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Executive Summary of “Local Design Methodologies for a Hierarchic
Control Architecture”

This final report documents the work performed at MIT during the period of
September, 1987 to June, 1989. The original AFOSR contract (#F49620-88-C-
0015) was written for one year. There was an option for the two following years,
but this was not exercised by the Air Force. Consequently, this research was par-
tially funded by Professor Crawley’s Presidential Young Investigators Award NSF
Grant #8451627-MSM. The objective of the proposed research was to investigate
the theoretical advantages of embedding a highly distributed sensor/processor net-
work in a composite “intelligent” structure. This work specifically dealt with the
design of an efficient control architecture for a structure with many sensors, actua-
tors, and distributed microprocessors. The aims of the first year of the project were
to finalize the hierarchic control architecture, develop suitable local controllers, and
to compare the control architecture with other designs for accuracy and computa-
tional efficiency.

Status:

The work associated with each of these objectives has been completed, and the
results are included in this final report. The procedure for designing a hierarchic
controller has been formalized and a four step algorithm is given in Chapter 2.
The decoupling between the two levels of control is explicitly included in the ar-
chitecture, as seen in Figure 2.4. The analysis of the architecture showed that, for
structures with hundreds of sensors and actuators, the hierarchic controller is ca-
pable of achieving near optimal performance in a computationally efficient manner.
Several types of local control designs were analyzed for the example of the control
of a long beam in bending. These were compared in terms of both the performance
improvements available and the implementation costs. This provided the frame-
work for a performance/implementation cost trade-off analysis of the different local
designs.

Publications:

Two papers have been developed from this work. The first (essentially Chapter 2 a1

of this report) has been accepted for publication. The second will be submitted to
the same Journal.

Hall, S., Crawley, E., How, J., and Ward, B., “A Hierarchic Control Architecture
for Intelligent Structuree” to he published in the ATAA Journal Guidar:e, C'oniro,
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and Dynamics, (Space Systems Laboratory Report #19-88), November, 1988

How, J., and Hall, S., “Local Control Design Methodologies for a Hierarchic Con-
trol Architecture,” to be submitted to the AIAA Journal Guidance, Control, and
Dynamsics, April, 1990.

Personnel:
Three professors and two graduate level students were funded by this contract.

Professor Edward F. Crawley (resume at the back)
Professor Steven R. Hall (resume at the back)
Professor Stephen D. Senturia (resume at the back)
Jonathan P. How (Master’s Student)

David Warkentin (Master’s Student)

One S.M. Degree was awarded to Jonathan P. How in November, 1989 for the work
covered in this final report; thesis title: “Local Control Design Methodologies for a
Hierarchic Control Architecture.”

Presentations:
This work has been presented at the following seminars:

Hall, S., Crawley, E., How, J., and Ward, B., “A Hierarchic Control Architecture
for Intelligent Structures,” To be presented at the AIAA Guidance, Navigation and
Control Conference, Portland, OR, August 20-22, 1990.

Hall, S., Crawley, E., and How, J., “A Hierarchic Control Architecture for Intelli-
gent Structures,” First Annual Symposium of the MIT Space Engineering Research
Center, Jet Propulsion Laboratory, Pasadena, CA, August 31, 1989.

Hall, S., Crawley, E., and How, J., “A Hierarchic Control Architecture for Intelligent
Structures,” Sixth Annual Air Force Symposium on Space Structures, Atlanta, GA,
April 7-8, 1988.
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Chapter 1

Introduction

1.1 Background

Within the last decade, there has been a great deal of interest in the control of Large
Flexible Space Structures (LFSS) [6,13,61,65,70]. The objective of eliminating the
unwanted vibratory motion of a structure is recognized as being a particularly dif-
ficult in part because of the physical characteristics of the plant. For instance, a
typical structure will tend to be large in size, lightly damped, and modally rich.
Also, with the missions envisioned for future spacecraft, such as a space based
inferometer, the performance requirements are becoming more stringent as well.
This will tend to push the control bandwidth higher, so that some of the flexible
modes will have a significant influence on the performance objective. The launch
weight/cost tradeoff for these devices naturally leads to plants which have low struc-
tural rigidity, and this will accentuate the problem of densely packed modes in the
structure. This phenomena of very high modal densities can also be seen in Earth
based telescopes [4]. As mentioned, these LFSS tend to possess very low inherent
damping. Values for the material damping of about 0.1 percent and for the entire

structure of about 1.0 percent are typical for most materials envisioned for use on

16




LFSS [20]. There will be no aerodynamic damping present either. Another problem
that must be faced is that the structures are really of infinite order. Since math
models are typically finite, there will obviously be errors due to truncation, but
there will also be uncertainties in the parameters of the modes which have been
modelled. The designer must therefore ensure that the controller is robust to these
uncertainties. Standard control design techniques such as the Linear Quadratic
Gaussian (LQG) assume that the plant is both well modelled and finite [35], so the
LFSS pose a serious challenge to these design techniques.

Due to the size of the plant, it is clear that some form of reduction of the order of
the controller must be carried out for the design to be considered practical. Several
techniques for this have been developed. Some perform open loop reduction on the
plant [26,63] and then develop the controller for this design model, while others
perform a control design on a larger model and then eliminate those states of the
closed loop system which are deemed to be the least important in some weighted
sense [72]. Other approaches are based on the Optimal Projection approach of

Bernstein and Hyland [11,30].

This reduction in size allows the design step to become computationally feasible,
but when a reduced order controller is implementated on the evaluation model or
on the structure itself, spillover between the modelled and unmodelled modes will
occur [6]. Spillover is apparent in several forms. Observation spillover is the mea-
surement of dynamics which are not associated with the controlled set of modes.
Similarly, control spillover accounts for the action of the control commands on this
set of neglected modes. If the both of these forms are present (as will usually be
the case for a truncated model controller acting on the evaluation model), then the
resulting coupling may destabilize the closed loop system [6]. If only one form of the
spillover is present, then destabilization may not occur, but there most likely will be
a degradation in the performance due to the coupling of the dynamics through the

measurement or control action. These problems have led o a class of control de-
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signs which incorporate some degree of spillover alleviation in the design procedure
[7,17,59]. For this reason, it is important to actively or passively supplement the
damping of the higher frequency modes of the structure so that they have some de-
gree of stability margin. This will enable them to withstand the adverse influences
of the spillover. The complexity of typical structures has lead to several approaches

to the control design.

1.2 Control Approaches

Coupled with the difficulties presented by the plant are numerous problems with
the implementation of the controller. The most commonly employed control de-
signs employ a central computer to perform the compensation. Typical approaches
include the use of optimal or suboptimal output feedback gains directly on the
measurements [34,38], or the use of a full or reduced order estimators driven by
the measurements in conjunction with full state feedback [11,38,63]. Each of these
techniques require that the central computer receive all measurements and compute
each control command. These techniques were originally designed with a focus on
the case where the number of sensors and actuators is small in relation to the
plant dimension. The major difficulties with any centralized control design are the
communication problems and the possibly prohibitive computational demands on
the central computer. For LFSS, it may also be necessary to transfer information
over large distances. The minimum computation for a centralized output feedback
controller is of the order of the number of sensors times the number of actuators.
For the case of a dynamic compensator, more computations will be required as the
state estimate must be updated at each time step and then a gain multiplication
of the order of the number of actuators times the number of states must be per-
formed. If the controller’s bandwidth is a multiple of the highest frequency to be

controlled, which varies linearly or as the square of the number of modes in the
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structural model, then taking n as the number of sensor and/or actuator pairs or
the modelled modes, the computational requirements of these centralized schemes
increase at a rate between n® and n*, which is clearly quite prohibitive for any
large scale system. The solution to this problem appears to be incorporating some
form of distribution of the control effort among several processors, i.e., making the

approach more parallel in nature.

One approach is to employ a decentralized controller which consists of several
regional (in the sense of knowledge and influence) controllers which are distributed
throughout the structure {9,39,54,56,65,68]. Many decentralized control techniques
are also discussed in the survey paper by Sandell et al. [57]. The difficulty with
this approach is that there typically is very little global control authority to handle
the longer wavelength motions since each regional controller can only measure and
influence the adjacent portions of the structure, and it is unaware of the gross
motions of the entire body. Most of these approaches are more particularly suited
to the design of controllers for structures which can easily be written in terms of
lightly coupled subsystems. In this case, the interactions are small enough that they
can be ignored during the design phase and the resulting coupling in the structure
will have only a small influence on the closed loop subsystems and .an argument
about the overall stability can then be made [60]. This would be effective for a
space structure if it can easily be partitioned into the weakly linked subsystems
or appendages, an approach which is employed in reference [56]. However, these
designs are not particularly suited to systems which are strongly coupled, so the
designer is not free to arbitraily break up the plant into subsections and expect the
decentralized control design to remain stable. Some techniques have been emploved
which try to account for this coupling [54], but the resulting design tends to expend
a large amount of control effort just trying to decouple the systems. Some emphasis
has also been placed on the design of decentralized controllers to supplement the

damping of the structure {3,33,39,54,61]. Young [71] introduces a very interesting
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decentralized control technique called controlled component synthesss. It is based
on the familiar component mode synthesis (CMS) method of modelling structures.
The idea is essentially to develop controlled components of the structure which can

then be assembled into the full model using the standard CMS techniques.

Another approach is to incorporate two levels of controllers. This type is com-
monly referred to as hserarchic control architectures. Examples exist which em-
ploy these controllers for large scale systems like traffic patterns or power stations
[15,43,62]. These designs typically have two levels of controllers, though many lev-
els could be used. The control tasks are split so that the lower level performs the
“daily” tasks, while the higher level performs the job of “coordinating” the activi-
ties of the lower controllers with a more global picture of the performance in mind
[15]. Reference [23] proposes a two level approach for the control of LFSS. The
resulting control design is essentially a decentralized control architecture which em-
ploys a second level to eliminate some of the spillover effects. The resulting lower
control design procedure is a succesive loop closure, and the function of the cen-
tral computer is to employ residual mode filters which counteract the effects of the

observation spillover.

References (18] and [64] develop a structural model reduction technique which is
interesting in terms of this work since the reduction is also done in a manner which
complements the structure of the plant. Krylov vectors are introduced as a type
of static mode, and these are used in a parameter matching algorithm to develop a
good reduced order model of the lower frequency modes of the system. It is shown
how these vectors can be generated to eliminate the control and observation spillover
from the residual system, so that the resulting closed loop system is a combination
of the smaller closed loop systems coupled only through their dynamics. A similar
approach based on aggregation using the sensor and actuator influence functions as
the transformations is developed by Yam [69]. Using these functions, it is shown that

the control and observation spillover can be eliminated between the aggregated and
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residual systems. The control design is then done for the reduced order aggregated
system, and then applied to full system. The influence of the control through the

dynamic coupling of the two systems is investigated using a perturbation analysis.

One other important technique, which also employs a division in the control
effort, is the High Authority/Low Authority [HAC/LAC] control design [3,27]. The
degree of authority is a measure of the influence of the controller on the structure.
The typical influences of the two control levels are shown in Figure 1.2. The objec-
tive of the LAC is to supplement the natural damping of the structure by providing
some active damping at colocated sensors and actuators, thereby reducing the pos-
sibility of destabilization due to control and observation spillover (it increases the
damping ratio for the region of uncertainty above zero). In this way, the LAC loop
enhances the stability characteristics of the structure, see reference [6|. Research
by Bernstein [10] on the control of uncertain systems has shown that the optimal
control design approaches that of rate feedback for the higher frequency modes.
Consequently, including the LAC offsets some of the uncertainties in the plant
model. The HAC loop is designed to meet the performance specifications for the
plant. Any design technique can be employed at this level. Reference [27] employs
a frequency shaped cost functional approach, but the designer could just as easily
employ a modal space controller [45]. An important characteristic of this architec-
ture is that there is no coordination between the control effort of the two levels.
The input/output requirements of this approach are the same as those for a single
central controller as the HAC loop generally will require all of the measurements to

determine the control forces.

The control approach to be discussed in this thesis is also hierarchic in nature
[29]. It is specifically developed for intelligent structures which have many densely
packed actuators and sensors. The feasibilty of such structures is made possible by
the development of small piezo-electric actuators and other forms of sensors that

are suitable to be directly imbedded in a composite structure reference [21,22]. In
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Figure 1.1: A typical HAC/LAC design.

fact, it is explicitly assumed in this analysis that there are enough actuators on
the structure that a model condensed to this size would still accurately reflect the
dynamics of the structure, at least for the lower frequency modes. A typical example
of the applicability of this control architecture would be the shape control of a mirror
surface whose back surface is covered with these piezo-electric actuators. In contrast
to some of the other techniques already discussed which are aimed at controlling
strectural vibrations with only a few actuators and sensors, in this research it is
assumed that there are hundreds or thousands of these devices on the structure. In
this case, efficiently handling the amount of information available to the controlle:

becomes an important issue.

The aim of this hierarchic architecture is to take advantage of the number of
actuators and sensors and to distribute the control function between two types of
controllers. This will reduce both the computational burden and the input/output
requirements of any one processor. This is done in a way which complements the

dynamic behavior of the plant, so that the processing is distributed to reflect the
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physical distribution of the information flow in the structure.

As mentioned, the hierarchic architecture considered here consists of two lev-
els, though reference [48] discusses the possibility of extending this to several mcre
levels. As will be discussed in detail in Chapter 2, the first level consists of many
regional processors which interface with the actuators/sensors in separate regions
of the structure. The control at this level is regionally banded so that the proces-
sors are, in some sense, independent. This will be discussed in far more detail in
Chapters 2 and 3. The second level consists of a global processor whose task is to
coordinate the lower level controllers and perform the “global” control functions. In
this implementation, the emphasis is more on the performing of the global control
functions, as little local coordination will be required. In this way, some of the
benefits (par-llel in nature) but not the all of the disadvantages (retains a lot of
global control authority) of both the centralized and decentralized schemes have

been incorporated into one architecture.

The hierarchic control architecture that is discussed in this report is an improve-
ment over other technique because it allows the designer to perform independent
control development at the global and local levels, not just successive loop closure.
It also allows for a far more sophisticated inner loop, a point that is the major theme
of Chapter 3. The key benefit, though, is in the way that the measurements are pro-
cessed. The information is independently aggregated by the local controllers at the
lower level and then a reduced subset is passed to the central processor. This proce-
dure will be discussed in far more detail in Chapter 2. Finally, this method provides
virtually equivalent performance to the Linear Quadr-tic Regulator (LQR), but it

is implemented in a much more computationally efficient manner.

Most of the ground work for this control architecture is detailed in references (48]
and [67]. These cover the initial investigation of the computer structure and the
ability of this control architecture to meet the specified performance objectives. The

aim of this research was to expand the original control design and relax some of
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the restrictions placed on the structure and the approach. The main emphasis has
been on developing a set of local controllers which meet various conditions on the
amount of information that is available. The final goal of the research effort is to
be able to make a decision about which form of the local controller to employ based
on a cost analysis which incorporates both the implementation and control issues.
With this in mind, the various forms of the local controller are analyzed in terms

of both their performance and communication requirements.

1.3 Overview

Chapter 2 presents an outline of the hierarchic control architecture. The decou-
pling of the structure into two subsystems is presented, as are the equations for
implementating the two controllers. Various methods for reducing this coupling are
also discussed. The final architecture is shown in Figure 2.4, The chapter then

concludes with an outline of the design algorithm.

The purpose of Chapter 3 is to investigate several designs for the local controller.
The four cases introduced are distinguished by the restrictions placed on the amount
of information available for the calculation of the commands. The most basic design
only allows colocated feedback at the local level. The next level of sophistication
allows sensor to actuator feedback within a restricted neighborhood of the plant.
The two remaining designs then relax this restriction even more so that adjacent
processors can communicate directly. Several numerical examples are given for these

local controllers.

Chapter 4 presents an example to show the high level of performance that can
be obtained with this hierarchic architecture. The model used in this chapter is a
long uniform beam. Several implementation issues are also addressed. Also, the

performances of several local controllers are compared.

Chapter 5 discusses several other issues concerning the implementation of this
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controller, the most important of which is the operations count for each type of
local controller. Finally, Chapter 6 discusses the contributions of this research and

suggests several possible extensions.
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Chapter 2

Hierarchic Control

2.1 Introduction

The purpose of this chapter is to provide an overview of the development of a two-
level echelon hierarchic control methodology for implementation on Flexible Large
Scale “Intelligent” Structures. An intelligent structure is defined here as being one
which has a high density of sensors and actuators, and even possibly microcomput-
ers. This discussion will concentrate on the development of the control architecture
and the assumptions about the structure. The rest of the chapter is organized
in the following manner. The division of control authority between the two lev-
els is outlined in Section 2.4 after a brief discussion of the overall architecture in
Section 2.2, The purpose of Section 2.3 is to analyze the technique of mass conden-
sation which is employed to eliminate the un-actuated states from the structural
model. Sections 2.5 and 2.6 discuss ways to reduce the coupling between the two

design models, the final section presents the algorithm for the control synthesis.

As a basic overview of the architecture, a schematic is shown in Figure 2.1. At
level one, the local controllers sense and actuate on the structure directly, commu-

nicate the reduced information set to the global controller, and perform the local
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control. At the second level, the global controller exchanges information directly
with the local controllers, and it performs the global control tasks. There is also
the possibility that the local controllers are linked at level one and that some form

of communication is feasible.

Most of this work was originally presented by Hall et al. in reference [29] and it
follows from the original work by Ward in reference [67]. The goal of this chapter is
to show that this control architecture provides a feasible way to mcet the required
performance specifications and that it offers several benefits over other methods of
controlling the vibratory motion of large structures, especially as the number of

sensors and actuators becomes very large. These advantages will be discussed as

the architecture is developed.

2.2 Architecture

The fundamental idea behind the hierarchic control formulation presented here
is to develop a parallelism between the element/global hierarchy of a structural
model and the regional/global hierarchy of the active control. In structural dynamic
analysis it is not uncommon to model elements or components of the structure in
detail, and then, by techniques such as component mode analysis or condensation,
extract from the detailed local models that information which governs the overall or
global motion. In a parallel manner, local controllers should be able to regulate the
detailed behavior within a component or region, while the coordinated effort of a
global controller regulates the gross or overall motion. From a physical perspective,
just as short wavelength disturbances are propagated in a structure locally, the
short wavelength control is performed by the local controllers. As it is possible for
long wavelength disturbances to develop into modes, there is a global controller for

control of the overall motion.

The point of departure of the structural modeling is assumed to be a condensed

27




"[013U0 dIydresay
Jo uonejuawaiduy ayy 1oy 2an329q1ydIe Yorqpaay U093y [PA3[-0M} Y :['Z dinBig

18jj05)u0)
Z21iene [eqoio

28

Jojionuo) Jejjonuo) Jejjonuon
A8
L18AST [edoq oo {8007
- eJnjonug 7
2 %4,

_ il N 0B B N BN A EE B D BN BN OGN BD B B e s




1

finite dimensional model of the structure and its associated degrees of freedom ¢, see
Figure 2.2. This condensation procedure will be outlined in the following section.
The purpose of this step is to produce an fairly accurate model of the structure
which has an actuator and sensor at each structural node. In this way, both the
measurement and control influence matrices to be introduced in Section 2.3 are of

full rank.

The coarser or global model represents the structural motion by the displace-
ments g, at discrete node points located at the boundaries of the finite control
elements. The global displacements are related to the degrees of freedom of the
original finite dimensional model by the element interpolation functions (e.g., T};),
in a manner discussed below. Likewise, there are forces Q in the original model as-
sociated with the degrees of freedom ¢, and global forces Q, which can be thought

of as acting at the global node points.

The corresponding division of control functions in a two-level hierarchic con-
troller is outlined in Figure 2.3. The global controller is responsible for implement-
ing control functions based on the global states zT = [¢T ¢T]. The objective of
the global controller is to control the overall behavior of the structure. The three
basic tasks which are involved in implementing the global control are shown in
Figure 2.3: the measurement aggregation, which reduces the measurements y into
measurements of the states in the global model z,; the computation by the global
controller of the global control commands Q, based on the global states; and the
distribution of the global control which calculates the physical control forces u, to
be applied to the structure. Note that both the measurement aggregation and the
control distribution require communication with the structure through the local
controllers, so that these functions are performed cooperatively between the global

and regional processors.

There are a number of regional controllers, each associated with a finite control

element. Each operates on the residual e, the difference of the actual local mea-
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surements y and the interpolation of the local estimates from the global states z,.
The specific objective of the regional controller is to perform inner loop compensa-
tion within each region on this residual in order to force the structure to track the
behavior expected by the global model. The residual controller calculates control
forces u., which are then spatially filtered to ensure that the global modes are not
excited by the residual control. It will be seen that this spatial filtering is more eas-
ily accomplished by a cooperative effort between the global and regional processors
than by the regional processors alone. The resulting control command, u,, is added

to the global control u, to form the total control command u to the structure.

2.3 Mass Condensation

As was mentioned in the previous section, a condensation procedure is employed
to eliminate the unactuated states from the evaluation model. This section will
introduce two condensation techniques. It will be shown that the appropriate one

to employ depends on the form of the mass matrix.

For large scale examples, it has been common practice [2,44] to use the approx-
imate lumped form of the mass matrix for the finite element method (FEM) of
modelling structures. The assumption here is that the structure can be represented
as a collection of point masses with no moments of inertia. The mass matrix then
takes the form of having the lumped masses as the diagonal elements for the trans-
lational degrees of freedom and zeroes for the rotational ones. Zero entries along
the diagonal of the mass matrix correspond to displacements which are not critical
to the problem and can be eliminated. This technique is particularly useful for the
reduction of the size of an eigenvalue problem. It is noted that this procedure, called
static condensation, is as accurate as the assumption that the lumped mass matrix
is a good approximation of the consistent mass matrix, as no extra assumptions are

made beyond that point. How accurate a model this approximation can provide
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will be discussed in Chapter 4.

There is also a similar approach when the inertia forces of a subset of the states
can be considered to be far more important than those for the rest of the states.
This distinction between master (the former set) and slave (the latter) coordinates
was first proposed by Irons in reference [31]. This procedure is also commonly

known as both mass condensation [44] and Guyan reduction [28].

As detailed in reference [31], slave displacements should be selected as those
states which are associated with areas of high stiffness and low mass. In particular,
the rotational degrees of freedom of a beam or a plate are given as good examples

of slave degrees of freedom.

The basic argument is to ignore the inertial forces on the slave degrees of freedom
and to assume that they are in static equilibrium. This is equivalent to assuming
that the potential energy of the system has a minimum with respect to the slave
displacements. Since the elements of the mass matrix for the slave degrees of free-
dom are small but not zero, this assumption is only approximately valid, so an error

is introduced at this point.

Reordering the states of the original model and grouping them as master and

q= [ om ] (2.1)
%

and the potential and kinetic energies can be written as

slave yields

V = %qTKq (2.2)
T = %qTMq (2.3)

where the system mass and stiffness matrices can now be partitioned in the following

symmetric forms

Kmm K

K = mnoom (2.4)
Kin K,
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Mmm Mmc
M = (2.5)
Mcm M‘l

where (-),m = (-)%,. Then, assuming equilibrium, and taking the first derivative of

the potential energy of the system with respect to the slave coordinates yields the

following constraint
av

dq,

= KymQm + Kch =0 (26)

This constraint equation allows the full set of states in Equation 2.1 to be expressed

in terms of only the master degrees of freedom using the transformation

! (2.7
-K;'K,m '

C =

where the inverse of K,, is assumed to exist. This would be expected to be the case
since the master degrees of freedom are assumed to contain sufficient information
to model the rigid body modes of the plant. The resulting condensed mass and

stiffness matrices can then be obtained in the following way:

Kni =CTKC = Kpm— KmK;'K,m (2.8)
Mcond = CTMC

Mmm - KmJK;.lMam - MmaK:,lKam
+Kme K MWK Ky (2.9)

As is discussed in [44], this is an approximation, and it can be shown to be equiv-
alent to ignoring the terms in the expansion of the eigenvalue problem Ku = AMu
which are of order A? and higher. This approximation is valid for low frequencies
only if the coefficients of these terms are small compared to the condensed mass
and stiffness matrices. This is true if the slave degrees of freedom are associated
with states that have low mass and high stiffness. Although it was not shown here,
the form of the stiffness matrix is the same for the mass and static condensations,

which indicates that no information has been lost in the stiffness terms. However,
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it can be seen from Equation 2.9 that the condensed mass matrix now includes
information from the stiffness matrix so the eigenvalue problem has been changed
slightly. In reference [28] it is reported that the resulting eigenproblem is closely but
not exactly preserved. Archer [2], does a comparative analysis of the accuracy that
can be achieved by condensing out certain degrees of freedom of the structure. In
particular, the rotational degrees of freedom of a free-free beain are condensed out.
The results of the tests seem to indicate that the agreement between the condensed
and consistent models are very good for the lower frequency modes. These results

will be discussed in more detail in Chapter 4.

2.4 Defining the Global and Residual Coordinates

In view of the architectural objectives, it is necessary to derive a partitioning of the
structural dynamic model which achieves the greatest possible dynamic decoupling
of the global and residual models. The first step is the suitable definition of the
global and residual coordinates. The dynamics of the structure are first represented
in the form of an evaluation model which contains all of the degrees of freedom of
the system. Following the format of the previous section, the state vector ¢ is then

partitioned into two s. bsets, namely the master and slave coordinates, so the state

equation becomes

= u (2.10)
Mlm MI.

Mpm Mp, dm + Konm Kome am v
5- Kam K,, q, 0

where it is assumed that only the master states are actuated upon directly.

Employing the technique of mass condensation and noting that

v
cT =V (2.11)
0

the condensed dynamics of the structure can then be represented by an undamped
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finite dimensional model of the form

Meonad + Keondg = Yu = ¥(u, + u,) (2.12)
where ¢ € R" is the vector of the generalized coordinates, u € R™ is the vector of
control inputs, M € R™" is a symmetric, positive definite mass matrix, K € R™*"
is a symmetric, positive semidefinite stiffness matrix, and ¥ € R™*™ is the control
influence matrix. Note that, because of the form of the design model discussed in
the previous section (i.e., a condensed model), complete measurements of all states
(¢ and §) are available, and the system has as many non-redundant actuators as

generalized coordinates (i.e., ¥ is square and full rank). The subscript (-)conq Will

now be dropped for notational convenience.

The coarser or global model is assumed to have n, degrees of freedom, and
associated interpolation functions, represented by the matrix T, € R"*™. Then
the actual displacements are a sum of the interpolated displacements of the global

model and a vector of n residuals
g="Tyq,+ ¢ (2.13)
where ¢; € R™, and e € R". For any set of actual displacements ¢ and assumed

interpolation functions T, ¢, can be defined so as to minimize a weighted quadratic

of the residual error
J=eTWe (2.14)

where W is an appropriately selected positive definite weighting matrix. Although

there are n entries in e, there are only n, = n — n, independent degrees of freedom

. designated g¢,, so that ¢ may be expressed as

e =Tq, (2.15)

where T, € R™"™ is yet to be determined. The actual displacements can then be

expressed in terms of the global displacements and the residual coordinates as

q
q=T,q,+Tyq, = [ T, T. ] ! (2.16)
g
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The condition that g, is defined so as to minimize Equation 2.14 establishes that

the global degrees of freedom are related to the original degrees of freedom g by
-1
g = (TTWT,) TTWq =T;%q (2.17)

where the superscript (-) =% denotes the left pseudoinverse of (-). The global degrees
of freedom determined by Equation 2.17 will produce the best weighted ieast squares
fit to the actual displacements. By substituting Equation 2.16 into Equation 2.17,

or equivalently, using the optimal projection theorem [32], one obtains
T/WT, =0 (2.18)

indicating that the two subspaces spanned by the columns of the matrices T, and
T, are orthogonal with respect to the weighting matrix W. The substitution of
Equation 2.17 into Equation 2.13 yields this expression for the residuals e in terms

of the displacements ¢

e=(I~T,T;%)q (2.19)

Similarly, the expression for the residual degrees of freedom ¢, in terms of ¢ is given

by

=T Lq (2.20)

T, may be determined by a number of methods, e.g., by performing a Gram-
Schmidt orthogonalization on any set of n, columns that, when combined with the
columns of T,, form a linearly independent set. Note, however, that the columns
of T, are not unique; the only requirement is that they span the subspace that is
orthogonal (with respect to the weighting matrix W) to the column space of T,.
Furthermore, it will be seen that in many cases it is not necessary to calculate 7,

in order to develop the hierarchic controller.

37




2.5 Decoupling the Control/Structural Model

Having established the relationships among the various representations of the de-
grees of freedom g¢, g¢,, ¢,, and e, these relationships can be used to analyze the
extent to which the dynamics of the global and residual degrees of freedom’s can
be decoupled. To examine the subspace coupling, Equation 2.16 is substituted into

Equation 2.12 and pre-multiplied by [T, T;|T to give

[T, T,]TM[T, T,} :’ +[T, Tr]TK[Tg Tr} :v}z
[T, T, ]T$If(u,+u,) (2.21)

The degree of coupling in each of the three terms of Equation 2.21 can now be
examined. The first step is to expand the control influence terms on the right hand
side. Thé inputs u, are the physical forces based on the n, commanded global
forces @, each associated with a global displacement g,. The global forces Q, are

distributed into the physical inputs u, according to a relation of the form

u, = S,Q, (2.22)
where S, is the global force distribution matrix. Assuming that a global state

feedback law will be derived by an appropriate method, the global forces are given
by

Qg = —Fyq, — Fy4, (2.23)

The residual control forces will similarly be commanded (within a finite control

element) by the residual controller. The physical forces will be distributed as
u, = S,Q, (2.24)

where Q, is the vector of the n commanded forces associated with the residuals
e, which are of course related to the residual degrees of freedom ¢, through Equa-

tion 2.15. Assuming a state feedback law for the residuals given by
Qe = —F.e— Fé (2.25
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completes the description of the control inputs.

The nature of the coupling of the global and residual degrees of freedom’s can

be evaluated by substituting Equations 2.15, 2.22, 2.23, 2.24 and 2.25 into Equa-

9% | _
qr

tion 2.21 giving

TTKT, TTKT,

TIMT, TIMT, || §,
TTKT, TTKT,

T,T VS, F, T,T VS F,T, d T,T VS, F, T,T VS, F.T, dq (2.26)
TTVS,F, TTVS.F,T, ar TTVS,F; TTVS.F.T. dr '
or, equivalently
M,, M, gy + Ky Ko % | _
Mrg Mrr 6!’ Krg Krr qr
_ Fy Fp % | Fyy Fyi dy (2.27)
F, rg F, re qr F, rg F, rf q.r

Equation 2.27 should now be examined in light of the stated objective of minimizing
the coupling between the global and residual systems. There are four matrices in
Equation 2.27 which must be decoupled, although the two control influence matrices

on the right hand side are of very similar form.

By comparing the off-diagonal blocks of the transformed mass and stiffness ma-
trices with Equation 2.18, it is clear that the appropriate choice of W in the def-
inition of g, can cause either the off-diagonal terms of the mass or the stiffness
matrices to be driven to zero. Choosing W to be M would inertially decouple the
residuals, whereas choosing W to be K would elastically decouple them. In that M
is positive definite it is the preferred choice. Furthermore, the selection of W equal
to M would cause Equation 2.18 to resemble the primary orthogonality relation of

the dynamic system.
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The choice of the defining weighting matrix W to be M identically sets M,,
and M,, equal to zero, thereby block diagonalizing the transformed mass matrix of
Equation 2.27. However, to some extent, it also diagonalizes the stiffness matrix.
In the ideal case, the n, modes of the original system can be exactly represented by
g, coordinates and their associated shape functions T, such that all of the modes

can be given by

A, ©
d= [T, T,] ! (2.28)
0 A,

where ® is a n X n matrix of eigenvectors of M and K, A, is an n, X n, matrix of
coefficients and A, is an n, x n, matrix of coefficients. In such a case, T, contains

the exact shapes of n, modes, and
T KT, = K, =0 (2.29)

In the less ideal case when T, closely approximates a subset of n, modes of the
original system, the off-diagonal terms of the stiffness matrix K, are small compared

to K,, and K,,. Clearly, this is a desirable property to have in the shape functions.

The matrices on the right hand side of Equation 2.26 can be block diagonalized
by proper choice of constitutive matrices. Examining the lower left hand term F,,
(or equivalently F,;), which expresses the spillover of the global control into the
residual model, we have that

F., = TTUS,F, (2.30)

T, has been established by the initial choice of shape functions and Equation 2.18,
and ¥ by the location and type of the actuators. One would prefer not to place
restrictions on F, or F, which would complicate the subsequent control design syn-
thesis. Therefore, only the form of the global force distribution matrix S, can be
specified so as to drive this term to zero. In the case of ¥ invertible, a sufficient

choice is

S, = V"' MT, (2.31)
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which has the units of mass. A rationally normalized sufficient choice is
S, = U MT, (TTMT,) ™ = w1, 47 (2.32)

where the superscript (-)~T denotes the transpose of the left pseudoinverse. Sub-

stituting Equation 2.32 into Equation 2.22 gives
Yu, =T, 17Q, (2.33)

The implication of this equation is that the n, global control forces are distributed to
the n actuators using the same shape functions and weighting matrices as are used
in aggregating the information of the n sensors to form the n, global displacements
in Equation 2.17. This symmetry of global state aggregation and global control
distribution results from the requirements that the global and residual degrees of

freedom be uncoupled, both in the inertial term in the dynamics equation, and in

the feedback term.

The upper right hand entry F,, which expresses the spillover of the residual

control into the global modes, is
Fy = TI¥S,F.T, N, (2.34)

Again, T,, T, and ¥ have already been prescribed, so a proper choice of S, coupled

with a form of F, must be made to drive this term to zero. One sufficient choice is
S, =¥ MTTT (2.35)
which parallels Equation 2.31. Similarly, a normalized version of this is

Se = U IMT,(TTMT,)'TT = 91T LTTT (2.36)

At this point, all of the coupling terms of Equation 2.26 have been examined.
The choice of W to be M in Equation 2.14 plus the expressions in Equations 2.32
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and 2.36 reduce Equation 2.26 to
M, O g " Ky Ko
0 Mrr ar Krg Krr

94
ar

where the mass and control influence matrices are completely uncoupled, and the

g
F, ©
0 TTFT,

% ] (2.37)

0 TrT.FeTr q.r
stiffness matrix is uncoupled to the extent that T; models n, of the modes of the

original finite dimensional system.

The effect of the global and residual control on the original finite dimensional
model can also be determined by substituting Equations 2.17, 2.20, 2.22, 2.23, 2.24,
2.25, 2.32, and 2.36 into Equation 2.12 to obtain

Mi+Kq= — {T;XF,I;" + T/XTTR.TT b g
{T;¥ Ryt + TP TP RIS M (2.38)

The physics of the control decoupling can be seen by examining the first of the two
terms on the right hand side of Equation 2.38. Examining the terms in detail, the
role of T, L is to aggregate or average the elements of ¢ to determine the global
coordinates g,. Multiplying by the matrix F, produces the global forces @, (due to
displacement feedback), which are then distributed by T, %T. The roles of T,, T, %,
and F, are similar in the residual subspace. T, "L aggregates the measurements to
form the residual coordinates ¢,, and then T, redistributes them to form the vector
of the residuals e. F, then multiplies e to produce the residual forces Q.. Finally,
T-LTTT acts as a spatial filter, which produces forces which affect only the residual

degrees of freedom ¢,. This may be seen by use of the identity
TT;Y=1-T,T; - (2.39)

That is, T, XTTT is a projection matrix which, when multiplying Q., eliminates

those components of force which affect the g, subspace.
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An alternative way to write the first term on the right hand side of Equation 2.38

is to use the relation 2.39 above to give
Yu, = — (TS FT7 5 + (I~ T, TR R - T,T; Y } g (2.40)
which suggests the architecture in Figure 2.4. (u, is that part of the control u due
to feedback of ¢.) Loop “o” is the process by which the global motion is filtered
from the overall motion to form the residual (observation filtering). Loop “c” is
the process by which the global component is filtered out of the residual commands
(control filtering). Also shown in the figure is the distribution of the computing
resources between global and residual controllers. Note that in this architecture,
there is never a need to explicitly calculate T, or to determine ¢,. Also, note that
the processing is performed in such a way that the residual processors carry out most
of the calculations in parallel at the local level, with the global processor performing
control only on the global states g,, as well as communicating this information to
the residual controllers. It is interesting to note that Equations 2.38 and 2.40 show
that the combination of the two sets of gains and the control architecture generate

full gain matrices which have a specified internal structure.

At this point, this control architecture can be compared to the HAC/LAC design
discussed in Chapter 1. A comparison of the control architectures for the two
designs is shown in Figure 2.5. The first point to consider is one of the key issues of
this control design. The assumption that the structure is “intelligent” implies that
there are many sensors and actuators for the controller to govern. The advantage
of this hierarchic control architecture is that the work load is separated between the
two levels. The measurements are aggregated before any communication with the
global processor is performed. This step can be implemented efficiently because the
local controllers are distributed in such a manner as to complement the dynamic
behaviour of the structure. The work at level one is also done in parallel which is the
most efficient way to organize the effort. This aggregation procedure is split between

the two levels so that each controller is only required to act on the information that
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Figure 2.5: A comparison of the control architectures for the
HAC/LAC (a) and hierarchic control designs (b).

is has directly available, a point which will be addressed in Chapter 4 when some
of the implementation issues are discussed. In contrast, the HAC/LAC design will
typically require all of the measurements to be transfered directly to the central

computer to allow the commands to be calculated.

Another important issue involves spillover. Through the assumptions made
about the plant, the observation and control spillover can be eliminated in the
hierarchic design by adding the extra filtering arms in the loops. It is these two
extra paths which differentiate the architectures in Figure 2.5. Since the global and
residual subsystems are not completely decoupled, dynamic spillover will still exist.
However, it is possible to modify the design to reduce the influence of this affect,
see Section 2.6. The resulting architecture allows for independent control design
at each of the two levels. In contrast, Figure 1.2 in Chapter 1 shows that typical
HAC and LAC control designs overlap. This means that direct control spillover can

occur.

Another point which is apparent from Figure 2.4 is that it would be beneficial
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if the two control loops could be operated at different frequencies, since they are
primarily targeted at different frequency modes of the vibratoion. However, it can
be seen that the loops are not entirely independent, as the observation and control
filtering loops should also operate at the higher rate. However, it is possible to
implement them at the slower rate and accept a degradation in performance. This

will be discussed in more detail in Chapter 5.

The transformed and untransformed state representations (Equations 2.37 and
2.38 respectively), which include the coupled residual and global control, have now
been developed. The two remaining key questions are: (1) how to choose the shape
function T}, so as to minimize the the stiffness matrix coupling; (2) how to synthesize

the global and residual control to be regional in form.

2.6 Alternative Choices for the Element Interpo-

lation.

A key issue that must be recognized at this point is that the number of global degrees
of freedom and the shape functions must be selected to provide a good model of
the important modes of both the open and closed loop systems. For the vibration
control work performed here, this will typically be the set of lower frequency modes.
Though it will depend on the performance requirements of the closed loop system,
in general, it is not enough to choose the number of global degrees of freedom purely
on the basis of providing a good model for the open loop modes. The number of
degrees of freedom must also be selected so that the global controller has sufficient
authority to place the “important” closed loop poles at the desired frequencies and
damping ratios. The importance of a particular mode to the global cost function
can be analyzed using the modal cost analysis by Skelton [63]. If the global model

is made too small and does not acurrately reflect all of the important modes, then
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the closed loop performance will be poor.

In forming Equation 2.16, several alternatives for the choice of T, have been
developed with the aim of minimizing the K, stiffness coupling term between the

two subsystems.

Alternative 1. The first alternative to be considered is the option of keeping
fewer modes in the global model than there are global degrees of freedom. This
follows directly from common experience with finite element models in that, at
best, the designer can have confidence in only the lower half of the modelled modes,
and in general, the number is usually significantly less than this. In the model
of the structure which includes only shapes which can be built up from T, some
of the modes of the original finite dimensional system will be well modelled, but
some (generally the upper frequency modes) will be modelled more poorly. Since,
in general, the degree to which K, approaches zero depends on the ability of T, to
represent a subset of the modes of the original finite-dimensional model, it may be
desirable to reduce the number of modes retained in the global model (n;) to a value
less than n,, while keeping the number of global degrees of freedom at n,. As in
the discussion above, note that retaining only the lower frequency set of the global
modes effectively reduces the bandwidth of the central controller and reduces the
control authority. There may be a performanc.e penalty associated with this step if

the bandwidth is made too small.

The displacements of the original finite dimensional model were expressed in

terms of the global displacements g, and the residuals e as
g=Tyq,+e (2.13)

In this first alternative, let g, be expanded by the modes of the global model

aw=[4 o] [ :‘ } (241)
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where (-)! refers to the lower (in frequency) set, and (-)* to the upper set. Substi-
tuting Equation 2.41 into Equation 2.13,
. (] u 6:
g=T,| ¢} ¢ .| Te (2.42)
&
If only the lower modes are to be maintained in the global model, then the upper

modes can be considered to form a part of the residual, so that

q= T0¢ly£: +em = Tylfz + Trlq"n (2.43)

where Equation 2.43 now parallels Equation 2.13. Minimizing the quadratic of the
new residual e,, weighted by the mass matrix yields the appropriate definition of

the lower global coordinates
¢ = (TIMT,)” TIMq
= (@) 27z, (8))” (4)" 77 Mq (244

All of the previously derived results can now be used in this variation, with the

expression for the modified interpolation functions

T = T,4), (2.45)

substituted for T,.

A way to implement this alternative is shown in Figure 2.6. This can be com-
pared with the original setup in Figure 2.4. The implementation of these two
alternatives are compared in Table 2.1. These results show the difference in the size
of the matrices used in the aggregation and control distribution steps. An anal-
ysis of the difference in the computational requirements for these two methods is

performed in Chapter 5.

Alternative 2. Recall that we are trying to select interpolation functions T,

in such a way that the coupling through the stiffness term K|, is reduced. A direct

48




‘[Ppour 9Y) ul paulejal
alam jey) sopoui [eqod jo 19s 3y} sjuasaidos nﬁ XUIJeul 3y J, ‘paurejals
aIe sapoul [eqo[3 9y} Jo [[e 21dym p°Z 9in31 ] ul ased ay3} 0} paredurod
9q ued SsIYJ, ‘paule)al ale [ppow [eqo[3 3y} jo sapow Louanbaiy 1amo|
u 3y} A|uo aI3ym Ised 3Y} J10J AINIINIYdIe [0JJU0D DIYdIeldly Y], 9°g 21ndig

[ 6,8 (0 6,08 (6,\\0
NIRRT ()] m—r) (™ ()
4. 4 + Yy I- 4
1e§onu00) by Aw&
feqoto T 1
T -] [ ]
‘ ‘ ..O-&Q.— -O..&Q.— m
5
T.n»_ _ _ 9, s % n
sejonue)
feuoibey N .
O 3
b +
oY
I. ]
ampng -




Table 2.1: A comparison of two methods of implementing the hier-
archic control architecture. The first method retains all
of the modes in the global model. The second method
retains only the n; lower modes.

Box All Dimension n; Lower Dimension
Number | Global Modes Modes Retained
1 ™ [ng X n] '™ [ng x n]
2 Mgt | mexnd [((6) M) (#)7 | fruxml
2a ¢, [ny x n)
3 T, [n x n, T, [n x n,)
4 Local control Local control
5 Global control | [r, X 2n,] Lower control [r X 2n]
6 Tr [ny X n] Tr [ng x n]
6a (T‘,)T . [y x ny
7 My} [ng x ngl 9 ((¢:) M,, ‘a) [ng X ny
8 | MT, [n X ng MT, [n x ng
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way to do this is to simply choose the interpolation functions to be the first n,
modes of the system. This will result in the complete decoupling of the global and

residual systems. That is, the original degrees of freedom may be expressed as

q = $obo (2.46)

where ¢, is the matrix whose columns are the modes of the system, and &, is the
vector of modal amplitudes. Assuming that n, of these will be used to represent

the global model, we have that
g = Boéo + P85 = 866 + €0 (2.47)

where in this case the superscript (-)! denotes t'.e lower (in frequency) set of modes.

So the lower modes now constitute the modified interpolation functions

Minimizing the quadratic error of e; weighted by the mass matrix M yields the

following new definition of the global coordinates

&= ((%)TM (%))_l (¢5)" Mq (2.49)

where the term within the inverse is diagonal if the actual normal modes are used.
In this case, the global and residual subspaces are completely uncoupled since the
off-diagonal terms of the stiffness matrix, K,,, are now zero. All of the previous

results are now valid, with T, = ¢}, substituted for T,

The difference in this second alternative is not primarily in derivation or form,
but in the computational implementation, or, equivalently, in how much information
must be passed from each local processor to the global processor. In this variant,
n, pieces of information must in general be passed by each element processor to the
global processor. In the case when tnere are fewer than n, sensors per element, all

of the measurements must be passed up to the global processor.
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Alternative 3. The final alternative in the definition of the element interpo-
lation function is to use component modes. The derivation of this alternative is
identical to the previous alternative, except that the ¢{, matrix now contains com-
ponent modes and is block diagonal. The number of pieces of information which
must be passed to the global processor corresponds to the number of modes retained

in the description of each element.

Each of these last two methods resort to the use of modes for the interpola-
tion functions which results in the loss of one of the implementation advantages
of this technique. These modes are in general non-zero over the entire structure,
whereas the standard interpolation functions of beam or rod finite element models
are non-zero only over a few elements. Consequently, the use of modes would mean
that each element controller would have to calculate the contribution of the local
measurements to each mode of the system, and then all of these would have to
be communicated to the central computer were they would be combined to form
the modal coordinates. This represents significantly more work than having each
controller only calculate the contribution to the shape functions which are non-zero
within its region. The introduction of modes as in a component mode synthesis
offers the advantage of being able to incorpor~te constraint or attachment modes
(see reference [19]) into the model, but there is a trade-off in terms of the degree of

decoupling that is required between the two systems and the increased cost of the

control calculation.

2.7 Hierarchic Control Synthesis

Having derived the options for partial or total subspace decoupling, the subspace
controllers must now be synthesized. The following algorithm is an outline of the

steps to be followed in designing a hierarchic control system.
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1. The choice of the element interpolation functions.

As discussed in the previous section, the number of global degrees of freedom
and the interpolation functions must be selected to provide a good model of
the lower frequency modes and a central controller which has sufficient control
authority to perform the global tasks. In the selection of the shape functions,
T,, the minimization of the coupling between the global and residual models
should be emphasized, and it can be checked by looking at the relative norms

of the off-diagonal blocks on the left hand side of Equation 2.26.

. Global control design.

Assume the stiffness coupling is zero (K,, = 0), and design the global control

for the global design model

Mgy + Kogqy = Qg = —Fuq, — Fyg, (2.50)

by any appropriate means. This is a simple control design because, by defini-
tion, all of the states are available to be fed back, so any full state feedback
approach can be implemented. An «pproach using a Linear Quadratic Regu-

lator will be developed in Chapter 4.

. Local control design.

Design the local controller for the residual design model so that it provides

good shape control as per the stated objectives of the local controller.

. Performance evaluation.

The performance can then be evaluated by using Equation 2.37 to measure
the influence of the dynamic spillover and the degree of suboptimal behavior
that is introduced by this coupling between the subsystems. If the coupling
is found to be too high, then some of the alternatives provided in Section 2.6

can be employed to reduce the interaction.
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Chapter 3

Local Control Design

3.1 Introduction

The architecture of the hierarchic controller was developed in the previous chapter,
and the resulting algorithm for the control design was given in Section 2.7. One
step of this procedure which remains to be discussed in detail is the selection of
the form of the local controller. The development in Chapter 2 alluded to the fact
that the local controllers should be independent in some sense. The purpose of this
chapter is to discuss this point and investigate several forms of local control which
are distinguished by the constraints imposed on the amount of information available
to calculate the command. The aim of this study will be to evaluate the trade-offs
between the improved performance as the sophistication and/or complexity of the
local controllers is increased and the implementation costs in terms of the number
of computations that are required and the amount of information which must be
transfered both internal and external to the element. This chapter will develop the
controllers. Chapter 4 will discuss their performance, and Chapter 5 will investigate

the computational aspects of their implementation.

Figure 2.4 gives the main architecture of the hierarchic controller. It can be
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seen from this diagram that the lower level controller, which acts on the residuals e,
can be viewed in a slightly different manner. By eliminating the outer loop of the
global controller, then the local controllers can be visualized as acting on q alone.
This simplifies the design procedure since the local control can be designed for the
states, ¢, and then applied directly to the residuals, e. Since the local controllers
are assumed to possess only information within a limited region, the control at this

level can be considered to be essentially a decentralized feedback on the structure.

As was discussed in Chapter 2, the main function of the local controllers is to
maintain the shape, within their region, that the interpolation of the global coor-
dinates produces. With this criterion in mind, the local controllers will mainly be
designed as shape controllers. However, it is also possible to incorporate other tasks
into the design, such as maintaining a certain level of damping in the higher fre-
quency modes. Since these controllers act only on a “short” length of the structure,
in the sense that they do not act on the entire device, they are aimed primarily at
the short wavelength/high frequency vibrations. In fact, as was discussed in Sec-
tion 2.5, the control at this level will be filtered of its low frequency component to

eliminate any control spillover with the global model.

Provided that the assumptions of an “intelligent” structure are met, then this
architecture is valid for any structure. However, for the sake of clarity, an example
of a long beam will be used where appropriate. The four local controllers that will
be examined are colocated feedback, block diagonal feedback, block tri-diagonal
feedback, and an novel implementation of the full state centralized feedback. These
were selected since they cover a large range of possible decentralized control tech-
niques. The first pair allow for an increase in the sophistication of the isolated
controllers. The second pair include two degrees of allowable communication di-
rectly between the local controllers. The following sections will discuss these types
of controllers and develop the methodologies necessary to derive the appropriate

gain matrices.
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3.2 Colocated Feedback

This type of controller was selected as the first to be considered since it is by far
the easiest to implement because it requires no communication of measurements
between any of the sensors or actutators, except for the colocated pair. In fact,
it would be very feasible to implement this form of the local control using only
analog circuits, something which becomes much harder for some of the later designs.
Analog circuitry is less flexible, but far simpler to implement and embed in the
structure. The goal of this type of controller is primarily to actively augment the

natural damping of the structure.

There are actually two forms that could be considered. The first is pure rate
feedback

u = —amg (3.1)
and the second is a combination of rate and displacement feedback commonly known
as natural control [61]

v = —F*mq — 28mg (3.2)
where m is a measure of the local mass of the structure, so that the applied force is
directly related to the mass of the structure. The additional displacement feedback
term in this second form of the feeduack has the effect of increasing the stiffness of
the structure in such a manner that, in the ideal case of continuous control actua-
tion, the closed loop poles move into the left-half s-plane with the same frequency
(complex part) as the parameter J is increased. A root locus would show the poles
moving leftward at the same complex value. The term natural control is applied to
this form of feedback as the mode shapes are not changed by the implementation
of the control [61]. In the ideal case, every closed loop pole would shift so that the

real part is at —f3. This type of feedback is also known as unsform damping.

The form of the local controller is given in Figure 3.1. The processors are

shown to be associated with each sensor and actuator pair, but this could also be
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Figure 3.1: The architecture for a local controller based on colo-
cated feedback.
implemented using one processor per finite control element. The resulting gain
matrices will be diagonal with elements which correspond to the local mass of the

structure weighted by a and § as in Equations 3.1 and 3.2.

The procedure for evaluating the gains essentially is a process of just picking the
desired decay rate. As stated, ideally each pole would move to this value of 3, but
with discrete controllers the same does not hold as some modes are more controllable
than others. The result is a non-uniform distribution about the desired decay rate,
a result which can be seen from the examples in reference [61]. For colocated rate
feedback with dual actuators and sensors, the poles and zeroes alternate up the jw
axis. Dual feedback refers to like-sensor to like-actuator feedback (i.e., velocity fed
back to a force actuator), [49]. As the gain is increased, the poles will move along
the root loci into the left-half s-plane, but as the gain is increased further, they will
eventually reverse direction and return to the zeroes on the jw axis. So the gain

must be selected with this reversal in mind. However, typically the performance
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requirement will demand only about 1 to 10 percent damping in the higher frequency
modes [20], which can be achieved with fairly small gain values. Of course, the upper

limit of the achievable performance is bounded by the actuator capabilites.

If @ and B are selected to be greater than zero (as they should be), then the
gain matrices are positive definite. Using a Lyapunov test function, which will
be discussed in Chapter 5, of the system’s energy, it can then be concluded that
the resulting system is guaranteed to be stable for feedback under these gains.
Several studies have been done [1,33] to investigate the stability and robustness of
these forms of colocated feedback. In reference [33], it is shown that both types of
feedback provide asymptotic stability, if the actuators and sensors are perfect, in
a manner which is robust to the number of modes and the variation of the modal
parameters. It is also shown that if the actuators and sensors can be modelled
as high bandwidth first order systems, then a stable uniform damping controller
can be designed as well. It was shown by Linder et al. [39], by an example on
a typical section problem, that rate feedback is a positive real controller, but a
uniform damping controller can only guarantee stability for frequencies above %
In essence, some robustness at low frequencies has been sacrificed for a higher level
of performance. This is not a major concern in this case however, as these local

controllers are primarily aimed at the higher frequency motions.

So, in conclusion, it would appear that this approach should be relatively easy
to implement, but the shape control ability of the control design needs to be inves-

tigated, and this will be done in Chapter 4.
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3.3 Block Diagonal Feedback

3.3.1 Introduction

This form of the local controller is important because, although it is an isolated
controller, it allows for some sophistication since each control command within an
element can be calculated using all of the measured information within that region
of the structure. This type of controller allows for communication within an element
but no external communication to other elements. This can pose a problem for the
control design since points which are € (i.e., both are close) on either side of a
node are equally important to the control calculation at that location, but if one
measurement is outside of the element, then it is unavailable to be used in the
calculation of the control command. Two forms of the control structure will be
analyzed. The first is a full gain matrix the size of the element. The second is a
gain matrix which itself is composed of block diagonal matrices i.e., the controller
gains have been developed for a “bay” which is smaller than the element. This

would allow for a restriction on the communication within an element.

The architecture of this type of local controller is given in Figure 3.2. The
resulting form of the gains for this case and a methodology for calculating them

will be developed in the following sections.

3.3.2 The Calculation of the Gains

Specifying the components of the state vector which can be used for the feedback
is similar to performing output feedback since the structure of the gain matrix is
being specified before the optimization is performed. The problem to be looked at

here is essentially a constrained feedback problem.

The aim is to develop a controller that can only feed back the states within

an element. If the structure is broken up into N elements, the resuiting control
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Figure 3.2: The architecture for a local controller based on block
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where ¢; and u; represent vectors of the states and control for each element, and

the F,, are block matrices. Equivalently, this can be written as

where

i

Uu=- qq—Fq'q'

T
T.,T T
[ul ,uz,...,uN]

[oF af. . aE]
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where BD(...) means that the matrix consists of the listed matrices as the elements
of the main diagonal (.e., it is block diagonal) and it is assumed that F,, are block
matrices which are the appropriate size for the elements chosen for the hierarchic
architecture. This is the specified form of the gain matrix, and it corresponds to an

extra constraint on the optimization procedure.

Due to the similarity between this work and the output feedback problem, the
equations for this simpler case will be discussed first. The results for most of
what will follow are derived in Appendix A. The standard output feedback problem
assumes that only certain states can be measured and fed back by the controller.

The system dynamics are represented as
£ = Az+ Bu (3.9)
y = Cz (3.10)
where z € R", y € RP?, and u € R™, and A, B, and C are appropriately sized
matrices for the plant. The control is taken to be of the form
u=—-Fy=—-FCz (3.11)
and the performance metric is taken to be the minimization of the cost J defined
as
=1 f ” (27 Reaz + uT Ruuu)dt (3.12)
2Jo
with the standard restrictions that R,, = RT, > 0 and R,; = RT, > 0, and the
triple (A,B,R.:%z) is both stabilizable and detectable. Then, as derived in refer-
ence [38] and in Appendix A by a slightly different method, the necessary condition

is

R FCQCT - BTPQCT =0 (3.13)
where the symmetric postitive definite matrices P and Q solve the Lyapunov equa-
tions

PAy+ ATP+ R,, —CTFTR,FC = 0 (3.14)
QAL+ A44Q+Z = 0 (3.15)
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where

Aq=A- BFC (3.16)

is the closed loop dynamics and ¥ represents the covariance of the states at the
inital condition. Note that an augmented cost L is introduced in the appendix and
it is essentialy equal to the cost J adjoined with the Lyapunov Equation 3.15 by
the Lagrange multiplier matrix P which solves Equation 3.14. There are a couple
of points to note about these equations. First, they are strongly coupled, in the
sense that each equation contains at least two of F, P, and Q. The main difference
between these necessary conditions and the more familiar ones for full state feedback
is the addition of the C matrix in Equation 3.13. Note that if C~! exists, then this
equation reduces to

R.FC-BTP=0 (3.17)

Then the solution, Q, of Equation 3.15 is no longer necessary for the solution of

Equation 3.13, and Equation 3.14 reduces to the standard Riccati equation.

In Appendix A, the necessary conditions for the case where some of the blocks of
the gain matrix are specified & priors to be zero are also developed. In this case, the
set of necessary conditions becomes Equations 3.14 and 3.15 and a third equation
which is

oL

where F; represents a non-zero sub-block of the gain matrix. What distinguishes
the two cases is that only those components of the gradient which correspond to
free parameters of the gain can be set to zero, and the rest are undetermined. So,

in this case, the augmented cost now only has a zero gradient with respect to the

non-zero blocks of F.

In reference [38] it was noted by Levine and Athans that these equations are
particularly difficult to solve for several reasons. As was discussed previously, they

are coupled matrix equations which are of the same order as the plant. There is also
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the possibility that non-optimal solutions to these necessary conditions may exist,
when a local minimum (as opposed to the global minimum) is found. From several
examples for different element sizes that have been tried for a beam, it has also been
found that the successive iteration technique outlined in reference [38] possesses poor
convergence properties as the singular values of the second derivative were found to

be much larger than one, and there was no contraction mapping.

The solution of this output feedback problem has been analyzed in many papers.
One of the most important of these contributions was by Kosut in reference [34].
This paper introduces suboptimal approximations of the optimal output feedback
gains based on projections of the optimal full state feedback (LQR) gains. These
projections are based on a weighted pseudo-inverse of the measurement matrix of
the system. This paper is important because it arises from a recognition of the
difficulty of solving the optimal output feedback problem. The major difficulty
with this approach is that the results are sub-optimal and can produce very poor
closed loop performance. However, example problems based on small scale models
have indicated that, if the “correct” information is available to be fed back, then the
suboptimal closed loop performance is a very good approximation of the optimal
results. The difficulty arises in determining and measuring the “correct” information
for a given structure and performance specification. The simplest example is that,
to be able to perform active damping, the “correct” information to be measured

and fed back is the velocity.

Many other papers have addressed the issue of a numerical solution to the nec-
essary conditions. These include discussions on topics such as the different gradient
search techniques that can be employed (see reference [14]) and how to develop
good initial guesses which are sc: critical in the solution procedure [53]. However,
any numerical approach to solve these optimal necessary conditions still faces the
problems associated with the dimension of the plant which governs the order of

the matrix equations to be solved. For any system which is large enough to be
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of interest, these equations will be of such a high order that they will be virtually

impossible to solve.

With ihis difficulty in mind, a technique will be presented here which takes
advantage of the symmetry and large extent of the structure to reduce the plant
dimension (and consequently the order of the matrix equations) to a more manage-
able level. Since the end effects for a long structure tend to be negligible in the
middle, it can be assumed that the structure’s length is effectively infinite. This
will have little influence on the results, but will help to simplify the analysis in the

following sections.

The technique employs a spatial discrete transform on the structure to decom-
pose it into many reduced order problems which are indexed by a transform vari-
able. This idea was developed by Chu [16] and expanded by Wall [66] to include
analysis of the control and estimation of large scale systems which possess spatial
symmetry. More recently, this decomposition technique has been employed in the
continuous sense in references [24,47]. The continuous approach applies a fourier
decomposition directly to the differential equation for the structure, provided that
these can be written down. The method that will be employed here actually applies
a discrete transform to a finite element approximation of the structure to create a
smaller FEM for each value of the index variable. The following sections will discuss
how this transformation can be applied to the symmetric plant, and the associated

benefits for the control design will also be discussed.

3.3.3 Transformations for Spatially Symmetric Systems

The following discussion will first of all describe the transformation which is appro-
priate for finite systems with circular symmetry which are called esrculant systems.
The aim will be to rederive the necessary conditions of the control problem in the

transformed domain. This will be followed by an extension to systems of infinite
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dimension which are known as toeplitz systems. To begin the discussion, define a

block circulant matrix [66] of order N as one that-can be partitioned in the form

]
Ay An-1 AN-2 ... A
A Ay An_, Az
A= 4, A A As (3.19)
| AN-1 AN-2 AN-s Ao |

where the A; € R™*. The dynamics of a N* order circulant system are then

defined to be of the form

& = Az + Bu (3.20)

y = Cz (3.21)

where now 4 € RN"Nn B ¢ RN»xNm_ and C € RVP*N" are appropriately sized
block circulant matrices. For now, assuvae that this model can be derived using a
finite element method and has the right circulant form. Another methed for devel-
oping the transformed model directly will be presented in Section 3.4.2. Typically,

the number of subs; ctems, N, is much larger than the dimension of each subsystem,

n.

An example of a block circulant system is shown in Figure 3.3. This corresponds
to four equal subsystems connected in a circle such that the complete system is
symmetric. There are four nodes which represent the boundaries between the sub-
systems. In the example shown, the A; correspond to the dynamic influences of the
degrees of freedom in subsystem 1 on those in subsystem 0. The important proper-
ties of a circulant system are that each subsystem has the same internal dynamics,
Ao, and the influence of any one subsystem on another is a function only of the
relative separation between the two. As presented in reference [66] and to some
extent in [16], the following discussion will show the spatial transform (actually a

discrete fourier transform) that can be used to decouple the dynamics of the system.
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Figure 3.3: An example of a circulant system. The arrows represent
the influence of that subsystem on subsystem 0.

Another definition is required to complete the process. The transformation

matrix ®; is defined to be

I‘ I‘ Ii e I,' T
L Lwy I.'w,"'v I‘.w‘v—l

= | L Lw?: Lwh L™ (3.22)
L Lwh! TwiV-1) LM D=1

where it is assumed that there are N circulant blocks in the system, I; is the (3 x 1)
identity matrix, and wy = egﬁi, i.e., the N** complex root of 1. The transformation

matrix can be expressed in a more compact notation as
(94)yy = w001 (3.23)
Note an interesting property of the inverse of ®; that

- 1 * = - 1 == -
(‘I’i l)u = b (wp) *70ED = JVI"‘"N(" 1) (3.24)
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where (-)* denotes the complex conjugate of the expression. This equation has
employed the fact that w} = wj?!, which follows directly from the definition of wy

given above. So, the inverse transformation matrix is very easy to calculate directly.

It is this ®, matrix which forms the basis of the spatial transformation. It can

be shown that if A is taken to have the form expressed in Equation 3.19, then

(4, o 0
_ ) 0 4, 0
A=9140, = (3.25)
0 0 ANn_1
where
— N_l »
4, = A wt (3.26)
=0
1 N—l_ .
Ay = =Y Auwl (3.27)
N =0

for k =0,1,...,N-1.

So, the transformed block circulant matrix is block diagonal with blocks which
are the discrete fourier transform of the top row of the circulant matrix. There are
several very important and time saving properties concerning the symmetry of the
transformed block matrices of this system which are discussed and proved by Wall
in reference [66|. Considering an A matrix of the form of Equation 3.19, then, for

instance, it is shown that

Re{z,,} = RC{IN_h} (3.28)
Im{Z} = -Im{Ay_} (3.29)

If the matrix A is symmetric, then A, = A%_, and the following identities hold

Re{ZA,} = Re{dT:} (3.30)
Im{z.,} = —Im{Fk}=Im{K£_k} (3.31)
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where the (-)¥ denotes the hermitian which is the complex conjugate transpose of

the matrix.

Having shown how the transformation can be applied to a circulant matrix to
produce a block diagonal matrix, the next step is to apply the transformation to

the circulant system defined above. Defining
T=0;'z T=9u T=8,y (3.32)

then transforming Equations 3.20 and 3.21 yields
d

az
y:

It
>

T+ Bu (3.33)

Ql

z (3.34)

where each of the transformed matrices denoted as (-) is block diagonal. Since this
means that each of the subsystems is not influenced by the others in terms of either
observation, control, or dynamic spillover, then it can be said that the transformed
systems are decoupled in this new representation in the spatial frequency domain.
These equations can also be rewritten to reflect this decoupling by expressing the

dynamics of the k** subsystem as

d —
Efk = Agfk+Fgﬂk (3.35)

. = CiZ Vke [0,1,...,N-1] (3.36)

This decoupling technique can be applied to more complex equations as well.
For example, for the steady state time invariant Lyapunov equation of the form of

Equation 3.15
AQ+QAT+Z =0 (3.37)

where A, Q, and I are all block circulant matrices of order N, and Q is symmetric,

then applying the transformation yields
3:148,8;1Q0, + 2.1Q3,.9,'AT®, + 9;'20, =0 (3.38)
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So the transformed equation is
AQ+QAT+T =0 (3.39)

Note that AT = A". Since each of the transformed matrices in Equation 3.39 are

block diagonal, then this equation can be written in the equivalent decoupled form
A4Q,+Q. A +Ti=0 Vie [0,1,...,N-1] (3.40)

where (-); denotes the +** diagonal sub-block of the matrix. This representation
means that the (Nn)®* order problem has been reduced to N, n‘* order problems.
Since the solution of a the Lyapunov equation is an n® operation, then it can be
seen that this step has considerably reduced the amount of computation required,
which is especially important considering the role of this equation in the numerical
solution procedure which will be discussed at the end of the next section. Of course,
there is some overhead involved in forming the transformed systems, but this can
be implemented efficiently as a FFT, which is an n?log, n operation [37] but need

only be performed once.

The same decoupling transformation can be shown to hold for the Riccati equa-
tion if all the matrices are block circulant. It should also be noted that R—* = B *.

The resulting transformed equation is

A'P+PA+R,.-PB"RBP=0 (3.41)
which again is equivalent to N decoupled equations. This shows how the two
Lyapunov equations of Section 3.3.2 can be transformed into the spatial frequency
domain and represented in a decoupled manner. In Appendix A, it is also shown
how the third necessary condition can be transformed as well. For the case where
no blocks of the gain matrix F are constrained to be zero, the necessary condition

can be written as

= =0 VYie [01,...,N-1] (3.42)
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which is shown in Appendix A to be equivalent to the results in Section 3.3.2. The
constrained gain case for a circulant system is also investigated in Appendix A.
Denoting the indices of the non-zero gain blocks by the set a, then it is shown in
the Appendix A and by Wall in reference [66] that the resulting necessary condition
is

Y (C:QC FI R, ~CTiQ,PiB)uwy* =0  Vke o (3.43)

=0

Then Equations 3.40, 3.41 and 3.43 represent the transformed necessary conditions
of the control problem given in Section 3.3.2 when the gain structure of Equation 3.3
is imposed and the system is block circulant. Note that constraining some of the

gain blocks to be zero recouples the necessary conditions in the transformed domain.

The extension of this work to infinite dimensional systems toeplitz systems fol-
lows from the analysis done by Chu in reference [16]. Since the system matrices
are now assumed to be infinite dimensional, the equations are best represented in
terms of summations. For a model of an infinite string of identical subsystems, the

system dynamics for the k** subsystem are given by

T = Z (Ak...-:z:.-+B,,_.-u,-) (3.44)
v = D Cizi (3.45)

for —oco < k < 0o0. These equations indicate quite clearly that it is only the separa-

tion distance k — ¢ -vhich determines the influence of one subsystem on another.

As with the circulant system, it is necessary at this point to introduce the
transformation which will decouple the equations. The format of the transformation
will be shown to be very similar to the one introduced for circulant systems, but
an important distinction will be noted once the transformed equations have been
developed. The decoupling can be achieved by employing the two-sided z-transform,
which has many applications in both digital signal processing [51] and digital control

[25]. This can be compared with the transformation for the circulant system which
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was the discrete fourier transform. The z-transform of a sequence h;, —00 < ! < 00,
is given as [25]

HZ)=Z[hl= 3 hz (3.46)

I=—00

The inverse transform is more complicated in this case as it requires integration

around a closed contour (typically the unit circle ||2||2 = 1) in the complex plane
_ -1 _ 1 f -1
hi=2Z7'[H(2)] = 2n7 H(z)z"'dz (3.47)

where the contour is taken in the region of convergence of H(z). The region of
convergence is defined to be the region of the z-plane for which the summation of

Equation 3.46 is absolutely convergent.

To apply this transformzation to the system of Equations 3.44 and 3.45, it is then

necessary to define the transform of the state vector as

X(2) = 20 _— (3.48)
Then
X(z) = é:w:b,z"
= l_f:w [.--f:w (Ai—izi + Bioguy) | 2~ (3.49)

To proceed further, the convolution property of the z-transform must be introduced

[25]

{==—00

z| & fl(i)fz(l—i)] = F(2)Fi(2) (3.50)

Applying this to Equation 3.49 and the measurement equation yields

X(z) = A(2)X(2) + B(2)U(z2) (3.51)
Y(z) = C(2)X(2) (3.52)
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where it has been implicitly assumed that these transformations exist. This will be
the case as long as the summation of Equation 3.46 is absolutely convergent which

is true if and only if [25]
00
Y |kl < o0 (3.53)

l=-00

The extension to the matrix case is simply that this condition must hold for every

element in the matrix.

These equations represent decoupled systems which are a function of a continu-
ous complex index z. This is the major difference between the circulant and toeplitz
transformed systems, since the index for the first case is only evaluated at a finite
number of points around the unit complex circle. Consequently, the two systems
will be virtually identical when the continuous index variable for the toeplitz system
is approximated at a finite number of points on the unit circle.

As with the circulant system, it is possible to set up the control problem for a
toeplitz system. The transformation can then be applied to this problem, and it is

possible to express the necessary conditions in the transformed domain. Using the

definition
1 -1
< A(2)>0= %:fA(z)z dz (3.54)

which is the zeroeth element of the inverse transformation, then, from Wall and

Appendix A, the transformed necessary conditions are
< C(2)Q(2)C(2)AF(2)F Ryu(2) >0 — < C(2)Q(2)P(2)B(2) >o= 0 (3.55)
where P(z) and Q(2) solve
P(2) |A(2) - B(2)F(2)C(2)] + [A(2) — B(2)F(2)C(2)]" P(2)+
+ Re2(2) + C(2)FF(2) P Ryu(2) F(2)C(2) = 0 (3.56)
[A(2) — B(2) F(2)C(2)] Q(2) + Q(2) [A(2) — B(z)F(2)C(2)]" + £(2) =0 (3.57)
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where it is recognized that since z will be evaluated on the unit circle, z7! = z* and
then A (2~1)T = A7,

These are very similar to the circulant equations, the major difference being that
the summation has been replaced by an integration, but this is in keeping with the
observation that one has a discrete index, and the other has a continuous one. This

integral would be approximated numerically as a summation at a discrete number

of points.

Since in general wy is a complex number, the transformed equations will be
complex. This is a problem, as it requires the solution of complex coupled matrix

equations. If the matrix A is complex so that it can be written as
A =Re{A} + jIm{A} (3.58)

where A € C™" and X,Y € R™*", then another way to represent it in terms of its

real elements is

i | Re{d} mm{4) (3.59)
—~Im{A} Re{A}

That these two representations are equivalent in the sense that they yield the same
eigenvalues and eigenvectors can be seen by noting that, if a Unitary transformation

matrix T; is defined as
1 | In In
Ty = — (3.60)
\/E [ jIn _jIn
where TH = T{!, then

A O - Re{A} Im{A
=TIAT, =TH {4} {4} Ty (3.61)
0 A* —Im{A} Re{A}
From the properties of Unitary transformations, it is then known that the two rep-

resentations of the matrix A will yield the same set of eigenvalues and eigenvectors

(50].
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This approach can also be applied to the Lyapunov equation which results in a
real representation of a complex matrix equation. Taking the standard Lyapunov
equation 3.40 with complex A;, Q,, and ¥; matrices expressed in the alternative

form given above, then the equation can be rewritten as

Re{a,,} Im{@,‘} ]+
—Im{@,‘} Re{Q,,}

Re() —tn(m} "] ne(r) (2.
(@) Refd) | *|-im() Re{m)

(3.62)
where for example, through Equations 3.30 and 3.31, the symmetry of Q requires
that

Re{zk} Im{z,,}
—Im{Xk} Re{Zg}
Re{Q,} m{Q.}
——Im{@'k} Re{@,‘}

Re{Q,} = Re{QT.}
Im{@k} = —Im{af,,}

so that Equation 3.62 can be rewritten as

T+[ Re{T\} Im{E.} ] o

(3.63)

which is now a standard Lyapunov equation of order 2n.

The benefit of this approach is that it allows standard real programs such as
reference [41] to be employed. These typically have i)een written to provide very
accurate solutions and are usually numerically robust. The disadvantage is that
the system size has doubled, so instead of N(n)3, the cost is N(2n)*, which negates
some of the benefit derived from transforming the equations, but still represents a

significant saving over the original cost of (Nn)®
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Up to this point, it has been shown how the control problems can be transformed
into the spatial frequency domain, decoupled, and reduced in dimension. For the
case where no constraints were placed on the gain matrix and all the states are
available to be fed back, it was also shown that the resulting equations are decou-
pled, but when a constraint on the allowable form of the gain matrix is imposed,
then two of the equations remain decoupled, but the third turns into a summation
over the free gain blocks. The advantage of size reduction is still retained, which
makes it feasible to employ a numerical solution procedure to obtain the optimal
gains. The purpose of the next section will be to provide a discussion of the tech-
niques that were employed to obtain the solutions of the optimal constrained gain

feedback problem.

3.3.4 An Overview of Multivariate Function Minimization

The numerical techniques that can be employed to locate the extremal values of a
multivariate function, M(z), have been well documented, for example see reference
[58]. Consequently, the aim of this section is only to provide an overview of the
techniques that were employed to find the optimal gains for the constrained control
that was outlined in the previous sections. If it can be assumed that M(z) (taken
to be the augmented cost L as a function of the gain matrix) has continuous second
derivatives, then the function may be approximated in the neighborhood of z (s.e.,

at z + Az) as
M(z + az) = M(z) + azTg(z) + %AITH(:B)A.'E ... (3.64)

Briefly, the necessary conditions for z, to be a strong minimum (assuming the cost

is to be minimized as the typical problem) of the function can be summarized as

g(z1) = 0 (3.65)
H(z,) > 0 (3.66)
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The aim here is to minimize the cost subject to the constraints imposed on
the gain matrix which have been included in the necessary conditions. The free
parameters are the elements of the gain matrix. Since the function is not in general
quadratic, the solution technique will be inherently iterative in nature, with each

step of the form
Tkl = Tk + Pk (3.67)

where z, is the current estimate of the minimum, z;,, is the updated estimate, o,
is the step size, and p; is the direction of the step at time k. Most of the notion in
this section is in the form of column vectors, but the rectangular gain matrix F can
be rearranged so that its columns are the elements of a column vector. The various
techniques that can be employed to solve for the minimum of this function are
distinguished by the method used to formulate the direction vector p;, s.e., whether
they use the first or second derivatives and whether these are found analytically or

by numerical approximation.

A typical iteration involves a line search along the direction p; from the original
estimate z; until a new minimum has been found. This new value, z;., is then used
to reevaluate the search direction, and a new line search is started. This continues
until the error in the solution of the necessary conditions is below a given tolerance
or until it is determined that no solution exists (the number of iterations exceeds a

maximum) or that an incorrect path and/or a local minimum has been found.

One of the simplest methods of computing p, is the method of steepest descent
which involves the calculation of the gradient of the function with respect to the
gain F at the current estimate. For the problem at hand, the gradient of the cost
with respect to the gain is one of the three necessary conditions and it can be
obtained analytically. Since a successful search step requires the function M to

decrease along the line, then it is required that M+, < M,, so using Equation 3.67
My = M(zi + aupr) = My + augi pa (3.68)
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as a — 0%, then it is required that

gip <0 (3.69)

simply choosing

Pe = —Gk (3.70)
will give the steepest descent direction for p;.

So, given that a direction for the line search can be obtained from the first
derivative of the function, all that remains is to determine the step size a;. This
is actually done by incrementing the value of a until a region of uncertainty can
be found. This essentially is a bracket about a local minimum of M(z) in the
direction of p;. The value of a is increased or decreased by multiplicative scale
factors depending on the perceived slope of the surface along the direction of the
line search and the function is evaluated at z; + ap; and z, + $p; until the middle
value is lower than the two extremes. Once this coarse region of uncertainty has
been located, the next step is to employ a technique to reduce the width of the
bracket. Reference [58] discusses several of these methods. Some of these methods
involve function evaluations within the bracket, whereas others employ polynomial
interpolation of the function within this small region to find the local minimum.
These latter group can be shown to have better rates of convergence, but have
the disadvantage of requiring more information per step. In the program written
for this work, a quadratic polynomial fit was selected to reduce the bracket size
as it gives a high rate of convergence. Although the line search requires repeated
function evaluations, it is found that these are a small fraction of the time required

to evaluate the second derivative as will be discussed later.

This first order method provides acceptable rates of convergence far from the
solution, but a second order method can offer much higher rates of convergence
near the minimum. One commonly employed second order technique is known

as Newton’s method. This approach is based on a Taylor series expansion of the
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gradient of the function

Gi+1 = g (T + ) = g + Hipe (3.71)

where H is the second derivative matrix known as the hessian. The motivation for
this method is to produce a step such that g;,; = 0. Of course, since the function is
not in general quadratic, this cannot usually be achieved in one step, so an iteration

is required. However, this statement is sufficient to define the current line search

direction as

0 = g(ze+p) =g+ Hep (3.72)

provided that the hessian matrix can be inverted which will generally be true near
a solution if it is a strong mimimum. This method actually gives both the direction
and the step size, but this can be modified by including a line search. For this

direction to be one along which a descent occurs, it is necessary that
—gipe=9gi Higs >0 (3.74)

which is true provided Hy > 0 and g # 0. These conditions will be met near a
strong minimum, but in general they will not be, so this method is only particularly
useful when a good initial guess exists. The main benefit of this method is that the

rate of convergence is second order, which is the fastest rate availabl. {58].

As will be shown later, the major problem with this approach is that the hes-
sian matrix is very expensive to determine numerically for a large order system,
and from Equation 3.73 it can be seen that this matrix must be inverted as well.
This poses problems in terms of the computation requirements and in terms of the
numerical robustness. These problems demand that the calculations be done to
a high precision, a fact which significantly slows down the running speed of the
program. Another major problem is that the region for which convergence is guar-

anteed for the second order technique is fairly limited. This problem can partially
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be overcome by employing a first order gradient minimization technique for the first
set of line searches until the step sizes become relatively small indicating that this
type of method is no longer effective. This in turn can be taken to indicate that
a stationary point is being approached, and a switch to the second order Newton
technique is made. Unfortunately, the first problem cannot really be avoided as the
hessian must be calculated. However, it is possible to just update the result once
the estimate is adequately close to the optimal answer using an approximate Quasi-
Newton method. Reference [58] outlines several of these Quasi-Newton methods,
but the Broyden-Fletcher-Goldfarb-Shanno (BFGS) terhnique is recommended as

the n.ost widely accepted.

For the BFGS method, the update is actually done for the inverse of the hessian
as Equation 3.73 shows that it is this matrix which is required to determine the

direction vector. So, if

H, = H? (3.75)

and
ATp = Tpy1 — Tk (3.76)
Ak = Gk+1 — Gk (3.77)

then the update equation for H x+1 18 given by

T 1T T

. azpagl | 4 AZyagl ATRAZ]
Hypy= I~ H \I - 3.78
k1 [ Azng,,] * [ Azngg] + azfag (3.78)

which is a far cheaper operation than the procedure discussed below for computing

the hessian directly.

This completes the discussion of the techniques used in the numerical solution
of the recessary conditions. The next se.tion outlines the algorithm employed to
calculate the hessian and gradient matrices which were shown above to be central to
the solution procedure. The next section also shows why the size reduction allows

the solution of this problem to become computationally feasible.
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3.3.5 Numerical Approximation of the Gradient and Hes-

sian

The analysis in this section makes frequent use of the concept of the derivative of
a scalar or a matrix with respect to another matrix. As mentioned in the previous
section, to perform this step, the matrices can be written as vectors. In this way,
the differentiation is equivalent to the derivative of a vector valued function of a
vector variable with respect to the vector. The vector representation of a matrix

will be written in lower case, so that
f = Vect[F] F = Mat[f] (3.79)

The following is a brief outline of the steps involved in the calculation of the
hessian and gradient of a function. The gradient, %%, is actually one of the necessary
conditions and it is derived in Appendix A. It is shown there that the resulting
equation for the optimal output feedback problem with no constraints on the form

of the gain matrix is

Lr = g—;=CQCTFTRw—CQPB (3.80)
L; = Vect|Lg] (3.81)

In order to be able to calculate this value, it is necessary to evaluate the current
values of P(F) and Q(F) from the appropriate Lyapunov equations which are also
given in Appendix A. These three values P, Q, and F can then be substituted into
Equation 3.80 to yield the current value of the gradient. This process requires the
solution of two Lyapunov equations to obtain the updated values. For this case, the
extension to the circulant or toeplitz transformed systems is straightforward, as it
only involves a switch to the appropriate set of necessary conditions, which are also

given in Appendix A.

However, it is far more complicated and expensive to determine the hessian of

the function. Using the definition of the gradient given above, the hessian can be
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written as

oL, oL,

[f the gradient and gain matrices are written in vector form, then the evaluation

d oL,

— = A
df(L,)Af Af+ 3p p+
of this expression will result in a symmetric matrix. The partial derivatives of the

augmented cost with respect to P, Q, and F can be determined analytically from

Equation 3.80 in the following way

OLr AP ~ Lg(P+ AP)— Lp(P)

3P
= [CQCTFTR.. - CQ (P + AP)B| - [CQCTF R, - CQPB]
= —CQAPB (3.83)

Then BTL’/-Ap = Vect[%%,lAP]. Similarly, it can be shown that

oL T or
354Q ~ 0AQ (cTFTR,. - PB) (3.84)
%LTFAF ~ CQCTAFTR,, (3.85)

which can then also be written in vector form. In Equations 3.83 through 3.85, it
still remains to determine the appropriate values of AP and AQ. It is possible to
calculate these values from the other two necessary conditions. Since the solutions of
the Lyapunov equations, P and Q, depend on F, then the derivatives of these three
variables are not independent, and the changes of the first two must be consistent
with the changes in F. This constraint can be imposed through the Lyapunov
equations by requiring that

(P+AP)[A-B(F+AF)C|+[A-B(F+AF)C|" (P + AP) + R,
+CT(F+AF)TR.,(F+AF)C=0 (3.86)

The zeroeth order (in A) expression will then just be the original Lyapunov equa-
tion. The first order expression will be a constraint equation for the change in the

P given a change in F which can be written as

APAq+ ATAP + [CTAFTR,LFC + CTFTR,LAFC| =0 (3.87)
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where Ay = A — BFC. The same will hold for the other necessary condition, with

the resulting constraint equation of the form
A4AQ + AQAT - [BAFCQ + Q(BAFC)T| =0 (3.88)

These two equations represent Lyapunov equations in AP and AQ driven by the

combinations of the change in the gain matrix.

These Equations 3.80 through 3.88 allow the hessian to be evaluated using the
following algorithm. The first step is to solve for the updated values of P and Q.
The next step is to set the (1, 7)** element of the AF matrix equal to one and the
rest equal to zero. Then the resulting AP and AQ matrices are evaluated from
Equations 3.87 and 3.88. These three values of AP, AQ, and AF are then used
in Equations 3.83 through 3.85 to evaluate these separate derivatives, which are
combined using Equation 3.82. The result will be the derivative of Lg with respect
to the (,7)** element of the gain matrix, which represents a column of the hessian
matrix. Repeating this for each element of the gain matrix, will eventually yield
a numerical approximation of the hessian. Notice that it is necessary to solve two
Lyapunov equations to determine P(F) and Q(F), and that two more must be
solved to determine AP and AQ, a task which must be repeated for every element
of the gain matrix. This explains why the calculation of the hessian can be such a
time consuming and expensive process, and why a reduction in the number of free
parameters in the gain matrix and the size of the plant (the Lyapunov equation) is

so important.

The extension to circulant systems is a little trickier for this case as there are P;
and Q; matrices to be calculated for each value of ¢ € [0,...,N-1]. The derivative
of the gradient must be taken with respect to each of these terms. The resulting
equation is very similar to Equation 3.82 except that it must be written as a

summation over all values of the index variable. The resulting equation for the
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special case of a block diagonal gain matrix so that ¥y, = F; Yk €]0,...,N-1] is

d dL; =L, N aL,
— (L) Afo=Z2Afo+ ) =LAB+ 3 ==AF; 3.89

where the same procedure given above can now be employed, except that it must
be done for each value of the index variable, so this will require the solution of

many more Lyapunov equations per iteration, but, as mentioned earlier, each of the

problems is much smaller in size.

3.3.6 The Solution Algorithm

The previous sections have developed theory necessary to present a method of cal-
culating the gains for the constrained feedback problem for a block circulant system.
The purpose of this section is to combine the discussions from these sections and

to provide an outline of the algorithm used to calculate the feedback gains.

A circulant model of a beam (to be discussed in detail in Chapter 4) similar
to the one shown in Figure 3.3 was used as the plant in Equations 3.9 and 3.10.
This step requires the selection of both the number of bays in the model, and the
number of nodes per bay. As will also be discussed in Chapter 4, the distance
between the nodes was maintained at 1 unit so that the actual “size” of the model
changes with the total number of nodes. In this example, the control problem for
the local controller was selected to be a displacement weighted shape controller,
and every actuator was taken to have an equal contribution to the cost. With these
assumptions, each of the plant and control weighting matrices are then of the block
circulant form shown in Equation 3.19. It was assumed in this work that every state

in the bay can be measured so that C = I.

The next step was to use Equation 3.26 to transform the system and control
matrices into the spatial frequency domain. Note that this in fact only requires the

top row of each of the circulant matrices, which saves a large amount of storage
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space. Due to the relative ease of performing matrix multiplications in this envi-
roment, these two steps were performed using a MATRIXx program. The next
step was to use the optimization program that was developed to minimize the cost
of the transformed system subject to the imposed constraints. This program was
written in VAX FORTRAN because of the higher processing speeds available and
is essentially a direct coding of the algorithms presented in Sections 3.3.4 and 3.3.5.
The program is an extension of the work performed by Mercadal [42]. Both the gra-
dient and Newton methods were employed to find the solution. The Quasi-Newton
method was investigated, but examples showed that the convergence properties were

particularly poor, so this technique was not included in the final set of programs.

One problem with most optimization procedures is that they typically are very
sensitive to the init.ial conditions. A good approach that was implemented to elim-
inate this problem was to expand the results from one bay size so that they can be
used as the initial guess for a larger bay. This helped to reduce the initial error in
the solution and decreased the required number of gradient steps before the second

order method could be employed.

The final step in the algorithm was to check that these are in fact the optimal
gains. Another MATRIXy program was used to check that the gains solved the
necessary conditions. The discussion as to whether the solutions are in fact the
global minimum (as opposed to a local one) is delayed until the next section which

will provide an overview of the results obtained.

3.3.7 Discussion of the Results

The purpose of this section is to present some of the results obtained using the algo-
rithm outlined in Section 3.3.6. As was discussed there, convergence was found to
occur much faster if the results from one bay size were used as the initial conditions

for the next size up. However, for the sake of clarity, the results for the smaller bay
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sizes have not been included, and only the results for the largest bay investigated,
which has 9 nodes per bay, are shown in Figure 3.4 through 3.7. There are two
components to the gain, the displacement and velocity parts. A row of these matri-
ces corresponds to the feedback gains of all nine states to the actuator. A column of
these matrices corresponds to the feedback gains on the state to all of the actuators.
Note that the figures include three dimensional plots of the gains which allow the
diagonal dominance to be easily visualized. Two dimensional plots across the rows

are also included so that the peaks and gain shapes can be seen.

As was noted in the previous section, the question arises as to whether the
optimal solution has in fact been obtained since both local minima and saddle
points would solve the first order necessary conditions. An answer to this question
can be found by considering the gains for the optimal unconstrained problem which
will be developed in the next section, the results of which are shown in Figure 3.13.
These graphs indicate that the gain matrices are diagonally dominant, and that the
width of the non-zero part is on the order of 5 nodes. Of course, this is completely
dependant on both the plant and the control weighting. However, for the example
being investigated here, this indicates that it should be possible to develop a model
with bays which are sufficiently large enough that the boundary effects are negligible
for the middle controllers and the gains for the constrained and unconstrained cases
can be compared directly. The results shown in Figures 3.4 through 3.7 show that
this is in fact the case. Whereas the gains for the smaller bay sizes (2 or 3 nodes) are
dominated by the boundary effects, the results for a much larger bay show that, for
instance, the velocity gains for the middle five actuators are virtually identical to
the optimal unconstrained solution. Note that the displacement gains are “thicker”,

so the boundary effects persist further into the gain block.

It can also be seen from this figure that the boundary effects have quite an
influence on the gains of the controllers at both ends of the bay. The peak value of

the gain for the end controllers is less than one half that for the controllers at the
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Figure 3.4: The displacement weighted displacement gain matrix
for a nine node bay.

Figure 3.5: The displacement weighted velocity gain matrix for a
nine node bay.
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Figure 3.6: The displacement weighted displacement gain matrix
for a nine node bay. This plot shows the variation across
the rows of the matrix.
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Figure 3.7: The displacement weighted velocity gain matrix for a
nine node bay. This plot shows the variation across the
rows of the matrix.
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internal nodes. However, it also appears that the entire gain for the end controllers
has been reduced by a similar scale factor. Since there are no significant non-zero
gains at nodes further away from the controller than a central controller would
require, it appears that an end controller does not use any additional information
from inside the bay. This is an interesting point because it indicates that, although
almost half of the information has been truncated for the end controllers (they
cannot feedback displacments or velocities outside of the bay), the gain “shape” is

very similar to that for the unconstrained case (to within a scale factor).

One other point to be discussed about this technique is that, although the size
reduction does make it feasible to obtain the solution, calculating the optimal gains
can be a very time consuming process. In particular, the calculation of the hessian
is a very expensive operation, and typically would take 24 hours of CPU time on a
Vax Station II for a bay size of 9 nodes and 10 bays in the system. Of course, this
is nothing compared to the amount of time that would have been required for the
full model. Computational times for smaller bay sizes are more reasonable, with
problems of 5 or 6 nodes per bay and 20 bays requiring about 1 day to completely
finish the algorithm. It is interesting to note that the second order Newton method
was found to converge very rapidly to the optimal solution, with step reductions in

the error of 4 or 5 orders of magnitude typically occurring on the last step.

3.4 Block Tri-Diagonal Feedback

3.4.1 Introduction

This form of the gain structure is important because it allows for some communi-
cation between the local controllers. In contrast to the previous cases that were
examined, an exchange of information both internal and external to the finite con-

trol element is allowed, but it is restricted tc occur only with adjacent elements.
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Since each controller has more information available than the previous cases, this
should allow the overall performance to improve. It also helps to eliminate the
problem mentioned earlier in which a controller is a short distance from a sensor
but they are separated by an element boundary so the measurement cannot be
used for feedback. However, there are the associated penalties that the local pro-
cessors must be more sophisticated since they are required to perform more tasks,
and the computer architecture will be more complicated to allow information to be

exchanged between elements.

As is shown in Figure 3.8, this type of control can be implemented in two ways.
The first allows each local controller to measure the sensors in its element and then
local communication between the controllers is employed to exchange the informa-
tion with the adjacent processors. The second approach allows each controller to
directly measure the sensors from its own element and its neighbors. Either setup
will allow for the block tri-diagonal gain structure that is desired. A comparison
of these designs will show the trade-off between having the extra measurement
hardware built into the structure and having to do local communication between

Pprocessors.

The second technique requires a more complicated wiring set up and several
processors must obtain the measurements from each sensor, but little local coordi-
nation between the controllers is required. The first approach is more compact in
that it is conceptually neater, but it has a major disadvantage in that it requires the
local controllers to be coordinated and dedicate some portion of their loop cycle to
sending an? receiving information from its neighboring processors. There are delay
issues involved here as well, as some information is transferred rather than directly

measured.

There is a subset of the full block tri-diagonal form of the gain matrices which
is of particular importance. This is the banded gain matrix where the band width

is small enough to be covered by only one extra set of off-diagonal block matrices.
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Figure 3.8: The architecture for a local controller based on block
tri-diagonal feedback. The top figure (a) corresponds to
the case where a local controller measures the sensors
within that element and then shares this information
with adjacent processors. The lower figure (b) is the
case where each local controller measures the required
information directly from each finite control element.
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Figure 3.9: Two types of gain matrices for the block tri-diagonal
feedback approach. The figure on the left (a) corre-
sponds to the full block tri-diagonal feedback, and the
one on the right (b) to the banded feedback.

If the bandwidth is smaller than the element size then it is not necessary for all
of the main diagonal block to be full. Consequently, only parts of the three block
matrices in a given row need to be non-zero. The advantage of this technique is
that it reduces the amount of information that must be passed from processor to
processor, or conversely, how far into the adjacent elements the extra measurement
wires must be extended. The form of the gain matrices for the two cases are shown

in Figure 3.9.

The resulting form of the control equation now is

Uy qul quz 0 vee 0 q1

Uz Fyy, Fayy Fiy 0 q2

us | =~ 0 Fy, Fiy 0 s

Uy 0 0 0 FNQN—I FNQN q~
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Fy Fy O 0 @
Fyy, Fayy Fay 0 g

= | 0 F3 Fy 0 ds (3.90)

L 0 0 0 FNéN-l FNQ'N 1L qN

d
where ¢; and u; again represent the vectors of the states or control for each element,
and Fy,, the gain block matrix for controller k¥ from the state component ¢;. For
this tri-diagonal restriction, 1 = k — 1,k,k + 1, t.e., only the closest neighbor gain
blocks are allowed to be non-zero. In this case, no restriction is made on the actual
structure within the gain blocks, only on the blocks which can be non-zero. In this
way, the case of the purely banded gain matrix can also be included. The following

section will outline a simple method for calculating the appropriate gain matrices.

3.4.2 Calculation of the Gains

One approach to selecting the gain blocks is to compute the optimal full state
feedback (assuming all measurements can be made within the element) gains for
the structure and then employ some form of truncation on the allowable extent of
the gains so that the desired structure can be obtained. This assumes that the
gains will be fairly banded so that the block tri-diagonal structure will include all
of the important gain values. In the limit, as the gains become more banded, it
may be conceivable to capture the important structure within the width of one
element, so the off-diagonal blocks will only be non-zero in the upper right or lower
left corners to compensate for information lost near the ends of the element (this is
shown by the shaded part of the gain matrix in Figure 3.9). The gains obtained for
the examples investigated here do possess a high degree of bandedness. For other

cases where this assumption does not hold another approach will be discussed later.

The full state feedback gains are computationally intensive to calculate for the
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Figure 3.10: A model of an infinite dimensional symmetric beam.

full sized system. Consequently, a procedure for calculating the gains for very large
structures that possess a high degree of spatial symmetry will be developed. For this
work, it is assumed that the structure, taken to be a uniform beam, is symmetric
along its entire length. The previous work with the block diagonal feedback it only
assumed that the beam consisted of repeated bays. Of course, a uniform beam is

symmetric at this level as well.

The first step in the design procedure is to employ the z-transformation on the
symmetric structure to obtain the transformed dynamics A(z), B(z), and C(z). This
can be done by recognizing the length of the structure which is being repeated and
then performing the analysis given below. First, take a uniform beam as shown in
Figure 3.10. By recognizing that the bay (go—¢:) is repeated along the entire length
of the beam, it is possible to reduce this infinite system using a z-transform. As
with the more familiar example of the discrete time case, it is possiblc to associate
a power of z with the relative displacement between the node of interest, go, and

any other node.

Using g to denote the degrees of freedom at a node, then a finite element model

of the beam in Figure 3.10 would give the dynamic equations as

Mij+ Kq=Yu (3.91)
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Figure 3.11: The form of the FEM mass and stiffness matrices for
the infinite beam example. Each square corresponds to
the appropriate element matrix of the FEM.

where M, K,¥,q, and u are infinite dimensional, and M and K have the internal
form shown in Figure 3.11. ¥ is in fact diagonal as each actuator is associated
directly with a node ¥ = diag(y;). Each block along the diagonal in Figure 3.11 is
the element mass or stiffness matrix for the FEM, and these can be partitioned in

the following way

M, | M, Ky | K
My = |—1——| Ku= |—2 (3.92)
M, | My, K, | Koo

For a beam, M,,, is a 4 X 4 matrix consisting of 4, 2 X 2 block matrices since there
are two degrees of freedom (displacement and rotation) per node, and 2 nodes per

element. Then, employing the z-transform on the vector of states and controls as
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discussed above, ¢ and u can be re-written in the transformed representation as

1 ]
2z %q z 2y,
27 g z lyg
2z2)=| @ uwz)=| wu (3.93)
214 zlug
2%qo P

Looking across the row of Equation 3.91 which uses the states ¢_;, ¢o, and ¢,

(27 g0, g0, and zqo), this equation can be written as

My z7 Gy + (Myy + Ma2)do + Miazdo + Kaiz7'qo + (K11 + Kaz)go + K122g0 = Yoto

(3.94)
which, in fact would be the same for all the rows. This follows directly from the
definition of u(z) and Equation 3.91. Equation 3.94 can be rewritten in a far more

compact manner as

T T
I M, M, I I Ku K2 I

qo + go = ‘!/)0110 (395)
zI Mn Mzg zI zI Kgl ng zI

for all values of 2 = €/%,8 € [0,27]. Note that, since ||z||2 = 1, then 27! = 2*. This
provides for a very easy way to develop the transformed system matrices directly
from the element matrices of the FEM. This result can easily be extended to the case

where the symmetry is at the bay level by introducing a different transformation

matrix T,. For a repeated bay with n nodes

I, 0
Tz = 0 In_z (3.96)
z2I; Oaxn-2

After this step of transforming the system dynamics, it is possible to perform the

mass condensation procedure discussed in Chapter 2 to eliminate the rotational
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degrees of freedom from the model. The resulting M(z) and K(z) matrices can

then be used to form A(z), B(z), and C(z2).

As is shown in Section 3.3.3, this transformation greatly simplifies the uncon-
strained full state feedback control design as it decouples the necessary conditions
and allows for much smaller systems to be used. The penalty is that this design
process must be done for every value of z around the unit circle to generate the
gains at each spatial frequency. Clearly, this cannot be done analytically for any
system of appreciable size, so the solution must be approximated. As with digital
control design [25], it is convenient at this point to introduce a new variable w which

is related to z via
2z2-1
w= -
lz+1

(3.97)

where, if z = ¢/, then w = jv = j3tan%. So, as z goes around the unit circle
anti-clockwise from 1 to -1, w moves up the jv axis from 0 to co. It is then useful to
use v to define 8 which in turn defines z. Then log-spacing v aliows for a convenient
representation of the gains in the spatial frequency domain. The next step requires
that the control problem (i.e., the weighting matrices) be transformed into the

frequency domain using techniques very similar to those used in Section 3.3.3.

Given that the system and control weighting matrices can easily be transformed,
it is then possible to employ a LQR solver at each frequency to obtain the gains
as a function of frequency at a discrete number of points around the unit circle.
Typical plots for various state weightings are given in Figures 3.12, 3.14, and 3.16.
The weightings investigated were velocity, energy, and displacement. The next step
is to perform the inverse z-transform defined by Equation 3.46 to generate the
optimal gains as a function of the spatial coordinate. The results for the same set
of weightings are given in Figures 3.13, 3.15, and 3.17. For the sake of comparison,
the optimal regulator gains for a long beam were computed for the displacement
weighting case, and the gains for an actuator located in the middle of the beam are

presented in Figure 3.18. As would be expected, the results are virtually identical.
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Figure 3.12: The displacement weighted gains in the frequency do-
main. The dotted line is the feedback on velocity and
the solid is the feedback on the displacement.
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Figure 3.13: The displacement weighted gains in the spatial domain.
The circles are the feedback on the velocity at that node
for an actuator at the origin, and the crosses are the
feedback on the displacement.
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Figure 3.14: The energy weighted gains in the frequency domain.
The dotted line is the feedback on velocity and the solid
is the feedback on the displacement.
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Figure 3.15: The energy weighted gains in the spatial domain. The
circles are the feedback on the velocity at that node
for an actuator at the origin, and the crosses are the
feedback on the displacement.
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Figure 3.16: The velocity weighted gains in the frequency domain.
The dotted line is the feedback on velocity and the solid
is the feedback on the displacement.
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Figure 3.17: The velocity weighted gains in the spatial domain. The
circles are the feedback on the velocity at that node
for an actuator at the origin, and the crosses are the
feedback on the displacement.
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Figure 3.18: The optimal displacement weighted regulator gains for
an actuator in the middle of a long beam. The circles
are the feedback on the velocity at that node for an
actuator at the origin, and the crosses are the feedback

on the displacement.
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3.4.3 Conclusions

From the results presented, it is clear that this technique represents a relatively easy
and convenient method to calculate the optimal feedback gains for a large structure
with spatial symmetry. The results for the different weightings show that the gains
for this example are quite strongly banded, with the displacement weighting having
the largest “width”. Provided that the gains are banded sufficiently relative to the
finite control element size, then just using the truncated optimal gains will be a
sufficiently good approximation for the suboptimal gains. Results in Chapter 4 will
show how well the banded and full block tri-diagonal gain structures approximate

the optimal solution.

If the analysis shows that too much information is lost by the truncation opera-
tion, 1.e., the important part of the gain structure is relatively “wide”, then it may
be necessary to perform an optimization similar to the one done in the previous
section, with the modification that the restriction on the form of the gain matrix

be relaxed so that F can be block tri-diagonal.

3.5 A Decentralized Implementation of Full State
Feedback

3.5.1 Introduction

The purpose of this section is to discuss the final form for the local controller.
This architecture uses the gains calculated for the centralized full state feedback
but they are implemented in a decentralized manner. This design is based on the
concept of the disturbance information “flowing” along the structure as “waves”.
A control architecture is developed which complements this way of looking at the

movement of information in a structure. This is achieved by approximating the
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Figure 3.19: A schematic of the decentralized implementation of full
state feedback.
gains obtained in the previous section as a function of the spatial frequency and
writing them in a state space representation. The controllers use the measurements
from either side of their location to calculate the appropriate commands. These
measurements are then passed onto the adjacent processors to continue the cycle.
The resulting architecture is shown in Figure 3.19. The information is very rapidly
transmitted from controller to controller in both directions along the structure, and
the actual command calculation at each node will be shown to be relatively simple.
In contrast to the other types of controllers considered earlier, the one developed
in this section relies almost entirely on the direct communication between local
controllers. The purpose of this section is to provide an overview of the architecture
and to present a methodology for calculating the state space representation. As
was done in Sections 3.3 and 3.4, an example based on the displacement gain of a

displacement weighted controller will be examined.
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3.5.2 Calculation of the Gains

It will be assumed during this discussion that the procedure outlined in Section 3.4.2
for calculating the gains as a function of spatial frequency has already been em-
ployed, so that F,(w) exists. The next step is to form an approrimation for this
gain over a specified frequency range. For the displacement weighted gains shown
in Figure 3.12, it has been found through experience that matching the gains at
low frequencies is far more important in terms of obtaining a good approximation
for the gains in the spatial domain than matching at high frequencies. A curvefit-
ting program (see reference [52]) was employed to obtain ulie poles and zeroes for
a transfer function approximation of the original curve. Since the number of poles
determines the order of the finite difference approximation, it is desirable to obtain
a good match with as few poles as possible. However, due to the complexity of
the gains shapes, it was not always possible to match the curves exactly at every

frequency with a small set of poles and zeroes.

The gain curve is approximated in the w-plane. The approximation was con-

strained to bave only four poles and zeroes, so it can be expressed as

w) = (w = by) (w — ba) (w — bs) (w — by)
F( ) K\" (w—al)(w—az)(w—a,s)(w_m)

(3.98)

For this example, the zeroes were found to be in two real pairs which are symmetric
about the imaginary axis. The four poles were found to be symmetric about both
axes, so, for example, by = —b, and a3 = af. It is possible to obtain a representation
of the approximate gain in the z-plane using the method of pole-zero mapping and

the transformation
1+
1 —

N|§_

& =

(3.99)

4

which is the inverse transform of Equation 3.97. In direct analogy to the discrete
time case, ! represents the distance between the nodes in the spatial domain. In this

example, | = 1. Equation 3.99 is used with w taking on the values of +b,, £b,,...,a;
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as in Equation 3.98, to generate the corresponding poles in the z-plane. The map-

ping is completed by imposing the condition that
F(w)w=0= F(2)|s=1 (3.100)

so, in the z-plane, the gain can be approximated as

(-2) (= &) (=) (- &)
G- (-m (-5
In the z-plane, the poles lie on two radial lines and are reciprocals with respect to the

F(z) =K,

(3.101)

unit circle ||z||; = 1. This result is a direct consequence of the assumed symmetry of
the plant. A pole distribution with this symmetry with respect to the unit circle will
have non-causal pulse responses (equivalent to a spatial representation of the gains)
which are symmetric about the origin. So, as would be expected, the information

obtained from both directions will be treated in the same manner.

Once this step of obtaining a rational fraction z-plane approximation of the gains
has been completed, it is possible to inverse z-transform the gains and express them
as functions of the spatial coordinate. For this example of the displacement gain
for the displacement weighted control design the approximate gain can be shown to
be of the form

F(z) = K, [6(:1:) + Gyr'#l (1 cos 28 + ¢z sin |a:|0)} (3.102)
where z € (—o0,00) is an integer which denotes the relative number of nodes that
separates the two points of interest. The poles are given by p; = re* and p, = Le.
The coefficients K,, Gy, ¢; and ¢, a,r:e coefficients which depend on the pole and
zero locations. §(z) denotes the Kronecker delta function which is equal to one for
z = 0 and zero for all other values of z. Plots of this function for typical values of r

and @ calculated for this example are given in Figure 3.21 where the analytic result

is also compared to the numerical inversion of the optimal gain.

This completes the analysis required to approximate the gain. The next step is
to develop a way of expressing the control calculation in terms of a simple multipli-

cation of the measurement information which is travelling to the left and right of a
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Figure 3.20: Comparison of the optimal (solid) and approximate
gains (dotted) in the frequency domain (w).
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given location. A more detailed schematic showing this split is given in Figure 3.22.
With a transfer function representation of the gain available in z-plane, it is possi-
ble to obtain a more useful state-space description. This can easily be done using
any conversion algorithm (such as the one in MATRIXx). The result is two sets
of finite difference equations which relate the control commands to the information
“flowing” past the actuator location from either the left or right. This informatior.
is stored in the vectors ¢.(¢) and g,.(i). For the displacement part of the gain, the

finite difference equations can be written as

Qc(i + 1) = Ach(i) + chd(i) (3'103)
ue, (1) = Ce.g.(f) + D.ya(?) (3.104)
u, (i) = Ceq.(s) (3.105)

Qac(t —1) = Aqscqac(t) + Bacya(s) (3.106)
tae,(1) = Cacac(t) (3.107)

where (-). represents the causal part, and (-)4 represents the displacement part of
the gain. It can easily be shown that the system matrices are equal (i.e., 4,. = A,

By = B, and C,, = C.), which is to be expected given the symmetry of the gains.

The state space representation is developed in two parts, with the the distinction
between the two being the information that each has available to calculate the
control commands. The causal (), representation uses the information which is
moving to the right, and the anti-causal (-),, uses that which is moving to the
left. Implementating the models in Equations 3.103 through 3.107 Figure 3.22,
and including the correct gains and the delta function at the origin, the complete
architecture is of the form shown in Figure 3.23. The complete control at any

station ¢ is then

w(i) = K, [y() + G [ue(s) + taoli)] (3.108)
= K. [y() (1 + GiD.) + Gy [u(3) + uae(s)] (3.109)
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Figure 3.22: A more detailed representation of the control architec-
ture for the decentralized implementation. There are
two flows of information. This figure shows that the
two tasks of calculating the control commands and pro-
cessing the information flow can be separated.

107




which would hold for every node along the structure.

This completes the discussion of the control architecture. The implementation
of this controller is somewhat more difficult than the previous designs as it must
be discrete in both space and time. Information is not directly measured by every
controller. Instead, each sensor is measured by one controller and the information
is passed onto the neighboring nodes. The information is then modified to account
for the distance travelled (essentially multiplied by the complex pole so that it is
reduced in magnitude and phase shifted), added to the current measurement at the
new location, and then passed on to continue the cycle. This will require a very
rapid flow of information along the length of the structure so that the measurements
are still relatively valid. The required “speed” of the information flow will depend
on how fast the disturbances propogate in the structure. It will be very easy to pass
information from controller to controller within a finite control element if they are
all implementated within the same processor. However, this architecture will also
require very rapid inter-processor communication. The bandedness of the gains will
also play an important role in the implementation since it will determine how far
the information must travel before the gains are so small that the influence will be

negligible.

3.6 Conclusions

The purpose of this chapter was to present and analyze various types of local control
designs for the hierarchic control architecture. Four types of controllers were intro-
duced. Of these, colocated control is the simplest to implement since it only requires
the information to be exchanged between the sensor and actuator pairs. Block di-
agonal feedback represented the next level of sophisticatiun. It does not allow for
communication between processors, but the actuator commands are calculated from

the measurements at every sensor in the finite control element. Allowances were
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also made in this design for splitting the finite control element into smaller “bays”
and restricting the information flow within an element. A transformation was in-
troduced which reduced the model dimensions so that a numerical approach to the
optimal gain calculation would be feasible. A comparison of the results obtained
for a large “bay” with the unconstrained optimal solution showed good agreement,

indicating that the global minimum had been found.

The third control architecture makes allowances for communication directly be-
tween adjacent processors. The gains used for this case were the truncated uncon-
strained full state feedback gains which were developed for a long symmetric beam.
A transformation based on the beam FEM element mass and stiffness matrices was
introduced. This provided an easy method of calculating the gains for various state
weighting matrices. Two methods of implementating the controller were discussed.
One method only allows each processor to directly obtain the information from the
sensors within the corresponding finite control element. This must then be passed
to the neighboring processors. In a similar fashion, information is also received from
the adjacent processors. The other method allows each processor to directly mea-
sure the necessary information from the sensors in all three finite control elements.

The resulting gains for both cases could be full block tri-diagonal or banded.

The last controller implements the centralized full state feedback gains in a de-
centralized manner. Information is passed in “pipelines” in both directions along
the structure. The controllers are finite difference representations of the optimal
gains which have been approximated in the spatial frequency domain. In this way,
each actuator can eventually obtain the information from every sensor. The im-
plementation of this controller will require a very rapid exchange of information

between the processors.

These controllers will be compared in the following two chapters. Chapter 4 will
investigate their performance as decentralized controllers and as local controllers in

the hierarchic control architecture. Chapter 5 will then compare their implementa-
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Chapter 4

Examples

4.1 Introduction

The purpose of this chapter is to show by example the benefits that can be obtained
by using an hierarchic control architecture to control the vibratory motion of an
“intelligent” structure. The secondary purpose is to expand on the design algorithm
presented in Chapter 2 and to develop a hierarchic controller for a one dimensional
structure. In the examples that will be discussed here, a long beam with many
sensors and actuators distributed along its length will be analyzed. The design and
evaluation models for this structure will be discussed in Section 4.2. Some issues

concerning the implementation of the control architecture will be discussed in this

section as well.

Due to the assumed nature of the structure, i.e., the large number of sensors and
actuators, it will be very difficult to develop a suitable test article in the laboratory.
There is also a major difficulty associated with the computer architecture that will
be required to implement this form of control. This problem was originally investi-
gated by Miller in reference [48] and a solution was developed. However, test results

appeared to indicate that this setup was very difficult to operate and program and
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was not particularly suitable for expansion to a large scale system. There are numer-
ous studies which have investigated computer architectures for large scale systems,
see references [55,3€]. There is an accompanying work by David Warkentin which is
investigating the problem of designing a more suitable computer architecture, with
special emphasis on the single chip micro-computer technology that is now readily
available. Further experimentation in the laboratory will have to be delayed until
the results of that work are known. Consequently, the evaluation models for the
controller will only be computer models. To further clarify the capabilities of the
control design, it will be assumed that the sensors and actuators are perfect. Some
of the analysis performed on the beam in this chapter was originally done for a rod

in reference [29].

Several examples will be studied in this chapter. For clarity, these will be sep-
arated into several parts. Section 4.2 discusses the development of the evaluation
model of the beam. The mass condensation procedure discussed in Section 2.3
is used to reduce the order of the system and generate the design model. Some
approximations required to efficiently implement the technique are also discussed.
The section concludes with a discussion of the interpolation matrix, leading to the
formation of the global model. Section 4.3 presents the control design for this
coarser model of the beam. The influence of just the global controller on the struc-
ture is compared with a full order design. This process is then repeated for the
alternative case where only the n; lower modes of the global design model are re-
tained. Section 4.4 studies the various local control designs developed in Chapter 3.
The designs investigated include the coloca.t;ed natural control, two block diagonal
controllers, and two block tri-diagonal controllers. These are studied in terms of
their performance as both deccntralized controllers and as local controllers i1: the
hierarchic architecture. They are compared directly with a full order LQR design.
Section 4.5 then combines the local and global controllers from the previous two

sections. The pole locations are shown for two cases. A comparison of the perfor-
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mance of these combined controllers is done using a graph which examines the state

cost and control effort trade-off at several design points.

The aim of this analysis will be to show that near optimal performance can
be obtained using the hierarchic architecture if an appropriate local controller is
used. A comparison of the local controllers will indicate that the more sophisticated

designs can offer a slight performance improvement. The decision of which to use

is delayed until the operations count is analyzed in Chapter 5.

4.2 Discussion of the Model

The purpose of this section is to introduce the evaluation and design models for the
stracture, and to discuss some of the issues involved in the implementation of the
control architecture. The evaluation model for the control architecture was taken
to be a beam because it provides some degree of complexity and can be used to
approximate other structures, but it can still be modelled as a one dimensional
structure. A 30 node beam (Figure 4.1) was selected for this example. To simplify
some of the analysis of the local control designs in Chapter 3, the distance between
the structural nodes of the beam was taken to be 1 unit so that the length of the
entire beam is n — 1 (s.e., 29) units. The characteristic length of the beam was
taken to be the distance between the structural nodes since the actual length of
the beam is relatively unimportant provided that there are a sufficient number of

nodes in the structure that the end effects have a negligible influence for most of
the central portion of the beam.

A finite element model of an undamped free-free uniform beam was developed
using the standard element matrices given in reference [46] which have been slightly

modified so that the states are (g,0) rather than (g,k10). The element mass and

114




W//{M

27
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where m; and EI are the corresponding structural properties per unit length, and

h, is the length of each element. For the work performed here, both EI and m,

were assumed to be unity. Since the nodes are spaced one unit apart, h; is unity

as well. By assembling these element matrices and then rearranging the states to

correspond to those shown below, the resulting equations of motion can then be
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expressed as

qu Mq@
My, My,

K, K F
e (4.3)
Kog Koo || 0 0

D Qs

where ¢ and @ are the vectors of the states at the nodes, and only force actuators
are assumed to exist. Typical relative magnitudes of these block matrices (in a

two-norm sense) are
| M Kyollz = 48 [[M;,' Kuol|; ~ 360

These ratios, combined with the selection of the force actuators, indicate that the
rotational coordinates are suitable to be designated as the slave degrees of freedom

in the condensation procedure outlined in Section 2.3.

Following the procedure in that section, it is then possible to develop a condensed
model of the beam which only consists of the displacement degrees of freedom with

system matrices M,,,4 and K,,,q defined as

Keona = Ky— KyKi' Ky, (4.4)
Meona = My — KK Myg — MK Koy + Ko Ko My K  Kyy  (4.5)

as given in Chapter 2. It is interesting at this point to compare the modal frequencies
of the full order model with those of the condensed model. The results are given
in Table 4.1 and plotted in Figure 4.2. As mentioned in Section 2.3, and as will
be discussed in more detail later in this section, it is often more convenient to use
the condensed stiffness with a lumped mass approximation of the finite element
model (s.e., a statically condensed model). The modal frequenices for this case are
also included in Table 4.1. These frequencies are compared with the quoted values
from reference [12] and the frequencies from the full order beam model. Archer [2]
shows that a beam finite element model based only on the translational coordinates

can provide a reasonable model of the lower frequency modes of a free-free beam.
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Archer compared the percentage difference between experimental results and the
modal frequencies obtained from models using both the rotational and translational
coordinates and just the translational coordinates. The analysis shows that the
errors for both cases are reasonably small for the first five flexible modes, and
that the first method has a relative error which is about % as large as the second.
These results are also compared with the frequencies from models based on lumped
mass approximations and the relative errors for these methods were typically found
to be an order of magnitude larger. The results presented here confirm that the
frequencies for a condensed model are a much better match than those from a model
based on a lumped mass approximation. The results for both approximations are
close to the reference values for the first 12 flexible modes. The deviation is more

readily apparent for the higher frequency modes.

Figure 4.3 contains a three dimensional plot of the condensed mass matrix for
this example. The most important thing to notice from this figure is that the matrix
is very strongly banded which indicates that the lumped approximation should be
fairly good. One other important point is that the influence of the end effects on
the central portion of the beam are negligble, leaving a symmetric uniform beam
for most of the structure. This is important for some of the local control designs
in Chapter 3. Several design methodologies assume that the structure is symmetric
(s.e., the block diagonal and block tri-diagonal approaches), so it is important that

the design and evaluation models consist of a large central region which is uniform.

As discussed in Section 2.7, the first step in the algorithm is to select the number
and the locations of the global nodes. For the examples done here, 6 global nodes
(ngn) were employed, which results in 5 finite control elements (n.), of which the
middle 3 are identical, but the end two are different due to the fact that one of the
global nodes coincides with a structural node (Figure 5.5). Notice that it is not in
general necessary for the global and structural nodes to coincide. In this example

with a beam, each global node has 2 degrees of freedom, i.e., n,,,, = 2, for a design
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Table 4.1: A comparison of the flexible mode frequencies (rad/sec) with various

approximations of the mass matrix in the FEM.

Flexible Mode | Full Mass | Condensed Mass | Lumped Mass | Reference
Number Matrix FEM | Matrix FEM Matrix FEM
1 0.0266 0.0266 0.0265 0.0266
2 0.0733 0.0733 0.0729 0.0733
3 0.144 0.144 0.143 0.144
4 0.238 0.238 0.235 0.238
5 0.355 0.355 0.350 0.355
6 0.496 0.496 0.488 0.496
7 0.660 0.660 0.648 0.660
8 0.848 0.849 0.830 0.848
9 1.06 1.06 1.03 1.06
10 1.30 1.30 1.26 1.29
11 1.55 1.56 1.51 1.55
12 1.84 1.84 1.78 1.83
21 5.51 5.70 4.95 5.42
22 6.06 6.31 5.33 5.94
23 6.62 6.96 5.70 6.48
24 7.22 7.63 6.03 7.04
25 7.84 8.30 6.33 7.63
26 8.49 8.93 6.58 8.24
27 9.13 9.46 6.77 8.88
28 9.69 9.81 6.89 9.53
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Figure 4.2: A comparison of the modal frequencies (rad/sec) for various approxi-

mations of the mass matrix in the FEM. The dotted line corresponds
to the full model. The solid line corresponds to the condensed model,
and the dashed line is the lumped model. These results show that us-
ing the condensed mass matrix provides a much better approximation
of the original model than does the lumped mass approach.
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Meond

Figure 4.3: A 30 node beam mass matrix for which the rotation
coordinates have been condensed out. This is plotted
to display both the bandedness and symmetry of the
mass matrix. The figure also shows that the central
portion of the beam is uniform.
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model total of n, = 12. The interpolation functions used in the formation of the
T, matrix were the standard Hermite polynomials, L; [46] which were used in the
formation of the element matrices of the beam FEM. These relate the displacement
at each internal node of the finite control element to the displacements and rotations
at the end points. The displacement can then be written in terms of four functions

which are parameterized by the variable n

q(n) = L1(n) g4 + L2 (n) 8, + Ls (n) g5, + L4 (n) 6,, (4.6)

where
Ly(n) =1-3n"+27° Ly(n) = hy(n—20" +n°)

(4.7)
Ly(n) =302 —29° Ly(n) = hy(—n? + 1)

and 0 < n < 1. The subscript (), corresponds to the information at the left global
node, (n = 0), ard (-),, to the right global node, (7 = 1). Plots of these four shape
function are given in Figure 4.4. The interpolation matrix T, is then found by
evaluating the expression in Equation 4.6 at each of the values of » within the finite
control element which correspond to structural nodes and then storing the resulting
coefficients in a matrix. The full T, matrix can then be formed by assembling these

blocks for each finite control element, as shown in Figure 4.5.

Note the form of the T, matrix for a finite control element. It can be split into
two parts. One part relates the nodes in the finite control element to the global node
on the left. and the other relates the nodes to the global node on the right. For finite
control element ¢, with global nodes ¢ and 1+ + 1, the corresponding blocks of the T}
matrix are Tj; and T}y;,,), a notation which was introduced in Figure 2.2. As was
discussed in Section 2.6, it is also possible to use modes rather than approximate

shape functions in the formulation of T}.

From Equation 2.14 with the weighting matrix W = M, Equation 2.31, Fig-
ure 2.4, and the discussion in Section 2.5, it can be seen that to form the estimates

of the global node values, the measured displacements and velocities must be mul-
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tion of n.
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tiplied by an aggregation matrix, T,T M. As shown in Figure 4.5, the T, matrix is
in some sense diagonal, but Figure 4.3 shows that, although the condensed mass
matrix, M,,nq is highly banded, it is in general a full matrix. Thus, T,T M, ,nqa would
in general be a full matrix as well. In the ideal case, the matrix T}' M would be
block diagonal. This would correspond to a situation where the information from
each finite control element could be aggregated to the global values without any
reference to information from the neighboring elements. However, if this aggrega-
tion matrix is full, then the measurements from each element (column dimension
of TT M) would contribute to every global value (row dimension of TTM). This is
shown below in an example for a simpler case which assumes that the mass matrix is
block tri-diagonal. Based on the bandedness of M.,,; shown before, this should be
a very good approximation for the mass matrix. The mass matrix will be assumed
to consist of blocks M, along the diagonal and the first minor diagonal consists of

blocks M;. The resulting form of the T,T M matrix is shown in Figure 4.6.

The significance of this result is that, if M; # 0, then there are four non-
zero matrices in each column of Tf M. Consequently, each set of measurements
within an element must be multiplied by four matrices to obtain the four vectors
of information which must be communicated to the central computer. This is in
contrast to the multiplication by two matrices and the communication of two vectors
of information if M; = 0, i.e., the mass matrix is block diagonal (or diagonal). The
advantage of having more off-diagonal blocks in the mass matrix is that it provides a
much better approximation. This gives a better weighted distribution of the control
and it allows for a better filter when the control is applied to the evaluation model.
However, as can be seen from the analysis above, this involves a substantial increase
in the workload of the local controllers, virtually doubling the number of operations
required to perform this aggregation step. This fact, plus the strong bandedness
of the condensed mass matrix shown in Figure 4.3 led to decision to implement

the observation and control filtering using a block diagonal mass approximation
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Figure 4.6: The aggregation matrix with a block tri-diagonal ap-
proximation of the condensed mass matrix. This figure
shows that the matrix T,T M contains four non-zero rows

per column if M; # 0, which increases the workload of
each local controller.
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Table 4.2: The flexible mode frequencies (rad/sec) from the global
model.

Flexible Mode | Global Model
Number Frequency
0.0266
0.0735
0.145
0.239
0.384
0.550
0.762
1.03
1.59
1.66

W 00 =3 O O i N

b
[==]

as the weighting matrix W. In fact, since a block diagonal approximation has
discontinuities at the finite control boundaries, a lumped mass approximation was

used, which results in a diagonal W matrix.

Having discussed some of the implementation issues, it is now possible to derive
the global, or coarser, model of the structural dynamics which can be represented

by the equation
Myedy + Kyeqp = (¥S,) Q4 (4.8)

where the condensed mass and stiffness matrices have been used in the formation
of the global values to provide the best model possible. The open loop frequencies
of this reduced order model are given in Table 4.2. These values can be seen to
agree well with the lower frequency modes for the full and condensed models given
in Table 4.1. As would be expected from any finite element approximation, this
agreement degrades for the higher frequency modes. This is a result of the fact
that the coupling influence of the residual system is much higher for these modes.
As was discussed in Chapter 2, this suggests that it would beneficial (in terms of

reducing the amount of coupling between the global and residual systems), to use
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a high number of global nodes but only retain a subset of the global modes. This
should improve the performance of the combined systems since it will reduce the
dynamic coupling, but as mentioned in Section 2.6, care must be taken to ensure
that the desired closed loop performance can still be obtained with the reduced set

of modes, 1.e., the global control authority must be kept high enough.

To implement this alternative which uses only the lower set of modes, the fol-
lowing steps should be performed. First, the global system of Equation 4.8 should
be formed as before. The eigenvalues and eigenvectors of this system should then be
calculated, sorted, and normalized. Only the eigenvectors of the n; lower frequency
modes should be retained to form ¢‘,. The new interpolation matrix, T, = T,d:‘g,
can then be formed, and a new model and closed loop system based on this shape

function can be derived exactly as before in Chapter 2.

The influence of the reduced coupling on the closed loop performance will be
explored in more detail in the next section once the global controller has been
derived. The implementation differences between retaining all or only a subset of
the global modes was addressed in Section 2.6, and the differences in terms of the

computational requirements will be investigated in Chapter 5.

4.3 The Global Control Design

The next step in the design procedure is to formulate the control problem. A
regulator based on a LQR design is used as the global controller. As with any
design of this type, the question of what to optimize, or how to pick the penalty
matrices remains. The aim here is to use a realistic cost function which includes a
penalty on the overall motion of the structure. A suitable performance objective is
to minimize the line-of-sight (LOS) displacement between the two ends of the beam.
An additicnal penalty on the displacement at each node was also included, with the

goal of performing shape control on the entire structure. Finally, a third term
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penalizing the total energy of the system was added to maintain a sufficient level
of damping in the higher frequency modes of the system. To be consistent with the
assumption that the beam is uniform along its length, each actuator was penalized

by the same amount. Then, the cost function is taken to be of the standard form
J = /0 * (zTRuz + uTR,mu) dt (4.9)

with the state z = [¢7 ¢7|T and the penalty matrices R,; and R,, defined as

1 r I, 0 K 0
R:: = 5C1,Clos + 1 + az (4.10)
2 00 0o M
1 2 n—1 n nt+l n+$+32 2n—-1 2n
Clos = [1 0...0 -1 0 0 ... O o]
R, = pI, (4.11)

where, a; = 2;9 and a; = 4—3';. Then, using Equations 2.13 and 2.22, the appropriate

consistently transformed cost for the global model of Equation 4.8 is given by

Ji = /0 (z7RL,z, + QTRL,Q,) dt (4.12)
T o T o

R, =] " g (4.13)
0 TF 0 TT

RS, = S]Ru.S, (4.14)

In this analysis, the filtering matrices are based on a weighting matrix W =
Miumped- The influence of the global controller on the structure can be compared
directly with the full state feedback regulator. The closed loop poles are compared
in Figure 4.7. Note that there are the global destgn model closed loop poles, the closed
loop poles and the full order regulator closed loop poles. The first set corresponds to
the poles obtained when the global controller is applied to the global design model.

The second set are the poles obtained when the global controller is applied to the
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condensed design model. The difference between these first two is that the design
model ignores the coupling between the global and residual subsystems. The last
set corresponds to those obtained when the LQR gains are applied to the condensed
model. The effects of the coupling can be seen in the figure through the influence
of the global controller on the higher frequency modes and the difference between
the global design model closed loop poles and the closed loop poles. The results in
Figure 4.7 indicate that the lower frequency closed loop poles are similar to those
obtained from the optimal regulator. It is also evident that this agreement degrades

for the higher frequency modes of the global model.

There is a negligible difference between using the condensed or lumped mass
approximation in the design of the global model as each provides a fairly good
representation of the lower frequency modes. Where this choice does become im-
portant though is in the weighting matrix used in the filtering. Figure 4.9 shows
the same controller designed above using the condensed mass approximation in the
design model but implemented using both the condensed mass and the lumped mass
approximations as the weighting matrix. Since the condensed mass is a far better
approximation to the mass matrix of the full model, it provides a much better filter
for the global control on the residual system. This graph indicates that the choice
of a good approximation for the mass matrix can significantly improve the filtering
out of the control spillover. However, previous analysis has already shown that this
requires a substantial increase in the implementation costs at the lower level. In the
example presented here the poles of the residual system tend to be stabilized by the
interaction, and those of the global model are made slightly less stable. However,
this appears to be a result of the internal dynamics of the plant and cannot be

generalized to other cases.

When only the n; = 9 lower modes of the global system are retained, the resulting
closed loop pole locations are as shown in Figure 4.8. They indicate that the

decoupling between the two subsystems is improved. However, a slight performance
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Figure 4.9: A comparison of two approximations of the mass ma-
trix used in the control and observation filtering. Both
controllers use the same global control design. The cir-
cles represent the closed loop poles obtained when the
lumped approximation is used as W. The crosses are
the closed loop poles obtained when M,onq is used as
w.
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decrease can be expected due to the fact that the closed loop poles do not agree
as well (due to the double aggregation step) with the optimal ones as do the poles
obtained when all of the global modes are employed. In this development, some
modes are now no longer considered to be part of the global model, so they will be
influenced by the residual feedback. If the global model is made too small, then the
ability of the central controller to govern the gross motions of the structure will be
significantly impaired, and the local controllers will have to control modes which

are very important to the performance objective.

4.4 A Comparison of the Local Control Designs

4.4.1 Introduction

The purpose of this section is to investigate the performance of the various local
controllers developed in Chapter 3. This will include colocated natural feedback, two
types of block diagonal feedback and two forms of the block tri-diagonal feedback.
The controllers will be discussed in terms of their applicability as both decentralized
controllers and as local controllers in the hierarchic architecture. There are two
main points to consider here. The modelling technique using shape functions is
not perfect so there will be some dynamic coupling between the global and residual
models. Also, the observation and control filtering is not perfect due to some of the
decisions made (such as using the lumped mass approximation as the filter weighting
matrix) based on implementation issues. Of course there will be errors in the model
as well. As a result, the controller from one model can then be expected have an
influence on the closed loop poles of the other model. For this reason, it is desirable
to develop a local controller that does not have a very high control authority for the
lower frequency modes since these typically are the ones which are modelled by the

global design model. This will have the effect of reducing the influence of the local
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control on the global design model poles. For a given level of spillover or coupling,
the higher the control authority, the larger the influence on the closed loop poles.
This is in contrast to the aim for the design of a decentralized controller, which
is obtain as much control authority as possible (or necessary, depending on the
control design) at each frequency. As will be seen, this spillover is most prevalent
for the modes which are at the boundary of the global and residual models. The
filtering employed in the hierarchic architecture is capable of removing nearly all of
the influence of the residual controllers on the lower frequency global design model
poles, even with the lumped mass approximation as the weighting matrix (see the

discussion in Section 4.2).

The global cost function of Equation 4.9 penalizes three measurements of the
structural motion, namely the LOS displacement of the end points, the sum of the
squared displacements at each node, and the total energy. Using a modal cost
analysis (63|, it is possible to show that the higher frequency modes have little
contribution to the LOS cost, but they do contribute significantly to the other
two. Consequently, the “optimal” local controller is based on a cost function which

penalizes only the displacements and the total energy.

The local controllers will be investigated by comparing the location of the closed
loop poles relative to the optimal locations for the weighting given above. Two
cases are actually presented. The first (lefthand graph) plot compares the poles of
the decentralized controller to the optimal pole locations. The second (righthand
graph) plot shows the influence of the filtered local controller exactly as it would
implemented in the hierarchic architecture. Referring to Equation 2.38, if the local
feedback gains are F, and F;, then implementating the decentralized control results

in closed loop dynamics given by

Mi+ Kq=-F.q— Fij 14.15)
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For the filtered local control case, the resulting dynamics are given by

Mi+Kq= - {(I -T,I;Y) F (1~ T,7; %) } q

- {(I - 1,1;%)" R (1 - 1) } § (4.16)

4.4.2 Colocated Feedback

Although two colocated control methods were discussed in Chapter 3, only the
second, natural control, was implemented in this analysis. A value of § = 0.10
was selected for this example since it represented an average location of the higher
frequency closed poles for the optimal regulator. Later work will look at several

different values, so the actual value of 8 is not critically important.

The closed loop pole locations for the two cases are shown in Figure 4.10. Note
the trend that the higher frequency poles have more negative real parts. This is
an influence of using the lumped mass, Miumped, to weight the control commands in
Equation 3.2 rather than the mass matrix of the model, M,,,,. Rather than being
the identity matrix, M;}.dM,um,,d is a full matrix with the major difference being
at both ends whﬁ boundary effects dominate. If M,,ns had been used instead,
then the poles would lie on the vertical line, Re(s) = —0.10. Numerical results have
shown that the highest frequency pole has a real part which is approximately twice
that of the lowest frequency pole. This result was also found to hold for much larger
values of 5. A comparison with the optimal pole locations shows that matching the
two sets of poles at lower frequencies would result in higher frequency poles which
are significantly overdamped. Based on these results, this is not expected to be a

particularly efficient decentralized controller.
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4.4.3 Block Diagonal Feedback

Two block diagonal controllers were developed in this example. One was based
on the full finite control element of six nodes, while the other splits this into two

bays of three nodes. The actuator commands in a bay are then constrained to be

computed only from the sensors within that bay.

The algorithm for calculating the gains was outlined in Section 3.3.6. The model
used in the analysis is as shown in Figure 3.3. A finite element model of a beam
based on the element matrices of Equations 4.1 and 4.2 was used. To form the
circulant model, the assembly steps for the end blocks had to be modified so that,
for instance, the structual node to the left of the one at the left end of the beam was
in fact the node at the right end. So, the “doughnut” shape was formed by looping
the beam elements around upon themselves. This structure was then split into the
required number of bays (20 were used in this work on the doughnut), and the
transformation developed in Section 3.3.3 was used to reduce the plant size. The
controllers when then optimized using the algorithm presented in Section 3.3.6. A

displacement and total energy penalty was put on the states and an equal penalty
of unity was attributed to each controller.

The results for these two cases are shown in Figures 4.11 and 4.12. The good
agreement of the poles in the lefthand graphs of each figure indicates that both
types of feedback should provide reasonable performance as decentralized con-
trollers. Since the full sized gain blocks allow information to be fed back over larger
distances, the full block diagonal feedback should provide better long wavelength
performance than the one which is split up into two bays. This can be seen by the
better low frequency agreement of the two sets of closed loop poles in Figure 4.11.
The agreement at higher frequencies is fairly good for both cases as well, indicating
that these modes are not being significantly overdamped. The important area of

agreement of the poles for decentralized controllers is the lower frequency modes.

137




However, in the hierarchic set-up, this region is governed by the global controller.
So, for local controllers, it is important that the poles match well for the lower
frequency modes of the residual model. For these filtered controllers, the agreement

in this frequency region appears to be good in both cases.

As was discusssed before, the problem with designing a local controller with bet-
ter control authority over the lower frequency modes is the increase in the coupling
that can be expected between the local control and the higher frequency poles of
the global design model. This is apparent when the righthand graphs (filtered local
control) in Figures 4.11 and 4.12 are compared. The higher authority of the full
sized gain block manifests itself through a slightly larger post-filtering influence on
the poles of the global design model. However, this filtered feedback still gives a

slightly better agreement for the lower frequency residual model modes.

4.4.4 Block Tri-Diagonal Feedback

Due to the diagonal dominance of the displacement and energy weighted optimal
gains developed in Chapter 3, the truncation method developed in the Section 3.4
could be used to create both the block tri-diagonal and banded feedback matrices.
For the latter case, a width of 5 nodes was found to be necessary to obtain all of the
important information in the gain structure. Since these gains are essentially the
optimal gains minus the very small feedback terms on distant nodes, it would be
expected that the closed loop pole locations will agree quite well with the optimal
regulator poles. The results in Figures 4.13 and 4.14 indicate that this is in fact
the case. In both cases, the low frequency agreement is excellent, but it would
appear that this does not hold quite as well for the higher frequency poles, though
the results for the full gain block case appear to agree slightly better. As was
discussed before, the higher control authority for the lower frequency poles presents

a spillover problem in the filtered case, but the magnitude of the problem would be
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fairly comparable for both of these types of feedback, and worse than that for the

block diagonal examples.

The filtered resuits show that the agreemcnt for the lower frequency residual
model poles is very good in both cases. The higher frequency agreement for the full
gain block is much better than that for the banded feedback.

4.4.5 Conclusions

As would be expected, the results clearly indicate that the block tri-diagonal de-
signs are the best decentralized controllers. However, they also indicate that the
decentralized block diagonal designs can give reasonable closed loop performance.
However, comparing the designs in terms of their primary job function as filtered
local controllers it is clear that the block diagonal and block tri-diagonal controllers
are virtually identical. The colocated uniform damping controller is clearly a poor

choice as a decentralized controller.

4.5 An Analysis of the Full Hierarchic Control

Designs

As stated earler, the aim of this chapter is to demonstrate that it is possible to
obtain closed loop performance which is comparable to the optimal solution using
a hierarchic control architecture. The question of the computational savings over
other full order centralized controllers will be left until Chapter 5. With this aim
of comparing the performance in mind, the various loc2l controllers analyzed in
the previous section have been combined with the global controller of Section 4.3.
The closed loop poles locations are shown in Figures 4.15 and 4.16. The two cases
combine the global controller with local controllers based on natural colocated feed-

back and a block diagonal feedback. Only two examples are provided since, apart
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from the extra coupling due to the addition of the other controller, these plots are

virtually identical to those in Figures 4.7, 4.10, and 4.12.

To investigate the closed loop performance even further, the response to a unit
velocity impulse applied at about 15 the length of the beam was obtained for each of
the global and local control combinations. The measurement matrix, C, was taken
to be R,%z so that yTy provides the contribution to the cost function of Equation 4.9
at each time interval. The states were also measured directly so that the squared
control effort could be found using the feedback matrices. The totals of these state
and control terms were then summed over the entire impulse response. This was
repeated for several control weightings, and the results are compared in Figure 4.17.

The control axis is actually the average squared control effort as the total sum is
divided by n.

The resulcs in Figure 4.17 show the trade-off between the achievable performance
and the control effort required. There are several important points to address. By
definition, the optimal LQR controller represents the “lowest” achievable line on
this graph. Any other design will give a state/control cost pair which lies above
this boundary. Another curve has been drawn on the graph to show the expected
performance if one of the simplest forms of decentralized feedback, namely natural
control, is employed. The difference between the optimal and the uniform damping
solution is readily apparent for this fairly realistic cost function. The third set of
points corresponds to the hierarchic controller designed using the global controller of
Section 4.3 with a local control based on uniform damping. This figure graphically

shows the performance improvements that can be obtained by including the second

level of control in the hierarchic control architecture (see Figure 2.4).

The optimal curve consists of the results from several control designs (i.e., sev-
eral p values). The marked point corresponds to the design point (p = 1) for the
global controller. This global design was then combined with the various local con-

trollers which were also designed with various parameter settings. As was discussed
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back (circles) compared with the full order regulator
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Figure 4.16: The closed loop poles for a full hierarchic controller with
a local control based on block diagonal feedback (circles)
compared with the full order regulator poles (crosses).
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before, each important control parameter (3 for uniform damping or p for the opti-
mal solutions) was increased and decreased by a factor of about 2 to generate three
local control designs. For the hierarchic designs, there are two control parameters.
Fixing the global control parameter (p) results in a locus of state/control cost points
for various values of the local control parameter. For each value of the global pa-
rameter, there will be a point on the locus which minimizes the separation from
the LQR boundary. This is the “optimal” point for this global design. Repeating
this procedure and connecting the set of points then generates the appropriate cost
curve for this combination of hierarchic and local designs. For simplicity, only one
global control design point is shown, but the results indicate that some very inter-
esting conclusions can be made. The results for the five local control designs are

shown in Figure 4.18.

Comparing the performance of the local controllers in terms of the separation
of the “optimal” point from the LQR boundary, it is clear that the two block tri-
diagonal designs are the best. The full block diagonal approach is slightly worse,
but better than the two bay approach. All four of these designs are better than the
results obtained using the uniform damping as the local controller, so these results
agree with the observations made from investigating the pole locations. What is also
apparent from this figure is that most of the performance improvement relative to
the decentralized controller has been obtained by including the global controller, and
that the extra performance improvements obtained by using the more sophisticated

local control designs are apparent but relatively small.

One important point is that the performance of the local controller would be
more critical for the global design based on fewer global modes. In this case, the local
control will influence more lower frequency modes which will have a large influence
on the cost, so it is important that the controller be designed appropriately. Just
damping these modes at the same level as the higher frequency ones will either

result in very poor closed loop performance or many overdamped modes.
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One other way to analyze the results of the hierarchic controller is to apply it
to the evaluation model. In this case, this is taken to be the beam finite element
model before the condensation procedure is applied. In this way, the evaluation
model is twice as large as the design model. The closed loop pole locations for
t;he same same global controller and the uniform damping and block diagonal local
controllers are shown in Figure 4.19. These results indicate that the level of spillover

to the unmodelled modes is very similar for both designs.

4.6 Conclusions

In conclusion, it is clear that the hierarchic controller can offer much better closed
loop performance than the decentralized natural control, and the selection of a good
local controller should allow the performance (state cost and control effort required)
to approach that of the LQR optimal controller. Both of the block diagonal and
block tri-diagonal feedback approaches provide very comparable performance. It
would be difficult to recommend one technique over the others based purely on
these performance results. Chapter 5 will investigate the implementation costs of

these designs to determine the cost of these performance improvements.
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Chapter 5

Implementation Issues

5.1 Introduction

The main purposes of this chapter are to present the operations count for the
hierarchic control architecture and to show the implementation benefits that can be
obtained by employing this design. In particular, the local control designs discussed
in Chapters 3 and 4 will be ‘nvestigated, and some conclusions about the relative
implementation costs will be made. These results will then be combined with the
performance analysis in Section 4.5 to make a final decision concerning the most
efficient local controller. Section 5.3 then discusses the closed loop stability of
the hierarchic architecture. Section 5.4 addresses the issue of the robustness of the
architecture to sensor and actuator failure, and Section 5.5 investigates the question

of how to locate the processors.
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5.2 Operations Count

5.2.1 Introduction

The primary purpose of this section of the chapter is to develop the operations

count for the local and global controllers for the special case of the hierarchic con-

trol architecture being applied to a one dimensional structure. The computational

requirements will be expressed in terms of the number of multiplications and ad-

ditions required in total and for each type of processor in particular. Figure 5.1

shows the assumed form of the structure. With the following definitions

ny

the number of structural nodes

the total number of global degrees of freedom

the number of global nodes

the number of degrees of freedom per global node

the number of structural nodes per finite control element
the number of finite control elements

the number of retained global modes

These values are related through the following set of relations

n, = ng—1
n = n, (hn)
Ry = NgnNy,,

(5.1)
(5.2)
(5.3)

Note that it is not assumed that the global nodes coincide with the structural nodes

in general, but it is assumed that the internal finite control elements are all identical,

with h, nodes between the global nodes. The finite control elements at either end

have h, — 1 internal nodes and one node that coincides with a global node.
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Figure 5.1: The assumed layout of the global and structural nodes
for the operations count.

5.2.2 Task Analysis for the Controllers

As can be seen from Figure 2.4, there are several tasks that the controllers at each

level must perform. Going around the control loops as the operations would be

done, the jobs are:

I. Each local processor must read the information from the sensors and form the

contributions to the global node values {local].

II. These values must be communicated to the global processor [combined|, added

together [global] and then normalized [global].

III. These global values, g,, are then returned to the local processors [combined],

interpolated [local|, and subtracted from the original measurements [local].
IV. The local control commands @, can then be calculated from residuals e [local|.

V. The global control commands Q, can be caculated from g, [global].
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VI. The local processors must calculate the global component of the local control
Q? [local].

VIL. These values are then communicated to global processor [combined|, added
together [global], and subtracted from the global commands [global], to form
Qg - Qﬁ .

VIII. These commands are then normalized [global] and communicated down to the

local processors [combined].

IX. These control commands are then interpolated, added to the original set Q.

to form u, and then applied to the actuators [local].

The following is a detailed calculation of the operations count for a one di-
mensional structure where it is assumed that there are two global nodes per finite
control element and that each structural node has one degree of freedom. The
mass matrix is assumed to be diagonal so that, in terms of the operation count,
T,M ~ T, ~ [n X n,]. The communication required at the 1*» step is denoted by

comm.

I. Form the contributions to the global node values.

(T7Mq)  ~ [2rasy X hy) - [Bg x 1]

C,=2 P M (5.4)
1= n .
9dof h,~1 A

per element. This amount should be doubled to account for § as well.

II. Communication of the states up and normalization.

i. Communicate 2n,,, , (n,s — 1) pieces of information from the local pro-

cessors to the global processor.
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ii. Aggregrate the information to form the full set of global values.
Ca, = ngypy (ngn —2) A (5.5)

ili. Normalization.
Mgy ~ [ng x ng) - [y x 1]
(n,)? M
Cayy =19 © ° (5.6)
ng(n,—1) A
so that

2

M

C, = (n,)z + comm, (5.7)
(n,) —2n,,, A

where these results must be doubled to account for g.

III. Communication of the global states down and interpolation.
i. Communicate 2n,,, (n,, — 1) pieces of information from the global pro-
cessor to the local processors.

ii. Interpolation.

(To90) 1 ~ [hv X 2"%{] : [znﬂdol X 1]

2n M
Cs, = h, { faer (5.8)

per element.

ili. For the subtraction, there will be h, sign changes and additions per

element.

so that

n M
Cs =2h,{ ™ + comm;, (5.9)
Mgy A

per element and these results must be doubled to account for 4.
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IV. C. for the local control calculation will be added later.

V. Global control.

Foqy ~ [ng X ny] - [n, x 1]

Cs, = { (v’ M (5.10)
ng(ny—1) A

which must be doubled to account for §, and then (n,) A must be done to

combine the two components of the control, so that

2 (n,)? M
o, = | 2™ (5.11)
n,(2n,—1) A
VI. Global component of the local control.
Q= TgTQe
h M
Ce=2n,,,{ ' (5.12)
hy—1 A

per element.
VII. Communication of the control up and subtraction.

i. Communicate 2n,,,, (n,, — 1) pieces of information from the local pro-

cessors to the global processor.

ii. Aggregate the information to form the complete set of global values.
C71 = n,‘o! ;’?,,,. - 2) A (5.13)

iii. For the subtraction, there will be n, sign changes and additions.

so that

Cr =2ny,,, (ngn — 1) A + comms (5.14)
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VIII. Normalization and communication of the modified control down.

i. Normalization.
2
n M
Cs, = () (5.15)
ng(n,—1) A
ii. Communicate 2n,,, (n,, — 1) pieces of information from the global pro-

cessor to the local processors.

so that
(ng)z M
Cs = + commy (5.16)
n,(n;—1) A
IX. Interpolation and addition.
i. Interpolation of the commands.
2n M
Co, = h,4 1! (5.17)
2ng,, —1 A

per element.

ii. For the subtraction, there will h, sign changes and additions per element.

so that

n M
Co =2k, ™’ (5.18)
Mgy A

per element.

This completes the analysis of the tasks to be performed by each of the con-
trollers. There are several totals which are of importance. These include the total
computational requirements, and the totals for each processor. For the total of the

global processor, the following summation must be made

Cobal = 2C; + Cs + C7+ Cy (5.19)
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where the communication terms are ignored for now. For the local processors, the

corresponding sum is
Clocat = 2C1 +2C3+ Cy + Cg + Cy

so that, using Equations 5.7, 5.11, 5.14, and 5.16

(n,)? M| [2(,) M
Coobat = 2 ! ) + !
(ng)" —2n,,, A ] Lmne(2n—-1) A
I .
0 M n M
. [
| 2ng, (Rgn—1) A | | ny(n,—1) A
- :
5(n,)? M
| 5 (n.,)2 —6ng,, A ]
and, from Equations 5.4, 5.9, 5.12, and 5.18
(b, M| '
n M
Clocal = 4"'“0! ! + 4h’ﬂ i
| hg—1 A | | gy A
h M *
+ 2n,, | "’ + 2h, et
| hg—1 A | | Pguy A
12n,, h M
_ 9401 g +C,

6ng,,, (2R, —1) A

+Cy

(5.20)

(5.21)

(5.22)

These represent the total computational requirements for each processor. It is

these values which are most important in sizing the individual processors. The total

for all processors can be obtained from
Ctotal = Cglobal + n.Clocal

so that, employing the relations in Equations 5.1 through 5.3

Ciota = 2 +n,
| 5(n,)" —6n,,, A 6ng,,, (2h, —1) A

[ 5(n,)? + 12nn M
_ [ s 1z, nc
| 5(ng)" +12nn,,,, —6n, A
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which represents the total computational requirements per update, assuming that

the two loops operate at the same rate, an assumption which will be relaxed in the

following section.

5.2.3 Incorporating Different Controller Frequencies

Typically it will be undesirable to operate each of the control levels at the same
update rate. The aim of this section is to introduce a technique which allows the
local controllers to operate at a much higher rate than the global controller since
they are governing different modes of the structure. As was mentioned earlier in
Section 2.5, the problem with this approach is that it would require the two filtering
loops in Figure 2.4 to operate at the much higher rate, thus involving the central
processor. However, it is possible to avoid this using a technique of computing the
global components of the states and local control, and then using them for an entire
global update cycle. The assumption being that, on average, these values will not
change much during this time period. Some measure of the deviation during an
interval could be evaluated at the local level and a correction then could be applied
during the next interval. A decrease in performance relative to the case in which
the filtering is done at the faster rate should be expected since the filtering out of
the global components of the motion and control is no longer complete. This results
in some extra spillover between the two models. However, employing this technique
would allow for very fast and simple control to be performed at the local level. This

is another trade-off in the performance and/or cost analysis that must be done.

Without the filtering steps, each local processors needs only to perform three

operations per loop. These are

I. A subtraction to form the residuals e, h;A per element

II. Calculate the local control commands, C,
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III. Add the global command (a constant for the time interval) and the filtered

local control commands, ~2,A per element.

Using the variable p to denote the number of local updates per global update, the

total computational requirements for each update then is given by

0 M O M
Cita(p) = Ciralp=1)— omh. A +pn,{Cs+ oh A
n.lig I

5(ng)? + 12nn,, , M
5(n,)? + 12nn,,  —6n,—2n A
0 M

+ pinCi+ (5.25)
2n A

Typically, the command update rate should be faster than the fastest mode being
controlled. Thus, p can be considered to be a measure of the relative frequencies of
the modes to be controlled by the two levels. For a rod, the modal frequency tends
to go as n, but for a beam it goes as n?, so that, since the local model is of order

n, and the global is of order n,, then

Forarod: p = r (5.26)
ny
n\?
For a beam: p = (—) (5.27)
Ry

5.2.4 Operations Count with only the Lower Modes Re-

tained

The advantages of using only the lower half of the global modes available in terms
of reducing the dynamic spillover were shown in Section 4.3. The purpose of this
section is to produce the operations count when this modification is implemented
as shown in Section 2.6 so that a fair comparison with the case where all the global

modes are retained can be made. Figure 2.6. shows the appropriate modifications
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that must be made to the control architecture. It can be seen that the tasks per-
formed by the local processors are unchanged, but the steps for the global processor

are now

I. Aggregate and normalize the data from the local processors, as before, to form

q-
II. Compute ¢;q, to be sent down to the local processors.
III. Compute the global control based on the lower modes.
IV. Aggregate the local control and use ¢;T to reduce the information.

V. Normalize the commands.

The number operations required for these steps can be enumerated following the

results in Section 5.2.2. It is assumed that only n; modes are retained so that the

¢!, matrix is ny X n.
I. Aggregation and normalization.

i. Aggregation.
Ly, =ng,, (ngpm—2)A (5.28)

ii. Normalization.

()7 M (6)) ™ (407t~ )y < 1
Ly, = (5.29)
so that
L= (5.30)

ni(n,—1)+n,, 4pn—2) A
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II. Compute ¢} q.

@t~ [ngx i) x 1]

L {(n,)n, M

ng(mi—1) A

III. The calculation of the global control is the same as before.

Ls — { 2("4)2 M

7, (Zn, - 1) A
IV. Aggregation and reduction of the control.

i. Add the commands sent from the local controller.
Ly =Cq = Nyior (n,,, -2)A

ii. Reduce the commands.

Q. (¢:)TQ5 ~ [ X ng] - [ng x 1]

L4 _ {n;(n,) M
’ m(ng—1) A

iii. For the subtraction, there will be n; sign changes and additions.

so that

. { na (ng) M

nng+n, —2n,, . A

V. Normalization.

Ls = { (ng) mu M
n, (n, - 1) A
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The total computational requirements for the central processor can then be obtained

from
Clower = 2L, + 2Lz + L + L,+ Lg (537)
[ M
Clower = 2 ™ (n')
| ni(ng—1) + 1y, (ngn—2) A
+ o2 (ng) mu M 2 (m)2 M
| n,(n,—l) A n;(2n1—1) A
[ n(n M n,n M
L [ L[ @am
| mng +1ng—2n,y,, A ng(n—1) A
[ 2(n)?+6 M
_ | % ‘)2 " (5.38)
| 2(m)” + 6myny — 3ny —6n,,,, A

where typically n; =~ %n,, so that the total for the central computer now goes as
I (n,)* rather than 5 (n,)* as before. So, it would appear that this modification not
only improves the decoupling performance of the controllers, but also requires fewer

computations to implement than the case where all the global modes are retained.

5.2.5 Operation Counts for the Local Controllers

Several local controllers were studied in Chapter 3. The purpose of this section is
to outline the computational requirements of these various techniques. Three types
will be studied. These include colocated rate and displacement feedback, block

diagonal feedback, and block tri-diagonal.

I. Colocated Uniform Feedback. The feedback is done directly from a set of

measurements to the actuator at the same location as explained in Section

3.2.
u; = —f*Mgq; — 26Mg;

164




IL

A calculation which must be performed at each of the n structural nodes, so

that the total computational requirements are then

2n M
n,C4OOL = (5.39)
n A

Block Diagonal Feedback.

The feedback is from all sensors in an element to all actuators in an element.

Then, for a finite control element with h, nodes
Foq. ~ [hy X hy) - [hy x 1]

which requires,
hy M
Cupp = hy (5.40)
h,—1 A
operations per element. There are also h;A to add the displacement and
velocity components together The total requirements are then given as
2h, M
2h,—1 A

n,C4BD = n,h,

2n M
= = (5.41)
n— 1| 2n—n,m+1 A

The analysis in Chapter 4 also investigates a second case for which the gain
matrix is composed of block diagonal matrices which have been developed for
“bays” which are smaller than the finite control element. In particular, the
case for which the element is split into two independent bays was considered.
In this case, the control commands within a bay are only calculated from
the the sensor measurements within that bay. For this half block diagonal

example, the computational requirements become

n.h, | 2h, M
2 | 2n,-2 A

eCuyypp =
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n M
= = (5.42)
- n—n,+1 A

III. Block Tri-Diagonal Feedback.

There are two cases to be looked at here. The first one is the “worst” case
for which the gain is taken to be three full gain blocks. The other interesting

case considered in Section 3.4 is the one for which the gains are banded.

i. Full Gain Blocks.

qi-1
| Fiox B B || o | ~ b x 3kl [3h, x 1

di+1

which requires

3h, M
0431'01 = h, 3 1 A (5.43)
0=

per element. There are also h;A to add the displacement and velocity

components together The total requirement then, taking the end effects

[41@ M}
+2
hy(4h,—1) A
[Gh, M} {—4(h,)’ M]
= n.h, +
(6h, —1) A —4(h,)* A
(=) erm-100 M
| (22) (6rm-10)-n A

into account, is

6h3 M
n¢C4sro, = (n.—2)
hy(6hy,—1) A

(5.44)

ii. Purely Banded Feedback.
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Assume that the control at each point is calculated from m locations on
either side of the point. Then m = 0 corresponds to colocated feedback,
and m = 1 corresponds to feedback from adjacent nodes. Then, each
control calculation will require 2m + 1M and 2m A. These results must
be doubled, and then n additions are required to add the displacement
and velocity components. The total, taking into account the end effects

would then be

C n(4m+2)-2m(m+1) M (5.45)
n.Uy = .
| ndm+1) —2m(m+1) A

5.2.6 Communication Requirements

In the analysis of the tasks to be performed that was detailed in Section 5.2.2, four
communication operations were enumerated. Two of these were from the local pro-
cessor to the global processor, and the remaining two were in the opposite direction.
The total number of pieces of information that must be communicated between the

levels for these two cases are listd below.

I. Local to global direction.
i. comm; ~ 4ny,,, (ngm — 1)
ii. commg ~ 2n,, , (ng — 1)

II. Global to local direction.
i. comm; ~ 4n,,, (ng, — 1)
ii. commy ~ 2n,, . (g, —1)

There is also the requirement of local communication between closest neighbors

for some of the lower level control designs. These results are difficult to analyze in
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the same manner as the operation counts since they depend entirely on the param-
eters of the system. Parameters which are of particular importance are the types
of processor, the operating speed, the bus network, the method of communication
(serial or parallel), the work load of the computers (the priority of the communi-
cation), and the protocol of the communication. The influence of these parameters

are will be analyzed by the upcoming work by David Warkentin.

5.2.7 Typical Examples

For a single chip micro-computer similar to the INTEL 80C196KB it is given in the
data books that, using short integers and indirect addressing, a MULT(3) command
(A x B — C) requires approximately 19 clock cycles. In comparison, an ADD(3)
command requires only 7. So, for the purposes of comparison, it would be a good

approximation to use A ~ %M . Using this result, Equation 5.25 then becomes

4 2
Ciotal = 3 (5 (ng)? + 12nn,,‘,,) —2n, + 3" (p—1) + pn.Cy (5.46)
where
Forarod: n,, = 1 (q) (5.47)
For a beam: n,,, = 2 (¢,9) (5.48)

and the appropriate values of p were given in Equations 5.26 and 5.27. Then, for

each global update, the global processor must perform

Catodat = § (Sn;,, + 12n) —2n,m —3n Rod

(5.49)
Cotobat = § (20n:,, + 24n) —4ny, — 3n Beam
equivalent operations, while each local processor must perform
Clocat = 3hy + C4¢ Rod or Beam (5.50)

at a rate which is p times the global update rate. In comparison, full state feedback
requires 2n? M and n (2n — 1) A, or %n (8n — 1) equivalent operations, at an update

rate that goes as n?.
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These requirements are compared in Figures 5.2, 5.3 and 5.4. It is recognized
that the full state feedback approach is inappropriate for this example, but it is
included for the sake of comparison. From the figures, it is apparent that the hi-
erarchic architecture offers a significant advantage over the full state feedback in
terms of the total operations count. What is more important however, is that the
workload of any individual processor is significantly reduced. This fact is partic-
ularly true for the local computers, with the workload being reduced to the point
where fairly simple inexpensive components could be used, or alternatively, it would

be possible to operate at a much higher bandwidth.

For sake of comparison, two points have been taken from the graphs and are
listed in Table 5.1. The first column corresponds to the example studied in Chap-
ter 4. The second column corresponds to a system with twice as many global nodes,

but four times as many structural nodes.

Table 5.1: A comparison of the operations count for two system

sizes.
Controller Type 30 Structural Nodes | 120 Structural Nodes
ngn =6 ngn = 12
Full state feedback 2390 38360
Global controller 1876 7552
Average requirements 5 controllers 11 controllers
per local controller
Colocated natural control 14 28
Block diagonal: full 82 302
Block diagonal: two bays 46 171
Block tri-diagonal: full 248 980
Block tri-diagonal: banded 75 154
with width m = 2
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Total Equivalent Computations
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Figure 5.2: The computational requirements for various global con-

trollers.
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Total Equivalent Computations
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Figure 5.3: A comparison of the computational requirements for
various local controllers: n,, = 6.
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Figure 5.4: A comparison of the computational requirements for
various local controllers: n,, = 20.
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These results compare only the total requirements at each level. They do not
include the frequency at which the operations would be performed. A comparison of
the global requirements and those for full state feedback clearly indicate that there
is a structural model size above which a given global model offers a substantial
reduction in the total computations required. For the local controllers, one result
that stands out is that using the full block tri-diagonal feedback approach at the
local level is very expensive. As would be expected, the simplest local control using
colocated natural feedback requires the fewest number of computations in both
examples. The full block diagonal feedback approach is more expensive than the
colocated and block tri-diagonal banded methods, but it is far cheaper than the full
block tri-diagonal technique. Splitting the finite control element into 2 “bays” cuts
the requirements approximately in half. So, in summary, it would appear that the
colocated approach is the cheapest, the 2 bay block diagonal and block tri-diagonal
banded approaches are comparable, the full block diagonal method is slightly more
expensive than these two, and the full block tri-diagonal approach is by far the most
costly of all. The curves in Figures 5.3 and 5.4 indicate that these trends hold for

a wide range of structural and global nodes.

These results, coupled with the small performance improvements associated with
the more sophisticated local architectures, indicate that the most efficient hierarchic
combination is a good global design with a simple and easy to implement local design

which can then operate at much higher frequencies.

5.3 Closed Loop Stability

5.3.1 Introduction

One question that remains to be discussed is that of the overall stability of the closed

loop system. As was shown in Chapter 2, for the purpose of the control design, the
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system can be written as two coupled dynamic systems. Through the choice of
appropriate matrices for the observational and control filtering shown in Figure 2.4,
it is discussed in Section 2.5 how it is possible, in the ideal case, to eliminate both the
control and observation spillover completely. The resulting systems are then only
coupled dynamically through the stiffness matrix if the weighting matrix is selected
to be the mass matrix M. However, as was discussed in Chapter 4 and Section 5.2,
some of the performance and/or cost trade-offs (such as using the lumped mass
matrix as the weighting matrix) allow “leakage” in this filtering, so that in reality

it will not be complete.

It was shown in Section 2.6 that it is possible to reduce this dynamic spillover by
selecting the appropriate modes as the shape functions, or just using the lower set of
the global modes. This is another performance and/or cost trade-off. Theoretically
it is possible to reduce the coupling to an arbitrarily small level by choosing the
open loop modes as the shape functions. In practice however, this would offer no
computational advantage over the full state feedback method. In fact it would
require more computations to implement due to the overhead, but this would be
done in a partially decentralized manner. With approximate mode shapes or finite
element approximations, this dynamic coupling will be present, and it presents a

difficult obstacle for the stability analysis since it introduces spillover.

It will be assumed in this work that the separate controllers have been designed
so that the two closed loop systems are stable. The purpose of this section is to
present some arguments about the stability of the overall system when the two
subsystems are dynamically coupled together. As will be shown, it has only been
possible to develop necessary conditions if a constraint is imposed on the gain
matrices. Sufficient conditions will be derived as well, but they are very conservative
and overspecify the required gains by several orders of magnitude. Although it has
been hard to develop a more general proof of stability, it should be note that no

case of instability has been observed for the examples that have been investigated.
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For the modelling approach developed in Chapter 2, the frequency spectrum
can be split into three regions called the global modes, the residual modes, and the
truncated modes. The influence of the two controllers on each of these three regions
must be considered. By design, the influence of the global controller on the global
modes, and of the local controllers on the residual modes will be stabilizing and
should provide satisfactory performance. For the influence of the global controller
on the truncated modes, an argument based on the frequency separation and the
controller roll-off can be employed to show that the effect would be negligible. Since
the local controllers can be designed to be positive real, then it is guaranteed that,
although spillover will occur between the residual and truncated modes, the effect
will be to stabilize this latter set. The two remaining controller/system influences
to consider are the effect of the local control on the global modes and that of the
global control on the residual modes. These depend on how well the modes are
approximated and the ability of the filters which are implemented to decouple the
subsystems. The basic argument is to claim that the filtering steps eliminate the
direct control spillover from one system to another and that the dynamic spillover
is a secondary effect sc the influence is “small”. The results in Chapter 4 showed
that the global component of the local controllers was filtered out very well for both
of the weighting matrices used, so this claim holds for this case. However, it was
also found that the influence of the global controller on the residual model depends
to a large extent on the weighting matrix used in the filters, see Figure 4.9. If the
condensed mass matrix is used, then the direct control spillover is very smali. This
issue complicates the analysis even further. The work done here assumes that the
observation and control filtering is perfect, and only the influence of the dynamic

coupling need be examined.
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5.3.2 Lyapunov Test

If an assumption about the structure of the gain matrices (i.e., their positive defi-
niteness) for the global and local controllers is acceptable, then it is possible to prove
that the two coupled systems will be stable using a standard Lyapunov function

test. The closed loop dynamics are given by

MisKo= - (TRT+ (1-T;920) R (1177 o
- (TR (1) (- 1)
= —qu—qu (551)

or, equivalently, that

Mi+ F,g+ (K + F)g=0 (5.52)

It is assumed that the mass matrix, M, is both symmetric and positive definite. The
stiffness matrix K is symmetric, but is only positive semidefinite since rigid body
modes may be included in the model. If a matrix is positive definite, t.e., A > 0O,
and another matrix B is not rank deficient, then it can be shown that BTAB > 0.
So the gain matrices F; and F; defined above will be positive definite provided that
the matrices F,, F,, F;, and F; are positive definite since the filtering matrices are
of full rank. Finally, since the closed loop stiffness matrix K + F; is the sum of
positive semidefinite and positive definite matrices, then it is positive definite as

well.

So, if the global and local controllers are positive real, then each of the matrices
in Equation 5.51 are positive definite. Stability of the closed loop system can then
be proved using a standard Lyapunov function based on the total energy for the

closed loop system

1
=¢" (K + Fi)q (5.53)

) 1, )
Vg4 = §qTMq+ 5

Since the closed loop mass and stiffness matrices are positive definite this quadratic

function is positive semidefinite. The derivative with respect to time of this function
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is

ov

= = *MG+¢T (K + Fy)q (5.54)

= —¢"Fjg (5.55)

The theorem for Lyapunov stability states that the system is stable if a function
V (g, §) can be found such that it is positive semidefinite for all ¢ and only zero at
g = 0, and that its time derivative is negative semidefinite. The degree of stability
(asymptotic or neutral) depends on the range over which the derivative is zero.
Asymptotic stability occurs if the derivative is zero only at the origin. Since it
is assumed that M > 0 and K + F; > 0, then the system will be asymptotically
stable if F; > 0, and only Lyapunov (neutrally) stable if F, > 0. This argument is
basically that coupling two “passive” systems will not destabilize the overall system.
This restriction on the gain structure is relatively easy to impose for some of the
local controllers, especially for the colocated design. This will be a little more
difficult for the global controller as it is designed more with performance in mind.
However, several design methods for positive definite controllers are available, for

example [40,8].

5.3.3 Connective Stability

The purpose of this section is to investigate the question of the influence of the
dynamic coupling on the overall stability of the system. With this aim in mind,
a technique developed in reference [60] to analyze the overall stability of complex
dynamic systems which can be broken into coupled subsystems is introduced. A sim-
ilar analysis is developed by Yam [69]. This analiysis regards the dynamic coupling
between the stable systems as perturbations to the design models, and provides con-
ditions such that the coupled design models will remain stable. From Equation 2.27,

the closed loop dynamics matrix of the coupled global and residual design models
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is of the form

A, A,
Ag=1| " 7 (5.56)
Ary Arr
where
0 I
A, = i (5.57)
_M;gl (Kgg + Fy) —Mg—alFﬁ
0 0 o 0
A, = A,y = (5.58)
| —M,'K,, -M'K,; 0
0 I
A= > (5.59)
| -M! (K, + TPF.T,) -M;'TFF.T, |
and the state vector z is of the form
z
z=|""| z,= q', z, = o (5.60)
z, 9 gr

Since it is assumed that the control and observation spillover have been eliminated
by the filtering, the full system corresponds to two stable systems coupled by ma-
trices which are independent of the control gains. The coupling is purely a function
of how well the interpolation functions model the lower modes of the open loop

system. In the perfectly modelled case, they would both be zero.

For this analysis, the Lyapunov function is taken to be a sum of the functions

for the individual subsystems

1

V(zgz,) = (-'L'Z‘Haza)% + (szrzr) ? (5.61)

where H; solves

ATH, + HiA; + I, =0 i€ {g,r} (5.62)

The procedure for proving stability requires the introduction of a 2 x 2 test matrix

wo | mamy G | | Y w"] (5.63)
Erg m:'(l'y—'y Wy Wy
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1
where Ax (-) is the maximum eigenvalue of (-) and &; = A, (A,T,-A.-,-) i, € {g,r}.
A theorem proved in reference [60] states that the full system is connectively aymp-
totically stable in the large if the leading principal minors of the test matrix W are

such that

wy, < 0 (5.64)

WoyWpy — Woyy > O (5.65)

Note that, from Equation 5.56, only w,, and w,, depend on the feedback gains.
Also note that Equation 5.64 is guaranteed by the assumption that the isolated
systems are asymptotically stable. Then, Equation 5.65 provides an equation for
directly comparing the feedback requirements of the isolated systems (w,,, w,,) and
a measure of the dynamic coupling in the model (w,,, w,). Typical values taken

from examples in Chapter 4 would give a test matrix of

-0.124 11.379
W = (5.66)
4.065 —0.0042
so that
wy,, = —0124<0 (5.67)
w"‘w" - w,,w,g = _46.254 < 0 (5.68)

From these results, the problem with this approach is immediately apparent.
The test is very conservative since it is based on the worst case singular values of the
off-diagonal coupling matrices. With the levels of coupling seen in the examples of
Chapter 4, the closed loop design model poles would have to be orders of magnitude
more stable than they are in the current designs to meet this condition. However,
the results in Chapter 4 indicate that these large safety margins are unnecessary,

as much smaller values for the feedback gains stabilize the overall system.

So, in conclusion, it is clear that arguments based on connective stability will

not work in this case as they are far too conservative. However, if the correct mass
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matrix is used in the observation and control filtering and the feedback matrices
are positive definite, then the overall system can be proven to be stable using a

Lyapunov test.

5.4 Controller Robustness

Since a sensor or actuator failure is inevitable in any real structure, it is important
to analyze the performance degradation that can be expected in the closed loop
response. This discussion will not be concerned with how a failure is detected, as it
is assumed that a FDI system exists which can isolate the faults. The aim here will
be to provide a method for handling a small number of failures so that the controller
is robust enough to provide good performance until the parts can be replaced. The
approach used in this work will be to reconfigure the control design based on another
condensation technique. The most straightforward way of reconfiguring the design
after a failure is to repeat the mass condensation developed in Section 2.3 to obtain
a model based on the original degrees of freedom minus those lost due to the failures.
However, this process will generally have very little effect on the global model, so
it is not necessary to perform all of this reconfiguration. It is only really necessary

to redesign the local control.

Since the local mass of the structure plays such an important part in deter-
mining the decay rates, the reconfiguration of the local controllers is based on a
mass weighted distribution of the gains. This is particularly simple for the uniform
damping local controller since the gains are directly mass weighted in the equations.
The reconfiguration process simply requires the elimination of the lost node, and
the local mass is then shared between the adjacent controllers. The shape function
matrix T, must also be modified as well to remove the lost node. This is a simple
step if the lumped mass approximation is being used since just setting the appropri-

ate element of the mass matrix diagonal equal to zero has the effect of eliminating
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the node from the analysis.

5.5 Selecting the Appropriate Processor Location

The question of where and how to locate the processors of the local controllers is
an issue that remains from the earlier work done in by Ward [67]. From the figures
presented in Chapter 2, it would appear that there are two obvious ways that the
micro-computers can be distributed. One method is to associate them with the
global nodes, and the other is to associate them with the finite control elements.
As will be shown in this section, there is one key point which distinguishes these

two methods, favouring the second one.

As was discussed in Chapter 2, in particular Section 2.5, the local controller relies
on the formation of the residual, e, to calculate the control commands. In order to
determine this value, it is necessary to know the measurements at every point, the
global values at the end points, and the interpolation functions. It is the formation
of the residual vector, e, which distinguishes one method from another. Why this
is the case is probably best explained by looking at the operations required in each
case. Consider, as an example, the one dimensional cases shown in Figure 5.5. The
first case associates the processors with the global nodes, the second associates them

with the finite control elements.

First, note that case 2 requires one less processor, a fact which is magnified for
the two dimensional case (42 = 16 versus 3 = 9). However, it is not clear that
this is necessarily a benefit because, although it would mean that there are fewer
processors to embed, the work load of each processor may be large enough to require

a very sophisticated system at the local level.

To discuss the formation of the residual, e, look first at case 1. It can be seen

that both processors P, and Py are required to obtain the same set of measurements
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Figure 5.5: Two ways of associating the processors. Case 1 (a) as-
sociates the processors with the global nodes. case 2
(b) associates the processors with the finite control ele-
ments.
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within finite control element 2. So, there is either a duplication of the measurements,
or some local communication is required. Once each processor has obtained the
necessary measurements, it can form the contributions to the global node value
g4 by multiplying this information by the shape functicn [Tz(‘"l) T;‘]. These n,,
pieces of information are then communicated to the central processgr, normalized
and communicated back down. This procedure is described in far more detail in

Section 5.2.

After the global values have been returned to each local processor, the question
remains as to' how the residual, e, can be computed. The way to determine it is
simply to multiply the shape function by g, and then subtract these values from the
measurements. However, within an element, it is necessary to obtain both endpoints
and use both of the relevant shape functions to determine the interpolated values.
So, either each processor can store both shape functions (one for each of the elements
to which it 1s attached), receive both global estimates, and perform the residual
calculation independently, or the neighboring processors can pool information and
compute the residual vector together. The first method will mean that there must be
duplication of effort by neighboring controllers, and the second method will require
local communication for each controller to obtain the residual vector. Notice that

this will become far more complicated for the two dimensional case.

In contrast to the complexity of case 1, case 2 provides a fairly intuitive set-up.
Each controller is associated with one finite control element, and directly measures
all of the information required to compute the contributions for the global values.
Note that it will be necessary to communicate nearly twice as much information to
the central computer since these contributions cannot be added locally. This will
also require the global controller to add the estimates together. The same increase
in information communicated back down is required since adjacent processors will
both require the value at the node which separates them. Again though, in contrast

to the first case, each controller has both shape functions (only the same ones used
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in the aggregation are required), the measurements, and the global node values all

available to internally calculate the residual, e.

Thus, the approach represented in case 2 appears to have a slight disadvantage
of requiring more information to be communicated between the central and local
computers, but due the apparent advantages mentioned above, the method of asso-
ciating the processors with the finite control elements was selected for use over the

other method presented in case 1.
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Chapter 6

Conclusions and

Recommendations

6.1 Summary

This thesis has extended the hierarchic control architecture for the control of large
flexible intelligent structures which was originally developed in references [29] and
[67]. By combining two levels of controllers, the architecture has the advantage of
the good global control authority of a central processor and the benefit of reduced
implementation costs associated with the parallel design of the local controllers.
Several decentralized control designs were developed to act as the lower level con-
trollers. These are distinguished by the constraint on the amount of information
available to each actuator to calculate the command. These designs were compared
as both decentralized controllers and as local controllers in the hierarchic archi-
tecture. This comparison was done using an example of a long uniform beam by
investigating the closed loop pole locations and by graphing the state and control
costs of the impulse responses of the different closed loop systems. The implemen-

tation costs of the various combinations of controllers was also investigated.
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6.2 Conclusions and Contributions

1. The performance results in Section 4.5 clearly support the claim that the hier-

archic control architecture can yield near optimal performance with a realistic
control objective {a combination of LOS, sum of the squared displacements,
and total energy) and a fairly complex plant model. The'.elimination of the
observation and control spillover through the filtering loops means that the
two control levels can easily be designed separately. This helps to simplify the
control synthesis. The architecture is specially designed for intelligent struc-
tures which have a large number of actuators and sensors, the implementation
cost analysis shows that significant computatonal savings over other full order

centralized schemes can be achieved for modest sized systems.

. For the local control level, several types of decentralized controllers were de-

signed for this beam model. These include a colocated natural control uesign,
two block diagonal approaches, and two block tri-diagonal designs. These
latter four were designed as displacement and energy weighted controllers to
complement the global design. When compared as decentralized controllers,
the two block tri-diagonal clearly designs offered the best performance, but
these would require communication between the local processors, so the block
diagonal approach probably is the most efficient decentralized design. The
results in Section 4.5 indicate that a slight increase in the performance of
the closed loop system can be obtained by using a more sophisticated (than
colocated natural control) local controller, but the improvement is small com-
pared to the improvement made over just using natural control by adding the

higher, glohal level of control.

. The implermentation -osts for the various global and local designs were also

compared. The colocated local controller design was shown to be significantly

cheaper than the other approaches. The block diagonal designs become par-

186




ticularly expensive when the finite control elements get large since they are
essentially a local full state feedback, and the feedback calculation is quadratic
with the element size. The block tri-diagonal designs require local communi-
cation of the processors, s~ these designs ar2 hard to corpare directly. The
results show that the most efficient hierarchic design is one which has a well
designed global controller and a simple, easy to implement local design which
performs the required stability of the higher modes. This conclusion is for
made for this combination of structure and control objective, and it may
change for other examples such as surface control of a segmented mirror which
will require more performance at local level. The more sophisticated designs
could be used, but the increased calculation cost means that the operation

speed would have to be decreased.

. As mentioned, a block diagonal decentralized control design was developed.

This design was based on a circulant model approximation of a long beam.
This method takes advantage of the spatial symmetry of the beam to employ
the analysis originally developed by Wall {66]. Chapter 3 outlined the proce-
dure for transforming the necessary conditions of the optimal control problem
from a sized Nnx Nn problem to N, n xn problems, which makes the solution
numerically feasible. A series of software programs based on numerical search
algorithms were developed to solve for the optimal block diagonal gains. Sev-
eral sized problems were tried, and comparing the results with the optimal full
state feedback gains indicated that the global minimium had been found. For
this problem with strongly banded feedback gains, the combination of gradi-
ent and Newton search algorithms was found to be particularly effective, but

the Quasi-Newten, BFGS method was found to have convergence difficulties.

. A decentralized control approach based on a finite dimensional approximation

of the full state feedback was also developed. This implementation requires

that information must be transferred very rapidly from processor to processor,
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but it eliminates the need for a central computer. This design is based on a
view of the disturbances “flowing” along a structure as “waves”, and the
implementation is done in such a way as to complement this model. This is a
promising technique, but it will require more work before it can be extended

to two dimensional problems.

. An analysis of some of the performance/implementation cost trade-offs yielded

some interesting results. It was shown in Section 5.5 that associating the
processors with the finite control elements is superior to associating them
with the global nodes. This conclusion should hold for both one and two
dimensional structures. Also, an analysis of the implementation costs suggest
that the filter weighting matrix, W, should be, at worst, block diagonal so
that the aggregation step can be done performed more efficiently by the local
controllers. Two cases were ccnsidered, W = Mympea and W = M54, It was
found that the direct residual control spillover onto the global design model
was virtually independent of W, with the filtering being performed effectively
in either case. However, the direct global control spillover was shown to be
strongly influenced by the choice of W, with M,,,4 resulting in almost no direct
spillover at all. However, due to the associated implementation penalty, this

value was not used, and all of the results in Chapter 4 use W = Mjumpeq-

. The stability of the closed loop system for a positive semi-definite (M > 0,

K > 0) plant can be guaranteed using a hierarchic control architecture if the
gain matrices are constrained to be positive definite. Other stability argu-

ments, such as connective stability, are far too conservative for this approach.

. The first alternative implemetation procedure of Section 2.6 was shown in

Chapter 4 to significantly decrease the dynamic coupling of the global and
residual models. This is especially important for eliminating the global contro!

spillover onto the residual modes. It was also noted that care must be made
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to ensure that the global model has sufficient authority over the important
modes for the control objective. This design would probably require a more
sophisticated local control design since fewer of the lower frequncy modes are

under the direct influence of the global controller.

6.3 Recommendations

1. The work in this thesis has been based on a computer model of a long uniform

beam. To really test the architecture, it is necessary that a “real” model of
a large flexible structure be controlled. This could either be in the form of a
more complex computer model or an actual laboratory experiment. Due to
the overhead associated with the architecture, this latter task is recognized as
being a particularly difficult one. However, this would allow the architecture
to be compared with other designs, and would highlight the benefits that it

offers.

. Other work is being done on this project by David Warkentin to investigate

the most efficient microprocessor architecture and the feasibility allowing lo-
cal processor communication when the electronics are embedded. When this
work has been completed, the two investigations can be combined to yield a

complete analysis of the local control design.

. In Chapter 2 the mass condensation approach was introduced to allow for

examples in which not every degree of freedom has an actuator and sensor.
This needs to be extended to more complicated models which have regions of

both high and low sensor and actuator density.

. Other global control design approaches should be used to meet other perfor-

mance objectives such as robustness to plant uncertainty.
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Appendix A

The Necessary Conditions for a

Constrained Optimal Regulator

The aim of this appendix is to develop the necessary conditions for various control
problems. This will include cases where the gain matrix is both unconstrained and
where several blocks of the matrix are specified & priors to be equal to zero. The
necessary conditions will also be derived for the normal case and the transformed

cases as discussed in Chapter 3.

The first example to be considered is the output feedback problem, resulting in
the necessary conditions developed by Levine and Athans [38]. Taking the system

dynamics to be of the standard form

t = Az + Bu (A.1)
y = Cz (A.2)
and the cost to be
_lf®/r T
J= 5/0 (z R..z+u Ru.,u)dt (A.3)

where R,. = RT, > 0, R,, = RT, > 0, and the triple (A, B, Rz%z) is both stabilizable

and detectable. An additional constraint that the control be determined from the
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outputs y is then imposed
u=—-Fy=—-FCz (A.4)
so that the cost can be rewritten as

I =2 [7 o7 (Res + OTFT RuFC) zd (A.5)
0

In general the minimization of the cost J will be a function of the initial condition
of the states z(0). To eliminate this dependence, it is assumed that the initial states
are zero mean random variables with covariance ¥ which is typically taken to be
the identity matrix. The problem then becomes the minimization of the expected

value of the cost, E[J|, which can be written as
J=E[J]= %trace {R..Q + CTFTR,LFCQ) (A.6)
with the condition that the symmetric positive definite matrix Q solves
(A-BFC)Q+Q(A-BFC)T+z =0 (A.7)

This constraint can be appended to the cost with a Lagrange multiplier matrix P

to give the definition of the augmented cost
L = %trace {RezQ + CTFTR.LFCQ

+ P((4-BFC)Q+Q(A- BFC)” +1)} (A.8)

The necessary conditions for optimality can then be determined by evaluating

the equations

aL
- = 9
5o =" (A9)
oL
—_— .10
3P (A.10)
oL
- = 11
37 (A.11)
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Clearly, Equation A.10 will return Equation A.7. Equation A.9 will yield the

expression for P
P(A—BFC)+(A-BFC)"P+R,,+CTFTR,FC =0 (A.12)
and Equation A.11 yields
CQCTFTR,,—~CQPB =0 (A.13)
These three equations constitute the necessary conditions for the output feedback

problem provided that no & priors constraints are placed on the gain matrix.

The case for which only certain blocks of the gain matrix F are allowed to be
non-zero will be examined for the special case that the system is block circulant.
This type of matrix is defined and discussed in Chapter 3. For a N** order block
circulant system, F is a Nn x Nn matrix that can be written in terms of N, n x n

matrices

; [1'1:

1N-
Z +1 FeIIT,,  i=(j+k)moaN (A.14)

where II; is a Nn x n column vector of n x n block matrices of which the #** block is
the n X n identity matrix and the remaining N — 1 blocks are zero. Substituting this
expression into Equation A.8 and rearranging, it can be shown that the resulting

form of the necessary condition of Equation A.11 is
ST Fk 2 17, (BTPQCT — RuWFCQCT) s =0 i=(jemymeaN  (A.15)
j=0

If it is assumed that the system matrices (A, B,C, L) are block circulant, then
as was shown by Wall [66], the resulting P, Q, and F matrices will also be block
circulant and the expression for the augmented cost can be transformed using the
techniques developed in Section 3.3.3 to obtain

L = %trace {ﬁ,, Q+ ciF R, FCQ
+ P((A-BFC)Q+Q(a-BF0)"+%)} (A.16)
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where, by the results discussed in that section, each of these transformed matrices
is block diagonal, i.e., P = BD(P;). Since the aim of this work is to look at the ex-
ample in which parts of the gain matrix are constrained to be zero, the expression
of particular interest is the derivative of the augmented cost with respect to the
transformed gain blocks. This expression can be determined from Equation A.186,
and it will be seen that there are tw. terms which are associated with the P ex-
pression, and a third which comes from the quadratic expression in F. Using the

identity

trace (ATBT) = trace (AB) (A.17)
it can be shown that
oL = = =H -l S — .
57 = (C:Q.C ' F/'Ru, -CT:Q,FB))  Vie [0,1,...,N-1] (A.18)

The other two Equations A.7 and A.12 transform directly as discussed in Sec-

tion 3.3.3 and are given by

(A-BFT)+Q(A-BFCT) +T=0 (A.19)

e e — o\ H o — —H—=H = ——
P(A-BFC)+(A-BFC) P+R.+C F'R,FCT=0  (A.20)
The component of the total derivative of the augmented cost with respect to the

gain matrix F can then be ~xpressed as

N-1 T
AL = %trace { '2:% (g%) AT,} (A.21)
Since, by Equation 3.26
N-1 ,
F,=) Fuwy® vie [0,1,...,N-1] (A.22)
k=0
so that
N-1 .
AF;= Y AFw;* VYie [0,1,...,N-1] (A.23)
k=0
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and
N-1
AL = %trace{}: (g;) ZAF,‘ —Iu} (A.24)

(A.25)
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So the necessary condition (from AL = 0) can be written from Equation A.21 as

oL

—_— = V 0,1,...,N'1 .6
£y 0 i€ | ] (A.26)

or, equivalently from Equation A.25, as

aF,, Z((aL) ;"‘)=o Vke [0,1,...,N-1] (A.27)

1=0

This is exactly the same as Equation A.13 since this corresponds to the un-
constrained gain case. What is important to note here is that these necessary
conditions are uncoupled in the sense that each of the transformed subsystems are
completely independent of the dynamics, measurements, or control of all of the
other subsystems. This ailows the designer tc obtain the solution for each of the N
transformed systems without reference to any of the others. It is this decoupling

and size reduction which makes this approach particularly appealing.

However, for the case where only a subset of the gain blocks are free, the AF;
are not independent siiice only a subset of the untransformed gain blocks AF} can
be varied arbitrarily. If the set of the indices of the free gain blocks is denoted as
a, where a € [0,1,...,N-1] then Equation A.23 must be replaced with

AF; =) AFRw;¥ Vie [0,1,...,N-1] (A.28)
k€a

and the necessary condition of Equation A.27 becomes,
N-1 oL T ki
g ((6—7) wN") =0 Vk€E a (A.29)
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By substituting the expression for the partial derivative from Equation A.18, and
noting that the transpose of the complex matrices becomes the hermitian, then the

necessary conditions can be rewritten as
N-1
> (C:iQiCi F{ Ru, ~T:Q,;PiBi) wy* =0 Vk€ a (A.30)
i=0
an equation which was originally developed by Wall [66]. For this case, the other two
necessary conditions of Equations A.19 and A.20 remain unchanged. Notice that
constraining some of the gain blocks to be zero recouples the necessary conditions in
the transformed domain. However, the size reduction is still preserved as the plant

dimensions have been reduced from Nn x Nn to N, n X n systems. The special

case for which all the states can be measured can be easily obtained by setting

C=C=1

As discussed in Chapter 3, for toeplitz systems the transformation is very similar,
so the equations will not be developed here completely. The notation for this
sections follows that adopted by Chu [16]. Then, assuming that the conditions

discussed in Chapter 3 about the existance on the transformation are met, and that
1
< A >=———,fAzz'1d A3l
()>0= 5z f Al2)z"dz (A31)

which is the zeroeth element of the inverse z-transformation introduced in section

3.3, then the transformed necessary conditions are
< C(2)Q(2)C(2)FF(2)F Ryu(2) >0 — < C(2)Q(2)P(2)B(2) >o=0  (A.32)
where P(z) and Q(2) solve
P(2)[A(2) - B(2)F(2)C(2)] + [A(2) — B(2)F(2)C(2)]" P(2)+
+ Ree(2) + C(2)¥ F(2)¥ Ryu(2) F(2)C(2) = O (A.33)
[A(2) - B(2)F(2)C(2)] Q(2) + Q(2) [A(2) — B(2) F(2)C(2)]" + £(2) =0 (A.34)
where it is recognized that, since z will be evaluated on the unit circle, 27! = z*

and then A (2~1)T = A",
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