform pessimistic
methods when failures are infrequent.

5.3 Other Methods

The general approach used by these message logging and checkpointing methods has been called
the state machine approach [18], which assumes that program execution for each input is determin-
istic and is based only on the program state at the time of the input and on the input itself. This
approach is also used by the Time Warp system [61, through its Virtual Time method [7], using
message logging and che.kpointing. However, Virtual Time is designed to support the synchroniza-
tion required by particular distributed applications such as discrete event simulation, rather than
to provide general-purpose process fault tolerance.

Checkpointing has also been used without message logging to provide fault tolerance in dis-
tributed systems [4, 9]. A global checkpoint, composed of an independent checkpoirt for each

22

process in the system, is recorded such that this set of checkpoints forms a consistent system state.

The system can therefore be recovered by restoring each process to its state in any global check-

point. This removes the need to log all messages received in the system, but to commit output
to the outside world, global checkpointing must be performed frequently, which may substantially

degrade the failure-free performance of the system. Also, process execution may be blocked during
checkpointing in order to guarantee the recording of a consistent system state [9]. Message log-

ging removes any need for synchronization during checkpointing, and allows checkpointing to be

performed less frequently without sacrificing the ability to commit output to the outside world.

Different forms of logging and checkpointing have also been used to support recovery in systems
based on atomic transactions [12, 13, 20, 51. Logging on stable storage is used to record state

changes of modified objects during the execution of a transaction. Typically, the entire state of each

object is recorded, although logical logging [1] records only the names of operations performed and
their parameters, such that they can be reexecuted during recovery, much the same as reexecuting

processes based on logged messages. Logging may proceed asynchronously during the execution of
the transaction, but must be forced to stable storage before the transaction can commit. This is

similar to the operation of optimistic message logging and the requirement that the system state

must be recoverable before output may be committed to the outside world. Before the transaction
can commit, additional synchronous logging is also required to ensure the atomicity of the commit

protocol, which is not necessary with message logging z.,d checkpointing methods. However, this
extra logging can be reduced through the use of special commit protocols, such as the Presumed

Commit and Presumed Abort protocols [12].

To recover a transaction using this logging, however, the entire transaction must be reexecuted,
which may lengthen recovery times, and may prevent the recovery of transactions whose running
times exceed the mean time between failures in the system. Smaller transactions may be used to
avoid these problems, but this increases the amount of logging and the freq'Iency of stable stor-
age synchronization. The QuickSilver system [5] addresses these problems by allowing individual
transactions to be checkpointed during their execution. This avoids the need to entirely reexecute
a transaction during recovery, but this transaction checkpoint must record a conslstent state of all
processes involved in the transaction, much the same as a global checkpoint in checklointing sys-
tems without message logging. Recording this consistent transaction checkpoint may significantly
delay the execution of the transaction, due to the synchronization needed to record a consistent
state.

6 Conclusion

Optimistic message logging allows messages to be logged asynchronously, without blocking process
execution. This improves failure-free performance of the system over pessimistic message logging

methods, but requires a more complex recovery procedure. Optimistic message logging methods
thus constitute a beneficial performance tradeoff in environments where failures are infrequent and

failure-free performance is of primary concern.

23

The recovery state algorithm and recovery procedure presented in this paper improve on earlier
work with fault-tolerance using optimistic message logging by Strom and Yemini [21] and by Sistla
and Welch (191. Although their methods allow less centralized control of recovery, and may allow
output to the outside world to be committed earlier, they add significantly more communication to
the system. Also, although these two systems checkpoint processes as in our system, they do not
consider these existing checkpoints in determining the current recovery state of the system. Our
algorithm considers both checkpoints and logged messages, and thus may find recoverable system
states that these other systems do not find. We have proven, based on our model of Section 2,

that our algorithm always finds the maxiirn possible recoverable system state. Furtheimore, by
utilizing these checkpointed states, some messages received by a process before it was checkpointed
may not need to be logged, as demonstrated by the example in Section 3.3.

This work unifies existing approaches to fault tolerance using message logging and checkpointing

published in the literature, including those using pessimistic message logging [2, 14, 3, 8] and those
using optimistic methods [21, 191, By using this model to reason about these types of fault-tolerance

methods, properties of them that are independent of the message logging protocol used can be
deduced and proven. We have shown that the set of system states that have occurred during any
single execution of a system forms a lattice, with the sets of consistent and recoverablc system
states as sublattices. There is thus always a unique maximum recoverable system state.

Acknowledgements

We would like to thank Rick Bubenik, John Carter, Matthias Felleisen, Jerry Fowler, Pete Keleher,
and Alejandro Schaffer for many helpful discussions on this material and for their comments on
earlier drafts of this paper. The comments of tae referees also -elped to improve the clarity of the
presentation.

References

[1] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, Reading, Massachusetts, 1987.

[2] Anita Borg, Jim Baumbach, and Sam Glazer. A message system supporting fault tolerance.
In Proceedings of the Ninth ACM11 Sjmposium on Operating Systems Principles, pages 90-99.

ACM, October 1983.

[3] Anita Borg, Wolfgang Blau, Wolfgang Graetsch. Ferdinand Herrmann, and Wolfgang Oberle.
Fault tolerance under UINIX. ACM Transactions on Computer Systems, 7(1):1-24, February
1989.

[4] K. Mani Chandy and Leslie Lainport. Distributed snapshots: Determining global states of

distributed systems. ACM Transacions on Computer Systems, 3(1):63-75, February 1985.

24

[5] Roger Haskin, Yoni Malachi, Wayne Sawdon, and Gregory Chan. Recovery management in

QuickSilver. ACM Transactions on Computer Systems. 6(l):82-108, February 1988.

(6] David Jefferson, Brian Beckman, Fred Wieland, Leo Blume, Mike DiLoreto, Phil Hontalas,

Pierre Laroche, Kathy Sturdevant, Jack Tupman, Van Warren, John Wedel, Herb Younger, and

Steve Bellenot. Distributed simulation and the Time Warp operating system. In Proceedings of

the Eleventh A CM Symposium on Operating Systems Principles, pages 77-93. ACM, November
1987.

[7] David R. Jefferson. Virtual time. A CM Transactions on Programming Languages and Systems,
7(3):404-425, July 1985.

[8] David B. Johnson and Willy Zwaenepoel. Sender-based message logging. In The Seventeenth
Annual International Symposium on Fault-Tolerant Computing: Digest of Papers, pages 14-19.

IEEE Computer Society, June 1987.

[9] Richard Koo and Sam Toueg. Checkpointing and rollback-recovery for distributed systems.

IEEE Transactions on Software Engineering, SE-13(1):23-31, January 1987.

[10] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, July 1978.

[11] Butler W. Lampson and Howard E. Sturgis. Crash recovery in a distributed data storage
system. Technical report. Xerox Palo Alto Research Center, Palo Alto, California, April 1979.

[12] C. Mohan, B. Lindsay, and R. Obermarck. Transaction management in the R* distributed

udtabase management system. ACM Transactions on Database Systems, 11(4):378-396,

December 1986.

(13] Brian M. Oki, Barbara H. Liskov, and Robert W. Scheifler. Reliable object storage to support

atomic actions. In Proceedings of the Tenth A CM Symposium on Operating Systems Principles,

pages 147-159. ACM, December 1985.

[14] Michael L. Powell and David L. Presotto. Publishing: A reliable broadcast communication

mechanism. In Proceedings of the Ninth ACM Symposium on Operating Systems Principles,

pages 100-109. ACM, October 1983.

(15] Brian Randell. System structure for software fault tolerance. IEEE Transactions on Software

Engineering, SE-1(2):220-232. June 1975.

[16] David L. Russell. State restoration in systems of communicating processes. IEEE Transactions
on Software Engineering, SE-6(2):183-194, March 1980.

[17] Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: An approach to design-

ing fault-tolerant distributed computing systems. A CM Transactions on Computer Systems,

1(3):222-238, August 1983.

25

[18] Fred B. Schneider. The state machine approach: A tutorial. Technical Report TR 86-800,

Cornell University, Ithaca, New York, June 1987. To appear in Proceedings of a Workshop

on Fault-Tolerant Distributed Computing, Lecture Notes in Computer Science series, Springer-

Verlag, New York.

[19] A. Prasad Sistla and Jennifer L. Welch. Efficient distributed recovery using message logging.

In Proceedings of the Eighth Annual A CM Symposium on Principles of Distributed Computing.

ACM, August 1989. To appear.

[20] Alfred Z. Spector. Distributed transaction processing and the Camelot system. In Yakup

Paker, Jean-Pierre Banatre, and Miislim Bozyiit, editors, Distributed Operating Systems:

Theory and Practice, volume 28 of NATO Advanced Science Institute Series F: Computer and

Systems Sciences, pages 331-353. Springer-Verlag, Berlin, 1987. Also available as Technical

Report CMU-CS-87-100, Department of Computer Science, Carnegie-Mellon University,

Pittsburgh, Pennsylvania, January 1987.

[21] Robert E. Strom and Shaula Yemini. Optimistic recovery in distributed systems. ACM

Transactions on Computer Systems, 3(3):204-226, August 1985.

26

