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SECTION 1

INTRODUCTION

Two robustness issues are considered in the research project. One is the command/

disturbance input uncertainties and the other is the plant uncertainties. The controller is to

be designed such that the closed-loop system remains stable for all possible plant

perturbations and the error response is minimized for all disturbances and commands in the

prescribed set.

The prescribed set of disturbances and commands is modeled by the designer

according to the real-world environment of the system. If the set of disturbances and

commands under consideration can be described by a random process then a stochastic

design approach like LQG [1] or Wiener-Hopf [2] method can be used to minimize the

mean value of the error energy. On the other hand, if we do not have any useful statistical

information about the disturbances and the commands, then a new developed H'

optimization approach [3-29] is recommended. The H* optimization approach is a minmax

design method which minimizes the maximal error energy for all possible disturbances and

commands in the prescribed set.

The concept of I optimization was initiated by G. Zames [3] in 1981. Since then,

this new research area has attracted many researchers [4-29]. The popularity of this

research area is mainly because this area appears to have a major impact on future

engineering practice.

H* optimization technique is a powerful tool which not only allows us to consider a

more general class of command and disturbance inputs than those considered by LQG and

W-H approaches but also has the ability to handle the plant uncertainties [10-29]. FI

optimization technique uses the IFr norm of a transfer function matrix as the measure of the

error response of a system. This reflects the maximum error energy which may occur in



reality. YJB controller parametrization [2,11,30-321 is employed to characterize the set of

the controllers which solve the stabilization problem. Then among the controllers in the set,

we will find the one that minimizes the error response subject to control-input and stability-

margin constraints.

Two kinds of plant uncertainties are considered. One is the unstructured uncertainty

and the other is the real parameter perturbation. The maximum singular value of the

complementary sensitivity function is used as a measure of robust stability for the

unstructured perturbation and the real structured singular value (or the multivariable

stability margin) is used to measure the robust stability for a system under parameter

perturbations.

The control problem is formulated in a general way. The models of the plant

uncertainties and the reference and disturbance inputs are general enough to reflect the

situations found in actual problems and the controller structure is the most general one

under linear time-invariance which includes the two-degree-of-freedom controllers.

Although our design basically is a frequency-domain approach, the computation is

not necessarily done in frequency domain. As a matter of fact, many algorithms developed

on the state-space framework have better numerical properties than their counterparts based

on polynomial matrix manipulations. All the computations in our design are implemented

on the state-space framework. Furthermore, many pole-zero cancellations can be done

theoretically without using any numerical minimal realization technique. This theoretical

pole-zero cancellation technique [11,12,21-24] can save a lot of computing time and avoid

incomplete cancellation due to rounding errors. It is possible to perform all the computation

in a numerically stable, reliable, and efficient way.

2



Throughout the report, both of the notations I ] and( A,B,C,D ) are

used for the same purpose to represent a state-space realization of a system whose transfer

function is C(sI-A) 1 B + D. ]R(s)pXq is the set of proper rational matrices with real

coefficients. (R-r'°)mxr is the set of mxr proper rational matrices with real coefficients

which are analytic in the closed right half plane. (RL)m  is the set of mxr proper rational

matrices with real coefficients which are analytic on the imaginary axis.

Section 2 shows how to formulate a control problem into the standard H*

optimization problem. A mixed-sensitivity problem and a tracking/disturbance reduction

problem are employed to illustrate the formulation procedure.

Section 3 reveals some useful properties of the observer-based controller

parametrization. The poles of the closed-loop system with the observer-based controller

parametrization are the regulator poles, the observer poles, and the poles of the added

parameter matrix. The set of uncontrollable and/or unobservable controller poles is a subset

of the regulator and the observer poles. The poles of the closed-loop system with the

minimal order controller will include all the poles of the parameter matrix and some of the

regulator and the observer poles which are not the removable controller poles. These

properties could be useful in controller reduction.

Section 4 presents solutions to the standard H- optimization problem. In Sec. 4. 1,

the observer-based controller parametrization is used to characterize the set of stabilizing

controllers and to reduce the transfer matrix of interest as an affine function of a stable

parameter matrix. The affine equation is then reduced further by inner-outer factorizations

to a simple linear equation. In Sec.4.2, a size reduction technique is used to reduce the

order of the rational matrices involved in the equation. A fast y-iteration algorithm for the

solution of the two-block H- optimization problem is summarized in Sec.4.3. In Sec.4.4,

3



the recently developed DGKF approach [29] is employed to solve the four-block H-

optimization problem. Some numerical difficulties we encountered will be discussed.

Section 5 presents our results in the computation of the real structured singular

value (or the real multivariable stability margin). In Sec.5.1, the basic concepts of the

proposed algorithm are briefly described. In section 5.2, the mapping properties from the

parameter space to the coefficient space and the theories on which the iterative algorithm is

developed will be demonstrated. The iterative algorithm for computing the real structured

singular value is summarized in Sec.5.3. Sec.5.4 is a summary of the fast segment stability

checking algorithm which is used repeatedly in the proposed iterative algorithm in

computing the real SSV.

Section 6 is the conclusion and further research suggestions.
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SECTION 2

H" FORMULATION OF CONTROL PROBLEMS

2.1 Standard H- Optimization Problem

Most control problems can be formulated as the following standard H- optimization

problem. In the standard H- optimization problem formulation, the system representation is

rearranged as follows.

I z(s) 1 Gii(s) G12(s)1 ]v(s)]  F v(s)]

y(s) G2 1(s) G22(s)J u(s)] Lu(s)1

where G11(s) I R(s)pxq, G 12(s)e JR(s)Pxm G21(s) R It(s)rxq, and G22(s) r R(s)rxm .

IR(s)pl q is the set of proper rational matrices with real coefficients. In (2.1-1), z, y, v, and

u are the controlled output, the measured output, the exogenous input, and the control input

respectively. The controlled input vector z usually includes the error signal and a weighted

control input. The exogenous input v contains the disturbances, the noises, and the

commands. The measured output vector y consists of all the signals which can be measured

and available for feedback. Through the control input u, the behavior of the system can be

modified. The vector y will be used as the input to a controller K(s) and the output of K(s)

will be connected to the control input u. That is,

u(s) = K(s) y(s) (2.1-2)

The standard H- optimization problem is the problem of finding a proper controller K(s)

such that the closed-loop system is internally stable and 11011. is minimized where

IIDI,. = sup Y [0(jco)] (2.1-3)

and

(D(s) = G11 (s) + G12(s) Q(s) I I - G22(s) Q(s) I -' G21(s) (2.1-3)

5



That is, (D(s) is the transfer function of the closed-loop system from v to z. f(Do(jco)] is the

maximum singular value of (Dj(o).

2.2 Formulation of Control Problems as the Standard H- Optimization

Problem

As mentioned in the previous subsection, most of the control problems can be

formulated as the standard H- optimization problem. For the purpose of demonstration,

two examples are given in the following. The first is the mixed-sensitivity optimization

problem and the second is the tracking and disturbance reduction problem.

2.2.1 A Mixed-Sensitivity Optimization Problem

Consider the system

y(s) = P(s)u(s) + v(s) (2.2-1a)

u(s) = K(s)y(s) (2.2-1b)

The nominal plant transfer function P(s) is given and the set of disturbances is assumed to

be any signal vector with energy less than or equal to one. One of the objectives of

feedback control is to find a controller K(s) such that the closed-loop system is stable and

the maximal energy of the disturbance response is minimized subject to stability-

robustness and control input constraints.

The transfer function from v(s) to y(s) is given by

[ I - P(s) K(s) ] -1 (2.2-2)

which is the sensitivity function of the closed-loop system. From [33], we have

II [I - PK]- 1 I1.. := sup [( I - PK) (j) ] = sup I 1y'12 I lv112 5 1) (2.2-3)

That is, the maximal energy of the disturbance response is equivalent to the Fr norm of [ I

- PK] -.

6



According to Doyle et. al. [34,351, the stability robustness is inversely proportional

to the maximum singular value of the complementary sensitivity function, c[PK(I-PK)
(jco)]. In other words, the stability robustness is better whenever the H- norm of the

weighted complementary sensitivity function is smaller. Usually the Er norms of W1 (I-

PK)-1 and W2PK(I-PK) l cannot be made small at the same time, i.e., if we make one of

them smaller then the other will become larger. To have a trade-off between these two

quantities, Kwakernaak [ 141 formulated the mixed-sensitivity problem as the problem -f

finding a controller K(s) which stabilizes the closed-loop system and minimizes IIl

where (D is given by

W, [l(IPK)l- 1
W2PK(I-PK). 

(2.2-4)

W, and W 2 are weighting matrices chosen by the designer according to the real-world

environment. If the disturbances most likely to occur are low frequency disturbances then

Wl(s) is chosen to be a low-pass filter. If the plant uncertainty is a function of frequency,

then W2(s) should be chosen to be frequency-dependent in the same way.

In (2.2-4) only the quantities related to the disturbance reduction and the stability

robustness are involved. The control-input constraint has not been brought into the picture.

Usually, the control-input energy is reduced when the stability robustness is improved by

scaling WI(s) and W2(s). If that is not the case, we can add one term to (2.2-4). That is,

[ W1 (I-PK)_ 1
= W2PK(I-PK)1  (2.2-5)

W3K(I-PK) t j

where K(I-PK) 1 is the transfer function from v to u and W 3 is a weighting matrix.

7



The problem of finding a K(s) which stabilizes the closed-loop system and

minimizes II0II can be rearranged into the standard H- optimization problem. Consider the

following system:

z, Wi WIP

Z2  0 W2P v
z3 = 0 W3  U (2.2-6a)

Y I P

u = Ky (2.2-6b)

It is easy to show that the matrix cD defined by (2-8) is just the transfer function from v to

[z1T Z2T z3TIT of the closed-loop system (2.2-6). Comparing (2.2-6a) with (2.1-1), we

can see that

Gi [ 0 G12 =W2P

(2.2-7)

G2 1 =1, G22 =P.

2.2.2 A Tracking/Disturbance Reduction Problem

PSso0 1Ob --n

Fig. 2.2-1 Formulating a tracking problem as a standard H optimization problem.

Consider the system shown in Fig.2.2-1. The objective is to find a controller K(s)

such that the closed-loop system is stable and the plant output Yl follows the command r as

closely as possible under the influence of the disturbance d and the measurement noise n.

Let the controlled output vector z b-

8



[z I
z = WIu (2.2-8)

where W1 is a weighting matrix which is chosen to constrain the control input. The

disturbance, command, and noise are assumed unknown, but can be described as

= W3 V (2.2-9)
n- W 4 _

where v is any signal with bounded energy. The disturbance d and the command r usually

are low frequency signals and hence W2 and W3 are low-pass filters. The weighting matrix

W4 is a high-pass filter since the measurement noise is a high frequency signal. The

measured output y is

y =[y,+n ]  (2.2-10)

Now, the system can be rearranged as

w-w 3  P
W2W3

0
.............................(2 .2 -1 1 a)y w2+w 4  p U

w3  0

u = Ky (2.2-1 lb)

and the tracking problem is formulated as the standard H- optimization prnblem.

9



SECTION 3

STABILIZATION AND OBSERVER-BASED CONTROLLER

PARAMETRIZATION

In Sec.3.1 the basic concept and the historical developments of the controller

parametrization will be briefly described. Sec. 3.2 will list the previous results about the

controller parametrizations done by Youla et. al., Desoer et. al., Nett et. al., and Doyle et.

al.. In Sec. 3.3, some useful properties of the observer-based controller parametrization

will be revealed.

Throughout the section, the following notation will be used. The sum, C4 +1, of

two sets Ct with p elements and 15 with q elements is a set which consists of all elements of

Q and 13. C143 has p+q elements. Assume that 1 C C, then the difference, Ct-13, will

consist of all the elements of C except those in IS. CA-IS has p-q elements.

3.1 Basic Concept of Controller Parametrization

One of the most fundamental requirements in control systems design is to make the

closed-loop system internally stable. In addition to closed-loop stability, usually the closed-

loop system is required to meet some other desired performance criteria. Stabilizing

controller parametrization is important because of the following reasons: (1) It provides the

full set of the controllers which stabilize the closed-loop system. (2) The full set of

stabilizing controllers is characterized in terms of a stable parameter matrix and the closed-

loop system is internally stable if and only if the parameter matrix is stable. (3) The closed-

loop transfer function matrix related to the performance can be written as a simple affine

function of the parameter matrix and then the control system design problem becomes that

of finding a stable parameter matrix such that the closed-loop transfer function matrix meets

the desired performance criteria.

10



The characterization of the set of all stabilizing controllers in terms of a stable

parameter matrix was introduced by Youla et. al. [2] in 1976. Youla's controller

characterization was developed based on the fractional factorizations over the ring of

polynomial matrices. The only drawback of Youla's characterization is that the stabilizing

controller may not be proper. This drawback was removed later by Desoer et. al. [30] in

1980.

Desoer et. al. [30] generalized Youla et. al.'s result based on the fractional

factorizations over a general ring. The ring can be chosen as the set of proper stable rationa

matrices if the given plant is a linear time-invariant system which is represented by a

rational matrix. Based on the fractional factorizations over the ring of proper stable rational

matrices the set of all proper stabilizing controllers can be characterized in terms of a proper

stable parameter matrix.

To use Desoer et. al.'s version of proper stabilizing controller parametrization, it is

essential to compute the fractional factorizations over the ring of proper stable rational

matrices. Nett et. al. [31] proposed a very convenient state-space method for this

computation in 1984. The computation method was developed based on the observer and

regulator theories.

Later in 1984, Doyle et. al. [11] showed that the proper stabilizing controller

parametrization can be realized as an observer-based controller with an added stable

parameter matrix. The structure is simple and easy to implement.

In Sec.3.3 we will show that the observer-based controller parametrization has the

following two properties: (1) The poles of the closed-loop system with the observer-based

controller parametrization are the regulator poles, the observer poles, together with the

poles of the added stable parameter matrix. (2) If the controller is realized by a minimal

realization, the closed-loop poles will include all the poles of the added stable parameter

matrix and a subset of the regulator and the observer poles.

11



The concept of stabilizing controller parametW.zation is briefly described as follows.

Consider the block diagram in Fig. 3.1-1 where v is the exogenous input vector which may

consist of the disturbances, noises, and the commands, u is the control input vector

through which the behavior of the system can be modified, z is the controlled output vector

which is composed of all the variables to be controlled, and y is the measured output vector

which consists of all the measurable quantities available for feedback. The plant G(s) is

given by

r Gii(s) G 12 (s)" A B1  B2

G2 1(s) G22(s) C1  11 2

C2  D21 D22J

The objective of a typical control problem is to find a proper controller K(s) which

stabilizes the closed-loop system and the H" (or H2) norm of the closed-loop transfer

function matrix <D(s) from v to z is minimized. The first step to solve the problem is to find

the set of all proper controllers which make the closed-loop system internally stable. Then

in the set of all proper stabilizing controllers, one will be chosen such that the FI (or H2)

norm of (D(s) is minimized.

v z

Fig. 3.1-1 Block diagram of a typical control problem.

The stabilizing controller parametrization we are interested in has the following two

properties: (1) All the proper stabilizing controllers can be characterized in terms of a proper

stable parameter matrix Q(s) and the closed-loop system is internally stable if and only if

12



Q(s) is stable. (2) The transfer function matrix (D(s) is a simple affine function of the

parameter matrix Q(s).

After the stabilizing controller parametrization, the above control problem becomes

that of finding a proper stable matrix Q(s) such that IKIII. (or 110112 ) is minimized. Property

(2) of the last paragraph is important since it will make the FI (or H2) optimization

problem easy to solve.

3.2 Youla's Controller Parametrization

The previous results related to the controller parametrization will be briefly

reviewed in this subsection. The following theorem was originally developed by Youla et.

al. [2] and later modified by Desoer et. al. [30].

Theorem 3.2-1: [2, 30] (Youla's Controller Parametrization)

Consider the system in Fig. 3.1-1. Assume that the realization in (3.1-1) is minimal and

the subsystem G22(s) is stabilizable and detectable. Let M2(s), N2(s), X2(s), Y2(s),

MI(s), NI(s), Xl(s), and Y,(s) be proper stable rational matrices such that

M 2 (s) N2 (s) ir 2 (S) Nq(S)1 (3.2-)

YI(s) X1 (s) Y2(s) M 1 (s) ] ] 3

and

M2(s) -1 N2(s) = G22(s) (3.2-2)

Then the set of all proper stabilizing controllers can be described as

K(s) I K(s) = [ M1(s)Q(s) + Y2(s) ] [ N(s)Q(s) - X2(s)] -1

with Q(s) proper stable and I NI(-)Q(,) - X2()I * 0 1 (3.2-3)

and the closed-loop transfer function matrix O(s) from v to z is an affine function of the

parameter matrix Q(s),

13



((s) = G1 I(s) - G12(s)Y 2 (s)M 2 (s)G 21(s) - G12(s)MI(s) Q(s) M.2(s)G 21(s) (3.2-4)

To use Theorem 3.2-1, we need to construct the proper stable rational matrices in

(3.2-1) and (3.2-2). Nett et. al. [31] proposed a convenient state-space approach for this

construction. That is, the following realizations

[ M(s) N 2(S) 1H [ 2 H B 2+HD22 1

Y 1(S) X-(s) C I D 2 2  (3.2-5a)

-F 0 I

and

[x2 (S) -N1 (s A+B 2F H B 2
Y2(S) M 1 (S) -(C 2 +D 2 2F) I -D22 (3.2-5b)

F 0 ]
are proper stable and satisfy (3.2-1) and (3.2-2) where F and H can be arbitrarily chosen

such that A+B 2F and A+HC 2 are stable.

Doyle et. al. [11] showed that if (3.2-5a) and (3.2-5b) arm used to realize the proper

stable rational matrices in (3.2-1) and (3.2-2) and let

[j I(s) 31(s) 1 A+B 2F+HC2+HD 22 F -H -(B 2 +HD ]2
J(s) J21 ( S)  --JoJ F 0 -I (3.2-6)

2 -(C 2 +D2 2 F) I D2 2

then the set of proper stabilizing controllers described in Theorem 3.2-1 will have a

structure as that shown in Fig. 3.2-1.

14



U y~J(s)

Q~s) 
U 2

with Q(s) proper stable and I - D2.Q() invertible.

Fig. 3.2-1 Structure of stabilizing controller parametrization.

Replace the controller K(s) in Fig. 3.1-1 by the structure of Fig. 3.2-1, then the

closed-loop system can be redrawn as that shown in Fig. 3.2-2.

v T(s)s _

iig. 3.2-2 The closed-loop system characterized in terms of a parameter matrix Q(s).

U

y

A

with Q(s) proper stable and I - D22Q(oo) invertible

Fig. 3.2-3 The observer-based controller parametrization.

In Fig.3.2-2, the open-loop transfer function matrix from u 2 to y, T 2 2(s), s zero.

Therefore, the closed-loop transfer function matrix from v to z, i.e., ZD(s), is a simple

affine function of the parameter matrix Q(s). That is,
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0(s) = Tit(s) + T12(s) Q(s) T21(s) (3.2-7)

where the realizations of T, (s), T12(s), T21(s) are given by

A+B2F -B2 F B1

T 11(s) = 0 A+HC2  B1+HD2 1  (3.2-8a)

LC1+D12F -D12F D1 1

A+B 2F B 2

T12(s) = C1+D12 F  D12 (3.2-8b)

Ai-C 2  B1+HD 21 "
T21(s) = C 2 D21 (3.2-8c)

Doyle et. al. [11] also pointed out that the structure of the stabilizing controller

parametrization in Fig. 3.2-1 can be realized as an observer-based controller with an added

stable dynamics Q(s). The realization is shown in Fig. 3.2-3.

Note that in Fig. 3.2-3 the block diagram inside the dotted-line box is the weli-

known full-order observer-based controller [1].

3.3 Observer-based Controller Parametrization and Its Properties

In Fig. 3.1-1, the internal stability of the closed-loop system depends only on

G22(s) and K(s), i.e., the interconnected system shown in Fig. 3.3-1.

U ySK(s)

Fig. 3.3-1 Equivalent system to Fig. 3.1-1 for internal stability.
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In this subsection, the controller K(s) in Fig. 3.3-1 is replaced by the block diagram

of Fig. 3.2-3 which is the observer-based controller with an added dynamics Q(s).

The following theorem shows that the poles of the closed-loop system with the

observer-based controller parametrization in Fig. 3.2-3 are the regulator poles (the

eigenvalues of A+B 2F), the observer poles (the eigenvalues of A+HC 2), together with the

poles of the parameter matrix Q(s). In the design of the observer-based controller, F and H

are chosen such that the eigenvalues of A+B 2F and A+HC 2 are stable. Therefore, the

closed-loop system is internally stable if and only if the paramete- matrix Q(s) is proper

stable. The proof is quite straightforward and is done completely in the state space without

referring to the derivations used by Youla et. al., Desoer et. al., and Doyle et. al..

Theorem 3.3-1: (Observer-based Controller Parametrization)

Consider the closed-loop system in Fig. 3.3-1. Assume that G22(s) = (A, B2, C2 , D22)

with order n is stabilizable and detectable and the controller K(s) is replaced by the

observer-based controller with an added m-th order dynamics Q(s) as shown in Fig.

3.2-3. Then the set of the closed-loop poles is composed of the n eigenvalues of

A+B 2F, the n eigenvalues of A+HC 2, and the m poles of the added dynamics Q(s). That

is, the set of the closed-loop poles is

closed-loop regulator observer Q(s) (3.3-la)
where

'regulator = (n eigenvalues of A+B 2  (3.3-b)

pobserver (n cigenvalues of A+HC2 ) (3.3- 1c)
and

pQ(,) = (mpolesofQ(s)) (3.3-1d)

Proof: See [65,66]

It is well known that in the observer-based controller design, the closed-loop poles

are the regulator poles (the eigenvalues of A+B 2F) and the observer poles (the eigenvalues

17



of A+HC2) [1]. Theorem 3.3-1 shows that the above property still remains when we add a

dynamics Q(s) to the observer-based controller as shown in Fig. 3.2-3. The eigenvalues of

A+B 2F and A+HC 2 are still parts of the closed-loop poles after we add Q(s) to the

controller. Adding Q(s) only introduces additional poles to the closed-loop system and the

added closed-loop poles are the poles of Q(s). If F and H have been chosen such that

A+B 2F and A+HC 2 are stable, then the closed-loop system with the observer-based

controller parametrization will be internally stable if and only if the parameter matrix Q(s) is

proper stable. From Fig. 3.2-3, it is easy to see that the controller K(s) is proper if Q(s) is

proper and I - D22Q(oo) is invertible.

With the observer-based controller parametrization, the closed-loop transfer

function matrix from v to z, i.e., O(s), is a simple affine function of the parameter matrix

Q(s). That is,

(D(s) = T11(s) + T12(s) Q(s) T21(s) (3.3-2)

where T,,(s), T12(s), and T21(s) are given by (3.2-8). The added dynamics Q(s) is a

proper stable rational matrix to be chosen such that I-D 22Q(--) is invertible and 4)(s) has

some desired performance. No matter which Q(s) is to be selected, we always have a clear

idea that the closed-loop poles will be the eigenvalues of A+B 2F and A+HC 2 together

with the poles of the added dynamics Q(s) if the controller is realized as that shown in Fig.

3.2-3.

Assume that the orders of the plant and the parameter matrix Q(s) are n and m

respectively. If the controller is realized as that shown in Fig. 3.2-3, then the order of the

controller .s n+m and the closed-loop system has 2n+m poles described by the set Vclose-

in (3.3-1). The realization of the controller in Fig. 3.2-3 may not be minimal. Suppose

it is not and there are r poles in the controller either uncontrollable or unobservable, then the
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controller can be realized by a minimal realization with order n+m-r and the number of

closed-loop poles will be reduced to 2n+m-r.

In the following theorem, we will show that the uncontrollable or unobservable

poles of the controller of Fig. 3.2-3 must be the eigenvalues of A+B 2F or A+HC 2 and the

closed-loop poles will always include all m poles of the added stable dynamics Q(s). If r

pole-zero cancellations occur in the controller, then the closed-loop poles will include m

poles of Q(s), and 2n-r eigenvalues out of the set Vregular + P obserer which was defined

in (3.3-1).

Theorem 3.3-2:

Consider the closed-loop system in Fig. 3.3-1. Assume that G22(s) = (A, B2, C2, D22)

with order n is stabilizable and detectable and the controller K(s) is replaced by the

observer-based controller with an added m-th order dynamics Q(s) as shown in Fig.

3.2-3. A minimal realization of Q(s) is given as (A, B, V, 5). Define Vregulator'

V obs and VQ(,) by (3.3-1b), (3.3-Ic), and (3.3-Id) respectively and let

Vremo,,a= (the controller poles which are either uncontrollable or unobservable) (3.3-3)

Then

Vremoval C Vregulator + IPobserver (3.3-4)

and the closed-loop system with the minimal order controller will have a set of poles

described by the following

closed-loop with min. controller Q(s) + (Rregulator +Pobserver - iremoval )  (3.3-5)

Proof: See Appendix A.
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SECTION 4

SOLUTIONS FOR THE STANDARD H- OPTIMIZATION PROBLEMS

Consider the system

FZ(S)] =[G1 1 (s) G 12(s)l1v(s)1 := G(s)IV(S (4-a)
Iys G (s) G G S

Ly(s)J [G 2 1(s) G22(s)J .u(s)J Lu(s)]

u(s) = K(s) y(s) (4-1 b)

where G11(s) e R (s) p x q , G 12 (s) C ]R(s) p 'm , G 2 1(s) C IR(S)rxq and G 2 2 (s) E IR(s) rxm.

Recall that the standard H- optimization problem is the problem of finding a proper

controller K(s) such that the closed-loop system is internally stable and I1011. is minimized

where (D(s) is the transfer function of the closed-loop system from v to z.

Let

[A B1  B2

G(s) = CI Dl D 12 (4-2)

C2 D21D2

be a minimal realization of G(s). Here

G(s) = I I = (A, B, C, D (4-3)

implies a state-space realization and G(s) = D + C (sI - A)-' B.

According to the dimensions of G11(s), G 12 (s), G21(s), and G22 (s), the standard

H" optimization problem has the following cases to consider: (a) p > M, r < q; (b) p < m, r

< q; (c) p > m, r > q; and (d) p <5 m, r > q. Case (a) is referred to as the four-block Fr

optimization problem. Cases (b) and (c) are referred to as the two-block -I optimization
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problem. Case (d) is referred to as the one-block H-" optimization problem. The example in

Sec. 2.2.1 is a two-block problem and the example in Sec. 2.2.2 is a four-block problem.

The one-block H- optimization problem was solved by Francis, Zames, and Helton

151, Chang and Pearson 161, Safonov and Verma [71 and Glover [8]. A so-called y-iteration

algorithm was originally proposed by Doyle [101 for solving the four-block and two-block

H- optimization problems. The major burden of the computation is in the evaluation of the

optimal H- norm. Chang, Banda, and McQuade [201 proposed a fast y-iteration algorithm

for computing the optimal H- norm of the two-block problem. For most problems we

encountered, the optimal two-block H- norm can be accurately (to a double precision

accuracy) obtained within three or four iterations. Once the optimal norm is computed, the

two-block problem can be easily transformed into a one-block problem and then Glover's

method 181 can be used to construct an optimal controller.

Although Chang and Pearson 1171 and Chu and Doyle [181 greatly simplified the

original Doyle's four-block H- norm computation algorithm, the simplified y-iteration

algorithms are still not fast enough for practical applications. Recently, Doyle, Glover,

Khargonekar, and Francis 1291 presented a celebrating Riccati-equation type solution to the

four-block H- optimization problem. DGKF's approach characterizes all possible

stabilizing suboptimal H controllers which order is not higher than that of the plant. The

major computation involved is the solution of two Riccati equations. There are still some

numerical difficulties in the solution of these P -cati equations when the controller is close

to the optimal.

In the subsection Sec.4. 1, the observer-based controller parametrization is used to

characterize the set of stabilizing controllers in terms of a stable parameter matrix. With the

controller parametrization, the closed-loop transfer function from v to z is an affine function

of the parameter matrix. After inner-outer factorization manipulations, the problem becomes
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Find a 0(s) r (RHr)mxr such that II $ II is minimized

where < is given by (4-4)

6 [ Ril + R 12

R21  R2 2

(RIH), r is the set of mxr proper rational matrices with real coefficients which are analytic

in the closed right half plane. The above problem is referred to as the four-block H,

optimization problem. The two-block H optimization problem is just a special case of
T RT We oh[2problem (4-4) with either [R21 R22] = 0 or [R1 2 R2 2] = 0. When both [R 21 R2 2 ] = 0

an RT RTand [R1 2 R22] = 0, the problem is one-block problem. In Sec. 4.2, a state-space size

reduction method is used to simplify the realizations of R11, R12, R2 1, and R22. A fast y-

iteration approach for the two-block I optimization problem is summarized in Sec. 4.3.

In Sec.4.4, the numerical difficulties in using the DGKF approach [29] to solve the four-

block Fr optimization problem will be discussed.

4.1 Controller Parametrization and Inner-Outer Factorization

Suppose the realization ( A, B2, C2 , D22 ) is stabilizable and detectable, then by

using Doyle's version [11,32] of YJB controller parametrization [2,30], the set of

stabilizing controllers can be characterized by the structure shown in Fig.3.2-3.

In Fig.3.2-3, the regulator gain matrix F and the observer gain matrix H are chosen

such that A+B 2F and A+HC2 have no eigenvalues in the closed right half of s-plane. With

the controller K(s) parameterized as above, the closed-loop transfer function matrix from v

to z, i.e., 0(s), is a simple affine function of the parameter matrix Q(s). That is,

0(s) = T11(s) + T12 (s) Q(s) T2 1(s) (4.1-1)

where the realizations of T11(s), T12(s), T2 1(s) are proper stable rational matrices given

by (3.2-8).
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If T12(s) and T21(s) are thin and fat respectively, i.e., p > m and r < q, then they

can be decomposed as

TI2(s) = Ti(s)To(s), T2 1(s) = To(s)Ti(s) (4.1-2)

where Ti e (RH")P'm is inner, Ti e (RI") rxq is co-inner, To e (RHr)"'x and To e

(RH')r are outer matrices. Furthermore, we can find a T.(s) e (RH")Px(P 'r ) such that

[T Tj. I is square and inner. Similarly, T.L(S) E (RH,)(qr)x q can be found such that [ T

-TTT1 ] is square and co-inner. Now, (4.1-1) can be rewritten as

D= Ti1 +[T T [ 0z[Ti (4.1-3)

+ (4.1-4)

TIT I Ji TJ I1_ R2 L2

Note that II II = II II .and therefore the problem becomes to:

Find a (s) • (R-I) '  such that II1 II is minimized

where $ is given by (4.1-4). (4.1-5)

Problem (4.1-5) is referred to as the four-block ,I-jotmization oblem.

The two-block FI optimization problem is just a special case of problem (4.1-5)

and the corresponding ($(s) is a special case of (4.1-4) with either [R 21 R22 =0 or T

T Weboh[0an[RT RTR2] = 0. When both [R 2 1 R22 ] = 0 and [R 1 2 R 221 = 0, the problem is one-block

problem.

In (4.1-4), R(s) is given by
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R(s) = [ R,,(s) R 2 (s) 1 (4.1-6)
L 112 (s) R22(s) I RL(S) RR(s)

The state-space realizations of RL(s) and RR(s) are given by [12]

'-(A+B
2F)T  (Cl+D 12F)T -XH

-(B2 D 2. (4.1-7a)RL(S)- -(B2RD ) (D12RD ) (.-a

T t T
DjC~x DI 0

T _-1/2 T tT
-(A+HC 2)T  -( D C2  Y

.- 1/2_ .T D5T

R Y+Dj I(B I+HD2 1) 
T DI(-12 T T

R(S) C Il D D21) 1 (4.1-7b)

0 1/2 0L 'D

where

F R-1 T TBx) 
(4.1-8a)D fi-R(D1 2CI + BX

D =D2 12 (4.1-8b)

-1 T - 1
2 R DD12 C -B2RD B2

X =Ric T T -(A-BR D (4.1-8c)
_CI D _L D _L CI "[RD12 I

D is the orthogonal complement of DR1/2 so that

[ 12 2 RD is square and orthogonal. (4.1-8d)

1/2T 1/2
(D ) 1 D = RD (4.1-8e)

24



and
T cT--i(4.1-9a)K =- (BDi + YD2 ) RD(.9

YRD  D D2Ic (4.1-9b)

T -T T T--1(A-BID21RDC 2 )  - C2R v C2

B1Dj D _L~~~~j - 1/2 B~ DC )

D1 is the orthogonal complement of RD 2 so that

D D21

is square and orthogonal. (4.1-9d)

L

~-1/2 1/2 = (4.1-9e)
(RD )(RD ) =RD---

In (4. 1-8c) and (4. 1-9c), Ric[HI denotes the solution of the Riccati equation corresponding

to the Hamiltonian matrix H.
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4.2 Size Reduction In Four-Block H" Formulation

Neither RL(s) nor RR(s) in (4.1-7) is a minimal realization. Limebeer and Hung

[22] derived a minimal realization of R11(s) in the one-block case ( the case with R12(S),

R21(s) and R22(s) being zero matrices ) for finding a bound on the McMillan degree of the

H" optimal controller. This minimal realization process is not numerically reliable although

it is adequate for their theoretical purpose. Recently, Postlethwaite, Gu, and O'Young [231

unveiled some useful properties on the solution of the algebraic Riccati equation and used

them to develop a numerically reliable algorithm for the minimal realization of R11 (s) in the

one-block case.

Partitioning RL(s) and RR(s) as

RL(s) = RL(s) J RR(S) = [ RRI(S) RR2(S)] (4.2-1a)

then we have

R11 (s) - RLI(S) RRI(s), R12 (S) = RLI(s) RR2(S)
(4.2-1b)

R2,(s) - RL2(s) RRI(s), R2 2 (s) = RL2 (s) RR2 (S)

where
-(A+B 2F)T  (Cl+D 12F)T -XH (

[(S --1/2 T -1/2 T(
-(B2 RD ) (DR12 ) 0

T 2 T ]
B2 F)X (+DF -X
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=(A+HC 2 )T (R C2 )T

L RD

Y~1 I

RR2(S)= CIY+DI I(B1 +HD21)T  D D T  (4.2-1f)

0 0

The recently discovered properties on the solution of the algebraic Riccati equation by

Postlethwaite et. al. [23] and the pole-zero cancellation technique by the similarity

transformation are used for constructing the minimal realizations of RLI(s), RU(s), RRI(S),

and RR2(S). Only orthogonal transformations are involved in the computation, so the

algorithm is numerically reliable. The new result of Postlethwaite et. al. is listed as follows.

Theorem 4.2-1: [23]

Consider the algebraic Riccati equation,

ATX + XA - XBBTX + CTC = 0 (4.2-2a)

There exists an orthogonal matrix U = [UI U2 ] such that

UTAU= [ ] (4.2-2b)

UTi

UTB I CU = [0 CU2 ] (4.2-2c)

U B

and
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UTXU 0 X2 (4.2-2d)

The eigenvalues of A, are unobservable but stable. That is, the set of eigenvalues of A3

includes all the observable and all the unstable eigenvalues of A. The rank of X2, and

therefore the rank of X, equals the dimension of A3* X2 > 0 satisfies the following

algebraic Riccati equation (ARE),

TX A-X 2 U TBB U2X + T C CU = 0 (4.2-2e)

The algorithm we developed is different from that of Postlethwaite et. al.. The

advantage of the decomposition R(s) = RL(s)RR(S) is taken to simplify the size reduction

process for R11(s), R U(s), R21(s) and R2 2(s). Although we do not try to construct

minimal realizations for Ri .(s), we do have minimal realizations for RLi(s) and RRj(S),

i,j=l,2, and there is no possible mathematically identical pole-zero cancellation between

RLi(S) and RRj(s).

In the following, we will derive minimal state-space realizations for RLI(S) and

RL2(s). Minimal realizations of RRI(s) and RR2(s) can be obtained in a similar way. First of

all, let us consider RLI(s).

Minimal Realization of RLI(S)

The first step is to apply Theorem 4.2-1 to the solution of the algebraic Riccati

equation (4.1-8c). There exists an orthogonal matrix

U = [UI U2 ] (4.2-3a)

such that

uTA -1 T  Al A121 (4.2-3b)
U(A-B 2RDD12C)U - 0 A
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U'TBRl/ = 1], DIC1 U = [0 W2 ] (4.2-3c)

and

aT 0 0 (4.2-3d)uxu =[021

where X2 is the positive definite solution of the following reduced-order algebraic Riccati

equation
X +X +WTW 2 = 0 (4.2-3e)

Applying the similarity transformation (UT, U) to the realization of RLI(s) in (4.2-1c) and

then using (4.1-8) and (4.2-3), we have

-A1  0 0 0

T TT TL ,-1. TT-(A -L, (D.W 2 -D2 D  U)

R-1/27 0
(D 2 RD)

-(A2 -LA;X2 ) (DIW2 -D 1 2 RD BU 2 X2 )T -X 2 U2H

- [(4.2-4)

The size of the state-space realization of RLI(s) has been reduced from the dimension of A

to that of A2 and the realization in (4.2-4) is controllable according to the following.

Remark 4.2-1:

The state-space realization of Rl(s) in (4.2-4) is controllable.

Proof: See Appendix A.
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Remark 4.2-2:

If RL2(s) = 0, i.e., D± = 0, then it is easy to prove that the pair {L2T, (A 2-L2L 2 TX2)T 1is

observable. In this case, the realization of RLI(S) in (4.2-4) is already a minimal

realization.

Now the realization of RLI(s) in (4.2-4) is controllable but not necessarily

observable if RL2 (S) * 0. By using the Van Dooren's version [36] of Rosenbrock's

algorithm [37], we can find an orthogonal matrix

V= [V1 V2 ] (4.2-5a)

such that

T T TV (A2 - L2L2X2) V

=L](4.2-5b)

-V fA2 -tXdVLX2 )TV -V(A2 -V2

and

- 7-L2V1  0] (4.2-5c)

and the pair

(-L V, , -VkA 2 - L,2L X2)TV 1) (4.2-5d)

is observable.

Applying the similarity transformation (VT, V) to the realization of RLl(S) in (4.2-4)

and eliminating the unobservable part, we have the following minimal realization
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T-1 T TTV!(A"L 2 L2X,)jV V (DW2-D2RDB2
I1L2 12 D221

RLI(S) = R-1/2 "0V (4.2-6)
TC V1/2 

Minimal Realization of RL(S)

The first step is just similar to that of the minimal realization of RLI(s). Applying the

similarity transformation (UT, U) to the realization of RL2(s) in (4.2-id), and then using

(4.1-8) and (4.2-3), we have

-A 0 0 0

RLU(S) = X T(A 2 L21. (D1W2-D31Rj)B U2X2)T -UTH

1 T

W~X~ 0

0 W2 XD1 I , T

[.(A2 .L2L~x 2 )T -X T T OT(A2-LL X)(D.W 2 - D12 R D B2U2X 2) -X2U2H

= (4.2-7)

W2 X2

For the same reason of Remark 4.2-1, the realization of RL2(s) in (4.2-7) is controllable.

Next, we can find an orthogonal matrix

S = [S1  S2 ] (4.2-8a)

such that

-sT - L L X2)T s[S T T TS
IS1 (A2 - LLX 2)S0

(4.2-8b)

2(A2 - LLX2  (A2 , - 1 2L X2)S 2 ]

and

31



W2X2Is= [W2X2S 0] (4.2-8c)

and the pair

W2X2 S 1 , -ST(A 2 - L2Lx 2 )TSl I (4.2-8d)

is observable.

Applying the similarity transformation (ST, S) to the realization of RL2(s) in (4.2-7)

and eliminating the unobservable part, we have the following minimal realization:

.- T( 2 L T T -1 T T T TI LLTTS 1 S(DIW2 -DI 2RD BU 2 X 2 ) T T
S 1 A2"LL2X2 S 1-S 1 X2 U2H

RL2(s) = 1 (4.2-9)
w2xlSl I Di 0

Minimal Realization of R Rl(s)

The procedure is similar to that of RLl(s). Theorem 4.2-1 will be applied to the

solution of the algebraic Riccati equation (4.1-9c). There exists an orthogonal matrix

U = [U 3  U4 ] (4.2-10a)

such that

-T T -T T- [ 34 (4.2-1Ob)U(A- BD 21RDC2) U 0 A

--T-(k[-1/2 T L 3  BTj = [0  W 4] (4.2-10c)

U (RD C2) L4 , I

and

-TY [0 0 (4.2- 1lOd)

where Y2 is positive definite solution of the following reduced-order algebraic Riccati

equation
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AT Y YT T(421eA4 Y2 +Y 2 A4 Y2 L4 LY 2 +WW 4 - (4.2-)

Applying the similarity transformation (U T, U) to the realization of RRl(s) in (4.2-1c) and

then using (4.1-9) and (4.2-10), we have

-A 3  -A 3 4 + L3 L4 Y 2  -I

0 -A T0 -A4 +LLV -L
RRI(S) =

" -1/2

o o

-A4 + L4LY 2  -L4

-112D2T
- DII(R 1 fD D2 1)

(4.2- 1 la)
0 1/2

L R D

where
#=CIUY2 + Dl(4-T R~-1-1b)

f 4 2 .15 4 D21RD C2 U4 Y 2 ) (4.2

The size of the state-space realization of RRI(s) has been reduced from the dimension of A

to that of A4 although the realization in (4.2-11) in general is neither controllable nor

observable.

Remark 4.2-3:

If RR2 (S) = 0, i.e., D±= 0, then it is easy to prove that the pair

[(A 4 - L4LIY 2), L4

is controllable. In this case, the realization of RRI(S) in (4.2-11) is controllable.
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There exists an orthogonal matrix

V=[ V 3  V4 ] (4.2-12a)

such that

- T(A4 - L4 LTY2) V

N3 (AT L4 L4 Y2) V3 0
-=0(4.2-12b)

L4 4 L4C4YI) V3  -V4(A4 - L414T)V

and
S[V: 0] (4.2-12c)

and the pair

#V3 ' -VT3 (A4 - L4 L4Y2)V3 } (4.2-12d)

is observable.

Applying the similarity transformation (VT, V) to the realization of RRI(s) in

(4.2-11) and eliminating the unobservable part, we have the following realization which is

observable

TT
V; (A 4 L LY 2 )V3  3V 4

R (SD - -1/2 ,T

RR1(S)= # V3  D11(RD D21)
(4.2-13)

0 1 1/2

If RR2(S) = 0, then from Remark 4.2-3 the realization of RR1(S) in (4.2-13) is controllable

and therefore is minimal. Otherwise, we can find an orthogonal matrix

S = [S3 S4] (4.2-14a)

such that
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- (A - L4 S -
2)V3 S

-~ N [-~~A.L4LJY) (4.2- 14b)
-4; 3A4-L4L4 2)V, S4J

and

-T T4 3 L4 (4.2-14c)
-V 3 L4  0

and the pair

T 2T T TT ,' (4.2-14d)
-"S3V3(A 4 -L 4L4Y2 )V 3 S 3  -S 3 V3 L 4 }

is controllable.

Applying the similarity transformation (ST, S) to the realization of RRI(S) in

(4.2-13) and eliminating the uncontrollable part, we have the following minimal realization:

TVT(A4  TS TT
-S3 3  - L4 S3 V3 L4

R ) D I - -1/2 T (4.2-15)RRI(S) # #V3S3 DIIRDD1

0- 1/20 RD
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Minimal Realization of RR2 (s)

Applying the similarity transformations (UT , U) and then (V T, V) to the realization of

RR2(S) in (4.2-10 and eliminating the unobservable part, we have the following realization

which is observable:

- L4 LY 2 V3  V; Y2 W4

R D DT (4.2-16)RR2(S) =# V3 1 D11D-1

0 0

Furthermore, we can find an orthogonal matrix

T = [T 3  T4 ] (4.2-17a)

such that

TT T
-TV;(A 4 - L,4L4Y2)V3 T

- -T;V (A 4-L4LV 2)V3T3 -T;V;(A 4 -L4 LV 2)V3T4 ](.17b

0 -T4V;(A4 -L4L4Y2 )V 3 T4

and
'T T .1 T

-T T -1 T TVY2 W] (4.2-17c)
V3 Y 2 W4 =

and the pair

T T T T T-1 T (4.2-17d)
(-T 3 V3 (A4-L4L4Y2)V3T3 , T3 v 3 2 W4  d

is controllable.

Applying the similarity transformation (TT, T) to the realization of RR2(S) in

(4.2-16) and eliminating the uncontrollable part, we have the following minimal realization:
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-T ~(4 - L4L Y2 )V3T3 fT V3YW

R R2 (s) = V3TTD6

L0 0
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4.3 Fast y-iteration Algorithm for the Solution of the Two-block H'

Optimization Problem

4.3.1 Basic Concept of Fast y-iteration

In (4.1-4), if [R ,2 2]0, i.e.,

[R11(s) + 0(s) 1
()= L 1 2 s) j(4.3-1)

R-21(S)

then we have the two-block I-I" otimization rbm described as follows,

Find a 0(s)e (RH m)' r such that II $ II is minimized

where $ is given by (4.3-1). (4.3-2)

The two-block Fl optimization problem arises in the optimal disturbance attenuation with

control weighting, the minimization of a weighted sum involving both the sensitivity

function and its complement, and any control problems with more controlled outputs than

control inputs. The two-block H- optimization problem usually is solved in two steps. The

first step is the computation of the optimal H* norm 141 ,. which is the most time-

consuming job. The second step is the construction of an optimal 0(s) and then an optimal

controller.

In this section, a very fast iterative algorithm was developed for the computation of

the optimal two-block -I norm, i.e., the computation ofIR1[ +°I
if (RHR)r To (4.3-3)

RII(s) and R21(s) are in (RL) m r and (RL")w r respectively. (RL) n is the set of proper

rational matrices with real coefficients which are analytic on the imaginary axis.
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In the two-block H' optimization problem, the most computationally demanding

work is the computation of the optimal Fr norm y . Define

AM(7 = n R,, (Ro)nr[ (s) + Os) ]M(s,y)I (4.3-4a)

where

72I - R2 1(-s)T R21(s) = M(-sy)T M(s,y) (4.3-4b)

Then the problem of computing y. can be considered as that of finding a y such that I'(y)

equals to 1.

In y-iteration approach, an initial guess of the optimal norm y., say y, is made and

the computations of the spectral factorization (4.3-4b) and the one-block optimal Ir norm

computation (4.3-4a) are performed to determine what the next guess shall be. The next

guess of y is determined by the value of g(T). This guess and computation loop is repeated

until g(y) = 1. Numerically, this computation ends when tj(y) - 11 < e, where e is a very

small number. This search scheme works all right if I±(y) - 11 < e implies that ty - YTI < e,

i.e., the absolute value of the slope of g(T) at y is large enough. On the other hand, if the

absolute value of the slope is small, we may have I T - To I >> e. In other words, the

accuracy of y may be very poor although the accuracy of t(y) is good.

A simple bisection search scheme can be used. Starting from a lower bound Yh and

an upper bound yu, one can define y = (L + yU) /2 and evaluate g (y). If g(y) > 1, then yL is

updated by y. Otherwise, Tu is replaced by y. This process is repeated until the gap between

^L and Tu is small enough. This search scheme is straightforward, but the convergence rate

is slow. Say, the initial gap between yL and Tu is 1. To reduce the gap to be less than 10-15,

the number of iterations required is

n > 15/(Iog10 2) = 49.8
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In Sec.4.3.3 a very fast iterative algorithm is developed for the computation of the

optimal H' norm y in (4.3-3). To achieve this objective, three tasks have been done. The

first task is to find better initial lower and upper bounds of y. Here "initial lower and upper

bounds" means the lower and upper bounds which can be easily computed without doing

any spectral factorization. The second task is to reduce the computation amount in each

iteration. The last, but the most important task is to find a fast search scheme by which the

number of iterations is greatly reduced.

In Sec.4.3.2 we present an easy way of computing a new initial lower bound and

showed some useful properties of j±(y) which had just been discovered. Together with the

well-known properties of g(y), these discoveries are of great help in developing a

sophisticated and fast search scheme for yo. The initial lower and upper bounds are denoted

by y1 and y2 respectively.

Before entering the iteration loop, we compute X(y), and (Y2 ). With the

knowledge of y1, ("y1), y2, and k(y2), we can generate three new upper-bound candidates

and two new lower-bound candidates very easily. A new greatest lower bound, denoted by

y and a new least upper bound, denoted by 74' can be found.

Now we are starting the iteration loop with the input data: y1, j.("y1), y2, g( 2)' y3,

and Y4. Let y = (Y3 + y4) / 2 , and evaluate p.(y). If gi(y) is exactly equal to 1, then y is the

optimal norm yo. Otherwise, g(y) may be greater or less than 1. In either case, we can

easily generate two new lower-bound candidates and two new upper-bound candidates by

using the information of ^, 9(y), yT, Ix(y1), y2' and iy 2). The bounds y3, and y4 can be

updated by the new greatest lower bound and the new least upper bound respectively.

Depending on the sign of p(y)-I, either the pair (k, p.(y,) } or the pair [72, g 2)) will be

updated by (y, g(y)I). The iteration loop is repeated until the difference y4 -y3 is small

enough.
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The proposed fast y-iteration search scheme is much faster than any other existing

y-iteration search scheme. We only require one evaluation of p.(y) per iteration. In each

iteration, two new lower-bound and two new upper-bound candidates are generated. In

seveial extnples we have zncounzred, thi, gap of lower and upper bounds can be reduced

from 1 to 1015 in only 2 or 3 iterations.

4.3.2 Bounds and Properties of the Function g(y)

For notational simplicity, we will omit the indeterminates s or jo) when there is no

confusion. A* is the conjugate transpose of A if A is a constant matrix. The same notation

A* is also used as a short-hand notation for AT(-s) when A is a rational matrix.

First of all, we need to find the initial lower and upper bounds of y. The initial

bounds are those which can be easily obtained without doing any heavy computation like

spectral factorization or Hankel-Toeplitz approximation. The initial bounds which appeared

in the literatures [17,18,67] are listed as follows. The initial upper bounds are

IR11
1 R2"1j 0 Yo (4.3-5a)

Yu2:= a ]>  (4.3-5b)

where

a = E inf(RH m  RI1 + 011. (4.3-5c)

and

b = II R21 II (4.3-5d)

The initial lower bounds are
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yLl b < Yo (4.3-6a)

Yu a < Yo (4.3-6b)

inf Rii +1 H (4.3-6c)

Ole (RH-)

where a and b are given in (4.3-5c) and (4.3-5d) respectively. The lower bound yL3 is

greater or equal to yL2"

Now we have the best pair of initial lower and upper bounds as follows.

yL = max 1 yL1, i3  (4.3-7a)

and

YU = rain [olYYU2 } (4.3-7b)

To design a fast and effective iterative algorithm for the computation of Yo, it is

important to have enough knowledge about the properties of the function A(y) which is

defined in (4.3-4). Chu, Doyle and Lee [18], and Wang and Pearson [68] have made great

contributions in this. Their results are listed in the following.

Theorem 4.3-1: [18]

The function t(7) is a continuous, convex, and strictly monotonically decreasing

function of y.

Theorem 4.3-2: [18]
Define

f(ac,y) = .t(a) / /j Y (4.3-8)

for some a > b, where b = II R21 II.. Then

i) Y(y) < f(a,y) if y< a. (4.3-9a)

ii) t(y) = f(a,y) if y = a. (4.3-9b)

iii) g(y) > f(a,Y) if y> a. (4.3-9c)
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Theorem 4.3-3: [68]

If g(y) > 1, then To < I() T (4.3-10)

Theorem 4.3-4: [68]

If p(y) < 1, then

Yo < 412(y) _?+[Xgt(Y]b 2  (4.3-11)

where b = 11 R 21 II.

The bound in Theorem 4.3-4 can also be derived from Theorem 4.3-2. However,

Wang and Pearson found this bound before Chu, Doyle and Lee obtained Theorem 4.3-2.

Chu, Doyle and Lee never used this bound in their algorithm. From Theorem 4.3-2, it is

easy to have the following corollary.

Corollary 4.3-5:

If (y) > 1, then

YO > 2y_?+ 4y)(4.3-12)

where b = II R21 Ii.

Proof of Corollary 4.3-5:

(y) > 1= < o =  from Theorem 4.3-2 (i) we have

2(y) (.b 2) < T0 b2 b= (4.3-12).

The following theorem is a modified version of Theorem 4.3-3. The proof is

similar to that of Theorem 4.3-3 and therefore is omitted.

Theorem 4.3-6:
If gt(y) > 1, then yfo < 41g 2 (7) y2 + [ -g2(,Y) ] 2" (4.3-13a)

where
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c = inf _y[R 21(jc0)] (4.3-13b)

9(A) is the minimum singular value of A.

Theorem 4.3-6 is very useful in speeding up the convergence rate. Notice that

Theorem 4.3-4 and Corollary 4.3-5 are so alike that the only difference is the direction of

the inequality arrows. Corollary 4.3-5 can be obtained by reversing the inequality arrows in

Theorem 4.3-4. This inequality-arrow-reversing property motivated us that Theorem 4.3-6

may have its counterpart as follows.

Theorem 4.3-7:

If g(y) < 1, then

-to > 4t2() Y2 + [1-2() ] C2 (4.3-14)

where c is given by (4.3-13b).

Proof: See Appendix A.

The following corollary plays an important role in our algorithm. This corollary can

be easily derived by using the properties in Theorem 4.3-1.

Corollary 4.3-8:

Given y, 'y2, j(¥y), and g(2) and y, < Y2" The optimal norm y lies betweeny,

and Y2, i.e., y'y < yo < y2. Suppose y5 is a point such that yj < Y5 < y2, and the

value i(y5) is known.

i) If 1(y5) > 1, then

Yo > Y5 + 19%()- 1]IY5 -Y1 / [-(y1) -t(' 5)] (4.3-15)
and

'0o <  '5 + [(y )- 1][15 -Y2] / [9(72 ) -9(' 5 )] (4.3-16)

ii) If t 5 ) < 1, then

Yo < Y5 + [9t(75) -15 ¥1] / [9(y) -t(y5] (4.3-17)
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and

Yo > Y5 + [1.1( 5) - 1][ 5 - 121 / 9(Y2)" 1(1(y5)1 (4.3-18)

Proof of Corollary 4.3-8: See Appendix A.

4.3.3 Fast y-Iteration Algorithm

We will start with the initial lower and upper bounds of y. The initial lower and

upper bound are

^IL = max [(L 1'TY3 ) (4.3-19)

and
'yu = min { 1(u1' Tiu2 ) (4.3-20)

where ¥u1' ^fu2' 'IL V and 1L3 are given by (4.3-5a), (4.3-5b), (4.3-6a), and (4.3-6c)

respectively.

Before entering the iteration loop, some initialization should be done. Let

y' = yL and 12 = TU (4.3-21)

and evaluate .(1 ) and g(y2). Since y1 < < we have

g(yl) > 1 and g(%) < 1 (4.3-22)

From Theorem 4.3-4, Theorem 4.3-6, Corollary 4.3-5, and Theorem 4.3-7, we

have the following:

o 1 +2() +[1Itj2(y()]C2 := aU1 (4.3-23)

70 < jJg2(?2 ) + 1J2(y2 )]b2 := aU2 (4.3-24)

70 > ji±2(y1) +[1 -t2(y)]b2 := L2 (4.3-25)

and
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YO /p2 (- 2) -?+ g12 (T)]c2 :=aLl (3-26)

where b = II R2 1 I1. and c = inf [R1
0) -

It is easy to ,e that the intersection of the horizontal line y = I and the straight line

connecting the two points (y,,tp( 1)) and (-2,g(y2)) is at the right of the point (yo,1). That

is,

Yo < 72 + [9(12) 1[ 2 " Y / [(y 1) - 9(y 2)] := a 3 (4.3-27)

Let
73 = max {( l, aL2 (4.3-28)

4= in { 'u, a 2, u }U3 (4.3-29)

where aL , aL 2 , au, U2, and MU3 are given by (4.3-23) - (4.3-27). It is easy to see that

Y1 < -f3 < 4o < Y4 < 72 (4.3-30)

After the initialization of Y1, -(YI), Y2, j.(y2), y3, and y4, we are ready to enter into

the iteration loop. The first step of the iteration loop is to let

'5= (y3 + y4)12 (4.3-31)

and compute g(y5). Define

jj= 2(y') +[1-2()1c (4.3-32)

02 - l- 2(5)] b (4.3-33)

3 Y5 + [9(y5) - l1[Y5 71] / [9(Y1) " g( 5 )] (4.3-34)

04 : 5 + [( 5 ) - 1][ 5 "- 721 / [g(Y2)" 5)] (4.3 35)

where b =11 R2 1 II and c = inf c[R21 c)].00 D - 46
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Now we compare 14(7Y) with 1. If 4(75) > 1, then from Theorem 4.3-6, Corollary

4.3-5, and Corollary 4.3-8, we have

7 o 01, 70 > 02, 70 > 03, YO < 134 (4.3-36)

Thus, 73, 74, 7, and 14(y 1) are updated as follows

73 max ( 32, 133 , Y4 = Min ( 134'7 4 ),

71 = 75' 1(7 = 9(75 (4.3-37)

where ' 132' 133, and 34 are given by (4.3-32) - (4.3-35).

If ±(y 5) < 1, then from Theorem 4.3-4, Theorem 4.3-7, and Corollary 4.3-8, we

have

70 < 52, YO ; 51, 7O < 53, O > 14 (4.3-38)

Thus, Y3, 4, 72, and 1R(72) are updated as follows

73 = max P 1, 1 4 ,7 3 )} 74 = min 0 2, 33 ),

72 = 75' 9(2) ff= (75) (4.3-39)

where r P32 133' and P4 are given by (4.3-32) - (4.3-35).

The iteration loop is repeated until the difference 74 -73 is small enough. The

accuracy of y0, i.e., ( 74 -73 ) / 2, can be arbitrarily small by simply increasing the number

of iterations.

The fast iterative algorithm for the computation of 7 in (4.3-3) is summarized as

follows.

Fast y-iteration Algorithm:

(1) Compute the initial lower and upper bounds

y= = max ( yL1, yL3 ), 72 = min I YUl,7U2

47



where ^yU, 0U2' t̂L' and YI3 are given by (4.3-5a), (4.3-5b), (4.3-6a), and (4.3-

6c) respectively.

(2) Evaluate g(¥1) and t(y2).

(3) If 9(Y,) or jt(y2) equalsto 1, then 70 =p.(y 1) or YO = (Y2) and goto(11).

(4) Compute the bounds y3 and y4.

Y3 = max ( a, 'tL1 y4 = min aul aU2 , aU3

where cLI, %L2' O O' 2, and aU3 are given by (4.3-23) - (4.3-27).

(5) If I 'Y4 -y 3 1 < e, then 7= (73 + y4 )2 and go t o (11). (e is the acceptable

accuracy.)

(6) Let 75 = ( y3 + y4 )/2 and evaluate gy(5 ).

(7) If t(y5) = 1, then y= y5 and go to (11).

(8) If Wt(y5) < 1, then go to (10).

(9) If t(y) > 1, then update y3, y4, ^jI and .t(y,) as

73 = MaX I P2' 03 Y4 = Min ( j 1 , 4 ,'Y 4 1

7= 75 9(7d = 9'5
and then go to (5), where 0 132' 133, and 134 are given by (4.3-32) - (4.3-35).

(10) Update 73, y4, y2 and g(y2) as

Y3 = max ( P 1,1 4, Y3 }, 4 = min { P2,03

72 = Y5, 9'(72) = 1(75)
and then go to (5), where P,, 132' 133, and 134 are given by (4.3-32) - (4.3-35).

(11) Stop.
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4.4 Using DGKF's Solution To Solve A Four-Block H- Optimization

Problem

In [29], DGKF assume the realization of G(s) is given by

A B1 B2

G(s)- C1  0 D12 (4.4-1)

C2 D21

with the following assumptions.

(i) (A, B1) is stabilizable and (C1, A) is detectable. (4.4-2a)

(ii) (A, B2) is stabilizable and (C2, A) is detectable. (4.4-2b)

(iii) D12 [C D = [ 0 ]. (4.4-2c)

(iv) Bi D2 T (4.4-2d)
1D 211 I 0

Define two Hamiltonian matrices as follows,

A 2B BT -BBT_

H. :: T ], (4.4-3a)

and

[L2 T 2TCC (4.4-3b)

Then the following theorems will characterize the set of suboptimal stabilizing controllers

such that 11DII.. < y where (D is the closed-loop transfer matrix from v to z.
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Theorem 4.4-1: [29]

There exists a stabilizing controller such that 11 D II.. < if and only if the following

three conditions hold.

(i) H. e dom(Ric) and X. := Ric(HL) 0. (4.4-4a)

(ii) J. e dom(Ric) and Y. := Ric(J.) > 0. (4.4-4b)

(iii) p(X.Y.) < . (4.4-4c)

Moreover, when these conditions hold, one such controller is

Ksub(s) A. -7 ] (4.4-5a)

where

A+2B B' +B 2F +Z L C2  (4.4-5b)

F. 2Xfi -;,, J.". :ff -y.T , 7_ :=f ( I-y2y.x.)-I (4.4-5c)

In the above theorem, condition (i) means that there exists a nonnegative definite

solution X. to the Riccati equation corresponding to the Hamiltonian H.. Condition (iii)

means that the spectral radius of X..Y. is less than y.

Theorem 4.4-2: [29]

If conditions (i) to (iii) in Theorem 4.4-1 are satisfied, the set of all stabilizing controllers

such that 11 4) I1.. < y equals the set of all transfer matrices from y to u in

Ms) 0 (4.4-6)

where Q e RH-, IIQII. < y.

The above two theorems show an easy state-space approach in constructing a

stabilizing suboptimal controller such that 111.. < y. The order of the suboptimal controller
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can be the same as that of the plant G(s). The major computation involved is the solution of

two Riccati equations which are easy to solve if solution exist.

The DGKF approach is a great break-through in the solution of H- optimization

problem. However, if we try to reduce the value of y to the minimum we will encounter

numerical difficulty before y reaches the minimum. The optimum occurs when 7? equals to

p(X.Y*). When 9 is close to p(X*.Y**), the matrix (I - y2Y.X.) becomes ill-conditioned

and the inversion Z. = (I - y2y*X**'I will not be numerically reliable. In (4.4-5a), both A

and B matrices of Ksub(s), i.e., A. and -Z**L, rely on the computation of Z.* and therefore

on the the inversion of (I - y 2Y*X..).

In [38], we attempted to use DGKF approach to design an optimal controller for a

four-block H- optimization problem. We started from a large y = yu which guarantees

solution existence of Riccati equations and p(X*.Y*) < 9?. Then y is updated as y 4-

I/p(XY..), the new Riccati equation solutions X*. and Y. will make p(X..Y..) > 9?. Let 1L

-- y and y -- p(X.Y.), the new Riccati equation solutions X. and Y. will make

P(X.Y.) < 9?. Let yu "- y and y +- P(X,,Y.). The iterative process is repeated until the

gap yu - yL is small enough. The convergence rate is fast. For many examples, it only takes

8 to 10 iterations to reduce the gap from 100 to 10-10.

As y is close to the optimum, i.e., the gap yu - yL is approaching to zero, the matrix

(I - y 2Y.X,.) will be nearly singular and then the elements of Z.. and k will approach to

infinity. It looks like that there is no way to design a controller such that 11(D11, is close to the

optimum since the elements of A and B matrices of the controller will all approach to

infinity. Nevertheless, the gain of the controller is not really infinite. If we do partial

fraction expansion for the controller we will find that only some of the controller poles and

their corresponding gains will approach to infinity and the rest will remain finite when Y is

close to the optimum. These terms with infinite poles and gains can be approximated by
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finite directly feedthrough terms. In other words, the practical optimal controllers will be

proper with direct feedthrough terms instead of strictly proper.

The numerical difficulty is mainly caused by the restriction of the controller to be

strictly proper. Most of optimal H- controllers are proper with direct feedthrough. If a

proper with direct feedthrough optimal controller is forced to be represented in a strictly

proper form, some poles and their corresponding gains will be forced to be infinity.

The following is a simple four-block H- optimization problem which is used to

illustrate our numerical experience in using the DGKF's approach to design an H- optimal

controller. A realization of the plant G(s) is given by

"A Bt B 2 -10 1 0 1 01

G(s)=[I DlD12] 1 1 00 0 (4.4-7)G~) 1 r D20 0 0 0 1

1C2 D21 D22 1 1 0 J .

The assumptions in (4.4-2) are all satisfied except assumption (i) which we believe is too

restrictive. However, Theorems 4.4-1 and 4.4-2 are still applicable to this example even

(A, BI) is not stabilizable.

We started from y = 100. Conditions (i) to (iii) are all satisfied and IP(X,.Y..)

= 4.6476411024 which is less than y = 100. Update y to be 4.6476411024 and compute

the new Riccati equation solutions X. and Y.. and p(XY.) = 4.7375420092 which is

greater than y = 4.6476411024 and condition (iii) is not satisfied. The new value of

!P(X.Y.) , i.e., 4.7375420092 is used to update -. Now, just two iterations after the

initial guess y = 100, we find that the optimal II011., y., is between 4.6476411024 and

4.7375420092. After six more iterations, we have

4.7341604761 < yo < 4.7341604768 (4.4-8)
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With y = 4.7341604768 which is very close to the optimum, from (4.4-5) we have a state-

space realization of the controller as follows:

FA KIBK1
K(s) C 0 J (4.4-9a)

with
AK 2.7785374772e+09 2.7785374782e+09 ](4.4-9b)-2.4722482140e+10 -2.4722482142e+10

BK -2.7785374782e+09] (4.4-9c)BK- 2.4722482140e+10

CK = [-3.10880347V8e-01 -4.2370320107e+00] (4.4-9d)

The eigenvalues of AK are -8.7542343140e-01 and -2.1943944664e+10. Notice that one

of the controller poles is pretty far away. When y is nearly optimal, this pole will move

further to the infinity. Do a partial fraction expansion for the above second order strictly

proper controller K(s), we have

K(s) = -8.9043458823e-, + 1.0388615552e+ll (4.4-10)
s+8.7542343140e-01 s+2.1943944664e+ 10

The second term of the above expression is a wide band low-pass filter which can be

approximated by a direct feedthrough term; therefore, K(s) can be approximated by the

following:

K's) = -8.9043458823e+00 + 4.7341604762 (4.4-11)

s+8.7542343140e-01

With the controller Kr(s), the closed-loop system is internally stable and the H- norm of the

closed-loop system from v to z, II. is 4.7341604762 which is very close to the optimum

up to the accuracy of 10.10. This nearly optimal controller is proper with direct feedthrough

and is first order which is one order less than that of the plant.
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SECTION 5

COMPUTATION OF THE REAL STRUCTURED SINGULAR VALUE

Stability robustness is an important issue in the analysis and design of control

systems. Currently, there are two major approaches to stability robustness analysis. One is

the structured-singular-value (SSV) [39-45] or the multivariable-stability-margin (MSM)

[46-50] approach and the other is the perturbed-characteristic-polynomials approach [51-

56]. Several significant progresses have been made in both approaches.

For a large class of linear time-invariant systems with real parametric perturbations,

the coefficient vector of the characteristic polynomial is a multilinear function of the real

parameter vector. Based on this multilinear mapping together with the recent results by De

Gaston and Safonov [48], Sideris and Pena [50], Bartlett, Hollot, and Lin [521, and

Bouguerra, Chang, Yeh, and Banda [57], an algorithm for computing the real structured

singular value is proposed. The algorithm requires neither frequency search nor Routh's

array symbolic manipulations and allows the dependency among the elements of the

parameter vector. Moreover, the number of the independent parameters in the parameter

vector is not limited to three, as is required by many existing structured singular value

computation algorithms.

In Sec.5.1, the definition of the real structured singular value is reviewed, and the

basic concepts of the proposed algorithm are briefly described. In section 5.2, the mapping

properties from the parameter space to the coefficient space and the theories on which the

iterative algorithm is developed will be demonstrated. The detailed iterative algorithm for

computing the real structured singular value is summarized in Sec.5.3. Sec.5.4 is a

summary of the fast segment stability checking algorithm which is used repeatedly in the

proposed iterative algorithm in computing the real SSV.
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5.1 Definition of the Real Structured Singular Value and Preliminaries

According to Doyle and Safonov [39-40,46-47], all the plant uncertainties,

structured or unstructured, unmodeled dynamics or parametric perturbations, can be

described by the block diagram shown in Fig.5.1-1. In Fig.5.1-1, A(s) = block diag

{AI(s), A2(s), ..., Am(S)) and M(s) is the nominal system which includes the nominal

plant and the stabilizing controller. Doyle [39-40] and Safonov [46-47] defined the

structured singular value (SSV) and the multivariable stability margin (MSM) respectively

based on the above perturbation structure and used them as analysis tools for robust

stability. The SSV and the MSM are nonconservative scalar stability-margin measures for

multivariable systems.

Fig.5.1-1 Standard structure for a perturbed closed-loop system.

Algorithms [39-45] to compute the SSV are available only for those cases where the

number of perturbation blocks are less than or equal to three. The computational problem

for the cases with more than three perturbation blocks is still an unsolved problem.

One important special case of plant uncertainties is the real parametric perturbation.

In this case the perturbation matrix A(s) is a real diagonal matrix. The SSV defined for this

case is called the real SSV. Algorithms of computing the real SSV [44-45] are also only

available for those cases where the number of independent perturbation parameters are less

than or equal to three. The MSM defined for this case is called the real MSM. An iterative

algorithm of computing the real MSM for real diagonal A was developed by De Gaston and

Safonov [48] and generalized by Pena and Sideris [49]. There is no limitation on the

number of perturbation parameters. However, this iterative algorithm is complicated since
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an extensive frequency search is required. In [50], Sideris and Pena eliminated the need of

frequency search by requiring the first column of the Routh's array to be positive. This

approach requires symbolic manipulations. Besides, the first-column elements of the

Routh's array are not multilinear functions of the parameter vector even though the original

characteristic coefficients are. For those elements to be multilinear functions of the

parameters, more dependent parameters need to be created which will cause unnecessary

complexity.

In the following we assume that the perturbation matrix A in Fig.5.1-1 is real

diagonal, i.e., A = diag ( 81, 82, ... , Sm ) and the nominal system M(s) is a rational matrix

with real coefficients. If the parameters vary independently and -1 < Si 5 1, i = 1,2,...,m,

the parameter perturbation domain J9 can be described as a hyper-cube ,9 with 2' vertices

(±1, ..., ±1) in the m-dimensional real space. In general, the perturbation matrix A can be

written as A = diag [81Il, 821, ... , 8rlr) where I .is the identity matrix of order mi

and ml+m2+ ...+mr = m. That is, 8=8=.- 8=8, 8ml+--m+2 *- -- ml+m2=82 '

... , etc. In this case, the parameter perturbation domain J9 is an r-dimensioral

hyperrectangle inside the m-dimensional hypercube .6. The system is said to be robustly

stable in 9 if and only if it is stable for every parameter vector 8 = [8 82 ... T in

,19. Throughout the report, we may use ",9 is stable" to replace "the system is robustly

stable in J9" whenever there is no confusion.

The real multivariable stability margin (real MSM) km is defined as the largest real

constant k such that the closed-loop system remains robustly stable in k9 where k9 is the

enlarged (or shrunk) parameter perturbation domain of ,19, i.e.,

U9 : S := [819,.981, 82..,829 ..., Is r 9... 8 r] e IVm

and 1 Si < k, i=l,2,...,r 1 (5.1-1)

The enlarged (or shrunk) hypercube of ,6, k,6 is

k,6:- 8: 8 e R m and I 8i 1 k, i=l,2,...,m}. (5.1-2)
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Recall that the real structured singular value (real SSV) g. is defined as

S:= [ min ( k I det [I+M(jo)A] = 0 for some co and A e X (k))]- (5.1-3)

where

X (k) f A I diag (8 1Im1, 82Im2,r..., lmr) with 18i < k, for all i (5.1-4)

That is, the real SSV g. is the reciprocal of the smallest k such that the system is unstable in

kD. It is easy to see that the relation between the real SSV g. and the real MSM kM is

g. = 1/k M  (5.1-5)

Several significant results [51-56] have been obtained in the perturbed-

characteristic-polynomials approach. Probably the most famous are the Kharitonov's

theorems [51 ] which apply to the special case with a hyper-rectangular perturbed region in

the coefficient space. In this special case, the coefficients of the characteristic polynomial

vary independently and the robust stability of the system can be easily determined by four

bounding characteristic po!ynomials. Unfortunately, the Kharitonov's theorems cannot be

applied to our problem since the coefficient variations of the characteristic polynomial are

not independent.

Bartlett, Hollot, and Lin [521 developed an important theorem which is applicable to

the case when the coefficients of characteristic polynomial are linearly dependent. The

theorem is now well known as the Edge Theorem: For the set of characteristic polynomials

inside a polytope 10 in the coefficient space, every polynomial in V is stable if and only if

all the exposed edges of P are stable. This simplifies the stability checking tremendously

since checking the stability of exposed edges is much simpler than checking that of the full

V. The exposed-edge stability checking is done by sweeping t from 0 to 1 such that

t ai + (1-t) (5.1-6)

are all stable for all vertices a' and a of P.
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Bialas [54] and Fu and Barmish [531 reduced the checking of the exposed-edge

sweep stability to a one-shot test. They showed that t a' + (I-t) aj is stable for all t e

[0,1] if and only if the real eigenvalues of -H.H. 1 are all negative where ct' and a& are

assumed to be stable and Hi and H. are the Hurwitz matrices fcr a i and aj respectively.J

Recently, a fast algorithm based on Chapellat and Bhattacharyya's Segment Lemma [58]

was proposed by Bouguerra, Chang, Yeh, and Banda [57] for checking the stability of the

exposed edges. The computation in the algorithm mainly depends on the number of vertices

instead of the edges and therefore reduces the computation burden due to the "combinatoric

explosion."

There are no such celebrated properties in the parameter space as those in the

coefficient space discovered by Kharitonov [51], Bartlett, Hollot, and Lin [52]. The

closed-loop system may be unstable inside ,£ although it is stable at all the edges of the

hypercube .6 [59]. So far, there is no easy way of checking robust stability in the

parameter space.

For each parameter vector 8 in the parameter perturbation domain £9, there is a

corresponding characteristic polynomial, i.e., a coefficient vector a in the coefficient

space. Let I1G9) be the image of J in the coefficient space. The closed-loop system is

robustly stable in 9 if and only if every characteristic polynomial in d((9) is stable.

Although several significant results for robust stability have been obtained in the coefficient

space, there is no efficient way to check robust stability for I(GP) since d(I9) usually is

neither a Kharitonov's hyper-rectangle [51] nor a polytope considered by Bartlett, Hollot,

and Lin [52].

Define the polytope P(,) as the convex hull of the 2m image points in the (n+l)-

dimensional coefficient space mapped from the vertices of ,£ where n is the degree of the

characteristic polynomial. If the mapping is multilinear, then the image of the edges of the

hypercube .6 will be the straight line segments connecting the corresponding mapped
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vertices. The image of J9, I(D), is a subset of 0(,6) and therefore is a subset of the

polytope V(.6). Under the condition of the multilinear mapping, the stability of the edges

of V(.6) will guarantee the robust stability in .6. The multilinear mapping can be easily

achieved by assuming that the nominal system M(s) in Fig.5.1-1 is a rational matrix with

real coefficients.

Now, we have an easy way to check the sufficient condition for the robust stability

in J9 by using its corresponding polytope W(49). The sufficient condition is still not

enough to determine the real MSM kM. Any k such that the polytope F(k,6) remains

stable, say kL, can be served as a lower bound for kM. However, there may exist some k >

kL such that k9 is stable although the corresponding polytope r(k,6) is unstable.

Any k which cause instability of kL) or 4(k49) qualifies as an upper bound for kM.

To facilitate the description of the relations between the parameter space and the coefficient

space, let the edges (vertices, resp.) of !(k49) which are mapped from the edges (vertices,

resp.) that are parallel to an axis of coordinates of k49 be called the crucial edges (vertices.

L and those which are not crucial be called noncrucial edges (vertices. resp.). The

noncrucial edges include two kinds of edges: supplemenal edgs and fi us d=. The

supplemental edges are the image of the edges of k.6 which are not in k49. The fictitious

edges are the edges of V (kfg) which are not mapped from the edges of k.6. The crucial

edges are all in I (k49). Thus, some k which causes instability at the crucial edges of

IP (kZ), say kU, may be used as an upper bound for kM. If the lower and the upper bounds

coincide or are close enough, we have the real MSM kM and the real SSV g. The objective

of the iterative algorithm is to reduce the gap of the lower and the upper bounds. When the

gap is smaller than the desired accuracy e, i.e., Iku - kLI < e, we have the real MSM kM= kL

and the real SSV g = 1/kM.
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5.2 Multilinear Mapping and the Polytopic Polynomials

The robust stability of the perturbed system in Fig.5.1-1 is determined by

det[I+M(s)A]. There are two lemmas available for checking the robust stability. They are

listed as follows.

Lemma 5.2-1:

The closed-loop system is robustly stable in £9 if and only if M(s) is asymptotically

stable and

det [ I + M(jo)A ] 0 for all co and all 8 in c9. (5.2-1)

Lemma 5.2-2:

The closed-loop system is robustly stable in J9 if and only if all the zeros of

det [ I + M(s)A] for all 9 in J9 (5.2-2)

are in the open left half of s-plane.

The existing computational algorithms for the SSV and the MSM are all developed

based on Lemma 5.2-1 while the approach to be presented in Sec.5.3 is based on Lemma

5.2-2.

Recall that A = diag (811ImI, 82Im2, .,'~ r diag [8,, 82, ... 8}where Ii -is
n w u

the identity matrix of order mi and ml+m2+ ...+mr = m. That is, 81=82= ... =8 m=81,

8ml+1=ml+2= ... -m1+m2=82, ...2 etc. The parameters SP 82' ... 8. are assumed

independent and -1 < i i < 1, i = 1,2,...,r. The parameter perturbation domain J9 is an r-

dimensional hyperrectangle inside the m-dimensional hypercube .£ with 2m vertices (±1,

±1) in the m-dimensional real space.

First of all, we will establish the relationship between the coefficients (a, a 1 , a 2,

a) of the characteristic polynomial

00sn + aIfn-i + a2s n-2 +. ..... + an  (5.2-3)
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and the perturbation parameters. It is interesting to note that if M(s) is a rational matrix with

real coefficients then the coefficient vector a = [a 0  a 2 ... a n T is a multilinear

function of the parameter vector 8= [8 82 ... m ]T. That is, if we only allow one of the

8i's, say 8 , to vary and keep the rest m-I of the 8i's constant then a is a linear function of

8..

Theorem 5.2-3:

Consider the perturbed system in Fig.5.1-1 where A = diag ( 81, 82, ... ,8 m ) and M(s)

is rational with real coefficients. The coefficients ai's, i=0,l,2,...,n, of the

characteristic polynomial of the perturbed system are multilinear functions of 8 i's.

Prool. See Appendix A.

Remark 5.2-4:

The coefficients a i'S, i=0,1,2,...,n, of the characteristic polynomial of the perturbed

system in general are not multilinear functions of 8i's unless ,9 = .

The following lemma is a direct consequence of the multilinear mapping between

and a.

Lemma 5.2-5:

In the parameter space, draw a line segment with ending points E1 and E2 and the line is

parallel to an axis of coordinates. The images of these two ending points are denoted by

I (E,) and 1(E2) respectively. The image of the line segment in the coefficient space is a

straight line segment which connects I(E,) and I(E2) if the mapping from the parameter

space to the coefficient space is multilinear.

The parameter perturbation domain J9 is an r-dimensional hyperplane inside the m-

dimensional hypercube .6 with 2m vertices whose edges are parallel to the axes of

coordinates. O(B) and d(.6) are the images of J9 and .6 respectively in the coefficient

space. The polytope F(,) is the convex hull of the 2m image points in the (n+l)-
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dimensional coefficient space mapped from the vertices of .£. In the following, we will

show that if the mapping is multilinear, the image of ., i.e., I (s), is a subset of the

polytope (,6).

Theorem 5.2-6:
C r(). (5.2-4)

Proof: See Appendix A.

Theorem 5.2-7:

If h I C .62' then

c (5.2-5)
and

l(, ) C l( 2). (5.2-6)

Proof: See Appendix A.

Theorem 5.2-8:

The hypercube or hyperrectangle ,j is cut into two equal subdomains ,9 and ,92 by a

hyperplane which is orthogonal to an axis of coordinates. Then

(,) C 1(,6)u1P(, 2) C 'F(,) (5.2-7)

Proof: See Appendix A.

In the following, a simple case with 2-dimensional parameter space and 3-

dimensional coefficient space will be used to illustrate the basic concept on which our

algorithm is developed.

In Fig.5.2-1(a), the hypercube b is a square with edges V1V2, V 2 V 3, V3V4, and

V4V1 parallel to either 8 -axis or S2-axis and the perturbed parameter domain J9 is the

straight line segment connecting V2 and V4 In Fig.5.2-1(b), X1, X2, X3, and X4 are the

images of the vertices V1, V2 , V3, and V4 of J9 respectively in the 3-dimensional

coefficient space. The polytope V i.e., the convex hull of the four image points X 1,
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X2, X3, and X is a pyramid with six edges. X2 and X4 are crucial vertices since they are

in J(D.). From Theorem 5.2-3, the four edges X1 X2, X2X 3, X3X4, and X4X1 are the

images of V1V2, V2V3, V3V4, and V4VI respectively and therefore are supplemental

edges. The other two edges of the polytope, X1 X3 and X4X2, are fictitious edges which

may not even be in the image of ,9.

X t

V VX V2

82 Va V b

xV V3 X
V4  Vy V3  X

(a) (b) Y X3

Xl Xl Xl

X 2

4 Xb Xb 4 X b

(c) 3 (d) X3  (e) 3

Fig.5.2-1 Multilinear mapping, polytopes, and hi partition technique.

The image of .0 (J9 resp.), I(DG) (I(B) resp.), can be constructed as follows. Let

V and Vb be the center points of the line segments VIV 4 and V2V3 respectively. It is easy

to see that the line segment drawn between Va and Vb, i.e., VeVb, is parallel to VIV 2 and

V4 V39 and therefore parallel to the 8-axis. Since the mapping is multilinear, d(VaVb) will

be the straight line segment X X, where X. = d(Va ) and v (Vb) are the center points
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of the line segments X1X4 and X2X3 respectively. Similarly, I(VVy) will be the straight

line segment XXy, where X. = (Vx) and Xy = I(Vy) are the center points of the line

segments X1X2 and X4X3 respectively. It is easy to see that XaXb and XxXy are both in

1(b) and the intersection point of XaXb and XXy, i.e., XC is in I(B). Repeating the

above mapping, we can see that I (b) and d(.) can be constructed as that shown in

Fig.5.2-1(c). In Fig.5.2-1(c), d(,9) is a saddle-shaped surface and is inside the pyramid

X1X2 X3X4, i.e., V (,). The v curve in 1(6) is the image of 9.

Note that I(J9) C (b) C (,6). There is an easy way to check the stability of

V(.6) and therefore a sufficient condition for the stability of I(J9) can be determined

without too much effort. That is, I(Z) is stable if all the six edges of V(,9): X1X 2,

X2 Xy X3 X4, X4 X 1 X1 X 3 and X4X2 are stable [52]. The stability of the line segment

XXj is determined by using the fast segment stability checking algorithm which will be

summarized in Sec.5.4.

In the proposed algorithm for computing the stability margin kM, we need to check

whether a subdomain , is stable. Consider B i as the line segment V2V4 in Fig.5.2-1(a)

and its corresponding polytope V(,9i) as shown in Fig.5.2-1(b). £9i is stable if V(,9i ) is

stable. If V(bi) is unstable and the instability is caused by the crucial edges or vertices,

then J9 is unstable. If V(b i) is unstable but the instability is not caused by the crucial

edges or vertices, then the information is not enough to determine the stability of J9,. In

this case, a partition technique should be used and repeated until the stability of £ i is

determined. The partion techni ue is illustrated briefly as follows.

The hypercube J i (square VIV 2 V3 V 4 ) is partitioned equally into four

hyperrectangles JOi (square V4 V aV Vy), Jij2 (square VcVx V 2Vb)' Ji3 (square

VaVlVxV), and .6,4 (square VyVcVbV3) , by two hyperplanes (line VaVb and line VV Y)

which are orthogonal to the axes 8, and 82" From Fig.5.2-1, it is easy to see that 1(.0 i) C

(i i .(Oi2 C I(,Oil ) u (,9i2) where the polytopes V(J9,l) and V(,9i2) are the
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pyramids X4X aXXy and XCXXX 2Xb respectively. If both P(.ji ) and (E i2) are stable

then .0 i is stable. If either f(. i) or V(.6i2) is unstable and the instability is caused by

the crucial edges or vertices (note that X4, X2, and XC are a crucial vertices), then .0, is

unstable. If f(bil) or V (6i2) is unstable but the instability is not caused by the crucial

vertices or edges, then the iJs corresponding to the unstable V (J.i)'s should be

partitioned further and the partition process is continued until the stability of .0 i is

determined.

82 V 
V 2

V W j V3

Fig.5.2-2 Further partitioning in the parameter space.

From Fig.5.2.2 we can see that the perturbed parameter domain i (line V4V2) is

inside the shaded hyperrectangles (squares) and as the number of the shaded

hyperrectangles become very large the image of 4i will be close to the union of the

polytopes corresponding to the shaded hyperrectangles. In our algorithm, the number of

partitioning usually is small since the partition process is terminated whenever all V(, ij)'s

are stable or some crucial vertex or edge is unstable. The partition process needs to

continue only if some V(, ii)'s are unstable and the instability is not caused by the crucial

vertices or edges. Besides, only the J9i's related to the unstable IF(,ii)'s need to be

partitioned further.

In the next section, an algorithm based on the above theorems for computing the

real MSM kM and the real SSV i will be summarized.
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5.3 Algorithm For The Real Structured Singular Value

The algorithm is developed based on the multilinear mapping between the parameter

and the coefficient spaces. Some recent results by De Gaston and Safonov [48], Sideris

and Pena [50], Bartlett, Hollot, and Lin [52], and Bouguerra, Chang, Yeh, and Banda [571

are used in the algorithm. The iterative algorithm is designed to find the largest positive real

number k, i.e., the real MSM kM, such that the system in Fig.5.1-1 remains robustly stable

for every possible perturbation in kMJ 9 . Then the real SSV gi can be obtained from I =

I /k M.

Recall that .6 is the hypercube with 2m vertices (±1, ..., ±1) in the m-dimensional

real space and the parameter perturbation domain ,19 is an r-dimensional hyperplane inside

the m-dimensional hypercube .6. In Fig.5.1-1, the nominal system M(s) is fixed and the

shape of the perturbation domain ,A is also fixed. In the computation of stability margin,

we will just enlarge or shrink the perturbation domain J9 by a factor k until k is the largest

positive real number such that the system in Fig.5. 1-1 remains robustly stable for every

possible perturbation in k. Recall that "k9 is stable" means "the system in Fig.5.1-1

remains robustly stable for every possible perturbation in ks" and "OI(kl) (resp. F(k.6))

is stable" means "every characteristic polynomial in I(k) (resp. 1F(k.6)) is stable."

Since d(kJ9) is a coefficient-space image of k9, kJ is stable if and only if J(kJ9)

is stable. From Theorems 2.6 and 2.7, we have I(k9) C 1(k.6) C'(k.6) which implies

that if F(k,)) is stable then I(k,9) is stable and therefore so is kD. Hence, any k such

that the polytope F (kJ9) remains stable, say kL, can be served as a lower bound for kM.

The stabiiity of the polytope F(kJ9) can be easily checked by using the recent results

developed by Bartlett, Hollot, and Lin [52], and Bouguerra, Chang, Yeh, and Banda [57].

Any k which causes instability of k9 or I(k,9) qualifies as an upper bound for

kM. In the proposed algorithm, some k which causes instability at the crucial vertices or

edges of the polytopes corresponding to kb or its subdomains, say kU, will be used as an
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upper bound for kM. If the lower and the upper bounds coincide or close enough, we have

the stability margin kM. Otherwise, the iterative algorithm needs to continue until the gap of

the lower and the upper bounds is small enough.

In an iteration loop of the algorithm, for a given k we construct a polytope V(k,)).

If F'(k.)) is stable, kL is updated by k. In the case of unstable F(k,), the instability may

be caused by the crucial or the noncrucial edges. If it is caused by the crucial vertices or

edges the upper bound kt shall be updated by k. On the other hand, the instability is

caused by the noncrucial edges, no information can be used to update kL or kU. In this

situation, the perturbation domain partition technique [48,501 is employed.

IVd

k~j9 Vc kjg

V 2VaV2

Fig.5.3-1 Partitioning in the parameter space.

The domain partition procedure is described as follows. Refer to Fig.5.3-1, the

perturbation domain kD is the line segment VaVd and k,0 is the hypercube (square) which

encloses k.9. Assume kL9 (line segment VbVC) is stable and kf9 is unstable and the

instability is caused by noncrucial vertices or edges. To determine the stability of k9, the

following partition technique is used. The domain k9 is partitioned into three parts: kLJ9

(line segment VbVC), J91 (line segment VVb), and ,9 2 (line segment VcVd). Enclose 1

and J92 by hyperrectangles J9l and 92 respectively. Now, there are three possibilities: (1)

Both F( 9) and F(4O2) are stable, then k9 is stable and the lower bound kL shall be

updated by k. (2) Some crucial vertex or edge of F(L)t) or !P(92) is unstable, then kO) is

unstable and the upper bound k shall be updated by k. (3) Either or both of F(At) and

r(J9 2) is unstable and the instability is not caused by crucial vertices or edges, then no
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information can be used to update kL or kU and therefore the s'S with unstable fV (ji)

shall be partitioned further until all polytopes which contain parts of 4(k) are stable

(update the lower bound kL by k) or some crucial vertex or edge is unstable (update the

upper bound ku by k). The iterative procedure is repeated with a new k = (ku+kL)/2 or k =

2 kL (if ku is not available) until kU - kL is negligible and then the stability margin is kM =

kL.

The algorithm for computing the real MSM kM and the real SSV . is listed as

follows.

ALGORITHM 5.3-1:

1. Initialize both the lower and the upper bounds kL = kU = 0. Set the partition indicator

p = 0. Set e for the accuracy of kM. Set initial trial value at k=1.

2. Check the stability of the corresponding polytope F(k,6). If it is stable, go to 3.

Otherwise, go to 5.

3. Update kL by k and check kU. If ku = 0, update k by 2kL and go to 2. If ku *O, (it

must have been updated and must ku > kL ) go to 4.

4. Set k = (ku+kL)/2 . If p = 0, then go to 2. Otherwise go to 5.

5. If the instability of the polytope V (k6) (or the polytopes of the relevant sub-

hyperrectangles as resulted from the partitioning in 7) is due to crucial vertices or

crucial edges (k.0 is unstable), go to 8. Otherwise, go to 6.

6. Partition the hyperrectangles with unstable polytopes by the hyperplanes orthogonal

to the axes of coordinates. Only the sub-hyperrectangles which enclose k9 - kLJ9

(we call these the relevant sub-hyperrectangles) need to be considered.

7. If the polytopes of the relevant sub-hyperrectangles under consideration are all stable,

set p = 1 and go to 3. Otherwise, go to 5.

8. kD is unstable. Update ku by k and check kU - kL. If kU - k L >E, go to4.

Otherwise, set kM = kL and stop.
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In the algorithm, e, the tolerable gap between the lower bound kL and the upper

bound kU, is a small number preset to determine the computation accuracy. The algorithm

is employed to determine the stability margin kM by narrowing down the gap between the

lower bound kL and the upper bound ku. The perturbation domain partitioning loop is

described in step 6. Only the hyperrectangles enclosing k - kL,9 and corresponding to

unstable polytopes whose crucial vertices and edges are stable need to be partitioned further

and the domain partitioning loop is terminated whenever all the polytopes under

consideration are stable or any crucial vertex or edge is unstable. The set k9 - kL 9

consists all the points in k which is not in kLJ,. Theoretically, the domain partitioning

loop should be terminated in finite steps unless the unstable region is of measure zero (e.g.

a singular point) inside k9. However, in practical computation a preset counter can be

placed in the loop to avoid the loop from repeating too many times for a given k. The

partition indicator p initially is set as zero and is set to be one in step 7 whenever k9 is

determined to be stable after partitioning. If a kL fl is determined to be stable after

partitioning, then the polytope P(kj9) is unstable for k > kL. Therefore, in step 4 after

setting a new k we go to 5 instead of 2 ifp * 0.

Two examples are used to illustrate our algorithm. The first example is from De

Gaston and Safonov [48] in which J9 = 9, i.e., the elements in the parameter vector 8 are

independent and the other example has dependency among the entries of 8. In the

following, the vertices of the hypercube k, an4 their image points in the coefficient space

are denoted by Vi's and Xi's respectively. The line segment between Xi and Xi s

represented by X.X. Note that both V,'s and X.'s are functions of k.

C~s) P(s)

Fig. 5.3-2 A closed-loop system considered in Example 5.3-1.
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V4  V5

83

V3  V6  81

V, V8

82

Fig. 5.3-3 Perturbation domain of Example 5.3-1

Example 5.3-1 :

De Gaston and Safonov [48] developed an algorithm for computing the stability

margin based on the multilinear mapping between the parameter space and the complex

plane [61]. They used an example to illustrate their algorithm. We will use exactly the same

example to illustrate our algorithm and then the solutions of both approaches can be

compared.

The system to be considered is shown in Fig.5.3-2 where the plant P(s) and the

controller C(s) are described by

P(s)8a S + Z1s (s+ 2) (S + 83,) and C(s) = s + p-

respectively. The parameters in the above expressions are given by

z1= 2 rad/sec pI= 10 rad/sec

81= 81o(1 +81) 8 1o = 800 1811 0.1

82= 820+82 820 = 4 rad/sec 1821 ! 0.2 rad/sec

83a= 830 + 3 830= 6 rad/sec 183 15 0.3 rad/sec

The perturbation part of the perturbed closed-loop system can be pulled out and represented

by ;; diag''-! :nzx .n- h d th-fore the perturbed closed-loop system in Fig. 5.3-2 can be
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restructured as that in Fig.5.1-1, where A = diag ( 81, 82, 83 and the nominal closed-

loop system M(s) has a realization (A, B, C) as follows:0I 1 O 0 0 o0 0- :
-10 -800 32 0 0 -80 1 0 0

A=1 0 -4 -B= -1 1 C= 0 0 1 1.
LO 0 1 -6_J, 0 0 1j, -0 0 0 1- .

The vertices of the perturbation domain k9 in the 3-dimensional parameter space

are numbered as shown in Fig.5.3-3. Recall that the vertices of k9 are denoted by Vi's.

The vertices of kD with k = 1 are

VI= (-.1, -.2, -.3), V2= (-.1, .2,-.3), V3= (-.1, .2, .3), V4= (-.1, -.2, .3),

V5= (.1, -.2, .3), V 6= (.1, .2, .3), V7= (.1, .2, -.3), V8= (.1, -.2, -.3).

Since M(s) is a rational matrix with real coefficients, the coefficients of the characterist.c

polynomial are multilinear functions of the parameters 8,, 82, and 63. The characteristic

polynomial

a0s 4 + o Is3 + Ot2s2 + 3s + a4

can be obtained from det [sl - (A - BAC)] and then

O0= I

a1 = 20 + 82 +83

ot2 = 124+ 1682 +1483 +8283

a 3 = 1040 + 80081 + 608 2 +4083 +108 283

a4 = 1600 + 160081

As we expect, the coefficient vector a = [a al a2 2 r 0 4 ]T is a multilinear function of the

parameter vector 8 = [8 82 8 3
IT .
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The objective is to compute the stability margin kM which is the largest k such that

k is stable, i.e., the closed-loop system remains robustly stable in k. For each k, we

map the eight vertices of k into the coefficient space as Xi, i=1,2,...,8 from which the

polytope V(kJ9) can be constructed. It is easy to see that the polytope !P(kj)) has 12

crucial edges and 16 fictitious edges. If these 28 edges are all stable, i.e., !(k9) is stable,

then k is stable. If any of the crucial edges is unstable, then so is k. Note that unstable

!P(kJD) does not imply unstable k, since the instability may be only caused by some

fictitious edges which are not in d(k.0).

Let's go through the algorithm listed in the previous section. First of all, we

initialize both the lower and the upper bounds kL = kU = 0 and set the accuracy e = 106.

For k=1, I'(k49) is stable and we have kL = 1 and update k to 2. For k=2, again V(kL)) is

stable and therefore we update kL to 2 and k to 4 respectively. For k=4, !(kD) is unstable

and the instability occurs at X which is crucial and kU is updated to 4.

Now, we are in the loop of bisection to narrow down the gap between kL and kU to

be less than e. After 21 iterations we have kL = 3.417395 and kU = 3.417396 such that

V(kLJ9) is stable while V(ku4 ) is unstable and the instability occurs at X8. Therefore, we

have the real MSM kM = 3.417395.

From the above computation, we find that the no. 8 vertex of the perturbation

domain is the critical point. Thus, we can check our solution at V8 of the parameter space.

When k = kM = 3.417395, the closed-loop system at V8 is stable since its characteristic

values are

- 16.3521921088081
-.00000016598452 + 8.22820065594421
-.00000016598452 - 8.22820065594421
-1.93911005922287

If we increase k a little bit to k = kU = 3.417396, the closed-loop system at V8 becomes

unstable since its characteristic values are
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-16.352192213492
.00000014646442 + 8.2282008933441
.00000014646442 - 8.2282008933441
-1.9391100794366

In [48], De Gaston and Safonov obtain a margin k = 3.44 which is close to our result.

However, when k = 3.44, the closed-loop system at V8 is unstable since its characteristic

values are

-16.354555659044
.00706068635988 + 8.23356355623191
.00706068635988 - 8.23356355623191
-1.9395657136757

That means 3.44 could not be a correct margin. One of the major reasons that De Gaston

and Safonov's algorithm [48] is complicated is that it requires frequency o sweep. For the

same example, they found that at (o = 8.22 rad/sec, det[I+kMO(o)A] approximately equals

to zero at V8 when k =3.44. To have an accuracy of 10-6 for the stability margin, they need

a more accurate (o, say (o = 8.2282 rad/sec, which needs extensive frequency o search.

Our approach does not require frequency co search.

The real SSV g for the system is g = 1 / kM = 1 / 3.417395 = .29262055.

Example 5.3.2

Assume that the nominal system M(s) in Fig.5.1-1 has a state-space representation

(A,B,C) as

-1.5 - -1.5 -15o 0o_-.3,ooo0
A= B=-0.2 0 -3 0 0 0 1 Cf 0 0 0 -0.3

1.5 2 3.5 -0.7J, 1 0 1 , -0.3 0 0 0_.

and the perturbation matrix A in Fig.5.1-1 is given by

A = diag 8 1, 2' 83)
where
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1 1'5 =6and
-1<6 1, -1 62<1

I ' 2

The set of the characteristic polynomials of the perturbed system can be described by

a0 s4 + ais3 + a2s2 + a 3s + a 4

where

a 0

a, = 10.4- 0.3b1 - 0.352

a 2 = 38.14- 2.3181 - 2.9182 +0.45Z3 +0.09 6162

a 3 = 58.12- 5.9781 - 8.28 Z2 + 1.74 83+ 0.63 8A -0.135 6A

a4 = 31.36 -5.22 8 -6.84 82 + 0.4883+ 1.08 8182 - 0.27 23

Vs V5

V6 8

62

V2  V3

Fig.5.3-4 Perturbation domain of Example 5.3-2.

The parameter perturbation domain is shown in Fig.5.3-4. The shaded area V1V8V6V3 is
the perturbation domain 9 in which 81 = 8 1' 82 =  83 = 62 and the hypercube

VIV2V3V4V5V6V7V 8 is 9. In the following we will use the proposed iterative algorithm

to compute kM. Initially, kL = ku = 0 and e is set as 10-4. e(k,9) is stable for k=l and

therefore kL is updated to 1. For k=5, the polytope !P(k,9) is unstable and the instability is

caused by the crucial vertices X3' X6 and by the noncrucial vertex X7 .
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Therefore ku is updated to 5. As a next step k is chosen as (1+5)/2 = 3. !(kL,) is

stable for k=3 and therefore kL is updated to 3. Following the iteration steps, k=(3+5)/2=4,

we find that the polytope 1(kg) is unstable for the value of k = 4 and the instability is

caused by the crucial vertex X6. Therefore ku is updated to 4. Iterating k between 3 and 4

as it is suggested in steps 2-8 we find that the polytope V(k, ) is unstable for the value of

k = 3.6297 and the instability is caused by the crucial vertex X6. Hence, ku = 3.6297.

V(k,9) is stable at for k=3.6296 and we have kL = 3.6296. Now, IkU- kLI < e and

therefore we have the real MSM kM = 3.6296. The real SSV is g± = 1 / kM = 1 / 3.6296 =

0.2755.

5.4 Fast Algorithm to Check the Stability of Segments

In the previous subsection, an iterative algorithm for computing the real SSV based

on polytopic-polynomial approach was presented. In this algorithm, the major computation

is checking the stability of edges of polytopes.

There are several different computational methods available to verify the stability of

an exposed edge of a polytope. However, in practical problems, these methods are found

to impose a heavy computational burden due to the fact of the "combinatoric explosion" of

the number of edges of the polytope whose stability needs to be checked. To illustrate this

phenomenon, we consider a system with m perturbation parameters. The corresponding

polytope in the coefficient space has 2m vertices. There are 2m'1( 2m- 1) edges joining these

vertices; note that the number of edges which depend on m can be very large compared to

the number of vertices. This is a fact that will be exploited later on in our algorithm in order

to reduce the computations to a minimum.

These existing methods to verify the stability of these edges usually require

laborious computations that need to be performed independently for each edge. For

instance, there is the roots locus technique which consists of Y-presenting the edge of a
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polytope as a convex combination of two polynomials ca(s) and Pi(s) of degree n. The

characteristic polynomial of this convex combination can be written as 1 + kp(s)/a(s),

where k takes on the values from zero to infinity. The necessity to sweep the infinite

interval for k makes this method unattractable. Another widely used test for the stability of

the convex combination of two stable polynomials was developed by Bialas [54]. He

showed that the convex combination of two stable polynomials of degree n is stable if and

only if all the real eigenvalues of -H(a)H-'(P) are negative, where H(cC) is the Hurwitz

matrix associated with the polynomial a(s). Although Bialas' test does not require the

sweep of k, the computations involved, i.e. computations of eigenvalues of an nxn matrix,

must be carried out for each edge of the polytope independently. Hence, in the case of

combinatoric explosion alluded to earlier, this technique can be found to be computer time

consuming. The iterative algorithm proposed by [60] for computing the multivariable

stability margin needs to check the stability of polytopes for each iteration. Therefore, a

more efficient computational tool for checking the stability of the edges of a polytope is

necessary.

In this section, we propose a fast algorithm for checking the stability of the edges of

a polytope where most of the computations involved depend on the number of vertices

rather than on the number of edges. This algorithm was developed based on "the segment

lemma" derived by Chapellat and Bhattacharyya [,8]. Although the segment lemma is a

great result, no explicit algorithm was given in [58]. We will reveal some magnificent

properties of the lemma and show how these will lead to a fast algorithm. In the proposed

algorithm, the major computation involved is the solution of the positive real roots of two

polynomials with degree less than or equal to n/2 for each vertex. The computation required

by the algorithm is mainly vertex-dependent, and the burden of the combinatoric explosion

of the number of edges is greatly reduced.
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The major computations in the algorithm are vertex dependent, and the edge

dependent computations involved are trivial. Therefore the combinatoric explosion is not

fatal if the proposed algorithm is used.

As mentioned earlier, the problem of checking robust stability of a system can be

reduced to that of checking the stability of the edges of polytopes. However, an edge of a

polytope is nothing but a line segment in the coefficient space which can be represented as

the convex combination of two vertices corresponding to two polynomials. If the two end

points of the line segment are designated by a and 13, hence corresponding to two

polynomids a(s) and 13(s) of degree n, then every point on the line segment corresponds to

a polynomial is given by

t a(s) + (1-t)13(s) (5.4-1)

for some t r [0,1]. In the following, at(s) and 13(s) are assumed stable. Let the polynomials

a(s) and 13(s) of degree n be written as

at(s) = a(s) + s b(s) (5.4-2a)

P(s) = c(s) + s d(s) (5.4-2b)

where the polynomials a(s), b(s), c(s), d(s) are of the form

p(s) = P0 
+ pi s 2 + P2 s 4 + P3 s 6 + " (5.4-3)

Instability of the line segment occurs when the roots of (5.4-1) cross the imaginary axis.

Therefore, letting s = jco and substituting x for c)2, (5.4-3) becomes

P(x) = P0 - Px + P2 X2 -P3 X 3 + - (5.4-4)

where the degree of P(x) is now only half of that of p(s). Setting (5.4-1) equal to zero,

substituting (5.4-2) and (5.4-4) and equating real and imaginary parts on both sides of the

resulting equation, yields
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e(x)1t =  e(x' (5.4-5a)

It 9 (x)

= - a(x) (5.4-5b)
1 t (x)

and therefore

a( () - G(x)(x) = 0 (5.4-6)

where, for n even, the polynomials 9(x), 6(x), e(x), and a(x) are expressed as:

x t (-I)" a kx (5.4-7)k=O

t(x) I (-l)k bkxk (5.4-8)

x t= ( _l ) k c k xk (5.4-9)

a(x) = k=O dxk (5.4-10)

when n is odd the summation in the above four equations is carried out up to (n-l)/2.

Equation (5.4-6) then becomes

I d(-1) k (a
i dk~ji - b k-i Ci ) X k --  (5.4-11)

k=O i=O

note that equation (5.4-11) is of order n-i.

Now, according to the segment lemma [58], the line segment (edge) connecting the

two stable points a and J0 in the coefficient space is unstable if and only if there exists a

positive real x which satisfies (5.4-6) and (5.4-5) simultaneously. One can solve the

positive real roots of the (n-1)-th order polynomial equation (5.4-6) first and then plug
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these roots into either (5.4-5a) or (5.4-5b). If one of these roots make the left handed side

of (5.4-5), i.e., t/(!-t), positive, then the edge is unstable. Otherwise, the edge is stable.

This approach is quite straightforward but it is still not efficient.

Recall that by using Bialas' method [541, one has to construct a Hurwitz matrix H.

of size n and invert the matrix for each vertex, then compute the product H.H. "1 and find

the eigenvalues of the nxn matrix for each edge. It is easy to see that the approach we

mentioned in the previous paragraph is slightly better than Bialas' since solving positive

real roots of an (n-l)-th order polynomial equation is easier than computing the eigenvalues

of an nxn matrix. However, both approaches require nontrivial computations for each edge

of the polytope and hence they will become impractical when the combinatoric explosion of

the number of edges occurs.

In the proposed algorithm, first of all, we solve the positive real roots for the four

polynomials 9(x), 6(x), e(x), and a(x). Then from these positive roots, the intervals such

that both ,(x)e(x) and a(x)6(x) are negative can be easily found. If such intervals do exist

one needs to check for the existence of roots of equation (5.4-6) inside these intervals. If

(5.4-6) admits roots inside these intervals then the edge is unstable and stable otherwise.

Note that when such intervals are empty one needs not continue and can conclude that the

edge is stable. Recall that when n is even a(x) and e(x) are of order n/2 and (x) and a(x)

are of order n/2- 1. When n is odd, fi(x), 6(x), e(x), and a(x) are all of order (n- 1)/2. One of

the significant features of this method is revealed in the fact that the polynomials 9(x), t(x),

C(x), and a(x) are of at most degree n/2, hence it is computationally easier to deal with. In

fact, if n=4, a(x) and 8(x) are second-order polynomials and (x) and a(x) are first-order

polynomials. If n=9, a(x), c 6(x), and a(x) are fourth-order polynomials. From [63],

we can have closed-form solutions for the polynomial equations with order less than or

equal to four. Also, the problem of determining whether or not (5.4-6) has positive real
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roots inside an interval is a trivial one since it can be easily checked by using the Sturm

Theorem fsee App. B] without solving the equation.

The most significant feature of the proposed algorithm is that the computation

involved is mainly determined by the number of vertices instead of that of edges. To see

why the algorithm is more efficient than Bialas', let us assume the number of the

perturbation parameters m=10 and the order of the characteristic polynomials n=9. Now in

the coefficient space, the polytope has 210=1024 vertices and more than a half million

(523,776) edges. By using Bialas' method to check the stability of the polytope, we need

to construct a 9x9 Hurwitz matrices Hi and its inverse H. 1 for every vertex and then do the

matrix multiplication H.H- and find the e-genvalues of the 9x9 matrix HH."1 for eachiij I J

edge. By using the new algorithm, for each vertex we only need to solve two 4-th order

polynomials for positive real roots and then for each edge find the intervals such that both

A(x)8(x) and a(x) (x) are negative which can be easily found. If such intervals are empty,

the edge is stable. On the other hand, if such intervals do exist we need to use the Sturm

theorem to check if the 8-th order equation (5.4-11) has any roots inside these intervals.

Now we can see that the major computation effort in the new algorithm is finding the

positive real roots for 2,048 4-th order polynomial equations while Bialas' method requires

finding the eigenvalues for more than a half million 9-th order matrices.

Three examples are used to illustrate the segment stability checking algorithm.

Example 5.4-1:

Consider the two stable polynomials given as:

a(s) -s 4 + 5 S3 + 3 s 2 +2s+ I

13(s) S4 + s 3 +5 S2 + s+ 3

The polynomials in equations (5.4-7) - (5.4-10) become

a(x) = 1 - 3 x + x2
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2(x) = 2 - 5 x

8(x) = 3 - 5 x +x 2

a(x) = I- x

Upon substitution into equation (5.4-11), one obtains

4 x3 - 23 x2 +21 x - 5 =0

Instability of the convex combination occurs whenever there are positive values of x that

satisfy both equations (5.4-5a) and (5.4-5b) as well equation (5.4-6). For this example,

one can see that equations (5.4-5) are satisfied, i.e., both a(x)e(x) and a(x)t(x) are

negative over the interval [.4, .697]. To see whether (5.4-6) admits any roots inside this

interval, the following Sturm sequence is formed:

f0 (x) = 4 x3 -23 x2 + 21 x - 5

f (x) = 12 x2 - 46 x + 21

f2 (x) = 554 x - 303

f3 (x) = 87354

Therefore the number of real roots of (5.4-6) inside [.4, .697] is the difference in sign

variation of the sequence when evaluated at both end points, i.e. in this example there are

two roots inside the interval and so the edge is unstable.

Example 5.4-2:

As a second example we now consider the following two polynomials:

a(s) = s4 + 5 s3 + 10 s2 + 5 s + 1

0(s) = s4 +2 s3 +15 S2+ s+3

The polynomials in equations (5.4-7) - (5.4-10) become

a(x)= 1- -10 x + x2

x) = 5 - 5 x
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(x)=3- 15x +x2

a() - 2 x

Upon substitution into equations (5.4-5), one can see that a(x)c(x) is negative over [.101,

.203] and [9.9, 14.79] whereas a(x)x) is negative over [.5, 1]. Hence there are no values

of x that satisfy both equations (5.4-5a) and (5.4-5b) at the same time and therefore the

edge is stable. Note that checking for the existence of roots of equation (5.4-6) is not

required for this example.

Example 5.4-3:

In this third example, we apply our algorithm to the perturbed plant in Example 5.3-1. In

Example 5.3-1, we found that for k=3.417396 the characteristic polynomial corresponding

to V8 is unstable. For k=3.417395 the polytope corresponding to kJ9 is stable. This

polytope has 8 vertices and 28 edges. Recall that if we use Bialas' method to check the

stability of the polytope, we need to construct a Hurwitz matrix H. and its inverse H.1 for1 I

each vertex, do the multiplication H.H.-1 and find the eigenvalues of a 4x4 matrix H.H."1
1 *J I j

for each edge. In the following, we will use our fast algorithm to verify that this polytope is

stable. We first solve a first-order and a second-order equations associated with each

v~at.z. Then, for each pair of vertices (each edge) the intervals of x such that (5.4-5) are

satisfied can be easily found. It turns out that in this example such intervals are all empty

and so all the edges of the polytope are stable. The stability of kJ) is then inferred by the

edge theorem. Note that since no intervals satisfying equations (5.4-5) were found, one

needs not bother with checking the conditions required by equation (5.4-6). With this, we

conclude that the new approach can be used effectively to greatly reduce the amount of

computations required especially when one is faced with a large number of perturbation

parameters in the plant.
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SECTION 6

CONCLUSION AND FURTHER RESEARCH

6.1 Concluding Remarks

As demonstrated in Section 2, most robust control problems can be formulated as

the standard H- optimization problem. The standard H optimization problem consists of

two subproblems. One is stabilization and the other is H- optimization. The observer-based

controller parametrization is employed to characterize the set of all stabilizing controllers in

terms of a proper stable parameter matrix. Then among this set of stabilizing controllers,

some will be chosen to solve the H- optimization.

The poles of the closed-loop system with the observer-based controller

parametrization can be classified into three groups, and each group of poles can be

independently determined. These three groups of poles are the regulator poles, the observer

poles, and the poles of the added parameter matrix. The regulator gain, the observer gain,

and the added parameter matrix are free parameters to be chosen such that the closed-loop

transfer function matrix has some optimal performance with the constraint that the regulator

poles, the observer poles, and the poles of the parameter matrix are stable. Furthermore,

these parameters can be chosen such that the controller is uncontrollable and/or

unobservable and then the uncontrollable and/or unobservable controller poles can be

removed and the order of the controller can be reduced. The set of these removable

controller poles is a subset of the regulator and the observer poles. The poles of the closed-

loop system with the minimal order controller will include all the poles of the parameter

matrix and some of the regulator and the observer poles which are not the removable

controller poles.

There is very few, if there is any, one-block problems. Most of practical control

problems are either two-block or four-block problems. To reduce the order of the optimal
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controller, we require low order realizations of R11(s), R 12(s), R2 1(s), and R 22 (s) instead

of a minimal realization of R(s). In Sec.4.2, a numerically reliable algorithm for

constructing the minimal realizations of RLI(s), RL2(S), RRI(S), and RR2(s) has been

presented. From these realizations, the rational matrices Rij(s) = RU(s)RRj(s), ij=1,2, can

be easily obtained. There is no possible mathematically identical pole-zero caihCellation

between RLi(s) and RRj(s), therefore, the order of the realization of Rij(s) constructed by

our algorithm is minimal in most practical cases.

The two-block H- optimization problem can be solved by using the proposed fast

y-iteration algorithm in Sec.4.3 to compute the optimal H- norm. The fast y-iteration

algorithm converges extremely fast. The optimal H- norm can be obtained with accuracy

up to double precision within four iterations. Once the optimal H- norm is available, the

two-block H- optimization problem can be converted into a one-block H- optimization

problem and then an optimal controller can be easily constructed by using Glover's

method.

For the four-block H- optimization problem, the easiest solution is probably the

two-Riccati-equation approach proposed by Doyle, Glover, Khargoneckar, and Fiancis.

Strictly speaking, the two-Riccati-equation approach only gives suboptimal controllers such

that the H- norm of the closed-loop system is less than a number y which is larger than the

optimal norm. In Sec.4.4, we attempted to use the two-Riccati-equation approach to design

a nearly H- optimal controller. A simple iterative scheme can be used to reduce y to a

number which is very close to the optimum. However, as y is close to the optimum, the

elements of the state-space realization of the controller will approach to infinity. The

remedy to this difficulty is to do partial fraction expansion for the controller and to

approximate the wide-band low-pass terms by direct feedthrough terms. Then the elements

of the realization of the controller will be all finite, and the order of the nearly H- optimal

controller is at least one less than that of the plant.
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The real structured singular value computation algorithm presented in Sec.5.3 was

developed based on the multilinear mapping, the edge theorem, the fast segment stability

checking algorithm in Sec.5.4, and the perturbation domain partition technique. The

computational burden due to the combinatoric explosion of the number of edges has been

reduced a lot by using the fast segment stability checking algorithm. The convergence

usually is not a problem unless a singular unstable region is inside or very close to the

perturbation domain which hardly happens in the real world. If that happens, we just

simply shrink the perturbation d.rnain and try to find the largest lower bound kL at which

the computer can handle in finite steps. Although the algorithm requires no frequency

search, the frequency at which the system becomes unstable can be computed from the real

structured singular value and the critical point at which the stable perturbation domain

touches the unstable region. This critical point can be evaluated by using the fast segment

stability checking algorithm.

6.2 Further Research Suggestions

The two-Riccati-equation approach is a great break-through in the solution of H-

optimization problem. However, it only gives suboptimal solutions. If we try to have a

suboptimal solution which is very close to the optimum, an inevitable numerical difficulty

will occur. This numerical difficulty is caused by an unnecessary restriction that the

controller be strictly proper. The first further research suggestion is to develop two-Riccati-

equation like state-space formulae for optimal (instead of suboptimal) H- controllers which

are allowed to have direct feedthrough terms.

The second further research suggestion is related to the M-A structure shown in

Fig.5. 1-1. M-A structure is important since all the SSV analysis and design techniques are

developed based on this structure. The construction of an M-A structure for a perturbed

system is not difficult at all. However, it is by no means an easy task to find a minimal M-

A structure. Here "minimal" means that the dimension of A (or M) is minimal. We can
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easily construct an M-A structure for a given perturbed system, but the dimension of the

structure may be unnecessarily large. Although theoretically the structured singular values

of all M-A structures of the same perturbed system should be identical, a minimal M-A

structure is much easier to handle than those with high dimension in computation. A

minimal M-A structure is essential in the computation of the structured singular value.

The third further research suggestion is the development of a controller design

updating scheme. The Hr optimization technique, fast computational algorithm for the real

SSV, and the controller updating procedure are employed in the proposed design approach

for robust optimal controllers. The FI optimization technique allows us to consider a larger

and more realistic set of disturbances, noises, and commands than those considered by

LQG and Wiener-Hopf methods. The robust-stability constraint for the unstructured plant

uncertainty and the control-input constraint are also incorporated in the FW cost function.

The controller which minimizes the I cost function is a tentative robust optimal controller.

For the closed-loop system with the tentative robust optimal controller, we will check all

performance measures like the real SSV, the I" norm of the sensitivity function, the Fr

norm of the complementary sensitivity function, and the amplitude of the control input, etc.

These performance measures will be used to update the Hr cost function (and therefore the

controller) and the updating procedure is repeated until a satisfactory trade-off is reached.

In the proposed design approach, the uncert-ain disturbances and commands are modelled in

a realistic way. Furthermore, the control-input constraint and the robust stability constraints

for both of the unstructured and parametric plant uncertainties are also taken into account.

The fourth further research suggestion is fast computational algorithm for the real

SSV. Parametric perturbation is a kind of plant uncertainties which occurs very often. The

closed-loop system is required to be stable for all possible parametric perturbations. It is

essential to have a robust-stability checking tool for testing if the closed-loop system is

stable for all possible perturbations in a given parameter domain. The real SSV is not only
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a robust-stability checking tool but also a stability-margin measure which gives the

maximal allowable parameter perturbation domain in which the system remains stable. In

the design of robust optimal controller, we need to compute the real SSV repeatedly until

the controller updating loop is terminated. A fast computational algorithm for the real SSV

is indispensable in the analysis and design of robust control systems.

For easy controller implementation, we would like the order of the controller to be

as small as possible. The fifth further research suggestion is the development of a controller

order reduction technique which guarantees the closed-loop performance. Most of the

eA,,,ing con-cUlki order reduction techniques are indirect methods in which the basic

concept is to find a reduced-order controller which approximates the robust optimal

controller and then check the closed-loop characteristics of the reduced-order controller.

The drawback of these indirect methods is that the closed-loop properties are not

considered during the controller reduction. The proposed approach is to characterize the set

of all reduced-order stabilizing contlu iers and then to find a controller in this set such that

the F-I cost function is minimized. This approach is a direct method in which the closed-

loop properties are always guaranteed.
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APPENDIX A

Proof of Theorems

Proof of Theorem 3.3-2:

Let NG(s)DG(s)' with deg IDG(s)' = n and DK(S)'NK(S) with deg IDK(S)I = n+m

be a right MFD (matrix fraction description) of G22 (s) and a left MFD of K(s)

respectively [64]. It is well known that the characteristic polynomial of the closed-loop

system is

ocloset_loop(S) = I DK(s)DG(s) - NK(s)NG(s) I (Al-1)

Let LK(s) be a greatest common left divisor of DK(s) and NK(s). That is,

DK(s) = LK(s)]K(S), NK(S) = LK(S)&K(S) (Al-2)

where tk(s) and &K(s) are left coprime. It is easy to see that the zeros of LK(s) are the

uncontrollable or the unobservable poles of the controller realization in Fig. 3.2-3. That

is,

{ zeros of LK(s) } = 1removal (AI-3)

Plug (A1-2) into (A 1-1), we have

doed_1oop(S) - I LK(S) I b K(s)DG(s) - K(s)Na(s) I (Al-4)

The zeros of I IbK(S)DC(s) - &K(S)NG(s) I are the poles of the closed-loop system with a

minimal controller realization. From Theorem 3.3-1, (A 1-3) and (A 1-4), we can see that

closed-loop with min. controller + 3removal regulator +Pobserver +Q(S) (A1-5)

To complete the proof, we need to show that Vremoval is a subset of Vrgulator +

r observer when Q(s) is minimal. The dynamic equations of the observer-based controller
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in Fig. 3.2-3, i.e., the block diagram inside the dotted-line box, can be written as

follows:

SF+H + -H (B2+HD(I2 ) -6a)x[;l 2 C lD I + 2)] U
F ^ 0 _]y (A1 Io6b);= (C2+D22F] K + [ D22 u2

Assume that the added dynamics Q(s) is described by the following minimal realization:

k = Ak + By (A1-7a)

u 2 =Ck + )y (A1-7b)

The controller K(s) is just a combination of (A1-6) and (A 1-7). From (A1-6) and (Al -

7), we have the dynamic equations of the controller K(s) as follows:

x a1 i °12 r 1
t + y (A1-8a)

0'21 " 2 2  k2

U = [ 1  Y2+8y (A1-8b)

where

0, = " H- (B2+HD22 ) (1-IDD 22) 1D) (A1-9a)

02 = B + D22 (I-i)D 22 ) 1 I (A1-9b)

y' = F + (I-DD 22) 1 D (C2+D22F) (A1-9c)
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= - (I-ID 22) C (Al-9d)

a1 1  A + HC2 + (B+HD22)y 1  (Al-9e)

=A + B2F - I (C2+D22F) (A1-9f)

( 12 = (B2+HD22 ) y2  (Al-9g)

a 21 = - P2 (C2+D 22F) (A1-9h)

a 22  - B D22 ^2 (Al-9i)

= - (I-D)2 2)'-15 (Al-9j)

Now, assume that the state-space representation (A1-8) of the controller K(s) is

unobservable. Then by PBH test [64], there exists a nonzero vector 4 such that

[1 = 0; = (Al-10a)

= X (Al-10b)
a 21 a 22 42

for some eigenvalue X of (A1-8). Note that it is the eigenvalue X that is unobservable.

From (A l-1Ob), we get

a,111 + a 1242  = 141 (Al-Ila)

which, by using (A1-9e) and (A1-9g), is rewritten as

(A + HC 2 )4 1 + (B 2 +HD 22 )( 1 1 - +-" 2 42 ) = - 1 (AI-1b)

In view of (A 1-10a), the above equation reduces to
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(A+ HC2 ) t1 = X 41 (AI-lIc)

which clearly establishes that the unobservable eigenvalue belongs to Vob-,er"

Proceeding similarly, it can be shown that if (A 1-8) is uncontrollable then the

uncontrollable eigenvalue belongs to Fregulat"

Note in the above development that -0 contradicts the minimality assumption of

Q(s). Thus,

Iunobservable C iobberver (A1-12a)

F uncontrollable C F regulator (A1-12b)

where I unobservable is the set of all the unobservable poles of the controller K(s).

Funcontrollable is defined similarly. This completes the proof of Theorem 3.3-2.

Proof of Remark 4.2-1:

Clearly, the realization (4.2-4) is controllable if the pair

((A 2 - L2 LTx 2 )T, -D12R1B2U T (A2-1a)

is controllable. This pair is controllable if there exists a positive definite k such that

-I T T 
-I

+ (DW2-D R-B UX)T (D W -D R-1BUX(2-D 2-12 D 2 2X 2  ± 2 -D12 D 2U2X2)0 (A2-1b)

Substituting k by X2, then the left hand side of (A2-lb) can be reduced to

TX+ A LT T (A2-1c)
AX2 + X2A2 X2L2L2X2 + W2W 2

which is zero according to (4.2-3e).
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Proof of Theorem 4.3-7:

Recall that

g(y) inf II (RA1+) ( 2I-R*1R )-1t2 II (A3-1)
( : (RH ')mxr

The theorem will be proved by a contradiction. Let

a =- 4g2(,y) y2 + I -t()] f (32g2~ 2Y 2 (A3-2)

Suppose that (4.3-14) is not true. Then from Theorem 4.3-1, yo < a implies that

Rtinf 11 (R,+O) (21-R* 21 )1/2 II < I (A3-3)It00:= (RH-) mxr 211

An optimal for (A3-3) is denoted by O, i.e.,

11(a) = 1I (R1 1+ 1) (a 21-R;1 R2 1 )-/2 11  < 1 (A3-4)

Thus,

(a 21-R21 R2 1 )-/2* (RI 1+01 )* (RI 1+tI) (ot21-R' 1 R2I)-1/2 < I for all o (A3-4)

O (RlI+O1)* (R11+01) < a *2IR R21

= p.2 (y) 9i + [I-pg2(y)] C2 1 -R

g 2(y) 21+ [1- R*2(y)I RR - R*2 R
221 21 21

g 2( ) ( 92 - R21R21) for all co (A3-5)

(?I-R2R 2 1 -2*(Rl +0 1 )*(R, + I)(92I-R1 IR21 )-2 < p.2(y)i foral (A3-6)

11 (RI1+) )(y2I-R*2lg21 )-2 11 .< 9('Y (A3-7)

which contradicts the fact that g(y) is the infimum as stated by (A3-2). Hence,

a g2(¥) 2 2 (A3-8)
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Proof of Corollary 4.3 8:

Denote the right-hand side of (4.3-15) ( or (4.3-17) ) by 03 . The function 4t(y) can be

considered as a curve in a two-dimensional space. The point (y., I ) is the intersection

of the curve y = 1.(y) and the horizontal line y = 1. Draw a straight line connecting the

two points ( y1 , p(yj) ) and ( y5 , I.t(y 5) ). This straight line will cross the horizontal

line y = I at the point (033, 1). Since the function p(y) is continuous, convex, and

strictly monotonically decreasing, it is easy to see that

Yo > 33 if To(5 )>1 and o < 13 3 if t(7) < 1

Inequalities (4.3-16) and (4.3-18) can be proved in a similar way.

Proof of Theorem 5.2-3:

Without loss of generality, we will show that cc s, i=0,1,2,...,n, are linear (affine)

functions of Z while Z2 .... Zm remain unchanged. Let m. (s) be the i-j entry of the

matrix M(s). Then

det C I + M(s)A ]

l+mI 1 1 m12 2  ... mlmSm
m2,11 1+rn228 2  ... r mm

1m m2 " 2 " +rmmm

I m1262 . mIm 1282 mm 1mm

0 1+m 2 2  . M2 m8m m2 1  1+m 2 2 82  m.2mam

+8
1

0 rm2 2 1min m mml mm2 2 1 m m
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f:I( s) + 6 fii2

Here fil(s) that fh,(s) are rational functions with real coefficients. Now, we can write

n(s) n2(s) n,(s)d2(s) , 5In 2(s)dI(s)

dc(s)dl(s) dc(s)(s) - dc(s)dl(s)d2(s)

where the (n1(s) tc(s)d1 (s)) and {n2(s), dc(s)d 2(s)} are coprime polynomial pairs, and

dc(s) is a greatest common factor of the denominator polynomials of fni (s) and fii2 (s).

The polynomials nl(s)d2(s) and n2(s)dl(s) can be represented as

a0sn n- a s n - + a 2s n -2 + ..... + an

and

b0 sn rbse-1 + b s n -2 + ..... + b

respectively. Therefore, the characteristic polynomial is

a 0sn + OCsn-I + a 2S n-2 +. + c n

( ,a, +8 bo) sn + (a1+s b1) sn-I + (a2+8 b2) sn-2 +..... .. + (an+8 b)

i.e.,

i ai + I b i = 0,1,/...,n

Proof of Theorem 5.2-6:

Recall that £) = 6: -1 5 6. < 1, i = 1,2,...,m }. To complete the proof we need to

show that for any e .6, the image of is inside the polytope 10(z) if the mapping

is multilinear. Let

9= [1 82 83% ..... 8m'] T E

and define
8*(k) = [9 "82% "t'k k+, ak+2' .'" (mIT
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where 0 - k < m, and a, is either -! or -1, for k+l i < m. Note that 8*(k) represents

one of the 2-k points which associate with 8 on the boundary hyperplanes of ,6. t*(0)

is one of the vertices of ,6 and 8*(m) = *. We shall prove by mathematical induction

that 9(8*(m)) e F(,).

Assume that the image of the 2m -k 8*(k)'s are all in F(, ) and deine

(k") =[ . ,- + , k+2' .... m IT

and

[ = 8 2 * ' . .
Tk + 2 . . T

Let the line segment connecting 8*(k+) and 8*(k-) be denoted by 2 k' Obviously, 2 k is

parall to 8 l-axis, since the only coordinate change from 8 * (k') to 8*(k) is along the

8k+I-axis. Therefore, the image of , is also in V(,D) ty the virtue of Lemma 2.5. Since

8*(k+1) is a point on 2 V its image must also in V(, ). The fact that the image of *(O)

is in F(.6) is established by the definition of V(q). This completes the proof.

Proof of Theorem 5.2-7:

The proof is similar to De Gaston and Safonov's [48]. he only difference is that their

co-domain is the complex plane while ours is ti.t coefficient space. The roots of the

characteristic equation, i.e., the eigenvalues of A-BAC are uniquely determined by the

parameter vector 8 and therefere so is the coefficient vector a. For any x . 1' there

exists a 8y r.2 suc>: that 8Y = 8' and thus J(SY) = 1 (8x). Hence I (J91) C "92 ).

Since is the smallest convex set that contains all the points of I(jg,), (5.2-6) is a

direct consequence of (5.2-5).
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Proof of Theorem 5.2-8:

Again, the proof is similar to De Gaston and Safonov's [48]. The vertices of J9, and J92

are mapped into V0(b) and therefore IP(09 d' V "92), and V ("91) U F "92) are

contained in V(.9). Since d(' 1) C V ' 1 (6 2) c: V(92) , and d1(.b) u I(i92) =

I(, ), we have 1 (.6) C V(q ) u i(, 2).
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APPENDIX B

Real Solution Existence Checking by Using Sturm Theorem

Given a polynomial Pn(x) of degree n and an interval [a,b] on the real axis, find

how many roots of Pn(x) are located inside [a,b] ?

Sturm Sequence:

Let
Pn(x) =a x n + ajx n- 1 + ...+ an 1 x + a (B-1)

and

f0(x) = Pn(x) (B-2)

f,(x ) = d pn(x )  (B-3)
dx n(X

Divide fo by f, and denote the remainder by -f2. Divide f, by f2 and denote the remainder

by -f. continue the process until f is a constant. To illustrate,
n

f0 = Q 1 fl" f2

fl = Q2 f2" f3

(B-4)
f _n-2 = Qn fn -f

n-i n-i f nn-i = Q. f
To actually compute the coefficients of the polynomials fi, we suggest forming the

following table:

a0  a1  a2  a3  a4

b0  b, b 2  N ..

Co Cl C2

c0  c 1  c 2
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where the a.'s (i=0,1,2,...,n) are the coefficients of the original polynomial f0(x). The b.'s

(i=O,1,2,...,n-l) are the coefficients of f1(x). The Z,'s (i=O,1,2,...,n-1) are given as

ai = b0ai+1 " obi+l (B-5)

and the ci's are the coefficients of f2 (x) which Pre given as

Ci = a 0bi+l " b0Ci+l (B-6)

Similarly the coefficients of fi(x) (i = 3, 4, ..., n) can be computed. Once these functions

are constructed, it can be shown that they form a Sturm sequence [63] with the following

properties:

i) For any value x0 e [a,b] at which fi(x) = 0, we have f il(x 0).fi+1 (x0) < 0.

ii) The last function in the sequence fn(x) does not vanish for any x E [a,b]. Also,

it is required that f0(x) does not vanish at the end points of the interval [a,b].

Note that any given row of the above table can be multiplied or divided by any nonzero real

constant without affecting the properties of the functions fi(x).

Theorem (Sturm):

Let the functions f0(x), fl(x), f2(x), ..., fn(x) be a Sturm sequence and let V(x)

represent the number of variation of sign of the sequence at x, then the number of real roots

in the interval [a,b] is exactly V(a) - V(b) with repeated roots counted only once.

A proof of this theorem can be found in [62].
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