
DTIC
FLECT
MAY 3 0 1990

r-, S D%,-
CN Distributed System Fault Tolerance

Using Message Logging
and Checkpointing

David B. Johnson

Rice COMP TR89-101

December 1989

Department of Computer Science
Rice University
P.O. Box 1892

* -Houston, Texas 77251-1892

(713) 527-8101

DWSrt)~n? Cra-r.MEFi7A
Approve to public releaou I

Disan'unan Untilmed I

p O5- .S 2Jo3

RICE UNIVERSITY

Distributed System Fault Tolerance
Using Message Logging and Checkpointing

by

David Bruce Johnson

A THESIS SUBMITTED

IN PARrIAL FULFILLMENT OF THE
cREQUIREMENTS FOR THE DEGREE

Doctor of Philosophy
Accesion For

NTIS CRA&I s
DTIC TAB 0
Unannotinced
Justificaton APPROVED. THESIS COMMITTEE:

181

AvaiLbility Codes Willy Zwai:epoel, Chair an

Aj.ift a:.d or Associate Professor of Computer Science
Dist Special

Robert S. Cartwright
Professor of Computer Science

STATEMENT "A" Per Dr. Andre ''11borg
ONR/Codc 1.133
TELECON 5/29/90 VG _ _ ____

John E. Dennis
Professor of Mathematical Sciences

Houston, Texas

December, 1989

Copyright @ 1989

by

David Bruce Johnson

Distributed System Fault Tolerance
Using Message Logging and Checkpointing

David Bruce Johnson

Abstract

Fault tolerance can allow processes executing in a computer system to survive failures
within the system. This thesis addresses the theory and practice of transparent fault-
tolerance methods using message logging and checkpointing in distributed systems. A
general model for reasoning about the behavior and correctness of these methods is
developed, and the design, implementation, and performance of two new low-overhead
methods based on this model are presented. No specialized hardware is required with
these new methods.

The model is independent of the protocols used in the system. Each process state
is represented by a dependency vector, and each system state is represented by a
dependency matrix showing a collection of process states. The set of system states
that have occurred during -any single execution of a system forms a lattice, with the
sets of consistent and recoverable system states as sublattices. There is thus always a

unique maximum recoverable system state. (-

The first method presented uses a new pessimistic message logging protocol called
sender-based message logging. Each message is logged in the local volatile memory
of the machine from which it was sent, and 'I order in which the message was
received is returned to the sender as a receiv z tence number. Message logging
overlaps execution of the receiver, until the receive, attempts to send a new message.
Implemented in the V-System, the maximum measured failure-free overhead on dis-
tributed application programs was under 16 percent, and average overhead measured
2 percent or less, depending on problem size and communication intensity.

Optimistic message logging can outperform pessimistic logging, since message log-
ging occurs asynchronously. A new optimistic message logging system is presented
that guarantees to find the maximum possible recoverable system state, which is not
ensured by previous optimistic methodt. All logged messages and checkpoints are
utilized, and thus some messages received by a process before it was checkpointed
may not need to be logged. Although failure recovery using optimistic message log-

ging is more difficut, fail,!'re-free applica*on ov-ne-d ini this method ranged from
only a maximum of under 4 percent to much less than 1 percent.

Acknowledgements

I would most like to thank my thesis advisor, Willy Zwaenepoel, for his advice and

guidance, which helped to nurture this research. Through many discussions with
him, this thesis was improved in both content and presentation. Although I argued
with him on many points of writing style and organization, he was often right, and
these interactions have been a valuable part of my education. I would also like to
express my appreciation to the other two members of my thesis committee, Corky
Cartwright and John Dennis, for their support and encouragement in my thesis work
and throughout my graduate education.

Many other people and organizations have also helped to make this thesis a re-
alitv. The other members of the systems group here at Rice University, in particu-
lar Rick Bubenik, John Carter, Elmootazbellah Nabil Elnozahy, Jerry Fowler, Pete
Keleher, and Mark Mazina, have contributed to this work through numerous dis-
cussions and through comments on earlier drafts of portions of this material. Pete
Keleher also helped with much of the implementation of the new optimistic message
logging system presented in this thesis. I would also like to thank Ivy Jorgensen, Leah

Stratmann, and Lois Barrow, for excellent administrative support, often in times of
crisis; and Bill LeFebvre, for help with the laser printer and tpic, and for being a good
friend. Ken Birman, David Cheriton, Matthias Felleisen, Elaine Hill, Ed Lazowska,
Alejandro Schaffer, and Rick Schlichting also provided many useful comments on
earlier drafts of some material that is reflected in this work. Financial support for
this research was supplied in part by the National Science Foundation under grants
CDA-8619893 and CCR-8716914, and by the Office of Naval Research under contract

ONR N00014-88-K-0140.

Finally, I would like to thank my parents, who have supported and encouraged
me in all my endeavors. I couldn't have done it without them.

Contents

Abstract v
Acknowledgements vii

List of Illustrations xiii
List of Tables xv

1 Introduction 1

1.1 Message Logging and Checkpointing 2

1.1.1 Pessimistic Message Logging 3
1.1.2 Optimistic Message Logging 4

1.2 Distributed System Assumptions 5
1.3 Implementation Environment 6

1.4 Other Fault-Tolerance Methods 8
1.4.1 Hardware Fault Tolerance 8
1.4.2 Application-Specific Methods 9
1.4.3 Atomic Actions 9
1.4.4 Functional Programming 10

1.4.5 Active Replication 11
1.4.6 Checkpointing 11

1.5 Scope of the Thesis 12

1.6 Thesis Outline 13

2 Theoretical Framework 15

2.1 The Model 15
2.1.1 Process States 16

2.1.2 System States 17
2.1.3 The System History Lattice 19

2.1.4 Consistent System States 21

2.1.5 Message Logging and Checkpointing 23

2.1.6 Recoverable System States 25
2.1.7 The Current Recovery State 26

x

2.1.8 The Outside World 28
2.1.9 Garbage Collection 29

2.2 Related Work 30

2.3 Summary 33

3 Pessimistic Message Logging 35
3.1 Overview and Motivation 35

3.2 Protocol Specification 36
3.2.1 Introduction 36

3.2.2 Data Structures 38
3.2.3 Message Logging 39
3.2.4 Failure Recovery 41
3.2.5 Protocol Optimizations 44

3.3 Implementation 47

3.3.1 Division of Labor 47
3.3.2 Message Log Format 48

3.3.3 Packet Format 50

3.3.4 Kernel Message Logging 51

3.3.5 The Logging Server 53
3.3.6 The Checkpoint Server 55

3.4 Performance 56
3.4.1 Communication Costs 57

3.4.2 Checkpointing Costs 61

3.4.3 Recovery Costs 62
3.4.4 Application Program Performance 63

3.5 Multiple Failure Recovery 69

3.6 Related Work 71

3.7 Summary 73

4 Optimistic Message Logging 75

4.1 Overview .. 75
4.2 Protocol Specification 77

4.2.1 Data Structures 77

4.2.2 Process Operation 78

4.2.3 Failure Recovery 79

4.3 The Batch Recovery State Algorithm 79

xi

4.4 The Incremental Recovery State Algorithm 8'2
4.4.1 Finding a New Recoverable System State 83
4.4.2 The Complete Algorithm 87

4.4.3 An Example 93
4.5 Implementation 95

4.5.1 Division of Labor 9.5
4.5.2 Message Log Format 96

4.5.3 Packet Format 97
4.5.4 The Logging Server 98
4.5.5 The Checkpoint Server 99
4.5.6 The Recovery Server 99

4.6 Performance 101
4.6.1 Communication Costs 101
4.6.2 Checkpointing Costs 102
4.6.3 Recovery Costs 103
4.6.4 Application Program Performance 103

4.7 Related Work 104

4.8 Summary 107

5 Conclusion 109

5.1 Thesis Contributions 109
5.1.1 Theoretical Framework 109
5.1.2 Pessimistic Message Logging 110
5.1.3 Optimistic Message Logging 111

5.2 Suggestions for Future Work 112

Bibliography 115

Illustrations

Figure 2.1 The system history partial order 19

Figure 2.2 An inconsistent system state 22

Figure 2.3 The domino effect 27

Figure 3.1 Sender-based message logging configuration 36

Figure 3.2 An example message log 37

Figure 3.3 Operation of the message logging protocol in the absence of
retransmissions 40

Figure 3.4 Piggybacking RSNs and RSN acknowledgements on existing
message packets 45

Figure 3.5 A blast protocol with sender-based message logging using
both optimizations 47

Figure 3.6 Sender-based message logging kernel organization 52

Figure 4.1 The batch recovery state algorithm 81

Figure 4.2 Procedure to find a new recoverable state 85

Figure 4.3 The incremental recovery state algorithm 88

Figure 4.4 An example system execution 93

Tables

Table 3.1 Size of kernel additions to support sender-based message
logging and checkpointing 48

Table 3.2 Performance of common V-System communication operations
using sender-based message logging (milliseconds) 57

Table 3.3 Checkpointing time by size of address space portion written
(milliseconds) 61

Table 3.4 Recovery time by address space size (milliseconds) 63

Table 3.5 Performance of the distributed application programs using
sender-based message logging (seconds) 66

Table 3.6 Message log sizes for the distributed application piograms
(average per node) 67

Table 3.7 Application program piggybacking utilization (percentage of
messages sent) 67

Table 4.1 Size of kernel additions to support optimistic message logging
and checkpointing 96

Table 4.2 Performance of common V-System communication operations
using optimistic message logging (milliseconds) 102

Table 4.3 Performance of the distributed application programs using
optimistic message logging (seconds) 104

Chapter 1

Introduction

Providing fault tolerance in a computer system allows executing processes to survive

failures within the system. Without fault tolerance, an application proglam executing

in parallel on multiple processors i- a distributed system could fail entirely if even a

single processor e'ecuting part of it fails. Although the idea of adding fault tolerance

to distributed systems is not new, many existing methods restrict the types of appli-

cation programs that can be supported, or severely degrade the performance of these

programs in the absence of failures. A low-overhead method of providing fault toler-

ance is important in order not to penalize distribLted application programs that use

it. If the provision of fault tolerance adds substantial overhead to the system, it may

not be usable by many types of application programs. Furthermore, a transparent

general-purpose fault-tolerance method is desirable in order to allow fault tolerance

to be easily utilized by existing application programs without changes and by new

application programs without programmer effort. This transparency also allows the

system fault-tolerance support and the application programs that use it to evolve

independently.

This thesis addresses the class of fault-tolerance methods using message logging

and checkpointing in distributed systems. A new general model for reasoning about

the behavior and correctness of these fault-tolerance methods is developed, and the

design, implementation, and performance of two new fault-tolerance methods based

on this model are presented. These new methods are transparent and add little over-

head to the execution of the system. They support general-purpose computation and

each offer unique advantages over previous message logging systems. No specialized

hardware is required with these new methods.

I

9

1.1 Message Logging and Checkpointing

In general., in a system using message logging and checkpointing to provide fault tol-

erance, each message received by a process is recorded in a message log, and the state

of each process is occasionally saved as a checkpoint. Each process is checkpointed

individually, and no coordination is required between the checkpointing of different

processes. The logged messages and checkpoints are stored in some way that survives

any failures that the system is intended to recover from, such as by writing them to

stable storage on disk [Lampson79, Bernstein87].

Recovery of a failed process using these logged messages and checkpoints is based

on the assumption that the execution of the process is deterministic between received

input messages. That is, if two processes start in the same state and receive the

same sequence of input messages, they must produce the same sequence of output

messages and must finish in the same state. The state of a process is thus completely

determined by its starting state and by the sequence of messages it has received.

A failed process is restored using some previous checkpoint of the process and

the log of messages received by that process after that checkpoint and before the

failure. First, the state of the failed process is reloaded from the checkpoint onto

some available processor. The process is then allow..ed to begin execution, and the

sequence of logged messages originally received by the process after this checkpoint

are replayed to it from the log. Thest replayed messages must be received by the

process during recovery in the same order in which they were received before the

failure. The recovering process then reexecutes from this checkpointed state, based

on the same input messages in the same order, and thus deterministically reaches

the state it was in after this sequence of messages was originally received. During

this reexecution, the process will resend any messages that it sent during this same

execution before the faflure. 'i:-ese duplicate messages must be detected and ignored

by th. ir receivers, or must not be allowed by the sN em to be transmitted again

during recovery.

3

The protocols used for message logging can be divided in-to two groups, called

pessimistic message logging and optimistic message logging, according to the level

of synchronization imposed by the protocol on the execution of the system. This

characteristic of the message logging protocol used in a system also determines many

characteristics of the checkpointing and failure recovery protocols required.

1.1.1 Pessimistic Message Logging

Pessimistic message logging protocols log messages synchronously. The protocol guar-

antees that any failed processes can be recovered individually without affecting the

states of any processes that did not fail, and prevents processes from proceeding until

the logging that is required by this guarantee has been completed. These protocols

are called "pessimistic" because they assume that a failure could occur at any time,

possibly before the needed logging is completed.

Previous pessimistic message logging protocols [Powell83, Borg83, Borg89] have

achieved this guarantee by blocking a process when it receives a message, until that

message has been logged. This ensures that if a process fails, all messages received by

it since its last checkpoint are logged, regardless of when the failure occurs. Failure

recovery in a system using pessimistic message logging is straightforward. A failed

process is always restarted from its most recent checkpoint, and all messages received

by that process after the checkpoint are replayed to it from the log, in the same order

in which they were received before the failure. Based on these messages, the process

deterministically reexecutes from the state restored from its checkpoint to the state

it was in at the time of the failure.

Pessimistic message logging protocols have the advantage of being able to restore

the system after a failure without affecting the states of any processes that did not fail.

Also, since a process can always be recovered from its most recent checkpoint, only one

checkpoint for each process must be saved, and the amount of reexecution necessary to

complete recovery from any failure can be controlled by the frequency with which new

checkpoints are recorded. The checkpointing frequency can also be used to control

the amount of storage necessary to store the message log, since only messages received

4

by a process since its most recent checkpoint must be saved. The main drawback,

however, of pessimistic message logging is the performance degradation caused by

the synchronization in the message logging protocol. Previous pessimistic message

logging protocols [Powell83, BorgS3, Borg891 have attempted to reduce this overhead

by using special-purpose hardware to assist the logging.

1.1.2 Optimistic Message Logging

In contrast to pessimistic protocols, optimistic message logging protocols operate

asynchronously. The receiver of a message is not blocked, and messages are logged

after receipt, for example by grouping several messages and writing them to stable

storage in a single operation. However, the current state of a process can only be

recovered if all messages received by the process since its last checkpoint have been

logged, and thus some execution of a failed process may be lost if the logging has

not been completed before a failure occurs. These protocols are called "optimistic"

because they assume that the logging of each message received by a process will be

completed before the process fails, and are designed to handle this case most effi-

ciently. As with pessimistic message logging, each failed process is then recovered

individually, and no process other than those that failed are rolled back during recov-

ery. However, if the assumption turns out to be incorrect, and some received messages

have not been logged when a process fails, a more expensive recovery procedure is

used, which may require some processes that did not fail to be rolled back as well.

Optimistic message logging protocols have the advantage of significantly reducing

the overhead caused by message logging, relative to that caused by pessimistic logging

protocols. Since messages are logged asynchronously after receipt, no synchronization

delays are necessary during message logging. Although optimistic logging protocols

require a more complex procedure to recover the system after a failure, this recov-

ery procedure is only used when a failure occurs. Thus, optimistic message logging

protocols are desirable in systems in which failures are infrequent and failure-free per-

formance is of primary concern. The main drawback of optimistic message logging is

that failure recovery may take longer to complete, since more process rollbacks may be

required. Although the amount of process reexecution necessary to complete recovery

cannot be controlled as directly as with pessimistic message logging, it is generally re-

duced by more frequent checkpointing and by logging messages sooner after receipt.

Optimistic message logging may also require more space to store checkpoints and

logged messages, since any process may be forced to roll back to a checkpoint earlier

than its most recent, and all messages received by the process since this earlier check-

point must be saved in the log. Although several previous optimistic message logging

protocols have been proposed [Strom85, Strom88, Sistla89I, none of these protocols

has been implemented, and thus their actual performance cannot be evaluated.

Optimistic message logging is a type of optimistic algorithm or optimistic com-

putation. Optimistic algorithms have also been used in other areas, including con-

currency control mechanisms [Kung8l, Gherfa185], the automatic parallelization of

programs for multiprocessors and distributed systems [Strom87], distributed discrete

event simulation [Jefferson87, Jefferson85], software development tools [Bubenik89],

and network protocols for bulk data transfer [Carter89]. An optimistic algorithm

has the potential to outperform a corresponding pessimistic algorithm if the assump-

tion made by the algorithm is correct often enough to compensate for the increased

complexity of allowing computations to be rolled back otherwise.

1.2 Distributed System Assumptions

The fault-tolerance methods developed in this thesis are designed to work in exist-

ing distributed systems without the addition of specialized hardware to the system

or specialized programming to applications. The following assumptions about the

underlying distributed system are made:

* The system is composed of a network of fail-stop processors [Schlichting83].

A fail-stop processor immediately halts whenever any failure of the processor

occurs; it thus never produces incorrect output because of any failure.

e Processes communicate with one another only through messages.

6

* The execution of each process in the system is deterministic between received

input messages. That is, if two processes start in the same state and receive

the same sequence of input messages, they must produce the same sequence

of output messages and must finish in the same state. The current state of a

process is thus completely determined by its starting state and the sequence of

messages it has received.

" No global clock is available in the system.

* The network includes a shared stable storage service [Lampson79, Bernstein87]

that is always accessible to all active nodes in the system.

" Packet delivery on the network need not be guaranteed, but reliable delivery of

a packet can be achieved by retransmitting it a limited number of times until

an acknowledgement arrives from its destination.

" The network protocol supports broadcast communication. All active nodes can

be reached by a limited number of retransmissions of a broadcast packet.

" Processes use a send sequence number (SSN) for duplicate message detection.

For each message sent, the SSN is incremented and the new value is used to

tag the message. Each process also maintains a table recording the highest SSN

value tagging a message received from each other process. If the SSN tagging a

new message received is not greater than the current table entry for its sender,

the message is considered to be a duplicate.

1.3 Implementation Environment

These new fault-tolerance methods have been implemented, and the performance of

these implementations has been measured. This work has been carried out in the

environment of the V-System, a distributed operating system originally developed

at Stanford University (Cheriton83, Cheriton84, Cheriton881. The V-System runs

on a collection of diskless SUN workstations connected by a 10-megabit per second

7

Ethernet local network [Metcalfe76, Shoch80] to a shared SUN network file server.

For this implementation, version 6.0 of the V-System [Stanford861 was used, which

does not support demand-paged virtual memory. Although this implementation has

involved a number of system-specific issues, many of these issues would be important

with any choice of implementation environment, and many of the solutions used are

applicable over a wide range of similar target systems.

The V-System consists of a distributed operating system kernel and a collection

of server processes. Each participating node on the network executes an independent

copy of the V kernel, and these kernels cooperate to provide the abstraction of a single

distributed kernel supporting transparent location-independent message-passing com-

munication between processes. The kernel itself provides only the primitive operations

required by the system, such as communication between processes, and basic process

and memory management functions. All other facilities provided by the V-System

are built on top of this kernel support by server processes.

Each node executes a standard collection of server processes. Perhaps the most

important of these is the team server, which manages all programs executing on

that node. This includes loading new programs and terminating existing ones when

requested, scheduling the execution of programs, and maintaining a directory of cur-

rently executing programs. The exec server manages one or more command inter-

preters known as execs, which correspond to the shell in Unix [Bourne78]. Other stan-

dard servers include a terminal server, which controls the user interaction through

the keyboard, mouse, and display of the workstation; and the exception server, which

uniformly handles all exceptions and traps incurred by executing processes.

Process communication is structured around a synchronous request-response pro-

tocol. The Send operation is used to send a fixed-size 32-byte message to another

process and await a response. In the destination process, the Receive and Reply op-

erations are used, respectively, to receive the message and to return a 32-byte reply,

which overwrites the original message in the sender. The receiver process may also in-

stead use the Forward operation to send the message to a new receiver, which then has

the responsibility to Reply to the original sender. A data segment of up to 1 kilobyte

8

may also be appended to the message or its reply, and larger blocks of data can be

moved in either direction between the sender and receiver through the MoveFrom and

MoveTo operations. These operations all use retransmissions and different forms of

acknowledgements to implement reliable packet delivery over the network. The Send

operation can also be used to send a message to a group of processes (Cheriton85] or

to send a message as a datagram, with no guarantee of reliable transmission.

. In the V-System, multiple processes on the same node may share a single address

space, forming a team. Multiple teams executing together may form a logical host,

and multiple logical hosts may execute concurrently on a single node. All processes

executing as part of the same logical host must be located at the same physical

network address, and thus they must remain together through failure and recovery.

Therefore, in terms of the distributed system model presented in Section 1.2, each

logical host in the V-System is treated as a single process in implementing these fault-

tolerance methods. For example, each logical host is checkpointed as a unit rather

than checkpointing each process individually, and all execution within each logical

host is assumed to be deterministic.

1.4 Other Fault-Tolerance Methods

Many methods other than message logging and checkpointing have been used to

provide fault tolerance in computer systems. This section summarizes these other

methods, dividing them into six general classes, and comparing each to the class of

methods using message logging and checkpointing. Some comparison is also made to

the new methods developed in this thesis, although more specific comparisons with

many of these systems will be made in the following chapters as these new methods

are presented.

1.4.1 Hardware Fault Tolerance

Fault-tolerance methods implemented entirely in hardware [Carter85, Siewiorek86]

may be able to outperform those implemented in software. Two examples of large

9

systems using hardware fault-tolerance methods are the ESS electronic telephone

switching systems developed by AT&T [Clement87] and the ARPANET Pluribus

IMP (Katsuki78]. Such hardware methods, though, are less flexible and cannot eas-

ily be added to existing systems. Since the fault-tolerance methods using message

logging and checkpointing developed in this thesis use no specialized hardware, these

hardware methods will not be discussed further.

1.4.2 Application-Specific Methods

Application-specific fault-tolerance methods [Denning76, Anderson8l, Shoch82] are
those designed specifically for the particular program that is to use them. These de-

signs require knowledge of both the application program and its environment. Each

type of failure that can occur in the system must be anticipated, and specific solutions

for each must be programmed. Implementation of these methods may follow some

general structure such as the use of recovery blocks [Horning74, Lee78, Randell75], or

may be structured specially for each application program. However, these methods

are nontransparent, and thus require existing programs to be carefully modified or

rewritten in order to be fault-tolerant. In contrast, fault-tolerance methods using

message logging and checkpointing are general-purpose and can be applied trans-
parently to new and existing programs. Although in some cases, application-specific

methods can be made to be more efficient than transparent general-purpose methods,

they are limited by their lack of transparency.

1.4.3 Atomic Actions

The use of atomic actions to provide fault tolerance [Lomet85] is similar to the use

of atomic transactions in database systems [Gray79, Lampson8l, Bernstein87], but

atomic actions can perform arbitrary operations on user-defined data types. By struc-

turing application programs as a series of possibly nested atomic actions, any failure

can be recovered from by simply forcing each failed action to abort and then reinvok-

ing it from its beginning. Examples of systems using atomic actions for fault toler-

10

ance include ARGUS [Liskov83, Liskov87, Liskov88], TABS [Spector85b, Spector85a],

Camelot [Spector86, Spector87], the original implementation of ISIS [Birman85l,

Clouds [LeBlanc85, Allchin83], QuickSilver [Haskin88], and Gutenberg [Vinter86].

In general, these methods can provide fault tolerance only for application programs

that are specifically designed to use them. However, many existing applications do

not fit this model, and it is not always practical to program new applications in this

way. Since fault tolerance using message logging and checkpointing does not require

the use of any specialized programming model, it can be used over a wider range of

applications. Also, with atomic actions, any failed action must typically be restarted

from its beginning, which may require a large amount of computation to be redone.

Smaller atomic actions may be used to reduce the amount of reexecution necessary,

but this increases the overhead of beginning and ending new actions. With message

logging and checkpointing, the amount of reexecution can be controlled by the fre-

quency with which new checkpoints are written, which is independent of the design

of the application.

1.4.4 Functional Programming

The programming language model of functional programming, in which all execution

is performed through the application of functions that return results and produce no

side effects, can be used to facilitate the provision of fault tolerance [Grit84]. In a

distributed system, these "functions" may actually be processes that are invoked by

a message and return their results at completion in a message, but such processes

must retain no internal state between invocations. If a process evaluating some func-

tion fails, it can simply be restarted from the beginning with the same parameters.

Examples of systems using this type of functional programming for fault tolerance

include r'B [Finkel87], STARDUST [Hornig84], Lin and Keller's work [Lin86I, and

the multi-satellite star model [Cheriton86b]. Although these methods are straight-

forward, they can only be used for programs that follow the functional programming

model, which may not be possible or practical for some applications. Also, since

failed functions must be restarted from their beginning, the amount of reexecution

11

needed for recovery may be large. Fault tolerance methods using message logging and

checkpointing do not have these limitations.

1.4.5 Active Replication

Active replication involves the concurrent execution multiple independent copies of

each process on separate processors, such that each replica of the same process re-

ceives the same sequence of input, and each is expected to produce the same se-

quence of output. If one replica fails, the remaining replicas of that process con-

tinue the computation without interruption. The methods of N-modular redun-

dancy and N-version programming are special cases of this class of fault-tolerance

methods. Examples of systems using active replication include the new ISIS system

(ISIS2) [Birman87], Circus [Cooper85, Cooper84], CHORUS [Banino85, Banino82],

MP [Gait85], MARS [Kopetz85b], FT Concurrcnt C [Cmelik88], PRIME [Fabry73],

SIFT [Wensley78], and Yang and York's work on the Intel iAPX 432 [Yang85]. These

methods are well suited for use in real-time systems, since failure recovery is essen-

tially immediate. However, this ability requires extra processors to be dedicated to

each program for its replicas. Message logging and checkpointing allows all processors

to be used for normal work during failure-free execution, although failure recovery

times may be longer. Since message logging and checkpointing is not designed to

support real-time systems, this tradeoff is practical.

1.4.6 Checkpointing

Checkpointing has also been used alone, without message logging, to provide fault tol-

erance. In a distributed system, though, each node must be checkpointed individually,

and these separate checkpoints must be coordinated in order to be able to recover the

system. Some systems have used ad hoc rules to determine when to checkpoint each

process, effectively causing each process to checkpoint each time it communicates with

another process. Examples of these systems include Eden [Almes85, Lazowska8l] and

the Tandem NonStop system [Bartlett8l, Dimmer85]. These systems force processes

12

to checkpoint frequently, creating a large overhead for the provision of fault tolerance,

as has been recognized in these two systems [Black85, Bartlett87. A different style

of using checkpointing alone is to periodically create a global checkpoint of the entire

system, using a protocol to coordinate the checkpointing of the individual component

processes. Examples of this type of global checkpointing protocol are those proposed

by Chandy and Lamport [Chandy8.5], and by Koo and Toueg [Koo87]. Although

these protocols avoid the large overhead of checkpointing on each communication,

they still may be expensive to employ and may implicitly or explicitly interfere with

the underlying execution of the system. In addition, since global checkpoint algo-

rithms cause all processes to checkpoint within a short period of time, any shared

network file server on which these checkpoints are recorded may become a bottleneck

to their performance. With message logging with checkpointing, each process is only

checkpointed infrequently, and no global coordination is required during execution.

1.5 Scope of the Thesis

This thesis contributes to both the theory and the practice of providing fault tol-

erance in distributed systems using message logging and checkpointing. Emphasis

is placed primarily on the message logging and failure recovery protocols used in

these systems, although process checkpointing is also considered. The theoretical

framework developed in this thesis is independent of the particular message logging

and checkpointing methods used by the system. Based on this framework, two new

fault-tolerance methods using message logging and checkpointing are presented, and

a proof of the correctness of each method is given. As discussed in Section 1.3,

these new methods have been fully implemented, and a complete evaluation of their

performance is included.

Methods for detecting failures within the system are largely independent of these

protocols and are not discussed in this thesis. Likewise, methods for determining

the new configuration of the system after a failure, such as finding a suitable node

on which to restart any failed process, are not considered. The related problems of

13

providing fault tolerance for real-time systems and applications [Hecht76, Kopetz85a,

Anderson83], reintegrating the system after a network partition [Birrel182, Walker83],

and maintaining the consistency and availability of static data such as file systems

and databases [Gray79, Haerder83, Lampson79, Svobodova84] are also not directly

addressed by this thesis.

1.6 Thesis Outline

Chapter 2 presents the theoretical framework that will be used in the remainder of

the thesis. This framework takes the form of a general model for reasoning about

the behavior and correctness of recovery methods using message logging and check-

pointing. The model is independent of the particular message logging protocol on

which the system is based, and is used to prove a number of properties about these

systems. An important result of this model is that, at any time in a system using

message logging and checkpointing, there is always a unique maximum state of the

system that can be recovered.

Next, Chapter 3 develops a new pessimistic message logging protocol, called

sender-based message logging. This protocol is designed to minimize the overhead on

the system caused by pessimistic message logging. This chapter examines the design

of the sender-based message logging protocol, describes a complete implementation

of it, and presents an evaluation of its performance in this implementation.

Chapter 4 develops a new optimistic message logging protocol and two alternative

recovery algorithms that guarantee to always find the maximum possible recoverable

system state. Although previous optimistic message logging systems find some re-

coverable system state, this state may be less than the maximum. Furthermore, this

new system requires less communication for the provision of fault tolerance than do

these previous methods. This chapter also describes an implementation of this new

system and reports on its performance.

Finally, Chapter 5 summarizes the major contributions of this thesis, and suggests

several avenues for future research.

Chapter 2

Theoretical Framework

This chapter develops a general model for reasoning about the behavior and correct-

ness of fault-tolerance methods using message logging and checkpointing, which will

be used throughout this thesis. The model does not assume the use of any particular

message logging protocol, and can be applied to systems using either pessimistic or

optimistic message logging methods. As part of this model, a number of important

properties of message logging and checkpointing methods are proven.

2.1 The Model

This model is based on the notion of dependency between the states of processes

that results from communication in the system. That is, when a process receives a

message from some other process, the current state of the receiver then depends on

the state of the sender at the time that the message was sent, since any part of the

sender's state may have been included in the message. For example, if a process sends

a series of messages, each containing the next number in some sequence known only

to the sender, any process that receives one of these messages then depends on the

state of the sender from which the message was sent because this state determines the

position in the sequence. Since there is no single notion of "real time" in a distributed

system, these dependencies, together with the linear ordering of events within each

process, define a partial ordering on the events within the system [Lamport78]. This

model describes the state of a process by its current dependencies, and describes the

state of the system as a collection of process states.

15

16

2.1.1 Process States

The execution of each process is divided into discrete intervals by the messages that

the process receives. Each interval, called a state interval of the process, is a de-

terministic sequence of execution, started by the receipt of the next message by the

process. The execution of a process within a single state interval is completely de-

termined by the state of the process at the time that the message is received and by

the contents of the message. A process may send any number of messages to other

processes during any state interval.

Within a process, each state interval of that process is identified by a unique

state interval index, which counts the number of messages received by the process.

Processes may be dynamically created and destroyed, but each process must be iden-

tified by a globally unique process identifier. Logically, these identifiers are assumed

to be in the range 1 through n for a system of r processes. The creation of a process

is modeled by its receipt of message number 0, and process termination is modeled

by its receipt of one final message following the sequence of real messages received by

the process. All messages sent by a process are tagged by its current state interval

index.

When a process i receives a message sent by some process j, the state of process i

then depends on the state that F,.,,2,ss j had at the time that the message was sent.

The state of a process is determined by its dependencies on all other processes. For

each process i, these dependencies are represented by a dependency vector

(6.) = (61, 62, 63, 6n)

where n is the total number of processes in the system. Component j of process i's

dependency vector, 6j, is set to the maximum index of any state interval of process j

on which process i currently depends. If process i has no dependency on any state

interval of process j, then 6. is set to .1., wich is less than all possible state interval

indices. Component i of process i's own dependency vector is always set to the index

of process i's current state interval. The dependency vector of a process records only

those state intervals on which the process directly depends, resulting from the receipt

17

of a message sent from that state interval in the sending process. Only the maximum

index of any state interval of each other process on which this process depends is

recorded, since the execution of a process within each state interval is deterministic.

and since this state interval naturally also depends on all previous intervals of the

same process.

Processes cooperate to maintain their dependency vectors by tagging all messages

sent with the current state interval index of the sending process, and by remembering

in each process the maximum index tagging any message received from each other

process. Duriag any single execution of the system, the current dependency vector

of any process is uniquely determined by the state interval index of that process. No

component of the dependency vector of any process can decrease through failure-free

execution of the system.

2.1.2 System States

A system state is a collection of process states, one for each process in the system.

These process states need not all have existed in the system at the same time. A

system state is said to have occurred during son,. execution of the system if all

component process states have each individually occurred during this execution. A

system ',tate is represented by an n x n dependency matrix

S11. 612 613 ... bin

621 622 623 ... 62,n

D= [..'- 631 '32 633 ...

b,1 I b2 n3 ... bn.

where row i, bij, 1 < j < n, is the dependency vector for the state of process i

included in this system state. Since for all i, component i of process i's dependency

vector is always the index of its current state interval, the diagonal of the dependency

matrix, 6,,, 1 < i < n, is always set to the current state interval index of each process

contained in the system state.

18

Let S be the set of all system states that have occurred during any single execution

of some system. The system history relation, -<, is a partial order on the set S, such

that one system state precedes another in this relation if and only if it must have

occurred first during this execution. The relation -< can be expressed in terms of the

state interval index of each process shown in the dependency matrices representing

these system states.

Definition 2.1 If A = [a..] and B [iL.] are system states in S, then

A -< B #= * V i [cei _< : ,],

and
A-< B - (A-B) A (A#B).

Although similar, the system history relation differs from Lamport's happened before

relation [Lamport78j in that it orders the system states that result from events rather

than the events themselves, and in that only process state intervals (started by the

receipt of a message) constitute events.

To illustrate this partial order, Figure 2.1 shows a system of four communicating

processes. The horizontal lines represent the execution of each process, with time

progressing from left to right. Each arrow between processes represents a message

sent from one process to another, and the number at each arrow gives the index of

the state interval started by the receipt of that message. The last message received

by process I is message a, and the last message received by process 4 is message b.

Consider the two possible system states A and B, such that in state A, message a

has been received but message b has not, and in state B, message b has been received

but message a has not. These two system states are represented by the dependency

matrices

A L0 -. and B = [0 .
-L 0 2 0 -020

.1_ 1 2.2D

19

Process 1 0 1 2

I I

a'I I
/ I

Process 2 0

time

Process 3 0 s41 2

Ib

Process 4 0 ,

Figure 2.1 The system history partial order. Neither message a nor
message b must have been received first.

System states A and B are incomparable under the system history relation. In

the execution of the system, neither state A nor state B must have occurred first,

because neither message a nor message b must have been received first. In terms of

their dependency matrices, this is shown by a comparison of the circled values shown

above on the diagonals of these two matrices.

2.1.3 The System History Lattice

A system state describes the set of messages that have been received by each process.

For any two system states A and B in S, the meet of A and B, written A n B,

represents a system state that has also occurred during this execution of the system,

in which each process has received only those messages that it has received in both A

and B. This can be expressed in terms of the dependency matrices representing these

two system states by copying each row from the corresponding row of one of the two

original matrices, depending on which matrix has the smaller entry on its diagonal

in that row.

20

Definition 2.2 If A = [a.] and B = [i3.. are system states in S, the

meet of A and B is A rl B = [..], such that

w = ai if aii < Oii
: A . otherwise

Likewise, for any two system states A and B in S, the join of A and B, written

A Li B, represents a system state that has also occurred during this execution of the

system, in which each process has received all messages that it has received in either A

or B. This can be expressed in terms of the dependency matrices representing these

two system states by copying each row from the corresponding row of one of the two

original matrices, depending on which matrix has the larger entry on its diagonal in

that row.

Definition 2.3 If A = [a..] and B = [/3..] are system states in S, the

join of A and B is A IU B = [0..], such that

V i Oi. ai. if atii >)3ii

Oi. otherwise

Continuing the example of Section 2.1.2 illustrated in Figure 2.1, the meet and

join of states A and B are represented by the dependency matrices

1 0O1 2 0O1
1011 201 .

AiB= 101 and AUB= 101
1020 102 0
I I_ 1 0 L.-L 1 2 1

The following theorem introduces the system history lattice formed by the set of

system states that have occurred during any single execution of some system, ordered

by the system history relation.

Theorem 2.1 The set S, ordered by the system history relation, forms

a lattice. For any A, B E S, the greatest lower bound of A and B is AfIB,

and the least upper bound of A and B is A U B.

21

Proof Follows directly from the construction of system state meet and join, in

Definitions 2.2 and 2.3. E

2.1.4 Consistent System States

Because the process states composing a system state need not all have existed at

the same time, some system states may represent an impossible state of the system.

A system state is called consistent if it could have been seen at some instant by

an outside observer during the preceding execution of the system from its initial

state, regardless of the relative speeds of the component processes [Chandy85]. After

recovery from a failure, the system must be recovered to a consistent system state.

This ensures that the total execution of the system is equivalent to some possible

failure-free execution.

In this model, since all process communication is through messages, and since

processes execute deterministically between received messages, a system state is con-

sistent if no component process has received a message that has not been sent yet

in this system state and that cannot be sent through the future deterministic exe-

cution of the sender. Since process execution is only deterministic within each state

interval, this is true only if no process has received a message that will not be sent

before the end of the sender's current state interval contained in this system state.

Any messages shown by a system state to be sent but not yet received do not cause

the system state to be inconsistent. These messages can be handled by the normal

mechanism for reliable message delivery, if any, used by the underlying system. In

particular, suppose such a message a was received by some process i after the state

of process i was observed to form the system state D. Then suppose process i sent

some message b (such as an acknowledgement of message a), which could show the

receipt of message a. If message b has been received in system state D, then state D

is inconsistent because message b (not message a) is shown to have been received but

not yet sent. Instead, if message b has also not been received yet in state D, then no

effect of either message can be seen in D, and D is therefore still consistent.

22

The definition of a consistent system state can be expressed in terms of the de-

pendency matrices representing system states. If a system state is consistent, then

for each process i, no other process j depends on a state interval of process i beyond

process ?'s current state ihterval. !n the dependency matrix, for each column i. no

element in column i in any row j is larger than the element on the diagonal of the

matrix in column i (and row i), which is process i's current state interval index.

Definition 2.4 If D = [6..] is some system state in S, D is consistent

if and only if

Vi,bj[i _5 6,,]

For example, consider the system of three processes whose execution is shown in

Figure 2.2. The state of each process has been observed where the curve intersects

the line representing the execution of that process, and the resulting system state is

represented by the dependency matrix

D = [6..]= 0 0
._ 2 1

This system state is not consistent, since process 1 has received a message (to begin

state interval 1) from process 2, which was sent beyond the end of process 2's current

Process 1 0 1

%J
Prces20 2 \\42 3 4 ,

Process 2 11 1q

time

Process3 0 '1

Figure 2.2 An inconsistent system state

23

state interval. This message has not been sent yet by process 2 and cannot be sent

by process 2 through its future deterministic execution. In terms of the dependency

matrix shown above, since 612 is greater than 622, the system state represented by

this matrix is not consistent.

Let the set C C S be the set of consistent system states that have occurred during

any single execution of some system. That is,

C = { D E S I D is consistent }

Theorem 2.2 The set C, ordered by the system history relation, forms

a sublattice of the system history lattice.

Proof Let A = [a..] and B = (0..] be system states in C. By Definition 2.4, since

A E C and B E C, a,i < aii and)3,, _ 0i, for all i and j. It suffices to show that

AnBEC and AuB EC.

Let A nl B = [... By Definition 2.2, and because A and B both occurred during

the same execution of the system and no element in the dependency vector of any

process can decrease through execution of the process, then Oji = min(aji, 8ji), for

all i and j. Thus, Op a1i and Oj. i i.#, for all i and j. Since A E C and B E C,

j i <_ aji : ai and Oi i :5 O i:5 Oi,. Thus, Oji :5 min(aci,Oi), and Oji _ Oii, for all

i and j. Therefore, A n B E C.

Let AU B = [0..). By Definition 2.3, either Oji = aji or Oi = ji, and

0,i = max(cji,3i,), for all i and j. Since A E C and B E C, Oj < Oi, for all i

and j as well. Therefore, A u B E C. El

2.1.5 Message Logging and Checkpointing

As the system executes, messages are recorded on stable storage in a message log.

A message is called logged if and only if its data and the index of the state interval

that it started in the process that received it are both recorded on stable storage.

Logged messages remain on stable storage until no longer needed for recovery from

24

any possible future failure of the system (Section 2.1.9). The predicate logged(i, o) is

true if and only if the message that started state interval a of process i is logged.

When a process is created, its initial state is saved on stable storage as a checkpoint

(in state interval 0). Each process is also independently checkpointed at times during

its execution. Each checkpoint remains on stable storage until no longer needed for

recovery from any possible future failure of the system (Section 2.1.9). For every

state interval a of each process, there must then be some checkpoint of that process

on stable storage with a state interval index no larger than a.

Definition 2.5 The effective checkpoint for a state interval a of some

process i is the checkpoint on stable storage for process i with the largest

state interval index e such that c < a.

A state interval of a process is called stable if and only if it can be recreated

from information currently on stable storage. This is true if and only if all received

messages that started state intervals in the process after its state interval recorded

in the effective checkpoint are logged. The predicate stable(i, o,) is true if and only if

state interval a of process i is stable.

Definition 2.6 State interval a of process i is stable if and only if

V a, e< a <o" [logged(i, a)] ,

where e is the index of the state interval of process i recorded in the

effective checkpoint for state interval a.

Any stable process state interval a can be recreated by restoring the process from the

effective checkpoint (with state interval index e) and replaying to it the sequence of

logged messages to begin state intervals e+ 1 through a, in ascending order.

The checkpointing of a process need not be coordinated with the logging of

messages received by that process. In particular, a process may be checkpointed

at any time, and the state interval recorded in that checkpoint is then stable, re-

gardless of whether or not all previous messages received by that process have been

25

logged. Thus, if a state interval a of some process i is stable and its effective check-

point records its state interval e, then all state intervals a of process i, e < a < o,

must be stable, but some state intervals 3 < c of process i may not be stable.

Each checkpoint of a process includes the complete current dependency vector

of the process. Each logged message only contains the state interval index of the

sending process at the time that the message was sent (tagging the message), but

the complete dependency vector for any stable state interval of any process is always

known, since all messages that started state intervals after the effective checkpoint

must be logged.

2.1.6 Recoverable System States

A system state is called recoverable if and only if all component process state intervals

are stable and the resulting system state is consistent. That is, to recover the state of

the system, it must be possible to recreate the states of the component processes, and

for this system state to be meaningful, it must be possible to have occurred through

failure-free execution of the system from its initial state.

Definition 2.7 If D = [b..] is some system state in S, D is recoverable

if and only if

DEC A Vi[stable(i, 6:)]

Let the set 1Z C S be the set of recoverable system states that have occurred

during any single execution of some system. That is,

1Z = { D E S I D is recoverable }

Since only consistent system states can be recoverable, 1? C C C S.

Theorem 2.3 The set R, ordered by the system history relation, forms

a sublattice of the system history lattice.

26

Proof For any A, B E TR, A n B E C and A U B E C, by Theorem 2.2. Since the

state interval of each process in A and B is stable, all process state intervals in A n B

and A U B are stable as well. Thus, A n B E 1Z and A U B E TZ, and 1Z forms a

sublattice. 0

2.1.7 The Current Recovery State

During recovery, the state of the system is restored to the "most recent" recoverable

state that can be constructed from the available information, in order to minimize the

amount of reexecution necessary to complete the recovery. The system history lattice

corresponds to this notion of "most recent," and the following theorem establishes

the existence of a single maximum recoverable system state under this ordering.

Theorem 2.4 There is always a unique maximum recoverable system

state in S.

Proof The unique maximum in S is simply

U D,
DERZ

which must be unique since 1Z forms a sublattice of the system history lattice. 0

Definition 2.8 At any time, the current recovery state of the system is

the state to which the system will be restored if any failure occurs in the

system at that time.

In this model, the current recovery state of the system is always the unique maximum

system state that is currently recoverable.

Lemma 2.1 During any single execution of the system, the current

recovery state never decreases.

27

Proof Let R = [ps.] be the current recovery state of the system at some time.

Dependencies can only be added to state R by the receipt of a new message, which

would cause the receiving process to begin a new state interval, resulting in a new

system state. Thus, system state R itself must remain consistent. Since logged

messages and checkpoints are not removed until no longer needed, state interval pi

for each process i must remain stable until no longer needed. Thus system state R

itself must remain recoverable. Since the set 7 forms a lattice, any new current

recovery state R' established after state R must be greater than R. El

The domino effect [Randel175, Russell80] is a well known problem that can occur

in attempting to recover the state of a distributed system, and must be avoided to

guarantee progress in the system in spite of failures. An example of how the domino

effect can occur is illustrated in Figure 2.3. This figure shows the execution of a

system of two communicating processes, with time progressing from left to right.

The state of each process has been checkpointed at each time marked with a vertical

bar, but no messages have been logged yet. If process 1 fails at the point shown, its

state can only be recovered to its last checkpoint. Since this forces process 1 to roll

back to a point before it sent its last message to process 2, process 2 is then forced

to roll back to a point before this message was received. The previous checkpoint of

process 2 forces process 1 to be rolled back, though, which in turn forces process 2

and then process 1 to be rolled back again. In this example, both processes are forced

Processl 1 1 failure
A, I ' I ' I

a ! I I I ! I
I I I I I I I I

I I I I I I I I
I I I I I I I I
' I I I I I I I
I I I I t I I I
I I I I I I I

Process2 I I

Figure 2.3 The domino effect. If process 1 fails, both processes ultimately

must be rolled back to their initial states.

mamm mm mmm m I I I I I I IImI i

28

to roll back to their initial states, despite the presence of later checkpoints for each.

This propagation of process rollbacks is known as the domino effect.

In this model, an occurrence of the domino effect would take the form of a propa-

gation of dependencies that prevent the current recovery state from advancing. The

following lemma establishes a sufficient condition for preventing the domino effect.

Lemma 2.2 If all messages received by each process in the system are

eventually logged, the domino effect cannot occur.

Proof Let R = [p..] be the current recovery state of the system at some time. For

all state intervals a of each process k, a > Pk k, if all messages are eventually logged,

state interval a of process k will eventually become stable, by Definition 2.6. By

Lemma 2.1, the current recovery state never decreases, and thus, by Definition 2.7,

new system states R', R -< R', must eventually become recoverable and become

the new current recovery state. The domino effect is thus avoided, since the current

recovery state eventually increases. E

2.1.8 The Outside World

During execution, processes may interact with the outside world, where an object is

defined to be in the outside world if it does not participate in the message logging

and checkpointing protocols of the system. Examples of interactions with the outside

world include receiving input from a human user and writing information on the user's

display terminal. All interactions with the outside world are modeled as messages

either received from or sent to objects in the outside world.

Messages received from the outside world generally require no special treatment,

and are simply logged as any other message. However, if such a message is assumed by

the outside world to have been reliably transmitted, it must be synchronously recorded

on stable storage as it enters the system, preventing the message from being lost if

a failure occurs. Since the outside world knows only that the message entered the

29

system, this ensures that the state of the outside world with respect to this message

is consistent with the state of the system that can be restored during recovery.

Messages sent to the outside world may cause irreversible side effects, since the

outside world generally cannot be rolled back. In order to guarantee that the state

of the outside world is consistent with the state of the system that can be restored

during recovery, any message sent to the outside world must be delayed until it is

known that the state interval of the process from which it was sent will never be rolled

back. The message may then be released from the system to the outside world. The

following lemma establishes when it is safe to release a message sent to the outside

world.

Lemma 2.3 Any message sent to the outside world by a process i in

some state interval a may be released from the system when a < p11,

where R = [p..] is now the current recovery state of the system.

Proof Follows directly from Lemma 2.1 and Definition 2.1.

2.1.9 Garbage Collection

During operation of the system, checkpoints and logged messages must remain on

stable storage until they are no longer needed for any possible future recovery of the

system. The following two lemmas establish when they can safely be removed.

Lemma 2.4 Let R = [p..] be the current recovery state. For each

process i, if e, is the state interval index of the effective checkpoint for

state interval pi, of process i, then any checkpoint of process i with state

interval index a < f cannot be needed for any future recovery of the

system and may be removed from stable storage.

Proof Follows directly from Lemma 2.1 and Definitions 2.1 and 2.5. 0

30

Lemma 2.5 Let R [p..] be the current recovery state. For each

process i, if Ei is the state interval index of the effective checkpoint for

state interval pi i of process i, then any message that begins a state interval

a <e e in process i cannot be needed for any future recovery of the system

and may be removed from stable storage.

Proof Follows directly from Lemma 2.1 and Definitions 2.1 and 2.5. 5

2.2 Related Work

The dependency vectors used in this model are similar to those used by Strom and

Yemini in their Optimistic Recovery system [Stror.i85]. However, Strom and Yemini's

dependency vectors contain a complete transitive closure of all dependencies of the

process, rather than just the direct dependencies from messages received by the

process. Each message sent is tagged with the current dependency vector of the

sender, and the dependency vector tagging a message received is merged with the

current dependency vector of the receiving process. This distributes complete transi-

tive dependency information to each process, but is expensive to implement since the

dependency vector tagging each message is proportional in size to the total number

of processes in the system.

The state interval indices used here are also similar to those used by Strom and

Yemini, but Strom and Yemini tag each state interval index with an incarnation

number indicating the number of times that the process has rolled back for recovery.

This allows state interval indices in their system to remain unique, even though some

state intervals may have been rolled back and repeated. Using the model presented

in this chapter, some state interval indices are reused after a failure, and all processes

must therefore be notified during recovery of this reuse in order to avoid confusion.

This uniqueness is useful in Strom and Yemini's system because it is intended for

direct implementation, but the model here is intended instead to allow reasoning

about the behavior and correctness of these methods. Therefore, the incarnation

31

number is not required in this model, but could be added in any implementation

without affecting the properties proven based on the model.

The treatment of input and output with the outside world in this model is similar

to the treatment used in Strom and Yemini's system, and to that proposed by Pausch

in extending the transactional model to include outside world interactions [Pausch88].

For each process, Strom and Yemini define an input boundary function, which logs all

process input as messages, and an output boundary function, which holds all process

output until it is known that the state interval from which it was sent will never be

rolled back. Strom and Yemini also point out that if it is known that all effects of

some message sent to the outside world can be rolled back, then the output can be

allowed immediately. Pausch's system saves all input in a recoverable input queue,

which is essentially a message log of input received from the outside world. Output to

the outside world is classified according to a number of properties such as whether it is

deferrable (it can be delayeca until the transaction commits), or is compensable (it can

be rolled back by a complementary defined output operation). Allowing appropriate

output to the outside world to occur without waiting for the current recovery state

to advance could be added to the model of this chapter as well, but would do little

to enhance its power for reasoning ab(c it these recovery methods. Also, Pdding this

information to the model for each possible message would lose much of the concise

expressiveness of the current model. However, this enhancement to output handling

may be important in implementing systems such as these, in that it may greatly

improve the efficiency of handling such special outside world messages that can be

rolled back.

This same problem of delaying output occurs in other fault-tolerance methods.

In systems using atomic actions (Section 1.4.3), and in more conventional database

transaction systems [Bernstein871, the transaction or action cannot commit until all

information needed to recover it has been recorded on stable storage. Thus, any side

effects of the computation cannot be made permanent (and cannot be seen outside

the system) until this occurs. Using shorter actions or transactions can alleviate

this delay to some degree, but this increases the overhead caused by recording the

32

recovery information on stable storage. In addition to output to a database or to

the file system, Pausch [Pausch88l has extended transactions to support output to

the outside world. In systems using global checkpointing without message logging

(Section 1.4.6), a new global checkpoint must be created before any output can be

committed. However, creating frequent global checkpoints for output commitment

may substantially degrade the failure-free performance of the system.

This model also differs from that used by previous optimistic message logging

systems in that it does not assume reliable delivery of messages on the network.

Previous optimistic systems have used a model in which a separate channel connects

each pair of processes, such that the channel does not lose or reorder messages. Thus,

in their definitions of a consistent system state, Strom and Yemini [Strom85 require

all messages sent to have been received, and Sistla and Welch [SistlaS9] require the

sequence of messages received on each channel to be a prefix of those sent on it. Since

this model does not assume reliable delivery, it can be applied to distributed systems

that do not guarantee reliable delivery, such as those based on an Ethernet network. If

needed, reliable delivery can also be incorporated into this model simply by assuming

an acknowledgement message immediately following each message receipt.

The basic assumption behind this model, that processes execute deterministically

based only on their starting state and on the sequence of messages that they receive,

has been called the state machine approach [Schneider87]. A state machine models

a process as a set of state variables and a set of commands that operate on those

variables. Each command executes deterministically, and atomically transforms the

variables of the state machine to a set of new values. Commands may also output

values from the state machine during execution. With systems using message log-

ging and checkpointing, the messages received by a process are equivalent to a request

specifying a command to the state machine modeling the process. This state machine

approach is fundamental to recovery using message logging and checkpointing, and

the model presented in this chapter is specifically designed to capture this assum zion

of deterministic execution. However, the model does not follow the state machine ap-

proach assumption of reliable communication and atomic execution between received

33

messages. The increased generality of not requiring these properties leads to a more

powerful model for reasoning about these systems.

A number of other recovery models have been developed, although none explic-

itly for systems using message logging and checkpointing. The occurrence graph

model [Merlin78] is very general, but does not include deterministic process exe-

cution. It also does not allow any process state to become stable after the state

has occurred, which is required to support optimistic message logging. Another lim-

itation of the occurrence graph model and several other general models [Russell77,

Russell80, Wood85, Chandy88] is that they do not specify how a process state be-

comes stable, and thus cannot be used to reason about the progress of message logging

and checkpointing. Other more specialized models include those to support atomic

transactions [Best8l, Shrivastava82, Skeen83I, real-time systems [Anderson83], and

centralized systems providing recovery at multiple independent levels [Anderson78].

Many of these models also make assumptions about the underlying system, such as

assuming that communication is reliable or that communication and execution are

atomic, in order to simplify the properties of the model. However, these assumptions

lessen the power of the model for reasoning about a broad range of real systems.

2.3 Summary

This chapter has presented a general theoretical model for reasoning about fault-

tolerance methods using message logging and checkpointing. The model does not

rely on the use of any particular message logging protocol, and can be applied to

systems using either pessimistic or optimistic logging protocols. By using this model

to reason about these types of fault-tolerance methods, properties of them that are

independent of the message logging protocol used can be deduced and proven.

The model concisely captures the dependencies that exist within the system that

result from communication between processes. The current dependencies of a process

define its state, and are represented by a dependency vector. A collection of process

states in the system, represented by a dependency matrix, define a system state. The

34

process states that make up a system state need not all have existed at the same

time A system state is said to have occur,,ed during some execution of the system if

all component process states have each individually occurred during this execution.

The system history relation defines a partial order on the system states that have

occurred during any single execution, such that one system state precedes another if

and only if it must have occurred first during the execution.

As part of this model, this chapter has proven some important properties of any

system using message logging and checkpointing. First, the set of system states that

have occurred during any single execution of a system, ordered by the system history

relation, forms a lattice, called the system history lattice. The sets of consistent

and recoverable system states that have occurred during this same execution form

sublattices of the system history lattice. During execution, there is always a unique

maximum recoverable system state, which never decreases. This state is the current

recovery state of the system, and is always the least upper bound of all elements in

this recoverable sublattice. Finally, if all messages received by processes in the system

are eventually logged, the domino effect cannot occur.

Chapter 3

Pessimistic Message Logging

Pessimistic message logging protocols allow the system to be recovered simply after

a failure, but previous pessimistic protocols have resorted to specialized hardware to

reduce the overhead caused by the synchronization required in logging each message.

This chapter presents the design of a new pessimistic message logging protocol, called

sender-based message logging, that requires no specialized hardware and adds little

additional overhead to the system. Sender-based message logging guarantees recovery

from a single failure at a time in the system, and detects all cases when multiple

concurrent failures prevent recovery of a consistent system state. Extensions are also

presented to support recovery from multiple concurrent failures. Since sender-based

message logging is a pessimistic message logging protocol, any failed process can be

recovered without affecting the states of any processes that did not fail.

3.1 Overview and Motivation

Sender-based message logging differs from previous message logging protocols in that

it logs messages in the local volatile memory on the node from which they are sent,

as illustrated in Figure 3.1. Previous message logging protocols send an extra copy of

each message elsewhere for logging, either to stable storage [Lampson79, Bernstein87

on disk or to some special backup process that can survive the failure of the receiver

process. Instead, since both the sender and receiver of a message either get or already

have a copy of the message, it is less expensive to save one of these copies in the local

volatile memory to serve as a log. Since the purpose of the logging is to recover the

receiver if it fails, a volatile copy at the receiver cannot be used as the log, but the

35

36 mesg log
Sender Receiver

Figure 3.1 Sender-based message logging configuration

sender can easily save a copy of each message sent. It is this idea that forms the basis

of sender-based message logging.

Since messages are logged in volatile memory, sender-based message logging can

guarantee recovery from only a single failure at a time within the system. That is, after

one process fails, no other process may fail until the recovery of the first is completed.

If other processes fail during this time, some logged messages required for recovery

from the first failure may be lost, and recovery of a consistent system state may not

be possible with the available logged messages. Sender-based message logging detects

this error if it occurs, allowing the system to notify the user or abort the computation

if desired. Also, extensions to the basic sender-based message logging protocol to

support recovery from multiple concurrent failures are discussed in Section 3.5.

3.2 Protocol Specification

3.2.1 Introduction

Each process participating in sender-based message logging maintains a receive se-

quence number (RSN), which counts messages received by the process. The receive

sequence number of a process is always equal to the index of the current state in-

terval of that process (Section 2.1.1). When a process receives a new message, it

increments its RSN and returns this new value to the sender. The RSN indicates to

the sender the order in which that message was received relative to other messages

37

sent to the same process, possibly by other senders. This ordering information is

not otherwise available to the sender, but is required for failure recovery because the

logged messages must be replayed to the recovering process in the same order in which

they were received before the failure. When the RSN arrives at the sender, it is saved

in the local volatile log with the message.

The log of messages received by a process is distributed among the processes that

sent these messages, such that each sender has in its local volatile log only those

messages that it sent. Figure 3.2 shows an example of such a distributed message

log resulting from sender-based message logging. In this example, process Y initially

had an RSN value of 6. Process Y then received two messages from process X1 ,

followed by two messages from process X 2, and finally another message from X 1. For

each message received, Y incremented its current RSN and returned the new RSN

value to the sender. As each RSN arrived at the correct sender, it was added to that

sender's local volatile log with the message. After receiving these five messages. the

current RSN value of process Y is 11, and process Y is currently executing in state

interval 11.

X2

Figure 3.2 An example message log

38

In addition to returning the RSN to the sender when a message is received, each

message sent by a process is also tagged with the current RSN of the sender. The

RSN tagging a message identifies to the receiver the state interval of the sender from

which the message was sent, and the receiver then depends on this state interval of

the sender. Each process records these dependencies locally in a dependency vector, as

discussed in Section 2.1.1. For each other process from which this process has received

messages, the dependency vector records the maximum RSN value tagging a message

received from that process. Sender-based message logging uses the dependency vector

of each process during recovery to verify that the resulting system state is consistent.

3.2.2 Data Structures

Sender-based message logging requires the maintenance of the following new data

structures for each participating process:

" A receive sequence number (RSN), numbering messages received by the process.

This indicates to the sender of a message the order in which that message was

received relative to other messages sent to the same process, possibly by other

senders. The RSN is incremented each time a new message is received. The new

value is assigned by the receiver as the RSN for the message and is returned

to the sender. Each message sent by a process is tagged with the current RSN

value of the sender. The RSN of a process thus represents the current state

interval index of that process.

* A message log of messages sent by the process. For each message sent, this

includes the message data, the identification of the destination process, the

SSN (send sequence number) and RSN tagging the message (the current SSN

and RSN of the sender when the message was sent), and the RSN returned

by the receiver. After a process is checkpointed, all messages received by that

process before the checkpoint can be removed from the logs of the processes

that sent those messages.

39

* A dependency vector, recording the maximum index of any state interval of each

process on which this process currently depends. For each other process from

which this process has received messages, the dependency vector records the

maximum RSN value tagging a message received from that process.

* An RSN history list, recording the RSN value returned for each message received

by this process since its last checkpoint. For each message received, this includes

the identification of the sending process, the SSN tagging the message, and the

RSN returned when the message was received. This list is used when a duplicate

message is received, and may be purged when the process is checkpointed.

Each of these data items except the RSN history list must be included in the

checkpoint of the process. Also, the existing data structures used by a process for

duplicate message detection (Sect.ion 1.2) must be included in the checkpoint. When

a process is restarted from its checkpoint, the value of each of these data structures

is restored along with the rest of the process state. The RSN history list need not be

checkpointed, since messages received before this checkpoint will never be needed for

any future recovery. For each process, only its most recent checkpoint and the log of

messages received by it since this checkpoint must be saved.

3.2.3 Message Logging

Sender-based message logging operates with any existing message transmission proto-

col used by the underlying system. The following steps are required by sender-based

message logging in sending a message m from some process X to some process 1':

1. Process X copies message m into its local volatile message log before transmit-

ting m to process Y across the network. The message sent is tagged with the

current RSN and SSN values of process X.

2. Process Y receives the message m, increments its own RSN value, and assigns

this new value as the RSN for m. The entry for process X in process Y's

dependency vector is set to the maximum of its current value and the RSN

40

tagging message m, and an entry in process Y's RSN history list is created to

record that this new RSN has been assigned to message m. Finally, process Y

returns to process X a packet containing the RSN value assigned to message m.

3. Process X adds the RSN for message m to its message log, and sends back to

process Y a packet containing an acknowledgement for the RSN.

Process Y must periodically retransmit the RSN until its acknowledgement is received

or until process X is determined to have failed. After returning the RSN, process Y

may continue execution without waiting for the RSN acknowledgement, but it must

not send any messages (including output to the outside world) until the RSNs returned

for all messages that it has received have been acknowledged. The transmission of any

messages sent by process Y in this interval must be delayed until these RSNs have

been acknowledged. Process X does not experience any extra delay in execution, but

does incur the overhead of copying the message and its RSN into the local message

log. The operation of this protocol in the absence of retransmissions is illustrated in

Figure 3.3.

This message logging is not an atomic operation, since the message data is entered

into the log when it is sent, and the RSN can only be recorded after it is received

from the destination process. Because the sender and the receiver execute on separate

X

message' 'RSN ack
II time

RSN

I-Any new sends by Y 7

must be delayed.

Figure 3.3 Operation of the message logging protocol
in the absence of retransmissions

41

nodes in the distributed system, this logging cannot be completely synchronized with

the receipt of the message. A message is called partially logged until the RSN has

been added to the log by the sender. It is then called fully logged, or just logged.

Sender-based message logging is a pessimistic logging protocol, since it prevents

the system from entering a state in which a failure could force any process other than

those that failed to be rolled back during recovery. During recovery, a failed process

can only be recovered up to its state interval that results from receiving the sequence

of fully logged messages received by it before the failure. Until all RSNs returned by

a process have been acknowledged, the process cannot know that its current state

interval can be recovered if it should fail. By preventing each process from sending

new messages in such a state, no process can receive a message sent from a state

interval of another process that cannot be recovered. Therefore, no other process can

be forced to roll back during recovery.

Depending on the protocol and network used by the underlying system, a process

may receive duplicate messages during failure-free operation. Processes are assumed

to detect any duplicate messages on receipt using the SSN tagging each message

(Section 1.2). When a duplicate message is received, no new RSN is assigned to the

message. Instead, the RSN assigned when the message was first received is used and

is returned to the sender. When a process receives a duplicate message, it searches

its RSN history list for an entry with the SSN tag and sending process identification

of the message received. If the entry is found, the RSN recorded in that entry is

used. Otherwise, the receiver must have been checkpointed since originally receiving

this message, and the RSN history list entry for this message has been purged. The

message then cannot be needed for any future recovery of this receiver, since the more

recent checkpoint can always be used. In this case, the receiver instead returns to the

sender an indication that this message need not be logged.

3.2.4 Failure Recovery

To recover a failed process, it is first reloaded from its most recent checkpoint on

some available processor. This restores the process to the state it had when the

42

checkpoint was written. Since the data structures used by sender-based message

logging (Section 3.2.2) are included in the checkpoint, they are restored to the values

they had when the checkpoint was written, as well.

Next, all fully logged messages that were received by the process after this check-

point and before the failure are retrieved from the message logs of the sending

processes, beginning with the first message following the current RSN value recorded

in the checkpoint. These messages are replayed to the recovering process, and the

process is allowed to begin execution. The recovering process is forced to receive these

messages in ascending order of their logged RSNs, and is not allowed to receive any

other messages until each message in this sequence of fully logged messages has been

received. Since process execution is deterministic, the process then reaches the same

state it had after it received these messages before the failure.

If only one process has failed, the state of the system after this reexecution must

be consistent. Since the volatile message log at each sender survives the failure of the

receiver, all fully logged messages received by the recovering process before the failure

must be available. Since processes are restricted from sending new messages until all

messages they have received are fully logged, the recovering process sent no messages

before the failure after having received any message beyond the fully logged sequence

that has been replayed. Thus, no other process can depend on a state interval of the

recovering process beyond its state interval that has been restored using the available

fully logged messages.

If more than one process has failed, though, some messages needed for recovery

may not be available, and recovery of a consistent system state may not be possible.

Each failed process can only be recovered up to its state interval that results from

receiving the last available message in the sequence of fully logged messages. During

recovery, sender-based message logging uses the dependency vector maintained by

each process to verify that the system state that is recovered is consistent. For each

failed process, if any other process has an entry in its dependency vector giving a

state interval index of this process greater than the RSN of the last message in the

available fully logged sequence, then the system cannot be recovered to a consistent

43

state (Definition 2.4). In this case, the system may warn the user or abort the program

if desired.

As the recovering process reexecutes from its checkpointed state through this

sequence of fully logged messages, it resends all messages that it sent before the failure

after this checkpoint was written. Since the current SSN of a process is included in

its checkpoint, the SSNs used by this process during recovery are the same as those

used when these messages were originally sent before the failure. Such duplicate

messages are detected and handled by the underlying system using the SSN tagging

each message, by the same method as used during failure-free operation (Section 1.2).

For each duplicate message received, either the original RSN or an indication that

the message need not be logged is returned to the recovering process.

After this sequence of fully logged messages has been received, any partially logged

messages destined for the recovering process are resent to it. Also, any new messages

that other processes may need to send to it may be sent at this time. These partially

logged and new messages may be received by the recovering process in any order

after the sequence of fully logged messages has been received. Again, since processes

are restricted from sending new messages until all messages they have received are

fully logged, no other process depends on any state interval of the recovering process

that results from its receipt of any of these messages, and no other process has an

entry in its dependency vector naming such a state interval of the recovering process.

Since the receipt of these partially logged and new messages does not create any new

dependencies in other processes, the state of the system remains consistent regardless

of the order of their receipt now, by Definition 2.4.

The system data structures necessary for further participation in sender-based

message logging are correctly restored, including those necessary for the recovery of

any other processes that may fail in the future. These data structures are read from

the checkpoint and are modified as a result of sending and receiving the same sequence

of messages as before the failure. In particular, the volatile log of messages sent by

the failed process is recreated as each duplicate message is sent during reexecution.

44

As discussed in Section 2.1.7, in order to guarantee progress in the system in spite

of failures, any fault-tolerance method must avoid the domino effect, an uncontrolled

propagation of process rollbacks necessary to restore the system to a consistent state

following a failure. As with any pessimistic message logging protocol, sender-based

message logging avoids the domino effect by guaranteeing that any failed process can

be recovered from its most recent checkpoint, and that no other process must be

rolled back during recovery.

3.2.5 Protocol Optimizations

The protocol described above contains the basic steps necessary for the correct op-

eration of sender-based message logging. However, two optimizations to this basic

protocol help to reduce the number of packets transmitted. These optimizations com-

bine more information into each packet than would normally be present. They do

not alter the logical operation of the protocol as described above, and their inclusion

in an implementation of the protocol is optional.

The first of these optimizations is to encode more than one RSN or RSN acknowl-

edgement in a single packet. This optimization is effective when an uninterrupted

stream of packets is received from a single sender. For example, when receiving a

blast bulk data transfer [Zwaenepoel85], the RSNs for all data packets of the blast

can be returned to the sender in a single packet. This optimization is limited by the

distribution of RSNs and RSN acknowledgements that can be encoded in a single

packet, but encoding one contiguous range of each handles the most common case,

as in this example.

The second optimization to the basic sender-based message logging protocol is to

piggyback RSNs and RSN acknowledgements onto existing message packets, rather

than transmitting them in additional special packets. For example, RSNs can be

piggybacked on existing acknovledgement message packets used by the underlying

system for reliable message delivery. Alternatively, if a message is received that re-

quests the application program to produce some user-level reply to the original sender,

the RSN for the request message can be piggybacked on the same packet that carries

45

this reply. If the sending application program sends a new request to the same process

shortly after the reply to the first request is received, the acknowledgement of this

RSN, and the RSN for the reply itself, can be piggybacked on the same packet with

this new request. As long as messages are exchanged between the same two processes

in this way, no new packets are necessary to return RSNs or their acknowledgements.

When this message sequence terminates, only two additional packets are required,

one to return the RSN for the last reply message and one to return its RSN ac-

knowledgement. The use of this piggybacking optimization for a sequence of these

request-reply exchanges is illustrated in Figure 3.4. This optimization is particularly

useful in systems using a remote procedure call protocol [Birrell84] or other request-

response protocol [Cheriton88, Cheriton86a], since all communication takes place as

a sequence of message exchanges.

The piggybacking optimization can be used in sending a new message only when

all unacknowledged RSNs for messages received by the sending process are destined

for the same process as the new message packet being sent, and can be included

in that packet. When such a packet is received, the piggybacked RSNs and RSN

acknowledgements must be handled before the message carried by the packet. When

these RSNs are entered in the message log, the m-ssages for which they were returned

become fully logged. Since this packet carries all unacknowledged RSNs from the

sender, all messages received by that sender become fully logged before this new

Sender ,1 ' 4 RSN"

% 'sg, RSNn- 2 ' 'ack,_ '
% ,a c k n '-3,

I, * * * \a ,--.3 7 X I,
, ,msg p ,

i'MS92 /RS' - '
/ S N ,IRS N I I,ack,,2 , ,"ack"

Receiver ,>

Figure 3.4 Piggybacking RSNs and RSN
acknowledgements on existing message packets

46

message is seen by its destination process. If the RSNs are not received because the

packet is lost in delivery on the network, the new message cannot be received either.

The correctness of the protocol is thus preserved by this optimization because all

messages received earlier by the sender are guaranteed to be fully logged before the

new message in the packet is seen.

When using the piggybacking optimization, the transmission of RSNs and RSN ac-

knowledgements is postponed until a packet is returned on which to piggyback them,

or until a timer expires forcing their transmission if no return packet is forthcoming.

However, this postponement may cause a delay in the transmission of new messages

that would not be delayed without the use of this optimization. If a process postpones

the return of an RSN for piggybacking, the transmission of a new message by that

process may be delayed. If the new message is not destined for the same process as is

the RSN, the message must be held while the RSN is sent and its acknowledgement is

returned, delaying the transmission of the new message by approximately one packet

round-trip time. Likewise, if a process postpones the return of the RSN acknowl-

edgement for a message that it sent, new messages being sent by the original receiver

process must be delayed since its earlier RSN has not yet been acknowledged. In this

case, the process retransmits its original RSN to force the RSN acknowledgement to

be returned, also delaying the transmission of the new message by approximately one

packet round-trip time. In both cases, any possible delay is also bounded in general by

the timer interval used to force the transmission of the RSN or its acknowledgement.

These two protocol optimizations can be combined. Continuing the blast protocol

example above, the RSN for every data packet of the blast can be encoded together

and piggybacked on the reply packet acknowledging the receipt of the blast. If there

are n packets of the blast, the unoptimized sender-based message logging protocol

requires an additional 2n packets to exchange their RSNs and RSN acknowledgements.

Instead, if both protocol optimiz tions are combined, only two additional packets are

required, one to return the RSN for the packet acknowledging the blas' and one to

return its RSN acknowledgement. This example using both protocol optimizations is

illustrated in Figure 3.5.

47

blast data blast-- ack
Sender -' ' 'RSN,+

' ''I I
msg MSg 2 msg , ackl...n /

\ \ \ I I I
\ I I I I I

I \ I ,ack+1

R eceiver
/R S , R N 1 , '_

Figure 3.5 A blast protocol with sender-based message
logging using both optimizations

3.3 Implementation

A full implementation of sender-based message logging has been completed under the

V-System (Section 1.3). The -ystem runs on a collection of diskless SUN workstations

connected by an Ethernet network to a shared network file server. The implementa-

tion supports the full sender-based message logging protocol specified in Section 3.2,

including both protocol optimizations, and supports all V-System message passing

operations. As discussed in Section 1.3, all processes on the same logical host in

the V-System must be located at the same physical network address, and thus this

implementation treats each logical host as a single process in terms of the protocol

specification. In the current implementation, only a single logical host per network

node can use sender-based message logging.

3.3.1 Division of Labor

The implementation consists of a logging server process and a checkpoint server

process running on each node in the system, and a small collection of support routines

in the V-System kernel. The kernel records messages in the log in memory as they are

sent, and handles the exchange of RSNs and RSN acknowledgements. This informa-

tion is carried in normal V kernel packets, and is handled directly by the sending and

48

receiving kernels. This reduces the overhead involved in these exchanges, eliminating

any process scheduling delays. All other aspects of logging messages and retriev-

ing logged messages during recovery are handled by the logging server process. The

checkpoint server process manages the recording of new checkpoints and the reloading

of processes from their checkpoints during recovery. All logging servers in the system

belong to a V-System process group [Cheriton85], and all checkpoint servers belong

to a separate process group.

This use of server processes limits the increase in size and complexity of the kernel.

In total, only five new primitives to support message logging and three new primitives

to support checkpointing were added to the kernel. Also some changes were made

to the internal operation of several existing primitives. Table 3.1 summarizes the

amount of executable instructions and data added to the kernel to support sender-

based message logging and checkpointing for the SUN-3/60 V kernel configuration.

The percentages given are relative to the size of that portion of the base kernel without

checkpointing or message logging.

3.3.2 Message Log Format

On each node, a single message log is used to store all messages sent by any process

executing on that node. The log is organized as a list of fixed-size blocks of message

Table 3.1

Size of kernel additions to support sender-based
message logging and checkpointing

Message Logging Checkpointing Total

Kbytes Percent Kbytes Percent Kbytes IPercent

Instructions 12.0 15.1 3.5 4.5 15.5 19.5
Data 36.0 18.5 0.0 0.0 36.0 18.5

Total 48.0 17.5 3.5 1.3 51.5 18.8

49

logging data that are sequentially filled as needed by the kernel, and are written

to disk by the logging server during a checkpoint. Each packet sent by the kernel

is treated as a message and is logged separately. The message log is stored in the

volatile address space of the local logging server process. This allows much of the

message log management to be performed by the server without additional kernel

support. Since only one user address space at a time can be accessible, the message

log block currently being filled is always double-mapped through the hardware page

tables into the kernel address space. This allows new records to be added to the log

without switching accessible address spaces, although some address space switches

are still necessary to access records in earlier blocks of the log.

Each message log block is 8 kilobytes long, the same size as data blocks in the file

system and hardware memory pages. Each block begins with a 20-byte header, which

describes the extent of the space -used within the block. The following two records

types are used to describe the logging data in these message log blocks:

LoggedMessage: This type of record saves the data of the message (a copy of the

network packet sent), the logical host identifier of the receiver, and the RSN

value returned by the receiver. It varies in size from 92 to 1116 bytes, depending

on the size of any appended data segment that is part of the message.

AdditionalRsn: This type of record saves an additional RSN returned for a message

logged in an earlier LoggedMessage record. It contains the SSN of the message

sent, the logical host identifier of the receiver, and the new RSN value returned.

It is 12 bytes long.

For most messages sent, only the LoggedMessage record type is used. However, a

message sent to a process group [Cheriton85] is delivered reliably to only one receiver,

with delivery to other members of the group not guaranteed. Thus, the first RSN

returned for a message sent to a process group is stored in the LoggedMessage record,

and a new AdditionalRsn record is created to store the RSN returned by each other

receiver of the same message. Likewise, since reliable delivery of a message sent as a

datagram is not guaranteed, the kernel cannot save the LoggedMessage record until

50

the RSN is returned. Instead, the RSN field in the LoggedMessage record is not

used, and an AdditionalRsn record is created to hold the RSN when it arrives, if the

message is received.

3.3.3 Packet Format

The network packet format used by sender-based message logging is a modified form

of the standard V kernel packet format [Zwaenepoel84]. Fields have been added to

each packet to carry RSNs and RSN acknowledgements. Since it must be possible to

piggyback these fields on any existing packet, no special control packet type is used.

Instead, if the logging protocol requires a packet to be sent when no existing packet

is present on which to piggyback, an extra V kernel packet of type "no operation" is

sent.

In particular, the following new fields have been added to the V kernel packet

format to support sender-based message logging:

rsn: This field gives the receive sequence number of the sender at the time that the

packet was sent, and is used to return an RSN for a received message.

ssn2: This field gives the SSN vamie of the last message whose RSN is being returned

by this packet.

rsn2: This field gives the RSN value of the last RSN being acknowledged by this

packet.

rsnCount: This field gives the number of RSNs being returned by this packet. If

this field is zero, no RSNs are contained in this packet. Otherwise, RSNs

from rsn-rsnCount+l through rsn, inclusive, are being returned for received

messages whose SSNs were ssn2-rsnCount+l through ssn2, respectively. The

size of this field is one byte, and thus a maximum of 255 RSNs can be returned

in a single packet.

rsnAckCount: This field gives the number of RSN acknowledgements being returned

by this packet. If this field is zero, no RSN acknowledgements are contained

51

in this packet. Otherwise, RSNs from rsn2 - rsnAckCount + I through rsn2,

inclusive, are being acknowledged by this packet. The size of this field is one

byte, and thus a maximum of 255 RSN acknowledgements can be returned in a

single packet.

Also, the following additional flag bits were defined in an existing bit field in the

kernel packet:

NEED..RSN: When this bit is set in a packet, it indicates that the receiver should return

an RSN for the message contained in this packet.

NEEDRSNACK: When this bit is set in a packet, it indicates that an acknowledge-

ment of the RSNs carried by this packet should be returned after this packet is

received.

DONT...LOG: When this bit is set in a packet, it indicates that the range of messages

whose SSNs are shown by ssn2 and rsnCount in this packet should not be

logged. This may be used when a duplicate message is received (Section 3.2.3).

These added packet fields and flag bits are contained in the V kernel packet header,

but are ignored by the rest of the kernel.

3.3.4 Kernel Message Logging

Within the kernel, a layered implementation of the logging protocol is used, as il-

lustrated in Figure 3.6. The sender-based message logging module acts as a filter

on all packets sent and received by the kernel. Packets may be modified or held by

this module before transmission, and received packets are interpreted before passing

them on to the rest of the kernel. The messages logged by the implementation are

actually the contents of each network packet passing to the Ethernet device driver

through the sender-based message logging module. This organization separates the

sender-based message logging protocol processing from the rest of the kernel, largely

insulating it from changes in the kernel or its communication protocol. Integrating

52

message sending message receiving

j_ _
message

logging

Ethernet driver

Figure 3.6 Sender-based message logging kernel organization

the kernel message logging with the existing V kernel protocol handling functions was

also considered instead, but was determined not to be necessary for efficiency.

The standard V kernel uses retransmissions for reliable delivery of messages, but

these retransmissions should not appear as separate messages for message logging.

Also, it is important that retransmissions continue during failure recovery, rather

than possibly timing out after some maximum number of attempts. Finally, with

multiple processes sharing a single team address space, the appended data segment of

a message could be changed between retransmissions, which could interfere with suc-

cessful failure recovery. For these reasons, sender-based message logging performs all

necessary retransmissions from the saved copy of the message in the LoggedMessage

record in the log.

Most RSNs and RSN acknowledgements are piggybacked on existing packets. The

piggybacking implementation makes few assumptions about the behavior of the exist-

ing V kernel protocol. When a message arrives, it is passed up to the normal V kernel

protocol handling function for its packet type. If the kernel sends a reply packet (such

as the data requested in a MoveFrom), the RSN for the request is piggybacked on this

reply. Normally, if no reply is generated by the kernel, the RSN is saved, and a timer

53

is set to force its transmission if no user-level message is returned soon. However,

for certain packets for which there is not expected to be a new user-level message

following, the RSN is transmitted immediately in a separate packet. An alternative

implementation of piggybacking was also considered, which would use knowledge of

the V kernel protocol in order to more efficiently handle piggybacking by anticipating

future packets in standard packet sequences used by the kernel. However, accommo-

dating the full generality of possible packet sequences is difficult, particularly when

communicating with multiple remote logical hosts.

3.3.5 The Logging Server

At times, the logging server writes modified blocks of the message log from volatile

memory to a file on the network file server. A separate file is used by each logging

server. When the kernel adds a new record to some message log block, or modifies

an existing record in some block, it flags that message log block in memory as having

been modified. These flags are used by the logging server to control the writing of

message log blocks from memory to the logging file. The writing of modified blocks

is further simplified since blocks in the message log are the same size as blocks in the

file system.

The logging file is updated during a checkpoint of the logical host so that the log

of messages sent by this host before Lhe cheLkpoint can be restored when the check-

point is restored. Restoring this log is necessary in order to be able to recover from

additional failures of other processes after recovery of this logical host is completed.

As such, the file serves as part of the host's checkpoint.

The logging file is also updated at other times to reclaim space in the volatile

memory of the log. The logging file may be larger than the space in volatile memory

allocated to the message log. When a block has been written from volatile memory

to the file, that space in memory may be reused if needed for other logging data if the

kernel is no longer retransmitting messages from that block or adding new records

to it. When the contents of such a block is again needed in memory, it is read from

the file into an unused block in the log in memory. The logging file thus serves as

54

a form of "virtual memory" extension to the message log, and allows more messages

to be logged than can fit in the available volatile memory of the node. The kernel

automatically requests modified blocks to be written to the file when the amount of

memory used by the log approaches the allocated limit.

The message log contains all messages sent by processes executing on that node,

but for most accesses to the log, one or more messages received by some specified

logical host are needed. For example, when a logical host is checkpointed, all messages

received by processes executing in that logical host are found and deleted from the logs

at their senders. To facilitate such accesses to the log by receiver, the logging server

maintains indices to the messages in the log, hashed by the identifier of the receiver.

These indices are updated each time new blocks of the volatile log are written to the

logging file, since these are exactly those blocks of the volatile log that have records

describing new messages to be indexed. •

These hashed indices are rebuilt by the logging server during recovery from the

data in the logging file. The indices are rebuilt rather than being saved as part

of the state data in the checkpoint since failure recovery should be relatively less

frequent than checkpointing. During recovery, the logging server reads each block of

the logging file for the recovering logical host, examining each record for messages sent

before the checkpoint was recorded. Since the logging file may be updated at times

other than during the checkpoint, it may contain messages sent after the checkpoint.

These messages in the file are ignored during recovery since they will be sent again

and logged again once the recovering host begins reexecution.

During recovery, the logging server on the node on which recovery is taking place

coordinates the replay of logged messages to the recovering logical host, collecting each

message from the log on the node from which it was sent. This is done by requesting

each logged message from the process group of logging servers, in ascending order by

the message RSNs. For each message, a request is sent to the logging server process

group, naming the RSN of the next message needed. The server that has this message

logged returns a copy of it, and replies with the RSN of the next message for the same

logical host that it also has logged. When that RSN is needed next while collecting the

55

logged messages, the request is sent directly to that server rather than to the process

group. All servers that do not have the named message logged ignore the request.

The sequence of logged messages is complete when no reply is received from a request

sent to the process group after the kernel has retransmitted the request several times.

As the logical host then reexecutes from its checkpointed state, the kernel simulates

the arrival from the network of each message in the sequence of messages collected.

3.3.6 The Checkpoint Server

Checkpointing is initiated by sending a request to the local checkpoint server process.

This request may be sent by the kernel when the logical host has received a given

number of messages or has consumed a given amount of processor time since its last

checkpoint. Any process may also request a checkpoint at any time, but this is never

necessary. Likewise, failure recovery is initiated by sending a request to the check-

point server on the node on which the failed logical host is to be recovered. Normally,

this request would be sent by the process that detected the failure. However, no fail-

ure detection is currently implemented in this system, and the request instead comes

from the user.

Each checkpoint is written as a separate file on the shared network file server. On

the first checkpoint of a logical host, a full checkpoint is used to write the entire user

address space to the checkpoint file in a single operation. On subsequent checkpoints

of that logical host, an incremental checkpoint is used to write only the pages of

the user address space modified since the previous checkpoint to the file, overwriting

their previous values in the file. The checkpoint file thus always contains a complete

continuous image of the user address space. Each checkpoint also includes all kernel

data used by the logical host, the state of the local team server for that logical host,

and the state of the local logging server. ,his data is entirely rewritten on each

checkpoint, since it is small and modified portions of it are difficult to detect. Since

the file server supports atomic commit of modified versions of files, the most recent

complete checkpoint of a logical host is always available, even if a failure occurs while

a checkpoint is being written. To limit any interference with the normal execution of

56

the logical host during checkpointing, the bulk of the checkpoint data is written to the

file while the logical host continues to execute. The logical host is then frozen while

the remainder of the data is written to the file. This is similar to the technique used

by Theimer for process migration in the V-System [Theimer85]. After the checkpoint

has been completed, the group of logging servers is notified to remove from their logs

all messages received by this host before the checkpoint. Because this notification is

sent as a message to the process group, reliable delivery to all logging servers is not

assured by the kernel, but the notification from any future checkpoint of this same

host is sufficient.

A failed logical host may be restarted on any node in the network. Other processes

sending messages to the recovered logical host determine its new physical network ad-

dress using the existing V-System mechanism. The kernel maintains a cache record-

ing the network address for each logical host from which it has received packets. In

sending packets, after a small number of retransmissions to the cached network ad-

dress, future retransmissions use a dedicated Ethernet multicast address to which all

V-System kernels respond. All processes are restored with the same process identifiers

as before the failure.

3.4 Performance

The performance of this implementation of sender-based message logging has been

measured on a network of diskless SUN-3/60 workstations. These workstations each

use a 20-megahertz Motorola MC68020 processor, and are connected by a 10 megabit

per second Ethernet network to a single shared network file server. The file server runs

on a SUN-3/160 using a 16-megahertz MC68020 processor, with a Fujitsu Eagle disk.

This section presents an analysis of the costs involved with sender-based message

logging in communication, checkpointing, and recovery, and an evaluation of the

performance of several distributed application programs using sender-based message

logging.

57

3.4.1 Communication Costs

Table 3.2 presents the average time in milliseconds required for common V-System

communication operations. The elapsed times required for a Send-Receive-Reply

sequence with no appended data and with a 1-kilobyte appended data segment, for a

Send as a datagram, and for MoveTo and MoveFrom operations of 1 and 64 kilobytes

of data each were measured. These operations were executed both with and without

using sender-based message logging, and the average time required for each case

is shown separately. The overhead of using sender-based message logging for each

operation is given as the difference between these two times, and as a percentage

increase over the time without logging. These times are measured in the initiating

user process, and indicate the elapsed time between invoking the operation and its

completion. The overhead for most communication operations is about 25 percent.

The measured overhead reported in Table 3.2 is caused entirely by the time neces-

sary to execute the instructions of the sender-based message logging protocol imple-

mentation. Because of the request-response nature of the V-System communication

operations, and due to the presence of the logging protocol optimizations described

Table 3.2

Performance of common V-System communication operations using
sender-based message logging (milliseconds)

Message Logging Overhead

Operation With Without Time__(Percent

Send-Receive-R,.ply 1.9 1.4 .5 36
Send(1K)-Recelire-Reply 3.4 2.7 .7 26
Datagram Send .5 .4 .1 25

MoveTo(1K) 3.5 2.8 .7 25
MoveTo(64K) 107.0 88.0 19.0 22

MoveFrom(1 K) 3.4 2.7 .7 26
MoveFrom(64K) 106.0 87.0 19.0 22

58

in Section 3.2.5, no extra packets were required during each operation, and no delays

in the transmission of any message were incurred while waiting for an RSN acknowl-

edgement to arrive. Although, two extra packets were required after all iterations of

each test sequence in order to exchange the final RSN and RSN acknowledgement,

this final exchange occurred asynchronously "!thin the kernel after the user process

had completed the timing.

To better understand how the execution time is spent during these operations,

the execution times for a number of components of the implementation were mea-

sured individually by executing each component in a loop a large number of times

and averaging the results. The time for a single execution could not be measured

directly because the SUN lacks a hardware clock of sufficient resolution. Packet

transmission overhead as a result of sender-based message logging is approximately

126 microseconds for messages of minimum size, including 27 microseconds to copy

the message into the log. For sending a message with a 1-kilobyte appended data

segment, this time increases by 151 microseconds for the additional time needed to

copy the segment into the log. Of this transmission time, 38 microseconds occurs after

the packet is transmitted on the Ethernet, and executes concurrently with reception

on the remote node. Packet reception overhead from sender-based message logging is

approximately 142 microseconds. Of this time, about 39 microseconds is spent pro-

cessing any piggybacked RSNs, and about 45 microseconds is spent processing any

RSN acknowledgements.

These component measurements agree well with the overhead times shown in

Table 3.2 for each operation. For example, for a Send-Receive-Reply with no ap-

pended data segment, one minimum-sized i,-essage is sent by each process. The

sending protocol executes concurrently with the receiving protocol for each packet af-

ter its transmission on the network. The total sender-based message logging overhead

for this operation is calculated as

2 ((126 - 38) + 142) = 460 microseconds.

This closely matches the measured overhead value of 500 microseconds given in

Table 3.2. The time beyond this required to execute the logging protocol for a

59

1-kilobyte appended data segment Send-Receive-Reply is only the additional 151 mi-

croseconds needed to copy the segment into the message log. This closely matches the

measured difference for these two operations of 200 microseconds. As a final exam-

ple, consider the 64-kilobyte MoveTo operation, in which 64 messages with 1 kilobyte

of appended data each are sent, followed by a reply message of minimum size. No

concurrency is possible in sending the first 63 data messages, but they are each re-

ceived concurrently with the following send. After the sender transmits the last data

message, and again after the receiver transmits the reply message, execution of the

protocol proceeds coacurrently between the sending and receiving nodes. The total

overhead for this operation in microseconds is calculated as

63 (126 + 151) for sending the first 63 packets

(126 - 38) + 151 for sending the last packet

142 for receiving the last packet

(126 - 38) for sending the reply packet

+ 142 for receiving the reply packet

18,062.

This total of 18,062 microseconds agrees well with the measured overhead of 19 mil-

liseconds given in Table 3.2.

In less controlled environments and with more than two processes communicat-

ing, the communication performance may degrade because the transmission of some

messages may be delayed waiting for an RSN acknowledgement to arrive. To evaluate

the effect of this delay on the communication overhead, the average round-trip time

required to send an RSN and receive its acknowledgement was measured. Without

transmission errors, the communication delay should not exceed this round-trip time,

but may be less if the RSN has already been sent when the new message transmis-

sion is first attempted. The average round-trip time required in this environment

is 550 microseconds. Although the same amount of data is transmittd across the

network for a Send-Receive-Reply with no appended data segment, this RSN round-

trip time is significantly less than the 1.4 milliseconds shown in Table 3.2 for the

60

Send-Receive-Reply, because the RSN exchange takes place directly between the

two kernels rather than between two processes at user level.

The effect of the two protocol optimizations on the performance of these com-

munication operations was measured by using a sender-based message logging im-

plementation that did not include either optimization, to execute the same tests

reported in Table 3.2. All RSNs and RSN acknowledgements were sent as soon as

possible without piggybacking, and no packet carried more than one RSN or RSN

acknowledgement. For most operations, the elapsed time increased by an average

of 430 microseconds per message involved in the operation, over the time required

for logging with the optimized protocol. Comparing this increase to the measured

RSN round-trip time of 550 microseconds indicates that about 120 microseconds of

the round-trip time occurs concurrently with other execution. This includes the time

needed by the V kernel protocol functions and the time for the user process to re-

ceive the message for which this RSN is being returned and to form the reply message.

The times for the 64-kilobyte MoveTo and MoveFrom operations, and for the datagram

Send, however, increased by an average of only 260 microseconds per message. This

is less than the increase for other operations because multiple sequential messages

are sent to the same destination, with no intervening reply messages, and thus many

messages sent are not forced to wait for an RSN round-trip. The increase is still

substantial, though, because each RSN and RSN acknowledgement must be sent in a

separate packet and must be handled separately.

To put this measured average communication overhead of 25 percent from sender-

based message logging into perspective, the expected performance of other pessimis-

tic message logging techniques may be considered. If messages are logged on some

separate logging node on the network, without using special network hardware, the

overhead should be approximately 100 percent, since all messages must be sent and

received one extra time. If each message is synchronously written to disk as it is

received, the overhead should be several orders of magnitude higher, due to the rela-

tive speed of the disk. Such an approach does '.'-w for recovery from any number of

failures at once, though.

61

3.4.2 Checkpointing Costs

Table 3.3 shows the measured elapsed time for performing checkpointing in this im-

plementation, basod on the size of the address space portion written to the checkpoint

file. During a checkpoint, each individual contiguous range of modified pages is writ-

ten to the file in a separate operation, and for a given address space size, the time

required to write the address space increases as the number of these separate write

operations increases. For the measurements reported in Table 3.3, the total address

space size was twice the size of the modified portion, and the modified pages were each

separated from one another by one unmodified page, resulting in the maximum pos-

sible number of separate write operations. The hardware page size on the SUN-3/60

is 8 kilobytes.

Within these checkpointing times, the logical host is frozen, and its execution is

suspended, for only a portion of this time, as discussed in Section 3.3.6. The total

time frozen is highly dependent on the behavior of the application program being

checkpointed, and is affected primarily by the rate at which the logical host modifies

new pages of its address space during the checkpoint before the host is frozen. For

the application programs measured, the logical host is frozen typically for only a few

tens of milliseconds during each checkpoint.

Table 3.3

Checkpointing time by size of address space portion written (milliseconds)

Kilobytes Pages Full Incremental

8 1 140 140
16 2 170 170
32 4 200 220
64 8 260 300

128 16 460 500
256 32 780 880
512 64 1470 1570

1024 128 2870 2980

62

The measurements in Table 3.3 illustrate that the elapsed time required to com-

plete a checkpoint is dominated by the cost of writing the address space to the

checkpoint file. The elapsed time required to complete the checkpoint grows roughly

linearly with the size of the address space portion written to the file. The extra

cost involved in an incremental checkpoint results primarily from the fact that the

modified portions of the address space are typically not contiguous. For each dis-

contiguous range of modified pages, a separate write operation must be performed.

A full checkpoint, on the other hand, performs only a single write operation for the

entire address space. The extra overhead per write operation has been measured to

be approximately 5 milliseconds.

Other costs involved in checkpointing are minor. A total of approximately 17 mil-

liseconds is required to open the checkpoint file and later close it. Checkpointing the

state of the kernel requires about 0.8 milliseconds, and checkpointing the team server

requires about 1.3 milliseconds. The time required to checkpoint the logging server

varies with the number of message log blocks to be written to the logging file. A

minimum of about 18 milliseconds is required, and increases about 25 milliseconds

per message log block written.

3.4.3 Recovery Costs

The costs involved in recovery are similar to those involved in checkpointing. The

address space of the logical host being recovered must be read from the checkpoint

file into memory. The state of the kernel must be restored, as well as the states

of the team server and the logging server. In addition, the sequence of messages

received by this logical host after the checkpoint must be retrieved, and the logical

host must complete the reexecution necessary to restore its state to the value it had

after receiving these messages before the failure.

Table 3.4 shows the measured times required for recovery based on the size of

the address space of the logical host being recovered. These measurements do not

include the time required for the logical host to reexecute from the checkpointed state,

since this time is highly dependent on the particular application being recovered. In

63

Table 3.4

Recovery time by address space size (milliseconds)

Kilobytes Pages Time

8 1 2580
16 2 2600
32 4 2620
64 8 2670

128 16 2760
256 32 2950
512 64 3320

1024 128 4080

general, this reexecution time is bounded by the interval at which checkpoints are

recorded. As with the cost of checkpointing, the measured recovery times increase

approximately linearly with the size of the address space being read. There is also

a large fixed cost included in these recovery times, due to the necessary timeout of

the last group send of the request to collect the next logged message. In the current

implementation, this timeout is 2.5 seconds.

3.4.4 Application Program Performance

The preceding three sections have examined the three sources of overhead caused by

the operation of sender-based message logging: message logging, checkpointing, and

failure recovery. Distributed application programs, though, spend only a portion of

their execution time on communication, and checkpointing and failure recovery occur

only infrequently. To analyze the overhead of sender-based message logging in a more

realistic environment, the performance of three distributed application programs was

measured using this implementation. The following three application programs were

used in this study:

64

nqueens: This program counts the number of solutions to the n-queens problem for a

given number of queens n. The problem is distributed among multiple processes

by assigning each a range of subproblems resulting from an equal division of

the possible placements of the first two queens. When each process finishes its

allocated subproblems, it reports the number of solutions found to the main

process.

tsp: This program finds the solution to the traveling salesman problem for a given

map of n cities. The problem is distributed among multiple processes by assign-

ing each a different initial edge from the starting city to include in all paths. A

branch-and-bound technique is used. When each new possible solution is found

by some process, it is reported to the main process, which maintains the min-

imum known solution and returns its length to this process. When a process

finishes its assigned search, it requests a new edge of the graph from which to

search.

gauss: This program performs Gaussian elimination with partial pivoting on a given

n x n matrix of floating point numbers. The problem is distributed among

multiple processes by giving each a subset of the matrix rows on which to

operate. At each step of the reduction, the processes send their possible pivot

row number and value to the main process, which determines the row to be

used. The ct.:rent contents of the pivot row is sent from one process to all

others, and each process performs the reduction on its rows. When the last

reduction step completes, each process returns its rows to the main process.

These three programs were chosen because of their dissimilar communication rates

and patterns. In the nqueens program, the main process exchanges a message with

each other process at the start of execution and again at completion, but no other

communication is performed during execution. The subordinate processes do not

communicate with one another, and the total amount of communication is constant

for all problem sizes. In the tsp program, the map is distributed to the subordinate

processes, which then communicate with tkie main process to request new subproblems

65

and to report any new results during each search. Since the number of subproblems

is bounded by the number of cities in the map, the total amount of communication

performed is O(n) for a map of n cities. Due to the branch-and-bound algorithm

used, though, the running time is highly dependent on the map input. Again, there

is no communication between subordinate processes. The gauss program performs

the most communication of the three programs, including communication between

all processes during execution. The matrix rows are distributed to the subordinate

processes and collected at completion, each pivot row is decided by the main process,

and the contents of the pivot row is distributed from one subordinate process to all

others. The total amount of communication performed is 0(n 2) for an n x n matrix.

These three application programs were used to solve a fixed set of problems.

Each problem was solved multiple times, both with and without using sender-based

message logging. The maps used for tsp and the matrices used for gauss were

randomly generated, but were saved for use on all executions. For each program,

the problem was distributed among 8 processes, each executing on a separate node

of the system. When using sender-based message logging, all messages sent between

application processes were logged. No checkpointing was performed during these

tests, since its overhead is highly dependent on the frequency at which checkpoints

are written.

The overhead of using sender-based message logging ranged from about 2 percent

to much less than 1 percent for most problems in this set. For the gauss program,

which performs more communication than the other programs, the overhead was

slightly higher, ranging from about 16 percent to about 3 percent. As the problem

size increases for each program, the percentage overhead decreases because the average

amount of computation between messages sent increases. Table 3.5 summarizes the

performance of these application programs for all problems in this set. Each entry in

this table shows the application program name and the problem size n. The running

time in seconds required to solve each problem, both with and without using sender-

based message logging, is given. The overhead of using sender-based message logging

66

Table 3.5

Performance of the distributed application programs using
sender-based message logging (seconds)

Message Logging Overhead

Program Size With Without Time Percent

nqueens 12 5.99 5.98 .01 .17
13 34.61 34.60 .01 .03
14 208.99 208.98 .01 .01

tsp 12 5.30 5.19 .11 2.12
14 16.40 16.13 .27 1.67
16 844.10 841.57 2.53 .30

gauss 100 12.41 10.74 1.67 15.55
200 71.10 66.40 4.70 7.08
300 224.06 217.01 7.05 3.25

for each problem is shown in seconds as the difference between its two average running

times, and as a percentage increase over the running time without logging.

Table 3.6 shows the average message log sizes per node that result from solving

each of these problems using sender-based message logging. For each problem, the

average total number of messages logged and the resulting message log size in kilobytes

are shown. These figures are also shown averaged over the elapsed execution time

of the problem. These message log sizes are all well within the limits of available

memory on the workstations used in these tests and on other similar contemporary

machines.

The degree to which these three programs utilize of the piggybacking optimiza-

tion of the logging protocol is summarized in Table 3.7, by the percentage of messages

sent, averaged over all processes. For each problem, the three possible cases encoun-

tered when sending a message are shown individually. If no unacknowledged RSNs

are pending, the message is sent immediately with no piggybacked RSNs. If all un-

acknowledged RSNs can be included in the same packet, they are piggybacked on

67

Table 3.6

Message log sizes for the distributed application
programs (average per node)

Total Per Second

Program Size Messages Kilobytes Messages Kilobytes

nqueens 12 8 1.9 1.30 .32
13 8 1.9 .23 .06
14 8 1.9 .04 .01

tsp 12 43 5.5 8.09 1.04
14 48 6.1 2.91 .37
16 59 7.3 .07 .01

gauss 100 514 95.4 41.44 7.69
200 1113 292.8 15.66 4.12
300 1802 593.7 8.04 2.65

Table 3.7

Application program piggybacking utilization (percentage of messages sent)

None Delay For
Program Size Pending Piggybacked RSN Ack

nqueens 12 42.9 44.4 12.7
13 41.3 46.0 12.7
14 41.3 46.0 12.7

tsp 12 19.9 62.4 17.6
14 22.3 63.5 14.2
16 33.0 58.3 8.7

gauss 100 20.7 30.0 49.2
200 29.4 28.6 42.0
300 29.0 31.0 40.0

68

it and the message is sent immediately. Otherwise, the packet cannot be sent now

and must be delayed until all RSNs for messages previously received by the process

have been acknowledged. The utilization of piggybacking was lowest in the gauss

program, since its communication pattern allowed all processes to communicate with

one another during execution. This reduces the probability that a message being

sent is destined for the same process as the pending unacknowledged RSNs, which is

required in order to piggyback the RSNs on the message. Likewise, for the nqueens

and tsp programs, piggybacking utilization was lower in the main process than in the

subordinate processes due to the differences in their communication patterns. For all

problems, more than half the messages could be sent withouL delaying, either because

no unacknowledged RSNs were pending or because they could be piggybacked on the

message.

These same tests were executed again using a sender-based message logging imple-

mentation that did not include the protocol optimizations. In this implementation, no

messages could be sent with piggybacked RSNs. Instead, the percentage of messages

that were sent with piggybacked RSNs using the optimized protocol was in this case

divided approximately equally between those sent while no unacknowledged RSNs

were pending and those forced to delay for RSN acknowledgements. Because piggy-

backing may postpone the return of an RSN acknowledgement, some messages may be

forced to delay with piggybacking that could be sent immediately without piggyback-

ing. Although this effect could not be measured directly, these average measurements

indicate that this does not commonly occur.

To evaluate the effect of checkpointing on the overhead of sender-Lased message

logging, each application program was executed again with checkpointing enabled.

The largest problem for each program was solved again with checkpoints being written

every 15 seconds by each process during execution. A high checkpointing frequency

was used to generate a significant amount of checkpointing activity to be measured.

For the nqueens and tsp programs, the additional overhead was less than 0.5 percent

of the running time with sender-based message logging. For the gauss program,

checkpointing overhead was about 2 percent. This overhead is higher than for the

69

other two programs because gauss modifies more data during execution, which must

be written to the checkpoint. In all cases, the average additional time required for

each checkpoint was much less than the total time required for checkpointing reported

in Table 3.3, because most time spent during checkpointing waiting for writes to the

disk to complete could be overlapped with execution of the application before the

logical host was frozen.

3.5 Multiple Failure Recovery

Sender-based message logging is designed to recover from only a single failure at a

time, since messages are logged in volatile memory. That is, after one process (or

logical host in the V-System) has failed, no other process may fail until the recovery

from the first is completed. Sender-based message logging can be extended, though,

to recover from more than one failure at at time.

Sender-based message logging uses the dependency vector of each process to verify

that the resulting system state after recovery is consistent. As discussed in Chapter 2,

if a process X depends on a state interval of some failed process Y that resulted from Y

receiving a message beyond those messages logged for Y that are available for replay,

the system state that can be recovered by the existing sender-based message logging

protocol is not consistent. To recover a consistent system state in this situation would

require each such process X to be rolled back to a state interval before it received

the message from Y that caused this dependency.

With the existing sender-based message logging protocol, this consistent system

state can be recovered only if the current checkpoint for each such process X that must

be rolled back was written before the corresponding message from each process Y was

received. By rolling each such process X back to before this dependency was created,

the resulting system state must be consistent because no process then depends on a

state of some other process that cannot be reached through its deterministic execution

(Definition 2.4). In this case, each process X can be rolled back by forcing it to fail and

recovering it using this checkpoint. Hoi .;er, if the current checkpoint was written

70

after the message from Y was received, process X cannot roll back far enough to

remove the dependency.

If a consistent system state can be recovered in this way, to preserve as much of

the existing volatile message log as possible, each of these processes must be rolled

back one at a time after the reexecution of the original failed processes is completed.

As the original failed processes reexecute using the sequences of messages that could

be replayed, they resend any messages they sent before the failure, and thus recreate

much of their original volatile message log that was lost from the failure. Then,

as each of these additional processes is forced to fail and recovered from its earlier

checkpoint, it will recreate its volatile message log during its reexecution as well.

By rolling them back one at a time, no additional logged messages needed for their

reexecution from their checkpointed states will be lost.

If the checkpoint for some process X that must be rolled back was not written

early enough to allow the process to roll back to before the dependency on process

Y was created, recovery of a consistent system state using this method is not pos-

sible. To guarantee the recovery of a consistent system state even in this case, the

sender-based message logging protocol can be modified to retain on stable storage all

checkpoints for all processes, rather than saving only the most recent checkpoint for

each process. Then, the existence of an early enough checkpoint for each process X

that must be rolled back is ensured. Although not all checkpoints must be retained

to guarantee recovery, the existing sender-based message logging protocol does not

maintain sufficient information to determine during failure-free execution when each

checkpoint can safely be released. The domino effect is still avoided by this extension

since the data in the checkpoints is not volatile. Once a process has rolled back to a

checkpoint, all messages sent by it before that time have been logged as part of the

checkpoints of that process.

71

3.6 Related Work

The sender-based message logging protocol differs from other message logging proto-

cols primarily in that messages are logged in the local volatile memory of the sender.

Also, sender-based message logging requires no specialized hardware to assist with

logging. The TARGON/32 system (Borg89] and its predecessor Auros [Borg83] log

messages at a backup node for the receiver, using specialized networking hardware

that provides three-way atomic broadcast of each message. With this networking

hardware assistance and using available idle time on a dedicated processor of each

multiprocessor node, the overhead of providing fault tolerance in TARGON/32 has

been reported to be about 10 percent [Borg89]. Sender-based message logging causes

less overhead for all but the most communication-intensive programs, without the use

of specialized hardware. The PUBLISHING mechanism [Powell83] proposes the use

a centralized logging node for all messages, which must reliably receive every network

packet. Although this logging node avoids the need to send an additional copy of each

message over the network for logging, providing this reliability guarantee seems to be

impractical without additional protocol complexity [Saltzer84]. Strom and Yemini's

Optimistic Recovery mechanism [Strom85] logs all messages on stable storage on disk,

but Strom, Bacon, and Yemini have recently proposed enhancements to it using ideas

from sender-based message logging [Johnson87] to avoid logging some messages on

stable storage [Strom88].

Another difference between sender-based message logging and previous pessimistic

logging protocols, which is not related to the logging of messages at the sender, is in

the enforcement of the requirements of a pessimistic logging protocol. All pessimistic

logging protocols must prevent the system from entering a state that could cause

any process other than those that failed to be rolled back during recovery. Previous

pessimistic logging protocols [Borg83, Powell83, Borg89] have required each message

to be logged before it is received by the destination process, blocking the receiver

while the logging takes place. Sender-based message logging allows the message to

be received before it is logged, but prevents the receiver from sending new messages

72

until all messages it has received are logged. This allows the receiver to execute based

on the message data while the logging proceeds asynchronously. For example, if the

message requests some service of the receiver, this service can begin while the message

is being logged.

Optimistic message logging methods [Strom85] have the potential to outperform

pessimistic methods, since message logging proceeds asynchronously without delay-

ing either the sender or the receiver for message logging to complete. However, these

methods require significantly more complex protocols for logging. Also, failure recov-

ery in these systems is more complex and may take longer to compiete, since processes

other than those that failed may need to be rolled back to recover a consistent system

state. Finally, optimistic message logging systems may require substantially more

storage during failure-free operation, since logged messages may need to be retained

longer, and processes may be required to save additional checkpoints earlier than

their most recent. Sender-based message logging achieves some of the advantages of

asynchronous logging more simply by allowing messages to be received before they

are fully logged.

Some of the simplicity of the sender-based message logging protocol results from

the concentration on recovering from only a single failure at a time. This allows

the messages to be logged in volatile memory, significantly reducing the overhead of

logging. This assumption of a single failure at a time was also made by Tandem

NonStop, Auros, and TARGON/32, but without achieving such a reduction in fault-

tolerance overhead. The addition of the extensions of Section 3.5 to handle multiple

failures causes no additional overhead during failure-free operation, although to guar-

antee recovery using the second extension requires that all checkpoints be retained

on stable storage. Also, the recovery from multiple concurrent failures using these

extensions may require longer to complete than with other methods, since processes

must be rolled back one at a time during recovery.

73

3.7 Summary

Sender-based message logging is a new transparent method of providing fault toler-

ance in distributed systems, which uses pessimistic message logging and checkpointing

to record information for recovering a consistent system state following a failure. It

differs from other message logging protocols primari', in that the message log is stored

in the volatile memory on the node from which the rme-ssage was sent. The order in

which the message was received relative to other messages sent to the same receiver

is required for recovery, but this information is not usually available to the message

sender. With sender-based message logging, when a process receives a message, it

returns to the sender a receive sequence number (RSN) to indicate this ordering in-

formation. The RSN of a process is equivalent to its current state interval index.

When the RSN arrives at the sender, it is added to the local volatile log with the

message. To recover a failed process, it is restarted from its most recent checkpoint,

and the sequence of messages received by it after this checkpoint are replayed to it in

ascending order of their logged RSNs.

Sender-based message logging concentrates on reducing the overhead placed on

the system from the provision of fault tolerance by a pessimistic logging protocol.

The cost of message logging is the most important factor in this system overhead.

Keeping the message log in the sender's local volatile meri.ory avoids the expense

of synchronously writing each message to disk or sending an extra copy over the

network to some special logging process. Since the message log is volatile, the basic

sender-based message logging protocol guarantees recovery from only a single failure

at a time within the system. Extensions to the protocol support recovery from any

number of concurrent failures.

Performance measurements from a full implementation of sender-bascd message

logging under the V-System verify the efficient nature of this protocol. Measured

on a network of SUN-3/60 workstations, the overhead on V-System communication

operations is approximately 25 percent. The overhead experienced by distributed

application programs using sender-based message logging is affected most by the

74

amount of communication performed during execution. For Gaussian elimination, the

most communication-intensive program measured, this overhead ranged from about

16 percent to about 3 percent, for different problem sizes. For all other programs

measured, overhead ranged from about 2 percent to much less than 1 percent.

Chapter 4

Optimistic Message Logging

Optimistic message logging protocols have the potential to outperform pessimistic

message logging protocols during failure-free operation, since the message logging

proceeds asynchronously. However, previous system- using optimistic message log-

ging have required large amounts of additional communication, and have utilized

complex algorithms for finding the current recovery state of the system. This chapter

presents a new fault-tolerance method using optimistic message logging, based on

the theoretical development of Chapter 2, that requires significantly less communica-

tion and uses a new efficient algorithm for finding the current recovery state. This

new method also guarantees to always find the maximum possible recoverable system

state, by utilizing logged messages and checkpoints. Previous recovery methods using

optimistic message logging and checkpointing have not considered the existing check-

points, and thus may no, find this maximum state. Furthermore, by utilizing these

checkpointed states, some messages received by a process before it was checkpointed

may not need to be logged.

4.1 Overview

Theorem 2.4 showed that in any system using message logging and checkpointing,

there is always a unique maximum recoverable system state. This maximum state

is the current recovery state, which is the state to which the system will be restored

following a failure. However, the model of Chapter 2 does not address the question

of how the current recovery state can be determined from the collection of individual

process state intervals that are currently stable.

75

76

The algorithm used by the system to find the current recovery state is called the

recovery state algorithm. A straightforward algorithm to find the current recovery

state would be to perform an exhaustive search, over all combinations of currently

stable process state intervals, for the maximum consistent combination. However,

such a search would be too expensive in practice. This chapter presents two alterna-

tive algorithms that find the current recovery state more efficiently. These algorithms

are independent of the protocols used by the system for message logging, checkpoint-

ing, or failure recovery. In particular, they make no assumptions on the order in which

checkpoints and logged messages are recorded on stable storage. These algorithms

are each assumed to run centrally on the shared stable storage server on which all

checkpoints and logged messages are recorded. Either of these algorithms can be used

with the logging system developed in this chapter.

This chapter presents a batch recovery state algorithm and an incremental re-

covery state algorithm. The batch algorithm finds the current recovery state "from

scratch" each time it is invoked. No internal state is saved between executions of the

algorithm. This algorithm can be used at any time to find the new current recovery

state, after any number of new process state intervals have become stable. The incre-

mental algorithm, instead, must be executed once for each new process state interval

that becomes stable. It begins its search for the new current recovery state with the

previously known value, and updates it based on the fact that a single new process

state interval has become stable. Internal state saved from previous executions of the

algorithm is used to shorten the search.

Unlike the sender-based message logging system described in Chapter 3, messages

in this system are logged by the receiver rather than by the sender. As each message

is received, it is copied into a buffer in volatile memory. Occasionally, the contents

of this buffer is written to stable storage, which logs all messages received since the

buffer was last written. Writing this buffer to stable storage is done asynchronously,

and does not block execution of any user process. Since all message logging is done

by the receiver, no interaction with the sender of a message is needed to complete the

logging of any message.

77

4.2 Protocol Specification

The design of this system follows the model presented in Chapter 2. However, many

details of a practical system are unspecified there. This section reviews the features

of the model that make up the protocols used by the system, and supplies the details

necessary to form a complete specification.

4.2.1 Data Structures

The following new data structures are maintained by each process:

" A state interval index, which is incremented each time a new message is received.

Each message sent by a process is tagged with the current state interval index

of the sender.

" A dependency vector, recording the maximum index of any state interval of each

other process on which this process currently depends. For each other process

from which this process has received messages, the dependency vector records

the maximum state interval index tagging a message received from that process.

" A buffer of messages received by the process that have not yet been logged on

stable storage. For each message in the buffer, the message data, the identifi-

cation of the sending process, and the SSN (send sequence number) and state

interval index tagging the message are recorded in the buffer. This buffer is

stored in the local volatile memory of the receiving node. Messages are logged

by writing this buffer to stable storage.

Each of these data items except the message buffer must be included in the check-

point of the process. Also, the existing data structures used by a process for duplicate

message detection (Section 1.2) must be included in the checkpoint.

78

4.2.2 Process Operation

During execution, each process maintains its own current state interval index, which

is equal to the number of messages received by the process. Each message received

by a process is first checked to determine if it is a duplicate, using the SSN tagging

the message. Any duplicate messages are ignored. If the message is not a duplicate,

the state interval index of the process is incremented before the process is allowed to

examine the message. Messages sent by a process are also tagged with the current

state interval index of the sender. When a new message is received by a process,

the dependency vector of the receiving process is updated by setting its entry for

the sending process to the maximum of its current value and the state interval index

tagging the message received.

Each new message received is also saved in a message buffer in the volatile memory

of the receiving node. Messages are saved in this buffer until they are logged by writ-

ing the contents of the buffer to the message log on stable storage. This buffer may

be written at any time, such as when the amount of volatile memory used by buffered

messages exceeds some defined threshold, or after some defined time limit on the

delay between receiving and logging a message is reached. Likewise, the process may

be checkpointed at any time, such as after receiving some given number of messages

or consuming some given amount of processor since its last checkpoint. No synchro-

nization is required between message logging, checkpointing, and the communication

and computation of any process.

Each logged message includes the index of state interval started in the receiver by

that message. Each checkpoint includes the state interval index of the process at the

time that the checkpoint was written, and the complete current dependency vector of

the process. Once new messages received by a process are logged or new checkpoints

of a process are recorded on stable storage, some new state intervals of that process

may become stable, by Definition 2.6.

79

4.2.3 Failure Recovery

After a failure, the state of each surviving process is recorded on stable storage as an

additional checkpoint of that process. Also, any surviving messages that have been

received but not yet logged are recorded on stable storage in the message log. The

recovery state algorithm is then used to determine the current recovery state of the

system, indicating the state to which the system will be restored as a result of this

failure. The surviving process states and received messages must be written to stable

storage before determining the current recovery state, since only information recorded

on stable storage is used by the recovery state algorithm. This allows the algorithm

to be restartable in case another failure occurs during this recovery.

To restore the state of the system to the current recovery state, the states of

all failed processes must be restored. Each failed process is first restarted from the

effective checkpoint for its state interval in the current recovery state. Any messages

received the process since that checkpoint are then replayed to it from the log, and

using these logged messages, the recovering process deterministically reexecutes to

restore its state to the state interval for this process in the current recovery state.

In addition to restoring the state of each failed process, any other process currently

executing in a state interval beyond its state interval in the current recovery state

must be rolled back to complete recovery. Each such process is forced to fail and is

restored to its state interval in the current recovery state in the same way as other

failed processes. If additional processes fail during recovery, the recovery is simply

restarted, since all information used in the algorithm is recorded on stable storage.

4.3 The Batch Recovery State Algorithm

The batch recovery state algorithm is a simple algorithm for determining the current

recovery state of the system. It can be executed at any time, and considers all process

state intervals that are currently stable in finding the maximum consistent system

state composed of them. In the current implementation, which will be described in

Section 4.5, the algorithm is executed only when beginning recovery after a failure.

80

However, it could also be executed when a group of new messages are logged by some

process, or could be executed periodically in order to allow output to the outside

world to be released more quickly.

Conceptually, the algorithm begins its search for the current recovery state at the

highest point in the portion of the system history lattice that has been recorded on

stable storage, and searches backward to lower points in the lattice until a consistent

system state is found. This system state must then be the current recovery state of

the system. In particular, the following steps are performed by the algorithm:

1. Make a new dependency matrix D = [5.], where each row i is set to the

dependency vector for the maximum stable state interval of process i.

2. Loop on step 2 while D is not consistent. That is, loop while there exists some

i and j for which 6, > bj, showing that state interval bjj of process j depends

on state interval 6ji of process i, which is greater than process i's current state

interval 6bi in D.

(a) Find the maximum index a less than 68j of any stable state interval of

process j such that component i of the dependency vector for this state

interval a of process j is not greater than bij.

(b) Replace row j of D with the dependency vector for this state interval a of

process j.

3. The system state represented by D is now consistent and is composed entirely

of stable process state intervals. It is thus the current maximum recoverable

system state. Return it as the current recovery state.

A procedure to perform this algorithm is shown in Figure 4.1. Here, DM is

a dependency matrix used by the algorithm to represent the system state that is

currently being considered. For each stable process state interval a of each process i,

the vector DV' represents the dependency vector for that state interval. The result of

the algorithm is a vector CRS, such that for each i, CRS[l] records the state interval

index for process i in the new current recovery state.

81

fori--l ton do
a +- maximum index such that stable(i, a);
set row i of matrix DM to DV';

while 3 i,j such that DM[j, i] > DM[i, i] do
a 4- maximum index less than DMfj, j such that

stable(j, a) A DV'[i] _ DM[i, i];
replace row j of DAf with DV';

for i +1 to n do CRS[iI +- DM[i, i];

Figure 4.1 The batch recovery state algorithm

Theorem 4.1 The batch recovery state algorithm completes each exe-

cution with CRS[i] = pi, for all i, where R' = [p'..] is the current recovery

state of the system when the algorithm is executed.

Proof If the algorithm terminates, the system state found must be consistent, as

ensured by the predicate of the while loop, by Definition 2.4. This system state must

also be recoverable, since each process state interval included in it by the for loop

at the beginning of the algorithm is stable, and only stable process state intervals

are used to replace components of it during the execution of the while loop. Since

logged messages and checkpoints are not removed from stable storage until no longer

needed for any future possible failure recovery, following Lemmas 2.4 and 2.5, some

recoverable system state must exist in the system. The search by the algorithm starts

at the maximum system state, say D, composed of only stable process state intervals.

Therefore, some recoverable system state R' -< D must exist. Thus, by Theorem 2.1,

the algorithm must find some recoverable system state, and therefore must terminate.

82

The following loop invariant is maintained by the algorithm at the beginning of

the while loop body on each iteration:

If the matrix DM represents system state D, then no recoverable system

state R' currently exists such that D -< R'.

Before the first iteration of the loop, this invariant must hold, since the system state

D is the maximum system state that currently exists having each component process

state interval stable. On each subsequent iteration of the loop, if the loop predicate

finds some i and j such that DM', i] > DM[i, ij, then process j (in state interval

DM[J, j]) in system state D depends on state interval DMUI', i] of process i, but

process i in D is only in state interval DM[i, i]. Therefore, the system state rep-

resented by D is not consistent. The loop invariant is maintained by choosing the

largest index a < DM[j, j] such that state interval a of process j is stable and does

not depend on a state interval of process i greater than DM[i, i]. Since on each it-

eration of the loop, the state interval index of one process decreases, along with its

corresponding dependency vector, the system state D represented by DM after each

iteration precedes its value from the previous iteration. Thus, no recoverable system

state R' currently exists such that D -< R'.

When the while loop terminates, the system state D represented by DM must be a

recoverable system state. Thus, by the loop invariant, D is the maximum recoverable

system state that currently exists, and must therefore be the current recovery state

of the system. The algorithm then copies the state interval index of each process in

D into the corresponding elements of CRS. E]

4.4 The Incremental Recovery State Algorithm

Although the batch recovery state algorithm is simple, it may repeat a substantial

amount of work each time it is invoked, since it does not save any partial results from

previous searches. The incremental recovery state algorithm attempts to improve on

this by utilizing its previous search results. Whereas the batch algorithm searches

83

downward from this highest point in the lattice, the incremental algorithm searches

upward in the lattice, from the previous current recovery state, which is the maximum

known recoverable system state.

The algorithm is invoked once for each new process state interval that becomes

stable, either as a result of a new checkpoint being recorded for the process in that

state interval, or because all messages received since the effective checkpoint for that

interval are now logged. For each new state interval a of some process k that be-

comes stable, the algorithm determines if a new current recovery stateexists. It first

attempts to find some new recoverable system state in which the state of process k

haz advanced to state interval a. If no such system state exists, the current recovery

state of the system has not changed. The algorithm records the index of this state

interval and its process identifier on one or more lists to be checked again later. If a

new recoverable system state is found, the algorithm searches for other greater recov-

erable system states, using the appropriate lists from its earlier executions. The new

current recovery state is the maximum recoverable system state found in this search.

4.4.1 Finding a New Recoverable System State

The heart of the batch recovery state algorithm is the function FINDREC. Given

any recoverable system state R = [p..] and some stable state interval a of some

process k with a > Pkk, FINDREC attempts to find a new recoverable system state

in which the state of process k is advanced at least to state interval 0. It does this

by also including any stable state intervals from other processes that are necessary to

make the new system state consistent, applying the definition of a consistent system

state in Definition 2.4. The function succeeds and returns true if such a consistent

system state can be composed from the set of process state intervals that are currently

stable. Since the state of process k has advanced, the new recoverable system state

found must be greater than state R in the system history lattice.

Input to the function FLVDREC consists of the dependency matrix of some

recoverable system state R = [p..], the process identifier k and state interval index

a > pk A: of a stable state interval of process k, and the dependency vector for each

84

stable process state interval 0 of each process x such that 0 > pz. Conceptually,

FINDREC performs the following steps:

1. Make a new dependency matrix D [6..] from matrix R, with row k replaced

by the dependency vector for state interval a of process k.

2. Loop on step 2 while D is not consistent. That is, loop while there exists some I

and j for which 6i > 6, j. This shows that state interval 6j j of process j depends

on state interval 6j of process i, which is greater than process i's current state

interval 6 i in D.

Find the minimum index a of any stable state interval of process i such that

a > .ji:

(a) If no such state interval a exists, exit the algorithm and return false.

(b) Otherwise, replace row i of D with the dependency vector for this state

interval a of process i.

3. The system state represented by D is now consistent and is composed entirely of

stable process state intervals. It is thus recoverable and greater than R. Return

true.

An efficient procedure for the function FINDREC is shown in Figure 4.2. This

procedure operates on a vector RV, rather than on the full dependency matrix rep-

resenting the system state. For all i, RV[i] contains the diagonal element from row i

of the corresponding dependency matrix. When FINDREC is called, each RV[i]

contains the state interval index of process i in the given recoverable system state.

The dependency vector of each stable state interval 0 of each process x is represented

by the vector DVO. As each row of the matrix is replaced in the algorithm out-

line above, the corresponding single element of RV is changed in FINDREC. Also,

the maximum element from each column of the matrix is maintained in the vector

MAX., such that for all i, MAX[i] contains the maximum element in column i of the

corresponding matrix.

85

function FIND_REC(RV, k, o)

RV[k] + o;
for i +- 1 to n do MAX[i] ,- max(RV[i], DVfi]);

while 3 i such that MAX[i] > RV[i] do
a -- minimum index such that

a > MAX(i] A stable(i,a);
if no such state interval a exists then return false;
RVZj 4 a;
for j 1 to n do MAX[j] +- max(MAX[jI, DVEj]);

return true;

Figure 4.2 Procedure to find a new recoverable state

Lemma 4.1 If the function FINDREC is called with a known recov-

erable system state R = [p..] and state interval a of ?rocess k such that

a > Pk , FINDREC returns true if there exists some recoverable sys-

tem state R' = [p..], such that R -< R' and P'k >- a, and returns false

otherwise. If FINDREC returns true, then on return, RV[i] = p'j, for

all i.

Proof The predicate of the while loop determines whether the dependency matrix

corresponding to RV and MAX is consistent, by Definition 2.4. When the condition

becomes false and the loop terminates, the matrix must be consistent because, in each

column i, no element is larger than the element on the diagonal in that column. Thus,

if FINDREC returns true, the system state returned in RV must be consistent.

This system state must also be recoverable, since its initial component process state

86

intervals are stable and only stable process state intervals are used to replace its

entries during the execution of FINDREC.

The following loop invariant is maintained by function FINDREC at the begin-

ning of the while loop body on each iteration:

If a recoverable system state R' = [p..] exists such that R -< R' and

p, > RV[i], for all i, then p', > AIAX[i].

The invariant must hold before the first iteration of the loop, since any consistent

system state must have RV"I] >_ MAX[il, for all i, and any state R' found such that

p RV[i] must then have p', > RV[i] >_ MAX[i]. On each subsequent iteration of

the loop, the invariant is maintained by choosing the smallest index a > MAX[i] such

that state interval a of process i is stable. For the matrix to be consistent, a must not

be less than MAX[i]. By choosing the minimum such a, all components of DV' are

also minimized because no component of the dependency vector can decrease through

execution of the process. Thus, after replacing row i of the matrix with DV', the

components of MAX are minimized, and for any recoverable (consistent) state R!

that exists, the condition pi >- MAX[i] must still hold for all i.

If no such state interval a > MAX[il of process i is currently stable, then no

recoverable system state R' can exist, since any such R' must have p~j >- MAX[i].

This is exactly the condition under which the function FINDREC returns false. C

Suppose state interval a of process k depends on state interval 6 of process i, then

the function FINDREC searches for the minimum a > 6 that is the index of a state

interval of process i that is currently stable. For the set of process state intervals

that are currently stable, the dependency on state interval 6 of process i has been

transferred to state interval a of process I (including the case in which a = b), and

state interval a of process k -s said to currently have a transferred dependency on

state interval a of process i.

Definition 4.1 A state interval a of some process k, with dependency

vector (b.), has a transferred dependency on a state interval a of process i

if and only if:

87

(1) a >

(2) state interval a of process i is stable, and

(3) there does not exist another stable state interval 03 of process 1 such

that a > 3 > b,.

The transitive closure of the transferred dependency relation from state interval 0

of process k describes the set of process state intervals that may be used in any

iteration of the while loop of the function FINDREC, when invoked for this state

interval. Although only a subset of these state intervals will actually be used, the

exact subset used in any execution depends on the order in which the while loop

finds the next i that satisfies the predicate.

4.4.2 The Complete Algorithm

Using the function FINDREC, the complete incremental recovery state algorithm

can now be stated. The algorithm, shown in Figure 4.3, uses a vector CRS to record

the state interval index of each process in 'ie current recovery state of the system.

When a process is created, its entry in CRS is initialized to 0. When some state

interval a of some process .k becomes stable, if this state interval is in advance of

the old current recovery state in CRS, the algorithm checks if a new current recovery

state exists. During the execution, the vector NVEWCRS is used to store the maximum

known recoverable system state, which is copied back to CRS at the completion of

the algorithm.

When invoked, the algorithm calls FINDREC with thf old current recovery

state and the identification of the new stable process state interval. The old current

recovery state is the maximum known recoverable system state, and tne new stable

state interval is interval a of pro'ess k. If FINDREC returns false, then no greater

recoverable system state exists in which the state of process k has advanced at least

to state interval a. Thus, the current recovery state of the system has not changed.

as shown by the following two lemmas.

88

if a < CRS[k] then exit;

NEWCRS +- CRS.,

if - FIND-XREC(NE WCRS k, a) then
forzi - 1 to ncdoifzi #k then

/4-DV[i];
if 0 > CRS [i] then DEFERP +- DEFER3 U {(k, o,)}

exit;

WORK +- DEFER'k;
/3 +- a -- i;
while -stable(k, /3) do

WORK +- WORK U DEFER";/~ 31

while WORK $ 0 do
remove some (x, 9) from WORK:
if 9 > NEWCRS[x] then

RV +- NEWCRS;
if FIND-REC(RVx, 9) then NEWCRS 4-RV;

if 9 < JVEWCRS[x] then
WORK , WORK U DEFER',;

S+- 0-i1;
while -stable(x, /3) do

WORK +- WORK U DEFER";/~ / 1

CR5 + NEWORS;

Figure 4.3 The incremental recovery state algorithm, invoked when
state interval a- of process k becomes stable.

89

Lemma 4.2 When state interval o of process k becomes stable, if the

current recovery state changes from R =-[p..] to R' = [p'.], R --< R',

then p = k .

Proof By contradiction. Suppose the new current recovery state R' has PAk :A a.

Because only one state interval has become stable since R was the current recovery

state, and because process k in the new current recovery state R' is not in state

interval a, then all process state intervals in R' must have been stable before state

interval a of process k became stable. Thus, system state R' must have been recov-

erable before state interval o, of process k became stable. Since R -< R', then R'

must have been the current recovery state before state interval a of process k became

stable, contradicting the assumption that R was the original current recovery state.

Thus, if the current recovery state has changed, then pkk = a. C

Lemma 4.3 When state interval o of process k becomes stable, if the

initial call to FINDREC by the recovery state algorithm returns false,

then the current recovery state of the system has not changed.

Proof By Lemma 4.2, if the current recovery state changes from R = [p..] to

R'= [p..] when state interval a of process k becomes stable, then Pkk = a. However,

a false return from FINDREC indicates that no recoverable system state R' exists

with pk > a, such that R -< R'. Therefore, the current recovery state cannot have

changed. 13

Associated with each state interval 0 of each process i that is in advance of the

known current recovery state is a set DEFERq, which records the identification of

any stable process state intervals that depend on state interval 0 of process i. That

is, if the current recovery state of the system is R = [p..], then for all i and 3 such

that 3 > pi., DEFER records the set of stable process state intervals that have 1
in component i of their dependency vector. All DEFER sets are initialized to the

empty set when the corresponding process is created. If FINDREC returns false

when some new process state interval becomes stable, that state interval is entered in

90

at least one DEFER set. The algorithm uses these DEFER sets to limit the search

space for the new current recovery state on its future executions.

If the initial call to FINDREC by the recovery state algorithm returns true, a

new greater recoverable system state has been found. Additional calls to FINDREC

are used to search for any other recoverable system states that exist that are greater

than the one returned by the previous call to FINDREC. The new current recovery

state of the system is the state returned by the last call to FINDREC that rcturned

true. The algorithm uses a result of the following lemma to limit the number of calls

to FINDREC required.

Lemma 4.4 Let R = [p..] be tile existing current recovery state of the

system, and then let state interval a of process k become stable. For any

stable state interval 0 of any process x such that 0 > p.,, no recoverable

system state R! = [p..] exists with p', > 9 if state interval 0 of process x

does not depend on state interval a of process k by the transitive closure

of the transferred dependency relation.

Proof Since state interval 0 of process x is in advance of the old current recovery

state, it could not be made part of any recoverable system state R' before state

interval a of process k became stable. If it does not depend on state interval a of

process k by the transitive closure of the transferred dependency relation, then the

fact that state interval a has become stable cannot affect this.

Let 6 be the maximum index of any state interval of process k that state interval 0

of process x is related to by this transitive closure. Clearly, any new recoverable sys-
tem state R' .6 R that now exists with p'X > 9 must have Pk 6, by Definitions 4.1

and 2.4, and since no component of any dependency vector decreases through exe-

cution of the process. If 6 > o,, then system state R' was recoverable before state

interval a became stable, contradicting the assumption that 0 > pk. Likewise, if

6 < a, then R' cannot exist now if it did not exist before state interval a of process k

became stable, since state interval 6 must have been stable before state interval a

became stable. Since both cases lead to a contradiction, no such recoverable system

state R' can now exist without this dependency through the transitive closure. 0

91

The while loop of the recovery state algorithm uses the DEFER sets to traverse

the transitive closure of the transferred dependency relation backward from state

interval a of process k. Each state interval 0 of some process x visited on this traversal

depends on state interval a of process k by this transitive closure. That is, either state

interval 0 of process x has a transferred dependency on state interval a of process k,

or it has a transferred dependency on some other process state interval that depends

on state interval a of p ,,c.s k by this transitive closure. 1he traversal uses the

set WORK to record those process state intervals from which the traversal must still

be performed. When WORK has been emptied, the new current recovery state has

been found and is copied back to CRS.

During this traversal, any dependency along which no more true results from

FINDREC can be obtained is not traversed further. If the state interval 0 of

process x that is being considered is in advance of the maximum known recoverable

system state, FLVD_REC is called to search for a new greater recoverable system

state in which process x has advanced at least to state interval 0. If no such re-

coverable system state exists, the traversal from this state interval is not continued,

since FINDREC will return false for all other state intervals that depend on state

interval 0 of process x by this transitive closure.

Lemma 4.5 If .trit- interval o of process i depends on state interval 0 of

process x by the tra.. ive closure of the transferred dependency relation,

and if no recoverable system state R = [p..] exists with p__. :> 0, then no

recoverable system state R' = [p..] exists with p , >: 0.

Proof This follows directly from the definition of a transferred dependency in

Definition 4.1. Either state interval 0 of process i has a transferred dependency on

state interval 0 of process x, or it has a transferred dependency on some other process

state interval that depends on state interval 0 of process x by this transitive closure.

By this dependency, any such recoverable system state R' that exists must also have

p _ 0 but no such recoverable system state exists since R does not exist. Therefore,

R' cannot exist.

92

Theorem 4.2 If the incremental recovery state algorithm is executed

each time any state interval a of any process k becomes stable, it will

complete each execution with CRS[i] = p',, for all i, where R' = [pt.] is

the new current recovery state of the system.

Proof The theorem holds before the system begins execution since CRS[i] is ini-

tialized to 0 when each process i is created. Likewise, if any new process i is created

during execution of the system, it is correctly added to the current recovery state by

setting CRS[iJ = 0.

When some state interval a of some process k becomes stable, if the initial

call to FINDREC returns false, the current recovery state remains unchanged, by

Lemma 4.3. In this case, the recovery state algorithm correctly leaves the contents

of CRS unchanged.

If this call to FIND.REC returns true instead, the current recovery state has

advanced as a result of this new state interval becoming stable. Let R = [p..] be the

old current recovery state before state interval a of process k became stable, and let

D = [5..] be the system state returned by this call to FINDREC. Then R -< D,

by Lemma 4.1. Although the system state D may be less than the new current

recovery state R', because the set of recoverable system states forms a lattice, then

R-< D - R'.

The while loop of the recovery state algorithm finds the new current recovery state

by searching forward in the lattice of recoverable system states, without backtracking.

This search is performed by traversing backward through the transitive closure of the

transferred dependency relation, using the information in the DEFER sets. For each

state interval 0 of each process x examined by this loop, if no recoverable system state

exists in which the state of process x has advanced at least to state interval 0, the

traversal from this state interval is not continued. By Lemmas 4.4 and 4.5, this loop

considers all stable process state intervals for which a new recoverable system state

can exist. Thus, at the completion of this loop, the traversal has been completed,

and the last recoverable system state found must be new current recovery state. The

algorithm finally copies this state from NEWCRS to CRS. 0

93

4.4.3 An Example

Figure 4.4 shows the execution of a system of three processes in which the incremental

recovery state algorithm is used. Each process has been checkpointed in its state

interval 0, but no other checkpoints have been written. Also, a total of four messages

have been received in the system, but no messages have been logged yet. Thus, only

state interval 0 of each process is stable, and the current recovery state of the system

is composed of state interval 0 of each process. In the recovery state algorithm,

CRS = (0, 0, 0), and all DEFER sets are empty.

If message a from process 2 to process 1 now becomes logged, state interval 1

of process 1 becomes stable, and has a dependency vector of (1, 1, 1). The recovery

state algoritLm is executed and calls FINDREC with or = 1 and k = 1, for state

interval 1 of process 1. FINDREC set~s RV to (1, 0, 0) and MAX to (1, 1,0). Since

MAX[21 > RV(2J, a stable state interval c > I of process 2 is needed to make
a consistent system state. However, no such state interval of process 2 is currently

stable, and FLVDREC therefore returns false. The recovery state algorithm changes

DEFER' to 1 (1, 1) 1 and exits, leaving CRS unchanged at (0, 0, 0).

Next, if process 2 is checkpointed in state interval 2, this state interval becomes sta-

ble. Its dependency vector is (0, 2, 1). The recovery state algorithm calls FINDREC,

which sets RV to (0,2,0) and MAX to (0,2.1). Since no state interval a > I of

0 1Processi 1

a/\ a

Process 2 I0 2
'\ /-

Process 310 .41

Figure 4.4 An example system execution

94

process 3 is stable, FINDREC returns false. The recovery state algorithm sets

DEFER' to { (2,2) } and exits, leaving CRS unchanged again.

Finally, if message b from process 2 to process 3 becomes logged, state interval 1

of process 3 becomes stable, and has a dependency vector of (1., 1, 1). The recovery

state algorithm calls FINLDREC which sets RV to (0,0, 1) and MAX to (0, 1, 1).

Since MAX[21 > RV[2], a stable state interval a > 1 of process 2 is required. State

interval 2 of process 2 is the minimum such stable state interval. Using its dependency

vector, RV and MAX are updated, yielding the value (0, 2, 1) for both. This system

state is consistent, and FINDREC returns true. The maximum known recoverable

system state in NEWCRS has then been increased to (0, 2, 1).

The WORK set is initialized to DEFER' = { (2,2) }, and the while loop of the

algorithm begins. When state interval 2 of process 2 is checked, it is not in advance

of NEWCRS, so the call to FINDREC is skipped. The sets DEFER' and DEFER'

are added to WORK, making WORK = { (1, 1) }. State interval 1 of process I is

then checked by the while loop. Procedure FINDREC is called, which sets both RV

and MAX to (1,2, 1), and therefore returns true. The maximum known recoverable

system state in NEIVCRS is updated by this call, to (1, 2, 1). The set DEFER' is

added to WORK, but since DEFER' = 0, this leaves WORK empty. The while

loop then terminates, and the value left in NEWCRS = (1,2, 1) is copied back to

CRS. The system state represented by this value of CRS is the new current recovery

state of the system.

This example illustrates a unique feature the batch and incremental recovery state

algorithms. These algorithms uses checkpointed process state intervals in addition

to logged messages in searching for the maximum recoverable system state. In this

example with the incremental recovery state algorithm, although only two of the four

messages received during the execution of the system have been logged, the current

recovery state has advanced due to the checkpoint of process 2. In fact, the two

remaining unlogged messages need never be logged, since the current recovery state

has advanced beyond their receipt.

95

4.5 Implementation

This optimistic message logging system has been implemented on a collection of

diskless SUN workstations under the V-System (Section 1.3). These workstations are

connected by an Ethernet network to a shared SUN network file server. The protocols

discussed in Section 4.2 are used for message logging and failure recovery, and the

batch recovery state algorithm discussed in Section 4.3 is used to find the current

recovery state when needed. The incremental recovery state algorithm has not yet

been implemented.

This implementation is similar to the implementation of sender-based message

logging described in Section 3.3. All V-System message-passing operations are sup-

ported, and all processes executing as part of the same V-System logical host are

treated as a single process in terms of the protocol specification. As with the sender-

based message logging implementation, this implementation currently supports the

use of message logging by only a single logical host per network node.

Each logical host is identified by a unique host index, assigned by the message

logging system when the logical host is created. The host index is an integer in the
range of 1 through n, where n logical hosts are currently using optimistic message

logging. This index serves as the process identifier used in the model of Chapter 2 and

in the protocol and algorithm specifications of this chapter. The logical host identifier

assigned by the V-System is not used as the index, since logical host identifiers are

assigned sparsely from a 16-bit field. Assigning the new host index simplifies using it

as a table index within the implementation.

4.5.1 Division of Labor

Each participating node in the system runs a separate logging server process, which

manages the logging of messages received by that node, and a separate checkpoint

server process, which manages the recording of checkpoints for that node. Also, a

single recovery server process, -running on the shared network file server of the system,

i- used to implement the rov-verv state algorithm. The recovery server process also

96

assigns the host index to each new logical host participating in the message logging

protocol. The kernel records received messages in the message buffer shared with the

local logging server process, and notifies the logging server when the buffer should be

written to stable storage.

Table 4.1 summarizes the amount of executable instructions and data added to

the kernel to support optimistic message logging and checkpointing for the SUN-3/60

V kernel configuration. These percentages are relative to the size of that portion

of the base kernel without message logging or checkpointing. In addition to sev-

eral small changes in the internal operation of some existing kernel primitives, only

four new primitives to support message logging and three new primitives to support

checkpointing were added to the kernel.

4.5.2 Message Log Format

For each node in the system, the message log for all processes executing on that node

is stored as a single file on the network file server. Until each message is written to

this file. it ;, saved in a me-age buT,-r ;n the volatile memory of the logging server

on the node that received the message. Messages in the message log file and in the

message buffer are stored in the same format.

Table 4.1

Size of kernel additions to support optimistic

message logging and checkpointing

Message Logging Checkpointing Total

Kbytes Percent Kbvtes Percent Kbytes Percent

Instructions 3.7 4.6 3.5 4.5 7.2 9.1
Data 7.4 3.8 0.0 0.0 7.4 3.8

Total 11.1 4.0 3.5 1.3 14.6 5.3

97

Each message in the log is stored in a LoggedMessage record of a format similar

to the LoggedMessage records used in the sender-based message logging implemen-

tation (Section 3.3.2). The LoggedMessage record saves the data of the message (a

copy of the network packet received), the host index of the sending logical host, the

index of the state interval of that host during which the message was sent. and the

index of the state interval started in the receiving logical host by the receipt of this

message. To simplify finding the dependency vector for stable process state intervals,

the LoggedMessage record also contains the value of the dependency vector entry for

this sender before it was updated after the receipt of this new message. That is, the

receiver saves the current value of its dependency vector entry for this sender in the

LoggedMessage record, and then sets this entry to the maximum of its current value

and the state interval index from which this message was sent. No other record types

are used in the message log.

These LoggedMessage records are packed into 8-kilobyte blocks, which are the

same size as hardware memory pages and data blocks on the file system. As each

message is received, a new LoggedMessage record is created to store it. The records

are created sequentially in a single block, until the next record needed will not fit into

the current block. A new block is then allocated, and the new record is created at the

beginning of that block. These blocks are saved in memory until they are written to

the message log file by the logging server. Each message log block begins with a short

header, which describes the extent of the space used within the biock. The header

also contains the index of the state interval started in this logical host by the receipt

of the first message in the block, and the complete dependency vector for the state

interval started in this logical host by the receipt of the last message in the block.

4.5.3 Packet Format

The standard V kernel packet format is used for all messages, but the following three

fields have been added to carry the additional information needed to support the

logging protocol:

98

stateIndex: This field gives the state interval index of the sender at the time that

the message in this packet was sent.

hostIndex: This field gives the unique host index assigned to the sending logical host

by the recovery server.

These new fields are used only by the message logging protocol, and are ignored by

the rest of the kernel. No new V kernel packet types are used.

4.5.4 The Logging Server

As new messages are received by a logical host, they are saved in the message buffer

by the kernel. This buffer is stored in the volatile memory of the local logging server

process, which periodically writes the contents of this buffer to the message log file

on the network storage server. The kernel requests the logging server to write this

buffer to the file each time a specified number of new messages have been received,

and when beginning recovery after any failure in the system. The system can also be

configured to trigger this writing after a specified number of new message log blocks

in memory have been filled, or after some maximum period of time has elapsed since

receiving the earliest message that has not yet been logged. This limits the amount

of memory needed to store the message buffer, and helps to limit the amount any

process may need to be rolled back to complete recovery from any failure.

After writing these messages from the buffer to the log file, the logging server also

sends a summary of this information to the single recovery server process on the file

server. For each message logged, this summary gives the state interval index started

in this host by the receipt of this message, the host index of the sender, and the value

of the receiver's dependency vector entry for this sender before it was updated from

the receipt of this new message (that is, the maximum index of any state interval of

the same sender on which this process depended before this message was received).

This summary is used by the recovery server to determine which new process state

intervals have become stable through message logging.

99

4.5.5 The Checkpoint Server

The checkpoint server operates the same as the checkpoint server used by sender-based

message logging described in Section 3.3.6, except that more than one checkpoint for

a given host is maintained in the same checkpoint file. In particular, the format of

each checkpoint is the same. and the memory of the host is written to the file as either

a full checkpoint or an incremental checkpoint. A full checkpoint writes the entire

address space to the file in a single operation, and is used for the first checkpoint

of each logical host. Thereafter, an incremental checkpoint is used to only write

the pages of the address space that have been modified since the last checkpoint was

completed. Most of this address space data is written concurrently with the execution

of the host, and the host is then frozen while the remainder of the checkpoint data is

written.

The checkpoint file begins with a list describing each checkpoint contained in the

file. Space in the file to write each section of the checkpoint data is dynamically

allocated within the file by the checkpoint server. Although only a portion of the

host address space is written to the file on each checkpoint, the entire address space

is always contained in the file, since any blocks not written have not been modified

since the previous checkpoint of this host. For each checkpoint, a bitmap is also

written to the file, describing the address space pages written for this checkpoint.

This bitmap enables the complete address space to be reconstructed from the most

recent version of each page written on all previous checkpoints in the file. After the

checkpoint has been completed, the recovery server is notified of the new process state

interval made stable by this checkpoint. This notification also includes the complete

current dependency vector of the host at the time of the checkpoint.

4.5.6 The Recovery Server

The recovery server implements a simple form of failure detection for each host that

has registered for a host index. The V-System ReceiveSpecif ic operation is used to

poll each host periodically. Recovery from any failures detected is performed under

100

the control of the recovery server, using the current recovery state determined by the

batch recovery state algorithm. The input to the algorithm comes fro.m. the su, 'maries

of logged messages sent by the logging server on each host, and from notification of

each new checkpoint sent from the checkpoint server on each host.

Failure recovery proceeds as described in Section 4.2.3. Each failed logicai host is

restored on a separate available node in the system. Each other process L-at must

also be rolled back because it is currently executing in a state interval beyond its state

interval in the current recovery state is restored on the node on which the process is

currently executing. For each host to be restored, the recovery server sends a request

to the checkpoint server on the node on which recovery is to take place. In response,

each checkpoint server completes the recovery of that individual host in much the

same way as recovery using sender-based message logging is performed, as described

in Section 3.3.6. However, the sequence of messages to be replayed from the message

log to the recovering host is read directly from the message log file by the local logging

server, since all messages are logged by their receiver rather than by their sender.

Again, as the host reexecutes from its checkpointed state, it will resend any

messages that it sent during this period before the failure. The treatment of these

duplicate messages, though, differs from that used with sender-based message logging.

Until the last message being replayed to the recovering host has been received, any

messages sent by the host are ignored by the local kernel and are not actually trans-

mitted on the network. With sender-based message logging, these messages must be

transmitted, in order to recreate the volatile message log at the sender by the return

of the original RSN from the receiver. All messages sent while the list of messages

to be replayed is nonempty must be duplicates, since all execution through the end

of this state interval (and the beginning of the next) must duplicate execution from

before the failure. However, after the last message being replayed has been received

and this list is empty, it cannot be known at what point during this last state interval

the failure occurred. Therefore, any further messages sent by the recovering host are

transmitted normally, and any duplicates are detected at the receivers by the existing

101

duplicate detection method of the underlying system, using the send sequence number

(SSN) tagging each message sent.

4.6 Performance

The performance of this optimistic message logging system has been measured on

the same network of workstations used to evaluate the performance of sender-based

message logging, as described in Section 3.4. Each workstation used is a diskless SUN-

3/60, with a 20-megahertz Motorola MC68020 processor, and the network used is a

10 megabit per second Ethernet. The file server used on this network is a SUN-3/160,

with a 16-megahertz MC68020 processor and a Fujitsu Eagle disk.

4.6.1 Communication Costs

The measured overhead of using optimistic message logging with common V-System

communication operations averaged about 10 percent, with a maximum of about

18 percent, depending on the operation. The operations measured are the sa-ne

as those reported in Section 3.4.1 for sender-based message logging. These perful-

mance measurements for optimistic message logging are shown in Table 4.2. The tin. -

for each operation is shown in milliseconds, both with and without using optimistic

message logging. The performance is shown for a Send-Receive-Reply with no ap-

pended data segment and with a 1-kilobyte appended data segment, for a Send of a

message as a datagram, and for MoveTo and MoveFrom operations of 1 and 64 kilobytes

of data each. All times were measured at the user-level, and show the elapsed time

between invoking the operation and its completion. For each operation, the overhead

of using optimistic message logging is also shown. These overheads are shown as an

increase in the elapsed time required to complete the operation with logging, and as

a percentage increase in elapsed running time.

For each packet sent in these operations, all message logging overhead occurs at

the host receiv;ag that packet, and is composed mainly of the time needed to allocate

space in the message buffer and to copy the new packet into it. The lack of overhead

102

Table 4.2

Performance of common V-System communication operations using
optimistic message logging (milliseconds)

Message Logging Overhead

Operation With Without Time Percent

Send-Receive-Reply 1.6 1.4 .2 14
Send(IK)-Receive-Reply 3.0 2.7 .3 11
Datagram Send .4 .4 .0 0
MoveTo(1K) 3.3 2.8 .5 18
MoveTo(64K) 90.0 88.0 2.0 2

MoveFrom(1K) 3.3 2.8 .5 18
MoveFrom(64K) 89.0 87.0 2.0 2

at the sender is demonstrated by the measured overhead time of 0 milliseconds for

sending a message as a datagram. Since no packets are returned by the receiver for

this operation, overhead at the receiver does not affect the sending performance. The

overh-ad of copying the packet into the message buffer at the receiver is approximately

27 microseconds for a packet of minimum size, and approximately 162 microseconds

for a packet of maximum size.

4.6.2 Checkpointing Costs

The performance of checkpointing using optimistic message logging is similar to its

performance using sender-based message logging, described in Section 3.4.2. No dif-

ference in the cost of writing the checkpoint file was measurable, as the extra overhead

of allocating space in the checkpoint file for multiple versions of the checkpoint was

negligible. The additional time required to notify the recovery server of the process

state interval made stable by this checkpoint was also negligible, since it involves only

a single Send-Receive-Reply over the network. The checkpointing performance has

been summarized in Table 3.3 in Chapter 3.

103

4.6.3 Recovery Costs

As with the checkpointing performance, the performance of failure recovery using

optimistic message logging is similar to its performance using sender-based message

logging, described in Section 3.4.3. The time required to read the checkpoint file

and restore the state is the same as that required when using sender-based message

logging. These times were summarized in Table 3.4 in Chapter 3. However, the time

to collect the messages to be replayed from the log during recovery using optimistic

message logging differs from that required by sender-based message logging. With

sender-based message logging, these messages must be collected from the separate

logs at the hosts that sent them, but with optimistic message logging, they are read

directly from the single message log file written by the receiving host. These times

vary with the number of messages to be replayed, but are also negligible compared

to the time required to read and restore the checkpoint file, and to complete any

reexecution based on them. The running time for the recovery state algorithm itself

is also negligible.

4.6.4 Application Program Performance

The overall overhead of optimistic message logging on the execution of distributed

application programs was measured using the same set of programs that were used in

the evaluation of sender-based message logging, reported in Section 3.4.4. Specifically,

the performance of the following three programs was measured:

nqueens: This program counts the number of solutions to the n-queens problem for

a given number of queens n.

tsp: This program finds the solution to the traveling salesman problem for a given

map of n cities.

gauss: This program performs Gaussian elimination with partial pivoting on a given

n x n matrix of floating point numbers.

104

The set of problems solved with these programs is also the same as that used in

evaluating sender-based message logging.

Table 4.3 summarizes the performance of these application programs for all prob-

lems in this set. Each entry in this table shows the application program name and

the problem size n. The running time in seconds required to solve each problem, both

with and without using optimistic message logging, is given. The overhead of using

optimistic message logging for each problem is shown in seconds as CIE d:fference

between its two running times, and as a percentage increase over the running time

without logging. The maximum measured overhead was under 4 percent, and for

most problems, overhead was much less than 1 percent.

4.7 Related Work

Two other methods to support fault tolerance using optimistic message logging and

checkpointing have been published in the literature, although neither of these have

able 4.3

Performance of the distributed application programs using
optimistic message logging (seconds)

Message Logging Overhead

Program Size With Without Time Percent

nqueens 12 6.04 6.03 .01 .17
13 34.99 34.87 .12 .34
14 210.82 210.73 .09 .04

tsp 12 5.21 5.19 .02 .39
14 16.26 15.94 .32 2.01
16 844.53 843.45 1.08 .13

gauss 100 10.73 10.37 .36 3.47
200 68.84 67.36 1.48 2.20
300 217.40 215.86 1.54 .71

105

been implemented. The work in this thesis has been partially motivated by Strom

and Yemini's Optimistic Recovery system [Strom85], and recently Sistla and Welch

have proposed a new method using optimistic message logging [Sistla89], based in
part on some aspects of both Strom and Yemini's system and on an earlier version of

this work [Johnson88]. The system in this chapter is unique among these in that it
always finds the maximum recoverable system state. Although these other systems

occasionally checkpoint processes as this system does, they do not consider the check-
points in finding the current recovery state of the system. The two recovery state

algorithms presented in this chapter include these checkpoints and logged messages in
the search for the current recovery state, and thus may find recoverable system states

that these other algorithms do not. Also, by including these checkpointed process

states, some messages received by a process before it was checkpointed may not need

to be logged, as illustrated in the example of Section 4.4.3.

In Strom and Yemini's Optimistic Recovery system [Strom85], each message sent
is tagged with a transitive dependency vector, which has size proportional to the
number of processes in the system. Also, each process is required to locally maintain
its knowledge of the message logging progress of each other process in a log vector,
which is either periodically broadcast by each process or appended to each message

sent. The new system presented in this chapter tags each message only with the

current state interval index of the sender. Information equivalent to the log vector is
maintained by the recovery state algorithm, but uses no additional communication

beyond that already required to log each message. Although communication of the

transitive dependency vector and the log vector allows control of recovery to be less
centralized and may result in faster commitment of output to the outside world, this

additional communication may add significantly to the failure-free overhead of the

system.

Sistla and Welch have proposed two alternative recovery algorithms based on op-
timistic message logging [Sistla89]. One algorithm tags each message sent with a

transitive dependency vector as in Strom and Yemini's system, whereas the other

algorithm tags each message only with the sender's current state interval index as in

106

the system of this chapter. To find the current recovery state, each process sends in-

formation about its message logging progress to all other processes, after which their

second algorithm also exchanges additional messages, essentially to distribute the

complete transitive dependency information. Each process then locally performs the

same computation to find the current recovery state. This results in O(n2) messages

for the first algorithm, and O(n3) messages for the second, where n is the number

of processes in the system. In contrast, the recovery state algorithms presented here

require no additional communication beyond that necessary to log each message on

stable storage. Again, the additional communication in their system allows control

of recovery to be less centralized. However, the current recovery state must be deter-

mined frequently, so that output to the outside world can be committed quickly. The

increased communication in Sistla and Welch's algorithms may substantially increase

the failure-free overhead of the system.

Some mechanisms used to support atomic actions (Section 1.4.3) resemble the
use of optimistic message logging and checkpointing. Logging on stable storage is

used to record state changes of modified objects during the execution of a trans-

action. Typically, the entire state of each object is recorded, although logical log-

ging [Bernstein87] records only the names of operations performed and their parame-

ters, such that they can be reexecuted during recovery, much the same as reexecuting

processes based on logged messages. This logging may proceed asynchronously dur-

ing the execution of the transaction, but must be forced to stable storage before

the transaction can commit. This is similar to the operation of optimistic message

logging. Before the transaction can commit, though, additional synchronous logging

is required to ensure the atomicity of the commit protocol, which is not necessary

with message logging and checkpointing methods. However, this extra logging can be

reduced through the use of special commit protocols, such as the Presumed Commit

and Presumed Abort protocols [Mohan86].

107

4.8 Summary

This chapter has presented a new transparent optimistic message logging system that

guarantees to find the maximum possible recoverable state in the system. This is

achieved by utilizing all logged messages and checkpoints in forming recoverable sys-

tem states, using the model presented in Chapter 2. Previous systems using optimistic

message logging and checkpointing [Strom85, Sistla89] have considered only logged

messages in forming recoverable system states, and thus may not find the maximum

possible state. Also, but utilizing the checkpointed states, some messages received

by a process before it was checkpointed may not need to be logged. Furthermore,

this system adds less communication overhead to the system than do these previous

methods.

Each message sent by a process includes the current state interval index of the

sender. No other communication overhead is incurred beyond that necessary to log

each message and to record the process checkpoints. The current recovery state of the

system is determined using a recovery state algorithm, and two alternative algorithms

were presented in this chapter: a batch algorithm and an incremental algorithm. The

batch algorithm finds the current recovery state "from scratch" each time it is invoked,

considering all process state intervals that are currently stable. It uses no internal

state information saved from previous executions of the algorithm. On the other hand,

the incremental algorithm begins its search for the current recovery state with the

previously known value, and utilizes information saved from its previous executions

to shorten its search. It must be executed once for each new process state interval

that becomes stable, and updates the current recovery state based on the fact that

a single new process state interval has become stable. Each algorithm runs centrally

on the shared network file server on which all logged messages and checkpoints are

recorded, reducing the network communication requirements of tne algorithm. These

algorithms are restartable if the file server fails, since all information used by them

has been recorded on stable storage.

108

This optimistic message logging system has been completely implemented under

the V-System, using the batch recovery state algorithm. Measured on a network of

SUN-3/60 workstations, the overhead of this system on individual communication

operations averaged only 10 percent, ranging from about 18 percent to 2 percent,

for different operations. The overhead on distributed application programs using this

system ranged from a maximum of under 4 percent to much less than 1 percent.

Chapter 5

Conclusion

This thesis has examined the class of fault-tolerance methods using message log-

ging and chckpcinting in distributed systems. These methods are transparent and

general-purpose, and can be used by application programs without the need for spe-

cial programming. This final chapter summarizes the research contributions of this

thesis, and explores related avenues for future work.

5.1 Thesis Contributions

The contributions of this thesis fall mainly into three areas: the theoretical frame-

work and model developed in Chapter 2, the new pessimistic message logging system

presented in Chapter 3, and the new optimistic message logging system presented in

Chapter 4.

5.1.1 Theoretical Framework

The model developed in this framework precisely defines the properties of systems

using message logging and checkpointing to provide fault tolerance, and is indepen-

dent of the particular protocols used in the system. The execution of each process

is divided into discrete state intervals by the messages received by the process, and

the execution within each state interval is assumed to be deterministic. To represent

process and system states in the model, the dependency vector and the dependency

matrix were introduced. These new structures allow the relevant aspects of process

and system states to be concisely represented, and allow mathematical expressions of

important properties of these states. A stable process state interval is one that can

109

110

be recreated from information recorded on stable storage, a consistent system state

is one that could have been observed at some instant during preceding failure-free

execution of the system from its initial state, and a recoverable system state is a con-

sistent system state in which all process state intervals are stable. This model is the

first general model developed specifically to support reasoning about systems using

message logging and checkpointing to provide fault tolerance.

An important result of this model is a theorem establishing the existence of a

unique maximum recoverable system state at all times in any system using message

logging and checkpointing. The proof of this theorem relies on other results of the

model, namely that the set of system states that have occurred during any single

execution of the system forms a lattice, with the sets of consistent and recoverable

system states as sublattices. At any time, this unique maximum recoverable system

state is defined as the current recovery state, which is the state to which the system

will be recovered if a failure occurs at that time. Other results of the model include

sufficient conditions for avoiding the domino effect in the system, for releasing output

to the outside world, and for removing checkpoints and logged messages from stable

storage when they are no longer needed for any possible future recovery in the system.

This model was also used in this thesis to prove the correctness of the new message

logging methods presented in Chapters 3 and 4.

5.1.2 Pessimistic Message Logging

The sender-based message logging system developed in Chapter 3 uses a new pes-

simistic message logging protocol designed to minimize its overhead on the system.

This protocol is unique in several ways. First, sender-based message logging logs each

message in the local volatile memory of the machine from which it was sent, which

avoids the expense of sending an extra copy of each message either to stable storage

on disk or to some other special backup process elsewhere on the network. The pro-

tocol also greatly relaxes the restrictions of a pessimistic logging protocol, while still

ensuring the same guarantee that any failed process can be recovered individually,

without rolling back any processes that did not fail. This is achieved by preventing the

11l

process from sending any new messages until all messages it has received have been

logged, thus allowing the process to begin execution based on the received message

while the logging proceeds concurrently. Previous pessimistic logging systems have

instead prevented the process from receiving the original message until it has been

logged, thus delaying the execution of the receiver for the entire duration of the log-

ging. Furthermore, sender-based message logging is the first system to recognize that

the message data and the order in which the message was received can be logged

separately. This allows more flexibility in the design of message logging protocols.

Finally, sender- based message logging appears to be the first pessimistic message log-

ging protocol implemented that does not require the use of any specialized hardware

to reduce the overhead caused by the logging.

5.1.3 Optimistic Message Logging

The optimistic message logging system developed in Chapter 4 is also unique in sev-

eral ways. First, it guarantees to always find the maximum recoverable system state

that currently exists, by utilizing logged messages and checkpoints. Previous systems

using optimistic message logging and checkpointing have considered only the logged

messages, and thus may not find the maximum recoverable system state possible.

Furthermore, by utilizing these checkpointed process states, some messages received

by a process before it was checkpointed may not need to be logged. This system also

requires substantially less additional communication than previous optimistic logging

systemsq. Only a small constant amount of information is added to each message, and

no additional communication is required beyond that needed to record the messages

and checkpoints on stable storage. Previous systems have required information pro-

portional in size to the number of processes in the system to be appended to each

message, or have required substantial additional communication between processes

in order to determine the current recovery state of the system. Finally, this system

appears to be the first complete implementation of a fault-tolerance method using

optimistic message logging and checkpointing.

112

5.2 Suggestions for Future Work

The recovery state algorithms developed in Chapter 4 are only two of many possible

algorithms that can be used to determine the current recovery state in a system using

message logging and checkpointing. The choice of which algorithm is best for any

particular system depends on many factors, such as the number of processes in the

system and the frequency of output from the system to the outside world. More

work needs to be done to quantify these differences and to evaluate the appropriate

algorithm for a&y given system.

These two recovery state algorithms execute centrally on the shared stable storage

server of the system. In order to avoid delays when this server fails, and in order to

reduce any possible bottleneck that this centralized facility presents to performance,

a distributed recovery state algorithm seems to be desirable. However, guarantee-

ing to always find the maximum possible recoverable system state requires complete

knowledge of all stable process state intervals, which may be expensive to distribute

to all processes. It may be possible to limit the knowledge required by each process,

while still achieving an efficient distributed recovery state algorithm.

Another desirable feature of a recovery state algorithm is to ensure correct and

efficient operation in large, perhaps geographically dispersed networks, in which parti-

tions of the network can occur. The current algorithms require coordination between

all processes in the system in order to determine the current recovery state and to

complete failure recovery. In systems with large numbers of processes, this global co-

ordination is expensive, and if network partitions can occur, such coordination may

not always be possible. One solution to this problem is to use a hierarchical decom-

position of the system, dividing the system into separate components that are each

responsible for their own recovery. Conceptaaily, each component might be treated

as a single process at the next higher level in the hierarchy, thus reducing the number

of entities that must be coordinated.

The problem of failure detection is also an area deserving of further study. The

simple polling method that is used by most current systems, including the optimistic

113

message logging system developed here, is adequate for small networks with highly

reliable communication. However, this polling becomes very expensive in larger net-

works, and becomes impossible if a network partition occurs. Strom and Yemini's

incarnation number in each state interval index partially solves this problem, since

processes can then discover a failure later during regular communication by comparing

the incarnation number in each message, but this scheme does not correctly handle

the occurrence of a network partition. The same failed process could be recovered in

each component of the partition, and each would receive the same incarnation num-

ber. New theoretical models are also required to prove the correctness of any failure

detection mechanism.

Finally, although the assumption of deterministic process execution is reasonable
for many applications, some processes may occasionally be nondeterministic for short

periods. For example, if two processes share memory, asynchronous scheduling of the

processes may cause nondeterministic behavior. In order to support nondeterministic

processes with message logging and checkpointing, it must be possible to detect when

nondeterministic execution has occurred, and new algorithms and protocols must be

developed to correctly restore the system to a consistent state following a failure.

New theoretical developments will also be required to reason about systems that

allow nondeterministic execution.

Bibliography

[Allchin831 J. E. Allchin and M. S. McKendry. Synchronization and recovery
of actions. In Proceedings of the Second Annual ACM Symposium
on Principles of Distributed Computing, pages 31-44. ACM, August
1983.

[Almes85] Guy T. Almes, Andrew P. Black, and Edward D. Lazowska. The
Eden system: A technical review. IEEE Transactions on Software

Engineering, SE-11(1):43-59, January 1985.

[Anderson78] Thomas Anderson, Peter A. Lee, and Santosh K. Shrivastava. A

model of recoverability in multilevel systems. IEEE Transactions
on Software Engineering, SE-4(6):486-494, November 1978. Also
reprinted in Reliable Computer Systems, edited by Santosh K.
Shrivastava, pages 381-395, Springer-Verlag, New York, 1985.

[Anderson81] T. Anderson and P. A. Lee. Fault Tolerance: Principles and

Practice. Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[Anderson83] Thomas Anderson and John C. Knight. A framework for software
fault-tolerance in real-time systems. IEEE Transactions on Software
Engineering, SE-9(3):355-364, May 1983. Also reprinted in Reliable

Computer Systems, edited by Santosh K. Shrivastava. pages 358-
377, Springer-Verlag, New York, 1985.

[Banino82] J. S. Banino and J. C. Fabre. Distributed coupled actors: A
CHORUS proposal for reliability. In Proceedings of the 3rd
International Conference on Distributed Computing Systems, pages
128-134. IEEE Compute: Society, October 1982.

[Banino85] J. S. Banino, J. C. Fabre, M. Guillemont, G. Morisset, and
M. Rozier. Some fault-tolerant aspects of the CHORUS distributed
system. In Proceedings of the 5th International Conference on

Distributed Computing Systems, pages 430-437. IEEE Computer
Society, May 1985.

115

116

[Bartlett8l] Joel F. Bartlett. A NonStop kernel. In Proceedings of the Eighth
Symposium on Operating Systems Principles, pages 22-29. ACM,
December 1981.

[Bartlett87] Joel Bartlett, Jim Gray, and Bob Horst. Fault tolerance in Tandem
computer systems. In The Evolution of Fault-Tolerant Computing,
edited by A. Avi2ienis, H. Kopetz, and J.C. Laprie, volume 1 of
Dependable Computing and Fault-Tolerant Systems, pages 55-76.
Springer-Verlag, New York, 1987.

[Bernstein87l Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman.
Concurrency Control and Recovery in Database Systems. Addison-
Wesley, Reading, Massachusetts, 1987.

[Best81] Eike Best and Brian Randell. A formal model of atomicity in asyn-
chronous systems. Acta Informatica, 16(1):93-124, August 1981.
Also reprinted in Reliable Computer Systems, edited by Santosh K.
Shrivastava, pages 266-297, Springer-Verlag, New York, 1985.

[Birman85] Kenneth P. Birman. Replication and fault-tolerance in the ISIS
system. In Proceedings of the Tenth ACM Symposium on Operating
Systems Principles, pages 79-86. ACM, December 1985.

[Birman87] Kenneth P. Birman and Thomas A. Joseph. Exploiting virtual syn-
chrony in distributed systems. In Proceedings of the Eleventh ACM
Symposium on Operating Systems Principles, pages 123-138. ACM,
November 1987.

[Birrell821 Andrew D. Birrell, Roy Levin, Roger M. Needham, and Michael D.
Schroeder. Grapevine: An exercise in distributed computing.
Communications of the ACM, 25(4):260-274, April 1982.

[Birrel184] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote
procedure calls. ACM Transactions on Computer Systems, 2(1):39-
59, February 1984.

[Black85] Andrew P. Black. Supporting distributed applications: Experience
with Eden. In Proceedings of the Tenth ACM Symposium on
Operating Systems Principles, pages 181-193.1MACM, December
1985.

117

[Borg83] Anita Borg, Jim Baumbach, and Sam Glazer. A message sys-
tem supporting fault tolerance. In Proceedings of the Ninth ACM
Symposium on Operating Systems Principles, pages 90-99. ACM,
October 1983.

[Borg89] Anita Borg, Wolfgang Blau, Wolfgang Graetsch, Ferdinand
Herrmann, and Wolfgang Oberle. Fault tolerance under UNIX.
ACM Transactions on Computer Systems, 7(1):1-24, February 1989.

[Bourne78] S. R. Bourne. The UNIX shell. The Bell System Technical Journal,
57(6):1971-1990, July-August 1978.

[Bubenik89] Rick Bubenik and Willy Zwaenepoel. Performance of optimistic
make. In 1989 ACM SIGMETRICS and PERFORMANCE '89
International Conference on Measurement and Modeling of
Computer Systems: Proceedings, pages 39-48. ACM, May 1989.

[Carter85] W. C. Carter. Hardware fault tolerance. In Resilient Computing
Systems, edited by T. Anderson, chapter 2, pages 11-63. Collins,
London, 1985.

[Carter89] John B. Carter and Willy Zwaenepoel. Optimistic implementation
of bulk data transfer protocols. In 1989 ACM SIGMETRICS and
PERFORMANCE '89 International Conference on Measurement
and Modeling of Computer Systems: Proceedings, pages 61-69.
ACM, May 1989.

[Chandy85] K. Mani Chandy and Leslie Lamport. Distributed snap-
shots: Determining global states of distributed systems. ACM
Transactions on Computer Systems, 3(1):63-75, February 1985.

[Chandy88] K. Mani Chandy. Theorems on computations of distributed sys-
tems. Technical Report Caltech-CS-TR-88-6, California Institute of
Technology, April 1988.

[Cheriton831 David R. Cheriton and Willy Zwaenepoel. The distributed V kernel
and its performance for diskless workstations. In Proceedings of
the Ninth A CM Symposium on Operating Systems Principles, pages
129-140. ACM, October 1983.

[Cheriton84] David R. Cheriton. The V kernel: A software base for distributed
systems. IEEE Software, 1(2):19-42, April 1984.

118

[Cheriton85] David R. Cheriton and Willy Zwaenepoel. Distributed process
groups in the V kernel. ACM Transactions on Computer Systems,
3(2):77-107, May 1985.

[Cheriton86al David R. Cheriton. VMTP: A transport protocol for the next
generation of communication systems. In Proceedings of the 1986

SigComm Symposium, pages 406-415. ACM, August 1986.

[Cheriton86b] David R. Cheriton and Michael Stumm. The multi-satellite
star: Structuring parallel computations for a workstation clus-
ter. Technical report, Department of Computer Science, Stanford
University, Stanford, California, 1986.

[Cheriton88] David R. Cheriton. The V distributed system. Communications of
the ACM, 31(3):314-333, March 1988.

[Clement87 George F. Clement and Paul K. Giloth. Evolution of fault tolerant

switching systems in AT&T. In The Evolution of Fault-Tolerant
Computing, edited by A. Avi~ienis, H. Kopetz, and J.C. Laprie, vol-
ume 1 of Dependable Computing and Fault-Tolerant Systems, pages
37-54. Springer-Verlag, New York, 1987.

[Cmelik88] R. F. Cmelik, N. H Gehani, and W. D. Roome. Fault Tolerant
Concurrent C: A tool for writing fault tolerant distributed pro-
grams. In The Eighteenth Annual International Symposium on
Fault-Tolerant Computing: Digest of Papers, pages 56-61. IEEE
Computer Society, June 1988.

[Cooper84] Eric C. Cooper. Replicated procedure call. In Proceedings of
the Third Annual ACM Symposium on Principles of Distributed

Computing, pages 220-232. ACM, August 1984.

[Cooper851 Eric C. Cooper. Replicated distributed programs. In Proceedings of

the Tenth A CM Symposium on Operating Systems Principles, pages
63-78. ACM, December 1985.

[Denning76] Peter J. Denning. Fault tolerant operating systems. ACM

Computing Surveys, 8(4):359-389, December 1976.

[Dimmer85] C. I. Dimmer. The Tandem Non-Stop system. In Resilient

Computing Systems, edited by T. Anderson, chapter 10, pages 178-
196. Collins, London, 1985.

119

[Fabry73] R. S. Fabry. Dynamic verification of operating system decisions.
Communications of the ACM, 16(11):659-668, November 1973.

[Finkel87] Raphael Finkel and Udi Manber. DIB-A distributed imple-
mentation of backtracking. ACM Transactions on Programming
Languages and Systems, 9(2):235-256, April 1987.

[Gait85] Jason Gait. A distributed process manager with transparent con-
tinuation. In Proceedings of the 5th International Conference on
Distributed Computing Systems, pages 422-429. IEEE Computer

Society,. May 1985.

[Gherfal85] Fawzi F. Gherfal and S. Mamrak. An optimistic concurrency control
mechanism for an object based distributed system. In Proceedings of
the 5th International Conference on Distributed Computing Systems,
pages 236-245. IEEE Computer Society, May 1985.

[Gray79] J. N. Gray. Notes on database operating systems. In Operating
Systems: An Advanced Course, edited by R. Bayer, R. M. Graham,
and G. Seegmiiller, chapter 3. F., pages 393-481. Springer-Verlag,
New York, 1979.

[Grit84] D. H. Grit. Towards fault tolerance in a distributed multiproces-
sor. In The Fourteenth International Conference on Fault-Tolerant
Computing: Digest of Papers, pages 272-277. IEEE Computer
Society, June 1984.

[Haerder83] Theo Haerder and Andreas Reuter. Principles of transaction-
oriented database recovery. ACM Computing Surveys, 15(4):287-

317, December 1983.

[Haskin88] Roger Haskin, Yoni Malachi, Wayne Sawdon, and Gregory Chan.
Recovery management in QuickSilver. ACM Transactions on
Computer Systems, 6(1):82-108, February 1988.

[Hecht76j H. Hecht. Fault-tolerant software for real-time applications. ACM
Computing Surveys, 8(4):391-407, December 1976.

[Hornig84] David A. Hornig. Automatic Partitioning and Scheduling on a
Network of Personal Computers. Ph.D. thesis, Carnegie-Mellon
University, Pittsburgh, Pennsylvania, November 1984.

120

[Horning74] J. J. Horning, H. C. Lauer, P. M. Melliar-Smith, and B. Randell.
A program structure for error detection and recovery. In Operating

Systems, edited by E. Gelenbe and C. Kaiser, volume 16 of Lecture
Notes in Computer Science, pages 171-187. Springer-Verlag, Berlin,

1974. Also reprinted in Reliable Computer Systems, edited by
Santosh K. Shrivastava, pages 53-68, Springer-Verlag, New York,
1985.

[Jefferson85] David R. Jefferson. Virtual time. ACM Transactions on
Programming Languages and Systems, 7(3):404-425, July 1985.

[Jefferson87] David Jefferson, Brian Beckman, Fred Wieland, Leo Blume, Mike
DiLoreto, Phil Hontalas, Pierre Laroche, Kathy Sturdevant, Jack
Tupman, Van Warren, John Wedel, Herb Younger, and Steve

Bellenot. Distributed simulation and the Time Warp operating sys-
tem. In Proceedings of the Eleventh ACM Symposium on Operating

Systems Principles, pages 77-93. ACM, November 1987.

[Johnson87] David B. Johnson and Willy Zwaenepoel. Sender-based message
logging. In The Seventeenth Annual International Symposium on
Fault-Tolerant Computing: Digest of Papers, pages 14-19. IEEE

Computer Society, June 1987.

[Johnson88] David B. Johnson and Willy Zwaenepoel. Recovery in distributed
systems using optimistic message logging and checkpointing. In
Proceedings of the Seventh Annual ACM Symposium on Principles

of Distributed Computing, pages 171-181. ACM, August 1988.

[Katsuki78] D. Katsuki, E.S. Elsam, W.F. Mann, E.S. Roberts, J.G. Robinson,

F.S. Skowronski, and E.W. Wolf. Pluribus-An operational fault-

tolerant multiprocessor. Proceedings of the IEEE, 66(10):1146-1159,

October 1978.

[Koo87] Richard Koo and Sam Toueg. Checkpointing and rollback-

recovery for distributed systems. IEEE Transactions on Software

Engineering, SE-13(1):23-31, January 1987.

[Kopetz85a] H. Kopetz. Resilient real-time systems. In Resilient Computing

Systems, edited by T. Anderson, chapter 5, pages 91-101. Collins,

London, 1985.

121

[Kopetz85b] H. Kopetz and W. Merker. The architecture of MARS. In
The Fifteenth Annual International Symposium on Fault-Tolerant
Computing: Digest of Papers, pages 274-279. IEEE Computer
Society, June 1985.

[Kung8l] H. T. Kung and J. T. Robinson. On optimistic methods for concur-
rency control. ACM Transactions on Database Systems, 2(2):213-
226, June 1981.

[Lamport78] Leslie Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. Communications of the ACM, 21(7):558-565, July
1978.

[Lanpson79] Butler W. Lampson and Howard E. Sturgis. Crash recovery in a
distributed data storage system. Technical report, Xerox Palo Alto
Research Center, Palo Alto, California, April 1979.

[Lampson8l] Butler W. Lampson. Atomic transactions. In Distributed Systems:
Architecture and Implementation, edited by B. W. Lampson,
M. Paul, and H. J. Siegert, chapter 11, pages 246-265. Springer-
Verlag, New York, 1981.

(Lazowska8l] Edward D. Lazowska, Henry M. Levy, Guy T. Almes, Michael J.
Fischer, Robert J. Fowler, and Stephen C. Vestal. The architec-
ture of the Eden system. In Proceedings of the Eighth Symposium
on Operating Systems Principles, pages 148-159. ACM, December
1981.

[LeBlanc85] Richard J. LeBlanc and C. Thomas Wilkes. Systems programming
with objects and actions. In Proceedings of the 5th International
Conference on Distributed Computing Systems, pages 132-139.
IEEE Computer Society, May 1985.

E

[Lee78] P. A. Lee. A reconsideration of the recovery block scheme. The
Computer Journal, 21(4):306-310, November 1978. Also reprinted
in Reliable Computer Systems, edited by Santosh K. Shrivastava,
pages 69-79, Springer-Verlag, New York, 1985.

[Lin861 Frank C. H. Lin and Robert M. Keller. Distributed recovery
in applicative systems. In Proceedings of the 1986 International
Conference on Parallel Processing, edited by Kai Hwang, Steven M.

122

Jacobs, and Earl E. Swartzlander, pages 405-412. IEEE Computer
Society, August 1986.

[Liskov83l Barbara Liskov and Robert Scheifler. Guardians and actions:
Linguistic support for robust, distributed programs. ACM
Transactions on Programming Languages and Systems, 5(3):381-
404, July 1983.

[Liskov87] Barbara Liskov, Dorothy Curtis, Paul Johnson, and Robert
Scheifler. Implementation of Argus. In Proceedings of the Eleventh
ACM Symposium on Operating Systems Principles, pages 111-122.
ACM, November 1987.

[Liskov88] Barbara Liskov. Distributed programming in Argus. Communi-
cations of the ACM, 31(3):300-312, March 1988.

[Lomet85] D. B. Lomet. Process structuring, synchronization, and recovery
using atomic actions. In Reliable Computer Systems, edited by
Santosh K. Shrivastava, pages 249-265. Springer-Verlag, New York,
1985. Reprinted from ACM SIGPLAN Notices, 12(3):128-137,
March 1977.

[Merlin78] P. M. Merlin and B. Randell. State restoration in distributed sys-
tems. In The Eighth International Conference on Fault-Tolerant
Computing: Digest of Papers, pages 129-134. IEEE Computer
Society, June 1978. Also reprinted in Reliable Computer Systems,
edited by Santosh K. Shrivastava, pages 435-447, Springer-Verlag,
New York, 1985.

[Metcalfe761 Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed
packet switching for local computer networks. Communications of
the ACM, 19(7):395-404, July 1976.

[Mohan86] C. Mohan, B. Lindsay, and R. Obermarck. Transaction manage-
ment in the R" distributed database management system. ACM
Transactions on Database Systems, 11(4):378-396, December 1986.

[Pc isch88] Randy Pausch. Adding Input and Output to the Transactional
Model. Ph.D. thesis, Carnegie-Mellon Univerisity, Pittsburgh,
Pennsylvania, August 1988. Also available as Technical Report
CMU-CS-88-171, Department of Computer Science, Carnegie-
Mellon University, August 1988.

123

[Powell83] Michael L. Powell and David L. Presotto. Publishing: A reliable
broadcast communication mechanism. In Proceedings of the Ninth
A M Symposium on Operating Systems Principles, pages 100-109.
ACM, October 1983.

[Randell75] Brian Randell. System structure for software fault tolerance. IEEE
Transactions on Software Engineering, SE-1(2):220-232, June 1975.

[Russell77] David L. Russell. Process backup in producer-consumer sys-
tems. In Proceedings of the Sixth Symposium on Operating Systems
Principles, pages 151-157. ACM, November 1977.

[Russell801 David L. Russell. State restoration in systems of communi-
cating processes. IEEE Transactions on Software Engineering,
SE-6(2):183-194, March 1980.

[Saltzer84] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in
system design. A CM Transactions on Computer Systems, 2(4):277-
288, November 1984.

[Schlichting83] Richard D. Schlichting and Fred B. Schneider. Fail-stop proces-
sors: An approach to designing fault-tolerant distributed computing
systems. A CM Transactions on Computer Systems, 1(3):222-238,
August 1983.

[Schneider87] Fred B. Schneider. The state machine approach: A tutorial.
Technical Report TR 86-800, Cornell University, Ithaca, New York,
June 1987. To appear in Proceedings of a Workshop on Fault-
Tolerant Distributed Computing, Lecture Notes in Computer Science
series, Springer-Verlag, New York.

[Shoch80] John F. Shoch and Jon A. Hupp. Measured performance of an
Ethernet local network. Communications of the ACM, 23(12):711-
721, December 1980.

[Shoch82 John F. Shoch and Jon A. Hupp. The "worm" programs-Early
experience with a distributed computation. Communications of the
ACM, 25(3):172-180, March 1982.

[Shrivastava82] S. K. Shrivastava. A dependency, commitment and recovery model
for atomic actions. In Proceedings of the Second Symposium on

124

Reliability in Distributed Software and Database Systems, pages 112-
119. IEEE Computer Society, July 1982. Also reprinted in Reliable
Computer Systems, edited by Santosh K. Shrivastava, pages 485-
497, Springer-Verlag, New York, 1985.

[Siewiorek86] D. Siewiorek. Architecture of fault-tolerant computers. In Fault-
Tolerant Computing: Theory and Techniques, edited by Dhiraj K.
Pradhan, volume 2. chapter 6, pages 417-466. Prentice-Hall,
Englewood Cliffs, New Jersey, 1986.

[Sistla89] A. Prasad Sistla and Jennifer L. Welch. Efficient distributed recov-
ery using message logging. In Proceedings of the Eighth Annual ACM
Symposium on Principles of Distributed Computing. ACM, August
1989.

[Skeen83] Dale Skeen and Michael Stonebraker. A formal model of crash re-
covery in a distributed system. IEEE Transactions on Software
Engineering, SE-9(3):219-228, May 1983.

[Spector85a] Alfred Z. Spector, Jacob Butcher, Dean S. Daniels, Daniel J.
Duchamp, Jeffrey L. Eppinger, Charles E. Fineman, Abdelsalam
Heddaya, and Peter M. Schwarz. Support for distributed trans-
actions in the TABS prototype. IEEE Transactions on Software
Engineering, SE-11(6):520-530, June 1985.

[Spector85b] Alfred Z. Spector, Dean Daniels, Daniel Duchamp, Jeffrey L.
Eppinger, and Randy Pausch. Distributed transactions for reliable
systems. In Proceedings of the Tenth A CM Symposium on Operating
Systems Principles, pages 127-146. ACM, December 1985.

[Spector86] Alfred Z. Spector, Joshua J. Bloch, Dean S. Daniels, Richard P.
Draves, Dan Duchamp, Jeffrey L. Eppinger, Sherri G. Menees,
and Dean S. Thompson. The Camelot project. Technical Report
CMU-CS-86-166, Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, Pennsylvania, November 1986.

[Spector87] Alfred Z. Spector. Distributed transaction processing and the
Camelot system. In Distributed Operating Systems: Theory and
Practice, edited by Yakup Paker, Jean-Pierre Banatre, and MuIslim

Bozyigit, volume 28 of NATO Advanced Science Institute Series F:
Computer and Systems Sciences, pageq 331-353. Springer-Verlag,

125

Berlin, 1987. Also available as Technical Report CMU-CS-87-
100, Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, January 1987.

* [Stanford86] V-System Development Group, Computer Systems Laboratory.
Departments of Computer Science and Electrical Engineering,
Stanford University, Stanford, California. V-System 6.0 Reference
Manual, May 1986.

(Strom85] Robert E. Strom and Shaula Yemini. Optimistic recovery in
distributed systems. ACM Transactions on Computer Systems,
3(3):204-226, August 1985.

[Strom87] Robert Strom and Shaula Yemini. Synthesizing distributed and
parallel programs through optimistic transformations. In Current
Advances in Distributed Computing and Communications, edited by
Yechiam Yemini, pages 234-256. Computer Science Press, Rockville,
Maryland, 1987. Also available as Research Report RC 10797, IBM
T. J. Watson Research Center, Yorktown Heights, New York, July
1984.

[Strom88] Robert E. Strom, David F. Bacon, and Shaula A. Yemini. Volatile
logging in n-fault-tolerant distributed systems. In The Eighteenth
Annual International Symposium on Fault-Tolerant Computing:
Digest of Papers, pages 44-49. IEEE Computer Society, June 1988.

[Svobodova84] Liba Svobodova. File servers for network-based distributed systems.
ACM Computing Surveys, 16(4):353-398, December 1984.

[Theimer85] Marvin N. Theimer, Keith A. Lantz, and David R. Cheriton.
Preemptable remote execution facilities for the V-System. In
Proceedings of the Tenth ACM Symposium on Operating Systems
Principles, pages 2-12. ACM, December 1985.

[Vinter86l Stephen Vinter, Krithi Ramamritham, and David Stemple.
Recoverable actions in Gutenberg. In Proceedings of the 6th
International Conference on Distributed Computing Systems, pages
242-249. IEEE Computer Society, May 1986.

[Walker83] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and
Greg Thiel. The LOCUS distributed operating system. In

126

Proceedings of the Ninth A fM Symposium on Operating Systems
Principles, pages 49-70. ACM, October 1983.

[Wensley78] John H. Wensley, Leslie Lamport, Jack Goldberg, Milton W. Green,
Karl N. Levitt, P. M. Melliar-Smith, Robert E. Shostak, and
Charles B. Weinstock. SIFT: Design and analysis of a fault-tolerant
computer for aircraft control. Proceedings of the IEEE, 66(10):1240-
1255, October 1978.

[Wood85] W. G. Wood. Recovery control of communicating processes in
a distributed system. In Reliable Computer Systems, edited by
Santosh K. Shrivastava, pages 448-484. Springer-Verlag, New York,
1985.

[Yang85] Xiao-Zong Yang and Gary York. Fault recovery of triplicated soft-
ware on the Intel iAPX 432. In Proceedings of the 5th International
Conference on Distributed Computing Systems, pages 438-443.
IEEE Computer Society, May 1985.

[Zwaenepoel84] Willy Zwaenepoel. Afessage Passing on a Local Network. Ph.D. the-
sis, Stanford University, Stanford, California, October 1984. Also
available as Technical Report STAN-CS-85-1083, Department of
Computer Science, Stanford University, October 1985.

[Zwaenepoe1S5] Willy Zwaenepoel. Prtccols fui iaigc d1(L Eransfers over local
area networks. In Proceedings of the 9th Data Communications
Symposium, pages 22-32. IEEE Computer Society, September 1985.
Also reprinted in Advances in Local Area Networks, edited by Karl
Kiimmerle, John 0. Limb, and Fouad A. Tobagi, Frontiers in
Communications series, chapter 33, pages 560-573, IEEE Press.,
New York, 1987.

