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g RESEARCH OVERVIEW

It has been an open question in electrical network theory whether it is
possible to synthesize a network with a prescribed natural frequency (in the
complex s-plane) out of a restricted class of components. It was possible to
say since the 1950s that no natural frequencies can be obtained in certain
parts of the s-plane, but not the converse, namely that at other points a
circuit can be devised. This question is of modern importance since the
components in question may be MOS transistors and RC lines, whose accurate
high-frequency models are complicated. It is important to know how fast a
rise time can be achieved, or at what frequencies unwanted oscillations might
occur. A set of necessary and sufficient bounds are now possible, in the
sense that every point in the s-plane can be easily discovered to be either a
frequency at which oscillation cannot occur with any possible combination of
components and ideal transformers, or else a point at which a circuit
consisting of a few such components and ideal transformers can be made to
oscillate. The inclusion of ideal transformers is necessary since otherwise
generally only a finite or countable number ',f natural frequencies can be
found.

Many new results have bEen derived for parallel algorithms and complexity.
One of the most astonishing is that a hypercube with a large number of faulty
nodes can be used, with high probability, as another perfectly functioning
hypercube of half the size, by using reconfiguration algorithms that are
simple, fast, and require only local information.

The design of a message-driven processor continues. It is now being realized
that many different highly parallel architectures require roughly the same
sort of processing node, one that can respond quickly (i.e., with low latency)
to messages that may require execution of a few (say about ten) instructions.
The processor being designed can be considered an experiment in unifying£ message-passing and shared-memory architectures.

The waveform bounding work is continuing at a slightly slower pace because
Prof. John Wyatt is at Caltech working with Carver Mead for the spring
semester. Nevertheless there is progress in two areas. New macromodels havebeen developed for ECL circuits, and a depth-interpolation vision chip has
been designed and submitted for fabrication.

5 The work on Schema is winding down, as students working directly on Schema
projects finish up. Prof. Richard Zippel, who was responsible for Schema, has
now left MIT. This project was very effective as a bridge among several
research faculty and students, and has in that sense served its purpose.

Two of the projects supported by this contract were reported at the recent
Conference on Advanced Research in VLSI, held at Stanford University, March
23-25, 1987. These are an analysis of multiprocessor communication networks,
and a technique for powering and communicating with an IC chip without having
any physical connections such as wires.
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THE WAVEFORM BOUNDING APPROACH TO TIMING ANALYSIS 3
The timing analyzer for ECL standard cell design, mentioned in the last
report, approaches completion. It will definitely be used as an in-house I
design tool by DEC if it works as we expect.

Gates in the ECL library are represented by macromodels. The macromodel
parameters must be chosen carefully so that the macromodel waveforms closely
resemble the output of computation-intensive SPICE simulations of the gates
when loaded by fanout to other gates through interconnect. The straightfor-
ward approach involves a lot of least-squares curve fitting with iterative U
variation of the macromcdel parameLeLs and is therefore also very computation-
intensive. In response to this problem, Peter O'Brien has cleverly reformula-
ted the macromodel so that the first two moments of the macromodel waveforms
can be calculated in advance in closed form. These explicit formulas are then
used in the parameter-fitting process, resulting in a dramatic savings in com-
puter time. It is possible that this type of macromodel will become more
widely used because of this advantage.

We have submitted CIF files to MOSIS for our other project, the design of an
analog depth-interpolation chip for computer vision applications. This first I
design was more of a technology-exploration effort than an attempt to produce
a useful product. The idea is to use a regular planar array of linear resis-
tors to rapidly interpolate a 2-D array of voltages that encode a (noisy and
incomplete) array of depth estimates for a 3-D scene. A fundamental problem I
in the initial approach is that any such linear interpolation scheme not only
smooths out noise and missing data, it also smooths over depth boundaries
where actual discontinuities occur in the scene. Through consultation with
Prof. Carver Mead at Caltech, we have found a way to synthesize a nonlinear
"resistor" with a characteristic of the form i = I x tanh(qv/kT). Such a
current-limited "resistor" appears linear for JvJ << kT/q, but supplies a
maximum current of magnitude I regardless of the potential drop across it. I
In our application it should smoothly interpolate small changes in depth, but
provide clear "breaks" at depth discontinuities. I

!
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HIGH PERFORMANCE CIRCUIT DESIGN

Maximum Frequency of Oscillation: We have now shown that the bounds on the
maximum frequency of oscillation of linear networks discussed in the last
progress report are tight. That is, not only can we say when a set of com-
ponents cannot produce a circuit which can oscillate, but we can now say that
unless we predict that it cannot oscillate, then a circuit can be found that
does oscillate. We have also developed a program on the Symbolics LISP
machine that will evaluate complex component models to see whether circuits
built of them can or cannot oscillate. This program has been tested on a
transistor small-signal model with about two dozen elements. A C version is
under development.

Modeling of magnetostatic couplers for CMOS VLSI chips: We have now demon-
strated inductive power coupling into a zero-pin chip. By the use of an on-
chip bridge rectifier, voltages up to 10 V dc and powers up to 1 mW have been
successfully coupled into a bulk CMOS chip using an HP 3312A function genera-3 tor driving an external coil.

£
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ARCHITECTURAL DESIGN

Prof. Leighton is continuing work on wafer-scale integration of systolic
arrays, parallel algorithms and architectures, and fault-tolerance. In the
area of wafer-scale integration, he and a student (John Burroughs) are
developing efficient algorithms for integrating 2-dimensional arrays on a I
wafer containing randomly located faults. The current work extends the theo-

retical work reported in the May, 1986 VLSI research review by developing and
coding algorithms for cell assignment and routing that work well experiment-
ally for arrays of sizes 5 x 5 to 100 x 100. This work will be described
in John Burrough's Bachelor's Thesis and a forthcoming technical report. It
is a nice example of good theoretical ideas and asymptotic proofs being
adapted to work experimentally on realistic problems. U
In the area of parallel algorithms and architectures, Prof. Leighton and Briic=
Maggs are developing efficient hash functions for many-one routing on a hyper-
cube. Although greedy algorithms have long been known to work well for one- I
one routing problems on the hypercube, many-one routing problems can be much
more difficult. In fact, if the destinations of the requests are not random-
ized, many-one routing problems can be intractable even if combining is I
allowed. In the present work, Leighton and Maggs are developing simple hash
functions for randomizing shared memory locations so that any many-one routing
problem can be efficiently solved by a greedy type of algorithm. Many-one
routing problems on the hypercube are important since they provide the basis I
for simulating a CRCW PRAM, a very general and powerful architecture-indepen-
dent model for parallel computation. One-one routing problems, on the other
hand, are only sufficient to simulate an EREW PRAM, a much weaker model ofl
parallel computation. The difficulty of many-one routing problems has been
observed in many contexts including the speed with which routing can be
performed on a Connection Machine. It is hoped that the present work will
lead to substantially improved routing algorithms.

Also in the area of parallel algcrithms and architectures, Prof. Leighton and
non-MIT coworkers have discovered very efficient ways of using the hypercube

to simulate special purpose architectures, without paying the usual overhead
due to routing. For example, it has long been known that an N-node hypercube
contains any N-node array of any dimension as a subgraph. Hence array-based
algorithms can be (and frequently are) directly implemented on a hypercube
without any overhead. Recently, Leighton et. al. have shown that any binary
tree can also be embedded in the hypercube. Binary tree structures are useful
in some numerical and parsing calculations as well as in the implementation of
some divide-and-conquer algorithms. In addition, Prof. Leighton has shown
that the powerful mesh of trees network is also a subgraph of the hypercube
and hence a large number of graph and matrix calculations can be directly
implemented on the hypercube. For example, the transitive closure of an I
N-node graph can now be computed on an N2-node hypercube in O(log2N) steps,

and two N x N matrices can be multiplied in 0(log N) steps on an N3-node
hypercube. Although not difficult, the embedding of the mesh of trees in the

hypercube is nonobvious, and it dramatically increases the ability of the
hypercube to perform special purpose calculations. I

U
I
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In the area of fault-tolerance, John Hastad, Prof. Leighton, and Mark Newman
are developing ways of reconfiguring a hypercube in the presence of a poten-
tially large number of randomly located faults. Thus far, the work has been
very promising. Among other things, Hastad, Leighton and Newman have shown
that with high probability, an N/2-node hypercube can be one-one embedded
into the live nodes of an N-node hypercube containing pN randomly located
faults (p < ) so that neighboring nodes of the N/2-node hypercube are
mapped to nodes at distance 3 or less apart in the N-node hypercube. Hence a
hypercube containing a very large number of randomly located faults has virtu-
ally the same computational power as a fully functioning hypercubel Moreover,
the algorithm for reconfiguring the hypercube is simple, fast, and works using3 only local control.

James K. Park has been working on a deterministic, on-line message-routing
algorithm for a variant of the fat-tree that uses only constant-sized
switches. This algorithm routes arbitrary message sets M in O(X(M) log 2n)
bit steps. The algorithm is interesting in that it uses the network both for
routing messages and for computing how much congestion there is in various
parts of the network. Charles Leiserson and James Park are currently revising
and simplifying the algorithm.

Tom Cormen continued his work on concentrator switch designs, showing that a
switch that c-nearsorts its incoming valid bits is an (n, m, 1 - E/m) par-
tial concentrator switch. Using this result, he designed multichip partial

concentrator switches based on two algorithms for sorting on a mesh. The
first, bised on Revsort (Schnorr and Shamir), is an (n, m, 1 - O(n3 4/m))
pirtial concentrator with at most 2v'" + L(lg n)/2J data pins per chip,
9('n) chips, and volume 9(n3/2 ) in which a message incurs 3 lg n + 0(1)
gate delays. The second switch, based on Columnsort (Leighton), is an
(n, m, 1 - 0(n2-21)) partial concentrator switch with 9(nO) data pins per
chip, e(n'-O) chips, and volume e(n'+P), for any Y < 0 < 1. A message
incurs 40 ig n + 0(l) gate delays in passing through this switch.

Cynthia Phillips and Charles Leiserson completed their development of a simple
parallel algorithm for contraction of n-node bounded-degree planar graphs
which solves the problem of region labeling in vision systems and leads to
algorithms to compute spanning trees and biconnected components of bounded-
degree planar graphs. The connected components algorithm runs in O(lg n)
randomized time on the restrictive exclusive-read exclusive-write PRAM model.
They are currently trying to extend these results to planar graphs of arbi-
trary degree. Phillips is trying to develop an O(lg n)-time parallel algo-
rithm for region labeling in n-voxel 3D images by exploiting the restrictive
topology and geometry of the spatial tesselation. She is also investigating
the use of randomized search techniques for fast, simple connected components
algorithms for general graphs.

Shlomo Kipnis, Joe Kilian, and Charles Leiserson have been investigating the
power of bussed interconnection schemes for realizing permutations among
chips. They established a correspondence between bussed permutation architec-
tures and difference covers for permutation sets. As an example, only r"

I
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pins per chip are needed to realize all cyclic shifts among n chips in one
clock cycle. Using point-to-point wires, n - 1 pins per chip are required.
They also show that 0(Fi) pins per chip suffice to realize any abelian group
of permutations, and any general group of permutations requires O(V'n Ig n)
pins per chip. Some other results include bussed interconnection schemes for
hypercubes (d + 1 pins per chip), shuffle-exchange graphs (3 pins per chip),
and d-dimensional meshes (d + 1 pins per chip).

Alex Ishii and Charles Leiserson have continued work on understanding the
timing of level-clocked synchronous circuits. For periodic clocking disci-
plines, they now have an efficient graph-theoretic algorithm for determining
whether a circuit operates properly.

Miller Maley is completing his Ph.D. on planar routing. He has provided a I
solid topological framework for understanding routing problems in geometric
terms, which has led to good algorithms for routing, routability testing, and
compaction with automatic jog introduction.

Andrew Goldberg has completed his Ph.D. on parallel and sequential algorithms
for graph problems. Among his recent results is a new algorithm (joint with
R. E. Tarjan of Princeton) for determining the minimum-cost flow in a network.
The algorithm is based on a new successive-approximation technique and is
theoretically the best algorithm to date for many instances of the problem.
Applications of mincost flow in VLSI include pad routing and optimally ter- I
minating interconnections. Its applications in the field of operations man-
agement are more extensive.

Paul Beame, Tom Leighton, and Charles Leiserson observed that a shuffle- n
exchange graph or a butterfly network on n nodes can simulate an n-node
hypercube with a slowdown of only O(lg lg n), instead of the usual O(lg n),
if the simulation is off-line and the hypercube uses only one dimension at a
time.

Serge Plotkin observed that the firing-squad problem, normally stated for a
linear array of finite automata, could be solved on an arbitrary bounded-
degree graph in time proportional to the diameter of the graph.

Andrew Goldberg and Serge Plotkin have been developing efficient parallel
algorithms for symmetry-breaking in sparse graphs of processors. The I
symmetry-breaking algorithms give efficient ways to convert probabilistic
algorithms to deterministic algorithms. Some of the techniques have been
applied to construct several efficient linear-processor algorithms for graph
problems, including an O(lg" n)-time algorithm for (A + 1)-coloring of

constant-degree graphs.

Philip Klein has developed, in collaboration with John Reif of Duke, an I
efficient parallel algorithm for planarity. On n-node graphs, the algorithm
works in O(log2 n) time using only n processors, in contrast to the
previous best algorithm which used about n3 processors to achieve the same
time bound. In October, 1986, he presented the research at the IEEE Symposium
for Foundations of Computer Science. He is currently working on representa-

I
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tions of directed graphs that permit reachability queries to be answered5 efficiently in parallel.

Paul Beame has been working on methods for proving lower bounds on the
resources needed by parallel computers in order to solve various computational
problems. He has extended the results of his previous joint work with Johan
Hastad in this area to include new graph-theoretic problems including finding
small cliques in graphs. He is also investigating the computational advan--
tages of concurrent-read memory access for parallel computers. Paul has
improved the running time of the best known parallel machine algorithms for
symmetry-breaking on bounded-degree graphs to O(log log* n). Also, with
Baruch Awerbuch, he has shown that for distributed computation there are
several infinite families of graphs for which known symmetry-breaking algo-
rithms are optimal.

I
3
I
I
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SYSTEMS

Message-Driven Processor 3
The natural grain size of many parallel algorithms is about 10 instructions.
To fully exploit the concurrency in such algorithms, we must be able to
efficiently execute tasks of this length. The message transmission and i
reception overhead of existing systems is in excess of 200 instruction times.
With such a large overhead, these systems must execute tasks at the arti-
ficially large grain size of about 1,000 instructions. If we can reduce the I
overhead and operate at the natural grain size, we can effectively apply 100
times as many processing elements to the problem.

The Message-Driven Processor (MDP) is a processing element for a fine-grain, I
message-passing concurrent computer. This 36-bit, tagged machine is being
designed as a single-chip processing element incorporating on-chip memory and
router. We are using the MDP as a vehicle for experimenting with methods of I
reducing processor latency on message reception. The current version of the
MDP can respond to an arriving message in less than 0.5 Vs as compared to the
300 us response time in the Intel iPSC. This low latency is achieved byproviding hardware for queuing messages and for dispatching instruction
sequences in response to message arrival.

The control mechanism of the MDP is driven by the arriving message stream.
The MDP dispatches control on the basis of messages arriving over the network
just as a conventional processor dispatches control on the basis of instruc-
tions fetched from memory. When a message is received by an MDP, a decision
is made in haraware to either queue the message (without slowing the executing I
task), or to interrupt current task and execute the message. If the message
is to be executed, control is immediately dispatched to the appropriate
instruction sequence and useful instructions are executed five clock cycles I
after message arrival.

To achieve a fast context switch, the MDP is a memory-based rather than
register-based machine. Only four user registers need be saved on a task
switch, and two register sets are provided so that the most common task
switches can be performed with no saving. The MDP can access its on-chip
memory in a single clock cycle, elbminating the need for a large register set.
Each MDP instruction may take one operand from memory. A small register set
is used to provide the remaining two operands since the cost of multi-porting
the memory is excessive. Many of the techniques used on uniprocessors to keep
data on chip (load/store instruction sets, register windows, stack caches, I
etc.) do not work well on a multicomputer where context switches happen every
10 instructions as opposed to every 25,000, where there is little LIFO alloca-
tion of stack frames. With the MDP we have found that a simple memory-based
instruction set operating out of a small on-chip memory supports the needs of
multicomputer programs.

The MDP is also an experiment in unifying shared-memory and message-passing I
parallel computers. Shared-memory machines provide a uniform global name

I
I
I
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space (address space) that allows processing elements to access data regard-
less of its location. Message-passing machines perform communication and
synchronization via node-to-node messages. These two concepts are not
mutually exclusive. The MDP provides a virtual addressing mechanism intended
" support a global name space while using an execution mechanism based on

message passing. While our plans are to program the machine using an actor
model of computation we provide mechanisms to efficiently support models
ranging from dataflow to communicating sequential processes.

5The MDP uses a memory architecture that allows both indexed and set-associa-
tive accesses to its on-chip memory. The set-associative mode is used by the
run-time system to provide virtual addressing, and to accelerate late-binding
method lookup. By building comparators into the column multiplexer of the on-
chip RAM, we are able to provide set-associative access with only a small
increase in the size of the RAM's peripheral circuitry. The MDP is the only
machine we are aware of that makes the address translation mechanism expli-
citly available to the programmer. In writing system code, we have found it
to be an extremely useful feature.

Over the past six mnnths we have constructed three register-transfer simula-
tors of the MDP. Each simulator marked a step in the evolution of the MDP to
its present form. A major step was the elimination of a large hard-wired
message set in favor of a single message type (execute) and the use of
instruction sequences to define more complex messages. Our simulations showed
that defining messages with instruction sequences required only one or two
additional clock cycles over the hard-wired approach. The added flexibility
and the simplification of the design resulting from a single message type more
than offset this small performance penalty. The flexibility is particularly
important in an experimental machine. For example, we can redefine system
messages such as 'SEND' or 'CALL' to add instrumentation. The addressing
mechanisms used to access instruction streams and message arguments have also
evolved through simulation and by coding many of the run-time system routines.
Layout studies for critical components of the MDP are currently under way.

Bidirectional Torus Router

The Bidirectional Torus Router (BTR) is a self-timed, multicomputer communica-
tion chip that we are using to experiment with techniques for improving the
performance of multicomputer communication networks.

One idea we are testing with the BTR is using virtual channels to multiplex
two logical communication networks on a single physical network. The BTR
provides two classes of communication, user and system, that have separate
buffers but share the same physical wires. The two networks are logically
completely separate. Our system software uses this separation to provide
priority service for critical messages. Also, if the user network becomes
congested (perhaps due to queue overflow in a processing node) we transmit
emergency messages on the system network to clear the problem.

We also plan to use the BTR to evaluate the use of:

I
p
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3
1. A Galois counter to reduce routing delay. The Galois counter can decrement
in a single gate delay as opposed to about 8 gate delays for a previous chip I
(TRC) using an integer counter.

2. A single wire request/acknowledge line to reduce pin count. 3
3. A distributed token-passing arbiter. This arbiter allows us to efficiently
multiplex two directions of communication on a single channel. As long as one
chip holds the token, it can use the channel without paying a round-trip delay I
to the other chip for arbitration.

4. A paLtitioned uata path rather than a crossbar switch to reduce router

area. I
During the past six months we have completed a revision of the BTR logic

design and have begun simulations to verify the design.

Performance of k-ary n-cube Interconnection Networks 3
We have studied the behavior of k-ary n-cube interconnection networks under
varying traffic using both simulation and queuing models. We have developed
an analytical model of latency as a function of offered traffic in unbuffered I
k-ary n-cube interconnection networks that agrees with network simulation
results to within 5%. Both simulation and analysis indicate that latency
grows slowly with offered traffic until a saturation point of about 50%
capacity. this result implies that the latency advantage of low-dimensional
k-ary n-cubes is not degraded by traffic as long as the network is operated
below the saturation point.

I
I
I
I
i
I
I
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FREQUENCY LIMITATIONS IN CIRCUITS COMPOSED OF LINEAR DEVICES
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Frequency Limitations in Circuits Composed of Linear Devices'
Lance A. Glasser

Department of Electrical Engineering and Computer Science
and the

Research Laboratory of Electronics
Massachusetts Institute of Technology, Room 36-880

Cambridge, Massachusetts 02139
(617) 253-4677

I Abstract: This paper investigates limitations on the frequency response of networks
constructed out of components specified by their small signal models. Tellegen's theorem is
used to find the maximum frequency of oscillation. A test on the complex non-Hermitian
matrix Y, based on the convexity of the numerical range, is developed to determine if
the quadratic form 0 = vHYv has a nonunique solution for v. We show that v = 0 isUunique iff YeiO + YHe -i8 is positive definite for some 0 E [0, 27r). Transistor and negative
resistance amplifier examples are developed.

I Introduction
The frequency limitations of a circuit are determined by the frequency characteristics of
its components and the cleverness with which those components are interconnected. It is
possible to discover limitations and bounds on the frequency response of a circuit based
only on the characteristics of the components. For instance, the natural frequencies (poles
and zeros of the admittance) of any one-port constructed only of linear passive resistors
and capacitors must lie on the negative real axis of the s-plane (w = 0 and a < 0,

where s = a + jw) [1]. In an example of more relevance today, we can examine a circuit
composed of incrementally active devices, such as transistors, and ask, what is the range of
natural frequencies achievable by linear time-invariant autonomous circuits built of these
components?

Figure la illustrates a simple model for a MOS transistor together, in Fig. 1b, with
the permitted natural frequencies of oscillation of networks constructed solely of theseIdevices.2 None of these networks, regardless how cleverly constructed, can have purely
sinusoidal natural frequencies of oscillation above Wmax. This example was adapted from
the work of Thornton [2, 3]. In Fig. 1b, R = 0 and the permitted and forbidden regions
are separated by the line

g- DWGgDCS (1)0 -- 4gDCas m

1 This research was supported by the Defense Advanced Research Projects AgencyIunder contract number N00014-80-C-0622.
2 For left-half-plane frequencies the natural frequencies of "oscillation" have voltage

solutions that decay exponentially with time.
|1
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The reason poles can lie on the jw axis without inductors is that the transistors can be used
to make gyrators which enable capacitors to emulate inductors. Note how the permitted
natural frequencies of oscillation in Fig. lb reduce to that of an RC network as gm goes I
to zero.

The natural frequencies of oscillation of a transistor are closely related to the frequen-
cies at which that transistor can be active. Mason was the first to develop a figure of merit S
for a transistor in a lossless reciprocal embedding, with his work on the unilateral gain of
a linear two port [4]. Later, Thornton published his work on the allowed natural frequen-
cies of active RC networks [5], relating it back to Mason's. Kuh and Desoer generalized
both works by expanding the class of networks considered and allowing nonreciprocal em-
beddings [6,7]. In this paper, the class of networks considered will be further expanded, I
systematized, and extended in a way suggestive of a simple computation to test a com-
plex frequency to determine whether or not it can be a natural frequency of a network
composed of any interconnection of components specified by their small signal models. A I
general statement of the problem is:

Given a set of linear components, taken in any multiplicity and
impedance scaled by any positive real number, what is the lowest si- I
nusoidal frequency, or more generally the largest region in the s-plane,
for which one can prove that connected networks built of these com-
ponents cannot sustain oscillation.

The first step is to reformulate the problem in terms of Tellegen's theorem [8] to achieve
increased generality. This makes it possible to express the problem in terms of any set of U
components S, characterized by their small signal models and interconnected by wire. This

generalization is important because the performance of most modern devices is dominated
by a complex network of parasitics. To neglect these parasitics is to be overly optimistic, I
such as in the case of Fig. 1 where the use of inductors can increase Wmax to oo. The
reason wmax can be increased without bound in this simple model is that all of the internal
capacitors are directly connected across external terminals and hence can be resonated I
out, at any desired frequency, with a parallel inductor. This clearly nonphysical prediction
occurs because the model used was excessively simple. Note that amx does not increase
because both inductors and capacitors absorb power for all time when excited with a
growing exponential voltage or current waveform (in this problem, w = 0 at amax).

The Tellegen formulation leads to a complex nonHermitian matrix Y(s) which cap-
tures the relevant frequency domain information. In this matrix, each type of component

need be represented only once. A simple test on Y(s) will then be presented which can dis-
cover whether or not nonzero voltage and current solutions are permitted at a frequency s.
From this we can discover regions of the s-plane where, independent of the circuit topology,
the network cannot oscillate. Since the synthesis problem is not addressed, one can not use
this theory to predict that all regions of the s-plane in which oscillation is permitted are
achievable with a realizable circuit. Thus these results have a fundamental limits flavor in
which one can say definitively what is forbidden but not what is necessarily realizable.

We have motivated this investigation with the goal of mapping out the s-plane into
forbidden and permitted regions. In the next three sections we will focus the discussion
on the subproblem of examining a specific point in the plane, so, and discovering whether

2
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or not it is in the forbidden region. In Section 5 (Examples) we again look at the 3-plane
as a whole but, instead of mapping it completely, we will parameterize it in terms of the
two points where the line separating the forbidden and permitted regions intersect the real
and imaginary axis: amax and Wmax.

32 Tellegen Formulation and the Conservation of Complex Power
One of the many special cases of Tellegen's theorem states that the inner product of branch
voltages v and branch currents i is zero. v is the column vector of Laplace transforms of
branch voltages and i is the column vector of Laplace transforms of branch currents, with
associated reference directions imposed. The branches are numbered. We have

n 0 = vH's)i(s), (2)

where xH is defined as the complex conjugate transpose of x. Equation (2) can be in-
terpreted as the conservation of complex power. The fact that two real quantities are
conserved in (2)-the physically intuitive conservation of real power and the more enig-
matic conservation of imaginary power-makes this problem somewhat nonstandard.

Tellegen's theorem for a network can also be expressed in terms of the port or terminal
voltages and currents of its subnetworks [9]. Let S = {h,..., .A X} be any set of linear£ multiports, not necessarily all of a size, characterized by an associated set of admittance
matrices Y!_ {Y 1(s),.. . ,YM (s)}. For each component k we have

I lk = YkVk. (3)

Let M be any network obtained by producing a connected network from the elements
of S and ideal wire, without violating the port assumptions of the admittance matrices.
Tellegen's theorem for .M states M

0* Vk (4)
k=1

or

= Ykv. (5)

It is helpful to rewrite (5) in block diagonal form

I 0 = x HYx, (6)

where
x 1(...VM) (7)

and

I 0 YM) (8)

3I
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Equation (6) is a quadratic form but note that Y is typically nonHermitian. A physical
interpretation of Y is shown in Fig. 2. The network it represents can be thought of as a
compound component containing one of each different subcomponent. By wiring its ports
one obtains a network .

In deference to the levcrage of integrated circuit technology, it is greatly desirable
to generalize the set of networks considered by the theory to networks which include, I
not just one, but any number of instantiations of the components from the set S. Let

{C1,..., CN} be any set of multiports characterized by admittance matrices that
are non-negative scalar multiples of matrices from the set /. Let )V be any connected
network obtained by interconnecting i,".., C N using using only ideal wire and ideal
transformers. Let a,..., aN E RN represent the non-negative admittance scaling factors I
on the admittance matrix from Y. Tellegen's theorem for )1 can be written

N

0= aix, (s)Ys)x (s). (9)

Equation (9) contains an explicit summation over compound component instantiations I
and an implicit sum of subcomponent types. The physical interpretation of (9) Is one of
multiple, admittance scaled, instantiations of the network in Fig. 2, wired together in an
arbitrary manner. Subcomponents which are not needed have their ports shorted. With
a change of variables, (9) may be rewritten

N3
0= Zw,( s)Ys)wi (s), (10)

where
wi(s) __i xi(s). (n)

3 Main Result
Limitations on the frequency behavior of .4 can be discovered by investigating the frequen- -
cies a at which (9) has nontrivial voltage solutions. No network ) can be constructed to
have a natural frequency so E C unless there is a nonzero voltage solution to (9). Using
this criterion we can divide the s-plane into forbidden and permitted regions; see Fig. lb. I

It is desirable to have a simple test on the set of admittance matrices Y which tells
whether so is in the permitted or forbidden region. If Y was Hermitian (or even antiHer-
mitian) then testing to see if (6), a special case of (9), has a nonzero solution v would
be straightforward. If Y is either positive- or negative-definite then no nontrivial solu-
tions exist. Standard tests for definiteness include looking at the eigenvalues, pivots, or
subdeterminates of Y [10].

We can examine necessary conditions for (6) to have a solution by looking separately
at the Hermitian and antiHermitian parts of (6). Let

YH (y + yH) (12)

4
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I andan 
YAH (Y -yH), 

(13)
I2

Iwhere YH is the Hermitian part of Y and YAH is the antiHermitian part. Testing these
parts separately, however, generates an overly optimistic prediction of the size of the
permitted region because, for instance, when looking at YH we are allowing v H YAHV to
take on any (imaginary) value. Said another way, if Vh is the solution set to 0 = VHYHVh,
excluding vh = 0, and Vah the solution set to 0 = VahYAHVah, excluding Vah = 0, the3solution set to (6) is the intersection of Vh and V"h, which can easily be empty even
when V! and 'Vh are nonempty. In (6) we are looking for simultaneous solutions to two
quadratic forms.

While definite tests on the Hermitian part of Y is not quite what we want to do, it is
close. The following theorem is the basis for a simple method of computing the boundary

I separating the forbidden and permitted regions.

Theorem 1 (Main result)

Let Y '= {Y 1 (s),...,YM(s)} be any finite set of admittance matrices (not necessarily ofU the same size). Let Z1, ... , N be any set of linear multiports characterized by admittance
matrices that are non-negative scalar multiples of matrices from the set Y; i.e., for each
i E {1, ... , N} the admittance matrix of Ci is of the form ajYk(s) for some k E {1, ... , M},

where aj E R is non-negative. Define Y(s) t diag{Yl(s),...,YM(s)}. Let R be any
connected network obtained by interconnecting L 1, ... , £ N using only ideal (multiwinding)
transformers and ideal connecting wire, and so E C be any complex frequency not a pole
or zero of Y(s). If

(0, so) 2(4

is positive definite for some 0 E [0, 27r), then so is not a natural frequency of N. If A(O, so)
is not positive definite for any 0 E [0, 27r) then there exists a nonzero voltage solution

S(SO),-..-, N (So) to the Tellegen statement of conservation of complex power

0 axf (so)Y(so)x (so). (9)

Note that the relatively straightforward test described above suffices to demonstrate
that so is not a natural frequency of a remarkably large class of networks: the class of all
networks made of interconnections of any number of multiports described by admittance
matrices in the set Y, or positive scalar multiples of admittance matrices in Y. There isU no requirement that N < M, i.e., the number of elements in the network is unlimited.

A restatement of Theorem 1 is more suggestive of an algorithm: If Yk(so)e'9 +
YH'(jo)e-je, the Hermitian part of each phase-shifted subcomponent admittance matrix,

I is positive definite for all Yk(so) E Y at the same 0 then no network made from the el-
ements of Y, taken in any multiplicity and admittance scaled by any non-negative real
number, can have a natural frequency so E C.

1 5
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4 Proof of Main Result I
The proof of Theorem 1 rests on Proposition 1 below, which is a special case of Theorem 1.

Proposition 1 
Let Zi,..., £M be linear multiports characterized by matrices Yj(s),...,YM(), respec-
tively. Let .M be any network created by interconnecting L LM using only ideal
(multiwinding) transformers and ideal connecting wire. Define

Y(s) _ diag{Yj(s),...,YM(s)} (8) 1
and

A(O,so) (Y(so)ej' +y H (so)Iei) (14)

as before. For a complex frequency 8o, not a pole or zero of Y(s), so is not a natural
frequency of .M if A(O, so) is positive definite for some 0 E [0, 27r). I

Note that the assumptions of Proposition 1 are more restrictive than those of The-
orem 1 in that the network elements of .M are precisely those with admittance matrices
Yj(s),...,YM(s). .M contains exactly one element with admittance matrix Yi(s), one
element with admittance matrix Y 2 (s), etc. The proof of Proposition 1 rests on Lemma 1
below.

Lemma 1
Let B E C.x be any complex matrix. The solution v = 0 of I

0 = vHBv (15)

is unique if0

A(O) = 1. (Bey* + BHe-i) (16) 1
is positive definite for some 0 E [0, 27r).

The proof of Lemma 1 rests on the definitions and facts below. 1
Definition 1

The numerical range of a complex matrix B E C" is the set W(B) of all complex
numbers of the form xHBx, where x varies over all vectors on the unit sphere, xHx = 1

[11-141.

Figure 3a illustrates a possible numerical range for Y. This case is an example of I
a situation in which the Hermitian and antiHermitian parts of Y test as indefinite yet
0 W(Y). In the figure, AminH and Ama.H represent the smallest and largest eigenvalues I
of YH and AminAH and AmaAH represent the smallest and largest eigenvalues of YAH,

respectively. Fig. 3b illustrates a rotation of Y which causes A(O) to test positive definite.
Definition 2 1

A subset 9 E C is said to be convex if for A E R, (1 - A)z + AY E 9 whenever z E 9,
yE 9, and 0< A < 1.

6 I
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3 Fact I

The Toeplitz-Hausdorff theorem states the remarkable fact that the numerical range of a
matrix is always convex [15].

Lemma 1 rests on Lemmas 2 and 3 below.
Lemma 2

Let B E C "xn be any complex matrix. The solution v = 0 of 0 = vHBv is unique iff
0 0 W(B).

Proof of Lemma 2
Let [avII 2 denote the L 2 inner product vHv and let S denote the unit sphere in C ' , i.e.,
S = {v E C' I =lvJJ = 1}. Clearly (15) has a nonzero solution '" iff (15) has a solution

v = /I['li lying in S. Since v = 0 is always a solution to (15), it is unique iff 0 0 W(B).
I

3 Lemma 3
A closed convex set K in the complex plane does not contain the origin iff there exists a
rotation about the origin that carries all of K into the the open right-half-plane.

Discussion of Lemma 3
This Lemma is obvious but the interested reader could construct a proof by noting that
two closed convex sets, in our case K and the origin, containing no points in common
must lie on opposite sides of a separating hyperplane (in this case a straight line) [16]. To
show that a rotation about the origin carries all of K into the open right-half-plane it isI sufficient to show that there exists a rotation which brings the line into the open right half
plane, parallel to the imaginary axis, with the origin (which hasn't moved) on one side and
K on the other.3 Proof of Lemma I
By Lemma 2, (15) has a nonzero solution v E C' iff 0 E W(B). Equivalently, 0 4 W(B)
iff W(Beie) is a subset of the open right-half plane for some 0 E [0, 27r), by Lemma 3. Let

D ! BeG and A ! (D + DH)/2 be the Hermitian part of D. For any matrix D E C" '",
W(A) is the projection onto the real axis of W(D). The trivial solution to (15) is unique

I iff W(A, 0) is contained in the strictly positive reals, i.e., iff A(0) is positive definite for
some 0 E [0,27r). I

Proof of Proposition 1
Proposition follows directly from Lemma 1 and Tellegen's Theorem, where we have iden-
tified the block diagonal matrix Y(s) of (6) with the matrix B of Lemma 1. I

The generalization of Proposition 1 to Theorem 1 requires the fact below.
Fact 2I Define B E C 'x' as the block diagonal matrix B = diag(Bl,...,BN) where {BI,...,BN}

is a set of complex square matrices. W(B) is the convex hull of the set of numerical ranges
{W(Bl),...,W(BN)} [151.
Z Note that W(B) represents the numerical range of the sum of quadratic forms

" xBixi where E JJxiJJI - 1. Clearly, for any complex matrix, W(diag(B, ..., B)) =
W(B).

I
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Proof of Theoremi I
From Tellegen's Theorem, no network NA can have a natural frequency so if (9) has a unique
solution X1 , ... ,XN = 0. With a change of variable, (9) has a unique solution at the origin
iff (10) has a unique solution at the origin (unless all of the admittance scaling factors aI
are zero, in which case there is no network). From Lemma 1, (10) has a nonzero solution
iff 0 E W(diag(Y,...,Y)), but from Fact 2, W(diag(Y,...,Y)) = W(Y). The remainder
the the proof follows in the same manner as the proof of Proposition 1. I

Further insight into this theorem may be gained by looking at the Hermitian parts of

the rotated admittance matrices in Y. Let 4 i {A,..., AM} be a finite set of Hermitian
matrices in one to one correspondence with the admittance matrices in Y. Let I

Ak (0, SO) ~ (Ykeie + k~e~ (17)
2W

for all Yk E _U. Let § E [0, 27r) be a rotation for which A(6, so) is positive definite. By

Lemmas 1 and 2, W(Yej8 ) lies entirely in the right half plane and by Fact 2 each W(Yiej§)

also lies in the right half plane for all Yi E Y . Therefore each Ak(i, so) is positive definite
for all Ak E .A. Thus all subcomponents used in )1 (those in which ai > 0) result in a
strictly positive real contribution to the sum F ajx9Ax unless their port voltages are 5
zero. The only way for this sum to equal zero, as it must by Tellegen's Theorem, is if all
port voltages are zero.

It is worth observing that the first half of the Theorem-the part which details a I
sufficient test to prove that so is not a naturally frequency of V----can trivially be derived
from (6) by multiplying each side of the equality by exp(j) and taking the real part. It is
the second half of the theorem-the part that states that if a 0 cannot be found to make !
A(8, So) positive definite then a nonzero voltage solution for (9) exists-that requires the
convexity of the numerical range. In other words, this paper is concerned with investigating
limits no less strict than those which arise from the conservation of real and imaginary U
power.

When solutions to (6) are found at the same s that Y is singular, further inspection of
the result is required. When Y is singular, voltage solutions v can be sustained with zero
current. These solutions, in which no real or reactive power flow through the network, are
generally of little interest from the standpoint of this work. For the same reason, when
formulating Y, the definite form of the admittance matrix must be used.

5 Examples 3
In this section we will go through three examples to illustrate the scope and utility of
the theory. The first example is a negative-resistance reflection amplifier constructed from

the three elements illustrated in Fig. 4. Figure 4a shows a negative resistance device with I
capacitive and resistive parasitics. This problem is best formulated in terms of impedances
rather than admittances. The impedance of the amplifier is 5

Zp (S) = Rs + SC - G(1

8
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Fig. 4b illustrates the inductors available to tune out the reactance of Zamp. The inductors

have a parasitic series resistance RL, where WL = RL/L is a constant of the technology.
We have

ZL(S) = RL + sL = ( L + s)L. (19)

The third element type we have in the circuit, also illustrated in Fig. 4b, is the passive
resistor: ZR(S) = RR. The Z matrix for S is

0 0
=ZL 0 (20)0 0 Z

Since Z is diagonal, the eigenvalues appear on the diagonal and the eigenvectors are or-U thogonal. Solving for W(Z),

W(Z) = Z.MplIIX,112 + ZLiix2112 + ZRljx3 112, (21)

where

if ixi112 + 1X2 112 + 11X2 112 = 1 - 1. (22)

x 1 , x 2, and x 3 are the eigenvectors of Z. Figure 5a illustrates the numerical range of Z.
The dashed lines indicate how Zamp and ZL move with increasing w (a = 0). After some
algebra, one findsI

1 C G _G2-WLC
RS (23)

This solution is found at all(9) = a2 2 (0) = 0. In general, det A(O) can be represented
Sas a Fourier series with frequency components from -N to N where N is the rank of A.

Computational advantage can be gained by also noting that

* M
detA = 1 detA,. (24)

m k=l1

With RL = 0, (26) reduces to the more optimistic expression for Wmax one would obtain by
I simply examining the Hermitian part of Z. With the element values of Table 1, Wmax = 2

is predicted if complex power is conserved, but wm,. = 3 is predicted if only real power is
conserved (i.e., looking at only the Hermitian part of Z or only 0 = 0).! 9
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element realistic ideal units 1
inductor inductor

RS 0.1 0.1 n
G 1 1 0-
C 1 1 F
RL 0.5 0 fl I
L 1 1 H
RR 1 1 0

WL 0.5 0 s- I
Wmax 2 3 s--

Table 1 

The numerical range of A(9) is real; it is illustrated in Fig. 5b for w = 2.5. It lies between
the minimum and maximum eigenvalues; 3

Zamp je

Amin(A) = inf Re ZLej8 (25) 3
ZRe.'

and

Amax(A) = sup Re ZLeC' (26)
ZReje

Note that Amin(A(O)) can contain local maxima and points at which the derivative with
respect to 0 is undefined.

The second example we consider is interconnections of the three-terminal MOS tran-
sistor illustrated in Fig. la. For this circuit, 5

Y = .C+ (27)

Note that the use of the source node as the datum does not imply any restriction to
common source configurations. A datum must be chosen so that a definite admittance I
matrix can be developed. An indefinite admittance matrix would always admit nonzero v
solutions since an arbitrary constant could be added to all node voltages. Note that the
numerical range of any 2 x 2 matrix is a closed elliptical disk with foci at the eigenvalues.

To aid our pursuit of closed-form solutions, we separate Y into Hermitian and anti-
Hermitian parts. Rewriting A(8), 5

A(O) = cos0 (YH + ."YAH tan 0). (28)

10 IOI
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UFor our purposes, the cos 0 scaling factor on A(O) is inconsequential and may be neglected.
Solutions for A at cos 0 = 0 are generally not of interest because this would imply that
the conservation of real power was unimportant. We define

11 A'(6) = (yH + j 6 YAH), (29)

where 6 = tan 0. Fcr j = a we obtain

( 2,C (1+ j6) A(0

Al-b) 29D (30)

and for s = jw we obtain

R( 2W2c2R+2wC6 (l+jb) M
A =+(wRC) 2 - ( 1Wc (31)

A 2( (I - 1+RC 2gD

Since a' 2 > 0, the determinant test for positive definiteness only requires examining the
detA'. Note that this was not the case in the reflection amplifier example. detA' is
quadratic in 6. Solving for detA' = 0 (the frequency at which A' becomes positive definite)

leads to

-I ± V/I + (+62)g ,2

Iand Lamax =R -1D 
(32)

-6 2 + 9 9D (1+62)
amax = 2RC (34)

ama 2RC D(4

and

2 2 g2  1/2 (5

29DC =D ) (33

Unlike in the reflection amplifier case, decomposing Yv into its eigenvalues and eigen-

vectors is unproductive because the eigenvectors are nonorthogonal. The only useable3 structure we have is that W(Y) contains the spectrum of Y.
The third example is an extension of the last. Here, realistic parasitics and a body

terminal are added to the model of Fig. la. The new model, which still does not take into

11
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account distributed effects or source and drdin resistances, is shown in Fig. 6. Since the I
simple model of Fig. la is a special case of the model of Fig. 6, the two can be compared.

Parameter Fig. la Fig. 6 Trivial Units m

9,, 7 x 10- 4  7 x 10- 4  7 x 10- 4  n- I

gmb 0 2 x 10- 5  0 f-1
CGS io-14 10- 14 F
CUD 0 3 x 10- '5  0 F
CBS 0 6 X 10- '5 0 F
CBD 0 6 X 10- 15  0 F
CGB 0 10 - 15  0 F

gD 8 X I0- 5 8 x I0 - 1 0 -1m

RG 1000 1000 0
Wmax 1.14 X 1011 2.95 X 1010 8
amax 8.34 X 1010 1.91 X 1010 00 8- 1

fmax = Wmax/27r 18.1 4.69 00 GHz
fT 11.1 7.95 11.1 GHz 3

Table 2
Table 2 gives the parameter values for the simplified (Fig. la) and full (Fig. 6) models.

The parameter values are typical of MOSFETs found in VLSI circuits. The Fig. 6 values of
amax and Wmax were obtained by computer. Note the large differences in speed predicted
by the two models. For comparison, the transition frequencies fT of the two cases are also 3
given. fT is the frequency at which the magnitude of the output short-circuit common-
source current gain drops to 1. The fT is •

27rfT = CGS + CGD + CGB (36)

Note, however, that the fT of a transistor, while of proven usefulness, is not fundamental I
in the sense that Wmax is fundamental, since it assumes a topology. This is why the series
gate resistor RG does not appear in (36) despite its obvious importance to most practical 5
circuits. The shortcomings of fT are accentuated in the fourth column of Table 2. While
the fT is finite, the maximum frequency of oscillation is infinite. A circuit which can realize
current gain at any frequency is illustrated in Fig. 7. The trick to this circuit is that the
gate capacitances are added in series while the drain currents are added in parallel. By
using many transistors one can make the effective fT as high as desired. The fourth column
represents an exceptional case. More often, as in column three, the fT is too optimistic a $
predictor of circuit performance.

Since Wmax includes the effects of all parasitics, I believe that it will find great utility
in the comparison and development of competing technologies-e.g., GaAs MOSFETs and I
Si bipolar transistors.

I
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Figures 1
1 Simple small signal model of a MOS transistor (a) and the permitted and forbid-

den natural frequencies (b) of networks built out of resistors, capacitors, and these
transistors (R = 0).

2 The collection of n-port components which comprise S, the basic building block used
to construct the circuits )1 considered in the analysis.

3 The numerical range of Y. In (a) the Hermitian and antiHermitian parts of Y are
indefinite yet zero is not in the numerical range. In the rotated version (b) the
Hermitian part of Y is positive definite.

4 A negative resistance amplifier (a) and other permitted components (b).
5 The evolution of the numerical range of the circuitry in Fig. 4 as w increases (a) and

the numerical range of A(8) (b).
6 A first-order MOS transistor model.
7 A circuit to increase the effective fT of a transistor. The trick to this circuit is that 3

the capacitances are added in series while the currents are added in parallel.
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* Abstract

I Many of the failure mechanisms which cause reliability problems in VLSI chips

can be influenced or avoided in the circuit design phase. RELIC is a

reliability simulator developed to analyze and predict the stress and wear on

MOS VLSI chips due to such mechanisms. RELIC uses a simple methodology for

abstracting the idea of the stress from any particular failure mechanism, thus
allowing analyses of many different failure mechanisms. There are currently

three failure mechanisms analyzed by RELIC: metal migration, hot-electron

I trapping, and time-dependent dielectric breakdown (TDDB).
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RELIC: A RELIABILITY SIMULATOR FOR INTEGRATED CIRCUITS

Teresa S. Hohol
Lance A. Classer

Department oif Electrical Engineering and Computer Science
Research Laboratory of Electronics

Massachusett., Institute of Technology
Cambridge. MA. 02139

ABSTRACT* model from a combination of theory and experimental re-
sults.

Many of the failure mechanisms which cause reliability While the simulation of failure mechanisms has been
problems in VLSI chips can be influenced or avoided in proposed previously, there are two major differences be-
the circuit design phase. RELIC is a reliability simula- tween earlier simulators and RELIC. First, RELIC calcu-
tor developed to analyze and predict the stress and wear lates stress and wear based on actual dynamic voltages
on MOS VLSI chips due to such mechanisms. RELIC and currents determined by circuit simulation, and not
u7I-, a simple methodology for abstracting the idea of on the basis of worst-case static operating conditions. In
the stre ,s from any particular failure mechanism, this addition. RELIC is the first reliability simulator to run
al!uwiiug analyses of rnany different failurv mcchanisms. failure tests for sever.l mechanisms. RELIC providef a
There are currefitly three failure mechanisms analyzed by structure in which existing models may be easily changed,
RELIC: metal migration, hot electron trapping. and time and new models implemented with moderate effort. This
dependent dielectric breakdown (TDDB). is accomplished by the use of a simple methodology for

handling the stress and wear causpd by many different
failure mechanisms.

1. Introduction 2. Stress and Wear

One of the unifying concepts used in RELIC is thatRELIC is a reliability simulator developed to analyze when a device accumulates a certain amount of stressIthe stress and wear on MOS VLSI chips. RELIC is de- over time {wear), it fails. This stress may be in the form

signed to help the circuit designer develop competitive of trapped charge in the gate oxide causing breakdown
and reliable chips with minimal extra effort. By using (TDDppe or in the gae oxidetra using rehown
RELIC, chip designers can design, not only for worst-case DDB), or in the form of a transistor threshold shift
speed and power Glasser 85 but also for worst-case reli- causing circuit malfunction. Regardless of which partic-
speedIan pEr s but as fwrtca e ular failure phenomena is being testing, we can abstractIability. RELIC is not built around any particular failure the idea of stress, and determine the MTTF of the device
phenomena or model; rather, RELIC exists as a system the a of stress and irit cniguaton ae .
in which many failure mechanisms can be simulated and on the basis of stress and circuit configuration alone.
new models easily implemented. RELIC predicts the reliability of the circuit by first cal-

RELIC simulates those failure mechanisms which are culating the wear which each circuit device experiences
under the control, or at least the influence, of the circuit over one normal cycle of operation. We define a normal
designer. For such failure mechanisms, there exist models cycle of operation to be the time it takes to run the cir-

which relate the median time to failure (MTTF) of the cuitry through one routine of whatever it does. The wear
device to the operating voltages and currents of the cir- w on each device is calculated as the integral of stress .9

cuit and the actual layout of the chip. RELIC employs a over time.
circuit simulator so that the voltages and currents used t _ .

in stress calculations are worst-case operating waveforms W(t)E s(t)dt. (1)
and not just the maximum voltages or currents. We assume a deterministic point of view which says that

The idea of reliability simulation is not a new one and the amount of wear a device can stand until it fails is
software tools have been proposed to check circuit designs the critical value of wear w(Trtil). w(Trail) is a random
for certain reliability hazards, such as metal migration or variable with a mean and variance which must be deter-
hot electrons. A simulator to determine metal migration mined from tests on fabricated devices. The critical value
was described by Kokkonen IKokkonen 841. Substrate of wear may also depend on how and where a device is
current circuit simulators have been described by Sing used in a circuit. For example, the amount of hot electron
ISing 80 and Sakurai [Sakurai 851, from which predic- stress a device can endure without failure depends on its
tions about hot electron trapping can be made. Another position and function in the overall circuit.
hot electron simulator has been proposed by C. T. Sah

Iversen 861 who is currently developing a hot electron Once we know the critical value of wear (distribution)
and the stress rate, we can find the time-to-failure, Ttai,
where_ _

Support for this research was provided by the Defense wr(Tfail)
Advanced Research Projects Agency of the Department Tf= , (2)
of Defense under contract number N00014-80-C-0622. )
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I
and where the average stress is system to fail. Given an independent system, PsNwork is I

equal to the product of the probabilities that each device
is working. Thus, Psyftjj is found to be

f w(Tf~,) (3) = I - [j(i - Pf..,i). (7)

T .i (tU * I I

In addition, if all of the individual probabilities for de-
vice failure are small, and the cross products of (7) even

Note that we are making the assumption that the stress smaller, we may then use what is known as the Rare Event
rate, as determined tor one normal cycle. hill remain con- ApproIimation. Uing this approximation, the probahil-
Idlrt for the life of the circuit. ity of system failure becomes the linear sum of the indi-

Another important assumption here is that the stress, v'idual failure probabilities for each device. That is,
s, is of the form IPjyjftaii - E Ptai,. (8)

s(t) A(t)e6E (4) '

Note that this only works if there are a small number of

where A(t), b, and E, are quantities whose form varies devices ndev such that ndev < I
for each failure model. E is a/ssumed to be approximately
constant over time. These assumptions for are valid 3. System Structure and bmplementation
because the phenomena which we are considering all have
exponential character in energy space. (See example of
metal migration model later.) Given the fact that stress
s depends exponentially on E, if E is a normal random MediflI
variable then s is a log-normal variable. Po i iiJ.A Pi-XLI

Substituting (3) and (4) into (2), and taking the log of PREL
both sides, we then have

ln~t~i lnwTrai) -In ~ J~..~Figure 1. Structure of the RELIC SystemIn Trfi = In w(Traii) - In A(t)e brdt ()

The RELIC simulator consists of three parts: a pre-
processor, a modified circuit simulator, and a post pro-
cessor, as illustrated in Fig 1. We use the circuit simula-

which reduces to tor both to simulate the circuit to determine voltage and I
current waveforms and to calculate device stress based onthese conditions. The simulator in this implementation is

In Tf:li = In w(Tr3 i1 ) - In:A)O'E. (6) RELAX2.2 from the University of California at Berkeley
n'White 85j. What we have done, basically, is to introduce

into RELAX some new device models, one for each failure
mechanism we are simulating.

Therefore, because E was a normal random variable, and
s was consequently log-normal, then Trail, which depends !3
inversely on s also has a log-normal probability distri-
bution. RELIC assumes log-normal distributions for all 4000 N IABIL WEoo0.
failure mechanisms. IUAIT FSA I OOTI

This generalized model of stress is applicable for all SrucRl
of the failure models which are currently implemented in _T-
RELIC. A, b, and E can be determined from model and
circuit parameters and circuit simulation. The critical CALcutM I J"  J"
wear value u;(Tf.,i) must be determined experimentally mom _Ao _a I I&i
and, as mentioned earlier, could depend on a device's lo-
cation and function in tfie circuit. Figure 2. Reliability Test Structures

Once RELIC has computed the time-to-failure distri-
bution for each device, it then combines the distributions
for each device to obtain the total failure distribution for These new models, which I shall refer to as reliabil-
the entire circuit. Using the assumption that the failure ity tut structures are connected to the circuit nodes of
of one device has no effect on the probability of failure of the device undergoing testing to measure its voltages and
any other device, we then treat the failure probabilities currents, and from these operating conditions, along with
as being independent. Given that, then the probability the device size and processing parameters, calculate the
of system failure Py,(,ii is Psylfail = 1 - Psyework, where instantaneous stress on that device [Fig 2[ . Besides sens-
Psywork is the probability that the system has not failed. ing the circuit operating conditions, test structures also
Assume that one device failure is enough to cause the employ circuit nodes connected to various configurations
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I
of resistors and capacitors to calculate intermediate quan- the instantaneous stress calculated by the metal migra-
tities. A final node, the wear node, is used to output the tion equations and, therefore, the voltage on N4' is pro-
accumulated stress. This node is connected to a grounded portional to the amount of metal migration stress on the
capacitor and input a current proportional to the instan- wire.
taneous stress, so that the voltage across this node repre-
sents the total wear incurred. The stress on the wire due to metal migration is roughly

The RE!!IC preprocessor, PREL, takes an input file
which describes the circuit according to REL.AX s)ntax. .(t) .4J 2 (t)e1. (9)
This input file rnu'i also contain some RELIC command- w here .1 ib related to the wire's ph. sica! -izz. J is the cur-
indicating hich devices to test. and for %%hich tailur 'ent m en 'sity thru is the re, tempivation rne.

eclnisms. mk i oltzmans contar ard is the wire temperature.

propriate reliability tst structlres For each device uider- Note that this is consistent with our assumption earlier

going testing. PREL also instructs the circuit simulator that the stress in our models was exponential it ener,,

to output the voltage waveform for the new wear node. space. This is also true in the hot electron and TDDI

This new circuit configuration is then simulated by the tnodels. Details on all of the equation-, and paracteter_-

circuit simulator for one normal cycle of operation and used in RELIC can he found in Hohol *6

the wear incurred for this cycle is output. Finally, the The hot electron and TDDB models are implemented
RELIC postprocessor must compare this device wear in- in basically the same way as the metal migration model.
formation with critical failure wear data to determine the Both of these reliability test structures have sensing nodes
time-to-failure of individual devices and the MTTF for which connect in parallel to the source, gate, drain, and
the entire circuit. The postprocessor is currently under bulk nodes of the transistor being tested. Because these
development at the time of this writing, test structures are inserted in parallel with the circuit
4. Failure Models device being tested, the user does not have to specify

additional nodes in the circuit (unlike the wire model.

The current implementation of RELIC contains mod- which is inserted serially and requires two nodes instead
els for metal migration Kokkonen 84., hot electron trap- of one).
ping Hsu 82 , and time dependent dielectric breakdown
Chen 85;. Presented here are the salient features of the 5. Results: An Example

metal migration model. which incorporates the effects of
IR heating, thermal capacitance, and thermal resistance. sv
The wire stress depends on t" wire temperature and cur- lout
rent waveforms. I10/60
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t- "- -.. Figure 4. IBM Bootstrapped Superbuffer. Stressed

Figure 3. Implementation of the Wire Mtodel RELIC was used to analyze one version of an IBM

Bootstrapped Superbuffer, shown in Fig 4. This cir-
cuit uses two stages of bootstrapping to in order to drive

The wire model is a 4-node reliability test structure. a large capacitive load. However, the result of this dou-
Two of the nodes, .VI and N2, represent the ends of the ble bootstrapping is a large amount of hot electron and
wire and are connected to the circuit nodes on either end TDDB stress on transistor Mi.
of the wire. (This feature is not well-supported by layout
extractors, which consider a wire to be one node in the
circuit; consequently, the locations of all wires the user
wishes to simulate must be identified in the PREL input -

file.) RELIC models the electrical behavior of the wire
as a pi model, having the wire's resistance between [VI
and N2 and half the wire capacitance from each of these Mi TON
nodes to ground 'Fig 31.

The wire model also employs a node, NS, for use in cal-
culating an intermediate quantity. The stress on the wire __"

is dependent on the wire temperature, which is a function
ol the thermal capacitance and resistance. The thermal
equivalent RC circuit is also shown in [Fig 31, where the Figure 5. Hot Electron and TDDB Wear on Mi
voltage on NS represents the change in temperature of the
wire.

When the input IVI to the superbuffer is low and the
The final node of the wire model is N4, which is the bootstrap action has been completed, the source and gate

wear node. The current source, S2, is proportional to of transistor Ml are at Ov and the drain N2 is around
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12.5 v. This large voltage differential across the oxide be- which protects the drain of Ml from voltages higher than
tween the gate .V1 and the drain Y2creates large amounts Vdd - VTJ (See [Fig 81). The 12.5v voltage drop is now I
of TDDB stress and wear (See [Fig 5:). When the input spread across two transistors instead of one. Although
.V to the superbuffer rises again, transistor ,V turns the drain of M2 is still at 12.5 v. the gate of that transis-
on, with an initial drain-to-source voltage of 12.5v. This tor is at 5v which reduces to voltage across the gate oxide
iarge saturation voltage generates hot electron stress and to 7.5 v, which does not register any TDDB stress for the
wear on the gate oxide of .11 (also in Fig .). oxide thickness of 125 A. Similarly. the approximately 8 v

voltage drop from the drain to the soirce of ,142 does not
register any hot electrn effects (See Fig 5 ). fn order

• s * ,to reduce the meial n i arion stres. I increased the %%ire

-7 width to I011m. This caiise's the current density in the
wire to decrease, and consequently, no metal migration
wear is measured (also in Fig 8

--- 6. Conclusions
M-, .In this paper we have presented RELIC. a reliability

simulator for determining stress and wear on integrated
. .......- circuits. RELIC employs a unifying strategy for ab-

stracting stress from individual failure mechanisms, and
Figure 6..Metal Migration Wear on Output Wire therefore allows for the analysis of many different fail-

ure mechanisms. The heart of the RELIC simulator is

In order to test RELIC on a metal migration simula- a circuit simulator, employed both to determine instan-

tion, I added a 2000Om long wire with a width of 5 gm to taneous voltage and current waveforms and to carry out

the output node ?V3 of the superhuffer. As this wire was the actual equations for calculating stress due to failure

charged and discharged, the currents through the metal mechanisms. The analyses carried out by RELIC on two

were found to cause metal migration wear. This wear is versions of the IBM Bootstrapped Superbffer show how
shown on the plot in Fig 6 .. Note that the metal migra- this tool may be used by circuit designers to both identify

tion wear increases and decreases as the current in the problems and verify their correction.
wire changes direction, but that the net wear appears to
be in the negative direction. This does not mean that References
there is negative wear on the wire, but that the wear
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U Computer-Aided Circuit Reliability Work at
3 M.I.T.

ILance A. Glasser

January 6, 1987

IThe first formal M.I.T. course on transistors was taught in 1953. Dispite this early
start, for most of the 70's the Institute maintained only a small integrated circuit3 research effort. In 1977 M.I.T. made a strategic decision to reemphasize microsystem
technology and since that time the size of this program has increased dramatically, with
new faculty being hired each year. The program is now large and vibrant, spanning
research areas from nanometer structures to multiprocessor architectures. One of
the many areas which has received recent attention is electrical issues in large digital
machines, where a "large" machine is one whose physical dimensions are big compared
to the distance a bit spans as it speeds across the machine. Within this area, five
critical topics are being addressed: I/O, synchronization (e.g., clocking), power, noise,
and reliability. It is this last topic which is addressed in the accompanying article.

RELIC is our first attempt to design a simulation program which enables the
engineer to design high-performance circuits not only for worst-case speed, power, and
noise margin, but also worst-case reliability. Our program is the first to support the
reliability simulation of a circuit stressed by several dynamic reliability hazards.

IAs process and device technologies advance, the constraints that must be dealt with
continually become more complex and difficult. Nevertheless, this complex constraint
space is today reflected in the circuit domain as an orthogonal set of relatively simple
rules. We do not believe that this simplicity can be maintained. In the future, product
competitiveness will be determined, in part, by the ability of the circuit designer to
design systems which simultaneously extract the maximum performance from critical
devices while avoiding the edge of complex-shaped low-reliability regimes. This will
be possible only with the use of high-quality reliability models and computer-aided
design tools. RELIC is a demonstration of the sort of low-level design tools which will
be necessary. (It is also worthwhile to ask about higher-level tools which aid reliability

3 design.)
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One of the limitations of RELIC is that reliability models are not sufficiently devel-
oped to predict the failure rate of a chip, even given exact process and circuit models.
Nevertheless, it shouid lue possible to compare two circuits for relative reliability and I
thereby guide the design of high-reliability parts. There is a second, less obvious,
application. One commonly used technique for improving the reliability of a part is
to do an accelerated burn-in to remove the weak devices, those which contribute to
infant mortality. It is not always clear, however, how to accelerate the stress on a part
because, though one may raise the power-supply voltage from 5 to 7 V, the voltages
internal to the chip need not follow. (Consider voltages controlled by current mirrors
or charge pumps.) One therefore needs to design for stressability. For high reliability
applications one must be able to design a circuit so that accelerated burn-in can be
accomplished. RELIC is suited to this task.

RELIC is a first-generation program. It is an experimental program written by
Miss Terry Hohol on an experimental program (RELAX 2.2). It is therefore not
surprising that while the program is operational, it is neither robust nor user friendly.
But we have learned many things from RELIC. A second-generation program, now I
under development, will improve upon RELIC in five ways: (1) it will be based on a
more solid circuit simulation program; (2) the models will be improved based on our
better understanding of the literature; (3) the control structure will be modified so
that it is easy to see the long-term effects of transconductance, threshold, and leakage
degradation on circuit performance; (4) a post-processor will be added which predicts
failure rates and cumulative percent fails in terms of the "wear" simulation variables.
This means that one must model the MTTF and a of as many as three statistical
populations (main, freak, infant); and (5) we intend to make the second-generation
program more robust and hence usable by the community.

Assuming that we can accomplish these tasks, a simulation program is still only
as good as the models. Improved models are desperately needed. Even after all
these years of research, metal migration is still not well understood. For instance,
one can find in the literature papers that predict that pulsed operation is better, and I
worse, than steady-state operation. Hot carrier models are in reasonable shape for
dc excitation but, again, the effects of trapping and de-trapping time constants on
dynamic stress is unclear. Time-dependent dielectric breakdown is not well modeled
even under dc excitation-from electric field data there appear to be at least two com-
peting mechanisms-and pulsed dynamics and interactions with hot-carrier stressing
are generally mysterious. Quality programs to do dynamic reliability simulation will
soon exist. It is hoped that the reliability physics community will be able to meet the
enormous challenge of quantifying the dynamics of device failure under stress so that 3
these programs can accurately predict system reliability.
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Abstract I
We describe an efficient technique for breaking symmetry in parallel. The

technique works especially well on rooted trees and on graphs with a small
maximum degree. In particular, we can find a maximal independent set on
a constant-degree graph in O(lg'n) time on an EREW PRAM using a linear
number of processors. We show how to apply this technique to construct more
efficient parallel algorithms for beveral problems, including coloring of planar
graphs and (A + 1)-coloring of constant-degree graphs. We also prove lower
bounds for two related problems.

1 Introduction I

Some problems for which trivial sequenti-.1a algorithms exist appear to be much I
harder to solve in a parallel framework. Therefore, new methods axe needed for

design of efficient parallel algorithms. A known example of a problem with a trivial I
sequential algorithm which is hard to solve in parallel, is the problem of finding a

maximal independent set in a graph (181. This problem was shown to be in the class 3
NC by Karp and Wigderson [12]. A simple randomized algorithm for the problem

is due to Luby [15]. Recently M. Goldberg and Spencer [91 gave a deterministic

algorithm for the problem that runs in polylogarithmic time using a linear number

of processors.

The study of the maximal independent set problem shows the importance of

techniques for breaking symmetry in parallel. The symmetry-breaking comes up I
in many other parallel algorithms as well. In many cases, however, it is enough

to be able to break symmetry in special kinds of graphs. The performance of the

resulting algorithm improves if we can solve the special case of symmetry-breaking

more efficiently. 3
In this paper we present a technique for breaking symmetry. In particular, we

give an O(lg'n) time algorithm to 3-color a rooted tree. This techniquer. can be I
viewed as a generalization of the deterministic coin-flipping technique of Cole and

Vishkin [5]. To show the usefulness of our technique, we present the following

algorithms. All of the presented algorithms use a linear number of processors.
1 I
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* For graphs whose maximum degree is a constant A, we give an O(A 1g A lg'a)

algorithm for (A+ 1)-coloring and for finding a maximal independent set on
an EREW PRAM.

* We give an algorithm to 7-color a planar graph. This algorithm, and the

maximal independent set (for planar graphs) algorithm based on it, run in

O(lgnlg'n) time on a CRCW PRAM and in O(lg2 n) time on an EREW

PRAM. We also give an O(1g3 n lg'n) CRCW algorithm to 5-color a planar

I graph.

* We give a O(lg n lg'n) algorithm for finding a maximal matching in a planar

graph on a CRCW PRAM.

o For general graphs we give an O(z 2 Ig n) algorithm for (A + 1)-coloring and
for finding a maximal independent set on EREW PRAM.

I The above stated results improve the running time and processor bounds for the
respective problems. The fastest previously known algorithm for (A+1)-coloring

[153, in the case of constant-degree graphs, runs in O(lg n) time, and the determin-
istic version of this algorithm requires n' processors. The 5-coloring algorithm for

planar graphs, due to Boyar and Karloff, [4] runs in O(lg3 n) time, and the deter-

ministic version of this algorithm requires n3 processors. The O(1g 3 n) running time

of the maximal matching algorithm due to Israeli and Shiloach [10] can be reduced

to O(1g 2 n) in the restricted case of planar graphs, but our algorithm is faster.

Although in this paper we have limited ourselves to the application of our tech-

niques for the design of of parallel algorithms for the PRAM model of computation,
the same techniques can be applied in a distributed model of computation [1,7].

I Moreover, the O(lg'n) lower bound, given by Linial [14] for the maximal indepein-

dent set problem on a chain in the distributed model, shows that our symmetry-u breaking technique is optimal in this model.

The fact that a rooted tree can be 3-colored in O(lg*n) time raises the question
whether a rooted tree can be 2-colored within the same time complexity. We answer

this question by giving an f!(lg n/ lglg n) lower bound for 2-coloring of a rooted tree.I
I
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We also present an !Q(lg n/ lglg n) lower bound for finding a maximal independent

set in a general graph, thus answering the question posed by Luby [15].

Some of the results presented here were obtained independently by Shannon
[161.

I
2 Definitions and Notation

This sections describes the assumptions about the computational model, and intro-
duces the notation used throughout the paper. In this paper we use n to denote
the number of vertices and m to denote the number of edges in a graph. We use A 1
to denote the maximum degree of the graph.

Given a graph G = (V, E), we say that a subset of nodes I E V is independent if
no two nodes in I are adjacent. A coloring of a graph G is an assignment C : V --+ N

of positive integers (colors) to nodes of the graph. A coloring is valid if no two

adjacent nodes have the same color. The ith bit in the color of a node v is denoted

by C,(i). A subset of edges M E E is a matching if any two distinct edges in M

have no nodes in common.

The following problems are discussed in the paper:

" The vertex-coloring (VC) problem: find a valid coloring of a given graph that I
uses at most A + 1 colors.

" The maximal independent set (MIS) problem: find a maximal independent U
set of vertices in a given graph.

" The maximal matching (MM) problem: find a maximal matching in a given

graph.

We make a distinction between unrooted and rooted trees. In a rooted tree, each 3
nonroot node knows which of its neighbors is its parent.

3



The following notation is used:

Ig - log 2 x

lg 1 x = Igx
ig()x = lglg( i- 1) X

lg'x = min{il lg(i) x <2}

'We assume a PRAM model of computation where each processor is capable

of executing simple word and bit operations. The word width is assumed to be
O(lg n). The word operations we use include bit-wise boolean operations, integerI= comparisons, and unary-to-binary conversion. In addition, we assume that each
processor has a unique identification number O(lg n) bits wide, which we denote by
PE-ID. We use exclusive-read, exclusive-write (EREW) PRAM, concurrent-read,

exclusive-write (CREW) PRAM, and concurrent-read, concurrent-write (CRCW), PRAM as appropriate. All lower bounds are proven for a CRCW PRAM with a
polynomial number of processors.I

g 3 Coloring Rooted Trees

This section describes an O(lg'n) time algorithm for 3-coloring rooted trees. First
we describe an O(lg'n) time algorithm for 6-coloring rooted trees. Then we show

* how to transform a 6-coloring of a rooted tree into 3-coloring in constant time.

The procedure 6-Color-Rooted- Tree is shown in Figure 1. This procedure accepts
a rooted tree T = (V, E) and 6-colors it in time O(lg'n). Starting from the valid
coloring given by the processor ID's, the procedure iteratively reduces the number
of bits in the color descriptions by recoloring each non-root node v with the color

obtained by concatenating the index of a bit in which C,, differs from Cthe,(,) and
I the value of this bit. The root r appends Cr[O] to 0.

5 Theorem 1 The algorithm 6-Color-Rooted-Tree produces a valid 6-coloring of a
tree in O(lg'n) time on a CREW PRAM using O(n) processors.

I 4I
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PROCEDURE 6-Color-Rooted-Tree
L - l n p

for all v E V in parallel do C, - PE-ID(v) ;;; initial coloringI
while L > rIg L + 11 for all v E V in parallel do

if v is the root
then do 3

iv - 0
b,- C,(0)
end

else do
i, - mini I C,(i) $ C1 ather(v)(i)}

b, -- Cv(i,,)
end

C,, 4 b,,i,,
end

Figure 1: The Coloring Algorithm for Rooted Trees i

Proof: First we prove by induction that the coloring computed by the algorithm is

valid, and then we prove the upper bound on the execution time.

Assume that the coloring C is valid at the beginning of an iteration, and show

that the coloring at the end of the iteration is also valid. Let v and w be two I
adjacent nodes; without loss of generality assume that v is the father of w. By the

algorithm, w chooses some index i such that C,,(i) 34 C,(i) and v chooses some

index j such that C,,(j) 3 Cfather(v)(j). The new color of w is (i,C (i)) and the

new color of v is (j, C,,(j)). If i -# j, the new colors are different and we are done.

On the other hand, if i = j, then C,,(i) # C,(6 and again the colors are different.

Hence, the validity of the coloring is preserved.

Now we show that the algorithm terminates after O(lg*n) iterations. Let Lk

denote the number of bits in the representation of colors after k iterations. For

k = I we have

L, = rlgL]+1
< 2rlg 3l

5



if rlgLi1.

1 Assume for some k we have Lk- < 2Fig(k - ) Li and [lg(k) L] > 2. Then

Lk = -lgLk..l + 1
< [lg(2Ig(k') L)I + 15 < 2[lg~k LI

Therefore, as long as Jig(k) LI > 2,

mm Lk : 2 fig ( ) L1.

I Hence, the number of bits in the representation of colors Lk decreases until, after

O(Ig'n) iterations, Flg(k) Li becomes 1 and Lk reaches the value of 3 (the solution of

L = [Ig Li + 1). Another iteration of the algorithm produces a 6-coloring: 3 possible

values of the index i,. and 2 possible values of the bit b,. The algorithm terminates

I at this point.

3 We u-e concurrent-read capability to broadcast the newly computed color C,, to

all the sons of v; no concurrent-write capabilities are required. For constant-degree

trees the concurrent-read capabilitt is not needed either. I

As we have shown, a rooted tree can be 6-colored quickly. A natural question5to ask at this point is whether one can use less colors and still stay within the same

complexity bounds. The following theorem answers this question.I
Theorem 2 A rooted tree can be 3-colored in O(lg*n) CREW PRAM time using

5 O(n) processors.

Proof: The algorithm 3-Color-Rooted- Tree presented in Figure 2 starts by using the

previously described algorithm to 6-color the tree and then recolors it in 3 colors in

constant time.

The algorithm recolors the nodes colored with bad colors 3, 4, and 5, into good3colors 0, 1, 2 as follows. First, each node is recolored in the color of its father, so

that any two nodes with the same father have the same color. The root., which

I6
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has no father, recolors itself with a color different from its current color. Next, I
the algorithm removes the color from every node that has a bad color and has a

neighbor with a good color. These nodes become uncolored. Every node v that still

has a color C, is recolored in the color C" rod 3; this gets rid of the remaining bad

colors. Note that this coloring has the nice property that for any node v, all of the

sons of v that are colored, must be colored identically.

The resulting coloring is valid, but not all nodes are colored. By the construction,

every uncolored node has at least one colored neighbor. Therefore, if there are

two nodes v and w, such that v = father(w) and both nodes are uncolored, then

fatheT(v) is colored and qons(w) are colored too. The algorithm colors v with a

color different from Cson(v) and from C ather(,). Such a color always exists because

there are 3 different colors to choose from and all the colored sons of v are colored I
with the same color. Finally, the algorithm colors w with a color different from both

C' and Csons(w). Every step of the 3-Color-Rooted- Tree algorithm can be executed I
in constant time except for the first one, in which we color the tree with 6 colors.

Hence, the total running time of the algorithm is O(lg'n). i 3
Any tree can be 2-colored. In fact, it is easy to 2-color a tree in polylogarithmic 3

time. For example, one can use treefix operations [13] to compute the distance from

each node to the root, and color even level nodes with one color and odd level nodes
with the other color. It is harder to find a 2-coloring of a rooted tree in parallel,

however, than it is to find a 3-coloring of a rooted tree. In section 7 we show a lower

bound of Q(lg n/ lglg n) on 2-coloring of a directed list by a CRCW PRAM with a

polynomial number of processors, which implies the same lower bound for rooted Itrees.

I

4 Coloring Constant-Degree Graphs

The method for coloring rooted trees described in the previous section is a gener-

alization of the deterministic coin-flipping technique described in [5j. The method

can be generalized even further [8] to color constant-degree graphs in a constant

7
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I PROCEDURE 3-Color-Rooted- Tree
C - 6-Color-Rooted-Tree (V, E)
for all v E V, v $ root in parallel do

Cnd C -- Cfather(v)E end

C7.00t - min{ {0, 1,2}- {C.o..s(root)} }I V- {v I C, < 2}
V2 - V- V 1
V' -- {v I v E V2 and 3(v, w) E E, w E Vi} ;;; bad-colored nodes with good-colored neighbors
for all v E V - V' in parallel do

C .- C, mod 3
end
for all v E V' in parallel do

C, - uncolored
end
for all v E V' in parallel do

if father(v) V'
then do

C, ,- min{ {0, 1,2}- {Cson.(v)} - {Cfathr(v)} I
V' V,- V-

end
end
for all v E V' in parallel do

C., - min{ f{0, 1, 2} - {C.ans(v)} - {Cf ather(t,)I
I end

i Figure 2: The 3-coloring Algorithm for Rooted Trees

I8
I
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number of colors. In the generalized algorithm, a current color of a node is replaced

by a new color obtained by looking at each neighbor, appending the index of a bit

in which the current color of the node is different from the neighbor's color to the

value of the bit in the node color, and concatenating the resulting strings. This I
algorithm runs in O(lg'n) time, but the number of colors, althlough constant, is I
exponential in the degree of the graph.

In this section we show how to use the procedure 3-Color-Rooted-Tree described

iii the previous section to color a constant-degree graph with (A+1) colors, where

L\ is the maximum degree of the graph.

First, we describe how to find in constant time a forest in a given graph such that
each node with nonzero degree in the graph has nonzero degree in the forest. The 3
removal of the edges of the forest decreases the maximum degree of the remaining

graph (unless the maximum degree of the graph is zero). We shall use this property i
later use to decompose the edges into A sets, each set inducing a forest on the nodes

of the graph. The procedure Find-Forest (see Figure 3) constructs such a forest. i
The procedure has two steps. In the first step each node compares the ID's of

its neighbors with its own ID. A node that does not have the maximum processor 3
ID among its neighbors chooses an edge that connects it to the neighbor with the

largest processor ID. The graph induced by the chosen edges is a forest (the graph i

has no cycles) and the nodes with the highest processor IDs among their neighbors

- local maximums - are roots of the forest. In the second step each root with no 3
sons chooses an edge that connects it to one of its neighbors. The roots are local
maximums and are therefore independent. Hence, no new cycles are introduced into

the graph induced by the chosen edges.

The algorithm Color-Constant-Degree-Graph that colors constant-degree graph 3
with (A+1) colors is presented in Figure 4. The algorithm consists of two phases.

In the first phase we iteratively call the Find-Forest procedure, each time removing
the edges of the constructed forest. This phase continues until no edges remain, At

which point we color all the nodes with one color.

In the second phase we iteratively return the edges of the forests into the graph,

9
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i PROCEDURE Find-Forest(V,E)

R' - 0

for all v E V in parallel do ;;; construct the forest - the first step
I if PE-ID(v) is not a local maximum

then do
ev (v, w) s.t. (v, w) E E and PE-ID(w) = max{PE-ID(u)I(v, u) E E}

end E' E' U ev
end

else do

end
end

for all v E R in parallel do ;;; get rid of zero-depth trees - the second step
if (v, w) E E' and 3(v, w') E E
then do1E' -- E' U (v, w')
end

end

return (E') ;;; the edges of the forest

I Figure 3: The Spanning Forest Algorithm

i
I
I
* 10
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PROCEDURE Color-Constant-Degree-GraphE'- E1

while E' $ 0 do ;;; the first phase
E- Find-Forest(V, E')
El 4-E' - Ej

i4--i+1
end
for all v E V in parallel do ;;; initial coloring

C(v) - 1
end
for i - i - 1 to 0 do ;;; the second phase

C' 4-- 3-Color-Rooted-Tree (V, Ei)
E' / -- El + Ei i

for k -1to3do
for j-ltoA+ldo

V' -V
for all v E V' in parallel do

if C(v) = j and C'(v) = k
then do

C(v) +- max{{1,2,. .. A+1} - {C(w) i(v,w) E E'}}
V' +- V' - v

end endI

end
end end

Figure 4: The Recoloring Algorithm for Constant Degree Graphs U
U
I

11 1
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each time recoloring the nodes to maintain a consistent coloring. At the beginning

of each iteration of this phase, the edges of the current forest (E') are added, making

the existing (A + 1)-coloring inconsistent. This forest is colored with 3 colors using

the 3-Color-Rooted- Tree procedure. Now, each node has two colors - one from the

coloring at the previous iteration and one from the coloring of the forest. The5 pairs of colors form a valid 3(A+1)-coloring of the graph. The iteration finishes by

enumerating the color classes, recoloring each node of the current color with a color

from {0, ..., A} that is different from the colors of its neighbors (note that we can

recolor all the nodes of the same color in parallel because they are independent).I
Theorem 3 The algorithm Color-Constant-Degree-Graph runs in O(A lg A(A +

I lg'n)) time and colors the graph with (A+1) colors.

IProof: At each iteration all edges of the spanning forest are removed. From the

above discussion it follows that each node that still has neighbors in the beginning

of an iteration, has at least one edge removed during that iteration, and therefore

its degree decreases. Hence, the first phase of the algorithm terminates in at most

A iterations.

The second phase terminates in at most A iterations as well. Each iteration

consists of two stages. First, the current forest is colored using procedure 3-Color-

Rooted-Tree, which takes, by theorem 2, O(lg A lg*n) time on an EREW PRAM

(the lg A factor appears because we do not use the concurrent-read capability).

Now we iterate over all the colors. Since in this section we assume that A is a£constant, each iteration can be done in O(lg A) time using word operations. Hence,

one iteration of the second phase takes O(lg A lg'n + A lg A) time, leading to an

I overall O(A lg A(A + lg'n)) running time on an EREW PRAM. I

I Having a (ei+l)-coloring of a graph enables us to find an MIS in this graph. The

• following theorem states this fact formally. (We refer to the algorithm described in

the proof as Constant-Degree-MIS in the subsequent sections.)

!12
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Theorem 4 An MIS in constant-degree graphs can be found in 0(lg'n) time on an I
EREW PRAM using 0(n) processors.

Proof: After coloring the graph in a constant number of colors using the procedure I
Color- Constant-Degree- Graph, one can find an MIS by iterating over the colors,

taking all the remaining nodes of the current color, adding them to the independent I
set, and removing them and all their neighbors from the graph. By theorem 3. the

coloring of a constant-degree graph takes 0(lg'n) time on an EREW PRAM. The

selection of all nodes with a specific color and the removal of all neighbors of the
selected nodes takes constant time. I I

The proofs of theorems 3 and 4 also imply that the algorithms Color. Constant.

Degree-Graph and Constant-Degree-MIS have a polylogarithmic running times for

graphs with polylogarithmic maximum degrees. However, in this case the assump-

tion that the word size is greater then A is unreasonable, so the running time of I
the algorithms becomes O(A(A2 + Ig A lgn)). In section 6 we present an algorithm

with better performance for A = w(lg n).

The above algorithms can be implemented in the distributed model of com- -
putation [1,7], where processors have fixed connections determined by the input

graph. The algorithms in the distributed model achieve the same O(lg'n) bound

as in the EREW PRAM model. Linial has recently shown [14] that £Q(lg'n) time

is required in the distributed model to find a maximal independent set on a chain.

Our algorithms are therefore optimal (to within a constant factor) in the distributed

model.

5 Algorithms for Planar Graphs £
Any planar graph can be 4-colored. However, linear time sequential algorithms are j
known only for 5-coloring planar graphs. In this section we describe a simple and
efficient parallel algorithm that 7-colors a planar graph, and show how to construct

a more complicated parallel algorithm to 5-color a planar graph.

13
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PROCEDURE 7-Color-Planar-Graph
V1 .- V

I Vi,Y,..."'i, 4- 0

while V' # 0 for all v E V' do in parallel ;;; first stage
if Degree(v) < 6

then do

I endV' V' - V

end

end
for i i-i- to O do ;;; second stage

while V 0 do
Ei - {(v, w) I v, w E Vi ; (v, w) E E}
I - Constant-Degree-MIS(V, El)
for all v E I do in parallel

C, - max{{1...7}- {Cw IwE V';(v,w)E E}}
end

V, - V, +1I

I end -

end

3
Figure 5: The 7-Coloring Algorithm For Planar Graphs

1
I

1I '4...



First we describe an algorithm for 7-coloring of planar graphs. The algorithm, 3
called 7-Color-Planar-Graph, is shown in Figure 5. The algorithm consists of two

stages. In the first stage, we iteratively partition the vertices of the graph into I
layers. At each iteration we create a new layer consisting of all nodes of the graph

with degree 6 or less and delete these nodes from the graph. 5
The second stage returns the layers to the graph in the order opposite to the

order in which the layers are removed. After a layer is returned, it is 7-colored in 3
the way consistent with the coloring of the layers which have been returned and

colored in the previous iterations. Note that all the nodes of the returned layer have 3
a degree of at most 6 in the current graph.

The layer is colored by iteratively applying the Constant-Degree-MIS procedure

to find an MIS in the subgraph induced by the uncolored nodes of the layer, and

coloring each of the selected nodes in a color different from its colored neighbors.

Since the uncolored nodes have a degree of at most 6 in the current graph, we never

need more than 7 colors. i

Theorem 5 The algorithm 7-Color-Planar-Graph runs in O(lgnlg'n) time on a I
CRCW PRAM and in O(lg2 n) time on an EREW PRAM. I
Proof: In a planar graph, at least a constant fraction (1/ 7 h) of nodes have a de-

gree less or equal to 6, and therefore the first stage of the 7- Color-Planar- Graph I
algorithm terminates in at most O(lgn) steps. At each step we have to identify

the nodes that have degree less than 7 in the remaining graph. This takes constant

time on a CRCW PRAM (assuming that if two or more processors simultaneously

write into some location, one of them will succeed) and O(lg n) time on an EREW

PRAM.

In the second stage all the uncolored nodes are of degree k . or equal to 6 1
and therefore, by theorem 4, the procedure Constant-Degree-MIS finds, in O(lg'n)

time, an MIS in the graph induced by these nodes. By the definition of the maximal

independent set, when the algorithm colors the MIS, at least one uncolored neighbor

of each uncolored node becomes colored. Therefore the second part of the second

15 I



stage terminates in at most 7 iterations.

Since the first stage takes O(lg n) time on a CRCW PRAM and O(1g' n) time on

an EREW PRAM, and since each one of the O(lg n) iterations of the second stage is

dominated by a call to Constant-Degree-MIS, the total running time is O(lg n lg'n)

on a CRO PRAM and O(lg 2 n) on an EREW PRAM. 3

Remark: If, at each stage, instead of removing from the graph all the nodes with

degree less than 6, we remove all the nodes with degree less or equal to the average

degree. the algorithm described above produces a correct result in polylogarithmic

time for any graph G such that the average degree of any node-induced subgraph

G' of G is polylogarithmic in the size of G'. This class contains many important

subclasses including graphs that are unions of a polylogarithmic number of planar
graphs (i.e. graphs with polylogarithmic thickness).

Our techiiques tugeLier with the ideas presented in [4] can be used to construct

a deterministic O(log3 n lg'n) time algorithm for 5-coloring a planar graph.

The 5-coloring algorithm has two stages. The first stage of the algorithm par-

titions the graph into layers such that vertices in any layer are independent and

have degree of at most 6 in the graph induced by the vertices in its layer and the

higher numbered layers. The second stage of the algorithm adds layers one by one,
starting from the layer with the highest number, each time recoloring the graph

with 5 colors.

Before describing the second stage, we need the following definitions. Let G be a

partially colored gralh and let ci and c 2 be two distinct colors. A color component

is a connected component of a subgraph of G induced by all vertices of color cl and

c2 . A color compone.&t flip is a recoloring of the color component that exchanges

colors cl and c2. A color component flip does not affect the validity of coloring.

We can proceed with the description of the second stage of the algorithm. After a

layer is added to already colored graph, we first color all vertices that can be colored

without changing the, existing coloring. This can be done in the same way as i1

the 7-coloring algoritham. Now all 5 colors are represented among neighbors of each

16
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uncolored vertex. Since the uncolored vertices have degree of at most 6, the results i
of [4] imply that for every uncolored vertex v there are two colors cl and c2 such that

v has exactly one neighbor w, of color cl and exactly one neighbor w2 of color c2.
Furthermore, the vertices w, and w2 belong to different color components induced

by colors cl and C2. Flipping each one of these color component allows us to color v.

The problem is, however, that flipping both color components simultaneously does

not allow us to color v. We call such color components dependent.

Where as Boyar and Karloff use randomness to deal with this problem, we use

our symmetry-breaking techniques as follows. For each pair of distinct colors c1

and c2, we construct color components induced by these colors. Then we construct

a dependency graph with vertices corresponding to the color components and edges

corresponding to the dependencies between the color components. Flipping a set of

color components that corresponds to an independent set in the dependency graph

does not cause conflicts. Suppose we can find an independent set in the dependency

graph such that flipping the corresponding set of color components allows us to color

a constant set of uncolored vertices. Then in Q(log n) iterations will be able to color i
all uncolored vertices.

We find such an independent set in the dependency graph as follows. Observe I
that the dependency graph is planar, so we can 7-color this graph using the 7-

Color-Planar-Graph algorithm. Then, for each pair of distinct colors and for each i
color class of the corresponding dependency graph, we compute the number of

uncolored vertices of the original graph which can be colored if the color components I
corresponding to vertices in the color class are flipped. For each of the 10 possible

choices of colors c1 and c2 there are 7 color classes, so the total number of times

that we count the number of vertices that can be colored if a color class is flipped

is 70. Since each uncolored vertex is counted at least once, there is a color class

such that flipping all color components in +his class allows us to color at least 1/70 1
uncolored vertices.

Next we analyze to complexity of the algorithm. The outer loop of the algo-

rithmixi that iterates ovr layers is executed O(log n) times, and the inner loop that

colors a constant fraction of uncolored vertices is executed O(log n) times as well.

171
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Each iteration of the inner loop does 10 connected component computations. 70

enumeration and 10 calls to the 7-Color-Planar-Graph procedure. Since cach coi-
nected component computation can be done in O(logn) time on CRCW PRAM

using Shiloach-Vishkin algorithm [17], the 7-Color-Planar-Graph procedure is the
bottleneck of the inner loop (recall that it runs in O(log n lg*n) time). The overall

running time of the algorithm is O(log3 n lg'n).

5 The above result is summarized in the following theorem.

! Theorem 6 A planar graph can be 5-colored in O(lg3 nlg*n) time on a CRCW

PRAM using O(n) processors.

I Using the techniques described in this paper it is easy to construct a fast algo-

rithm for finding a maximal matching in planar graph.I
3 Theorem 7 A maximal matching in planar graph can be found in O(lg n lg'n) time

on a CRCW PRAM.

I
Proof: First, the algorithm partitions the graph into layers, such that the nodes

in a layer are of degree less than 7 in the graph induced by the nodes of this
layer and the nodes in the higher-numbered layers. The algorithm proceeds by3 iteratively returning a layer, finding a maximal matching in the obtained graph,

and removing the end-points of the edges in the matching. At the end of each
I iteration the remaining nodes induce a graph of degree zero and therefore at the

beginning of each iteration the maximum degree of the induced graph is 6. Hence, a

I maximal matching in this graph can be found in O(lgsn) time by finding a maximal

independent set in the line-graph, which also has a constant maximum degree. Each

iteration takes O(lg'n) time on a CRCW PRAM and the number of iterations is

O(Ig n). This gives O(lg n lg*n) total running time. |
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6 Coloring Polylogarithmic Degree Graphs I

This section describes a coloring algorithm for graphs with maximum degree which I
is polylogarithmic in the size of the graph. For A = w(lg n), this algorithui has

a better performance than the algorithm Color- Constant-Degree-Graph described J
above.

The Poly-Log- Color algorithm is shown in Figure 6 and works as follows. First,

the graph is partitioned into two subgraphs with approximately equal number of

nodes, and the subgraphs are recursively colored in A + 1 colors. Then we iterate 3
through all the colors of one of the subgraphs, recoloring each node with a color

different from the colors of all of its neighbors. 3
Theorem 8 The algorithm Poly-Log-Color colors a graph with a maximum degree

of A with A+1 colors in O(A21Ign) time.

Proof: Each time the graph is partitioned into two subgraphs with approximately I
equal number of nodes and therefore the depth of recursion is O(Ig n). At each

recursion level we iterate through all the colors, each iteration dominated by the

time to find a color different from the colors of all the neighbors of a node, which

takes O(A) time. Hence the total time is O(A 2 lgn) on a EREW PRAM. I I

After coloring the graph in A+1 colors we can construct an MIS of the graph in I
Q(/2) time. Hence, an MIS of a graph with a polylogarithmic maximum degree can

be found in O(A 2 lg n) time on EREW PRAM using a linear number of processors.

7 Lower Bounds

In this section we prove two lower bounds for a CRCW PRAM with polynomial I
number of processors:

e Finding a MIS in a general graph takes Q(lg n/ lglg n) time.
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PROCEDURE Poly-Log-Color (V, E)
partition V into V7,V such that V, U V = V
E, - {(v, w) I (v, w) E E; v, w E V,}

El {(v, w) I (v, w) E E: v, w E 11/}

C,. -Poly-Log-Color(V., E,)
C1 -Poly-Log-Color(V, E1 )
V' -0
for all vE V in parallel do

_ if 3(v, w) E E such that v E V, w E . and Ci(v) = C,(w)
then do

Send I V' U v

for j- 1 to A+1do
for all v E V' in parallel do

if C1(v) = j
then do

C C(v) - max {{1,2 .... A+1} - {C(w) I(v,w) E E'}}
V' - V' - v

end
end

I end

Figure 6: The Coloring Algorithm for Polylogaritrimic Maximum Degree Graphs

I
i
I
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2-coloring a directed list takes (lg n/lglgn) time. 3
The first lower bound complements the O(lgn) CRCW PRAM upper bound

for the MIS problem that is achieved by Luby's algorithm [15]. The second lower

bound complements Theorem 2 in this paper. I

Theoren 9 The running time of any MIS algorithm on a CRCW PRAM with a

polynomial number of proces-sors is Q(lgn/lglgn).

Proof: Given an instance of MAJORITY, we construct an instance of MIS in con- 3
stant CRCW PRAM time. MAJORITY is harder that PARITY [6], which was

proven to take Q(lg n/ lglg n) on a CRCW PRAM in [2,3]. Therefore the lower 3
bound claimed in the theorem follows.

Let x1 , X2,... , x, be an instance of MAJORITY. We construct a complete bi- 3
partite graph G = (V, E) with nodes corresponding to '0' bits of the input on one

side and nodes corresponding to '1' bits on the other side. 3
V -- {1,. .. ,n}

E {(i,j)xi# xj} I
To construct this graph, assign a processor Pij for each pair 1 < i < j < n. Then,

each processor Pij writes 1 into location Aij if xi 0 x, and 0 otherwise.

A maximal matching in a complete bipartite graph is also a maximum one. By

constructing a maximal independent set in the line-graph G' of G, one can find a

maximal matching in G. To construct the graph G' assign a processor Pjk for each I
distinct i.j, k < n. Each Pijk writes 1 into location Ml(ij,),(j,k) if 3'ii = 1111jk = 1 and

0 otherwise.

The MAJORITY equals to 1 if and only if there is an unmatched node i E G
such that xi = 1, which can be checked on a CRCW PRAM in constant time. | 3
Theorem 10 The time to 2-color a directed list on a CRCW PRAM with a poly- 3
nomial number of processors is .2(lg n/ lglg n).

21£
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I
Proof: We show a constant time reduction from PARITY to the 2-coloring of aI directed list. First, we show how to construct, in constant time, a di'ccted list with

elements corresponding to all the input bits xi with value of 1. Let X1 ,x 2,..., X,

be an instance of PARITY. Associate a processor Pi with each input cell M'vl that

initially holds the value of xi. Associate a set of processors Pjk with each index

i, 1 < k < j < i. In one step, each processor pik reads the value of A'Ik and, if it

equals to 1, writes 1 into M/, effectively computing the OR-function on the input5
values x_j,x_j+ , ... ,x,- 1 . Assign a processor PJ to each M.j. Each processor P.j

reads M j and NVI j+' and writes j into 11 ' if and only if M/ - 1,AI + '. It can be seen

that for all O < i < n, M" holds max{j Ij < i, xj = 1}.

I We have constructed a directed list with elements corresponding to all the input

bits xi with value of 1. Assume this list is 2-colored. Then PARITY equals to 1 if

and only if both ends of the list are colored in the same color, which can be checked

in constant time. 3I
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I Abstract An n-by-in perfect concentrator switch has n in-
put wires X 1 ,X 2 , .. . , Xn and m < n output wires

Due to chip area and pin cout consLraints, large Y1,Y 2 ,...., Yn. The switch can establish m disjoint

concentrator switches sometimes must be partitioned electrical paths from any set of m input wires to the

among several chips. This paper presents designs n output wires. A perfect concentrator switch al-

for two multichip partial concentrator switches, both ways routes as many messages as possible. Specifi-
of which follow from a lemma showing that an e- cally, whenever k out of the n input wires of an n-by-
nearsorter is also an (n, m, 1 - e/m) partial concen- m perfect concentrator switch carry messages, one of
trator. the following is true:

The first switch, based on the Revsort algorithm, is
an (n, m, 1 - O(n3 /rin)) partial concentrator switch * If k < m, then an electrical path is established

with at most 2V/n + f(lgn)/21 data pins per chip, from each input wire that contains a message to

e(V/n) chips, and volume 0(n 3 /2 ). A message incurs an output wire.

3Ign+O(I) gate delays in passing through the switch.

The second switch, based on Columnsort, is an . If k > n, then each output wire has an electrical

(n, m, 1 - O(n2-213 /m)) partial concentrator switch path established from an input wire that contains

with E(nO) data pins per chip, E(nl-3) chips, and a message.

volume G(nl+o), for any 1/2 < 3 < 1. A message When k > m, some messages cannot be successfully
incurs 403 lgn + 0(1) gate delays. routed, in which case we say the switch is congested.

Typical ways of handling unsuccessfully routed mes-
1 Introduction sages in a routing network are to buffer them, to mis-

route them, or to simply drop them and rely on a

The problem of concentrating relatively few signals higher-level acknowledgment protocol to detect this

on many input lines onto a lesser number of output situation and resend them. The switch designs in this

lines must be solved in many kinds of communication paper are cormpatible with any of these congestion con-

networks. In many parallel computing systems, in- trol methods.

formation is packaged into messages which are routed One way to create a perfect concentrator switch is

among the processors. The switches that route these with a hyperconcentrator switch. An n-by-n hyper-

messages sometimes require more chip area or input concentrator switch has n input wires X 1 , X 2,. .. ,Xn

and output wires than a single chip can supply. This and n output wires 1', Y 2, ... , Yn. The switch can

paper presents two designs for fast multichip partial establish disjoint electrical paths from any set of k in-

concentrator switches suitable for routing bit-serial put wires, for any I < k < n, to the first k output

messages in a parallel supercomputer. The key lemma wires YI, Y 2 ,..., Y. In other words, we route the k3 of this paper may be used to justify other partial con- messages to the first k output wires. We can make

centrator designs. any n-by-m perfect concentrator switch from an n-
by-n hyperconcentrator switch by simply choosing the

This research was supported in part by the Defense Ad- first n output wires of the hyperconcentrator switch,

vanced Research Projects Agency under Contract N0001-1-

80-C-0622 and in part by a National Science Foundation Y1, Y2 ,... ., Yi, as the m output wires of the perfect

Fellowship. concentrator switch.I
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An efficient n-by-n hyperconcentrator switch design An (n/a. 77/a. a) partial concentrator switch can
is given in L1] and [2]. This switch has a highly regu- be used anywhere an n-by-m perfect concentrator
lar layout in both ratioed nMOS and domino CMOS switch is required. Consider a set of k < m mes- I
technologies, and a signal incurs exactly 21gn gate sages to be routed through an n-by-m perfect con-
delays through the switch. 1 This switch uses e(n 2) centrator switch. For the (n/ar,m/a,a) partial con-
components and has area e(n2). centrator switch, we have that k < m = a • (m/a),

Partitioning this hyperconcentrator switch among and thus all k messages are routed to output wires.
multiple chips with p pins each requires Q((,,/p))2 ) If there are instead k > m messages to be routed
chips, since each p-pin chip has area O(p 2) and there through the perfect concentrator switch, we have that
are 1(n 2 ) components to partition. We may need t.o k > m = a (nm/a) for the (n/a. m/a, a) partial con-
partition the switch for two reasons: centrator switch, and thus rn output wires carry mes-

sages. In either case. the partial concentrator switch
1. The O(n 2) area may exceed the available chip performs the same function as the perfect concentra-

area. tor switch, at the cost of a I/a-factor increase in the i
number of input and output wires.

2. If the switch is to be packaged by itself on a chip, In this paper, we show a connection between near-
it may require more input and output pins than sorting and partial concentration. We then use this I
are provided by the packaging technology, relationship to design two efficient multichip partial

concentrator switches. both of which use the hyper-
A different hyperconcentrator switch, comprised of a

parallel prefix circuit and a butterfly network [1], can concentrator switch of (1] and [2] as a subcircuit on a

be built in volume G(n 3 /2 ) with 0(n lg n) chips and single chip.

as few as four data pins per chip, but this switch is The remainder of this paper is organized as fol-

combinational. Although its sequential control lows. Section 2 covers some basic terminology and
is not very complex, it is not as simple as that of a describes the message format upon which the switches

combinational circuit. are based. Section 3 defines nearsorting and shows the

Partial concentrator switches, as we shall see in Sec- relationship between nearsorting and partial concen-

tions 4 and 5, can be combinational with relatively tration. Section 4 presents a design for a partial con- I
low gate delays. Yet, given chips with p pins, we can centrator switch based on the Revsort algorithm for

switches sorting on a mesh; Section 5 does the same, but based
patiio n-inputmnpartialoconcentratorngusingon i(n/p) chips. An (n, , a) partial concentrator on the Columnsort algorithm for sorting on a mesh.

only han ip s ,, , a) p n or Finally, Section 6 contains further remarks about mul-
switch has n input wires X1, X 2 , . . -, X, m <n out- tichip concentrator switches.
put wires Yi,Y 2 ,...,Ym, and a fraction 0 < a < I
such that disjoint electrical paths may be established
from any set of k input wires, for any 1 < k < am, to 2 Preliminaries
k output wires.

A lightly loaded partial concentrator switch is sim- In this section, we define some basic terminology and
ilar to a perfect concentrator switch. If there are k mathematical conventions and present the message I
messages entering an (n, m, a) partial concentrator format assumed by the switch designs.
switch, one of the following is true: Bit and 1boolean values are denoted by "1" and "0"

for TRUE and FALSE respectively.
" If k < am, then an electrical path is establishel We assume that the switches route bit-serial mes-

from each input wire that contains a message to sages. Each message is formed by a stream of bits
an output wire. arriving at a wire at the rate of one bit per clock cy-

cle. The first bit of each message that arrives at an
If k > am, then at least am electrical paths are input wire is the valid bit, indicating whether subse-

established from input wires containing messages quent bits arriving on that wire form a valid message
to output wires. or an invalid message. The bit sequence following a

We call the fraction a the load ratio. If a partial con- valid bit of 1 forms a valid message, which we would

centrator switch is lightly loaded, i.e., the number of like to be routed from an input wire to an output wire
ofthe switch. From there it ma asthrough thlemessages entering is at most am, then all the rues- oftesic.Fo hr tmay pass thog h

sages are routed to output wires, remainder of the routing network. A valid bit of 0
indicates an invalid message, which does not need to

1We use the notation Ign to denote 1092 n. be routed to an output wire. 3
2
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3 The valid bits all arrive at the input wires of a
switch during the same clock cycle, which we call 1 i

setup. An external control line signals setup. Mes-
sage bits entering through input wires at cycles after k n-k
setup follow the electrical paths in the switch that are _ _ _ _ _

established during setup.111HOO0000
We shall adopt some notational conventions to ease

the exposition in tile remainder of this paper. Upper-
case symbols denote wire names and lowercase sym- k-E 9 E n-k- E

bols denote integer values. We shall also use upper- Figure 1: A fully sorted sequence of k 's and n k
case symbols to denote bit values on the wires they 's and an e-nearsorted sequence of the same values. Thenam when the usan isersre unambences Wir namese ale.h
name when the usage is unambiguous. Wire names e-nearsorted sequence consists of a clean sequence of at
will usually be subscripted, least k - e l's followed by a dirty sequence of at most 2e

A sequence of values is sorted if it is in nonincreas- bits followed by a clean sequence of at least n - k - e O's.
ing order. The valid bits output by an n-by-n hyper-
concentrator switch are thus sorted, since if there are
k valid messages, we have Lemma 1 A sequence of n bits, containing k 1's and

n - k O's. is e-nearsorted if and only if it consists of

Y1 , ,...,Y = 1 a clean sequence of at least k - - 1's followed by a
Yk+1,Yk.+2, ... ,Y = 0 dirty sequence of at most 2e bits followed by a clean

n ssequence of at least n - k - e O's.
during setup.

Concentrators were originally presented as graphs Proof (=*) As shown in Figure 1, a fully sorted se-
in, for example. (4,5,8]. The term "hyperconcentra- quence of k l's and n - k O's is simply k I's followed
tor" is due to Valiant. Vertex-disjoint paths from des- by n - k O's. In an c-nearsorted sequence of the same
ignated input nodes to designated output nodes are values, each 1 appears within the first k + r positions,
the concentrator graph counterpart of the combina- and each 0 appears within the last n-k +c positions.I tional routing paths established during setup in the The only dirty sequence within the e-nearsorted se-
concentrator switches of this paper. quence is therefore centered at the kth position and

extends c positions to either side. The lemma then

3 Nearsorting and Partial Concentra- follows.
tion (.4-) Again referring to Figure 1, each 1 is withintion the first k + c positions, and each 0 is within the last

In this section, we define c-nearsorting and show its n - k + e positions. The sequence is thus e-nearsorted.

relationship to partial concentration. The key lemma "

proven in this section is used in the next two sections The following lemma is the key lemma that relates
to justify partial concentrator switch constructions. e-nearsorting to partial concentration.

A sequence of values is c-nearsorled if each element
in the sequence is within c positions of where it be- Lemma 2 Lei P be a switch with n inputs
longs in the fully sorted sequence. For example, the X 1 ,X 2 - , X, and n outputs Y 1,Y 2, ..... Y,, and sup-
sequence 5, 3. 6, 1,4, 2 is 2-nearsorted since each ele- pose that P e-nearsorts valid bits. Then by restricting
ment is at most two places away from its correct po- the outputs of P to Y1,Y 2,...,Y, for any m < n.
sition in the fully sorted sequence 6,5,4,3.2, 1. The P is an (n, m, a) partial concentrator switch, where
value c need not be a constant; we will usually let c be a = 1 - C/M.
a function of the size of the sequence. A fully sorted
sequence is also 0-nearsorted. Proof Consider any input to switch P containing k

Since we are only interested in nearsorting valid l's and n-k O's. We have am = (I-c/m)rn = m-c,
bits, for the remainder of this paper we shall be con- and there are two cases.
cerned only with inputs whose value is either 0 or Case 1: k < am = m-e. We havem > k+c.
1. We say that a sequence of values is clean if they Since P is an c-nearsorter, each 1 appears within the
all have the same value; otherwise the sequence is outputs {YI,Y 2 ... Y+,} C_ {Yi,Y 2 , . . .,Y. }. Thus,
dirty. The following lemma describes an r-nearsorted each I is routed to an output of the partial concentra-
sequence of O's and l's. tor switch.

13
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E >E n- (k- m+ c) types with at most 2v/'n+ r(lg n)/2] pins, and two
- --,A( board types. i

1l, ,. ,i ,. ,., The design is based on Schnorr and Shamir's

t Revsort algorithm for sorting on a mesh [7], which.
mpositions, k k-m+ - although not optimal for sorting on a mesh, is si-
m-E l's pie. The idea behind the partial concentrator switch

Figure 2: The output of an (n, m, 1-e/m) partial concen- is to nearsort a Vn/-by-,/n matrix of valid bits. The

trator switch that is not e-nearsorted. This switch routes m output wires of the switch correspond to the first
m - c out of k > m - e i's to the first m outputs. but the m nearsorted matrix entries. I
remaining k - m + e I's are routed to the last k - m + z We need some basic definitions. We assume that the

out of the n outputs. If we have k + c < n - (k - m + c), rows and columns of the Vn- x V/ matrix are num-
or equivalently, k + e < (n+m)/2, then the last k - m+c bered 0, 1, .... , v/-n - 1 and that ,rn = 2q for some in-
l's are not within e positions of output I, and thus the teger q. We also define, for any integer i, 0 < i < I/n, I
output sequence is not e-nearsorted. rev(i) to be the binary number obtained by reversing

the q bits in the binary representation of i, including

Case 2: k > am = m - c. We have m < the leading zeros. For example, when V/' = 16, rev(3)

k + e. Again, each 1 appears within the outputs is 12.

{ Yi,Y ..... Yc+,}. From Lemma 1, we know that The partial concentrator switch is built from three

at most c of the outputs {Y 1 , Y2, ... ., Yk.+,} carry O's, stages, each stage containing Vr/i hyperconcentrator I
so at most c of the outputs {Y 1,Y 2,..., Ym} carry chips. Each V/n-by-v/' hyperconcentrator chi ierves

O's. Thus, at least m - e = am of the outputs to fully sort a row or column of valid bits in the un-

{Y 1,Y 2 ,.. ., Ym carry l's. derlying matrix. We shall denote by H1,j the ith hy-"

We conclude that by restricting the outputs of P to perconcentrator chip in stage 1, for 1 < I < 3 and 0 <

Y 1 ,Y 2 ,. . . Y,., P is an (n,m, 1 -/m) partial concen- i < vn, with input wires Xe4,o,Xt,,,I, . ,X,i.,-_1
trator switch. 0 and output wires Yj,0,Y, .1 .... Y,i,vr--.

The converse of Lemma 2 is not necessarily true. The general idea of the construction of the partial

As shown in Figure 2, if an (n, rm, 1 - c/m) partial concentrator switch is as follows. Each stage 1 chip

concentrator switch routes m - c out of k > am = corresponds to a column of the matrix, so the stage 1

rn-c l's to the first m outputs, the remaining k-mote chips fully sort the valid bits in each column. The

l's may be routed to the last k - m + c out of the n input and output wires Xlij, and Yij,i represent the

outputs. In this case, if there are more than c outputs value of the matrix element at row i and column i

between Yt and Y,-(-m+,), then the output sequence before and after sorting.

is not c-nearsorted. The wiring between stages 1 and 2 is effectively a
matrix transposition, accomplished by connecting the
output wire Yj,i, to the input wire X 2.,ij for 0 < i, j <

4 A Revsort-Based Partial Concen- V . Each stage 2 chip then corresponds to a row of
trator Switch the matrix, so the stage 2 chips fully sort the valid

bits in each row. The input and output wires X2,.',
In this section, we present a design for an (n, n, a) and ',,i, represent the value of the matrix element at

partial concentrator switch that uses e(V'nA) chips row i and column j before and after sorting.
with only 9 (v'n) data pins each. The basic building The wiring between stages 2 and 3 is the compo-
block is the hyperconcentrator switch of [1] and [2] sition of two matrix permutations. We first cycli-
placed on a chip. Each message incurs 31gn + 0(l) cally rotate row i by rev(i) places to the right, for
gate delays in passing through the switch. The load 0 < i < V./ . That is, the matrix element in row i
ratio is a = 1-O(n3

/4/M). Most of the results of this and column j, for 0 < i,j < V'n-, is moved to row i
section originally appeared in [1]. and column (rev(i) + j) mod V1'R. The matrix is then

This partial concentrator switch can be imple- transposed. Each stage 3 chip then corresponds to a
mented in column of the matrix, so the stage 3 chips fully sort the

" two dimensions with E(n') area and one chip valid bits in each column. The two permutations are
type with 2dime ns data pins, or accomplished in one wiring step by connecting the out-

put wire Y.,i, to the input wire Y3,(,.(i+j)mod f J ,

* three dimensions with e(n 3 /2 ) volume, two chip for 0 < i,j < V/.

4
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S The output wires of the partial concentrator switch _-_ _ )o-_utput wires

are the first m output wires of the matrix in row-major output wires

oder, or Y3. , for 0 < i < Li/Viij and 0 < j < ____ -__ _-_ wie
or i = LmlVn/§ and 0 < j < m mod V/__._

Like the hyperconcentrator chips from which it is __aa7___ >.outputwies

built, the partial concentrator switch is a combina- _>outputwires

tional circuit. The routing paths are established by >au---- wires

the valid bits during setup, and subsequent bits fol-
low along these paths. . Outp ie

To see that this construction does indeed yield an
( nm. 1 - O(n 3 / 4/m)) partial concentrator switch, we Ljg 3

first observe that its operation is equivalent to the Stage 2
following algorithm, which corresponds to the first 1 -_

iterations of Revsort:Ij LI
Algorithm 1 Given a Vr'f x \/'n matrix with V/- = - -il111
2q and matrix element values of 0 or 1, perform the
following four steps:

1. Fully sort the columns.

2. Fully sort the rows. -

3. For 0 < i < ,/-n, cyclically rotate row i by rev(i)
places to the right, i.e., move the element in col- - sumn j to column (rev(i) + j) mod v/t L..-s~age I

Figure 3: A two-dimensional layout of the Revsort-based
4. Fully sort the columns. partial concentrator switch with n = 64 inputs and m = 28

outputs. The electrical paths established by 24 valid
The three sorting steps correspond to the three stages messages are shown with heavy lines. The output wires
of hyperconcentrator chips in the partial concentra- are the top four output wires of hyperconcentrator chips
tor .witch construction. The wiring between stages 1 H3.0, H3,1 , H3,2 , H3 ,3 and the top three output wires of hy-

and 2 corresponds to changing from sorting columns perconcentrator chips H3,4, H3,5, H3,6, H3.7.

to sorting rows. The wiring between stages 2 and 3
corresponds to the cyclic rotations within rows and of consecutive stages. The area of this layout is e(n 2 )
changing from sorting rows to sorting columns. We since the crossbar wiring area is e(n2), which dom-
are now ready to prove that this construction works. inates the total chip area of e(n3/2). (Each stage

Theorem 3 The Revsort-based construction yields of v.f.by-Vr hyperconcentrator chips consists of VS a (n. , 1 - O(n 3//rm)) partial concentrator switc. chips, each with area e(n), for a total chip area ofe (n31 2).)

A signal incurs 2 lg 'f. + O(1) gate delays in pass-
Proof Both [1] and [7] show that after running Al- ing through each chip. The 2 flg V/1 gate delays are
gorithm I on a x /Vi matrix with elements val- from the hyperconcentrator switch within the chip.Ia
ued 0 or 1, the matrix consists of only clean rows The 1/0 pad circuitry accounts for the additional 0(l)
of I's at the top, clean rows of O's at the bottom, delay. The total number of gate delays incurred by a
and at most 2 rn"/41 - 1 dirty rows in the middle. signal passing through the entire partial concentrator
Since each row contains \ elements, there are at switch is thus
most O(n 3 /4) dirty bits. By Lemma 1, the sequencei is O(nr3/)-nearsorted, and by Lemma 2, the circuit is 6 [lg v/'n-] + 0(l) < 61g /- + 0(1)
an (n, m, 1 - O(n 3/ 4/m)) partial concentrator switch. = 3lgn+O(1)

0
Figure 3 shows a two-dimensional layout of the As shown in Figure 4, we can package the partial

switch using 3V/- hyperconcentrator chips, with 2V/'i concentrator switch in three dimensions using volume
data pins each. We simply use crossbar wiring to e(n312 ). Each circuit board contains one V -by-vtn
permute the wires between hyperconcentrator chips hyperconcentrator chip, corresponding to one row or

3



1
I
I

cyclic rotation control

/U
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.II.I

stage 1 stage 2 stage 3

Figure 4: The three-dimensional packaging of the Revsort-based partial concentrator switch for n = 64. Each stack U
contains V/'W circuit boards and corresponds to one stage. Each board contains one V/t'n-by-v/'ff hyperconcentrator chip,
and boards in stack 2 follow the hyperconcentrator chip by a VWn_-bit barrel shifter chip to perform the cyclic rotation of
each row. The Ig v'ff control bits that determine the shift amount for each barrel shifter are hardwired. 3
column of the matrix. Each of the three stacks con- centrator chip and a v./i-bit barrel shifter, both hav-
tains v171 boards and represents one stage. The wires ing area e(n). The whole stack of V/ui boards, and
cross stack junctions in a V x Vf array, with the therefore the entire switch, has volume E(n/ 2 ). I
valid bit value of the wire in row i and column j equal Since the barrel shift amounts are hardwired and
to the value of the matrix element in the same position never change, the barrel shifters introduce only a con-
at the corresponding step of Algorithm 1. stant number of gate delays. A signal therefore incurs U

The matrix transpose between stages 1 and 2 is per- 3 Ig n + 0(1) gate delays in passing through the three-
formed in the natural way, with the ith output wire dimensional switch.
from board j in stage 1 going straight across the junc- Letting p, the number of pins per chip, be E(V/fn),
tion to be the jth input wire of board i in stage 2. both the two-dimensional and three-dimensional lay-

The wiring permutation between the hyperconcentra- outs use only e(n/p) chips.

tor chips of stages 2 and 3 includes the cyclic rotations
of the rows, followed by the transpose. The transpose 5 A Columnsort-Based Partial Con- I
is performed in the natural way once again. We per- centrator Switch
form the cyclic rotation by following each stage 2 hy- tac
perconcentrator chip by a Vt/-bit barrel shifter on the In this section, we prestent a design for an (n, m, a) I
same ooard. The barrel shifter has fn input wires, partial concentrator switch that uses E(n'-1) chips
V/i- output wires, and Dg x/ control bits which, in- with G(n 3 ) pins each, where 1/2 < 3 < 1. The ba-
terpreted as a binary integer, determine the rotation sic building block is a 0(nO)-by-9(nO) hyperconcen-

amount. We hardwire the control bits in the ith board trator chip. Each message incurs 43 Ig n + 0(1) gate I
to have the value rev(i). delays in passing through the switch. The load ratio

We use only two board types, 3v/'y hyperconcen- is a = 1 - 0(n 2 -20/n). This switch can be imple-
trator chips, and ,rn barrel shifters in building the mented in two dimensions with area O(n 2) or in three I
switch. All 2v'n boards in stages I and 3 are identi- dimensions with volume E(nl+#). Table I shows re-
cal, as are all V'f stage 2 boards. The barrel shifters source measures for the Revsort-based switch and the
require 2.,fA + Plg V.,1 = 2vr'I+ r(lgn)/21 data pins. values of 43 at which the switch of this section matches I
The hardwiring of the barrel shifter control bit values them asymptotically.
can be performed after the boards have been fabri- The design is based on Leighton's Columnsort al-
cated. gorithm (3] for sorting n elements on an r x s mesh,

To see that the volume is ((n 3 /'2 ), we need only where n = rs and s evenly divides r. The idea behind I
consider the stage 2 stack, which has the most com- this partial concentrator switch is to (a - 1)2-nearsort
ponents. Each board contains a VG/-by-V'i hypercon- an r x a matrix of valid bits. As with the switch of 3

6



Revsort Columnsort, Columnsort, Colurnnsort,

pins per chip e(n 1/2 ) E(ni ) e(n /) ___)_

chip count E(.11/?) 1 4(n'/2) 1 (n 318 ) e(n;i T )
load ratio 1 - O(n3 /4 /m) 1 - O(n/m) I - O(n3 /4 /M) 1 - O(nI/ 4 /m)
gate delays 31gn + O(1) 21g n-+ (1) Ign+0(1) 31gn+O(1)

volume E9(n3 /2  3 t2 ( 9(n 3 /6) 9(n7/4)

Table 1: Resource measures for the Revsort-based partial concentrator switch and the values of 0 at which the Column-
sort-based switch matches them asymptotically.

0major ordering, using the composition of functions

3 0 1 2 7 12 RM-1 o CM. We connect the output wire Y1 ,,i to
6 7 8 1 13 the input wire X2,(rj+i)mod,,1(rj+)/,J, for 0 < i < r

16 7 8 12 8 14 ad0<j<s
9 10 11 3 9 15 and0<j<s.

12 13 14 4 10 16 Once again, the output wires of the partial con-

- 15 16 17 L 11 17 centrator switch are the first m output wires of the

row-major column-major matrix in row-major order. Wc use wires Y2 ,j for
o < i < [m/sJ and 0 O j < s or i = LmIsJ and

F 0 < j < m mod s.
Figure 5: Row-major and column-major positions of ele- To show that this circuit (8- 1) 2-nearsorts the valid

S ments in a 6 x 3 matrix. bits, we first observe that its operation is equivalent

to the following algorithm, which corresponds to the

the previous section, the m output wires of the switch first three steps of Columnsort:

correspond to the first m matrix entries. Algorithm 2 Given an r x s matrix of n elements,

We may identify a matrix entry by either its row where n = rs, and matrix values of 0 or 1, perform
and column position or by its position in row-major the following three steps:
or column-major order. All numbering starts at 0.
Thus, the rows are numbered 0, 1, . . ., r - 1 and the 1. Fully sort the columns.
columns are numbered 0, 1, ... , s- 1. The row-major 2 Convert the matrix from column-major to row-
position of the matrix entry in row i and column i major order, i.e., move the element in row i and

is RM(i,j) = si + j, and its column-major position m jor d ri + the an c n ri +
is CM(ij) = rj + i. For example, Figure 5 shows i) mod s.the row-major and column-major positions of a 6 x 3
matrix. We have that 0 < RM(i,j),CM(i,j) < 3. Fully sort the columns.
n. The row and column position corresponding to
the entry in row-major position z is RM-'(z) =(L/sJ, r mod s). The two stages of hyperconcentrator chips correspond

to steps 1 and 3, and the wiring between the stages
The partial concentrator switch is built from two corresponds to step 2. This correspondence between

stages, each stage containing s hyperconcentrator the circuit and Columnsort allows us to prove the fol-
chips. Since the hyperconcentrator chips are combi- lowing theorem.
national, so is the partial concentrator switch. Each
r-by-r hyperconcentrator chip corresponds to a col- Theorem 4 The Columnsort-based construction
umn of the underlying matrix, fully sorting the col- yields an (n, m, 1 - (S - 1)2/m) partial concentrator

umn. We shall denote by Hj the jth hyperconcen- switch.
trator chip in stage 1, for I = 1, 2 and 0 < j <.a with
input wires XJo, X j, ,.., Xij,,.-I and output wires Proof Leighton shows in E3] that Algorithm 2 is an
Yi.0, Yj, , 1 . ... , Yi,j,r._ I. Wires Xj,i and Yjj,i corre- (8-1)2-nearsorter when the matrix elements are taken
spond to the matrix element in row i and column j. in row-major order. By Lemma 2, the circuit is an

The wiring between stages I and 2 corresponds (n, m, 1-(a-1) 2/m) partial concentrator switch when
to converting the matrix from column-major to row- the outputs are taken in row-major order. "
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U
I

: output u interstack connectors

stage I stage 2I

Figure 7: The three-dimensional packaging of the
I S

stag 2 tg

Fl saZa Columnsort-based partial concentrator switch for r = 81,H H r iisui and s = 4. Each stack contains s chips, each of which
is an r-by-r hyperconcentrator. The wiring between thestages of chips performs the RM - ' o CM permutation.

Figure 6: A two-dimensional layout of the Column- The interstack connectors transpose the wires from verti- I
sort-based partial concentrator switch with n = 32 inputs cal to horizontal alignment.
and m = 18 outputs. The underlying matrix is 8 x i. The
electrical paths established by 14 valid messages are shown
with heavy lines. The output wires are the first five out- I
put wires of hyperconcentrator chips H2.o and H2.1 and
the first four output wires of hyperconcentrator chips H2,2
and H2,3. inputs outputs 5

To achieve the results stated at the beginning of
this section, we let r = E(n 0 ) and s = 0(nl-tO). To
ensure that n = rs and that s divides r as n increases,
we require that we have 1/2 < 13 < 1. The load ratio
is then Figure 8: The transposition of w wires from vertical

to horizontal alignment, shown for w = 4, using volume
a = 1- (-1 "  ~,)

= - ,( .(2 1) and corresponding to one stage of hyperconcentrator

chips, and each board containing one r-by-r hyper-
The number of chips is 2s = e(n'-p), and each chip concentrator chip.
requires 2r = 1(n13) data pins. The tricky part of this construction is the wiring I

The delay through the switch is 2 • 2 Ig r + 0(1) = between stages, which must perform the permuta-
4 Igr + 0(l). Letting r < cn0 + o(nO) for some con- tion RM-I o CM. On the first stack, we group to-
stant c, we have that the delay is gether output wires whose column-major numberingsare congruent modulo s, or equivalently, those whose4lgr + 0(1) < 41g(cn 0 + o(n")) + 0(1) row numbers are congruent modulo s. Each such

< 4 Ig((c + l)n") (for suff. large n) group contains r/s wires. In Figure 7, for example,

= 40 Ig n + 40 lg(c + 1) since we have s = 4, we group together wires H1 ,o,o

= 431g n + 0(1) and H1.,04, H1 ,o,l and H1 ,0 ,5 , H 1 ,o,2 and Ht,o ,6 , H 1 ,o,a
and H 1 ,0,7 , etc. In order to allow them to enter the

A two-dimensional layout using 0(n 2 ) area is shown stage 2 chips, these wires are then "transposed" in I
in Figure 6. As in the Revsort-based switch, we use small interstack connectors to align them horizontally

n x n crossbar wiring to connect the stages. instead of vertically. Figure 8 shows one way to trans-

Figure 7 shows a three-dimensional packaging of the pose a group of r/s wires in volume e((r/s)2 ).
switch using volume 9(r 2 s) = e(nl+0). As in Fig- The first stack dominates t __ volume of this con-.
ure 6, we have r = 8 and s = 4. There are two struction. We have s boards, aid each board contains
stacks of boards, with each stack containing s boards a E(r 2 )-area hyperconcentrator chip and an 0(r 2 )- 3

8



area wiring permutation. The total volume of each switch, incurring 4 Ig n Ig Ig n +8 Ig n + O(lg Ig n) gate
stack is thus e(r 2s) = e(n'+*'). There are s2 inter- delays. The switch uses a total of E(V/' lglgn) chips
stack connectors, each with volume 0((r/s)2 ), for a in volume 0(n 3 12 lglgn).
total interstack volume of 0(r 2 ) = 0(n 2

3). Since we Similarly, by simulating all eight steps of Column-
have 3 < 1, the total interstack volume is 0(nl+11). sort, we can build a hyperconcentrator switch with
The total volume of the partial concentrator switch is the same asymptotic volume and chip count as theI thus e(n'+,). partial concentrator switch of Section 5. A signal

For both the two-dimensional and three-dimension- passes through four chips and incurs 83Ign + 0(1)
al layouts, letting p, the number of pins per chip. be gate delays through such an n-by-n hyperconcentra-

'ye use only G(s) = e(n/p) chips. The three- tor switch.
dimensional layout, however, uses s 2 

= E((71/p) 2 ) in- Rather than wondering how fast a multichip hyper-
terstack connectors, but these connectors contain only concentrator switch we can build, we might ask for
wiring and no active components. what functions f(p) can we build an (Q(f(p)), m, 1 -

o(p/m)) partial concentrator switch, given chips with

6 Concluding Remarks p pins and using only two stages of chips. The
Columnsort-based construction, for example, gives us

In this section, we briefly discuss the characteristics f(p) = p - for any 0 < e < 1. Can we achieve
of the partial concentrator switches we hav;e seen and f(p) - Q(pl)? In general, how large a function f(p)
then discuss multichip hyperconcentrator switches, can we achieve with k stages?

Finally, we pose some open questions. There may be --nearsorters based on networks other
Both of the partial concentrator switches we have than the two-dimensional mesh to which we can a -

examined are efficient in that they are relatively fast ply Lemma 2. What types of partial concentrator
and can be packaged with a relatively low volume, switches can we build by applying Lemma 2 to other
They also allow air to flow through in all three di- e-neasorters?

mensions and may thus be air-cooled. Acknowledgements
The ;3 parameter of the Columnsort-based switch
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EFFICIENT GRAPH ALGORITHMS

FOR
SEQUENTIAL AND PARALLEL COMPUTERS
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Abstract

In this thesis we study graph algorithms, both in sequential and parallel contexts. In
the following outline of the thesis, algorithm complexities are stated in terms of the number
of vertices n, the number of edges m, the largest absolute value of capacities U, and the3 ilargest absolute value of costs C.

In Chapter 1 we introduce a new approach to the maximum flow problem that leads
* i to better algorithms for the problem. These algorithms include an 0(nm log(n 2 /m)) time

sequential algorithm, an O(n 2 log n) time parallel algorithm that uses 0(n) processors and
0(m) memory, and both synchronous and asynchronous distributed algorithms.

Chapter 2 is devoted to the minimum cost flow problem, which is a generalization
of the m .ximum flow problem. We introduce a framework that allows the generalization
of the maximum flow techniques to the minimum-cost flow problem. This framework al-
lows us to design efficient algorithms for the minimum-cost flow problem. We exhibit
O(nm log(n) log(nC)), 0(n5/ 3 m 2/ 3 log(nC)), and 0(n 3 log(nC)) time sequential algorithms
as well as parallel and distributed algorithms.

In Chapter 3 we address implementation of parallel algorithms through a case-study of
an implementation of a parallel maximum flow algorithm. Parallel prefix operations play
an important role in our implementation. We present experimental results achieved by the

implementation.

Parallel symmetry-breaking techniques are the main topic of Chapter 4. We give an
O(lgn) algorithm for 3-coloring a rooted tree. This algorithm is used to improve several
parallel algorithms, including algorithms for A+l-coloring and finding maximal independent
set in constant-degree graphs, 5-coloring planar graphs, and finding a maximal matching

in planar graphs. We also prove lower bounds on the parallel complexity of the maximal
independent set problem and the problem of 2-coloring a rooted tree.
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Nonlinear Dynamic Maximum Power Theorem

John L. Wyatt, Jr.

ABSTRACT

This paper considers the problem of maximizing the energy or average
power transfer from a nonlinear dynamic source. The main
theorem includes as special cases the standard linear result

!ioad = Y*source and a recent finding for nonlinear resistive net-
works. An operator equation for the optimal output voltage v(-) is
derived, and a numerical method for solving it is given.
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