
0

&dpnrillter SyvstC'ems -Research

Ricq~e University

' 2 99 W-Annual Report

*Joh'n Be-liett
Rick Ba btik

Jo hn D. ("arta
k/ootozc lalvfa aa itL'oahy

Jerry Fowaler
Datvid B3. Johnson

Pfti Kr/ipher

BES

AVILBL COPY,

go. 05 25 mi1

Im

) contents;

/ ,/

Optimistic Make , ,.+. 1
Rick Bubenik, Willy Zwaenepoe -

r - -- - - - - -- - - - - -.......

Optimistic Implementation of Bulk Data Transfer Protocols 23

John B. Carter, Willy Zwaenepoel

Causal Distributed Breakpoints ... 39

Jerry Fowler.YWZu epoel

Distributed System Fault TAerance Using Sender-Based Message Logging_,. 53

David B. Johnson, Willy Zwaenepoel

Recovery in Distributed Systems Using Optimistic Message Logging
and Checkpointing .. 83

David B. Johnso7, Willy Zwaenepoel

Accesion For
' I NTIS CRA&WDTIC TAB 0

Unannounced 0

STATEMENT "A" Per Dr. Andre Tilborg JUStihation
ONR/Code 1133 By
TELECON 5/29/90 VG By

A' !bill t Codes
' !Art,, :nidjor

Optimistic Make

Rick Bubenik

Willy Zwaenepoel

Department of Computer Science

Rice University

P.O. Box 1892

Houston, Texas 77251-1892

This paper has been submitted to and is under revision
for publication in IEEE Transactions on Computers.

An earlier version appeared in
Proceedings of 1989 ACM SIGMETRICS and PERFORMANCE '89.

Abstract

Optimistic. make is a version of the make program that begins execution of the commands
needed to update makefile targets before the user issues the make request. Outputs
of these optimistic computations (such as file or screen updates) are concealed until the
request is issued. If the inputs read by the optimistic computations have not been changed
by the time of the make request, the results of the optimistic computations are used,
leading to improved response time. Otherwise, the necessary computations are reexecuted.

We introduce the notion of encapsulations as the basic construct used to support optimistic
make, and we describe the implementation of optimistic make in the V-System on a
collection of SUN workstations. Statistics measured from this implementation are used
to synthesize a workload for a discrete-event simulation, and to validate the simulation's
results. The simulation shows a speedup distribution over pessimistic make with a median
of 1.72 and a mean of 8.28. The speedup distribution is strongly dependent on the ratio
between the target out-of-date times and the command execution times. With faster
machines the median of the speedup distribution grows to 5.1, and then decreases again.
Given the large idle times observed in many workstation environments, the extra machine
resources used by optimistic make are well within the limit of available resources.

This research was supported in part !y the National Science Foundation under Grants CDA-8619893 and
CCR-8716914, and by IBM Corporation under Research Agreement No. 16140046.

1

1 Introduction

Make is a tool used primarily in software development environments for creating up-to-date exe- !

cutable programs from their source files [6]. Using a makefile, the user specifies a number of targets,
the sources they depend on, and the commands necessary to construct the targets from the sources.
A target is said to be out-of-date if one of its sources has a later timestamp than the target. When
the user types make, out-of-date targets are reconstructed according to the makefile. If some of the

commands are independent, they may be executed in parallel on separate machines.

Optimistic make is identical in functionality to make. However, unlike the conventional pes-
simistic implementation of make, it minitors the file system for out-of-date targets, executes the
commands necessary to bring the targets up-to-date before the make request is issued, and conceals
the outputs of the optimistically executed commands until the user types make. If the inputs read

by the optimistic commands remain unchanged until the make request is issued, these optimistic I
results are used immediately. Otherwise, the necessary commands are reexecuted.

The operational differences between optimistic make and pessimistic make, and the potential 3
performance benefits of optimistic make are shown in Figure 1. The top portion of the figure
depicts a pessimistic distributed make, whereby the user edits and saves a number of files, and

then issues a make request, at which time the commands necessary to bring the targets up-to-date £
are executed. The bottom part of Figure 1 depicts the operation of optimistic distributed make.
Commands are started as soon as files are saved, when targets become out-of-date. The response

time for the make request is significantly improved since most command execution occurs before
the request is issued.

The outline of the rest of this paper is as follows. Section 2 discusses the notion of encapsulations, I
the primary mechanism used to support optimistic make. Section 3 discusses the implementation

of encapsulations and optimistic make in the V-System. Section 4 presents the statistics collected 5
file so-. , make

i file2 fIie3 response I
PESSIMISTIC: cm1 lnktime

c 3

response

OPTIMISTIC: time
Comp I caip!I linkomp l2 : P

Comp 33

Figure 1 Optimistic vs. Pessimistic Distributed Make.

23

from our implementations of both pessimistic make and optimistic make. Section 5 describes the

simulation model used to further evaluate the performance of optimistic make. Results from this

simulation are presented in Section 6. Related work is covered in Section 7. Finally, conclusions

are drawn and further work is discussed in Section 8.

2 Encapsulations

2.1 Definition

An encapsulation is a computation whose outputs are concealed until the computation is mandated.

Once mandated, the outputs are made visible in an order consistent with the order in which they
were produced during the execution of the encapsulation. The following three operations are defined

on encapsulations:

eid = CreateEncapsulation 0 Create an encapsulation with unique identifier eid. Output
produced by the encapsulation is not visible outside the encapsulation until it is mandated,
with one exception: it is possible to allow an encapsulation to read the outputs of one or more

input encapsulations by specifying these encapsulations as arguments to the CreateEncap-
sulation0 call. The newly created encapsulation is then said to be dependent on its input

encapsulations.

result = MandateEncapsulation(eid) If the inputs read by the encapsulation are un-

changed, then reveal all outputs produced so far, do not conceal further output, and return
success. Otherwise, abort the encapsulation and return failure.

AbortEncapsulation(eid) Abort the encapsulation and discard its concealed output.

Encapsulations are superficially similar to atomic transactions in that both mechanisms hide op-

erations until a later time (commit time for atomic transactions, mandate time for encapsulations).

However, the semantics of encapsulations differ considerably from those of transactions. Encapsu-
lations can be mandated before the concealed computation completes, allowing an encapsulation

to be converted into a normal computation at any point during execution. When an encapsulation

is mandated, output is made visible in steps rather than atomically. This simplifies the implemen-

tation by avoiding atomicity concerns. Encapsulations may be destroyed at any time, even while
concealed output is being made visible, allowing the user to abort unwanted computations before

the remaining unwanted output has appeared.

2.2 Optimistic Make and Encapsulations

The optimistic make program reads an unmodified makefile and monitors the file system for mod-

ifications to the source files on which the makefile targets depend. File system monitoring is done
efficiently by requesting notification from the file server when any file in a specified directory is

modified. This results in shorter notification times and less overhead on the file server than polling,

3

while keeping the amount of state to be maintained at the file server for this purpose small. When
optimistic make sees a target in the makefile that is out-of-date, it starts an encapsulation to

update that target. If two (or more) dependent computations are necessary to update a target
(for instance, a compilation and a linkage), the first computation is started as an encapsulation
eid, without input encapsulations, and when it finishes, the second computation is started as an
cncapsulation eid2 with the first encapsulation eid, as an input encapsulation. This allows the
linker to read the output of the compiler. If a source file changes after an encapsulation has been
started, the corresponding encapsulation is aborted, and a new one is started. If any encapsulation

in a sequence of dependent encapsulations is aborted, all subsequent encapsulations in the sequence
are also aborted. When more than one independent encapsulation is necessary to update a target,
the independent encapsulations are started concurrently on separate machines (rpsorces permit-
ting). If an encapsulation is not mandated within a certain timeout interval, the encapsulation
automatically aborted to release resources.

3 Implementation

This section describes an implementation of encapsulations and optimistic make in the V-System [3].
The V-System follows the conventional client-server model of user programs executing as client
processes and accessing most operating system services by sending messages to server processes.
The V kernel provides efficient, location-independent message passing.

Encapsulations are transparent to the client programs. The same client program can be run
either as a normal computation or as an encapsulation, with no need for recompilation or relink-
ing. An encapsulation server process provides most of the support for encapsulations. Several
encapsulation servers may be running at the same time, but a particular encapsulation and all its

dependent encapsulations must be handled by the same encapsulation server. Minor modifications
to the kernel and to some of the servers are also required. However, not all servers need to be

modified.

3.1 Kernel Support

Two new fields are added to each kernel process descriptor in order to support encapsulations: the
eid field, which contains the encapsulation identifier, and the encapsulation flag which indicates
whether this process supports encapsulations. The eid field is zero, by default, for processes that do

not run as encapsulations. A normal computation is converted into an encapsulation by instructing
the kernel to set the eid field to a specified non-zero value for all processes of the computation.

The eid value is also inherited by all processes created by the encapsulation. Servers that support
encapsulations instruct the kernel to set the encapsulation flag field in their process descriptor.

All messages are tagged with the value of eid field of the sender. The kernel delivers messages
sent by an encapsulation (that is, messages with a non-zero eid tag) only to other processes in the
same encapsulation or to server processes who have indicated that they support encapsulations. All
other messages sent by encapsulations are blocked, typically blocking the progress of the sending

4

process as well. This allows us to run encapsulations in environments where not all servers support

encapsulations, accommodating servers whose code cannot be modified. Although optimistic com-
putation cannot proceed if the encapsulation communicates with one of these servers, correctness

is preserved.

In total, the kernel modifications for encapsulation support consist of an additional 65 bits in
the process descriptor, plus approximately 120 lines of C-language code.

3.2 Running an Encapsulation

The create, mandate, and abort encapsulation requests are issued by optimistic make and serviced
by an encapsulation server process. The encapsulation server allocates a unique eid identifier for
each encapsulation, and keeps track of all input and output operations performed by an encapsula-
tion. Servers that support encapsulations inform the encapsulation servei of the input and output
operations performed by an encapsulation in a server-specific manner. These servers know that a
message comes from an encapsulation by checking the eid tag of the message.

In our current implementation, both the file server and the terminal server support encapsu-
lations. When an encapsulation opens a file for read, the file's timestamp is recorded with the
encapsulation server. When an encapsulation opens a file for write, the request is first recorded
with the encapsulation server, then a hidden file is created, and all subsequent writes are redirected

to that file. Hidden files do not appear in the file system directory structure and are only accessible
through low level identifiers. Furthermore, the encapsulation server maintains a hidden file system

directory tree for each encapsulation, recording the modifications made by that encapsulation to
the directory structure. The hidden directory tree is also used to record the mapping between the

names of files modified by the encapsulation and the low level identifiers of the corresponding hid-
den files. When an encapsulation writes to the terminal server, the data to be written is recorded
with the encapsulation server. Any other operation sent to the terminal server (including a read)

is blocked.

In summary, each server records the operations of an encapsulation in a server-specific manner
with the encapsulation server. This allows us to take advantage of the semantics or common usage

patterns of certain servers. For instance, the file server only records opens with the encapsulation
server, and does not need to record individual reads and writes, an important optimization in our

environment where multiple reads and writes are typically performed on each open file.

The encapsulation server transfers information between encapsulations during a create encapsu-
lation request if input encapsulations are specified. When a single input encapsulation is specified,
the hidden directory tree containing the modifications of the input encapsulation is inherited by
the new encapsulation. When more than one input encapsulation is specified, the hidden directory

trees of each input encapsulation are first merged, then passed on to the new encapsulation.

5

3.3 Mandating an Encapsulation

When an encapsulation is mandated, the encapsulation server inquires with the relevant servers
(in our implementation, with the file server) whether the timestamps of the inputs that the en-
capsulation has read have remained unchanged. If so, it instructs the servers to make visible the
outputs performed by the encapsulation in the order they were recorded. Servers synchronously
record the output operations of encapsulations with the encapsulation server. Hence, the order
in which the outputs are recorded, and thus made visible, is a serialization of the order in which
they were created. After all outputs have been made visible, if the encapsulation is still running,
the encapsulation server zeroes the eid field of the encapsulated process and all its descendents,
converting the encapsulation into a normal computation. As a result, blocked messages to servers
not supporting encapsulations are now delivered.

3.4 Encapsulation Performance

The overhead of executing an encapsulation compared to a normal computation is roughly propor-
tional to the number of file opens, as opposed to the number of reads or writes. In our implementa-
tion, on SUN-3/50 workstations, the encapsulation overhead is 18 milliseconds per open for read,
and 8 milliseconds per open for write, for the first open of each file. The encapsulation overhead
is lower if the same file is opened again: 10 milliseconds per open for read and 4 milliseconds per
open for write. The overhead is lower on subsequent opens because the hidden file system directory
tree does not need to be updated. Most of the encapsulation overhead results from communication
between the file server and the encapsulation server, and from the cost of maintaining the hidden
file system directory tree. An implementation in which the encapsulation server is integrated with
the file server might be more efficient, but we prefer the modularity of our approach.

At mandate time, overhead is minimized by obtaining a number of timestamps for examination
in a single operation. We measured an overhead of 8 milliseconds per open for read, and 31
milliseconds per open for write. These times are limited by the time it takes our file server to find
a file in the directory tree and to overwrite a file, respectively. When a computation is mandated
while still executing, the mandate can proceed in parallel with the computation, so the oveihead
does not add to the computation's response time. For the types of computations considered in
this paper (compilations and linkages), a conservative estimate for the encapsulation overhead is 2
seconds per computation during execution and 1 second per computation at mandate time.

4 Measurements

4.1 Measurement Environment

The system used for measurement consists of between 8 and 12 diskless SUN-2/50 and SUN-3/50
workstations, and a SUN-3/160 file server, connected by a 10 megabit Ethernet. All machines
run the V-System [3]. Remote execution of programs is transparent and incurs a negligible per-
formance penalty. File access is also transparent, and has equal cost from all diskless machines.

6

I

The availability of other machines on the network can be determined efficiently using the V group

communication mechanism [4].

These machines are used for software development by our group, which consists of 8 graduate
students and faculty members, and for projects in a graduate distributed systems course. Most of
our makefiles involve C compilations and linkages, with a small number of Modula-2 compilations
and some TEX text processing. There are typically 4 to 6 active users on the system during the3 day, although commonly only 2 or 3 of these are actually engaged in software development.

L 4.2 Method of Measurement

We have instrumented our make programs (both the pessimistic and optimistic versions) to collect
the following statistics each time a make request is executed:

" The out-of-date time for all out-of-date targets: the difference between the time of the makeI request and the latest timestamp of any of the target's sources.

" Command execution time: the running time of each program executed as part of the make.£ All times are normalized to SUN-3 CPU speed.

* The shape of the dependency graph and the number of commands executed as part of the
I make.

" The number of encapsulations aborted as part of each optimistic make.

j We gathered make statistics for more than 6 months, over which time we measured approximately

4,000 requests.

4.3 Measurement Results

Figure 2 shows the cumulative distribution of the target out-of-date times. The median and mean
values of this distribution are 32 and 378 seconds, respectively. This implies that the make request

for most targets is issued fairly soon after a change to the source files is made, but occasionally, users

wait quite a while longer before issuing a make request. Figure 3 shows the cumulative distribution
of the command execution times. The distribution varies with the number of commands per make
request, where requests with a small number of commands have lower execution times for each

command. We speculate that this is due to the fact that many make requests with a small number
of commands (and especially those with one command) terminate quickly due to compilation errors.

Most of our makefiles have a similar dependency graph (see Figure 4): a number of independent
commands (usually compilations) followed by a single command (usually a linkage). The distribu-
tion of the number of commands per make is given in Figure 5. The median number of commands

per make request is 2, usually corresponding to a change to a single source file, resulting in a
recompilation of that source file and a linkagc. The mean number of co ,.,,ands is 4.39.

I7

1.0 1.0

0.8 0.8

0.6 -0.

O.................- 3 commands/request

0.4 0.4 ' 5 commands/request

- - - average

0.2 0.2

0.0 I 0.0 I

1 10 32 100 1000 10000 0 50 100 150 200
out-of-date time in seconds command execution time in seconds

Figure 2 Cumulative Distribution Figure 3 Cumulative Distribution
of Target Out-of-date Times. of Command Execution Times.

1.0 -

0.8

0.6 -

0.4

copl ik0.2

0.0 -

0 2 10 20 30 40 50
commands per request

Figure 5 Cumulative Distribution
Figure 4 Typical Makefile of Number of Commands per

Dependency Structure. Request.

8

4.4 Overhead Estimates

Optimistic make uses more system resources (CPU time, device input/output bandwidth, and

memory space) than pessimistic make due to the presence of aborted optimistic commands and
the encapsulation overhead. Table 1 shows the number of commands mandated and aborted with
optimistic make. For each mandated command (that is, for every command also necessary in
pessimistic make), an average of 1.39 optimistic commands are started. Hence, aborted commands
impose an extra load of at most 39 percent. This is an upper limit on the extra load since many of the
aborted commands do not run to completion, and thus use fewer resources. For the compilations
and linkages considered here, encapsulations add less than 5 percent overhead on average (see
Section 2.2). Hence, we estimate that the total extra load is at most 44 percent, and is in practice
significantly lower. This extra load is small compared to the large idle times that have been observed
in workstation environments, even during peak usage periods [12].

Encapsulations use additional disk space beyond that used by normal commands to store the
hidden files. To estimate how much extra space might be used, we assume that each user has a
completed optimistic make containing the measured average of 4.39 commands. These normally
consist of a linkage (producing an executable file) and an average of 3.39 compilations (producing
object modules). Using the average executable and object module sizes in our system, each of these
optimistic makes requires a total of 81 kilobytes. If we assume the typical file server has at least
10 megabytes per client, this represents less than 1 percent of the client's disk allocation.

5 Simulation

To further evaluate the performance of optimistic make, we now use the measurements of Section 4
to parameterize a simulation of a software development environment. The purpose of the simu-
lation is to determine the response time improvement of optimistic make over pessimistic make.
Response time is the elapsed time from when the make request is issued to when all the commands
corresponding to that make request are completed. Response time improvement is the ratio of
response time in pessimistic make to response time in optimistic make.

The simulation model consists of N identical machines and M users. Each user issues make
requests, with the think time between requests drawn from an exponential distribution. A com-
mand may use any of the N machines, although at any time we allow only a single command to
execute on each machine. A centralized scheduler assigns commands to machines in FCFS order,
preferring normal commands to optimistic ones. Once a command is started, it runs to completion

Commands Number Percent
mandated 16634 100% 1
aborted 6448 39%

total 23082 139%

Table 1 Mandated and Aborted Commands.

9

unless aborted, with no preemption. When all workstations are busy, requests are queued until
one becomes available. Simulations with centralized, distributed, preemptive and non-preemptive
schedulers show that in our environment, under normal load, the choice of scheduling algorithm
has little effect on the response time improvement [1].

We simulate both pessimistic and optimistic make with identical arrivals of make requests. For
each pessimistic make request, we draw the number of commands to be executed from the empirical
distribution shown in Figure 5, and then select the command execution times from the distribution
in Figure 3 for requests with that number of commands. The commands are started when the
pessimistic make request arrives, subject to the dependencies in the makefile. Only dependencies
of the form depicted in Figure 4 are considered. For optimistic make, we use the same request stream
as used for pessimistic make, and for each request we draw the out-of-date times for each of the
targets from the empirical distribution shown in Figure 2. The commands for the optimistic make
are started at the time of the make minus the time drawn from the out-of-date time distribution.
In order to simulate aborted commands in optimistic make, we introduce an extra command for P

percent of the optimistic commands, where P is normally set to the measured value of 39 percent.
We assume both pessimistic and optimistic make have negligible request processing overhead. In
order to account for encapsulation overhead, each optimistic command is assessed an overhead of
2 seconds during execution and 1 second at mandate time.

Since the response time improvement is dependent on the particular make request and the
out-of-date times, we provide as the main result of our simulations the cumulative distribution of
the response time improvement of optimistic over pessimistic make. Additionally, we provide the

median response times for both optimistic and pessimistic make as an indication of the absolute

difference in response times.

We run a terminating (finite horizon) simulation for a period of 10 simulated hours. Pessimistic
and optimistic results are compared by constructing a 95 percent confidence interval on the median
response time improvement for each run with a relative precision of ±3 percent.1 This typically
requires between 10 and 100 runs of the simulator.

6 Simulation Results

6.1 The Baseline System

Figure 6 shows cumulative distributions for the response time improvement in a system similar to
the one we are using. All simulation inputs are drawn from the empirical distributions, the number
of machines is set to 10, and the mean think time is set to 6 minutes. Results are shown for 1,
5, and 10 users. For the 5-user curve, the median response time improvement is 1.72, and the
mean improvement is 8.28. The median improvement in the other curves is similar, but the mean
improvement varies slightly. The shape of the curves reflects the fact that most make requests are

'In those experiments where the median ptssimistic and optimistic response times are also recorded, the relative

precision for each of the three statistics is set at -3 percent, resulting in a lower aggregate precision.

10

I
I

issued shortly after changes to the source files are made. Improvements are occasionally very high,
when all optimistic commands have completed by the time of the make request, in which case the

response time for the optimistic make is equal to the time necessary to mandate the commands.
A small percentage of optimistic requests perform worse than the samc request 'i the pessimistic

i simulation, particularly under high load.

Figure 7 shows cumulative distributions of response time improvement in the baseline system
with varying mean think times. Decreasing the think time affects the improvement more thanI varying the number of users, in part because shorter think times imply that users do not wait as
long before issuing a make request after modifying source files, leaving less time to complete the
optimistic work. However, the effect of varying the think time on the response time improvement
curves becomes minimal for think times larger than 6 minutes. Measurements indicate that the
mean think time in our environment is at least 6 minutes. Hence, for the remaining experiments

described in this paper, we fix the mean think time at 6 minutes.

Validation To validate the simulation model, we compare the measured cumulative response
time distribution from our implementation to the value obtained from the simulation, for both
optimistic and pessimistic make (see Figure 8). We compare response times rather than response

time improvements since the improvement, as it is computed in the simulator, cannot be measured
from the implementation: each real make request is either pessimistic or optimistic, but not both3 (as in the simulator).

31.0 -1.0
-1 m n t

0.8 - 0.8

0 0......6

0.4 - / .users 0.4 - users:3 . -- 10 users think times:

0.2 - think time: 0.2 -1.2,4,6,10,203 0.0 . 6 minutes 00minutes

0.1 0.5 1 5 10 50 100 0.1 0.5 1 5 10 50 1003 response time improvement response time improvement

Figure 7 Cumulative Distribution
Figure 6 Cumulative Distribution of Response Time Improvement in
of Response Time Improvement in Baseline System (Varying Think
Baseline System (Varying Users). Time).I

.o...

opti itc.....
0.8

0.6 *. pessimistic

0.4 "

0.0
0 50 100 150 200

response time (in seconds)

Figure 8 Cumulative Distributions of Simulated and Measured Response Times.

Correlations The response time improvement is somewhat correlated with the number of com-

mands per make request and with the total CPU demand per request. Figure 9 shows the median

improvement plotted as a function of the number of commands per make request, and Figure 10
shows the median improvement plotted as a function of the CPU demand per request. With one

or two commands per request and with a total CPU demand less than 30 seconds, the median

improvement is noticeably higher than with more commands and larger CPU demands. This is
because commands are shorter in these cases and thus more likely to have completed optimistical y

when the make request is issued.

6 14

5 12

aa 4a
n n
m 3 m *

V ? 6e 0v• 2

V *
m m 4 0
t 1 **2 b****7_******-"* "L* |"*** -l**m

0 , p , 0 I i t
0 10 20 30 40 50 0 2 4 6 8 10

number of commands CPU demand (in minutes)

Figure 9 MediaL Improvement as Figure 10 Median Improvement as
a Function of the Number of a Function of the CPU Demand per

Commands per Request. Request.

12

Discussion Response time improvement is affected mainly by the ratio of target out-of-date times
to command execution times, and also by the number of machines available for execution. The
ratio of target out-of-date times to command execution times is important because it determines
the amount of optimistic computation that can be executed before requested. To isolate the effect
of changing this ratio from the effect of the number of machines available for execution, we initially
assume an infinite number of machines and alternately vary the command execution and out-of-date
times (Sections 6.2 and 6.3). In Section 6.4, we compare the machine utilization of pessimistic and
optimistic make, then address the effect of limiting the number of machines in Section 6.5. Finally,
the effect of heterogeneous machines on the response time improvement is studied in Section 6.6.

6.2 Varying Machine Speeds

To assess the effect of varying machines speeds, the number of machines is set to infinity, and the
command execution times (from Figure 3) are divided by a scale factor. Encapsulation overhead
is also reduced by the same factor. Other inputs to the simulation (out-of-date times, think time,
and number of commands per make request) are as in the baseline model. 2

Figure 11 shows the cumulative distribution of response time improvement for the original
machine speed (labeled SUN-3), and for systems 8 and 16 times faster (labeled 8*SUN-3 and
16*SUN-3). Figure 12 shows the median response times for both pessimistic and optimistic make
plotted side-by-side for several CPU speeds. 3 These figures show that as machine speed increases,

1.0 -50-

S16*SUN-3 pes s imistic0.8 / g40
/ n0 optimistic
."

0.6 /: 30

SUN-3 ". :8*SUN-3 m

0.4 . 120
I. n

.5

0.2 - H.....
c lo -

0.0 0 -j-, o '-. n- D_ -m-
0.1 0.5 1 5 10 50 100 1 4 8 12 16

response time improvement CPU speedup factor

Figure 11 Cumulative Distribution
of Response Time Improvement for Figure 12 Median Response Times

Varying Machine Speeds. for Varying Machine Speeds.

2The number of users is irrelevant with an infinite number of machines.
3The ratio of the median response times is not the same statistic as the median response time ratio (the latter is
computed by selecting the median of all individual improvements).

13

the difference between the response time of optimistic and pessimistic make decreases. The response

time improvement, however, first grows and then decreases with faster machines, from a median of

1.7 in the SUN-3 curve, to a maximum median of 5.1 in the 8*SUN-3 curve, and then back down

to a median of 3.3 in the 16*SUN-3 curve. As the machine speed goes from SUN-3 to 8*SUN-3,

many more optimistic commands are completed or nearer to completion by the time the make

request is issued. Hence, response time for optimistic make is greatly improved. Response time

for pessimistic make does not improve as fast as for optimistic make, yielding a higher response

time improvement. Beyond the CPU speed at which most optimistic commands are completed by
the time of the make request, there is little additional improvement in optimistic make's response

time. Pessimistic make continues to improve, though, decreasing the response time improvement.

6.3 Varying Out-of-Date Times

While measuring our system, we observed that the median and mean of the out-of-date time

distribution changed slightly between different measurement periods. We simulate this effect by
using values drawn from the empirical out-of-date time distribution multiplied by different scale
factors. Other simulation inputs are as in the baseline system, with an infinite number of machines.

Figure 13 shows the cumulative distributions for scale factors of 0.25, 1, and 4. Figure 14
shows the median response times for both pessimistic and optimistic make for several scale factors

between 0.25 and 8. Unlike with increasing machine speed (Section 6.2), larger out-of-date times
increase both the response time improvement and the difference between median response times,

until most optimistic commands are completed by mandate time. With even larger out-of-date
times, both remain constant, again in contrast with Section 6.2.

1.0 50
: . r

0.8scale factor: 0.25 40
0.8 40

e
0.6 -t 30-

0.41 20-
n

e
0.2 1 10

0.0 0* .

0.1 0.5 1 5 10 50 100 0.25 0.5 1.0 2.0 4.0 8.0
response time improvement out-of-date time scale factor

Figure 13 Cumulative Distribution Figure 14 Median Pessimistic and
of Response Time Improvement for Optimistic Response Times for
Varying Out-of-date Scale Factors. Varying Out-of-date Scale Factors.

14

I

6.4 Machine Utilization

Figure 15 shows the probability distribution for the number of busy machines with optimistic make
using 39 percent aborted commands (the percentage measured). This distribution is obtained by
sampling the number of busy machines once a minute during the simulation. The number of users is
varied between 1 and 16, the mean think time is kept constant at 6 minutes, other inputs are drawn
from the empirical distributions, and an infinite number of machines are available. Simulations with

j a constant number of users and varying think times give similar results.

Figure 16 shows the probability distribution of the number of busy machines for 16 users with
pessimistic make, optimistic make with no aborted commands, optimistic make with the measured
39 percent aborted commands, and optimistic make with 72 percent aborted cummands (where
all source node commands in the makefile dependency graph are aborted once). This figure shows
that optimistic make distributes CPU load more evenly over time: it is less likely to use very
few machines or very many machines. This arises because pessimistic make needs many machines
when the make request arrives, while optimistic make spreads out machine use for each request by
using machines as soon as files are modified. The aborted commands add to the overall machine
utilization of optimistic make, but CPU use remains less variable.

6.5 Limiting the Number of Machines

We now limit the number of machines, while fixing the number of users at 16 and the mean
think time at 6 minutes. All other simulation inputs are taken from the empirical distributions.
Figure 17 shows the response time improvement distribution with 8, 16, and an infinite number of
machines. Figure 18 shows the median response times for optimistic and pessimistic make for the

I probability probability
0.7 0.20

0.6 0.15 pessimistic

0.5 user

1 0.4 -.ptimistic (0%)
0.10 optimistic (39%)

0. sr 0.051~ 00 pimistic (72%)
0.0 - 0.0

I0 2 4 6 8 10 12 14 16 0 5 10 15 20 25 30 35

busy machines busy machines

Figure 15 Probability Distribution Figure 16 Probability Distribution
of Busy Machines for Varying of Busy Machines for Varying

Numbers of Users. Percentages of Aborted Commands.

1 15

1.0 100ei
L.pessimist

" optimistic, 0%
0.8 80 optimistic, 39%

• " """ n I // optimistic, 72%

0.6 et60

-infinite m
e

0.4 16 machines i 40I n-- 8 machines e

0.2 c :
0 2]

0.0 1 11 - N

0.1 0.5 1 5 10 50 100 infinite 16 8
response time improvement number of machines

Figure 17 Cumulative
Distributions of Response Time

Improvement for Varying Numbers of Figure 18 Median Response Times
Machines. for Varying Numbers of Machines.

same numbers of machines using the three abort ratios from above.

In going from an infinite number of machines to 16, the improvement remains approximately
constant, since neither optimistic nor pessimistic make are machine-limited. When further decreas-
ing the number of machines to 8 (with 2 users per machine), the improvement declines because
optimistic commands are frequently blocked while normal commands use all the resources. The
roughly constant improvement down to 16 machines (one user per machine) indicates optimistic
make provides significant benefits under normal circumstances. Even with unexpectedly high loads,
optimistic make still provides some improvement.

6.6 Effects of Heterogeneity

In Section 6.2, we showed that increased machine speed improves the response time improvement
of optimistic make. We now look at how this improvement is affected in a heterogeneous environ-
ment. We assume two types of machines: slow machines, at the speed used in our baseline system
(SUN-3/50), and fast machines, at twice this speed. In a heterogeneous environment, the scheduler
prefers fast machines and thus executes commands on fast machines whenever possible. The num-
ber of fast machines is varied from 1 to 10 for different numbers of users on a 10-machine system.
The remaining parameters are set as in the baseline system with a 6 minute mean think time. The
resulting median response time improvements are shown in Table 2. With 20% fast machines, the
median improvement increases substantially, but with more fast machines, the improvement either
levels off or increases a small amount before leveling off (depending on the number of users). The
reason for such a large improvement with a small number of fast machines is twofold. First, with

16

I
I

F- Number of fast machines
users 0 2 I4I 6 8 1 10

1 1.72 2.88 2.81 2.79 2.76 2.73
2 1.71 2.74 2.70 2.66 2.65 2.61
4 1.68 2.62 2.69 2.67 2.66 2.64
6 1.70 2.50 2.65 2.68 2.67 2.66
8 1.71 2.38 2.62 2.69 2.71 2.70

I 10 1.69 2.24 2.52 2.66 2.70 2.69

Table 2 Median Response Time Improvements for a Varying Number of Fast Machines3 in a 10-Machine System.

faster machines, optimistic commands are more likely to be completely executed when requested.
Second, with optimistic make, executions are distributed over time, allowing a larger percentage of

commands to be executed on fast machines. For example, when a user types make using pessimistic
make, all commands are started at once (limited by available resources). If the total number of
commands is large, several of these are likely to run on slow machines. With optimistic make,
the user modifies files over time, allowing commands to start at different times. It is likely that a

later modification will occur after a previous optimistic command has already completed execution.
Thus, a fast machine will be available where a slow one would have been used with pessimistic make.I
7 Related Work

I Optimistic computations have been incorporated into the Integral C programming environment

developed at Tektronix (13]. Unlike our implementation, which allows optimistic execution of3 arbitrary programs, their system only allows a small set of tools to be executed optimistically. No
performance evaluation of their system is given, and there is no evidence that Integral C conceals
the output of optimistic computations, something we consider to be esrontial.

The work on eager evaluation in functional programming languages is, to a lesser extent, related
to our work [2, 8, 9, 10]. Here, function arguments with call-by-need semantics are evaluated before5 they are known to be needed. The functional nature of the language obviates the need for explicit
concealment of side effects. Our work differs in that we explicitly deal with outputs, and in that the
grain of computation we consider is much larger. We believe that with a large grain of computation,

the potential for optimistic computations increases significantly, since the overhead involved in
concealing outputs becomes relatively less important.

SThere are also similarities between our work and load sharing [5, 7]. Load sharing attempts to
improve throughput by spreading out the workload over different machines. Optimistic execution3 attempts to improve response time by spreading out the workload over time.

5 17

8 Conclusions and Future Work

Optimistic make offers significant response time improvement under a wide variety of circumstances.
The probability distribution of the response time improvement typically peaks early and then
has a long tail, reflected in a small median and a large mean. In our current environment, the
median improvement is 1.72 and the mean improvement is 8.28. With faster machines, the median
improvement grows significantly, until all optimistic commands are completed by the time the user
types make. The amount of extra resource use resulting from optimistic make is small. Given the
increased availability of machines and the observed large idle time percentages in many workstation
environments, the extra utilization does not adversely affect performance.

We have introduced the notion of encapsulations as the basic construct used in our implemen-
tation of optimistic make. Encapsulations appear to be useful for other applications as well. For
instance, optimistic fault tolerance methods [11, 14] require that outputs be concealed until it is
guaranteed that the states from which these outputs are performed will never be rolled back. Op-
timistic fault tolerance requires a more incremental notion of encapsulations that allows partial

mandates and aborts.

We are also interested in investigating the performance of optimistic make with different work-
loads, for instance workloads measured at other sites or workloads in which program development
no longer predominates. Also of interest axe the performance implications of different implemen-
tations of optimistic make, for instance in a system where modification of the kernel and servers is
not possible and encapsulation support has to be provided through a library that is linked in with
user programs.

References

[1] R. G. Bubenik. Optimistic Computations. PhD thesis, Rice University, 1989. In preparation.

[2] F. W. Burton. Speculative computation, parallelism, and functional programming. IEEE

Transactions on Computers, C-34(12):1190-1193, December 1985.

[31 D. R. Cheriton. The V distributed system. Communications of the ACM, 31(3):314-333,
March 1988.

[4] D. R. Cheriton and W. Zwaenepoel. Distributed process groups in the V kernel. ACM Trans-
actions on Computer Systems, 3(2):77-107, May 1985.

[51 D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptive load balanc.'Ii in homogenous
distributed systems. IEEE Transactions on Software Engineering, SE-12(5):662-675, May

1986.

[6] S. Feldman. Make-a computer program for maintaining computer programs. Software Prac-
tice and Experience, 9(4):255-265, April 1979.

18

I
[7] R. Hagmann. Process server: Sharing processing power in a workstation environment. In

Proceedings of the Sixth International Conference on Distributed Computing Systems, pages

260-267, May 1986.

(8] R. H. Halstead. Parallel symbolic computing. IEEE Computer, 19(8):35-43, August 1986.

[9] D. A. Hornig. Automatic Partitioning and Scheduling on a Network of Personal Computers.

I PhD thesis, Carnegie-Mellon University, November 1984.

[10] P. Hudak and L. Smith. Para-functional programming: A paradigm for programming mul-
tiprocessor systems. In Proceedings of the Thirteenth Annual Symposium on Principles of

Programming Languages, pages 243-254, January 1986.

[11] D. B. Johnson and W. Zwaenepoel. Recovery in distributed systems using optimistic mes-
sage logging and checkpointing. In Proceedings of the Seventh Annual ACM Symposium on
Principles of Distributed Computing, pages 171-181, August 1988.

[12j M. W. Mutkb and M. Livny. Scheduling remote processing capacity in a workstation-processor
bank network. In Proceedings of the Seventh International Conference on Distributed Com-
puting Systems, pages 2-9, September 1987.

[131 G. Ross. A practical environment for C programming. In Proceedings of the ACM SIG-3 SOFT/SIGPLAN Software Engineering Symposium on Practical Software Development En-
vironments, pages 42-48, January 1987. Also available as SIGPLAN Notices 22(1), January

1987.

[14] R. E. Strom and S. Yemini. Optimistic recovery in distributed systems. ACM Transactions

on Computer Systems, 3(3):204-226, August 1985.

1
I
I
I
I
I
5 19

Optimistic Implementation of

Bulk Data Transfer Protocols

John B. Carter

Willy Zwaenepoel

Department of Computer Science
Rice University
P.O. Box 1892

Houston, Texas 77251-1892

This paper appeared in
Proceedings of 1989 A CM SIGMETRICS and PERFORMANCE '89.

Abstract

During a bulk data transfer over a high speed network, there is a high probability that
the next packet received from the network by the destination host is the next packet
in the transfer. An optimistic implementation of a bulk data transfer protocol takes
advantage of this observation by instructing the network interface on the destination
host to deposit the data of the next packet immediately into its anticipated final location.
No copying of the data is required in the common case, and overhead is greatly reduced.
Our optimistic implementation of the V kernel bulk data transfer protocols on SUN-
3/50 workstations connected by a 10 megabit Ethernet achieves peak process-to-process
data rates of 8.3 megabits per second for 1-megabyte transfers, and 6.8 megabits per
second for 8-kilobyte transfers, compared to 6.1 and 5.0 megabits per second for the
pessimistic implementation. When the reception of a bulk data transfer is interrupted
by the arrival of unexpected packets at the destination, the worst-case performance
of the optimistic implementation is only 15 percent less than that of the pessimistic
implementation. Measurements and simulation indicate that for a wide range of load
conditions the optimistic implementation outperforms the pessimistic implementation.

This work was supported in part by the National Science Foundation under grants CDA-8619893 and CCR-8716914,
and by a National Science Foundation Fellowship.

23

1 Introduction

In an optimistic implementation of a bulk data transfer protocol, the destination host assumes that

the next packet to be received from the network is the next packet in the transfer. The destination

host instructs its network interface to deposit the data of the next packet received immediately into

its anticipated final location. The packet header is deposited in a reserved buffer area, and is later

inspected to confirm that the packet is indeed the next packet in the transfer. If so, the protocol

state is updated, but the packet data need not be copied, and the code that handles arbitrary
packets is bypassed. If the assumption turns out to be wrong, the data is copied to its correct

destination. With a more conventional pessimistic protocol implementation, the entire packet is

first deposited into a packet buffer. The header is then insp-tcd to decide if this is a packet in
a bulk data transfer and to determine the address of the data portion of the packet. Finally, the

data portion is copied to its final destination. An optimistic implementation takes full advantage
of the scatter-gather capabilities of network interfaces such as the AMD LANCE (6] and the Intel

i82856 (51 present on various models of SUN workstations. These interfaces allow portions of an

incoming packet to be delivered to noncontiguous areas of memory.

The bulk data transfer protocol studied in this paper is a blast protocol [11]. The data to be
transferred is divided into one or more blasts of fixed maximum size. For each blast, the sender
transmits the required number of packets, and then waits for an acknowledgement. The receiver

sends back an acknowledgement only after it has received the last packet in a blast. There is no

per-packet acknowledgement. Figure 1 presents an example with 2 blasts of 4 packets each. If
no acknowledgement is received from the destination, the last packet in the blast is retransmitted
until either an acknowledgement is received or the destination is deemed to have failed. Selective

retransmission is used to deal with missed packets. Flow control measures may be needed to reduce

packet loss when going from a fast to a slow machine [2]. The advantages of a blast protocol over

more conventional protocols such as stop-and-wait and sliding window derive from the reduced

number of acknowledgements, and from the fact that protocol and transmission overhead on the
sender and the receiver occur in parallel [11].

Source Destination
----- Data

Ack
-(- Data

Ack

Figure 1 Blast Protocols

24

The ideas presented in this paper are not specific to blast protocols, and can be applied to any
bulk data transfer protocol in which the following two properties hold:

1. Consecutive packets in a bulk data transfer are likely to arrive from the network at the
destination machine uninterrupted by other traffic.

2. The final destination of the data in bulk data packets is known prior to the packets' arrival.

The first property assumes that the average network I/O rate into a machine is low, and that
bulk data transfer packets are delivered in short bursts. The second property depends on the
protocol's interface with user processes. In a request-response protocol, the destination address for
the response data is commonly specified at the time of the request, and hence known before the
response arrives. This property also holds for the arrival of the request packet, if the server is ready
to receive the packet before the request arrives. In stream protocols like TCP, this property holds

if the user read operation corresponding to the incoming data is already pending when the data
arrives.

Our optimistic implementation of the blast protocols in the V kernel on SUN-3/50s connected
by a 10 megabit Ethernet achieves peak process-to-process data rates of 8.3 megabits per second
for 1-megabyte transfers, and 6.8 megabits per second for 8-kilobyte transfers, compared to 6.1
and 5.0 megabits per second for the original pessimistic implementation. These peak data rates
occur when, during a data transfer, consecutive incoming packets are also consecutive packets in
the transfer. This property can be disturbed by errors, out-of-sequence packets, and other incoming
network traffic. When a blast is interrupted by intervening packets, the worst-case performance
of the optimistic implementation is only 15 percent less than the performance of the pessimistic
implementation. Measurements on our network indicate that on average 0.8 percent of the blasts
directed at workstations and 4.0 percent of blasts directed at the file server are interrupted. Addi-
tional experiments show that even under heavier loads at the file server, the percentage of blasts
that are interrupted remains low enough that on average the optimistic implementation outperforms

the pessimistic implementation.
The outline of the rest of this paper is as follows. Section 2 discusses the implementation of

optimistic blast protocols. Section 3 describes an experiment to determine the throughput available
through the network interface. In Section 4 we present best-case and worst-case data rates for
our optimistic implementation, and compare them to the data rates achieved by a pessimistic
implementation. Section 5 describes a series of simulations which predict the performance of an
optimistic protocol implementation under various system conditions. In Section 6 we report on
the percentage of interrupted blasts observed on our network, and we also discuss the effect of
artificially putting a higher load on a shared fie server. We discuss related work on locality in
network traffic and bulk data transfer protocols in Section 7. In Section 8 we draw conclusions and
explore avenues for further work.

25

2 Implementation

An optimistic implementation of bulk data transfer protocols requires a scatter-gather network
interface such as the AMD 7990 LANCE Ethernet interface used on the SUN-3/50 and SUN-3/60.
Scatter-gather interfaces allow a single packet to be received in (transmitted from) several non-
contiguous locations in memory, thereby avoiding intermediate copies during the reception (trans-
mission) of packets. A pessimistic implementation cannot avoid making a copy at the receiving
side. Typically, one or more fields in the packet header indicate where the packet data is to go.
Thus, while a pessimistic implementation can receive the packet into noncontiguous locations in
memory, it is not possible to determine the final destination of the data without examining the
header. This results in a copy of the data, which is usually the largest part of the packet. An
optimistic implementation avoids this extra copy except when the bulk data transfer is interrupted

or an error occurs.
These interfaces also allow multiple buffers to be queued for reception by means of a receive

buffer descriptor ring. Each receive buffer descriptor contains an address and a length. The interface
deposits incoming packets at the addresses in consecutive buffer descriptors, spreading the packet
over multiple receive buffers if the length of the packet exceeds the length indicated in the buffer
descriptor. A new packet always starts in a new buffer.

In our implementation, all even-numbered buffer descriptors point to areas in the kernel of

length equal to the size of the packet header, and all odd-numbered buffer descriptors point to
areas of length equal to the maximum Ethernet packet size minus the size of the header. When no
blast reception is in progress, the odd-numbered descriptors point to areas in the kernel such that

buffer descriptor i + 1 points to the area in memory following that pointed to by buffer descriptor
i (See Figure 2). The kernel then operates almost identically to the way it operates without the
optimistic implementation, except that it sometimes needs to wait for the data part of a packet
to arrive in the second buffer before it has a complete packet. The small packets used for 32-byte
message transactions in the V interkernel protocol fit entirely into the header [4].

Receive buffer Kernel
descriptors buffers

Figure 2 Receive Buffer Descriptors in Default Mode

26

When the first packet of a blast arrives, the kernel redirects the odd-numbered buffer descriptors
to point to where consecutive blast packets should deposit their data in user memory.1 The even-

numbered buffer descriptors for the headers are not changed (See Figure 3). When handling the

interrupt for a header buffer, we check if we received the expected packet, and if so, we simply note

its receipt. Interrupts for data buffers require no further action.

When an unexpected packet interrupts a sequence of blast packets, further packets in the blast

are deposited at incorrect locations in user memory. We do not attempt to dynamically rearrange

the receive buffer descriptors, because this would lead to a complicated race condition between the

interface and the kernel. After the last packet of the blast arrives, we send an acknowledgement
and copy the blast packets to their correct locations. Thus, a worst-case scenario occurs when
an unexpected packet is received immediately after redirection, since this causes all further blast

packets to be copied. Because we only redirect buffers for at most 32 kilobytes at a time (the

maximum blast size), the effects of an unexpected packet are limited to a single blast and do not

spread throughout an entire large transfer.
Packets are also deposited at incorrect locations when one or more packets in the blast are lost.

After receiving the final packet in the blast, we copy the data of the erroneously located packets
to their intended locations, and request retransmission of the missing packets from the sender, in

a manner similar to the selective retransmission strategy used in the pessimistic implementation.

The gather capability of a scatter-gather interface allows a packet to be transmitted from non-

contiguous locations in memory. We use this capability to construct the packet at the transmitting

side without an intermediate copy of the user data into the kernel. A transmit buffer descriptor
ring, similar to the receive descriptor ring, is used to queue several packets for transmission. Both
our pessimistic and optimistic implementation use the gather capability of the interface, since its

use is independent of the optimistic assumption.

Uedata Rceive uffer enelouters aecri osouffers

Figure 3 Receive Buffer Descriptors during Blasts

'Our current implementation redirects buffers starting at the third packet in the blast, because the hardware is not
fast enough to allow us to redirect the second packet in time. The first two packets in a blast are copied to user
address space. Also, the kernel must double-map the necessary pages in the receiver's address space into kernel DMA
space, because SUN's memory management allows the interface access only to a limited portion of the virtual address
space.

27

3 Hardware Performance

In order to measure the hardware data rate achievable through the LANCE Ethernet interface on
the SUN-3/50, we run standalone programs A and B on two machines connected to the network.
A sends data to B (possibly in multiple packets), and then B sends the same amount of data to A.
The elapsed time of the data transfer is half of the measured time between the first packet leaving
A and the last packet arriving at A. The transfers axe implemented at the data link layer and at
the device level so no protocol or process switching overhead appears in the hardware performance
results. In particular, no header other than the Ethernet data link header is added to the data,
and no provisions are made for demultiplexing packets, or for retransmission. When a transmission
error occurs, the experiment is halted and restarted. Both programs busy-wait on the completion
of their current operation, thereby avoiding interrupt handling overhead.

Our measurements show that the hardware can sustain an average raw data rate of 9.4 megabits
per second. The actual data rate is somewhat susceptible to other traffic on the network, presum-
ably as a result of the Ethernet's exponential backoff. Packet loss is commonly zero, except when
the interface is configured with only a single receive buffer, in which case packet loss is around 40
percent, or with two receive buffers, in which case packet loss averages 0.1 percent. Performance
is slightly worse if only a single transmit buffer is used. Otherwise, performance is relatively inde-
pendent of the number of transmit and receive buffers. Performance is also relatively independent
of the number of bytes transferred, as long as the amount transferred is larger than 8 kilobytes.

4 Protocol Performance

Next, we report the process-to-process data rates achievable by both the optimistic and the pes-
simistic implementations of the V kernel bulk data transfer protocol. All measurements are taken
by user level processes running on top the V kernel. The data rate reported is the user observed
data rate, calculated by dividing the total number of user data bits transferred by the elapsed
time. Protocol header bits are not taken into account. Each operation is repeated 1,000 times, and
both the average elapsed time and the standard deviation are reported. Time is measured using a
software dock accurate to 10 milliseconds. 2

Table 1 reports measurements of process-to-process data rates observed using our optimistic
implementation, when the blast is not interrupted at the destination by other packets and when
no errors occur. Under these conditions, the optimistic implementation achieves 88 percent of
the hardware data rate for 1-megabyte transfers. The difference between the maximum data rate
observed in this experiment and the hardware data rate results from a number of factors, including:

1. The headers (94 bytes long) and the acknowledgements (also 94 bytes long) must ba transmit-
ted and consume extra bandwidth. Taking this into account, the total data rate (including
both user and header data) for 1-megabyte transfers is 9.1 megabits per second, which is
within 5 percent of the hardware data rate.

2We repeat small transfers 20 times to guarantee that each measurement Is much larger than the clock period.

28

I
Size Elapsed Time Rate % of

(Kbytes) (msec.) (Mbps) Hardware
Mean Dev. Data Rate

4 6.2 0.2 5.3 56%
8 9.7 0.5 6.8 72%

32 33.0 1.0 8.0 85%
1024 1015 19 8.3 88%

I Table 1 Best-Case Optimistic Implementation

1 2. There is a fixed cost for each data transfer, consisting of entry into and exit from the kernel,
permission checking, interrupt handling, page map manipulation, and provisions for selective

retransmission.

Worst-case behavior occurs when the blast is interrupted immediately after the buffers are
redirected. We measure this case by modifying the reception routine so that the check to verify
that the correct packet is received always fails. This causes the reception routine to always invoke
its error recovery routine (including making a copy of the data in the packet). Table 2 indicates
the performance of the optimistic blast protocol implementation under these circumstances. Note

that there are two lines in this table corresponding to a 1-megabyte transfer. The first line refers
to the extremely unlikely case that every 32-kilobyte blast during the transfer is interrupted in a3worst-case manner. The second line refers to the case where only a single one of the 32-kilobyte

blasts is interrupted in a worst-case manner and the others are not interrupted.
In Table 3 we provide the data rates achieved by a pessimistic implementation of the same

protocol.5 Comparison of Tables 1 and 3 shows the benefits of the optimistic implementation
under favorable circumstances. These benefits derive mainly from avoiding copying the data except3 for the first two packets in the blast.6 Permission checking and packet handling are also greatly
simplified in the case when the expected packet arrives. Comparison of Tables 2 and 3 shows that

I Size Elapsed Time Rate % of
(Kbytes) (msec.) (Mbps) Hardware

Mean j Dev. Data Rate
4 7.8 0.4 4.2 45%
8 14.4 0.6 4.6 49%

32 52.3 0.9 5.0 53%
1024 3 1667 22 5.0 53%
10244 1035 - 8.1 86%

I Table 2 Worst-Case Optimistic Implementation

3Each 32-kilobyte blast is interrupted.
4 Only one 32-kilobyte blast is interrupted.

"These measurements are better than those reported in [3], because the latter implementation did not use the gather
capability of the interface during transmission, while ours does.

6A memory-to-memory copy takes 0.37 milliseconds per kilobyte.

1 29

the performance loss caused by an erroneous guess is relatively minor, even in the worst case. We
only need to copy the data from where we assumed it would land to its correct destination. In

a pessimistic implementation, the data must always be copied from the kernel receive buffer area
to its destination. The extra overhead results from setting up the appropriate structures for the
optimistic implementation and releasing them. Figure 4 provides a graphical comparison of the
throughput achieved by the various implementations.

When two 1-megabyte data transfers are taking place simultaneously between two pairs of
machines, each transfer receives roughly half the total available network throughput (See also [1]).
When 1-megabyte data transfers from two different machines are directed simultaneously at the
same destination machine, the transfers achieve an average total throughput of 6.5 megabits per

second. 35 percent of these blasts are interrupted by a blast packet from a different blast.

Packet loss is uncommon in our implementation. A large percentage of the packet loss on an
Ethernet occurs as a result of receive buffer overflow. Our implementation is configured with 64
receive buffers, enough to avoid noticeable packet loss. We intend to study the packet loss issue

further in connection with flow control for transfers from a fast to a slow machine.

Size Elapsed Time Rate % of
(Kbytes) (msec.) (Mbps) Hardware

Mean Dev. Data Rate
4 7.8 0.4 4.2 45%
8 13.1 0.5 5.0 53%
32 44.4 1.0 5.9 63%

1024 1376 20 6.1 65%

Table 3 Pessimistic Implementation

10- Best-case

8- ~ Worst-cas

e Pessimistic

t
s

c 2,

32K 8K 4K
Blast Size (bytes)

Figure 4 Throughput vs Transfer Size

30

5 Simulated Performance

We use simulation to study the performance of the optimistic blast protocol implementation over
a wide range of system conditions. We assume that the interarrival times for blasts and for non-
blast packets are exponentially distributed, and that the non-blast packets are independent of the
blast transfers. The experiments consist of a series of terminating (finite horizon) simulations,
each with a period of 500 simulated seconds. The experiments are repeated a sufficient number of
times to construct a confidence interval on the percentage of blasts interrupted with a 95 percent

approximate confidence and a relative precision of 5 percent. The resulting performance predictions
match reasonably well with observed performance (See Section 6).

Figures 5 and 6 present the results of a series of experiments designed to study the performance
of an optimistic blast protocol implementation on a workstation. We assume that the blasts are
transmitted from a single source (i.e., the file server), and thus cannot interrupt one another. The
blast arrival rate is chosen so that an average of 8 kilobytes of blast data arrive per second. Figure 5
shows the probability that a blast of a given size is interrupted as a function of the arrival rate of
non-blast packets, for blast sizes of 4, 8, and 32 kilobytes. Figure 6 gives the resulting throughput,
which is calculated in the following way. For uninterrupted blasts, we take the best-case elapsed
time from Table 1. For interrupted blasts, we calculate the elapsed time as the worst-case elapsed
time from Table 2 minus the time to copy half of the number of redirected buffers,7 since on average
the blast is interrupted halfway through, after a number of packets have been received without a

copy.
Figure 7 presents the results of a series of experiments designed to study the performance of

an optimistic blast protocol implementation on a file server. Here, we assume that the blasts are
transmitted from multiple sources, so that blasts can interrupt one another. We choose a constant

100

¢80 - 32K blasts
4.. 8K blasts

e 4K blasts60
I"

r 40
r .

20

0 L
0.1 0.5 1 5 10 50100 500

Packets per second

Figure 5 Percentage of Blasts Interrupted at a Workstation

7Redirection in the simulation begins with the third packet.

31

8.5

8.0 - 32K blsts

sM 7.5 -
'

! 7.0---4K

r 6.0
S

e 5.5

5.0 -

0.1 0.5 1 5 10 50100 500
Packets per second

Figure 6 Throughput at a Workstation

blast size of 8 kilobytes, which is the predominant size of blasts arriving at our file server. Figure 7
shows the percentage of interrupted blasts as a function of the arrival rate of non-blast packets for
blast traffic rates of 0.5, 2, 8, and 32 kilobytes per second.

6 Performance in an Operating Environment

6.1 Observed Environment

Our Ethernet connects over 60 machines, mostly diskless SUN workstations, 8 file servers, and
a few large machines. Virtually all of the machines are used for research, software development,
and text processing. Additionally, the network has gateways to the ARPANET, the NSF regional

70 |
- 32K per sec

O.5K pr se *r

40 --- 05Kprs

e 30r

u 20 -

3 10 ..
0 ' ' '

0.1 0.5 1 5 10 50100 500
Packets per second

Figure 7 Percentage of Blasts Interrupted at a File Server (8K blasts)

32

and backbone networks, and the campus backbone network. These gateways are responsible for
a large part of the broadcast and multicast traffic on the network (approximately 0.8 packets
per second). The network is heavily loaded. The network load averaged over 1-minute intervals

fluctuates between 5 and 30 percent.

Between 8 and 12 diskless SUN workstations run the V-System. They are supported by a
V-based SUN-3 file server. Most V network traffic is between workstations and the file server,
although there is some workstation-to-workstation traffic.8 The file server uses an 8-kilobyte page
size. The following statistics were gathered for each machine:

" The total number of blasts received.

" The number of interrupted blasts, and the type of packet that caused the blast to be inter-

rupted.

* The average bst size.

" The number 3f non-blast packets received, including non-blast V, other unicast, and broadcast
packets.

6.2 Normal Operation

To assess performance during normal operation, we have collected statistics for different periods
of 10,000 seconds each. While the exact numbers differ somewhat from one session to another,
the overall shape of the figures remains the same. Table 4 contains the results of a representative

monitoring session. The column labeled WS represents measurements taken on workstations, and
the column marked FS represents measurements taken on the file server.

The percentage of blasts interrupted matches quite well with the predictions from the simulation.
At a workstation, an average of 1.4 unrelated packets arrive per second, and the average incoming
blast size is 7.0 kilobytes. The simulation predicts that for 8-kilobyte blasts and an unrelated packet
arrival rate of 1.4 packets per second, 1.2 percent of the blasts should get interrupted, vs. 0.8 percent

WS FS

Number of Blasts 3237 789
Number of Interrupted Blasts 27 32
Percentage of Blasts Interrupted 0.8% 4.0%
Interruptions by Broadcasts 4 1
Interruptions by V Blasts 0 8
Interruptions by Other V packets 23 23
Blasts per Second 0.3 0.1
Other Packets per Second 1.4 3.7
Average Blast Size (kilobytes) 7.0 6.9

Table 4 Normal Load

'For a detailed account of V network traffic see (3].

33

as observed. Similarly, for the observed file server traffic, the simulation predicts that 3.7 percent
of the blasts will get interrupted, vs. 4.0 percent as observed.

We conclude that under normal operation, the precentage of interrupted blasts directed at
workstations is extremely low. The file server is the target of more unrelated traffic from different
sources, and hence the percentage of interrupted blasts is somewhat higher, but it is still low enough
that the actual performance approximates the best-case performance.

6.3 High Load Experiment

A high load situation on the file server is created by running a 15-minute sequence of compilations

on N diskless SUN-3/50s (N = 1, ... , 5). Tables 5 and 6 present the results of these experiments. In
Table 5 we indicate the number of incoming blasts, the number of incoming non-blast packets, and
the percentage of blasts interrupted, both per workstation and for the file server. Table 6 presents

some cumulative statistics for all of the experiments.
We compare these results with those predicted by the simulation. For workstations, the corre-

spondence is still quite good. For example, for the experiment with 5 workstations, the measure-
ments indicate 2.0 percent vs. 2.4 percent predicted by the simulation. The prediction for the file

server is less accurate: 11.4 percent measured vs. 16.2 percent predicted. In reality, blasts arriving

at the file server are not totally independent, and blasts and non-blast packets are somewhat cor-
related as well. This correlation seems to reduce the percentage of blasts interrupted from what
the simulation predicts.

Blasts Non-Blast Percentage
N (per sec.) Packets of Blasts

(per sec.) Interrupted
WS FS WS FS WS FS

1 2.52 0.60 2.21 5.67 2.3% 4.1%
2 2.33 1.03 2.45 7.21 2.1% 6.3%
3 1.98 1.21 2.69 10.13 2.2% 6.8%
4 2.05 1.73 2.98 13.10 2.2% 9.2%
5 2.17 2.14 3.06 16.23 2.0% 11.4%

Table 5 High Load Experiment I
WS FS

Number of Blasts 28953 6039
Number of Blasts Interrupted 637 477
Percentage of Blasts Interrupted 2.2% 7.9% 3
Interruptions by Broadcasts 180 24
Interruptions by V Blasts 0 36
Interruptions by Other V packets 457 417

Table 6 High Load Experiment Cumulative Statistics 3

34

!
I

Even for the largest configuration considered, the "average" performance of our optimistic

implementation is still significantly better than the pessimistic implementation. For instance, using

the figure in Table 5 of 11.4 percent interruptions on the file server, assuming 8-kilobyte transfers,
and assuming a worst-case scenario for each interrupted blast, the average data rate becomes 7.6

S megabits per second (from Tables 1 and 2), which is significantly better than the data rate of

5.0 megabits per second achieved by the pessimistic implementation (See Table 3). The numbers
reported here are conservative estimates for blast interruptions at a file server because we do not

use any caching on the workstations. This significantly increases the traffic to the file server.

I 7 Related Work

Locality in network traffic has been noted earlier [3, 8, 10]. However, to the best of our knowledge,

no protocol implementation has taken advantage of this phenomenon to the extent described here.
In his efforts to improve TCP performance, Jacobson predicts that the next incoming TCP packet3 on a given connection will be the next packet on that connection [7]. This prediction is less
aggressive than ours, which assumes that the next packet that is received at a host is the next
in the current bulk data transfer. In the expected case, Jacobson's TCP implementation avoids

invoking the general purpose packet reception code, but the data must still be copied to user space.
The blast protocols discussed here were developed as part of the V interkernel protocol [4].

I Similar protocols are now part of the VMTP protocol definition [3]. VMTP claims 4.5 megabits
per second process-to-process data rates on SUN-3/75s (slightly faster than our SUN-3/50s), with

no performance improvements when increasing the segment size beyond 16 kilobytes. The current

VTMP implementation uses neither the scatter nor the gather feature of the network interfaces on
the SUN.

Sprite uses blast protocols (called implicit acknowledgement and fragmentation) for multi-packet

RPCs [9]. Sprite performance measurements, also on SUN-3/75s, indicate a kernel-to-kernel data
rate of approximately 6 megabits per second, and a process-to-process data rate of 3.8 megabits per3 second. We speculate that the difference between the kernel-to-kernel and process-to-process data

rates is largely due to an extra copy between kernel and user address space, further emphasizing3 the need for avoiding this copy as in our optimistic implementation.

8 Conclusions

We have described an optimistic implementation of a bulk data transfer protocol, which predicts
that during receipt of a blast the next packet that comes in from the network is the next packet

in th- blast. The implementation instructs the network interface to deposit the data of the next
packe. in the location for the data in the next bulk data transfer packet. If the prediction is correct,

i an optimistic implementation avoids an extra data copy.

We have presented both best-case and worst-case performance, and compared them with the
performance of a pessimistic implementation. Both simulation and experience indicate that the

actual performance of the optimistic implementation is significantly better than the performance

I 35

of the pessimistic implementation, even with a relatively high network load on a shared server

machine.

More work is required on network interfaces that facilitate optimistic implementation of bulk

data transfers. Also, flow control is necessary when transmitting from a fast to a slow machine.

We intend to experiment with adapting the blast size as a function of the speed of the receiving

machine, while still transmitting at full speed. Hopefully, this will allow uninterrupted packet

arrival without overrunning the receiver's buffers. Finally, we want to extend our optimistic blast

implementation to allow multicast delivery of bulk data.

References

[1] D.R. Boggs, J.C. Mogul, and C.A. Kent. Measured capacity of an Ethernet: Myths and

reality. In Proceedings of the 1988 Sigcomm Symposium, pages 222-234, August 1988.

[2] D.R. Cheriton. VMTP: A transport protocol for the next generation of communication

systems. In Proceedings of the 1986 Sigcomm Symposium, pages 406-415, August 1986.

(31 D.R. Cheriton and C.L. Williamson. Network measurement of the VMTP request-response
protocol in the V distributed system. In Proceedings of the 1987 A CM Sigmetrics Conference,

pages 128-140, October 1987.

[4] D.R. Cheriton and W. Zwaenepoel. The distributed V operating system and its performance

for diskless workstations. In Proceedings of the Ninth A CM Symposium on Operating Systems

Principles, pages 128-140, October 1983.

[5] Intel Corporation. Intel i82856 interface reference guide.

(6] Advanced Micro Devices. Am 7990: Local area network controller for Ethernet (LANCE).

(7] V. Jacobson. Note on TCP/IP mailing list, tcp-ip@SRI-NIC.ARPA, March 1988.

[8] R. Jain and S. Ruthier. Packet trains: Measurements and a new model for computer network
traffic. IEEE Journal on Selected Areas in Communication, SAC-4(6):986-995, September

1986.

191 J.K. Ousterhout, A.R. Cherenson, F. Douglis, M.N. Nelson, and B.B. Welch. The Sprite

network operating system. IEEE Computer, 21(2):23-36, February 1988.

[10] J.F. Shoch and J.A. Hupp. Measured performance of an Ethernet local network. Communi-

cations of the ACM, 23(12):711-721, December 1980.

(11] W. Zwaenepoel. Protocols for large data transfers over local area networks. In Proceedings

of the 9th Data Communications Symposium, pages 22-32, September 1985.

36

Causal Distributed Breakpoints

Jerry Fowler
Willy Zwaenepoel

Department of Computer Science
Rice University
P.O. Box 1892

Houston, Texas 77251-1892

Abstract

Causal distributed breakpoint is a new notion of a distributed breakpoint for systems of
deterministic processes that communicate solely via messages. Causal distributed break-
point is the natural extension for distributed programs of the conventional notion of a
breakpoints in sequential programs.

The partial order of events in a distributed system defines a lattice of consistent system
states that contain a given target process state. The causal distributed breakpoint is the
greatest lower bound of this lattice, that is, the system state in which each process reflects
the state from which it had the most recent causal effect on the target process. We present
an algorithm for finding the causal distributed breakpoint given the breakpoint state of
the breakpoint process. The dual of this algorithm finds the least upper bound of the
consistent lattice of the target process state.

This work was supported in part by the National Science Foundation under Grants DCR-8716914 and CDA-8619893,
and by the Office of Naval Research under Contract N00014-88-K-0140.

39

1 Introduction

1.1 Problem Statement

We define causal distributed breakpoints, a new notion of distributed breakpoints for systems of
deterministic processes that communicate solely via messages. The execution of processes is de-

terministic in the sense that if two processes start in the same state, and both receive an identical
sequence of input messages, they send an identical sequence of output messages and finish in the
same state. The implementation of a causal distributed breakpoint requires a facility for roll-
back and replay of individual processes by means of message logging (and checkpointing), and also

requires some amount of causal dependency tracking: each message must carry with it a state
identifier for the sending process at the time the message was sent.

1.2 Results Summary

We define the notion of a causal distributed breakpoint, and describe an algorithm for finding it. A
causal distributed breakpoint is a global system state (that is, a set of process states, one for each
participating process) such that

1. It contains the state of one process that has been halted under programmer control or due
to a software error. We refer to this process as the breakpoint process, and to its state as the

breakpoint state.

2. For all other processes it contains the largest state that "happened before" the breakpoint
state occurred in the breakpoint process. The "happened before" relationship is Lamport's
partial order of events in a distributed system [Lamport78].

A causal distributed breakpoint is a consistent system state in the sense that all messages received
have been sent. We present an algorithm for finding the causal distributed breakpoint given the
breakpoint state of the breakpoint process.

1.3 Significance

Causal distributed breakpoints are the natural extension for distributed programs of the conven-
tional notion of breakpoints in sequential programs. At a breakpoint in a sequential program, the

program can be observed in a state that reflects all events prior to the breakpoint, and no later
events. At a causal distributed breakpoint, a distributed program can be observed in a state that
reflects all events that "happened before" the breakpoint, according to Lamport's partial order,
and no other events. The key distinction derives from the fact that in a distributed system only a
partial order of events is observable. Another way of looking at the definition of causal distributed
breakpoints is that they reveal each individual process of the computation in the largest state from
which it had a causal effect on the breakpoint state.

Previous approaches to distributed breakpointing either broadcast a halt request out-of-
band [Cooper87], which does not guarantee a consistent system state in a system under replay

40

!
I

from logs, or propagate a halt request in-band [HRban88, Miller88], similar to the markers in the
Chandy-Lamport snapshot algorithm [Chandy85]. The latter method guarantees a consistent state,
but may leave other processes in states beyond those that must have happened before the break-
point state. In other words, this method finds any consistent global system state including the3 breakpoint state, while the causal distributed breakpoint is the minimum such consistent state.

I 1.4 Overview of the Paper

We describe our model of distributed computation in Section 2. We define causal distributed break-
points in this model and motivate their definition in Section 3. Section 4 contains the algorithm

for finding a causal distributed breakpoint. In Section 5 we explain the relationship between causal
distributed breakpoints and previously published definitions of distributed breakpoints. Finally, in
Section 6 we survey related work, and in Section 7 we conclude and identify avenues for further
work.

2 The Model

I We consider a collection of deterministic processes communicating solely via messages. The exe-
cution of the individual processes is deterministic in the sense that if two processes start from the
same state, and receive the same sequence of input messages, they terminate in the same state and
send the same sequence of output messages. We define an event to be the sending or the receipt of
a message. We define a process state interval as the execution sequence of a process between two
consecutive events. Within a particular process, a process state interval is uniquely identified by
a state interval index, which is incremented by one ditring th- nrrur-vice of an event. There is a
one-to-one relationship between a process state interval and the event that initiates it, so we use

the two terms interchangeably.
We use Lamport's "happened before" partial order between events, denoted -+, and defined:

1. If a and b are events in the same process, and a occurs before b, then a -+ b.

3 2. If a is the sending of a message and b is the receipt of the same message, then a -+ b.

3. If a -+ b and b --. c, then a --+ c.

Two events a and b are concurrent if and only if a -4 b and b /+ a.

A system state is a set of process state intervals, one for each process. A system state is consistent
if and only if all messages received by all processes have been sent. That is, for each process i,
if process i exhibits state interval oi in the system state, then all process state intervals of other

Sprocesses that happened before state interval ai must also be included. Only consistent system
states can occur during normal execution. Figure 1 shows examples of consistent and inconsistent
states among processes exchanging messages.

3 41

U

(consistent) (inconsistent)

Process 1

Process 2 I/L I UI
Process 3 z

FIGURE 1: Consistent and Inconsistent System States U
3 Causal Distributed Breakpoints

We assume that a distributed breakpoint is originated by the setting of a (sequential) breakpoint
in a single process, either during normal execution or during replay from message logs. In either

case, we call this process the breakpoint process, and we call the process state interval during which I
the breakpoint occurs the breakpoint state interval.

We define a causal distributed breakpoint as a system state consisting of 3
1. The breakpoint state interval, and

2. For all other processes, the largest state interval that must have preceded the breakpoint state I
interval according to Lamport's "happened before" partial order.

A causal distributed breakpoint is a consistent system state (See Figure 2).

With a sequential breakpoint, the state of a sequential program reflects all events that happened

in physical time before the breakpoint. The naive extension of this notion to a distributed program I
(i.e., the state of all processes such that they reflect all events that happened in physical time before
the breakpoint) is not achievable, because it is not possible to take an instantaneous snapshot of 3
the entire system. Causal distributed breakpoints extend the notion of a sequential breakpoints so
that the system state reflects all events that must have happened before the breakpoint according

to Lamport's "happened before" partial order, which is an observable ordering. Another way of

Process I

Process 3 ' /c

1 2 3

FIGURE 2: Causal Distributed Breakpoint for State Interval 2 of Process 1. I

42

looking at this definition is that it shows the processes other than the breakpoint process in the

largest state interval from which they have had a causal effect on the breakpoint state interval.

Alternative definitions of distributed breakpoints accept as a distributed breakpoint any con-

sistent system state that includes the breakpoint state interval [Cooper87, Haban88, LeBlanc87,

Miler881. In an arbitrary consistent state, some process may reflect events that did not have a
causal effect on the breakpoint process because they are concurrent with the breakpoint state inter-
val. These events may have changed the state of the other process in such a way that all evidence of
the causal effects it had on the breakpoint state is obscured or removed. For instance, in Figure 2,

Process 3 receives message i after it has sent message c that affects the breakpoint state interval.

The arrival of message i, and any changes in state that result from receiving message i, can destroy

information that might help explain why c was sent.

4 The Causal Distributed Breakpoint Algorithm

In order to find the causal distributed breakpoint given a particular breakpoint state interval, each

message must carry with it the process state interval index of its sender at the time the message
was sent. This information, which encodes the "happened before" partial order, is recorded with

the message when it is logged.

The algorithm relies on the observation that if state interval rj in process j must happen before

state interval ai in process i, then all state intervals from 0 to ri - 1 in process j must also happen
before state interval ai in process i. Hence, it suffices to know for each process state interval aj of
i the largest process state interval of all other processes that must have happened before ai of i.
We define the dependency vector [Johnson88] of state interval a, of process i, DV", as a vector of

length equal to n

DVr' = (6.) = (6,62,63,....,6,,) I

where n is the total number of processes in the system. Component j of process i's dependency
vector, j, gives the maximum state interval index in process j that happened before process i's

current state interval. Component i of process i's dependency vector is always set to aj, the index
of process i's current state interval. If process i has no dependencies on some process j, then 6, is
set to I, which is less than all possible state interval indices. The dependency vector of any state
interval can easily be computed using the message log for that process, given that for each message
the sender's state interval index is included with the message in the log.

Figure 3 shows the algorithm for finding the causal distributed breakpoint for state interval

a of process i. Procedure CausalBkpt starts by initializing the causal distributed breakpoint,
CDB, to contain the breakpoint state interval for the breakpoint process, and the state interval
0 for all processes. The algorithm then examines the dependency vector of each state interval it
includes in CDB by recursively invoking Meet. When Meet finds a state interval index that is

larger than the index of the corresponding process already included in CDB, CDB is altered to
include the new, larger state interval index, and the dependency vector of that state interval is also
examined. Thus, Meet recursively includes all state intervals that happened before the breakpoint

43

state interval. Hence, when the recursion terminates, CDB holds the state interval indices of the
causal distributed breakpoint.

Suppose that in Figure 2 we wish to find the causal distributed breakpoint for state interval 2
of Process 1. CDB is initialized to (2,0,0), and Meet is invoked for process state interval 2 of
Process 1. The dependency vector DV2 for that state interval is (2,3, 1). The state interval for
Process 2 in this dependency vector is 3, and is not included yet in CDB. Thus, CDB is set to
(2, 3, 0) and Meet is invoked with state interval 3 of Process 2. The dependency vector DV' for
that state interval is (1, 3, 2). The state interval for Process 3 in this dependency vector is 2 and
is not included yet in CDB. Thus, CDB is set to (2,3,2) and Meet is invoked with state interval
2 of Process 3. The dependency vector DV2 for that state interval is (.L, 1, 2). All of its state
intervals have been included in CDB and hence this invocation of Meet returns without making
changes to CDB. The invocation of Meet with state interval 3 of Process 2 also returns without
further changes CDB, as does the initial invocation of Meet with the breakpoint state interval.
The final value of CDB is (2,3,2), the causal distributed breakpoint for state interval 2 of Process
1.

The algorithm can easily be distributed by making Meet a remote proccdure call to the process
named in the arguments and sending the current value of CDB with the remote procedure call.

CausalBkpt (i : process, a : state interval)
/* Compute the causal distributed breakpoint for state interval a of
process i and store it in CDB ,/
for all k 6 i

CDB[k] = 0
end for.
CDB[i] =
Meet(i, a

end CausalBkpt.

Meet (j : process, r : state interval)
/* Include the dependencies of state interval - of process j in CDB ,/
for all k 6 j

a = DVj'[k]
if a > CDB[k]

CDB[k] = a
Meet(k, CDB[k])

endif
end for.

end Meet.

FIGURE 3: Causal Distributed Breakpoint Algorithm.

44

U
U

5 Relationship to Other Breakpoint Definitions

I Miller and Choi, and Haban and Weigel define a distributed breakpoint as any consistent system
including the breakpoint state interval [Miller88, Haban88]. In this section, we formally characterize

* the difference between their definition and causal distributed breakpoint. We define a partial order
on system states, and we show that the set of all consistent system states that includes a given
state interval of a given process forms a lattice under this partial order. The causal distributedI breakpoint is the greatest lower bound of this lattice.

The set of consistent system states during any single execution is partially ordered by the relation
that one system state precedes another if and only j it must occur first during the execution. Let
a system state be described by a vector consisting of the state interval index of each process in the
system state. If A = [a.] and B = [10.] describe system states from the same execution, then

A -_ B Vi _<

This partial order differs from "happened before" in that it orders the system states that result
from events rather than the events themselves. Using this partial order, we can define the upper
and the lower bound of two system states.

Definition I The greatest lower bound (GLB) of two system states A and B is L = [A.] such
that Ai = min(ai,/3i). The least upper bound (LUB) of two system states A and B is U = [v.]suhta vi = max(ai, fli).such that v

Theorem 1 Let oi be an arbitrary process state interval in a computation. Let £i be the set of
consistent system states of that computation that contain oi. Then C,,, ordered by :_, is a lattice,
called the consistent lattice of a'.

I Proof Define the dependency matrix of a system state [Johnson88] as an n x n matrix

611 612 613 *..

621 622 623 ... 62n

D = [6..]= 631 632 633 ... 63,

b.1 I b2 6.3 ... bnn5 where row i, 6ij, 1 < j < n, is the dependency vector for the state interval of process i in this
system state.

If a system state is consistent, then for each process i, there is no state interval of process i
beyond process i's current state interval that happened before the state interval of any other process
j in the system state. In the dependency matrix, for each column i, no element in column i may be3 larger than the element in that column on the diagonal of the matrix, which is process i's current
state interval index. In other words, if D = [6..] is the dependency matrix of a system state, then
that system state is consistent if and only if

Vi,j[6j _ 6w,]

* 45

I
We need to show that any two consistent states in 4,, have a GLB and an LUB that are

consistent and contain aj. Let A and B be arbitrary consistent system states that contain oi. Let
DA = [a..] and DB = [* -] be the dependency matrices corresponding to A and B.

Let U be the LUB of A and B, and let Du = [v..] be the corresponding dependency matrix.
Since A and B are consistent, aji _ aii and j i O_ fii for all i and j. Since vii = ai or vii = Uji,
and vii = max(aoi,Piij), vi i ! vii for all i and j as well. Therefore, U is consistent, and since it

also must include state interval o'i for process i, U must be a member of qi. 3
Let L be the GLB of A and B, and let DL = [A..] be the corresponding dependency matrix.

By the defiition of GLB, and since no element in the dependency vector for any process ever
decreases as the process executes, Aj i = min(ajij, 3Pj), for all i and j. This implies that Aji _, aj I
and Aji _ #ji. Since A and B are consistent, ai _ aii and Oi i : ii. Combining this with the
previous result yields Aj :_ aii and Aji _ /Pii. This implies that Ai <_ min(aoi,,3ii), and thus
Ai _5 Aii, for all i and j. Therefore, L is consistent, and since it also must include state interval
ri for process i, L must be a member of 4,. 0

The greatest lower bound of the consistent lattice of a state interval oi is the causal distributed I
breakpoint of ai. Since the causal distributed breakpoint for ri includes ori, and since it is consistent,
it must be a member of 4,. Furthermore, it precedes every member of 4,i because any smaller
system state containing the breakpoint state interval must necessarily lack at least one of ai's state
intervals and therefore be inconsistent. Therefore, the causal distributed breakpoint for ori cannot
be larger than GLB(£4). Hence, they are equal.

The LUB of the consistent lattice of ai is the state beyond which execution cannot progress 3
without process i first advancing to ai + 1. This knowledge can also be of value in distributed
debugging. The algorithm to find the LUB of the consistent lattice is the dual of the algorithm in I
Figure 3, and is shown in Figure 4.

Consider Figure 2 for an example of the way LeastUpperBound works. If LeastUpperBound
is invoked on Process 3 in state interval 1, LUB is initially set to (2,3, 1), and Join is invoked on I
Process 3, state interval 1. For Process 1, the greatest a such that DV[3] :5 1 is 2, so no change
is made. For Process 2, the greatest a such that DV*[3] _ 1 is 0, because message c is sent from 5
a state interval that Process 3 has not reached. Consequently, a < LUB[2], so LUB becomes
(2,0, 1), and Join is invoked on Process 2, state interval 0. For Process 1, the greatest a such that
DV*r[2] 5 0 is 1, which is less than LUB[1]; then LUB becomes (1,0, 1), and Join is invoked on I
Process 1, state interval 1 with no further effect because all dependencies on Process 1 are I. For
Process 3, the greatest a such that DV* [2] :5 0 is 2, which exceeds LUB[3], so no change is made,
and Join for Process 2 returns without altering LUB. The initial invocation of Join on Process 3
returns with LUB = (1, 0, 1), and the algorithm terminates.

Knowing the bounds of the consistent lattice of a process state interval ai makes possible a I
simple test for parallellism between another process state interval rj and aj. If CDB and LUB
are the bounds of C,,, and CDB[j] 5 rj _< LUBU], then rj can run concurrently with ai during 3
this particular execution history of the computation.

46 1

LeastUpperBound (i : process, a : state interval)
/* Compute the least upper bound of the consistent lattice for state
interval a of process j and store it in LUB ,/
for all k $ i

LUB[k] = highest state interval index for process k in the message
log

end for.
LUB[i] - a
Join(i, a)

end LeastUpperBound.

Join (j : process, r : state interval)
/* Include the dependencies of state interval r of process j in LUB ,/
for all k 6 j

a = largest state interval index of process k such that DV[j] < r
if a < LUB[k]

LUB[k] = a
Join(k, LUB[k])

endif
end for.

end Join.

FIGURE 4: Least Upper Bound Algorithm.

6 Related Work

Our work is based on Lamport's happened-before relation for describing the partial ordering of

distributed events [Lamport78].

Miller and Choi [Miller88] adapt Chandy and Lamport's distributed snapshots [Chandy85]
to distributed breakpointing. Haban and Weigel [Haban88] use a similar approach to that of
Miller and Choi for generating interactive breakpoints. Both approaches lend themselves to static
communication channels. Haban and Weigel's message passing mechanism carries the same causal
information with each message as does our algorithm.

Cooper's method of broadcasting a halt request out-of-band [Cooper87] produces a consistent
state when used during normal execution. However, when replaying from a log, it may result in an
inconsistent state.

The size of the logs necessary to support causal distributed breakpoints may be a concern.
LeBlanc and Mellor-Crummey observe in their Instant Replay mechanism, that it is not necessary to
store the data passed in messages, if all message communication can be described as reads and writes
of shared objects (under certain restrictions for concurrent access of those objects) [LeBlanc87].

47

In those circumstances, their methods can be used in conjunction with ours without the need for
logging the data passed in messages.

Causal dependency tracking by including the process state interval index of the sender in each
message, and the notion of a dependency vector and a dependency matrix are due to the work of
Johnson and Zwaenepoel on optimistic message logging [Johnson88].

7 Conclusion

We have defined the notion of causal distributed breakpoints. When one process of a distributed
computation is halted in a particular state, causal distributed breakpoints show the other processes
in the computation in their largest state that has happened before the state of the breakpoint
process. We have argued that causal distributed breakpoints naturally extend the notion of a
sequential breakpoint to distributed systems, where only a partial ordering between events can be
observed. Previous work on distributed debugging has defined a distributed breakpoint as any
consistent state including the breakpoint state. We have shown that the set of consistent system
states that include a particular process state interval forms a lattice, and that the greatest lower
bound of this lattice is equal to the causal distributed breakpoint for that particular state interval.
Future work includes examining the use of the lattice to derive alternate valid executions of a
computation via permutation of event queues in individual processes.

References

(Chandy85] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global
states of distributed systems. ACM Transactions on Computer Systems, 3(1):63-75,
February 1985.

[Cooper87] Robert Cooper. Pilgrim: a debugger for distributed systems. In Proceedings of the 7th
International Conference on Distributed Computing Systems, pages 458-465, IEEE,
September 1987.

[Haban88] Dieter Haban and Wolfgang Weigel. Global events and global breakpoints in dis-
tributed systems. In Hawaii Intl Conf, Vol 11, Software, pages 166-175. IEEE Com-
puter Society, January 1988.

[Hewitt77] Carl Hewitt and Henry Baker, Jr. Actors and continous functionals. Technical Report
MIT/LCS/TR-194, Massachusetts Institute of Technology, Cambridge, MA, 02139,
December 1977.

[Johnson88] David B. Johnson and Willy Zwaenepoel. Recovery in distributed systems using opti-
mistic message logging and checkpointing. In Proceedings of the Seventh Annual A CM
Symposium on Principles of Distributed Computing, pages 171-181. IEEE Computer
Society, August 1988. Also available as Rice University Technical Report COMP
TR88-68, May 1988.

[Lamport78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, July 1978.

48

(LeBlanc87] Thomas J. LeBlanc and John M. Mellor-Crummey. Debugging parallel programs
with instant replay. IEEE Transactions on Computers, C-36(4):471-481, April 1987.
Also available as a Technical Report, Sept. 1986, Department of Computer Science,
University of Rochester,Rochester, NY 14627.

[Miller88] Barton P. Miller and Jong-Deok Choi. Breakpoints and halting in distributed pro-
grams. Technical Report TR 648, University of Wisconsin, Madison, WI, February
1988. (Revised).

49

Distributed System Fault Tolerance

Using Sender-Based Message Logging

David B. Johnson

Willy Zwaenepoel

Department of Computer Science
Rice University

P.O. Box 1892
Houston, Texas 77251-1892

This paper is being submitted to
ACM Transactions on Computer Systems.

An earlier paper appeared in The Seventeenth Annual International

Symposium on Fault-Tolerant Computing: Digest of Papers.

Abstract

Sender-based message logging is a new transparent method of providing fault tolerance
in distributed systems. It uses a pessimistic message logging protocol designed to reduce
the overhead on the system. It differs from other pessimistic message logging protocols
in that the message log is stored in the volatile memory on the node from which the
message was sent. When a process receives a message, it returns to the sender a receive
sequence number, or RSN, which indicates to the sender the order in which the message
was received relative to other messages sent to the same process.

Sender-based message logging has been implemented under the V-System on a network
of SUN-3/60 workstations. The measured overhead on V-System communication op-
erations is about 25 percent. The overhead experienced by distributed applications
programs using sender-based message logging is affected most by the amount of commu-
nication performed during execution. For the most communication-intensive program
measured, this overhead ranged from about 16 percent to about 3 percent, for different
problem sizes. For all other programs measured, overhead ranged from about 2 percent
to much less than 1 percent.

This work was supported in part by the National Science Foundation under grants CDA-8619893 and CCR-8716914,
and by the Office of Naval Research under contract ONR N00014-88-K-0140.

53

1 Introduction

Sender-based message logging is a new transparent method of providing fault tolerance in distributed
systems. It needs no specialized hardware and requires little additional communication in the sys-
tem. It uses message logging and checkpointing to record information for recovering a consistent
system state following a failure. All messages received by each process are logged, and occasionally,
each process is independently checkpointed. When a process fails, it is recovered by restoring it
from its checkpoint and replaying to it from the log the sequence of messages it received after the
checkpoint before the failure. Previous systems using message logging and checkpointing to provide

fault tolerance include Auros and TARGON/32 [Borg83, Borg89], PUBLISHING [Powell83], and

Strom and Yemini's Optimistic Recovery (Strom85].
Sender-based message logging differs from these earlier methods in that each message is logged in

the local volatile memory of the node from which it is sent, as illustrated in Figure 1. Other message

logging protocols send a copy of each message either to stable storage [Laxmpson79, Bernstein87]
on disk or to some special backup process for logging. Instead, since both the sender and receiver
of a message either get or already have a copy of it, it is less expensive to save one of these in the
local volatile memory to serve as a log. Since the purpose of the logging is to recover the receiver
if it fails, a volatile copy at the receiver cannot be used as the log, but the sender can easily save a
copy of each message sent. It is this idea that forms the basis of sender-based message logging.

The sender-based message logging protocol is a pessimistic protocol designed to reduce the
overhead on the system for the provision of fault tolerance. A pessimistic message logging protocol
prevents the system from entering a state in which a failure could force any process other than
those that failed to be rolled back during recovery. Any failed process can be recovered using only
its most recent checkpoint and the log of messages received since that checkpoint. In any system
using message logging and checkpointing to provide fault tolerance, the cost of message logging
should dominate the overhead of fault tolerance. The frequency of checkpointing can be tuned to
balance its expense against the time needed for recovery or the space needed to store the message
log, and the cost of failure recovery should be less important if failures axe infrequent. However,
the cost of message logging places a continuous burden on the system even when no failures occur.

Sender-based message logging concentrates on reducing the cost of message logging in a pessimistic
logging protocol.

Sender Receiver

Figure 1 Sender-based message logging configuration

541

Since messages are logged in volatile memory, sender-based message logging can guarantee re-
covery from only a single failure at a time within the system. That is, after one process fails, no
other process may fail until the recovery of the first is completed. If another process fails during this
time, some logged messages required for recovery from the first failure may be lost, and recovery
of a consistent system state may not be possible from the available logged messages. Sender-based
message logging detects this error, allowing the system to notify the user or abort the computa-
tion if desired. Extensions to the basic sender-based message logging protocol are also possible to
support recovery from any number of failures at once.

This paper examines the design of sender-based message logging, describes a complete im-
plementation of it, and presents an analysis of its performance. Section 2 describes the model
of a distributed system assumed in this work. The specification of the sender-based message
logging protocol is presented in Section 3. Section 4 describes an implementation of it in the
V-System [Cheriton83, Cheriton88j, and Section 5 analyzes its performance in this implementa-
tion. Extensions to the basic sender-based message logging protocol for recovery from multiple
failures are discussed in Section 6. Related work is covered in Section 7, and Section 8 presents
some conclusions.

2 Distributed System Model

Sender-based message logging is designed to work in existing distributed systems without the ad-
dition of specialized hardware to the system or specialized programming to applications. The
following assumptions about the underlying distributed system are made:

" The system is composed of a network of fail-stop processors [Schlichting83].

" Processes communicate with each other only through messages.

" The execution of each process in the system is deterministic between received input messages.
That is, if two processes start in the same state and receive the same sequence of inputs
messages, they produce the same sequence of output messages and must finish in the same
state. The state of a process is thus completely determined by its starting state and the
sequence of messages received.

" The network includes a shared stable storage service [Lampson79, Bernstein87] that is always
accessible to all active nodes in the system.

" Packet delivery on the network need not be guaranteed, but reliable delivery can be im-
plemented by retransmitting a packet a limited number of times until an acknowledgement
arrives from the destination.

" The network protocol supports broadcast communication. All active nodes can be reached
by a broadcast through a limited number of retransmissions of the packet.

* Processes use a send sequence number (SSN) for duplicate message detection. For each
message sent, the SSN is incremented, and the new value is used to tag the message. Each

55

process also maintains a table recording the highest SSN value tagging a message received
from each other process. If the SSN tagging a new message received is not greater than the
current table entry for its sender, the message is considered to be a duplicate.

3 Protocol Specification

3.1 Overview

Each process participating in sender-based message logging maintains a receive sequence number
(RSN), which counts messages received by the process. When a process receives a new message,
it increments its RSN, and returns this new value to the sender. The RSN indicates to the sender
the order in which that message was received relative to other messages sent to the same process,
possibly by other senders. This ordering information is not otherwise available to the sender, but
is required for recovery because the messages must be replayed to the recovering process from the
log in the same order as they wer- received before the failure. When the R.SN arrives at the sender,
it is saved in the local volatile log with the message.

The log of messages received by a process is distributed among the processes that sent these
messages, such that each sender has in its local volatile log only those messages that it sent. Figure 2
shows an example of such a distributed log resulting from sender-based message logging. In this
example, process Y initially had an RSN value of 6. Process Y received two messages from process
X1, followed by two messages from process X 2, and finally another message from X 1. For each
message received, Y incremented its current RSN and returned the new RSN value to the sender.
As each RSN arrived at the sender, it was added to the sender's local volatile log with the message.
After receiving these five messages, the current RSN value of process Y is 11.

In addition to returning the RSN to the sender when a message is received, each message sent
by a process is also tagged with the current RSN of the sender. Since the execution of each process

X2

Figure 2 An example message log

56

between received messages is deterministic, this RSN value uniquely identifies to the receiver the
state of the sender from which the message was sent. When a message is received, the state
of the receiver then depends on this state of the sender, since any part of the sender's state may
have been included in the message. Each process records these dependencies locally in a dependency
vector [Johnson88]. For each process from which this process has received messages, the dependency
vector records the maximum RSN value tagging a message received from that process. Only the
maximum state currently depended on of each other process is recorded, since each state of the
sender naturally also depends on all previous states of the same process.

After any failure, the system must be recovered to a consistent state. The state of the system is
consistent if no process X depends on a state of some other process Y later than Y's maximum state
that can be reached through its deterministic execution [Johnson88]. During failure-free operation,
the system state is always consistent. During recovery, a process deterministically executes from
its checkpointed state, based on the sequence of logged messages that are replayed to it. Thus, the
state of the system that can be recovered is consistent if no process X depends on a state of some
failed process Y that resulted from Y receiving a message beyond the sequence of messages logged
for Y before the failure that are available for replay during recovery. Sender-based message logging
uses the dependency vector during recovery to verify that the resulting system state is consistent.

3.2 Data Structures

Sender-based message logging requires the maintenance of the following new dat: structures for
each participating process:

" A receive sequence number (RSN), numbering messages received by the process. This indi-
cates to the sender of a message the order in which that message was received relative to
other messages sent to the same process, possibly by other senders. The RSN is incremented
each time a new message is received. The new value is assigned as the RSN for this message,
and is returned to the sender. Each message sent by a process is tagged with the current
RSN value of the sending process.

" A message log of messages sent by the process. For each message sent, this includes the
message data, the identification of the destination process, the SSN and RSN used to send
the message, and the RSN returned by the receiver. After a process is checkpointed, all
messages sent to that process and received before the checkpoint can be removed from the
logs in the sending processes.

* A dependency vector, recording the maximum state of each other process on which this process
currently depends. For each other process from which this process has received messages, the
dependency vector stores the maximum RSN value tagging a message received from that
process.

• An RSN history list, recording the RSN value returned for each message received by this
process since its last checkpoint. For each message received, this includes the identification
of the sending process, the SSN used to send the message, and the RSN returned when the

57

message was received. This list is used when a duplicate message is received, and may be
purged when the process is checkpointed.

Each of these data items except the RSN history list must be included when the process is
checkpointed. Also, the existing data structures used by a process for duplicate message detection

(Section 2) must be included in the checkpoint. When a process is restarted from its checkpoint,
the value of each of these data structures in the checkpoint is restored along with the rest of the
process state. The RSN history list need not be checkpointed, since messages received before this
checkpoint will never be needed for recovery. Only the most recent checkpoint of each process must
be saved, and only messages received by a process since its most recent checkpoint must be saved

in the message log.

3.3 Message Transmission

Sender-based message logging operates with any existing non-fault-tolerant message transmission

protocol of the underlying system. The following steps are required by sender-based message logging
to send a message M from process X to process Y:

1. Process X copies message M into its local volatile message log before transmitting M to
process Y across the network. The message sent is tagged with the current RSN and SSN

values of process X.

2. Process Y receives the message, increments its own RSN value, and assigns this new value as
the RSN for 1i The entry for process X in process Y's dependency vector is set to the max-
imum of its current value and the RSN tagging message M, and an entry in process Y's RSN
history list is created to record that this new RSN has been assigned to message M. Finally,
process Y returns to process X a packet containing the RSN value assigned to message M.

3. Process X adds the RSN for message M to its volatile log, and sends back to process Y a

packet containing an acknowledgement for the RSN.

Process Y must periodically retransmit the RSN until its acknowledgement is received, or until
process X is determined to have failed. After returning the RSN, process Y may continue execution
without waiting for the RSN acknowledgement, but it must not send any messages (including output
to the "outside world") until the R.SNs of all messages that it has received have been acknowledged.

It may or may not experience some delay in execution, depending on whether it tries to send
messages immediately after receipt of message M. Process X does not experience any extra delay,
but does incur the overhead of copying the message and the RSN to the local volatile log. The

operation of this protocol in the absence of retransmissions is illustrated in Figure 3.
This message logging is not an atomic operation. The message data is entered into the log

when it is sent, but the RSN can only be recorded after it is received from the target process. Since

the sender and the receiver execute on separate nodes in the distributed system, this cannot be
completely synchronized with the actual receipt of message. A message is called partially logged
until the R.SN has been recorded in the log. It is then called fully logged, or just logged.

58

X 4

message 1 , RSN ack
I I I

time
I -I

I I I

,I'RSN

Any new sends by Y-
must be delayed.

Figure 3 Operation of the message logging protocol in the absence of retransmissions

Sender-based message logging is a pessimistic logging protocol, since it prevents the system from
entering any state in which a failure could force any process other than those that failed to be rolled
back during recovery to achieve a consistent system state. During recovery, a failed process can
only be recovered up to its state resulting from its receipt of the sequence of fully logged messages
sent to it before the failure. Until all RSNs returned by a process have been acknowledged, the
process cannot know that its state can be recovered if it should fail. By preventing the process
from sending new messages in such a state, no other process can receive a message sent from an
unrecoverable state of its sender, and thus, no other process can be forced to roll back during
recovery.

Depending on the protocol and network used by the underlying system, a process may receive
duplicate messages during failure-free operation. Processes are assumed to detect any duplicate
messages on receipt using the SSN tag sent with each message (Section 2). When a duplicate
message is received, no new RSN is assigned to the message, and the original RSN assigned when
the message was first received is returned to the sender, instead. This RSN is found by searching the
RSN history list for an entry with the SSN tag and sending process identification of the message. If
the receiver has been checkpointed since originally receiving this message, however, the RSN history
list entry for this message will have been purged. In this case, the message cannot be needed in
any future recovery of this receiver, since the later checkpoint can always be used. In this case, the
receiver instead returns to the sender an indication that this message need not be logged.

3.4 Failure Recovery

To recover a failed process, it is first reloaded on some available processor from its most recent
checkpoint. This restores the state of the process to the value it had at the time that the checkpoint
was written. Since the data structures used by sender-based message logging (Section 3.2) are
included in the checkpoint, they are restored as well.

Next, all fully logged messages originally received by the process after this checkpoint are re-
trieved from the message logs, beginning with the first message following the current RSN recorded
in the checkpoint. Execution of the recovering process is resumed, and these messages are replayed

59

to it in ascending order of their logged RSNs. The process is not allowed to receive other messages
until this sequence has been completely received. Since process execution is deterministic, the
process reaches the same state it had after receipt of these messages before the failure.

If only one process has failed, the state of the system must be consistent after the process

has received this sequence of fully logged messages during recovery. Since the volatile message
log at the sender survives the failure of the receiver, all fully logged messages received by the
recovering process before the failure must be available. Since processes are restricted from sending
new messages until all messages they have received are fully logged, the recovering process sent no
messages before the failure after having received any message beyond this fully logged sequence.
Thus, no other process depends on a state of the recovering process beyond its state that can be
restored using the available fully logged messages.

If more than one process has failed at a time, though, recovery of a consistent system state may
not be possible, since some messages needed for recovery may not be available. Each process can
only be recovered up to its state resulting from its receipt of the last message in the fully logged
sequence that is still available. This sequence must begin with the first message following the RSN
recorded in the checkpoint and must not skip any messages. If any process depends on a state
of some failed process beyond this state, the state of the system is not consistent. Sender-based
message logging determines this using the dependency vector maintained by each process. For each
failed process, if any other process has an entry in its dependency vector that names an RSN of
this process greater than the RSN of the last available message in the fully logged sequence, then
the state of the system that can be recovered is not consistent In this case, the system may issue
a warning announcing this fact, or may abort the application.

As the recovering process reexecutes from its checkpointed state using this sequence of fully
logged messages, it resends any messages that it sent before the failure after this checkpoint. Since
the current SSN for a process is included in its checkpoiDt, the SSNs used by this process during
recovery are the same as those used when these messages were originally sent. Such duplicates are
detected and handled by the same method used during failure-free operation, using the SSN tag
in each message (Section 2). For each duplicate received, either the original RSN or an indication
that the message need not be logged is returned to the recovering process.

After this sequence of fully logged messages has been received by the recovering process, any
partially logged messages destined for it may be resent to it. Also, any new messages that other
processes may need to send to it may be sent at this time. These messages may be sent and received
in any order after the sequence of fully logged messages has been received. Again, since processes

are restricted from sending new messages until all messages they have received are fully logged,
the failed process sent no messages before the failure after having received any of these messages.
Thus, any effect of their earlier receipt is not visible to any other process, and the order of their
receipt now is unimportant.

The system data structures necessary for further participation in sender-based message logging,
including any future recovery of other failed processes, are correctly recovered. They are restored
from the checkpoint, and then modified as a result of sending and receiving the same sequence of

60

S
S

messages as before the failure. In particular, the volatile log of messages sent by the failed process
is recreated as each duplicate message is sent during reexecution.

To guarantee progress in the system in spite of failures, any fault-tolerance method must avoid
the domino effect [Randel175, Russell80], an uncontrolled propagation of process rollbacks necessary3 to restore the system to a consistent state following a failure. Sender-based message logging avoids
the domino effect, since any failed process can always be recovered from its most recent checkpoint,g and no other process must be rolled back during recovery.

3.5 Protocol Optimizations

5The protocol described above contains the basic steps necessary for the correct operation of sender-
based message logging. However, two optimizations to this basic protocol axe possible to reduce the
number of packets transmitted. These optimizations combine more information into each packet

than would normally be present. They do not alter the logical operation of the protocol as described
above, and their inclusion in an implementation of the protocol is optional.

The first of these optimizations is to encode more than one RSN or RSN acknowledgement in
a single packet. This is effective when an uninterrupted stream of packets is received from a single

sender. For example, when receiving a blast bulk data transfer [Zwaenepoel85], the RSN for every

data packet of the blast can be returned to the sender in a single packet. This optimization is
limited by the distribution of RSNs and RSN acknowledgements that can be encoded in a single£packet, but encoding a single contiguous range of each handles the most common case, as in the
example above.

The second optimization to the basic sender-based message logging protocol, which further

reduces the number of packets necessary, is to piggyback RSNs and RSN acknowledgements onto
existing message packets, rather than sending them in additional special packets. For example,5RSNs can be piggybacked on existing acknowledgment packets used by the underlying system for
reliable message delivery. If a message is received that requests the application program to produce

some user-level reply to the original sender, the RSN for the request message can be included

in the same packet that carries this reply. Likewise, if the sending application program sends a
new request to this same-receiver shortly after the reply is received, the acknowledgement of this

RSN and the RSN for the reply itself can be included in the same packet as this new request. As

long as messages are exchanged between the same two processes in this way, no new packets are
necessary to return RSNs or their acknowledgements. When this message sequence terminates,
one additional packet is needed in each direction to return the RSN and its acknowledgement for
the last reply message. The use of this piggybacking optimization is illustrated in Figure 4 for

a sequence of the.se request-reply exchanges. This optimization is particularly useful in systems
using remote procedure call (RPC) [Birren84l, or other request-response protocols [Cheriton88,
Cheriton86], since all communication takes place as a sequence of message exchanges.

SThis piggybacking optimization may only be used when all unacknowledged RSNs for messages
received by the sending process are destined for the same process as the new message packet, and
can be included in that packet. When such a packet is received, the piggybacked RSNs and RSN
acknowledgements must be handled before the message carried by the packet. When these RSNs

3 61

Sender 1 0 %g ',RSN,1 14
rnsgl RS N-2 % ' ack,_' -

% ,,,ackn-3 % a
% I MI Il , l i rnsgn

S,'RSN1 ,' ack n-2 % ackn
Receiver ' ' '

Figure 4 Piggybacking RSNs and RSN acknowledgements on existing message packets

are entered in the message log, the messages for which they were returned become fully logged.
Since this packet carries all unacknowledged RSNs from the sender, all messages received by that
sender become fully logged before this new message is seen. If the RSNs are not received because
the packet is lost in delivery on the network, the new message cannot be received either. The
correctness of the protocol is thus preserved by this optimization, since all messages received earlier
by the sender are guaranteed to be fully logged before the message in the new packet is seen.
Therefore, the state of the sender from which the message was sent must be recoverable, and the
recover cannot be forced to roll back during recovery.

These two protocol optimizations can be combined. Continuing the blast protocol example
above, the RSN for very data packet of the blast can be encoded together and piggybacked on
the reply packet acknowledging the receipt of the blast. If there are n packets of the blast, the
unoptimized sender-based message logging protocol requires an additional 2n packets to exchange
their RSNs and RSN acknowledgements. If both protocol optimizations are combined, instead only
one additional packet is required in each direction, to exchange the RSN and RSN acknowledgement
for the packet acknowledging the blast. This is illustrated in Figure 5.

4 Implementation

Sender-based message logging has been implemented under the V-System [Cheriton83, Cheriton88
on a collection of diskless Sun workstations connected by an Ethernet to a shared network file

Sender I I I I -
/,1 %IRSNn+imsgl\ ' msg2 msgn ~k..

%MS92 % nack, ... n
' ' I I

R e c e iv e r '4
.. n4 , c ,

Figure 5 A blast protocol with sender-based message logging using both optimizations

62

server. This implementation supports the full protocol specified in Section 3, including both pro-
tocol optimizations, and supports all V-System message passing operations.

In the V-System, multiple processes may share a single address space to form a team, and
multiple teams executing together may form a logical host. There may be multiple logical hosts
executing on each physical node in the system. Since all processes executing as part of the same

logical host must be located at the same physical network address, they must remain together
through failure and recovery. Therefore, this implementation treats each logical host as a single

process in terms of the protocol specification. For example, each logical host is checkpointed as
a unit, rather than checkpointing each process individually, and all execution within each logical
host is assumed to be deterministic. The implementation is currently limited to a single logical
host using sender-based message logging per network node.

4.1 Division of Labor

The implementation is divided between a logging server process and a checkpoint server process
running on each node in the system, and a small collection of support routines in the V-System

kernel. The kernel records messages in the log in memory as they are sent, and handles the exchange

of RSNs and RSN acknowledgements. This information is carried in normal V kernel packets, and
is handled directly by the sending and receiving kernels. This reduces the overhead involved in
these exchanges, eliminating any process scheduling delays. All other details of message logging

and retrieving logged messages during recovery are handled by the logging server process. The
checkpoint server process manages recording checkpoints and restoring them during recovery.

This use of server processes limits the increase in complexity and size of the kernel. In total,
only three new primitives to support checkpointing and four new primitives to support message

logging were added to the kernel. Also some changes were made to the internal operation of several
-existing primitives. Table 1 summarizes the amount of executable instructions and data added

to the kernel to support checkpointing and message logging for the SUN-3/60 configuration. The

percentages given are relative to the size of that part of the base kernel without checkpointing or
message logging.

Table 1

Size of kernel additions to support sender-based message logging

Checkpointing Message Logging Total

Bytes Percent Bytes Percent Bytes Percent

Instructions 3632 4.5 12248 15.1 15880 19.5
Data 0 0.0 36854 18.5 36854 18.5

Total 3632 1.3 49102 17.5 52734 18.8

63

Within the kernel, a layered implementation is used. The sender-based message logging module 1
acts as a filter on all packets sent and received by the kernel. In a standard V kernel without

message logging, packets are composed by one of several routines responsible for network com-
munication and are then passed to the Ethernet device driver for transmission. Incoming packets
are passed by the Ethernet interrupt handler to the correct routine based on a type field in each

packet. The sender-based message logging module is placed between these upper-level routines and
the Ethernet device driver. Packets may be modified or held by this module before transmission,
and received packets are interpreted before passing them on. The messages logged by the imple-
mentation are actually the contents of each packet passing out through the sender-based message
logging module. This organization separates the sender-based message logging protocol processing

from the rest of the kernel, largely insulating it from changes in the kernel or its communication I
protocol. Instead of this layered kernel implementation, integrating the kernel message logging
with the existing V kernel protocol handling functions was considered, but was determined to be j
unnecessary for efficiency.

4.2 Message Log Format

On each node, a single message log is used to store all messages sent by any process executing

on that node. The log is organized as a list of fixed-size blocks of message logging data that are
sequentially filled as needed by the kernel, and are written to disk by the logging server during

a checkpoint. The message log is stored in the volatile address space of the local logging server

process. This allows much of the message log management to be performed by the server outside
the kernel. Since only one user address space at a time can be accessible, the message log block
currently being filled is always double-mapped through the hardware page tables into the kernel
address space. This allows new records to be added to the log without switching accessible address
spaces, although some address space switches are still necessary to access records in earlier blocks

of the log. I
Each message log block is 8 kilobytes long, the same size as data blocks in the file system and

as hardware memory pages. Each block begins with a 20-byte header, which describes the extent
of the space used within the block. The following two types of records are used to describe the
logging data in these message log blocks:

LoggedMessage: This type of record saves the data of the message, and when the RSN from the
receiver arrives, the RSN value, the logical host identifier of the receiver, and the SSN value of

the receiver when the message was received are added. It varies in size from 92 to 1116 bytes, I
depending on the size of any appended data segment that is part of the message.

Additiona.Rsn: This type of record saves an additional RSN returned for a message logged in an £
earlier LoggedMessage record. It contains the SSN of the message sent, the new RSN value,
the logical host identifier of the receiver, and the SSN value of the receiver when the message

was received. It is 12 bytes long.

For most messages sent, only the LoggedMessage record type is used. However, for messages
sent to a process group [Cheriton85], only the first RSN returned from any receiver is stored in

64

the Logged~essage record, and an AdditionalRsn record is created to store each other new RSN
returned for this same message. Group messages are delivered reliably to only one receiver, but
unreliably to other members of the group. When the message is sent, it is not known how many
receivers there will be. Therefore, space for only one RSN is reserved in the Loggedessage record,
and new AdditionalRsn records are created to save the remainder. Likewise, since messages sent

as a datagram are not reliably delivered, it cannot be known when the message is sent if it will be
received. Thus, the kernel cannot wait for the RSN to be returned. Instead, the RSN field in the
Loggedgessage record is not used, and an AdditionalRan record is created to hold the RSN when
it arrives, if the message was received.

The standard V kernel uses retransmissions for reliable message delivery, but these retrans-
missions should not appear as separate messages for message logging. Also, it is important that
retransmissions continue during failure recovery, rather than possibly timing out after some max-
imum number of attempts. Finally, with multiple processes sharing a single team address space,
the appended data segment of a message could be changed between retransmissions, which can

interfere with successful failure recovery. For these reasons, sender-based message logging performs
all necessary retransmissions from the saved copy of the message in the LoggedMessage record in

the log.

4.3 The Logging Server

At times, the logging server writes modified blocks of the message log from volatile memory to a
file on the network file server. A separate fie is maintained for the log of messages sent by each
logical host. When the kernel adds a new record to a message log block, or modifies an existing
record, it flags this me. .ry block as being modified. These flags are used by the logging server to
control the writing of message log blocks from memory to the logging file. The writing of modified
blocks is further simplified since blocks in the message log are the same size as blocks in the file

system.

This file is updated during a checkpoint of the logical host, so that the log of messages sent by
this host can be recovered when the checkpoint is recovered. This is necessary to be able to recover
from additional failures after recovery of this process is completed. As such, the file serves as part
of the host's checkpoint.

This file may also be written to at other times to reclaim space in the volatile memory of the
log. The file may be larger than the space in volatile memory allocated to the message log. When
a block has been written from volatile memory to the file, that space in memory may be reused
for other logging data if the kernel is no longer retransmitting messages from that block or adding
new records to it. When the contents of such a block is again needed in memory, it is read from
the file into an unused block in the volatile memory copy of the log. The logging file thus serves as

a type of "virtual memory" extension to the message log, and allows more messages to be logged

than can fit in the available volatile memory of the node. The kernel automatically requests this
when the amount of memory used by the log approaches the allocated limit.

During recovery, the logging server on the node on which recovery is taking place coordinates
the replay of logged messages to the recovering logical host. It must collect each message from the

65

log on the node from which it was sent. This is done by requesting each message from the group
of logging server processes. For each message, in ascending order by RSN, a request is sent to the

logging server process group, naming this RSN as the next message needed. The server that has

this message logged returns it, and replies with the RSN of the next message that it also has logged

for the same logical host. When that RSN is needed next during the collection, the request is sent

directly to that server rather than to the process group. All servers that do not have the named

message logged ignore the request. The sequence of messages to be retrieved is complete when no

reply is received to a request sent to the group after the kernel has retransmitted it several times.

Then, as the logical host reexecutes from its checkpointed state, the kernel simulates the arrival
from the network of each message in this sequence collected. 5
4.4 The Checkpoint Server

Checkpointing is initiated by sending a request to the local checkpoint server process. This request

may be sent by the kernel when the logical host has received a given number of messages or has

consumed a given amount of processor time since its last checkpoint. Any process may also request

a checkpoint at any time, but this is never necessary. Likewise, failure recovery is initiated by
sending a request to the checkpoint server on the node on which the failed logical host is to be

recovered. Normally, this request would be sent by the process that detected the failure. However, I
no failure detection is currently implemented in this system, and the request instead comes from

the user. 3
The checkpoint is written as a file on the shared network file server. On each checkpoint,

only the modified pages of the user address space to the checkpoint file, overwriting their previous

values in the file. The checkpoint also includes all kernel data used by thc logical host, the state I
of the local team server for that logical host, and the state of the local logging server. This data

is entirely rewritten on each checkpoint, since it is small and modified portions of it is difficult to £
detect. Since the file server supports atomic commit of modified versions of files, the most recent

complete checkpoint of a logical host is always available, even if a failure occurs while a checkpoint

is being written. To limit any interference with the normal execution of the logical host during
checkpointing, the bulk of the checkpoint data is written while the logical host continues to execute.

The logical host is then frozen while the remainder of the data is written to the file [Theimer85].

A failed logical host may be restarted on any node in the network. Other processes sending

messages to the recovered logical host determine its new physical network address using the existing
V-System mechanism. The kernel maintains a cache recording the network address for each logical i
host from which it has received packets. In sending packets, after a small number of retransmissions

to the old network address, future retransmissions use a dedicated Ethernet multicast address to

which all V-System kernels respond. All processes are restored with the same process identifiers

that they had before the failure.

66 3

I
I

5 Performance

3The performance of this implementation of sender-based message logging has been measured on a
network of diskless SUN-3/60 workstations. The workstations each use a 20-megahertz Motorola5MC68020 processor, and are connected by a 10 megabit per second Ethernet network to a single
shared network file server. The file server runs on a SUN-3/160, with a 16-megahertz MC68020
processor, and uses a Fujitsu Eagle disk. This section presents an analysis of the individual costs

involved in communication, checkpointing, and recovery in this implementation, and an evaluation
of the performance of several distributed application programs using sender-based message logging.

5 5.1 Communication Costs

Table 2 presents the average time in milliseconds required for common communication operations

in the V-System. This table shows the times for a Send-Receive-Reply exchange with no appended
data and with a 1-kilobyte appended data segment, for a Send as a datagram, and for NoveTo and5 MoveFrom of both 1 and 64 kilobytes of data. For each operation, the times are given for a V kernel
without sender-based message logging and for the same operation using this implementation. The

overhead of using sender-based message logging is given for each operation as the difference between

these two times, and as a percentage increase over the standard time. These times are measured
in the initiating user process, and indicate the elapsed time from invoking the operation to its

I completion. The overhead for most operations is approximately 25 percent.

This measured overhead is caused entirely by the time necessary to execute the instructions of
the sender-based message logging protocol implementation. Because of the request-response nature

of the V-System communication operations, and due to the presence of the protocol optimizations
described in Section 3.5, no extra packets were required for each operation, and no delays were1 incurred in the transmission of any packet while waiting for an RSN acknowledgement to arrive.

j Table 2

Performance of common V-System communication operations with5 sender-based message logging (milliseconds)

Message Logging Overhead

Operation With Without Time Percent

Send-Receive-Reply 1.9 1.4 .5 36
Send(1K)-Receive-Reply 3.4 2.7 .7 26
Datagram Send .5 .4 .1 25

ioveTo(1K) 3.5 2.8 .7 25
KoveTo(64K) 107.0 88.0 19.0 22

ovoFro.(1K) 3.4 2.7 .7 265 oveFtoa(64K) 106.0 87.0 19.0 22

£ l67

Two extra packets were required to exchange the final RSN and RSN acknowledgement for each test
sequence, but this occurred asynchronously within the kernel, after the user process had completed
the timing.

To better understand how this execution time is spent, the execution times for a number of
components of the implementation were measured. This was done by independently executing each
component in a loop a large number of times and averaging the results. The time for a single exe-

cution could not be measured directly, since the SUN lacks a hardware clock of sufficient resolution.
The packet transmission portion of the implementation requires approximately 126 microseconds

for packets of minimum size, including 27 microseconds to copy the packet into the log. For sending
a packet with a 1-kikoyte appended data segment, this time is increased by 151 microseconds for
the additional time required to copy the segment into the log. Within this sending time, 38 mi-
croseconds occurs after the packet is transmitted on the Ethernet, and executes concurrently with
the packet reception on the remote node. The packet reception portion of the implementation

requires approximately 142 microseconds. Of this time, about 39 microseconds is spent process-
ing the RSN piggybacked on the packet, and about 45 microseconds is spent processing the RSN

acknowledgement.
These measurements agree well with the overhead times shown in Table 2 required to execute

the protocol implementation for each operation. For example, for a Send-Receive-Reply with no

appended data segment, one minimum-sized packet is sent by each process. The sending protocol
executes concurrently with the receiving protocol for each packet after its transmission on the
network. The total sender-based message logging overhead for this operation is calculated as

2 ((126 - 38) + 142) = 460 microseconds.

This closely matches the measured value of 500 microseconds given in the table. The time beyond
this required to execute the protocol for a 1-kilobyte appended segment Send-Receive-Reply is
simply the extra 151 microseconds needed to copy the segment into the message log, and is close to
the difference for these two operations of 200 microseconds given in the table. As a final example,

for a 64-kilobyte NoveTo operation, 64 packets with 1 kilobyte of data each are sent, followed by
a reply packet of minimum size. No concurrency is possible in the sending of the first 63 data
packets, but they are each received concurrently with the following send. After the last data
packet is transmitted, and after the reply packet is transmitted, execution of the protocol proceeds
concurrently between the sender and receiver. The total calculated overhead for this operation is

18.062 milliseconds, which agrees well with the measured overhead of 19 milliseconds given in the
table.

In less controlled environments and with more than two processes communicating, additional
overhead may be caused by any time spent idle waiting for an RSN acknowledgement to arrive
before a new message can be sent. To understand the effect of this delay on the communication
overhead, the average round-trip time required to send an RSN and receive its acknowledgement
was measured. Without transmission errors, this delay should not exceed the round-trip time, but

may be less if the RSN has already been sent when the new packet transmission is first attempted.
The average round-trip time required in this environment is 550 microseconds. Although the same

68

I
S

amount of data is transmitted across the network, this time is significantly less than the 1.4 mil-
liseconds shown in Table 2 for Send-Receive-Reply, since the RSN exchange takes place directly

between the two kernels rather than between two processes at the user level.

To put this measured average communication overhead of 25 percent with sender-based message
jlogging into perspective, the performance of several other pessimistic message logging techniques

may be considered. If messages are logged on some separate logging node on the network, with-
out using special network hardware, the overhead should be approximately 100 percent, since all

packets must be sent and received one extra time. The TARGON/32 system, using special net-
working hardware assistance and available idle time on a dedicated processor of each multiprocessor5node, claims a total system overhead for the provision of fault tolerance of approximately 10 per-
cent [Borg89]. If each message is synchronously written to disk as it is received, the overhead should
be several orders of magnitude higher, due to the relative speed of the disk. This approach does

allow for recovery from multiple failures at once, though.

I 5.2 Checkpointing Costs

Table 3 shows the measured elapsed time for performing checkpoints in this implementation, based
on the size of the address space portion that was written to the checkpoint file. During a checkpoint,

each contiguous range of modified pages is written to the file in a separate operation. The time
required to wrie the address space thus increases as the number of noncontiguous ranges of modified
pages increases. For these measurements, the modified pages were each separated by one unmodified
page, resulting in the most separate write operations. The hardware page size on the SUN-3 is

I8 kilobytes.
These measurements illustrate that the cost of checkpointing is dominated by the cost of writing

the address space to the checkpoint file. The elapsed time required to complete the checkpoint

grows roughly linearly with the size of the address space portion written to the file. Other costs
involved in checkpointing are minor. A total of approximately 17 milliseconds is required to openI

Table 3

Sender-based message logging checkpointing time by size of address
space portion written (milliseconds)

Kilobytes Pages Time

8 1 140
16 2 170
32 4 220
64 8 300

128 16 500
256 32 880
512 64 1570

1024 128 2980

3 69

the checkpoint file and later close it. Checkpointing the state of the kernel requires .8 milliseconds,
and checkpointing the team server requires 1.3 milliseconds. The time required to checkpoint the

logging server varies with the number of message log blocks to be written to the logging fie, with I
a minimum of 18 milliseconds, and increasing approximately 25 milliseconds per block.

5.3 Recovery Costs

The costs involved in recovery are similar to those involved in checkpointing. The address space of 5
the logical host being recovered must be read from the checkpoint file into memory. The state of the
kernel must be restored, as well as the states of the team server and the logging server. In addition,

the sequence of messages received by this logical host after the checkpoint was written must be I
retrieved, and the logical host must complete any reexecution based on these logged messages

necessary to bring its state up to the value that it had at the time of the failure.

Table 4 shows the measured times required for recovery in this implementation based on the size
of the address space of the logical host being recovered. These measurements do not include any
time required for the logical host to reexecute from the checkpointed state, since this time is specific I
to the particular application being recovered. In general, this reexecution time is bounded by the

interval at which checkpoints are recorded. As with the cost of checkpointing, these measured
recovery times given in Table 4 vary approximately linearly with the size of the address space I
being read. There is also a large fixed cost included in each of these times, due to the necessary
timeout of the last group send of the request to collect the next logged message. In the current 5
implementation, this timeout is 2.5 seconds.

5.4 Application Program Performance I
The preceding three sections have examined the three sources of overhead caused by the operation

of sender-based message logging. Distributed application programs, though, spend only a portion I
of their execution time on communication, and checkpointing and failure recovery occur only infre- I

Table 4

Sender-based message logging recovery time by address space size (milliseconds) £
Kilobytes Pages Time 3

8 1 2580
16 2 2600
32 4 2620 I
64 8 2670

128 16 2760
256 32 2950 I
512 64 3320

1024 128 4080

703

I
I

quently. To analyze the overhead of sender-based message logging in a more realistic environment,
the performance of three distributed application programs was measured using this implementation.

The following three application programs were used in this study:

nqueens: This program counts the number of solutions to the n-queens problem for a given number
of queens n. The problem is distributed among multiple processes by assigning each a range
of subproblems to solve resulting from an equal division of the possible placements of the first5two queens. When each process finishes all allocated subproblems, it reports the number of
solutions found to the main process.

tsp: This program finds the minimum solution to the traveling salesman problem for a given map
of n cities. The problem is distributed among multiple processes by giving each a different
initial edge to include in all paths. A branch-and-bound technique is used. As each new

possible solution is found, it is reported to the main process, which records the minimum
solution and returns the length of the currently known minimum solution. When a process5 finishes its assigned search, it requests a new graph edge to search from.

gauss: This program performs Gaussian elimination with partial pivoting on a given n x n matrix of
reaL numbers. The problem is distributed among multiple processes by giving each a subset

of the matrix rows to operate on. At each step of the reduction, the processes send their
possible pivot row number and value to the main process, which determines the row to be
used. The current contents of the pivot row is sent to all other processes, and each process
performs the reduction on its rows. When the last reduction step completes, each process
returns its rows to the main process.

These three programs were chosen because of their dissimilar communication rates and pat-
terns. With nqueens, the main process exchanges a message with each other process at the start

of execution and again at completion, but there is no other communication during execution. The
subordinate processes do not communicate with one another, and the total amount of communica-
tion is constant for all problem sizes. With tsp, the map is initially distributed to the subordinate

processes, which then communicate with the main process to requests new subproblems and to
report any new results found during each search. Since the number of subproblems is bounded5by the number of cities in the map, the total amount of communication performed is O(n) for
a map of n cities, but due to the branch-and-bound algorithm used, the running time is highly
dependent on the map input. Again, there is no communication between subordinate processes

during execution. The gauss program performs the most communication of the three programs,
including communication between all processes during execution. The matrix rows are distributed3to the subordinate processes and collected at completion, each pivot row is decided by the main
process, and the contents of the pivot row is distributed to all other processes. The total amount
of communication performed is O(n 2) for an n x n matrix.

These three application programs were used to solve a set of problems. Each problem was
solved multiple times, both with and withouL using seuder-L.ed uiestie logging. In each case,5 the same set of problems was solved. The maps used for tsp and the matrices used for gauss
were randomly generated, but were saved for use on all executions. For each program, the problem

1 71

was distributed among 8 processes, each executing on a separate node of the system. When using

sender-based message logging, all messages sent between application processes were logged, but no

checkpointing was performed.

The overhead of using sender-based message logging ranged from about 2 percent to much
kass than 1 percent for most problems in this set. For the gauss program, which performs more
communication than the other two programs, the overhead was slightly higher, ranging from about

16 percent to about 3 percent. As the problem size increases for each program, the overhead

decreases because the average amount of computation between messages sent increases. Table 5
summarizes the performance of these application programs for all problems in this set. Each entry
in this table shows the application program name and the problem size n. The running times

in seconds required to solve each problem are given, both with and without using sender-based
message logging. The overhead of using sender-based message logging for each problem is shown

in seconds as the difference between its two running times, and as a percentage increase in the
running time without logging.

Table 6 shows the average message log sizes per node that result from solving each of these
problems using sender-based message logging. For each problem, the average total number of
messages logged and the resulting message log size in kilobytes is shown. These figures are also

shown averaged over the elapsed execution time in seconds to solve the problem. These message
log sizes are all reasonable, and are well within the limits of available memory on the workstations

used in these tests and on other similar contemporary machines.

The effectiveness of the piggybacking protocol optimization (Section 3.5) depends on the com-
munication pattern used during execution. To assess the effectiveness of piggybacking with these
application programs, its utilization was counted within each process for each message sent. This

Table 5

Performance of the distributed application programs using
sender-based message logging (seconds)

Message Logging Overhead

Program Size With _Without Time _Percent

I nqueens 12 5.99 5.98 .01 .17
13 34.61 34.60 .01 .03
14 208.99 208.98 .01 .01

tsp 12 5.30 5.19 .11 2.12
14 16.40 16.13 .27 1.67
16 844.10 841.57 2.53 .30

gauss 100 12.41 10.74 1.67 15.55
200 71.10 66.40 4.70 7.08
300 224.06 217.01 7.05 3.25

72

I
a

Table 6

Message log sizes for the distributed application programs using
sender-based message logging (average per node)

I Total Per Second

Program Size Messages Kilobytes Messages Kilobytes

5 nqueens 12 8 1.9 1.30 .32
13 8 1.9 .23 .06

tp14 8 1.9 .04 .01
tap 12 43 5.5 8.09 1.04

14 48 6.1 2.91 .37
16 59 7.3 .07 .01

gauss 100 514 95.4 41.44 7.69
200 1113 292.8 15.66 4.12
300 1802 593.7 8.04 2.65

I
piggybacking utilization is summarized in Table 7 by the percentage of messages sent, averaged over
all processes. The three possible cases encountered when sending a message are shown individu-
ally in the table. If no unacknowledged RSNs are pending, the message is sent immediately with
no piggybacked RSNs. If all unacknowledged RSNs can be included in the same packet, the are3piggybacked in it, and the message is sent immediately. Otherwise, the packet cannot be sent now
and must wait for the acknowledgment of previous RSNs. In all applications, more than half the
messages could be sent immediately. Without piggybacking, about half of these would have been

forced to wait for the separate acknowledgment of the RSNs piggybacked in the same packet as the
message. The utilization of piggybacking was lowest in the gauss program, since its communication3 pattern allowed all processes to communicate with one another. This reduces the chances that a
message being sent is destined for the same process as the pending RSNs, which is required to be
able to piggyback those RSNs on the message.

To evaluate the effect of checkpointing on the overhead of sender-based message logging, each
application program was executed again with checkpointing enabled. Each program was used to
solve its largest problem, with checkpoints being written by each process every 15 seconds. A
high checkpointing frequency was used to generate a significant amount of checkpointing activity
to be measured. For the nqueens and tsp programs, the additional overhead from this level of
checkpointing was less than .5 percent of the required running time for that application with sender-
based message logging. For the gauss program, checkpointing overhead was about 2 percent.
This is higher than for the other two programs because gauss uses more data during execution,
which must be written to the checkpoint. In all cases, the average additional time required for
each checkpoint was much less than the elapsed time required for checkpointing alone, reported in

7

1 .. 73mmmmml mmmmmmm mmm

Table 7

Application program piggybacking utilization (percentage of messages sent)

None Wait For
Program Size Pending Piggybacked RSN Ack I

nqueens 12 42.9 44.4 12.7
13 41.3 46.0 12.7
14 41.3 46.0 12.7

tsp 12 19.9 62.4 17.6
14 22.3 63.5 14.2
16 33.0 58.3 8.7

gauss 100 20.7 30.0 49.2
200 29.4 28.6 42.0
300 29.0 31.0 40.0

Table 3 Iecause the time spent in checkpointing waiting for writes to the disk to complete could
be overlapped with execution of the application.

6 Multiple Failure Recovery

Sender-based message logging is designed to recover from only a single failure at a time within the
system, since messages are logged in volatile memory. That is, after one process (or logical host in
the V-System) has failed, no other process may fail until the recovery from the first is completed.

Sender-based message logging can be extended, though, to recover from multiple failures at the
same time.

Sender-based message logging uses the dependency vector of each process to verify that the
resulting system state after recovery is consistent. If a process X depends on a state of some
failed process Y that resulted from Y receiving a message beyond those messages logged for Y
that are available for replay during recovery, the system state that can be recovered by the basic
sender-based message logging protocol is not consistent. To recover a consistent system state in
this situation would require each such process X to be rolled back to a state before it received the

message from Y that caused this dependency.
With the existing sender-based message logging protocol, this consistent system state can be

recovered only if the current checkpoint for each process X that must be rolled back was written
before this message from Y was received. In this case, each process X can be rolled back by forcing
it to fail and recovering it using this checkpoint. If the current checkpoint was written after the

message from Y was received, process X cannot roll back far enough to remove the dependency.
To preserve as much of the existing volatile message log as possible, each of these processes must

be rolled back one at a time. As the original failed processes reexecute based on the sequences of

messages that could be replayed, they will resend any messages they sent before the failure, and

74

thus recreate much of their original volatile message log that was lost from the failure. Then, as
each of these additional processes is forced to fail and recovered from its earlier checkpoint, it will

recreate its volatile message log during its reexecution as well. By rolling them back one at a time,
no additional logged messages needed for their reexecution from their checkpointed states will be

3 lost.
If the checkpoint for some process X that must be rolled back was not written early enough

to allow the process to roll back to before the dependency on process Y was created, recovery of

a consistent system state using the basic sender-based message logging protocol is not possible.
To guarantee the recovery of a consistent system state even in this case, the sender-based message5 logging can be modified to retain on stable storage all checkpoints for all processes, rather than
just saving the most recent one for each process. Then, the existence of a usable checkpoint for
each process X that must be rolled back is ensured. Although not all checkpoints must be retained

to guarantee recovery, the existing sender-based message logging protocol does not maintain suffi-
cient information to determine during failure-free execution when each can safely be released. The3 domino effect is still avoided by this extension since the data in the checkpoints is not volatile.

I 7 Related Work

Many fault-tolerance systems require application programs to be written according to specific com-
putational models to simplify the provision of fault tolerance. For example, the ARGUS [Liskov88,

Liskov87] and Camelot [Spector87 systems require applications to be structured as a (possibly
nested) set of atomic actions on abstract data types. Likewise, some systems, such as the Tandem
NonStop system [Bartlett8l], require the programmer to embed fault-tolerance provision into each
application. Since sender-based message logging is a transparent mechanism, it does not impose
such restrictions on the applications.

The sender-based message logging protocol differs in design from other message logging proto-
cols primarily in that messages are logged in the local volatile memory of the sender. Also, sender-3 based message logging requires no specialized hardware to assist the logging. The TARGON/32
system [Borg89] (and its predecessor, Auros [Borg83]) log messages at a backup node for the re-
ceiver, using specialized networking hardware that provides three-way atomic broadcast of each

message to the backup process of the sender and the primary and backup processes of the receiver.
The PUBLISHING mechanism uses a centralized logging node for all messages, which must reliably3 receive every network packet. Although this logging node avoids the need to send an additional
copy of each message over the network, providing the guarantee of reliably receiving each message
seems to be impractical without additional protocol complexity (Saltzer84]. Strom and Yemini's

Optimistic Recovery mechanism logs all messages on stable storage on disk. With sender-based
message logging, logging the messages directly at the sender avoids the expense of sending an ex-
tra copy of each for logging, and , ice sender-based message logging requires no such specialized

hardware, it can be used over a broader class of existing systems without loss of efficiency.
Another difference of sender-based message logging from previous pessimistic logging protocols,5 which is not related to the logging of messages at the sender, is in the way that the requirements of

1 75

I
a pessimistic logging protocol are enforced. All pessimistic logging protocols must guarantee that
during recovery processes other than those that failed need not be rolled back to achieve a consistent
system state. Previous pessimistic logging protocols [Borg83, Powel83, Borg89] have required each
message to be logged before it is received by the destination process, blocking the receiver while the
logging takes place. Sender-based message logging allows the message to be received before it is
logged, but prevents the receiver from sending new messages until all messages it has received are
logged. This allows the receiver to execute based on the message data while the logging takes place

asynchronously. For example, if the message requests some service of the receiver, this service can I
begin while the message is being logged.

Optimistic message logging methods [Strom85, Johnson88] have the potential to outperform 3
pessimistic methods, since message logging proceeds asynchronously, without delaying either the
sender or the receiver for message logging to complete. However, these methods require significantly

more complex protocols for logging, since each process must be notified of the progress of the logging I
of messages received by each other process. Also, failure recovery in these systems is more complex
and may take longer to complete, since processes other than those that failed may need to be 3
rolled back to recover a consistent system state. Finally, optimistic message logging systems may
require significantly more storage during failure-free operation, since logged messages may need to

be retained longer, and processes may be required to save additional checkpoints earlier than their I
most recent. Sender-based message logging achieves some of the advantage of asynchronous logging
more simply by allowing messages to be received before they are fully logged.

Some of the simplicity of the sender-based message logging protocol results from the concen- I
tration on recovering from only a single failure at a time. This allows the messages to be logging
in volatile memory, significantly reducing the overhead of logging. The addition of the extensions 5
of Section 6 to handle multiple failures causes no additional overhead during failure-free operation,
although to guarantee recovery using the second extension requires that all checkpoints be retained

on stable storage. Also, the recovery from multiple failures at once using these extensions may I
require longer to complete than with other methods, since any processes other than those that
failed that must be rolled back must do so one at a time. £

This work improves on our earlier work with sender-based message logging, which was reported
before the system had been implemented [Johnson87]. The protocol optimizations of Section 3.5

result in a significant reduction in the number of extra network packets required for message logging. I
Sender-based message logging now also detects all cases when the system cannot be recovered to a
consistent state following a failure. Through the addition of the dependency vector in each process, 3
any multiple failure that causes the loss of portions of the volatile message log needed for recovery is
detected, allowing the system to notify the user or abort the computation if desired. Furthermore,

the extensions of Section 6 allow the system to be recovered in cases of multiple failures in which I
recovery previously would not have been possible using sender-based message logging.

76

8 Conclusion

Sender-based message logging is a new transparent method of providing fault tolerance in dis-

tributed systems, which uses pessimistic message logging and checkpointing to record information

for recovering a consistent system state following a failure. It differs from other pessimistic message

logging protocols in that the message log is stored in the volatile memory on the node from which

the message was sent. The order in which the message was received relative to other messages sent

to the same receiver is required for recovery, but this information is not usually available to the

message sender. With sender-based message logging, when a process receives a message, it returns
to the sender a receive sequence number, or RSN, to indicate this ordering information. When the

RSN arrives at the sender, it is added to the local volatile log with the message. To recover a failed

process, it is restarted from its most recent checkpoint, and the sequence of messages received by
it after this checkpoint are replayed to it in ascending order of their logged RSNs.

Sender-based message logging concentrates on reducing the overhead placed on the system for

the provision of fault tolerance by a pessimistic logging protocol. The cost of message logging is
the most important factor in this system overhead. The checkpointing frequency can be tuned to

balance its expense against the time needed for recovery or the space needed to store the message
log, and the cost of failure recovery should be less important if failures in the system are infrequent.

Keeping the message log in the sender's volatile memory avoids the expense of synchronously

writing each message to disk or sending an extra copy over the network to some special logging

process. Since the message log is volatile, though, sender-based message logging supports recovery

from only a single failure at a time within the system. Extensions to the basic sender-based message

logging protocol are also possible to handle multiple failures.

Performance measurements from a full implementation of sender-based message logging under
the V-System verify the efficient nature of this protocol. Measured on a network of SUN-3/60
workstations, the overhead on V-System communication operations is approximately 25 percent.

The overhead experienced by distributed applications programs using sender-based message logging
is affected most by the amount of communication performed during execution. For Gaussian elim-

ination, the most communication-intensive program measured, this overhead ranged from about
16 percent to about 3 percent, for different problem sizes. For all other programs measured, over-

head ranged from about 2 percent to much less than 1 percent.

Acknowledgements

We would like to thank Ken Birman, Rick Bubenik, John Carter, David Cheriton, Gerald Fowler,

Ed Lazowska, and Rick Schlichting for their helpful comments on earlier drafts of this material.

References

fBartlett8l] Joel F. Bartlett. A NonStop kernel. In Proceedings of the Eighth Symposium on
Operating Systems Principles, pages 22-29. ACM, December 1981.

77

[Bernstein87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency

Control and Recovery in Database Systems. Addison-Wesley, Reading,
Massachusetts, 1987.

[Birrell84] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls.

ACM Transactions on Computer Systems, 2(1):39-59, February 1984.

[Borg83] Anita Borg, Jim Baumbach, and Sam Glazer. A message system supporting fault
tolerance. In Proceedings of the Ninth ACM Symposium on Operating Systems

Principles, pages 90-99. ACM, October 1983.

[Borg89] Anita Borg, Wolfgang Blau, Wolfgang Graetsch, Ferdinand Herrmann, and
Wolfgang Oberle. Fault tolerance under UNIX. ACM Transactions on Computer

Systems, 7(1):1-24, February 1989.

[Cheriton83] David R. Cheriton and Willy Zwaenepoel. The distributed V kernel and its per-

formance for diskless workstations. In Proceedings of the Ninth A CM Symposium

on Operating Systems Principles, pages 129-140. ACM, October 1983.

[Cheriton85] David I. Cheriton and Willy Zwaenepoel. Distributed process groups in the V
kernel. ACM Transactions on Computer Systems, 3(2):77-107, May 1985.

[Cheriton86] David R. Cheriton. VMTP: A transport protocol for the next generation of com-
munication systems. In Proceedings of the 1986 SigComm Symposium, pages

406-415. ACM, August 1986.

[Cheriton88] David R. Cheriton. The V distributed system. Communications of the ACM,
31(3):314-333, March 1988.

[Johnson87] David B. Johnson and Willy Zwaenepoel. Sender-based message logging. In

The Seventeenth Annual International Symposium on Fault- Tolerant Computing:

Digest of Papers, pages 14-19. IEEE Computer Society, June 1987.

[Johnson88] David B. Johnson and Willy Zwaenepoel. Recovery in distributed systems using
optimistic message logging and checkpointing. In Proceedings of the Seventh

Annual A CM Symposium on Principles of Distributed Computing, pages 171-181.
ACM, August 1988.

[Lampson79] Butler W. Lampson and Howard E. Sturgis. Crash recovery in a distributed data
storage system. Xerox Palo Alto Research Center, Palo Alto, California, April

1979.

[Liskov87] Barbara Liskov, Dorothy Curtis, Paul Johnson, and Robert Scheifler.

Implementation of Argus. In Proceedings of the Eleventh ACM Symposium on

Operating Systems Principles, pages 111-122. ACM, November 1987.

78

[Liskov88] Barbara Liskov. Distributed programming in Argus. Communications of the

ACM, 31(3):300-312, March 1988.

[Powell83J Michael L. Powell and David L. Presotto. Publishing: A reliable broadcast

communication mechanism. In Proceedings of the Ninth ACM Symposium on

Operating Systems Principles, pages 100-109. ACM, October 1983.

[Rande175] Brian Randell. System structure for software fault tolerance. IEEE Transactions

on Software Engineering, sE-1(2):220-232, June 1975.

[Russel180] David L. Russell. State restoration in systems of communicating processes. IEEE
Transactions on Software Engineering, sE-6(2):183-194, March 1980.

[Saltzer84] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system

design. ACM Transactions on Computer Systems, 2(4):277-288, November 1984.

[Schlichting83] Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: An approach
to designing fault-tolerant distributed computing systems. ACM Transactions on

Computer Systems, 1(3):222-238, August 1983.

[Spector87j Alfred Z. Spector. Distributed transaction processing and the Camelot system.
In Distributed Operating Systems: Theory and Practice, edited by Yakup Paker,

Jean-Pierre Banatre, and Muslim Bozyigit, volume 28 of NATO Advanced Science

Institute Series F: Computer and Systems Sciences, pages 331-353. Springer-

Verlag, Berlin, 1987.

[Strom851 Robert E. Strom and Shaula Yemini. Optimistic recovery in distributed systems.

ACM Transactions on Computer Systems, 3(3):204-226, August 1985.

[Theimer85] Marvin N. Theimer, Keith A. Lantz, and David R. Cheriton. Preemptable re-

mote execution facilities for the V-System. In Proceedings of the Tenth ACM
Symposium on Operating Systems Principles, pages 2-12. ACM, December 1985.

[Zwaenepoel85] Willy Zwaenepoel. Protocols for large data transfers over local area networks.

In Proceedings of the 9th Data Communications Symposium, pages 22-32. IEEE

Computer Society, September 1985.

79

Recovery in Distributed Systems

Using Optimistic Message Logging

and Checkpointing

David B. Johnson
Willy Zwaenepoel

Department of Computer Science
Rice University

P.O. Box 1892
Houston, Texas 77251-1892

This paper has been submitted to and is under revision
for publication in Journal of Algorithms.

An earlier version appeared in Proceedings of the Seventh Annual
A CM Symposium on Principles of Distributed Computing.

Abstract

In a distributed system using message logging and checkpointing to provide fault tol-
erance, there is always a unique maximum recoverable system state, called the current
recovery state. This paper presents an efficient algorithm for determining the current
recovery state at any time, and proves its correctness. The algorithm is based on a
general model for reasoning about these recovery methods. This model allows us to
show that the set of system states that have occurred during any single execution of
a system forms a lattice, with the sets of consistent and recoverable system states as
sublattices. The current recovery state is the greatest upper bound of all elements of the
recoverable sublattice. This work unifies existing approaches to fault tolerance using
message logging and checkpointing, and improves on existing methods for optimistic
recovery in distributed systems.

This work was supported in part by the National Science Foundation under grants CDA-8619893 and CCR-8716914,
and by the Office of Naval Research under contract ONR N00014-88-K-0140.

83

1 Introduction

Message logging and checkpointing can be used to provide fault tolerance in a distributed system
in which all process communication is through messages. Each message received by a process
is logged on stable storage [Lampson79], and each process is occasionally checkpointed to stable
storage, but no coordination is required between the checkpoints of different processes. Between
received messages, the execution of each process is assumed to be deterministic.

The protocols used for message logging are typically pessimistic. With these protocols, each
message is synchronously logged as it is received, either by blocking the receiver until the message
is logged [Borg83, Powel83], or by blocking the receiver if it attempts to send a new message before

all received messages are logged [Johnson87]. Recovery based on pessimistic message logging is

straightforward. A failed process is restarted from its last checkpoint, and all messages received
by this process after the checkpoint are replayed to it from the log, in the same order as they were
received before the failure. The process reexecutes based on these messages to its state at the time
of the failure. Messages sent by the process during recovery are ignored since they are duplicates
of those sent before the failure.

On the other hand, optimistic message logging protocols operate asynchronously [Strom85].
The receiver continues to execute, and received messages are logged later, for example by grouping
several messages and writing them to stable storage in a single operation. The state of a process

can only be recovered, however, if all messages that it has received since its last checkpoint have

been logged. When a process receives a message, the state of the receiver becomes dependent on
the state of the sender at the time that the message was sent. If the sender fails and can only
be recovered to an earlier state, the receiver process becomes an orphan and must be rolled back
during recovery to a point before the message that created this dependency was received. Rolling
back this process may cause other processes to become orphans, which must also be rolled back

during recovery. The domino effect [Randel75, Russell80] is an uncontrolled propagation of such
rollbacks, and must be avoided to guarantee progress in the system in spite of failures. Recovery
based on optimistic message logging must, in effect, construct the "most recent" combination of
process states such that no process is an orphan.

Optimistic message logging protocols are desirable in systems in which failures are rare and
failure-free performance is of primary concern. Since they avoid synchronization delays during

message logging, performance in the absence of failures is improved. Although the required recovery
procedure is more complicated, it is only used when a failure occurs.

This paper presents an algorithm for determining the maximum recoverable state at any time
in a system using message logging and checkpointing. Our algorithm can be used with any message
logging protocol, whether pessimistic or optimistic, but its full generality is only required with
optimistic logging protocols. Section 2 presents a general model for reasoning about these recovery
methods. With it, we prove that the set of recoverable system states forms a lattice, and that there
is thus always a unique maximum recoverable system state, which never decreases. Based on this

model, Section 3 describes our algorithm for finding the maximum recoverable system state, and
proves its correctness. Section 4 relates this work to existing message logging and checkpointing
fault-tolerance methods. Finally, Section 5 summarizes the contributions of this work.

84

I
I

2 The Model

This section presents a general model for reasoning about the behavior and correctness of recovery
methods using message logging and checkpointing. The model does not assume the use of any
particular message logging protocol, and is based on the notion of dependency between the states
of processes as a result of communication in the system.

3 2.1 Process States

Each time a process receives an input message, it begins a new state interval, a deterministic3sequence of execution based only on the state of the process at the time that the message is received
and on the contents of the message itself. Within each process, each state interval is uniquely
identified by a sequential state interval index, which is simply a count of the number of input
messages that the process has received. The creation of a process is modeled as its receipt of
message number 0, and process termination is modeled as its receipt of one final message following3the sequence of real input messages to be received by the process.

When a process i receives a message sent by some process j, the state of process i becomes
dependent on the state of process j at the time the message was sent. All dependencies of process
i on any state of process j can be encoded as the maximum index of any state interval of process
j on which process i depends. This encoding is possible since the execution of a process within
each state interval is deterministic and since any state interval in a process naturally depends on
all previous intervals of the same process.

The dependencies of process i on all processes can be represented by a dependency vector

(6.) = (61, 62,6 3,.. .,I6),

where n is the total number of processes in the system. Component j of process i's dependency
vector, b,, gives the maximum index of any state interval of process j on which process i currently
depends. If process i has no dependency on any state interval of some process j, then 6, is set to I,3which is less than all possible state interval indices. Component i of process i's own dependency
vector is always set to the index of process i's current state interval.

Processes cooperate to maintain their dependency vectors by tagging all messages sent with
their current state interval index, and by remembering in each process the maximum index tagging
any message received from each other process. During any single execution of the system, the3 current dependency vector for any process is uniquely determined by the state interval index of the
process. No component of the dependency vector of any process can decrease through failure-free3 execution of the process.

2.2 System States

3A system state is a collection of process states, one for each process in the system. These process
states need not all have existed in the system at the same time. A system state is said to have
occurred during some execution of the system if all component process states have each individually
occurred during this execution. A system state is represented by an n x n dependency matrix

3 85

611 612 613 ... 6 1n

621 622 623 ... 6 2n

D=[6..]= 631 632 633 ... 63n

6n 6n2 6n 3 ... 6nn

where row i, bij, 1 < j n, is the dependency vector for the state of process i included in this

system state. Since component i of process i's dependency vector is always the index of process

i's current state interval, the diagonal of the dependency matrix, 6ii, 1 < i < n, shows the current

state interval index of each process contained in the system state.

Let $ be the set of all system states that have occurred during any single execution of some

system. The system history relation defines a partial order on the set S such that one system state
precedes another in this relation if and only if it must have occurred first during this execution.

This relation can be expressed in terms of the state interval index of each process as shown in the

dependency matrices representing these system states.

Definition 1 If A = [a*..] and B = [fl..] are system states in 3, thcn

A --< B 4=# V i [ai < ! i i] .

The system history relation differs from Lamport's happened before relation [Lamport78 in that it
orders the system states that result from events rather than the events themselves, and that only
state intervals (started by the receipt of a message) constitute events.

For example, Figure 1 shows a system of four communicating processes. The horizontal lines

represent the execution of each process, each arrow represents a message from one process to an-

other, and the numbers give the index of the state interval started by the receipt of each message.

Consider the two possible system states A and B, where in state A, message a has been received

Process 0 1 2

I I
I I

a/I I
/ I

I I

Process 2 0 time

\time-

Process 3 0 1 2

I \

Process 4 0" 1

Figure 1 Neither message a nor message b must have been received first.

86

but message b has not, and in state B, message b has been received but message a has not. These
system states can be expressed by the dependency matrices

A = 1 0 1. 1 and B= 0 1L
02 02

-L.L-L (-I1 2 (

States A and B are incomparable under the system history relation. This can be seen by comparing
the circled values on the diagonals of these two dependency matrices.

2.3 The System History Lattice

A system state describes the set of messages that have been received by each process. Two system
states in S can be combined to form their union such that each process has received all messages
that it has in either of the two original system states. This can be expressed in terms of the
dependency matrices describing these system states by choosing, for each process, the row that has
the largest state interval index of the corresponding rows in the original matrices.

Definition 2 If A = [a..] and B = L..] are system states in S, then the union of
A and B is A U B = [y.], such that

i 7I i. otherwise]

Likewise, the intersection of two system states in S can be formed such that each process has
received only those messages that it has in both of the two original system states. This can be
expressed in terms of the dependency matrices describing these system states by choosing, for each
process, the row that has the smallest state interval index of the corresponding rows in the original

matrices.

Definition 3 If A = [a..] and B = [o.] are system states in S, then the intersection
of A and B is A n B = (..], such that

Vi[6i.={ :i. otherwise

Continuing the example of Section 2.2 illustrated in Figure 1, the union and intersection of
states A and B are

2 0 .1 1 1 0 1. 1

1020 1020

I112 1 1 1 1 0

The following theorem introduces the system history lattice formed by the set of system states
that have occurred during any single execution of some system, ordered by the system history

relation.

87

U
I

Theorem 1 The set S, ordered by the system history relation, forms a lattice. For

any A,B E S, the least upper bound of A and B is AUB, and the greatest lower bound

of A and B is AnB.

Proof Follows directly from the construction of system state union and intersection in Definitions 2

and 3. 0

2.4 Consistent System States I
A system state is called consistent if and only if no component process depends on a state of any

other process beyond the end of its state interval contained in this system state. Thus, no process I
has received a message that has not already been sent in this system state and cannot be sent within

the deterministic execution of the sender. Any message shown by the system state to have been

sent but not yet received does not cause the system state to be inconsistent, and can be handled by
the normal mechanism for reliable message delivery, if any, used by the underlying system. If the

system as a whole could be observed iistantaneously, only consistent system slates could be seen I
during failure-free execution of the system from its initial state, regardless of the relative speeds

of the component processes [Chandy85]. By always recovering the system to a consistent state

following a failure, the total execution of the system is equivalent to some possible failure-free
execution.

The definition of a consistent system state can be expressed in terms of the dependency matrix 5
representing this system state. If a system state is consistent, then for each process i, no other

process j depends on a state interval of process i beyond process i's current state interval. In the

4ependency matrix, for each column i, no element in column i may be larger than the element in I
that column on the diagonal of the matrix, which is process i's current state interval index.

Definition 4 If D = [6.,] is some system state in S, D is consistent if and only if I
V i,j[6,,j i :5 , .i 3l -

Let the set C C S be the set of consistent system states that have occurred during any single

execution of some system. That is, 3
C = {D E S I D is consistent }

For example, consider the system of three processes whose execution is shown in Figure 2. The I
state of each process here is observed where the curve crosses the line representing the execution
of that process, and the resulting system state is represented by the dependency matrix 3

1®
D=[[b..]= 0 (2) 0

1 2 1

This system state is not consistent since process 1 has received a message (to begin state interval 1)

from process 2 that was sent beyond the end of process 2's current state interval. This message has

88

I
I

Process 1 0

%J
/ II I

Process 2 0 1 2 3 4

• \ Itim e

Process3 0 '1 3

I
Figure 2 An inconsistent system state.I

not been sent yet by process 2 and cannot be sent by process 2 during its deterministic execution.5This inconsistency is shown in the dependency matrix since 612 is greater than 62 2.

Lemma 1 The set C, ordered by the system history relation, forms a sublattice of the
system history lattice.

I Proof It suffices to show that for any A, BEC, AUBECandAnBEC. LetA=[a..]and
B = [P..].

(AUBEC): Let C=[7..] = AUB. SinceAEC andB EC, ji_5aiiand,3i 8iifor
all i and j. Since-i = c ior =fPii, and = max(ai ,Pi j), yi< iifor all i and jaswell.

Therefore, A U B E C.
(AnfB E C): Let D = [6..] = AnfB. By Definition 3, and since no element in the dependency

vector for any process ever decreases as the process executes, then 6ji = min(aCfj,3jj), for all i
and j. This implies that 6 i 5 ali and 6, i !,j. Since A and B are consistent, aji <_ aii and

I fli _< fii. Combining this with the previous result yields 6ji _< aii and 6,i _:)i. This implies
that 6bi _< min(a,,,i, #), and thus 6i 5 6ii, for all i and j. Therefore, A n B E C. 0

I 2.5 Message Logging and Checkpointing

A message is called logged if and only if its data and the index of the state interval that it started
in its receiver process are both recorded on stable storage. The predicate logged(i, a) is true if and
only if the message that started state interval a of process i is logged.

When a process is created, it is immediately checkpointed (in state interval 0) before it begins
execution. For every state interval o of each process, there must then be some checkpoint for that5process on stable storage with a state interval index no larger than a.

Definition 5 The effective checkpoint for a state interval a of some process i is the
checkpoint on stable storage for process i with the largest state interval index c such

that e < a.

5 89

A state interval of a process is called stable if and only if all messages received by the process

to start state intervals after its effective checkpoint are logged. The predicate stable(i, a) is true if

and only if state interval a of process i is stable.

Definition 6 If a is a state interval index of some process i, and the effective check-

point of this state interval has index E, then state interval a of process i is stable if and

only if

V a,e<a _< (logged(i,a)J .

Any stable state interval a for a process can be recreated by restoring the process from the

effective checkpoint (with state interval index E) and replaying to it in order any logged messages

to begin state intervals 4E+1 through a.

The checkpoint of a process includes the complete current dependency vector for the process.

Each logged message only contains the state interval index of the sending process at the time that
the message was sent, but the complete dependency vector for any stable state interval of some

process can always be obtained, since all messages that started state intervals since the effective

checkpoint must be logged.

2.6 Recoverable System States

A system state is called recoverable if and only if all component process states are stable and the

resulting system state is consistent. To recover the state of the system, it must be possible to

recover the states of the component processes, and for this system state to be meaningful, it must

be possible to have occurred through failure-free execution of the system from its initial state.

Definition 7 If D = [b..] is some system state in 3, D is recoverable if and only if

D E C A Vi[stable(i,6 1i)].

Let the set JZ C S be the set of recoverable system states that have occurred during any single

execution of some system. That is,

= { D E S I D is recoverable } .

Since only consistent system states can be recoverable, IZ _ C C S.

Lemma 2 The set 1Z, ordered by the system history relation, forms a sublattice of

the system history lattice.

Proof For any A, B E IZ, AU B E C and A n B E C, by Lemma 1. Since the state of each process
in A and B is stable, all process states in A U B and A fn B are stable as well. Thus, A U B E 1Z

and A n B E 1Z, and IZ forms a sublattice. 0

90

2.7 The Current Recovery State

In recovering after a failure, we wish to restore the state of the system to the "most recent" re-
coverable state that is possible from the information available, in order to minimize the amount
of reexecution necessary to complete the recovery. The system history lattice corresponds to this

notion of time, and the following theorem establishes the existence of a'single maximum recoverable
system state under this ordering.

Theorem 2 There is always a unique maximum recoverable system state in S.

Proof The unique maximum in S is simply

U D,
DER

which must be unique since IZ forms a sublattice of the system history lattice. C3

This unique maximum recoverable system state is called the current recovery state of the system.

Lemma 3 During any single execution of some system, the current recovery state of
the system never decreases.

Proof Let R = [p..] be the current recovery state of the system at some time. R will always

remain consistent, and for each process i, state interval pij will always remain stable. Since IZ
forms a sublattice, any new current recovery state established after R must be greater than R in
the lattice. 0

Corollary 1 If the current recovery state of the system is R = [p,,], then the system
can always be recovered without rolling back any state interval a < pii, for any process

i.

Proof Each process i can always be r- sovered to its state interval pi i in the current recovery state
of the system. By Lemma 3, the current recovery state never decreases, and thus, by Definition 1,
the state interval index of each process in any new current recovery state must be greater than or
equal to pi i. Therefore, for each process i, no state interval a < pii need ever be rolled back. ID

Corollary 2 If all messages received by executing processes are eventually logged,
there is no possibility of the domino effect in the system.

Proof If all messages are eventually logged, all state intervals of all processes eventually become
stable by Definition 6, and thus new recoverable states must become possible through Definition 7.
By Corollary 1, these states will never need to be rolled back. C]

91

2.8 Committing Output

If some state interval of a process must be rolled back to recover a consistent system state, any
output messages sent while that state interval is being reexecuted after recovery may not be the
same as those originally sent. Any processes that received such messages will be orphans and must
be rolled back to a point before these messages were received.

Messages sent to the outside world, such as those to the user's display terminal, cannot be
treated in the same way, however. Since the outside world generally cannot be rolled back, any
messages sent to the outside world must be delayed until it is known that the state interval from
which they were sent will never need to be rolled back. They can then be committed by releasing
them. This lemma establishes when it is safe to commit an output message sent to the outside
world.

Lemma 4 If the current recovery state of the system is R = [p..], then any message
sent by a process i from a state a < pii may be committed.

Proof Follows directly from Corollary 1. E0

2.9 Garbage Collection

During operation of the system, checkpoints and logged messages accumulate on stable storage in
case they are needed for some future recovery Each of these may be removed from stable storage
whenever doing so will not interfere with the ability of the system to recover. The following two

lemmas establish when this can safely be done.

Lemma 5 Let R = [p..] be the current recovery state. For each process i, if ci is
the state interval index of the effective checkpoint for its state interval pij, then any
checkpoint for process i with state interval index a < ei may be released from stable

storage.

Proof Follows directly from Corollary 1 and Definition 5. C-

Lemma 6 Let R = [p..] be the current recovery state. For each process i, if q, is
the state interval index of the effective checkpoint for its state interval pjj, then any
message that begins a state interval in process i with index a < i may be released from
stable storage.

Proof Follows directly from Corollary 1 and Definition 5. 0

3 The Recovery State Algorithm

Theorem 2 shows that there is always a unique maximum recoverable system state, called the
current recovery state. Conceptually, this system state can always be found by an exhaustive

92

U
I

search of all combinations of currently stable process state intervals for the maximum combination.
However, such a search would be too expensive in practice. Our recovery state algorithm finds the

current recovery state more efficiently by limiting this search. The algorithw it invoked each time
a process state interval becomes stable, either from a checkpoint or when a message is logged. It3is incremental in that it starts with the existing current recovery state, and attempts to advance
it based on the fact that a single new process state interval has become stable. Since it only uses
information on stable storage, it is restartable and can handle any number of concurrent process

failures.
Each time some new state interval a of some process k becomes stable, the algorithm determines3 if a new current recovery state exists. It first attempts to find some new recoverable system state

in which the state of process k is advanced to state interval a. If no such system state can be
found, the currint recovery state remains unchanged. If such a recoverable system state is found,
the algorithm looks for other greater recoverable system states. The new current recovery state of
the system is the maximum recoverable system state found in this search.

I 3.1 Finding a New Recoverable System State

The heart of the recovery state algorithm is the procedure FINDREC. Given any recoverable sys-
tem state R = [p..], and some stable state interval a of some process k with a > Pk A, FINDREC
attempts to find a new recoverable system state in which the state of process k is advanced at least3 to state interval a. It does so by including any stable state intervals from other processes that

are necessary to make this new system state consistent, by a direct application of the definition of
system state consistency in Definition 4. The procedure succeeds if such a consistent system state

can be composed from the set of process state intervals that are currently stable. Since the state
of process k has advanced, the new recoverable system state found must be greater than R. in the3 system history lattice.

The inputs to procedure FINDREC are the given recoverable system state B. = [p o], a stable

state interval of process k with index a > Pkk, and the dependency vector for each stable process

state interval of each process x with index 0 > p_,. Conceptually, FINDREC performs the
following steps:

11. Make a new dependency matrix D = [6..] from R, with row k replaced by the dependency

vector for state interval a of process k.

1 2. Loop on step 2 while D is not consistent. That is, loop while there exists some i and j for
which 6,, > 6bi. This shows that state interval bji of process j depends on - state interval3 6,i of process i that is greater than process i's current state interval 6bi in D.

Find the minimum a > bji such that stable(i,t):

3(a) If no such a exists, return false.

(b) Otherwise, replace row i of D with the dependency vector for this state interval a of
3process i.

3 93

3. The system state represented by D is now consistent and is composed entirely of stable process
state intervals. It is thus recoverable and greater than R. Return true.

An efficient implementation of procedure FINDREC is shown in Figure 3. This implementa-
tion operates on a vector, RV, rather than the full dependency matrix. For all i, RV[i] is diagonal
element i of the corresponding dependency matrix. When FINDREC is called, RV[i] is the state
interval index of process i in the given recoverable system state. The dependency vector of each
stable state interval 0 of process z is represented by D V9. As each row is replaced, the correspond-
ing element of RV is changed. Also, the maximum element in each column of the matrix is kept in
a vector MAX, such that MAX[i] is the maximum element in each column i.

Lemma 7 If function FINDREC is called with a known recoverable system state
R = [p..] and state interval a of process k such that a > Pkk, FINDREC returns true
if and only if there exists some recoverable system state R! = [p..], such that R -< R!
and p'k > a. If FINDREC returns true, then on return, RV[i] = pii, for all i.

Proof The predicate of the while loop determines whether the dependency matrix represented
by RV and MAX is consistent, by application of Definition 4. When the condition becomes false
and the loop exits, this matrix must be consistent since, in each column i, no element is larger
than the diagonal element in that column. Thus, if FINDREC returns true, the system state
returned in RV must be consistent. This system state must also be recoverable since all process
state intervals initially in it are stable, and only stable process state intervals are used to replace
entries in it during the execution of FINDREC.

The following loop invariant is maintained by function FINDREC on each iteration at the
head of the while loop:

If a recoverable system state R' = [p..] exists such that, for all i, p, - RV[i], then
P'i - MAXfi].

function FINDREC(RV, k, a)
RV[k] .- a;
for i -- 1 to n do MAX[i] - max(RV[i], DVZ[iI);
r hile 3 i such that MAX(i] > RV[i] do

a + minimum such that a > MAX[i] A stable(i, a);
if no such a exists then return false;
RV[i] -a;
for j 1 to n do MAX[j] +- max(MAX[j], DV ']);

return true;

Figure 3 Procedure to find a new recoverable state.

94

!
I

The iavariant holdF initially since any consistent state must have RV[i] ._ MAX[i] for all i. Thus.
any state R' found such that p'i - RV[i], must have pi >- RV[i] >_ MAX[fi]. At each subsequent

iteration of the loop, the invariant is maintained by choosing the smallest a > MAX[i] such that
stable(i, a). To make the matrix consistent, a must not be less than MAX[i]. By choosing the3 minimum such a, the components of DV? are also minimized. Thus, after replacing row i of the
matrix with DVq, the components of MAX are minimized, and any recoverable state R' that exists

I must still have p, > MAX[i], for all i.

If no such a > MAX[i] exists, then no recoverable system state R' can exist, since any such
R' must have PIi > MAX[i]. This is exactly the condition under which the procedure FINDREC3 returns false. 0

The state intervals of each process i that are currently stable partition the set of all state3 intervals of process i into a collection of disjoint subsets known as cover sets.

Definition 8 The cover set for a stable state interval a of process i is the set

3 cover(i, a) = { a 3 < a< o },

where3 is the largest state interval index for process i such that /3 < a and stable(i,3).

That is, cover(i, a) contains state interval a and all preceding state intervals of process i that do not
also precede any other earlier stable state interval /3 of process i. These sets thus form a partition

I of the state intervals of each process. In the while loop of function FINDREC, if MAX[i] = 6
and 6 E cover(i, a), then the state interval index found for a will be a.

These cover sets define a new dependency relation called stable dependency, based on which

process state intervals are currently stable.

Definition 9 A state interval a of some process k, with dependency vector (6.), has
a stable dependency on some state interval a of some process i if and only if 6i E
cover(i, a).

3 The stable dependency relation describes the state interval a that must be chosen by FINDREC
during each iteration of the while loop. The transitive closure of the stable dependency relation
for state interval a of process k describes the set of state intervals a for each process i that can be

used during any iteration of this while loop, although the subset of these that are actually used
in some execution depends on the order in which the loop finds the next i that meets the required

condition.

3.2 The Complete Algorithm

Using function FINDREC, the complete recovery state algorithm can now be stated. The algo-

rithm, shown in Figure 4, uses a vector CRS to represent the current recovery state of the system.

When a process is created, its entry in CRS is initialized to 0. Then, when some state interval a
of some process k becomes stable, if it is in advance of the known current recovery state in CRS,
the algorithm searches for the new current recovery state. During this search, the vector NEWCRS

stores the maximum known recoverable system state.

* 95

I

if a <- CRSk] then exit; 3
NEWCRS ,- CRS;

if -,FINDREC(NEWCRS, k, a) then I
for i -- 1 to n do ifi g k then

,4-- DV'[i];
if # > CRS[i] then DEFERe (- DEFERe U { (k,a) };

exit;

WORK -; I
for /3 E cover(k, a) do WORK +- WORK U DEFER,;
while WORK $ 0 do

remove some (z, 0) from WORK;
if 0 > NEWCRS[z] then

RV -- NEWCRS;
if FINDREC(RV, x, 0) then NEWCRS * RV;

if 0 < NEWCRS[z] then
for 0 E cover(x, 0) do WORK - WORK U DEFERI; 3

CRS,-- NEWCRS;

I

Figure 4 The recovery state algorithm.

The algorithm first calls FINLLREC with the known current recovery state and state interval
a of process k. If FINDREC returns false, then no greater recoverable system state exists in

which the state of process k has advanced at least to state interval a. Thus, the current recovery
state has not changed, as shown in the following lemma and its corollary. I

Lenma 8 If the current recovery state changes from R = [p..] to I' = [p..], R. # R',
when state interval a of process k becomes stable, then P'k = a.

Proof By contradiction. Suppose the new current recovery state has p'k k a. Since state interval

a of process k is not part of system state R!, all process state intervals in 1R' must have been stable I
before state interval a of process k became stable. Thus, system state R' must have been recoverable
before state interval a of process k became stable. By Lemma 3, the current recovery state of the
system never decreases, which leads to a contradiction, since R. 6 I was the current recovery
state of the system before state interval a of process k became stable. Thus, either I = I ' or

k . 0 3
963

I1
II

Corollary 3 When state interval a of process k becomes stable, if the initial call to
FINDREC by the recovery state algorithm returns false, then the current recovery

state of the system uRas not changed.

Proof By Lemma 8, if the current recovery state changes to R! = [p..], then PAk = o, but this
false return from FINDREC shows that no recoverable system state R' exists with P'k > a, such
that R -< R!. Thus, the current recovery state has not changed. 0

Associated with each state interval 0 of each process i that is in advance of the known current
recovery state is a set DEFERP, which records those stable process state intervals that have 0 in

I component i of their dependency vector. All DEFER sets are initialized to empty when the system
begins execution. Each process state interval for which FINDREC returns false when it becomes
stable is entered into at least one DEFER set. The algorithm uses these sets to limit its search

space for the new current recovery state.

If the initial call to FINDREC by the recovery state algorithm returns true, however, a new
greater recoverable system state has been found. Additional calls to FINDREC are used to search
for any other recoverable system states that exist and are greater than the one returned by this

3 first call to FINDREC. The algorithm uses a result of the following lemma to limit this search.

Lemma 9 Let R = [p..] be the current recovery state before state interval a of
process k becomes stable. Then for any stable state interval 0 of any process x such

that 0 > Pk k, no recoverable system state R! = [p' .] exists with p' > 9 if state interval
0 of process z is not related to state interval a of process k by the transitive closure of3 the stable dependency relation.

Proof Since state interval 0 of process z is in advance of the old current recovery state, it could

not be made part of any recoverable system state R! before state interval a of process k became
stable. If it is not related to state interval o of process k by the transitive closure of the stable3 dependency relation, then the fact that state interval a has become stable cannot affect this.

Let 6 be the maximum state interval index of process k that state interval 0 of process x is
related to by this transitive closure. Clearly, any recoverable system state R! = [p ..] that now
exists with P_ > 0 must have P'k > 6, by Definitions 9 and 4, and since no component of any

dependency vector decreases through execution of the process. If b > o,, then system state R' was
recoverable before state interval a became stable, which contradicts the assumption that 9 > Pk k.

Likewise, if 6 < a, then R! cannot exist now if it did not exist before state interval a of process
k became stable, since state interval 6 was stable before state interval a became stable. Since
both cases lead to a contradiction, no such recoverable system state R! can now exists without this

relation through the transitive closure. 0

3 The while loop of the recovery state algorithm uses the DEFER sets to traverse the transitive
closure of the stable dependency relation backward from state interval a of process k. Each state
interval 9 of some process x encountered on this traversal is related to state interval a of process

k by this transitive closure. That is, either state interval 9 of process z has a stable dependency

* 97

I
I

on state interval a of process k, or it has a stable dependency on some other process state interval

that is related to state interval a of process k by this transitive closure. The traversal uses the set

WORK to record those process state intervals from which the traversal must still be performed.

When WORK has been emptied, the new current recovery state has been found and is copied back

to CRS. I
During this traversal, any branch along which no more successful results from FINDREC can

be obtained is not traversed further. If the state interval 0 of process x that is being considered

is in advance of the maximum known recoverable system state, FINDREC is used to find a I
new recoverable system state in which process z has advanced at least to state interval 0. If no
recoverable state exists that meets this requirement, the traversal from this state interval is not

continued.

Lemma 10 If state interval / of process i is related to state interval 0 of process z

by the transitive closure of the stable dependency relation, and if no recoverable system I
state R = [p..] exists with p, >_ 0, then no recoverable system state R' [p.] exists

with p ii > 0.

Proof This follows directly from the definition of a stable dependency in Definition 9. If such a

recoverable system state R does not exist, no recoverable system state R.' can exist, since either 3
state interval / of process i has a stable dependency on state interval 0 of process z, or it has a

stable dependency on some other process state interval that is related to state interval 0 of process

z by this transitive closure. Thus, any such recoverable system state R! that exists must also have
p > _ 0. Therefore, no such recoverable system state R! can exist. 0

Theorem 3 If the recovery state algorithm is called each time some state interval or
of some process k becomes stable, it will always return with CRS[i] = pii, for all i,

where R! = p.] is the new current recovery state of the system.

Proof The theorem holds before any process state interval has become stable, since CRS[i] is

always initialized to 0 when process i is created. Likewise, when any new process i is created, it is
correctly added to the current recovery state by setting CRSi] = 0.

When some state interval a of some process k becomes stable, if the initial call to FINDREC 3
returns false, the current recovery state remains unchanged, by Corollary 3. In this case, the

recovery state algorithm leaves CRS unchanged.

If this call to FINDREC returns true, the current recovery state has advanced as a result of I
this new state interval becoming stable. Let R = [p..] be the old current recovery state of the

system before state interval o, of process k became stable, and let D = [b..] be the system state

returned by this call to FINDREC. Then R -4 D, by Lemma 7. D may be less than the new

current recovery state R', but since the set of recoverable system states forms a lattice, D -< R!.

The while loop of the recovery state algorithm thus searches forward in the lattice for the new I
current recovery state, without backtracking.

The while loop performs the backward traversal of the transitive closure of the stable depen-

dency relation, through the information in the DEFER sets. For each state interval 0 of each

98 3

I
I

process z examined by this loop, if no recoverable system state exists in which the state of process
z has advanced at least to interval 0, the loop does not traverse further from this state interval.

By Lemmas 9 and 10, the loop must consider all stable process state intervals for which a new
recoverable system state exists. Thus, when the traversal is complete and the loop exits, the last
recoverable system state found must be new current recovery state. The algorithm then copies this
to CRS. 03
3.3 An Example

S Figure 5 shows the execution of a system of three processes. Each process has been checkpointed in
its state interval 0, but no other checkpoints have been written. The three processes have received
a total of four input messages, but none of these has been logged yet. Thus, only state interval 0
for each process is stable, and the current recovery state of the system is composed of state interval
0 of each process. In the recovery state algorithm, CRS = (0, 0, 0), and all DEFER sets are empty.3 If message a now becomes logged, state interval 1 of process 1 becomes stable, with a depen-
dency vector of (1, 1, _L). The recovery state algorithm is executed and calls FINDREC with k = 1
and a = 1. FINDREC sets RV to (1,0,0) and MAX to (1, 1,0). Since MAX[2] > RV[2], a stable

state interval a > 1 of process 2 is required, but does not exist. FINDREC thus returns false.
The recovery state algorithm changes DEFER' to { (1, 1) }, and exits, leaving CRS = (0, 0, 0).

Now, if process 2 is checkpointed in state interval 2, this state interval becomes stable. Its
dependency vector is (0,2, 1). FINDREC sets RV to (0,2,0) and MAX to (0,2, 1). Since no state
interval a > 1 of process 3 is stable, FINDREC returns false. The recovery state algorithm sets

I DFFER' to 1(2,2) }, and exits, leaving CRS unchanged.
Finally, if message b becomes logged, state interval 1 of process 3 becomes stable, with depen-

U dency vector (1, 1, 1). FINDREC is called, and sets RV to (0, 0,1) and MAX to (0, 1, 1). Since
MAX[2] > RV[2], a stable state interval a > 1 of process 2 is required. Now, state interval 2 of
process 2 is stable and satisfies this. RV and MAX are then updated, yielding (0, 2, 1) for both.3 This system stame is thus consistent, and FINDREC returns true. The maximum known recov-
erable system state in NEWCRS is then increased to (0, 2, 1), and the WORK set is initialized forU

Process 1 0 1

a\ I

01 ' 2
Process 2 0 1 2

Process 3 0

3 Figure 5 An example system execution.

* 99

U

the loop. Since cover(3, 1) = {1}, WORK is set to DEFERI = { (2, 2) }. When state interval 2 of
process 2 is checked, it is not in advance of NEWCRS, and the call to FINDREC is skipped. The

DEFER sets identified in cover(2,2) = {2, 1} are added to WORK, giving { (1,1) }. State interval 11
of process 1 is then checked, and FINDREC is called. RV and MAX are both set to (1,2, 1), and
FINDREC returns true. DEFER' is added to WORK, since cover(l, 1) = {1}, but this leaves

WORK = 0, and the while loop thus terminates. The value left in NEWCRS = (1, 2, 1) is the

new current recovery state and is copied back to CRS.

This example illustrates a unique feature of our recovery state algorithm. Our algorithm uses 3
both logged messages and checkpoints in its search for the maximum recoverable system state.
Although only two of the four messages received during this execution of the system have been

logged, the current recovery state has advanced due to the checkpoint of process 2. In fact, these
two remaining messages need never be logged, since the current recovery state has advanced beyond

their receipt. 3
4 Related Work 3
A number of fault-tolerance methods using message logging and checkpointing have been published

in the literature. This includes ones using pessimistic logging protocols such as Auros [Borg83], 3
Publishing [Powe183I, and sender-based message logging [Johnson87], as well as optimistic meth-

ods [Strom85]. The model and recovery state algorithm presented in Sections 2 and 3 can be applied

to each of these and used to reason about their correctness. 1
Our model is more general than is requirsd by recovery methods using pessimistic hlessage

loggia.g, but the definitions of consistency, stability, and recoverability still apply, and the recovery 3
state algorithm still computes the correct current recovery state. In this case, the current recovery
state is identical to the state of the system at the time the failure occurred, since orphan processes

are not possible. Since message logging is synchronous, however, a simpler recovery state algorithm U
is possible that takes advantage of the order that information arrives on stable storage. In particu-

lar, checkpoints never add new information for the algorithm, since messages are always logged in

ascending order by the index of the state interval that they start in their receivers, and all messages

received before a checkpoint have already been logged before the checkpoint can be recorded.

Recovery using optimistic logging protocols requires the full generality of our model, however. 1
Since orphan processes are possible when using optimistic logging, recovery from a failure is more

difficult. Any orphan processes must be rolled back during recovery to achieve a consistent state.

Since there is no synchronization between message logging, checkpointing, and computation, infor-
mation for the recovery state algorithm may arrive on stable storage at any time and in any order.
Thus, the algorithm must be able to make use of all this information in order to find the maximum
possible recoverable system state at any time.

Our model is more general than that used for optimistic recovery by Strom and Yemini [Strom85,
since they require reliable delivery of messages between processes. As a result, their definition of
consistency differs from ours by requiring all messages sent to have been received. Our model does

not require reliable delivery, but this can be incorporated easily by inserting a return acknowledge- 3
100

U
U

ment message immediately following each message receipt. Our definition of consistency and our
I algorithm then remain unchanged.

Their algorithm requires each process to maintain a vector of its transitive dependencies, and
requires each message to be tagged with this vector, which has size proportional to the number
of processes. As each message is received, the process merges the dependency vector from the
message with its own local vector. Our algorithm only requires each process to maintain a vector
of its direct dependencies, and only requires the the current state interval index of the sending

process to be carried in each message. Their algorithm also requires each process to maintain a log
vector to record its knowledge of which messages in the system have been logged. This is achieved3 either by having each process periodically broadcast its vector, or by appending it to each message
sent. This requirement adds additional communication and complexity to the system that is not
required by our algorithm, although this does allow control of recovery in their system to be more

decentralized than in ours. Also, although their system checkpoints processes in order to shorten
recovery times and release old logged messages from stable storage, they do not take advantage
of these checkpoints in computing the current maximum recoverable system state. Our algorithm

uses both checkpoints and logged messages to compute the maximum recoverable system state, and
thus may find recoverable states that their algorithm does not.

5 Conclusion

U Recovery using optimistic message logging protocols constitutes a beneficial performance tradeoff in
operating environments where failures are rare and failure-free performance is of primary concern.

The recovery state algorithm of Section 3 represents an improvement on earlier work with recov-
ery using optimistic message logging by Strom and Yemini [Strom85]. Although their algorithm
eventually achieves a recoverable system state, this state may be less than the maximum possi-

ble. Furthermore, their method requires reliable communication and seems more complex than the
method presented- here.

This work unifies existing approaches to fault tolerance using message logging and checkpointing
published in the literature, including those using pessimistic message logging [Borg83, Powell83,
Johnson87] and those using optimistic methods [Strom85]. By using this model to :.ason about

these types of fault-tolerance methods, properties that are independent of the message logging
protocol used can be deduced and proven. We have shown that the set of system states that3 have occurred during any single execution of a system forms a lattice, with the sets (if consistent
and recoverable system states as sublattices. There is thus always a unique maximum recoverable
system state, called the current recovery state. The current recovery state never decreases, and if

all all messages received by processes in the system are eventually logged, the domino effect cannot
occur.

3 101

Acknowledgements

We would like to thank Rick Bubenik, John Carter, Matthias Felleisen, and Gerald Fowler for many
helpful discussions on this material and for their comments on earlier drafts of this paper.

References

[Borg83] Anita Borg, Jim Baumbach, and Sam Glazer. A message system supporting fault

tolerance. In Proceedings of the Ninth ACM Symposium on Operating Systems
Principles, pages 90-99. ACM, October 1983.

[Chandy85] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global
states of distributed systems. ACM Transactions on Computer Systems, 3(1):63-75,

February 1985.

[Johnson87] David B. Johnson and Willy Zwaenepoel. Sender-based message logging. In The

Seventeenth Annual Int 'rnational Symposium on Fault-Tolerant Computing: Digest
of Papers, pages 14-19. IEEE Computer Society, June 1987.

[Lamport78] Leslie Lamport. Time, docks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558-565, July 1.978.

[Lampson79] Butler W. Lampson and Howard E. Sturgis. Cr--!h recovery in a distributed data
storage system. Xerox Palo Alto Research Center, Palo Alto, California, April 1979.

[Powell83] Michael L. Powell and David L. Presotto. Publishing: A reliable broadcast com-
munication mechanism. In Proceedings of the Ninth A CM Symposium on Operating
Systems Principles, pages 100-109. ACM, October 1983.

[Randel175] Brian Randell. System structure for software fault tolerance. IEEE Transactions

on Software Engineering, sE-1(2):220-232, June 1975.

(Russell80] David L. Russell. State restoration in systems of communicating processes. IEEE
Transactions on Software Engineering, sE-6(2):183-194, March 1980.

[Strom85] Robert E. Strom and Shaula Yemini. Optimistic recovery in distributed systems.
ACM Transactions on Computer Systems, 3(3):204-226, August 1985.

102

