
UNLIMITED

RSRE
MEMORANDUM No. 4356

ROYAL SIGNALS & RADAR
ESTABLISHMENT

DTIC
MAY3 11090

c, .-- ZADOK USER GUIDE

Author: G P Randell
/

U)

PROCUREMENT EXECUTIVE,
S....INItTRY OF DEFENCE,

RSRE MALVERN.
WOIC$.

Approved te,: public telao '

LU

UNLIMITED

q0 os " 10

CONDITIONS OF RELEASE

0067285 BR-1 13367

DRIC U

COPYRIGHT (c)
1,988
CONTROLLER
HMSO LONDON

.......................... DRICY

Reports quoted are not necessarily available to members of the public or to commercial
organisations.

DRIC N

DCAF CODE 090996

I

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 4356

Title: ZADOK User Guide

Author: G P Randell

Date: January 1990

ABSTRACT

This is a guide for users of ZADOK, the RSRE Z syntax and typechecker. It also
contains a brief introduction to using the Perq Flex system.

By

A-I __

Copyright
©

Controller HMSO London
1990

CONTENTS

1. Introduction .. 1

2. Getting Started on the Perq ... 1

2.1 Using the Flex System ... 1

2.2 Installing the Z Tools .. 5

3. K eyw are .. . 5

4. The Z Editor ... 8

5. Using the Typechecker ... 9

5.1 Running the Typechecker ... 9

5.2 Error Messages ... 10

5.3 Correcting Errors ... 12

5.4 Modules ... 12

6. Language Issues .. 14

6.1 Differences with Reference Manual Z 14

6.2 Common Causes of Errors 16

7. Printing a File of Z Using the PostScript Printer 17

8. Known Problems ... 17

References .. 18

Annex A - The Z Symbols .. 19

Arnex.B - The Z Library .. 21

Annex C - The Z Syntax 28

1. Introduction

This document is a guide for users of Zadok, the Z syntax and typechecker developed
by the SCEIP Unit at RSRE. It is assumed that users of this tool may not be familiar
with the Perq computer operating with the Flex system, so an introduction to the use
of Flex is given in-Section 2.1. Some knowledge of Z is assumed.

This Guide also introduces the keyware software developed by the SMITE team at
RSRE which is used with the Z tool. Other topics covered are how to use the Z
editor; how to run the Z typechecker and correct errors it may find in your file of Z;
and how to print your file using a PostScript printer. Section 6 oiscusses two issues
relating to the Z language, namely the differences between the syntax used by the
typechecker and that given in Spivey's reference manual [Spivey88], and the style of
language adopted by the typechecker.

The final section describes some known problems with the Z tools, including the
editor, and gives advice on how to deal with these. The annexes contain the Z
symbols used by the editor, and what they mean, the Z library of basic mathematical
constructs used by the typechecker and the Z syntax used by the tool.

2. Getting Started on the Perq

2.1 Using the Flex System

The Flex system provides on-line assistance for new users in the form of a tutorial
and on-line documentation. When the Perq is switched on, there is an introductory
display inviting you to log in. Instructions on how to login, and explanations of the
elementary keyboard operations can be displayed by pressing the HELP key on the
top left of the Perq keyboard. Basic terminology like puck and cursor is also
explained. There is a user called guest which can be accessed by anyone from which a
tutorial can be read and some experiments done (note the tutorial file can also be
accessed from any user). To log in to any user name, for example, your-name, type

()yourname!

on a line by itself, and press ENTER on the keypad.

Other on-line documentation may be reached in several ways. There is an Edfile
called doc which is shared and contains documentation on common modules and
procedures. This is accessed by typing the name doc on a line by itself, obeying it by
pressing Enter on the keypad, then pressing Examine (the centre button) on the puck.
The top level of this file contains a cartouche (box) for each topic. Examining a
cartouche will display documentation on that topic. Information may also be
accessed for a named value by typing info.name on a line by itself, pressing ENTER
on the keypad and then Examine on the puck.

Pressing the HELP key on the keyboard will display information depending on whe.:-.
you are. It is usually information on the structure you are pointing to with the cursor
and the operations which may be performed on that structure. In these methods the
editor is being used to examine the appropriate Edfile. Exiting from the
documentation, as from any other file, is achieved by pressing Result (the right hand
button) on the puck or Quit (CTRL-LINE FEED) on the keyboard.

The command interpreter language for the Flex system is called Curt [Currie82]. The
most important function of Curt is to call procedures. These procedure calls are
expressed in reverse Polish, that is, an expression which allows the parameter to be
written before the procedure to be called is mentioned. For example, a procedure
call which would be written f(x) in normal notation is expressed in Curt by:

x f!

The ! symbol says that the "thing" immediately before it (f) is a procedure and the
previous "thing" (x) is its parameter. Pressing ENTER (also called Obey) evaluates the
procedure and returns a value which will be represented on the screen by a box
drawn around the procedure call. This box is called a cartouche. If the result of the
procedure call is something that can be displayed, it may be examined by pressing
Examine (the middle button) on the puck when the cursor is on the cartouche. If you
press the Undo Cartouche key (5 on the key-pad) while the cursor is on the
cartouche, one level of evaluation is undone. If you press the Mode key (I on the
keypad) while the cursor is on a cartouche the symbols in the box will be replaced by
the mode of the value that the cartouche is standing for.

Values may be named, either temporarily or permanently. For example, there is an
identifier known to the system, a4 blank, which is an Edfile (a Curt mode), and is a
blank file of width equivalent to that of a piece of a4 paper, and capable of being
extended indefinitely in length. Suppose you have created such a file, by typing
a4_blank on a line by itself and evaluating it by pressing ENTER on the keypad. To
type something into the file, press Examine on the puck with the cursor on the
cartouche representing the file. This takes you in to the file, and automatically calls
the editor. Having typed in some text, resulting from the file by pressing Result (the
right hand button) on the puck will remember the changes you have made and the
cartouche you see will represent the changed value. If you quit from the file, by
pressing CTR -7 TNE FEED, the changes will not be remembered and the cartouche

2

will represent the old value. To name the file, bill, say, obey the following command

(that is, type the command on a line by itself and press ENTER on the keypad)

= bill

This introduces the name "bill" as a temporary name for the file. Typing the name of
a value on a line by itself and pressing ENTER will give you a cartouche standing
for the same value. Names must start with a lower-case letter and contain
lower-case letters, digits and the underline symbol. Temporary names will last for
the current session, and if you re-use the name for something else the later value
will override the earlier one. To name a value permanently, a double equals "=="
should be used instead of the single equals sign for temporary names.

When you log in, you are calling the procedure your name with a void parameter
(written ()), which creates an environment for you to work in. After logging in for the
first time, it is advisable to create a password for your user-name. This may be
achieved by obeying the following command (that is, type the command on a line by
itself and press ENTER on the keypad)

"fred" make-password!

which will create the password "fred" (using the procedure make-password with
parameter fred (a vector of characters)). The next time you log in the Perq will ask
you to type your password before logging you in. After typing the password, type a
full stop to indicate the end of the password (not RETRN as you may expect). For
more information see the information file info.makepassword on the Perq. An
initial display may also be created, which will be displayed each time you log in. For
more information see info.initial.display on the Perq.

The environment of use is defined by the set of names accessible, and these are
defined by the set of dictionaries available. A dictionary is a value of Curt mode
Dictionary, and is a disc reference, that is, it is the only kind of value in filestore
which can be updated. Each dictionary contains the association between names and
values, the set of Modules belonging to the owner of the dictionary, and the history
of alterations to the dictionary since the last garbage collection of the disc. One of
the dictionaries accessible to you is your own user dictionary. This dictionary can be
listed by obeying the following command

0show_dict!

An example of part of a dictionary is shown below.

DISPLAY 06,09/89 17 48 33 No Info
PASSWORD 11/09/89 15 01 11 No Info

amend 16/02/89 09 1146 [ifend
S16,02/89 11 21 44 No Info

3

Associated with each value is the date and time it was last updated, together with
an information file, if one exists.

Removing things from your own dictionary involves first listing the dictionary by
using the show dict command. To delete zspec, say, place the cursor on the line
starting with that name and press the Group key (6 on the keypad) until the cursor
covers the entire line (not just the displayed characters and cartouches). The
message at the top of the screen should be "(Box) Element (n) in Vertical". Then
press Delete Element (PF4 on the keypad) to delete the line followed by Result on
the puck to exit from showdict. The name is not finally deleted until the command
tidy dict is applied to the result of the edit of the dictionary by typing tidydict!
immediately to the right of the cartouche containing Oshowdict! and pressing Enter
on the keypad. Old versions of values can be retrieved from the dictionary. For
example, to recover old versions, of the file zspec, say, obey the following command

"z.spec" old-versions!

which will display all versions of z snec since the last garbage collection of the
disk. More information on dictionaries may be found by examining the file

1 Environments,dictionaries in --

Another dictionary accessible to you is the common dictionary which contains all
named values that are shared by all users. To list this dictionary obey the following
command

()showcommon!

Most of the entries in this dictionary have an information file associated with them.
These files may be examined in the usual way by placing the cursor on the cartouche
and pressing Examine on the puck.

To keep the results of a session, explicit action must be taken. This means that
values should be named permanently, that is, using two equals signs. This
name/value association will then be automatically added to your dictionary. More
information on keeping things may be found in the tutorial.

Pressing Result on the puck enough times will log you out back to the introductory-
display. If you accidentally log out without saving everything you need, you can
recover if you immediately log in again by typing your user name followed by an
exclamation mark to the right of the cartouche containing ()your name!. This returns
you to the display as it was when you accidentally logged out.

4

To create an Edfile in which you can write a Z specification, you can use an
a4_blank. Alternatively, obeying the following command will give a file of a4
width, using Propl6 font (with a lead of 3), which is the font this Guide was written
in, and which is required for printing a file of Z on a PostScript printer (see Section
7):

((5,3),(630,0))makefile!

This will give you an empty file, initially one line long but may be extended
indefinitely in length, and pressing Examine on the puck will take you into the file.
For information on the meaning of the parameters, see the file info.makejfile on the
Perq.

2.2 Installing the Z Tools

This section gives a brief guide for managers on installing the Z system from floppy
disc.

Before installing the Z tools, two common users must be created in manager, called z and
keyware. Installation uses the appropriate user name and consists of inputting a
floppy disc file, reconstructing it and obeying the Curt lines (the ones with an
exclamation mark) within them. For information on reconstructing, see
info.makereconstruct. In order to preserve the modules and allow for updating, keep
the resulting files after undoing the Curt lines if necessary. The file name for the key
compiler is keys and this may be installed independently of the Z system.

To install the Z system, it is necessary to install the Z editor first. As it declares the
Z pictures, the Curt function decpicturejns must have been obeyed first. The file is
called zedir and this must be copied in, reconstructed and installed before any other
files are brought in. The syntax and type checker is split into two files called ztcl and
ztc2 because ,t occupies more than one floppy. The two files should be amalgamated
before reconstructing and installing. The file zmisc simply contains a list of gblocks
useful for Z, suitable for editing into a key compiler module for use with the
gblock choose function (see Section 3 for more information on the Keyware system).

3. Keyware

The key compiler system provides a very flexible way of assigning key functions to
control keys. This also allows certain control keys to produce special frequently
used characters such as "A" which are otherwise not available from the keyboard.
Other keys may be set to bring up a table of special texts (a gblock menu) from which
one text may be selected by placing the cursor on it and pressing Select (the left
hand button) on the puck. For the Z editor, this feature is used to introduce schemas
and other Z texts. Control keys may also be set to bring up a menu of useful
functions, from which list one may be selected as before. An example of this is the
main menu produced by pressing CTRL-a. This menu also gives access to a list of
information files concerned with modules suitable for use with a control key.

5

An Edfile is first created containing the required keysetting modules. A typical
example of such a file is given below.

std_keys

{ KEY a = main menu }
CHAR A ="A"

KEYb= bold :Module { KEY B = Bottom of page I

KEY c - centre :Module KEY C = uncentre :Module

KEY D = subscript :Module

KEY e = enclose :Module KEY E = unenclose :Module

KEY f = forbid entry :Module KEY F = unforbid_m :Module

KEY g = group-Char :Module helpgroup :Module

KEY G group word :Module help_group :Module

CHAR ="r"

KEY I= (6' 3 " I t a l ic "

KEY j = justify :Module KEY J = unjustify :Module
{ KEY k = list of keys }

CHARm="e" CHARM="e"
CHAR n = "," CHAR N = "W
CHAR o = "v" CHAR P ="P"
KEY p = changepage :Module [help-change-page :Module

{ KEY P usually the laser printer }

CALL q,Q = iqchoose :Module I "Choose character from font"

CHAR t= "8"

KEY u underline :Module', KEY U = superscript :Module

CHARv=\"j" CHARV="U"

APPLY y = gblock choos :Module zblocks helpchose:Module

ME NI "Handy Thng"

- removejdels :Module "Remove Dels"

- overline :Module "Overline"

- before.para :Module "Before P-a-

- unpara :Module "Unpara"

-pars :Module "Group to Para"

- promotejfile :Module "Edfile to Forbid"

showsize :Module "Show size"

FINISH

6

This file must be compiled using the key compiler, by obeying the following
command

[keyscompiler!

Tlhe result of this is a Compiledpair, just like an implementation language compiler.
The function new must then be applied as follows

I Compiledpair new!

This will produce a module, called std_keys (the name at the top of the Edfile), which
should then be used as the parameter of the function keys whenever the key settings
need changing, by obeying the following command:

std-keys :Module] keys!

Pressing ctrl-k after obeying this function will display which keys have been set.
Those letters which Lave a blank after them have not been set. Using this example
will produce the following:

CONTROL EYF. 'IO" N5

a °* main menu** A ^
b bold B Bottom of Page
c centre C uncentre
d D subscript
e enclose E unenclose
f fr _g F Unforbid m
g Iegroup-char G group-word
h H
i r- I Italic
j justify J unjustify,
k ** This Help K
I L
me M
n - N W
ov 0

p change-page P P

q Choose character from font Q Choose character from font
R

r S

s T Top of Paget 0 U superscriptu underline V U
VU wv W

w I X Repeat Handy Things
x Handy Things Y
y iZ...gblocks Z

z

7

A list of modules suitable for using in the key setting file may be found by
examining the file Key procedu:- inside Edfile utilities which may be found in i d

4. The Z Editor

The Z editor is based on the Flex structure editing system called pictures. It uses a
special Z picture to represent schemas and other Z boxes, theorems, where-phrases, and
grouped Z text as required for indentation and global constraints. A Z picture can be
incorporated into any editable structure. In preparing a specification an Edfilk in
whateve- 'ont and format is required for the documentation is used and the Z
pictures inserted into it. Moving the cursor into a picture will automatically call the
Z editor, normally this immediately re-calls the standard editor to edit the text of
the signature or predicate as the case may be. These will always use the Z font, no
matter what the outer font is. If the Z structure is to be changed (to name a schema
for example) the Z editor must be invoked directly. This can be done by pressing the
RETRN key. Alternatively, the Z editor may be invoked by the use of the Container
key (0 on the keypad): press this repeatedly until the message at the top of tLe screen
displays the Z structure in brackets, for example "(Signature) in Z box". There are
three specific Z editing instructions provided, namely insert blank, insert below, and
help.

insert blank (- on the keypad): if the structure being edited is either a signature in a Z
box which allows a name or generic parameters, and these are not currently present,
or a theorem without a hypothesis, an empty name or hypothesis is created and the
cursor moved into it. If the structure is a predicate the editor beeps and does nothing,
otherwise a blank line will b- inserted above the entire Z phrase.

insert below (. on the keypad): if the structure being Avdited is a signature in a Z box
which does not have a predicate, a blank predicate line is created and the cursor
moved into it. Otherwise the editor beeps or ins-rts a line below the entire Z phrase
as appropriate.

help (on the keyboard): displays a help file.

The Z pictures are as folows:

Name

declaration
Schema box

predicate

declaration U'ique Definition box

8

declaration
Vertical rule

predicate

I.

conclusion Theorem

predicate
where where-phrase

declaration

Grouped Z text (indicated by a box round the Z text, but only
[setl,set2] when it is being edited)

Anything not in one of these pictures will be treated as surrounding text and ignored
by the syntax and typechecker.

There is one special key, namely the LINE FEED key, which has a special meaning.
It corresponds to a "hard new line", or vertical list separator in Z. The effect of
pressing this key is to add a small invisible separator to the bottom of the current
signature, predicate or Z phrase and to start a new line of characters. This separator,
called a white bar, can be detected by placing the cursor between two lines separated
in this way. The message "(White Bar) Element(n) in Vertical" will appear at the
top of the screen. Note that the white bar is always added to the bottom of the Z, so
must be deleted and inserted if it is required any where else. Only one hard new line
must be used between lines of Z, else the typechecker will report an error.

5. Using the Typechecker

Having edited a Z specification, the next stage is to carry out syntax and type
checking. This section deals with the practical aspects of how to call the
typechecker, and the sort of results to expect. It explains how the tool displays error
messages, the sort of messages to expect and how to correct errors.

5.1 Running the Typechecker

Calling the typechecker is a straightforward operation, and simply involves applying
the function called z to an Edfile which contains Z, by obeying the following
command:

Errors in the Z specification will cause the typechecker to report faults using the Z
editor as described in the following section. An error-free specification will result in
either the original file or a Compiledpair in the case where the specification ends with
a keeps statement. In the latter case the Compiledpair may be converted into a module

9

by using the new function or used to amend an existing module. The use of modules

is further explained in section 5.4.

5.2 Error Messages

There are two types of error megsages, those relating to syntax errors, and those
relating to type errors. Syntax errors all have the same format, and are best
illustrated by example. Consider the following part specification of a library system.
This library uses two given sets, BOOK and PERSON to represent all the books in the
world, and all the people in the world respectively. Suppose we had typed

[BOOK; PERSON]

with a semi-colon rather than a comma separating the two given sets. The Z tool
will place the cursor on the offending semi-colon, and display the message

"Syntax error, found semi-colon, expecting comma or c square brkt"

at the top of the screen. In this message, "c square brkt" is an abbreviation of "close
square bracket" ("I"). The words in bold give the format of all syntax error messages.
If there are several possible symbols expected in place of the one found, then the
error message will be longer than it is possible to display at the top of the screen. In
this case, the message will appear in a box one line of text high, and as long as
necessary, which is likely to disappear off the right of the screen. In this case, the
complete message may be read by scrolling along the box using either the right
arrow key or by holding the select button on the puck down and moving the arrow on
screen to the right of the message box.

There is a variety of possible error messages resulting from a typechecking error. As
an example, suppose the library specification continues with the following schema
representing the state of the library:

Library

borrowers P PEOPLE

books : P BOOK

books on shelves. P BOOK
on-loan : BOOK -4 PEOPLE

dom on loan n books on shelves = 0
dom on loan u books on shelves = books

rng onloan r borrowers

The typechecker would find 2 errors in this schema. The first would be in the line

10

borrowers P PEOPLE

the cursor would be placed on the "E " of "PEOPLE" and the message "Identifier
PEOPLE undeclared" would appear at the top of the screen. The second error is
found in the line

on loan : BOOK -4+ PEOPLE

and the cursor placed on the "E" of "PEOPLE". The message at the top of the screen
would this time be "Incorrect type for instantiation". The source of both of these
messages is the fact that PEOPLE has not been declared anywhere. The second
message reflects the fact that the typechecker is trying to instantiate -+, as this has been
defined with generic parameters in the Z library, and PEOPLE is not a type. Note that
the typechecker usually places the cursor on or after the error. Now suppose that the
library specification is further developed by adding the following schema to describe
the operation of borrowing a book:

Borrow
p?:PEOPLE

b? :BOOK
Library; Library'

p? e borrowers

b? e books on shelves
books on shelves' = books on shelves \ {b?}
borrowers' = borrowers

books' = books
onloan'= onloan t { b? -) p?}

The typechecker will again find fault with PEOPLE, this time for two reasons: one,
that it has not been declared, and two, that it is not a type, which is required in this
position. This leads to two messages, which, as there is not enough room at the top
of the screen for two lines, appear in a box in the main part of the file, immediately
above the error. These messages are "Identifier PEOPLE undeclared" and "The term
given is not a type".

In the case where the typechecker gives a message which includes the name of the
offending identifier, then this will not include any decoration, such as ',?, or !. This
means that it could be referring to the identifier itself, or a decorated form of the
identifier. It is important to note that the error messages do not themselves use the Z
font, so if the identifier causing an error uses a symbol not available in the message
font, a blank will appear in the message instead of the actual identifier.

11

5.3 Correcting Errors

Errors may be corrected one at a time, using the tab key to progress through the file.
Care should be taken as some errors may be consequential, that is, by correcting one
error several later errors may be corrected automatically. This often occurs with
errors in defining a schema, as wherever that schema is used later on, the
typechecker will not recognise it which will result in several consequential error
messages. Another example of this is in the library specification of section 5.2
above. If the first (syntax) error prompted a change to [BOOK, PEOPLE], then none of
the other errors would require any action.

Correcting errors is simply a matter of editing the file. However, the typechecker
will mark a line containing an error which has the effect that if correcting the error
requires any symbol from the Z gblock menu to be chosen, then it will not be
inserted immediately before the cursor but will instead be placed at the beginning of
the line. This is an unfortunate feature of the Flex editor. To overcome it, there is a
key procedure called unsetmark, which can be used with CTRL-a or to define a
control key, which will remove the mark from the line and allow it to be edited
normally.

-thi ite case where the error message appears in a box in the main part of the text, the
result button on the puck must be clicked to free the cursor and put it back in the
main body of the file before attempting to correct the error, and also before using the
tab key to go to the next error. When all errors have been found, the message

"Nothing found" will appear at the top of the screen. The file should then be
typechecked again, and the process repeated until the specification is correct.
Please note that just because a specification has been successfully typechecked it
does not mean that the specification is consistent or that it specifies what was
required.

5.4 Modules

Modules of Z are a means of structuring specifications. They allow large
specifications to be built up and typechecked gradually, and also provide for some
reusability of Z specifications. A module is formed by adding a keeps statement to the
end of a specification, which has the form

modulename keeps id], id2, id3

where the identifiers that appear in the keeps list are those which will be visible
outside the module. This statement must be inside a grouped Z text picture.

For example, suppose we have corrected the library specification, and wish to make
it into a module so that it may be used as part of a larger specification. The
identifiers we wish to keep are BOOK, PEOPLE, Borrow, and Library, and we will call
the module library. The specification is as follows:

12

- [BOOK, PEOPLE]

Library
borrowers • PEOPLE
books: FP BOOK
bookson-shelves : IP BOOK
on-loan : BOOK -+4 PEOPLE

dom on-loan n books-on-shelves 0

dom on loan u books on shelves = books
rng on loan r borrowers

Borrow
p?•PEOPLE
b? : BOOK
Library, Library'

p? e borrowers

b? e books on shelves
books on shelves' = books on shelves \ {b?}
borrowers' = borrowers

books' = books
on loan' = on-loan u {b? Ip?}

library keeps BOOK, PEOPLE, Borrow, Library

The result of typechecking this specification will be a Compiledpair, and this may be
seen by pressing the mode key (1 on the keypad). The function new should then be
applied by obeying the following command:

Compiledpair new!

A module will result, and pressing the mode key again will produce:

library :Module

Modules of Z may be incorporated into other files of Z by listing them at the top of
the new file. Any number of modules may be listed, and an empty Z phrase must be
put at the bottom of the list (below the last module). Any identifier appearing in the keeps
list of one of the modules may then be used in the new file. It is important to note

13

that all identifiers required must be in the list, including all branches of datatype
definitions. Keeping the name of a datatype will not automatically keep all its
components.

A Compiledpair may, instead of having the function new applied to it to create a new
module, be used to amend an existing module. The form of this command is

Compiledpair [li :Module amend!!

For further information on the amend command, see the information file info.amend
on the Perq (which also gives information on modules and other functions which may
be applied to them). An alternative to amend is the function change_spec, which must be
used in the case where the keeps list has been altered or the type of any identifier
changed. The format of the command line is the same as for amend, however all
occurrences of the module changed will be flagged as "untidy". This may be checked
by pressing the Mode key (1 on the keypad) with the cursor on an occurrence if in
doubt. Every (untidy) occurrence must be tidied using the procedure tidymodule. See
info.tidy-module for more information. Any specification which uses a module
which has been changed using amend or change spec will need to be re-typechecked.

6. Language Issues

The Z syntax used by the Z tool is based on that of King et al [King87], and is different
in some respects from that published in [Spivey89]. This section describes some of the
main differences between the syntaxes, and also discusses some features of the
language as used by the Z tool. The type checking and scope rules of Z as used by
the syntax and typechecking tool have been formally specified in Z, and the
interested reader is referred to [Sennett87] for details.

6.1 Differences with Reference Manual Z

There are 3 major differences between the syntax used by the tool (see Annex C) and
that of the Reference Manual, namely the use of theorems, where phrases and modules
by the typechecker which are not part of the Reference Manual Z.

Theorems take the form

hypothesis

conclusion

and asserts that the conclusion may be derived from the hypothesis. The symbol F is
called a turnstile. This construct is often used for stating proof opportunities.

The hypothesis may be empty, which is equivalent to true, or a list containing any
number of predicates (which include schema references), declarations, and

14

declarations bar predicates. The items in the list are separated by either semi-colons

or hard new lines. The conclusion of a theorem is a predicate.

where-phrases are a type of existential quantification, and take the form

Predicate
where

Declaration

The predicate part of a where-phrase is a list of predicates, while the declaration part
may have one of the following forms: a list of syntactic definitions separated by
seni-colons or hard new lines; one declaration bar predicate; or a vertical rule. As
an example, consider the following where-phrase:

predicate
where

x:X

This is equivalent to

3 x : X I p(x) • predicate

where-phrases are particularly useful in the predicate part of schemas, however care
must be taken with the scoping of variables introduced in the the declaration part of
a where-phrase, as such variables only have scope within the predicate part of the
where-phrase in which they were introduced.

Modules have been introduced as a means of structuring Z specifications, much like
using separately compiled pieces of code to build up a large computer program. See
section 5.4 for details on how to create and use modules.

A further difference with Reference Manual Z is the omission of bags from the
syntax used by the Z tool. These, together with operations on them, can be defined
by the user if required. The most convenient way is by creating a module which can
then be incorporated into any specification which requires it. It is also worth noting
that the horizontal form of schemas is also not allowed by the typechecker.

15

6.2 Common Causes of Errors

The purpose of this section is to list some of techniques of writing Z adopted by the
typechecker which should help to diagnose some of the more common errors. The
incorrect matching of brackets often causes problems, with the error message
"Incorrect type for function application or relation" being the most likely result.
Another common problem is caused by the incorrect use of the hard new line - it is
easy to leave one at the bottom of a Z phrase, or to use two, one under the other. In
either case a syntax error will result, however the cursor will be placed before the extra
hard new line by the typechecker not after the error as is usually the case. Other
things to watch out for are:

1. Cross-products. When using cross products in signatures, they must always be
bracketted, for example

[x, YI
fst: (X x Y) -' X

2. Infix functions and relations. When declaring the type of an infix function,
brackets must be used round the function name and placeholders. However, brackets
must not be used when declaring an infix relation, for exampleF[X, Y]

(_ . "(X Y) -) (X Y)

is a function, and

[X]
_ _ .PX <- fPX

is a relation.

3. Inverse. There is a special symbol for functional inverse, namely -1, so superscripting
is not required for this. (Superscripts may be used for iteration and user-defined
operators.)

4. Renaming and instantiation. Lists for renaming and instantiation must be
subscripted, for example

Schemal

16

, i I

Schema2 a Schema] [)ni

5. Symbol overloading. Symbols may not be overloaded, that is, used more than once
with different meanings.

7. Printing a File of Z Using the PostScript Printer

In order to print a file containing Z on the Apple LaserWriter II, the outermost font
of the file must be Propl6 (that is, font (5,lead)). If the file was created using a
different font, then it must be changed, and obeying the following command (which
uses a lead of 3) will achieve the desired result:

Ed-e, (5,3)) change_font!

For further information on this command, use the information file info.changefont
on the Perq.

In order to print a file, it must first be put inside another Edfile, an a4_blank for
example. Alternatively, there is a prepared file, called an Apple blank which contains a
Prop16 file inside another Propl6 file. The inner file is then used for writing Z.
Obeying the following command will convert the required file into the PostScript
format, and then send it to the Apple LaserWriter to be printed:

a4_blank : 12) post-script! applesend!

The number, 12 in this example, determines the size of the printed characters in
points. The smaller the number the smaller the print. This Guide was printed using
12.

More than one file can be printed at a time if required. This is particularly useful for
printing chapters or sections of a document each prepared in its own file, as each file
is started on a new page, and the pages numbered consecutively. It is achieved by
putting all the files in a vertical list in the required order inside the outer Edfile, and
obeying the same command as before.

It should be noted that the program used for printing Z as described is under
development - caveat emptor.

8. Known Problems

This section lists the known problems with the Z editor and typechecker, and offers
advice on how they may be overcome. If you discover any problems not listed here,
please inform the author.

1. Modules inside a Z phrase. The problem here involves the editor, and occurs when
a single module is placed inside a Z phrase. If the cursor is on the module, and the

17

right arrow used to move to the right, then the editor enters an infinite loop. The
visible sign of this is the cursor disappearing, and a flickering of the module
cartouche. Pressing CTRL REJ/DEL (break in) stops the looping, unfortunately all
editing done since the last save is lost.

2. Overwriting the schema box. The problem here involves the display, and may
occur when inserting elements into schemas where the schema contains a where
phrase. The remembered element may be inserted over the bottom line of the
schema box, that is, the bottom line is overwritten. Using insert remembered
horizontal rather than vertical sometimes solves the problem, otherwise inserting a
line at a time may help. If all else fails, the Z will have to be retyped in the required
place.

3. Deleting structures. The problem which arises in this case occurs when a whole
section of a Z picture, say the declaration part of a schema box, is deleted. If an
attempt is made to put the cursor in the empty space, the cursor will disappear and
the message "(White Bar) Signature in Z Box" will appear at the top of the screen.
Typing something then pressing right arrow (top right of the keyboard) will remove
the white bar and restore the line.

4. Using the typechecker in conjunction with the sketches software. If a sketch
appears in a file containing Z, then when typechecked the Z tool will stop on the
sketch. The TAB key must be pressed to move on. This applies when using forbids,
too.

5. Inverse. If a functional inverse symbol is placed next to a left image bracket. that
is, -11, without an intervening space, the typechecker will report an error with the
message "identifier undeclared".

References

[Currie82]
"Curt: The Command Interpreter Language for Flex", I F Currie and J M Foster.
RSRE Memorandum 3522 (September 1982)

[King87]
"Z: Grammar and Concrete and Abstract Syntaxes", S King, I H Sorensen and J
Woodcock. Version 1.1, July 28th 1987, Programming Research Group, University of
Oxford (July 1987)

[Sennett87]
"Review of Type Checking and Scope Rules of the Specification Language Z", C T
Sennett. RSRE Report Number 87017 (November 1987)

[Spivey89]
"The Z Notation - A Reference Manual", J M Spivey. Prentice-Hall International
Series in Computer Science (1989)

18

Annex A - The Z Symbols

This annex gives a list of symbols for 7, together with their meaning.

Symbol Meaning

Schema definition
Left angle bracket (for datatype definitions)
Right angle bracket (for datatype definitions and for piping)

•- Not
A And
v Or

Implication
Equivalence (if and only if)

V For all
3 There exists
31 There exists (unique)
* Then
E Set membership
x Cartesian product
IP Power set

Forward composition
E Overriding
#e Not equals
nIntersection

Union
Subset

C Proper subset
9Not member
n Distributed intersection
U Distributed union
Fr Finite set
0 Empty set
4 Relation

4Domain restriction
4Domain subtraction

Range restriction
P Range subtraction
I Left image bracket
I Right image bracket
-1 Inverse

Maplet
KN Natural numbers

Greater than or equals to
< Less than or equals to
" Concatenation

Range restriction (for sequences)

19

SLeft sequence bracket
SRight sequence bracket

Turnstile
-+* Partial function
-.4 Total function

Finite function
+ Partial injection

>+ Total injection
>- Finite injection
-4 Partial surjection

? Total surjection
>4 Bijection

20

Annex B - The Z Library

SET OPERATIONS

RELATION SYMBOL

X +-)Y == (X x 1')
X--Y = i :X +- Y V x: X 31 Y y Y(X, y) 6 fD

NEGATIONS NULL SET

E .x+-Px 0:R'X

Vx,y.Xox~y<*-(X=y) { x: XI-,(x X)}

'Vx.X;S.PX-xe S4::-t(xe S)

[X]X

1XI.

SUBSET RELATIONS

[X]

- Q * -, c _ -

V S,T.FPX
(S QT 0(V x:X -x r S = X E T))
A(S c T *~ S 5- T A S * T)

UNIONS AND 2NTESECTIONS NON-EMPTY SUBSETS

[X] [X]

_uJ(o,(\J (X PX) -)fX P1 X== PX\{0}l

V S, T: PX
S u T = {x:X I x e S v x e T}
S r)T = {x:X Ix e S A X TI
S \T = {xX IXl e S Ax e TI

21

GENERALIZED UNION AND INTERSECTION PROJECTION FUNCTIONS FOR PAIRS

[X] [X, Y]

u, n: X - RPX fs: .(X x Y) -- X
snd: (X x Y) -- Y

V A * P IPX__ _ _ _ _ _ _ _

* A = {x X 1(3 S :A.xe S)} Vx:X;y: Y.fst(x,y) =x A snd(x,y) =y

AA= x XI(VS'A.xe S)}

RELATIONS

MAPLET DOMAIN AND RANGE

[X, r] [X, Y] -

(X x Y)-4(X x Y) dom_ (X 4- Y) -4 IP X

rng_: IX + Y) IP Y
V VX.'X;y : Y -x y = (x,y) ran_ "(X*--) Y) FP Y

VR :X-- Y
• domR= {x :X;y : Y R(x,y)*x}
A rngR= {x :X;y :Y R(x,y)*y}
A ranR= {x.'X,'y. YIR(x,y).y}

IDENTITY RELATION

F XI
idX == {x "X . x x}

-_I

RELATIONAL COMPOSITION

[X,Y,Z]
(_._ ((X +- Y) x (Y +-* z))" (X *- Z)

V R :X " Y; S: Y +-* Z
R S = {x X; y: Y; z Z I R(x, y) A S(y, z) xF z}

22

RESTRICTION OPERATORS

Ix, YI
(4J-: (X(X " Y))-(X -Y)

VS:FPX;R :XE-+ Y
*S4R= {x:X;y: YI xe S AR(x,y)-x-~y}

VR:X4-* Y;T: PY
-R 'T= {x:X;Y:Y YIR(x,y) AYE T*.xF~y)

[SX,R.X

- S 4R ={x: X;y: Ylx e S AR(x, y) - F y}
IVR :.X *-. Y; T: P y
*R T ={x: X; y: YR(x,y)~ AY o T -x f4 y}

RELATIONAL INVERSION

V R: X Y -R- 1 = {x: X; y:Y IR(x, y).-y I x}.

RELATIONAL IMAGE TRANSITIVE CLOSURE

[X, Y] [7]

Ii-: ((X44Y) x PX) -4'PY + _-* :(T "T)--)(T 4T)

V R: X-) Y; S:WP XVR:T -T
*RLSI= {x:X;y:YlxE SAR(x,y).y} -R:=T4-4T 4T gQ .C}

AR=R+ udT

23

FUNCTIONS

PARTIAL FUNCTIONS

[X, 1']

X4+Y == if :X +-*Y

VX: X; YJ' Y2: :Y f(X,Y 1) Af(X, y2) y1 =y2

INJECTIONS

[X, Y]

X>X+Y {f: X-ioY I V X1, X2 : domf .fx 1 =fX2 = X= X2 1FX>-+y = (XX+4Y) r) (X-4Y)

SURJECTIONS ANTD BIECTIONS FUNCTIONAL OVERRIDE

[X, Y] [X, Y]

X-+*Y ff f: X-o-Y Irngf = YI (EG 9. ((X-s+Y) x (X--)Y))---*(X-O-Y)
X-*Y ==(X4*Y) r) (X-4Y) Vfg -- Y-f =(dmg f[X>4*Y=(X-*Y) r)(X)4Y)I fgX9Yf =(dm)lg

NUMBERS AND ITERATION

NUMBERS ITERATION

LAI

(_+_,_ 9(_*J.Z(7x72).4 -

(_div, (md (:I x1)-41 V R: X X
<-, _ -2!_, _>_: :7 72 * RO= idX

-- ::E -4 7Z~A (V k: KN -Rk+) =R-oRk)

KN {n:l I t 0}A (V k.0R-k (R-)k)

succ : AN -4 ?A4

Vn:* succ n =n +1 I

24

NUMBER RANGE

V a, b.7 l -a..b= {k. 7 I a:5k:5bl

FINITE SETS AND CARDINALITY

[X][FX= [S:JPX 13B n: * 3f: 1..n-4S rngf= S)
FIX == Xr~i' 1X

lXI
:X-I*J

#S ~ n: K43 I B...n>-)S rngf= S *n

FlNITE PARTIAL FUNCTIONS AND INJECTIONS MAXIMUM AND MINIMUM

I X, YJ min== X S. j l - Lm :SI V n :S *m ~n *m

IX-+Y={f :X-4Y I domf r F X} mnax== AS:P, 7I- gmSV nS-m~n-m

XXI4Y (X-"1Y) r) (X)+4>Y)

SEQUENCES SEQUENCE DECOMPOSITION

F X] [Xl
IseqX=if:.W -0 X Idomf I.. #f} hd, last:.seq X -->X
jseq1X= {f seqX I#f > 01 l, front: seq1I X -4 seq X

V s :seq1X
* lids = s I
A klt s = s #s
A tl s= succ (2.. #s 4s)
A fronts = 1..4#s-1) 4s

25

CONCATENATION

F_[X]
(_ : (seq X x seq X)-->seq X

V s, t seqX .st = s u ((X n n > #s n - #s) f)

SEQUENCE CONSTRUCTION

cons)(X x seq X)-seq X

snoc (seq X x X)-4seq X

V x : X; s :seq X - x cons s = (x) "S AS snoc x =s "(x)

SEQUENCE REVERSAL

rev : seq X-seq X

Vs:seqX revs = (Xn .. #s.#s-n+) s

FILTERING

RXI
(_ t I : (seq X x P X)-seq X

V V:PX
* 0 V = ()
A (VX:X.(Xe V4 (x)IV= (x))A (X V= (x))V= 0))
A (V s, t: seq X • (st) t V = (s t V) "(t f V))

DISTRIBUTED CONCATENATION

(X]
": seq (seq X)-*seq X

"/0 = 0
V s : seq X •(s)= s
V q, r : seq (seq X) •"(q-r) = (/q)-(/ r)

26

DISJOINT, PARTITION

[1, X]

disjoint : P(I -+ X)

partition : (I -+ FP X) -P X

V S : I-++X; T : X
• (disjoint S * (V i, j : dom S I i j• (S i) r) (S j) = 0))
A (Spartition T 0 disjoin, S A U {i• dom S * S i} =T)

27

Annex C - The Z Syntax

This syntax is given in British Standard form (BS 6154:1981) [BS] and has the
following features:

1) Denotations of the terminal symbols are enclosed in quotes.
2) [and] indicate optional symbols.
3) { and } indicate repetition, that is, a possibly empty sequence of symbols.
4) Each rule has an explicit final character (a semi-colon).
5) Brackets group items together.
6) (* and *) indicate a comment.
7) A comma is the concatenate symbol, an equals sign the defining symbol and a
vertical line the alternate symbol.

Named terminal symbols

id standard identifier, including decoration
document a specification module
decor ?, !, ', or subscript
EZ end of Z picture
NL hard new line
SI start indentation
EI end indentation
finish end of file
SR start vertical rule
ER end vertical rule
UD unique (generic) definition
inset infixed generic sets
preset prefixed generic sets
postset postfixed generic sets
op infix operator
encop lhs of enclosed operator
distinop lhs of distributed infix operator
distpreop lhs of distributed prefix operator
eop delimiter of two part operators
preop prefix operator
postop postfix operator
sconst numbers and the constants
TH start theorem
ETH end theorem
SW where phrase delimiter
where where phrase delimiter
EW where phrase delimiter
rel relational operator
explicitset { when indicating start of set display
pre pre-condition schema operator
SB start schema box (after name)

28

ST middle line of schema box

ESB end schema box

Rules

zjtext = [z...phrase], finish
I z...phrase, z-sep, zj-ext;

zsep = list..sep I EZ;

list .sep =''INL;

z-phrase = given...set-def
Idefinition
Iconstraint
theorem
import

Iexport;

given-set-def = T[, given-ids, TI;

given-ids = id, {'',id b;

definition = axiomatic-def
Isyntactic-def
Idatatype..def
schema-def;

constraint = pred;

theorem = V, pred
ITH, [gen...params], [hyps], IV', predjlist, ETH;

h~s= hyp, list..sep, hyp};

hyp =pred I deccl pred, 'I', dec;

imnport =doc, {doc}

doc = document, [decor], [instantiation]I;

export = id, 'keep', idslist;

ids - id I inset I preset I postset I op Irel I encop, eop
I distinop , eop I distpreop , cop Ipreop I postop;

idslist = ids, f ,,ids 1;

29

reference = (id I id, '$', id), [instantiation];

instantiation = '[', inst-list, ']';

instjlist = insttermlist I binding-list I rename-list;

(* The two forms of instantiation and schema renaming are all treated as
instantiation in this syntax: the various possibilities are distinguished semantically

inst_term-list = term, { ',', term };

binding-list = id, '=', term, { ',', id, '=',term .;

rename-list = id, '/', id, {",', id, '/', id };

axiomatic_def = liberal def
I uniquedef
I generic-def;

liberal-def = dec, ['I", pred]
I SR, def-body, ER;

defbody = dec-list, [ST, predlist];

uniquedef = UD, def-body, ER;

generic-def = decl-name, genparams, ':', term, 'I', pred
I UD, gen-params, defbody, ER;

gen-params = P[', givenids, 1';

declist = dec, {listsep, dec};

dec = decl-name, {list-sep, decl-name}, ':',term;

(* decl-neme has options to indicate the syntactic status of the operator being defined *)

decl-name -id lid,' i' ',id lid,' ',id
l'' '' id, ')id , '-'

lid,' ', id',I'_'q id, "', T-d;

syntactic_def = syn-deLid
I decl-name, gen-params, '= =', term
[UD, gen.params, synjdeflist, ER;

30

syndef._id = declname, '= =', term;

syn-deflist = syn.def, {list.sep, syndef};

syn-def = syn-def.id I syndefids;

(* syn-defids defines prefix, postfix and infix generic sets *)

syn-def.ids = id, id, '= =', term
Iid, id, id, '= =', term;

datatype-def = id, '::=' , branch, ''branch 1;

branch = id I id, '((' , term, '))';

schemadef = id, [gen params], schemadefinition;

schemadefinition = 'a', schema-term I schema;

schema = SB, local.dec_list, [ST, pred_list], ESB;

predlist = pred, {list-sep, pred};

localdec-list = (dec I inclusion), [list-sep, local-declist];

inclusion = (id Iid, '$', id), [instantiation];

(* Only schema renaming is allowed here *)

explicit constr = tuple
I explicit-set, '1'
[explicitset, termlistl, '1'
I '(, termistl], ''

termlistl = term, { ',', term };

tuple = '(', term, ',', termlist2, ")'
I '0', reference;

termlist2 = term, { ',',term };

(* aform = atomicformulae, and includes predicates. The distinction between terms
and predicate is checked semantically *)

aform = '7z' I 'Char' I sconst
I reference
I aform, '.', id

31

'(', product, ')'
explicitconstr
'{', local-dec-list, ['I', pred], V '.', term], '}'
'(' partials, ')'
encop, term, cop
SW, ax-dec-list, where, predjlist, EW

I SW, syndef-list, where, pred_list, EW
I '(', pred, ')';

product = term, x, term, { 'x', term };

ax_decjist = local-decjist, 'I' , pred
I SR, decjlist, ST, predlist, ER;

(* partials corresponds to various forms of partial application *)

partials '', rel, '-'
I "7, op, form2
aform, op,''
_ ,op,

' ',distinop, term, cop
aform, distinop, '_', cop
' ' , distinop, '' , cop
distpreop, ' ', cop,' '
distpreop, term , cop, -_'

distpreop, '-', cop, form3
encop, '', cop
preop,_'
I ' ', postop;

(* The following syntax rules define the priority of the various operator symbols. The
weakest binding is the infixed generic sets such as -- *)

formula = form 1, {inset, formi I;

(* infixed operators *)

form I = [form 1, op 1, form2;

(* function application *)

form2 = [form2], form3;

(* prefix function application and generic sets *)

form3 = preop, form3
I preset, form3

32

w E I I

Idistpreop, term, eop, form3
I P', form3
Ifoi-m4;

(postfix function application and generic sets *

form4 = formn4, distinop, term, cop
form4, postop
form4, postset

Iaform;

comprehension W X, local-dec-list, lambdaset
'g', local-dec-list, lambda-..set;

lambda-set =['I' , pred), V.', term;

term = comprehension I formula;

apred = SI , predjlist, El I term;

rel-exp = term, 'r= ', term
Iterm, '=', term, [tail]
Iterm, rel, term, [tail]
Iapred;

tail =rel, term, ttail]
I'=', term, [tail];

(priority of connectives: *

log-exp = log-exp 11I log-exp, '4*', log-exp 1;

log-expl. = log-exp2 Ilog-expl, '~,log-exp2;

log-exp2 = log-exp3 Ilog-exp2, 'V, log-exp3;

log-.exp3 = log-exp4 Ilog-exp3, 'A', log-exp4;

log-exp4 = { -i~rel-exp;

quant..exp = quant, decjlist, [Ipred 1.''pred;

quant = T' 3', 3'V';

pred = quant-.exp I log-exp;

schema-term =quant-sexp I log-sexp;

33

quant-sexp = quant, decjlist, V., schema-term;

log-sexp = log-sexpl I log-sexp, '0%, log-sexpl;

log-sexpl = Iog...sexp2 Ilog-sexp2, '=>', Iog-sexpl;

log-.sexp2 = log-.sexp3 Ilog-sexp2, 'V, log-sexp3;

Iog-sexp3 = log...sexp4 Ilogsexp3, WA, log-sexp4;

log-sexp4 = spec-sexp I -,log-sexp4;

spec-sexp = spec...sexp, TI,'', id-list, T)
Ispec-sexp, TI, reference
Ispec-sexp, 'op', spec-sexp I
Ispec..sexp, 'W), spec-sexpl
I spec-sexp 1;

id-list = id, {''id};

spec-sexpl = 'pre'], spec-sexp2;

rename T [', rename-list, 1'Idecor;

spec-sexp2 = (,schema_term, ')', [rename]I
Treference
schema;

Reference

[BS] "Method of defining syntactic metalanguage", British Standards Institution, BS
6154: 1981

34

DOCUMENT CONTROL SHEET

Overall security classification of sheet U ¢)ij a$,s.I ..Qd ..

(/ s far as possible this sheet should contain only unclassified information. If it is necessary to enter classified information, the box
concerned must be marked to indicate the classification, eg (R), (C) or (S))

1. DRIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security Classification

Memo 4356 Unclassified

5. Originator's Code 6. Originator (Corporate Author) Name and Location
(if known) ROYAL SIGNALS & RADAR ESTABLISHMENT

ST ANDREWS ROAD, GREAT MALVERN
WORCS WR14 3PS

5a. Sponsonng Agency's Code 6a. Sponsoring Agency (Contract Authority) Name and Location
(if known)

7. Tftle

ZADOK USER GUIDE

7a. Title in coreign Language (in the case of Translations)

7b Presented at (for Conference Papers) Title. Place and Date of Conference

8 Author 1 Surname. Initials 9a Author 2 9b Authors 3. 4 ... 10. Date pp ref

RANDELL G P 1990.01 34

11. Contract Number 12. Period 13. Prelect 14, Other Reference

15 Distrbution Statement

Unlimited

Descriptors (or Keywords)

Continue on separate piece of paper

Abstract

This is a guide for users of ZADOK, the RSRE Z syntax and typcheckcr.

It also contains a brief introduction to using the Perq Flex system.

S80/48

