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Executive Summary of "Local Design Methodologies for a Hierarchic

Control Architecture"

This final report documents the work performed at MIT during the period of

September, 1987 to June, 1989. The original AFOSR contract (#F49620-88-C-

0015) was written for one year. There was an option for the two following years,

but this was not exercised by the Air Force. Consequently, this research was par-

tially funded by Professor Crawley's Presidential Young Investigators Award NSF

Grant #8451627-MSM. The objective of the proposed research was to investigate

the theoretical advantages of embedding a highly distributed sensor/processor net-
work in a composite "intelligent" structure. This work specifically dealt with the

design of an efficient control architecture for a structure with many sensors, actua-

tors, and distributed microprocessors. The aims of the first year of the project were
to finalize the hierarchic control architecture, develop suitable local controllers, and

to compare the control architecture with other designs for accuracy and computa-
tional efficiency.

Status:

The work associated with each of these objectives has been completed, and the

results are included in this final report. The procedure for designing a hierarchic
controller has been formalized and a four step algorithm is given in Chapter 2.
The decoupling between the two levels of control is explicitly included in the ar-
chitecture, as seen in Figure 2.4. The analysis of the architecture showed that, for

structures with hundreds of sensors and actuators, the hierarchic controller is ca-

pable of achieving near optimal performance in a computationally efficient manner.

Several types of local control designs were analyzed for the example of the control

of a long beam in bending. These were compared in terms of both the performance
improvements available and the implementation costs. This provided the frame-
work for a performance/implementation cost trade-off analysis of the different local

designs.

Publications:

Two papers have been developed from this work. The first (essentially Chapter 2 Fo

of this report) has been accepted for publication. The second will be submitted to 0
the same Journal. - n

Hall, S., Crawley, E., How, J., and Ward, B., "A Hierarchic Control Architecture
for Intelligent Structtire," to be published in the A FAA Journal Guidare, Cntro, Ion/

Lity Codes
2 Avail ad/or

Dta Speola

I
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and Dynamics, (Space Systems Laboratory Report #19-88), November, 1988

How, J., and Hall, S., "Local Control Design Methodologies for a Hierarchic Con-

trol Architecture," to be submitted to the AIAA Journal Guidance, Control, and

Dynamics, April, 1990.

Personnel:

Three professors and two graduate level students were funded by this contract.

Professor Edward F. Crawley (resume at the back)

Professor Steven R. Hall (resume at the back)

Professor Stephen D. Senturia (resume at the back)

Jonathan P. How (Master's Student)

David Warkentin (Master's Student)

One S.M. Degree was awarded to Jonathan P. How in November, 1989 for the work

covered in this final report; thesis title: "Local Control Design Methodologies for a

Hierarchic Control Architecture."

Presentations:

This work has been presented at the following seminars:

Hall, S., Crawley, E., How, J., and Ward, B., "A Hierarchic Control Architecture

for Intelligent Structures," To be presented at the AIAA Guidance, Navigation and

Control Conference, Portland, OR, August 20-22, 1990.

Hall, S., Crawley, E., and How, J., "A Hierarchic Control Architecture for Intelli-

gent Structures," First Annual Symposium of the MIT Space Engineering Research

Center, Jet Propulsion Laboratory, Pasadena, CA, August 31, 1989.

Hall, S., Crawley, E., and How, J., "A Hierarchic Control Architecture for Intelligent
Structures," Sixth Annual Air Force Symposium on Space Structures, Atlanta, GA,

April 7-8, 1988.
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NomenclatureI
I

A, A, = coefficient matrices

3 BD(...) = block diagonal matrix with the listed blocks along the main diagonal

e = vector of residuals

3 F., F = residual feedback gain matrices

Fg, Fj = global feedback gain matrices

F,,,g F, F,, F, F,, Fri, F,, Fr

= elements of transformed system feedback matrices

h9 = number of structural nodes per finite control element

I, = n x n identity matrix

J = quadratic cost

K finite element model stiffness matrix

Kg,, K,,, K,, K,, = elements of transformed system stiffness matrix

L = augmented cost function

M = finite element model mass matrix

M,, Mr,, Mo,., M,,= elements of transformed system mass matrix

n = number of dof's in finite element model of system

n, = number of finite control elements

In = number of global degrees of freedom

ngn = number of global nodes

I hnlo = number of degrees of freedom per global node

n, = number of modes of the global model retained in alternative

I interpolation method 1

n, = number of residual degrees of freedom

I WN = Nh complex root of 1
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I
Q = generalized forces in the finite element model

Qe =generalized forces in the finite element model due to residual

feedback

Q9 = generalized forces in the global model

q = vector of finite element model degrees of freedom

qg = vector of global degrees of freedom

qr = vector of residual degrees of freedom

qr,n = vector of residual dof's in alternative interpolation method 1

Rzz, Pu = LQR state and control weighting matrices

R.'., Ruu = LQR state and control weighting matrices for the global model

S. = residual force distribution matrix

So = global force distribution matrix

To = interpolation matrix for global degrees of freedom

To1 = interpolation matrix for global degrees of freedom

i in alternative interpolation method 1

T0 = interpolation matrix for global degrees of freedom

I in alternative interpolation method 2

T, = interpolation matrix for residual degrees of freedom

i u = vector of control inputs

us = vector of control inputs due to residual feedback

us = vector of control inputs due to global feedback

u, = vector of control inputs due to residual feedback,

after spatial filtering

W = positive definite weighting matrix

z = finite element model state vector

i0 z= global model state vector

y = vector of measurements

Z(') = z-transform of (.)
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= scalar feedback gains

00 = mode shapes of the global model in the global coordinate system

0 o= mode shapes of the finite element model

I= matrix of system eigenvalues

I .= transformation matrix for a circulant system based on I,,

T = finite element model control influence matrix

e g = modal degrees of freedom of the global model

e0 = modal degrees of freedom of the finite element modelI
superscripts:

I
(.)L = lower in frequency set of (.)

I (')"= upper in frequency set of (.)

= left pseudoinverse of (.)

= right pseudoinverse of (.)

= inverse of (.)

I (*) = circulant transformed representation of (.)

(.)T = transpose of (-)

(.)H = hermitian of (.)

= complex conjugate of (.)

* subscripts:

(') C= causal part of (-)

(')4C = anti-causal part of (.)

(cod = condensed version of (.)
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* Chapter 1
I

Introduction
I

1.1 BackgroundI
Within the last decade, there has been a great deal of interest in the control of Large

Flexible Space Structures (LFSS) (6,13,61,65,701. The objective of eliminating the

unwanted vibratory motion of a structure is recognized as being a particularly dif-

ficult in part because of the physical characteristics of the plant. For instance, a

typical structure will tend to be large in size, lightly damped, and modally rich.

Also, with the missions envisioned for future spacecraft, such as a space based

inferometer, the performance requirements are becoming more stringent as well.

I This will tend to push the control bandwidth higher, so that some of the flexible

modes will have a significant influence on the performance objective. The launch

weight/cost tradeoff for these devices naturally leads to plants which have low struc-

tural rigidity, and this will accentuate the problem of densely packed modes in the

structure. This phenomena of very high modal densities can also be seen in Earth3 based telescopes [4]. As mentioned, these LFSS tend to possess very low inherent

damping. Values for the material damping of about 0.1 percent and for the entire

structure of about 1.0 percent are typical for most materials envisioned for use on

I 16
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LFSS [20]. There will be no aerodynamic damping present either. Another problem

Ithat must be faced is that the structures are really of infinite order. Since math

models are typically finite, there will obviously be errors due to truncation, but

Ithere will also be uncertainties in the parameters of the modes which have been

modelled. The designer must therefore ensure that the controller is robust to these

uncertainties. Standard control design techniques such as the Linear Quadratic

Gaussian (LQG) assume that the plant is both well modelled and finite [35], so the

LFSS pose a serious challenge to these design techniques.

Due to the size of the plant, it is clear that some form of reduction of the order of

the controller must be carried out for the design to be considered practical. Several

techniques for this have been developed. Some perform open loop reduction on the

plant [26,63] and then develop the controller for this design model, while others

perform a control design on a larger model and then eliminate those states of the

closed loop system which are deemed to be the least important in some weighted

sense [72]. Other approaches are based on the Optimal Projection approach of

Bernstein and Hyland [11,30].

IThis reduction in size allows the design step to become computationally feasible,

but when a reduced order controller is implementated on the evaluation model or

on the structure itself, 8pillover between the modelled and unmodelled modes will

occur [6]. Spillover is apparent in several forms. Observation spillover is the mea-

surement of dynamics which are not associated with the controlled set of modes.

Similarly, control spillover accounts for the action of the control commands on this

set of neglected modes. If the both of these forms are present (as will usually be

the case for a truncated model controller acting on the evaluation model), then the

resulting coupling may destabilize the closed loop system [6]. If only one form of the

spillover is present, then destabilization may not occur, but there most likely will be

a degradation in the performance due to the coupling of the dynamics through the

measurement or control action. These problems have led o a class of control de-

1 17
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signs which incorporate some degree of spillover alleviation in the design procedure

[7,17,59]. For this reason, it is important to actively or passively supplement the

damping of the higher frequency modes of the structure so that they have some de-

I gree of stability margin. This will enable them to withstand the adverse influences

of the spillover. The complexity of typical structures has lead to several approaches

I to the control design.I
1.2 Control ApproachesI
Coupled with the difficulties presented by the plant are numerous problems with

the implementation of the controller. The most commonly employed control de-

signs employ a central computer to perform the compensation. Typical approaches

include the use of optimal or suboptimal output feedback gains directly on the

measurements [34,38], or the use of a full or reduced order estimators driven by

the measurements in conjunction with full state feedback [11,38,631. Each of these

techniques require that the central computer receive all measurements and compute

I each control command. These techniques were originally designed with a focus on

the case where the number of sensors and actuators is small in relation to the

plant dimension. The major difficulties with any centralized control design are the

communication problems and the possibly prohibitive computational demands on

the central computer. For LFSS, it may also be necessary to transfer information

over large distances. The minimum computation for a centralized output feedback

controller is of the order of the number of sensors times the number of actuators.

For the case of a dynamic compensator, more computations will be required as the

state estimate must be updated at each time step and then a gain multiplication

of the order of the number of actuators times the number of states must be per-

formed. If the controller's bandwidth is a multiple of the highest frequency to be

controlled, which varies linearly or as the square of the number of modes in the

* 18
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structural model, then taking n as the number of sensor and/or actuator pairs or

I the modelled modes, the computational requirements of these centralized schemes

increase at a rate between n3 and n4, which is clearly quite prohibitive for any

large scale system. The solution to this problem appears to be incorporating some

form of distribution of the control effort among several processors, i.e., making the

approach more parallel in nature.

3 One approach is to employ a decentralized controller which consists of several

regional (in the sense of knowledge and influence) controllers which are distributed

throughout the structure [9,39,54,56,65,68]. Many decentralized control techniques

are also discussed in the survey paper by Sandell et al. [57]. The difficulty with

this approach is that there typically is very little global control authority to handle

the longer wavelength motions since each regional controller can only measure and

influence the adjacent portions of the structure, and it is unaware of the gross

motions of the entire body. Most of these approaches are more particularly suited

3 to the design of controllers for structures which can easily be written in terms of

lightly coupled subsystems. In this case, the interactions are small enough that they

I can be ignored during the design phase and the resulting coupling in the structure

will have only a small influence on the closed loop subsystems and an argument

about the overall stability can then be made [60]. This would be effective for a

space structure if it can easily be partitioned into the weakly linked subsystems

or appendages, an approach which is employed in reference [56]. However, these

3 designs are not particularly suited to systems which are strongly coupled, so the

designer is not free to arbitraily break up the plant into subsections and expect the

decentralized control design to remain stable. Some techniques have been emploved

which try to account for this coupling [54], but the resulting design tends to expend

3 a large amount of control effort just trying to decouple the systems. Some emphasis

has also been placed on the design of decentralized controllers to supplement the

damping of the structure [3,33,39,54,61]. Young [71] introduces a very interesting

* 19
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decentralized control technique called controlled component synthesis. It is based

I on the familiar component mode synthesis (CMS) method of modelling structures.

The idea is essentially to develop controlled components of the structure which can

then be assembled into the full model using the standard CMS techniques.

I Another approach is to incorporate two levels of controllers. This type is com-

monly referred to as hierarchic control architectures. Examples exist which em-

ploy these controllers for large scale systems like traffic patterns or power stations

[15,43,62]. These designs typically have two levels of controllers, though many lev-

els could be used. The control tasks are split so that the lower level performs the

"daily" tasks, while the higher level performs the job of "coordinating" the activi-

ties of the lower controllers with a more global picture of the performance in mind

[15]. Reference [23] proposes a two level approach for the control of LFSS. The

resulting control design is essentially a decentralized control architecture which em-

ploys a second level to eliminate some of the spillover effects. The resulting lower

fl control design procedure is a succesive loop closure, and the function of the cen-

tral computer is to employ residual mode filters which counteract the effects of the

I observation spillover.

* References [18] and [64] develop a structural model reduction technique which is

interesting in terms of this work since the reduction is also done in a manner which

3 complements the structure of the plant. Krylov vectors are introduced as a type

of static mode, and these are used in a parameter matching algorithm to develop a

good reduced order model of the lower frequency modes of the system. It is shown

how these vectors can be generated to eliminate the control and observation spillover

from the residual system, so that the resulting closed loop system is a combination

of the smaller closed loop systems coupled only through their dynamics. A similar

3 approach based on aggregation using the sensor and actuator influence functions as

the transformations is developed by Yam [69]. Using these functions, it is shown that

3 the control and observation spillover can be eliminated between the aggregated and

3 20
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residual systems. The control design is then done for the reduced order aggregated

I system, and then applied to full system. The influence of the control through the

dynamic coupling of the two systems is investigated using a perturbation analysis.

One other important technique, which also employs a division in the control

3 effort, is the High Authority/Low Authority [HAC/LAC] control design [3,27]. The

degree of authority is a measure of the influence of the controller on the structure.

The typical influences of the two control levels are shown in Figure 1.2. The objec-

tive of the LAC is to supplement the natural damping of the structure by providing

3 some active damping at colocated sensors and actuators, thereby reducing the pos-

sibility of destabilization due to control and observation spillover (it increases the

damping ratio for the region of uncertainty above zero). In this way, the LAC loop

enhances the stability characteristics of the structure, see reference [6]. Research

by Bernstein [10] on the control of uncertain systems has shown that the optimal

control design approaches that of rate feedback for the higher frequency modes.

Consequently, including the LAC offsets some of the uncertainties in the plant

model. The HAC loop is designed to meet the performance specifications for the

I plant. Any design technique can be employed at this level. Reference [27] employs

a frequency shaped cost functional approach, but the de3igner could just as easily

employ a modal space controller [45]. An important characteristic of this architec-

ture is that there is no coordination between the control effort of the two levels.

The input/output requirements of this approach are the same as those for a single

central controller as the HAC loop generally will require all of the measurements to

determine the control forces.

3 The control approach to be discussed in this thesis is also hierarchic in nature

[29]. It is specifically developed for intelligent structures which have many densely

3 packed actuators and sensors. The feasibilty of such structures is made possible by

the development of small piezo-electric actuators and other forms of sensors that

3 are suitable to be directly imbedded in a composite structure reference [21,22]. In
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Figure 1.1: A typical HAC/LAC design.

fact, it is explicitly assumed in this analysis that there are enough actuators on

the structure that a model condensed to this size would still accurately reflect the

dynamics of the structure, at least for the lower frequency modes. A typical example

of the applicability of this control architecture would be the shape control of a mirror

surface whose back surface is covered with these piezo-electric actuators. In contrast

to some of the other techniques already discussed which are aimed at controlling

stivctural vibrations with only a few actuators and sensors, in this research it is

assumed that there are hundreds or thousands of these devices on the structure. In

this case, efficiently handling the amount of information available to the controllei

becomes an important issue.

The aim of this hierarchic architecture is to take advantage of the number of

actuators and sensors and to distribute the control function between two types of

I controllers. This will reduce both the computational burden and the input/output

requirements of any one processor. This is done in a way which complements the

dynamic behavior of the plant, so that the processing is distributed to reflect the
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physical distribution of the information flow in the structure.

U As mentioned, the hierarchic architecture considered here consists of two lev-

els, though reference [481 discusses the possibility of extending this to several more

levels. As will be discussed in detail in Chapter 2, the first level consists of many

regional processors which interface with the actuators/sensors in separate regions

of the structure. The control at this level is regionally banded so that the proces-

sors are, in some sense, independent. This will be discussed in far more detail in

Chapters 2 and 3. The second level consists of a global processor whose task is to

coordinate the lower level controllers and perform the "global" control functions. In

this implementation, the emphasis is more on the performing of the global control

functions, as little local coordination will be required. In this way, some of the

benefits (pardllel in nature) but not the all of the disadvantages (retains a lot of

global control authority) of both the centralized and decentralized schemes have

been incorporated into one architecture.

I The hierarchic control architecture that is discussed in this report is an improve-

ment over other technique because it allows the designer to perform indepeident

control development at the global and local levels, not just successive loop closure.

It also allows for a far more sophisticated inner loop, a point that is the major theme

of Chapter 3. The key benefit, though, is in the way that the measurements are pro-

cessed. The information is independently aggregLted by the local controllers at the

lower level and then a reduced subset is passed to the central processor. This proce-

dure will be discussed in far more detail in Chapter 2. Finally, this method provides

virtually equivalent performance to the Linear Quadr7-tic Regulator (LQR), but it

is implemented in a much more computationally efficient manner.

Most of the ground work for this control architecture is detailed in references [48]

and [67]. These cover the initial investigation of the computer structure and the

ability of this control architecture to meet the specified performance objectives. The

I aim of this research was to expand the original control design and relax some of
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the restrictions placed on the structure and the approach. The main emphasis has

been on developing a set of local controllers which meet various conditions on the

amount of information that is available. The final goal of the research effort is to

be able to make a decision about which form of the local controller to employ based

on a cost analysis which incorporates both the implementation and control issues.

With this in mind, the various forms of the local controller are analyzed in terms

of both their performance and communication requirements.

* 1.3 Overview

Chapter 2 presents an outline of the hierarchic control architecture. The decou-

pling of the structure into two subsystems is presented, as are the equations for

I implementating the two controllers. Various methods for reducing this coupling are

also discussed. The final architecture is shown in Figure 2.4. The chapter then

I concludes with an outline of the design algorithm.

The purpose of Chapter 3 is to investigate several designs for the local controller.

The four cases introduced are distinguished by the restrictions placed on the amount

of information available for the calculation of the commands. The most basic design

only allows colocated feedback at the local level. The next level of sophistication

* allows sensor to actuator feedback within a restricted neighborhood of the plant.

The two remaining designs then relax this restriction even more so that adjacent

processors can communicate directly. Several numerical examples are given for these

local controllers.

I Chapter 4 presents an example to show the high level of performance that can

be obtained with this hierarchic architecture. The model used in this chapter is a

I long uniform beam.L Several implementation issues are also addressed. Also, the

performances of several local controllers are compared.

Chapter 5 discusses several other issues concerning the implementation of this
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I
controller, the most important of which is the operations count for each type of

I local controller. Finally, Chapter 6 discusses the contributions of this research and

I suggests several possible extensions.
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i Chapter 2
i

Hierarchic Control
i

2.1 Introductioni
The purpose of this chapter is to provide an overview of the development of a two-

level echelon hierarchic control methodology for implementation on Flexible Large

Scale "Intelligent" Structures. An intelligent structure is defined here as being one

which has a high density of sensors and actuators, and even possibly microcomput-

ers. This discussion will concentrate on the development of the control architecture

and the assumptions about the structure. The rest of the chapter is organized

in the following manner. The division of control authority between the two lev-

i els is outlined in Section 2.4 after a brief discussion of the overall architecture in

Section 2.2. The purpose of Section 2.3 is to analyze the technique of mass conden-

sation which is employed to eliminate the un-actuated states from the structural

model. Sections 2.5 and 2.6 discuss ways to reduce the coupling between the two

design models, the final section presents the algorithm for the control synthesis.

As a basic overview of the architecture, a schematic is shown in Figure 2.1. At

level one, the local controllers sense and actuate on the structure directly, commu-

nicate the reduced information set to the global controller, and perform the local
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control. At the second level, the global controller exchanges information directly

with the local controllers, and it performs the global control tasks. There is also

the possibility that the local controllers are linked at level one and that some form

of communication is feasible.

Most of this work was originally presented by Hall et al. in reference [29] and it

follows from the original work by Ward in reference [67]. The goal of this chapter is

to show that this control architecture provides a feasible way to meet the required

performance specifications and that it offers several benefits over other methods of

controlling the vibratory motion of large structures, especially as the number of

sensors and actuators becomes very large. These advantages will be discussed as

the architecture is de-'eloped.

U2.2 Architecture

UThe fundamental idea behind the hierarchic control formulation presented here

is to develop a parallelism between the element/global hierarchy of a structural

model and the regional/global hierarchy of the active control. In structural dynamic

analysis it is not uncommon to model elements or components of the structure in

detail, and then, by techniques such as component mode analysis or condensation,

extract from the detailed local models that information which governs the overall or

global motion. In a parallel manner, local controllers should be able to regulate the

detailed behavior within a component or region, while the coordinated effort of a

global controller regulates the gross or overall motion. From a physical perspective,

just as short wavelength disturbances are propagated in a structure locally, the

short wavelength control is performed by the local controllers. As it is possible for

I long wavelength disturbances to develop into modes, there is a global controller for

control of the overall motion.

The point of departure of the structural modeling is assumed to be a condensed
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finite dimensional model of the structure and its associated degrees of freedom q, see

I Figure 2.2. This condensation procedure will be outlined in the following section.

The purpose of this step is to produce an fairly accurate model of the structure

which has an actuator and sensor at each structural node. In this way, both the

measurement and control influence matrices to be introduced in Section 2.3 are of

I full rank.

The coarser or global model represents the structural motion by the displace-

ments qg at discrete node points located at the boundaries of the finite control

elements. The global displacements are related to the degrees of freedom of the

original finite dimensional model by the element interpolation functions (e.g., Tb2),

in a manner discussed below. Likewise, there are forces Q in the original model as-

sociated with the degrees of freedom q, and global forces Qg which can be thought

* of as acting at the global node points.

The corresponding division of control functions in a two-level hierarchic con-

troller is outlined in Figure 2.3. The global controller is responsible for implement-

ing control functions based on the global states x . [qg q;]. The objective of

the global controller is to control the overall behavior of the structure. The three

basic tasks which are involved in implementing the global control are shown in

Figure 2.3: the measurement aggregation, which reduces the measurements y into3 measurements of the states in the global model z; the computation by the global

controller of the global control commands Q9 based on the global states; and the

distribution of the global control which calculates the physical control forces u. to

be applied to the structure. Note that both the measurement aggregation and the

3 control distribution require communication with the structure through the local

controllers, so that these functions are performed cooperatively between the global

3 and regional processors.

There are a number of regional controllers, each associated with a finite control

element. Each operates on the residual e, the difference of the actual local mea-
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surements y and the interpolation of the local estimates from the global states Zg.

The specific objective of the regional controller is to perform inner loop compensa-

tion within each region on this residual in order to force the structure to track the

behavior expected by the global model. The residual controller calculates control

forces ue, which are then spatially filtered to ensure that the global modes are not

l excited by the residual control. It will be seen that this spatial filtering is more eas-

ily accomplished by a cooperative effort between the global and regional processors

than by the regional processors alone. The resulting control command, u,, is added

to the global control ug to form the total control command u to the structure.

2.3 Mass Condensation

As was mentioned in the previous section, a condensation procedure is employed

to eliminate the unactuated states from the evaluation model. This section will

introduce two condensation techniques. It will be shown that the appropriate one

to employ depends on the form of the mass matrix.

IFor large scale examples, it has been common practice [2,44] to use the approx-

imate lumped form of the mass matrix for the finite element method (FEM) of

modelling structures. The assumption here is that the structure can be represented

as a collection of point masses with no moments of inertia. The mass matrix then

takes the form of having the lumped masses as the diagonal elements for the trans-

lational degrees of freedom and zeroes for the rotational ones. Zero entries along

the diagonal of the mass matrix correspond to displacements which are not critical

to the problem and can be eliminated. This technique is particularly useful for the

reduction of the size of an eigenvalue problem. It is noted that this procedure, called

static condensation, is as accurate as the assumption that the lumped mass matrix

is a good approximation of the consistent mass matrix, as no extra assumptions are

made beyond that point. How accurate a model this approximation can provide
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will be discussed in Chapter 4.

I There is also a similar approach when the inertia forces of a subset of the states

can be considered to be far more important than those for the rest of the states.

IThis distinction between master (the former set) and slave (the latter) coordinates

was first proposed by Irons in reference [311. This procedure is also commonly

known as both mass condensation [44] and Guyan reduction [28].

As detailed in reference [31], slave displacements should be selected as those

states which are associated with areas of high stiffness and low mass. In particular,

therotationaldegreesoffreedomof abeamoraplatearegivenagoodexamples

of slave degrees of freedom.

I The basic argument is to ignore the inertial forces on the slave degrees of freedom

and to assume that they are in static equilibrium. This is equivalent to assuming

I that the potential energy of the system has a minimum with respect to the slave

displacements. Since the elements of the mass matrix for the slave degrees of free-

dom are small but not zero, this assumption is only approximately valid, so an error

*is introduced at this point.

Reordering the states of the original model and grouping them as master and

* slave yields

q = (2.1)
| q

and the potential and kinetic energies can be written as

V - lqTKq (2.2)
2
1 *

T = qM4 (2.3)

where the system mass and stiffness matrices can now be partitioned in the following

symmetric forms

K, n KooK = [3(2.4)I Kern K. 8 ]
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* M =[ m ,,] (2.5)

where (.m = (.)r. Then, assuming equilibrium, and taking the first derivative of

the potential energy of the system with respect to the slave coordinates yields the

following constraint

a K.,= Kgmqm + K..q. = 0 (2.6)

This constraint equation allows the full set of states in Equation 2.1 to be expressed

in terms of only the master degrees of freedom using the transformation

C- -KKj m] (2.7)

where the inverse of K,. is assumed to exist. This would be expected to be the case

since the master degrees of freedom are assumed to contain sufficient information

to model the rigid body modes of the plant. The resulting condensed mass and

stiffness matrices can then be obtained in the following way:

U K.,d = CTKC = Kmm - KuK-1 Ko (2.8)
Mofd = CTMC = M, _ K,.K"1 M, - Mm.,- 1K.

+ K,n.Ka MaeK Km (2.9)

As is discussed in [44], this is an approximation, and it can be shown to be equiv-

alent to ignoring the terms in the expansion of the eigenvalue problem Ku = AMu

which are of order A2 and higher. This approximation is valid for low frequencies

only if the coefficients of these terms are small compared to the condensed mass

and stiffness matrices. This is true if the slave degrees of freedom are associated

with states that have low mass and high stiffness. Although it was not shown here,

the form of the stiffness matrix is the same for the mass and static condensations,

I which indicates that no information has been lost in the stiffness terms. However,
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it can be seen from Equation 2.9 that the condensed mass matrix now includes

3 information from the stiffness matrix so the eigenvalue problem has been changed

slightly. In reference [281 it is reported that the resulting eigenproblem is closely but

not exactly preserved. Archer [2], does a comparative analysis of the accuracy that

can be achieved by condensing out certain degrees of freedom of the structure. In

I particular, the rotational degrees of freedom of a free-free beam are condensed out.

The results of the tests seem to indicate that the agreement between the condensed

and consistent models are very good for the lower frequency modes. These results

will be discussed in more detail in Chapter 4.

* 2.4 Defining the Global and Residual Coordinates

In view of the architectural objectives, it is necessary to derive a partitioning of the

structural dynamic model which achieves the greatest possible dynamic decoupling

3 of the global and residual models. The first step is the suitable definition of the

global and residual coordinates. The dynamics of the structure are first represented

in the form of an evaluation model which contains all of the degrees of freedom of

the system. Following the format of the previous section, the state vector q is then

I partitioned into two sabsets, namely the master and slave coordinates, so the state

equation becomes

M . . M I. 4 -1 + [ K _ K _ q _ [u (2.10)
M.in M. 4. K.. K.. q. 0

where it is assumed that only the master states are actuated upon directly.

I Employing the technique of mass condensation and noting that

I -(2.11)

I the condensed dynamics of the structure can then be represented by an undamped
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finite dimensional model of the form

IM.Adq + Kcondq = Tu = 'I(u, + ur) (2.12)

where q E R" is the vector of the generalized coordinates, u E R' is the vector of

control inputs, M E R nXn is a symmetric, positive definite mass matrix, K E R n,,

is a symmetric, positive semidefinite stiffness matrix, and %V E Rnxrn is the control

influence matrix. Note that, because of the form of the design model discussed in

the previous section (i.e., a condensed model), complete measurements of all states

(q and 4) are available, and the system has as many non-redundant actuators as

generalized coordinates (i.e., 19 is square and full rank). The subscript (')cond will

now be dropped for notational convenience.

I The coarser or global model is assumed to have ng degrees of freedom, and

associated interpolation functions, represented by the matrix T. E Rn' x ng. Then

the actual displacements are a sum of the interpolated displacements of the global

model and a vector of n residuals

q = Tgq, + e (2.13)

3 where q, E Rnt, and e E Rn. For any set of actual displacements q and assumed

interpolation functions T, qg can be defined so as to minimize a weighted quadratic

I of the residual error

J = eTWe (2.14)

I where W is an appropriately selected positive definite weighting matrix. Although

there are n entries in e, there are only n, = n - ng independent degrees of freedom

designated q,, so that e may be expressed as

e = Trq (2.15)

where T E RnXn, is yet to be determined. The actual displacements can then be

expressed in terms of the global displacements and the residual coordinates as

q = Tq+ Tq, [i' T~ [q#] (2.16)
r
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The condition that q. is defined so as to minimize Equation 2.14 establishes that

the global degrees of freedom are related to the original degrees of freedom q by

qg=(TrT )1I T Wq = T-Lq (2.17)

where the superscript (.)L denotes the left pseudoinverse of (.). The global degrees

of freedom determined by Equation 2.17 will produce the best weighted least squares

fit to the actual displacements. By substituting Equation 2.16 into Equation 2.17,

or equivalently, using the optimal projection theorem [32], one obtains

T rWT,=O (2.18)

indicating that the two subspaces spanned by the columns of the matrices T and

T, are orthogonal with respect to the weighting matrix W. The substitution of

Equation 2.17 into Equation 2.13 yields this expression for the residuals e in terms

of the displacements q

e = (I_ TgTg-L)q (2.19)

Similarly, the expression for the residual degrees of freedom q, in terms of q is given

by

3q = T ' L q (2.20)

T, may be determined by a number of methods, e.g., by performing a Gram-

Schmidt orthogonalization on any set of n, columns that, when combined with the

columns of T., form a linearly independent set. Note, however, that the columns

of 7', are not unique; the only requirement is that they span the subspace that is

i orthogonal (with respect to the weighting matrix W) to the column space of T.

Furthermore, it will be seen that in many cases it is not necessary to calculate T,

i in order to develop the hierarchic controller.

3
i 37

I



I
I

2.5 Decoupling the Control/ Structural Model

Having established the relationships among the various representations of the de-

I grees of freedom q, q,, q, and e, these relationships can be used to analyze the

extent to which the dynamics of the global and residual degrees of freedom's can

be decoupled. To examine the subspace coupling, Equation 2.16 is substituted into

Equation 2.12 and pre-multiplied by [Tg T]T to give

[ Tr, T F(ug + u,) (2.21)

i The degree of coupling in each of the three terms of Equation 2.21 can now be

examined. The first step is to expand the control influence terms on the right hand

side. The inputs u. are the physical forces based on the n. commanded global

forces Qg, each associated with a global displacement q,. The global forces Qg are

distributed into the physical inputs u. according to a relation of the form

Ui = SQ, (2.22)

where S. is the global force distribution matrix. Assuming that a global state

feedback law will be derived by an appropriate method, the global forces are given

by

I Qg = -Fgqg - F, (2.23)

The residual control forces will similarly be commanded (within a finite control

element) by the residual controller. The physical forces will be distributed as

U, = SeQe (2.24)

where Q, is the vector of the n commanded forces associated with the residuals

i e, which are of course related to the residual degrees of freedom qr through Equa-

tion 2.15. Assuming a state feedback law for the residuals given by

Q. = -Fee - Fi (2.25)
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completes the description of the control inputs.

I The nature of the coupling of the global and residual degrees of freedom's can

be evaluated by substituting Equations 2.15, 2.22, 2.23, 2.24 and 2.25 into Equa-

tion 2.21 giving

[ T'MT, TMTI , T T KT TTK F q1

T gMTO TTMT, TT KTg T7 KT, q,

I T T S.FT, qg TTT+ SF T'kS.FjT,] (2.26)rT7T S F. TT TIS. Fe T, q, 1 7 T [T SgF TT T S.eFeT, i

or, equivalently

[ l Mr, 1 [ K# Kr, iq

*,, F ,, q#, Ff F#[ (2.27)
IF,, Fr, q, ] , FK, ,r

3 Equation 2.27 should now be examined in light of the stated objective of minimizing

the coupling between the global and residual systems. There are four matrices in

I Equation 2.27 which must be decoupled, although the two control influence matrices

on the right hand side are of very similar form.

By comparing the off-diagonal blocks of the transformed mass and stiffness ma-

trices with Equation 2.18, it is clear that the appropriate choice of W in the def-

inition of q, can cause either the off-diagonal terms of the mass or the stiffness

matrices to be driven to zero. Choosing W to be M would inertially decouple the

residuals, whereas choosing W to be K would elastically decouple them. In that M

5 is positive definite it is the preferred choice. Furthermore, the selection of W equal

to Al would cause Equation 2.18 to resemble the primary orthogonality relation of

I the dynamic system.
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The choice of the defining weighting matrix W to be M identically sets Mr,I and M,, equal to zero, thereby block diagonalizing the transformed mass matrix of

Equation 2.27. However, to some extent, it also diagonalizes the stiffness matrix.

In the ideal case, the n. modes of the original system can be exactly represented by

q. coordinates and their associated shape functions T., such that all of the modes

can be given by

Ig T, Tr[go (2.28)b= °T" 0 A,

5 where t is a n x n matrix of eigenvectors of M and K, A, is an n, x n. matrix of

coefficients and A, is an n, x n, matrix of coefficients. In such a case, T. contains

the exact shapes of n. modes, and

SToKT=K =0 (2.29)

In the less ideal case when T. closely approximates a subset of n. modes of the

I original system, the off-diagonal terms of the stiffness matrix K,, are small compared

to K, and K,,. Clearly, this is a desirable property to have in the shape functions.

I The matrices on the right hand side of Equation 2.26 can be block diagonalized

by proper choice of constitutive matrices. Examining the lower left hand term F,,

(or equivalently F,), which expresses the spillover of the global control into the

residual model, we have thatIF,, = T SF, (2.30)

T, has been established by the initial choice of shape functions and Equation 2.18,

and T by the location and type of the actuators. One would prefer not to place

i restrictions on F. or F which would complicate the subsequent control design syn-

thesis. Therefore, only the form of the global force distribution matrix S. can be

specified so as to drive this term to zero. In the case of %l invertible, a sufficient
i choice is

so = q- 1 MTO 
(2.31)
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which has the units of mass. A rationally normalized sufficient choice is

s, = %P-1MTO (TTMT,) 1 = IITg-LT (2.32)

U where the superscript (.)-LT denotes the transpose of the left pseudoinverse. Sub-

stituting Equation 2.32 into Equation 2.22 gives

% 'ug = T-LTQ (2.33)

The implication of this equation is that the n. global control forces are distributed to

the n actuators using the same shape functions and weighting matrices as are used

in aggregating the information of the n sensors to form the n,, global displacements

i in Equation 2.17. This symmetry of global state aggregation and global control

distribution results from the requirements that the global and residual degrees of

freedom be uncoupled, both in the inertial term in the dynamics equation, and in

the feedback term.

The upper right hand entry F.., which expresses the spillover of the residual

i control into the global modes, is

Fg, = TT SFT,, (2.34)

Again, T,, T, and %P have already been prescribed, so a proper choice of S. coupled

with a form of F, must be made to drive this term to zero. One sufficient choice is

S = j-IMTTT (2.35)

which parallels Equation 2.31. Similarly, a normalized version of this is

S. = k-IMT,(TTMT)- IT7 = T-LTTT (2.36)

At this point, all of the coupling terms of Equation 2.26 have been examined.

The choice of W to be M in Equation 2.14 plus the expressions in Equations 2.32
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and 2.36 reduce Equation 2.26 to

M[ 0 4, + = q,

S0 M", 41 Kge K, q,

- g 0Y4r %:1 ~F .T [:q] (2.37)S0 T7 F. T, %, 0 TT FjT, 41,

where the mass and control influence matrices are completely uncoupled, and the

I stiffness matrix is uncoupled to the extent that T. models n, of the modes of the

original finite dimensional system.

The effect of the global and residual control on the original finite dimensional

I model can also be determined by substituting Equations 2.17, 2.20, 2.22, 2.23, 2.24,

2.25, 2.32, and 2.36 into Equation 2.12 to obtain

I M + Kq = - {T-LTFeT-L + T-LTTIF 6 TT-L}

T- {T'LTFbTL + T-LTTTFTTL} 4 (2.38)

The physics of the control decoupling can be seen by examining the first of the two

terms on the right hand side of Equation 2.38. Examining the terms in detail, the

role of TTl is to aggregate or average the elements of q to determine the global

3 coordinates q. Multiplying by the matrix FO produces the global forces Qe (due to

displacement feedback), which are then distributed by T;- T . The roles of T,, T,

I and F. are similar in the residual subspace. T,"L aggregates the measurements to

form the residual coordinates q, and then Tr redistributes them to form the vector

I of the residuals e. F then multiplies e to produce the residual forces Q.. Finally,

TLTT 2 acts as a spatial filter, which produces forces which affect only the residual

degrees of freedom q,. This may be seen by use of the identity

3 TT L = I_ TTOL  (2.39)

I That is, Tr TT is a projection matrix which, when multiplying Q., eliminates

those components of force which affect the q, subspace.
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An alternative way to write the first term on the right hand side of Equation 2.38

Iis to use the relation 2.39 above to give

-O{T;LTFT-L + (I T;#TTI)Fe(I -T 9T7 L)}q (2.40)

which suggests the architecture in Figure 2.4. (Uq is that part of the control u due

to feedback of q.) Loop "o" is the process by which the global motion is filtered

from the overall motion to form the residual (observation filtering). Loop "c" is

the process by which the global component is filtered out of the residual commands

(control filtering). Also shown in the figure is the distribution of the computing

resources between global and residual controllers. Note that in this architecture,

there is never a need to explicitly calculate Tr, or to determine q,. Also, note that

the processing is performed in such a way that the residual processors carry out most

of the calculations in parallel at the local level, with the global processor performing

Icontrol only on the global states q., as well as communicating this information to

the residual controllers. It is interesting to note that Equations 2.38 and 2.40 show

Ithat the combination of the two sets of gains and the control architecture generate

full gain matrices which have a spec:ified internal structure.

At this point, this control architecture can be compared to the HAC/LAC design

discussed in Chapter 1. A comparison of the control architectures for the two

designs is shown in Figure 2.5. The first point to consider is one of the key issues of

this control design. The assumption that the structure is "intelligent" implies that

there are many sensors and actuators for the controller to govern. The advantage

of this hierarchic control architecture is that the work load is separated between the

two levels. The measurements are aggregated before any communication with the

Iglobal processor is performed. This step can be implemented efficiently because the

local controllers are distributed in such a manner as to complement the dynamic

Ibehaviour of the structure. The work at level one is also done in parallel which is the

most efficient way to organize the effort. This aggregation procedure is split between

the two levels so that each controller is only required to act on the information that

I 43

I



I
I
I

,I
.2 e e-a

o 

I 0

ar
I 04

I

I
I



I
I

I ~Structure Structure -aa
I i Locl

Figure 2.5: A comparison of the control architectures for the
HAC/LAC (a) and hierarchic control designs (b).

I is has directly available, a point which will be addressed in Chapter 4 when some

of the implementation issues are discussed. In contrast, the HAC/LAC design will

typically require all of the measurements to be transfered directly to the central

computer to allow the commands to be calculated.

Another important issue involves spillover. Through the assumptions made3 about the plant, the observation and control spillover can be eliminated in the

hierarchic design by adding the extra filtering arms in the loops. It is these two

extra paths which differentiate the architectures in Figure 2.5. Since the global and

residual subsystems are not completely decoupled, dynamic spillover will still exist.

However, it is possible to modify the design to reduce the influence of this affect,

see Section 2.6. The resulting architecture allows for independent control design

at each of the two levels. In contrast, Figure 1.2 in Chapter 1 shows that typical

HAC and LAC control designs overlap. This means that direct control spillover can

Ioccur.
Another point which is apparent from Figure 2.4 is that it would be beneficial
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if the two control loops could be operated at different frequencies, since they are

primarily targeted at different frequency modes of the vibratoion. However, it can

be seen that the loops are not entirely independent, as the observation and control

[] filtering loops should also operate at the higher rate. However, it is possible to

implement them at the slower rate and accept a degradation in performance. This

I will be discussed in more detail in Chapter 5.

The transformed and untransformed state representations (Equations 2.37 and

2.38 respectively), which include the coupled residual and global control, have now

been developed. The two remaining key questions are: (1) how to choose the shape

function T. so as to minimize the the stiffness matrix coupling; (2) how to synthesize

the global and residual control to be regional in form.

I2.6 Alternative Choices for the Element Interpo-

lation.

A key issue that must be recognized at this point is that the number of global degrees

of freedom and the shape functions must be selected to provide a good model of

the important modes of both the open and closed loop systems. For the vibration

control work performed here, this will typically be the set of lower frequency modes.

I Though it will depend on the performance requirements of the closed loop system,

in general, it is not enough to choose the number of global degrees of freedom purely

I on the basis of providing a good model for the open loop modes. The number of

degrees of freedom must also be selected so that the global controller has sufficient

authority to place the "important" closed loop poles at the desired frequencies and

damping ratios. The importance of a particular mode to the global cost function

can be analyzed using the modal cost analysis by Skelton [63]. If the global model

is made too small and does not acurrately reflect all of the important modes, then
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the closed loop performance will be poor.

I In forming Equation 2.16, several alternatives for the choice of T. have been

developed with the aim of minimizing the K., stiffness coupling term between the

two subsystems.

Alternative 1. The first alternative to be considered is the option of keeping

fewer modes in the global model than there are global degrees of freedom. This

follows directly from common experience with finite element models in that, at

best, the designer can have confidence in only the lower half of the modelled modes,

and in general, the number is usually significantly less than this. In the model

of the structure which includes only shapes which can be built up from T., some

of the modes of the original finite dimensional system will be well modelled, but

some (generally the upper frequency modes) will be modelled more poorly. Since,

in general, the degree to which K., approaches zero depends on the ability of T. to

represent a subset of the modes of the original finite-dimensional model, it may be

desirable to reduce the number of modes retained in the global model (nj) to a value

less than n,, while keeping the number of global degrees of freedom at n.. As in

the discussion above, note that retaining only the lower frequency set of the global

modes effectively reduces the bandwidth of the central controller and reduces the

control authority. There may be a performance penalty associated with this step if

the bandwidth is made too small.

The displacements of the original finite dimensional model were expressed in

terms of the global displacements q. and the residuals e as

q = Tq, + e (2.13)

In this first alternative, let q. be expanded by the modes of the global model

q,[ O ' (2.41)
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where (.)' refers to the lower (in frequency) set, and (.)u to the upper set. Substi-

tuting Equation 2.41 into Equation 2.13,

q q=Tg~k, 1 ]c 1 +e (2.42)

If only the lower modes are to be maintained in the global model, then the upper

modes can be considered to form a part of the residual, so that

q = Tqo,4 + em = Tgvie + Triqr,. (2.43)

I where Equation 2.43 now parallels Equation 2.13. Minimizing the quadratic of the

new residual e,m weighted by the mass matrix yields the appropriate definition of

I the lower global coordinates

I = (T MT) 1 T Mq

= ((0) T TTMT (0,))1 (0)TTMq (2.44)

All of the previously derived results can now be used in this variation, with the

expression for the modified interpolation functions

Tgi (2.45)

substituted for T,.

A way to implement this alternative is shown in Figure 2.6. This can be com-

pared with the original setup in Figure 2.4. The implementation of these two

alternatives are compared in Table 2.1. These results show the difference in the size

of the matrices used in the aggregation and control distribution steps. An anal-

ysis of the difference in the computational requirements for these two methods is

performed in Chapter 5.

Alternative 2. Recall that we are trying to select interpolation functions T.

I in such a way that the coupling through the stiffness term K, is reduced. A direct
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I Table 2.1: A comparison of two methods of implementing the hier-

archic control architecture. The first method retains all
of the modes in the global model. The second method
retains only the ni lower modes.

Box All Dimension n Lower Dimension

Number Global Modes Modes Retained

1 TrM [n, x n] TTM [n. x n]

i~ 
InT. -

3 T In x n,] T fn x n,]

3 4 Local control Local control

5 Global control In. x 2n.] Lower control [n, x 2nl

I 6 T[T  n x n] T [n. x n]

6a (0,i)T [n, x n.]Ii
7 [; n. X n.] 010In x nil
8 MT, [n x n,] MT, In x n,]

I
I
I
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way to do this is to simply choose the interpolation functions to be the first n0

I modes of the system. This will result in the complete decoupling of the global and

residual systems. That is, the original degrees of freedom may be expressed as

q = o~o (2.46)

U where 0 is the matrix whose columns are the modes of the system, and C0 is the

vector of modal amplitudes. Assuming that n. of these will be used to represent

the global model, we have that

I q , + 4,u = + co (2.47)

where in this case the superscript (.)' denotes te lower (in frequency) set of modes.

So the lower modes now constitute the modified interpolation functions

T 0o=4,t (2.48)

I Minimizing the quadratic error of eo weighted by the mass matrix M yields the

following new definition of the global coordinates

(, 0)) (2.49)

where the term within the inverse is diagonal if the actual normal modes are used.

3 In this case, the global and residual subspaces are completely uncoupled since the

off-diagonal terms of the stiffness matrix, K.,, are now zero. All of the previous

results are now valid, with To - 0' substituted for T,.

The difference in this second alternative is not primarily in derivation or form,

I but in the computational implementation, or, equivalently, in how much information

must be passed from each local processor to the global processor. In this variant,

I n. pieces of information must in general be passed by each element processor to the

global processor. In the case when there are fewer than n1 sensors per element, all

of the measurements must be passed up to the global processor.
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Alternative 3. The final alternative in the definition of the element interpo-

lation function is to use component modes. The derivation of this alternative is

identical to the previous alternative, except that the 0 matrix now contains com-

I ponent modes and is block diagonal. The number of pieces of information which

must be passed to the global processor corresponds to the number of modes retained

in the description of each element.

Each of these last two methods resort to the use of modes for the interpola-

tion functions which results in the loss of one of the implementation advantages

of this technique. These modes are in general non-zero over the entire structure,

whereas the standard interpolation functions of beam or rod finite element models

are non-zero only over a few elements. Consequently, the use of modes would mean

that each element controller would have to calculate the contribution of the local

measurements to each mode of the system, and then all of these would have to

be communicated to the central computer were they would be combined to form

3 the modal coordinates. This represents significantly more work than having each

controller only calculate the contribution to the shape functions which are non-zero

within its region. The introduction of modes as in a component mode synthesis

offers the advantage of being able to incorporpte constraint or attachment modes

I (see reference [19]) into the model, but there is a trade-off in terms of the degree of

decoupling that is required between the two systems and the increased cost of the

control calculation.

I
2.7 Hierarchic Control SynthesisI
Having derived the options for partial or total subspace decoupling, the subspace

controllers must now be synthesized. The following algorithm is an outline of the

steps to be followed in designing a hierarchic control system.

I
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1. The choice of the element interpolation functions.

I As discussed in the previous section, the number of global degrees of freedom

and the interpolation functions must be selected to provide a good model of

the lower frequency modes and a central controller which has sufficient control

authority to perform the global tasks. In the selection of the shape functions,

T., the minimization of the coupling between the global and residual models

should be emphasized, and it can be checked by looking at the relative norms

of the off-diagonal blocks on the left hand side of Equation 2.26.

i 2. Global control design.

Assume the stiffness coupling is zero (K, = 0), and design the global control

for the global design model

l Mggqg + Kgqg = Q, = -Fgqg - Fi4g (2.50)

by any appropriate means. This is a simple control design because, by defini-

tion, all of the states are available to be fed back, so any full state feedback

approach can be implemented. An approach using a Linear Quadratic Regu-

lator will be developed in Chapter 4.

3. Local control design.

Design the local controller for the residual design model so that it provides

good shape control as per the stated objectives of the local controller.

4. Performance evaluation.

3 The performance can then be evaluated by using Equation 2.37 to measure

the influence of the dynamic spillover and the degree of suboptimal behavior

that is introduced by this coupling between the subsystems. If the coupling

is found to be too high, then some of the alternatives provided in Section 2.6

can be employed to reduce the interaction.
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* Chapter 3

I
Local Control DesignI

3.1 Introduction

The architecture of the hierarchic controller was developed in the previous chapter,

and the resulting algorithm for the control design was given in Section 2.7. One

step of this procedure which remains to be discussed in detail is the selection of

the form of the local controller. The development in Chapter 2 alluded to the fact

that the local controllers should be independent in some sense. The purpose of this

chapter is to discuss this point and investigate several forms of local control which

are distinguished by the constraints imposed on the amount of information available

to calculate the command. The aim of this study will be to evaluate the trade-offs

between the improved performance as the sophistication and/or complexity of the

I local controllers is increased and the implementation costs in terms of the number

of computations that are required and the amount of information which must be

transfered both internal and external to the element. This chapter will develop the

controllers. Chapter 4 will discuss their performance, and Chapter 5 will investigate

the computational aspects of their implementation.

Figure 2.4 gives the main architecture of the hierarchic controller. It can be
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seen from this diagram that the lower level controller, which acts on the residuals e,

I can be viewed in a slightly different manner. By eliminating the outer loop of the

global controller, then the local controllers can be visualized as acting on q alone.

This simplifies the design procedure since the local control can be designed for the

states, q, and then applied directly to the residuals, e. Since the local controllers

are assumed to possess only information within a limited region, the control at this

level can be considered to be essentially a decentralized feedback on the structure.

As was discussed in Chapter 2, the main function of the local controllers is to

maintain the shape, within their region, that the interpolation of the global coor-

dinates produces. With this criterion in mind, the local controllers will mainly be

designed as shape controllers. However, it is also possible to incorporate other tasks

into the design, such as maintaining a certain level of damping in the higher fre-

quency modes. Since these controllers act only on a "short" length of the structure,

in the sense that they do not act on the entire device, they are aimed primarily at

the short wavelength/high frequency vibrations. In fact, as was discussed in Sec-

tion 2.5, the control at this level will be filtered of its low frequency component to

I eliminate any control spillover with the global model.

Provided that the assumptions of an "intelligent" structure are met, then this

architecture is valid for any structure. However, for the sake of clarity, an example

of a long beam will be used where appropriate. The four local controllers that will

be examined are colocated feedback, block diagonal feedback, block tri-diagonal

feedback, and an novel implementation of the full state centralized feedback. These

were selected since they cover a large range of possible decentralized control tech-

niques. The first pair allow for an increase in the sophistication of the isolated

controllers. The second pair include two degrees of allowable communication di-

rectly between the local controllers. The following sections will discuss these types

of controllers and develop the methodologies necessary to derive the appropriate

gain matrices.
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3.2 Colocated Feedback

This type of controller was selected as the first to be considered since it is by far

the easiest to implement because it requires no communication of measurements

between any of the sensors or actutators, except for the colocated pair. In fact,

I it would be very feasible to implement this form of the local control using only

analog circuits, something which becomes much harder for some of the later designs.

Analog circuitry is less flexible, but far simpler to implement and embed in the

structure. The goal of this type of controller is primarily to actively augment the

natural damping of the structure.

There are actually two forms that could be considered. The first is pure rate

feedback

u = -a m4 (3.1)

and the second is a combination of rate and displacement feedback commonly known

as natural control [611

u = - 2,8m4 (3.2)

U where m is a measure of the local mass of the structure, so that the applied force is

directly related to the mass of the structure. The additional displacement feedback

term in this second form of the feedback has the effect of increasing the stiffness of

the structure in such a manner that, in the ideal case of continuous control actua-

tion, the closed loop poles move into the left-half s-plane with the same frequency

(complex part) as the parameter 0 is increased. A root locus would show the poles

moving leftward at the same complex value. The term natural control is applied to

* this form of feedback as the mode shapes are not changed by the implementation

of the control [61]. In the ideal case, every closed loop pole would shift so that the

real part is at -fl. This type of feedback is also known as uniform damping.

The form of the local controller is given in Figure 3.1. The processors are

shown to be associated with each sensor and actuator pair, but this could also be
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Figure 3.1: The architecture for a local controller based on colo-
cated feedback.

3 implemented using one processor per finite control element. The resulting gain

matrices will be diagonal with elements which correspond to the local mass of the

3 structure weighted by a and 6 as in Equations 3.1 and 3.2.

The procedure for evaluating the gains essentially is a process of just picking the

I desired decay rate. As stated, ideally each pole would move to this value of 6, but

with discrete controllers the same does not hold as some modes are more controllable

than others. The result is a non-uniform distribution about the desired decay rate,

a result which can be seen from the examples in reference [61]. For colocated rate

feedback with dual actuators and sensors, the poles and zeroes alternate up the jw

3 axis. Dual feedback refers to like-sensor to like-actuator feedback (i.e., velocity fed

back to a force actuator), [49]. As the gain is increased, the poles will move along

the root loci into the left-half a-plane, but as the gain is increased further, they will

eventually reverse direction and return to the zeroes on the jw axis. So the gain

3 must be selected with this reversal in mind. However, typically the performance

i 57

i



I
I

requirement will demand only about 1 to 10 percent damping in the higher frequency

modes [20], which can be achieved with fairly small gain values. Of course, the upper

limit of the achievable performance is bounded by the actuator capabilites.

I If a and/ #are selected to be greater than zero (as they should be), then the

gain matrices are positive definite. Using a Lyapunov test function, which will

be discussed in Chapter 5, of the system's energy, it can then be concluded that

the resulting system is guaranteed to be stable for feedback under these gains.

Several studies have been done [1,33] to investigate the stability and robustness of

these forms of colocated feedback. In reference [33], it is shown that both types of

feedback provide asymptotic stability, if the actuators and sensors are perfect, in

a manner which is robust to the number of modes and the variation of the modal

parameters. It is also shown that if the actuators and sensors can be modelled

as high bandwidth first order systems, then a stable uniform damping controller

can be designed as well. It was shown by Linder et al. [39], by an example on

3 a typical section problem, that rate feedback is a positive real controller, but a

uniform damping controller can only guarantee stability for frequencies above 12

3 In essence, some robustness at low frequencies has been sacrificed for a higher level

of performance. This is not a major concern in this case however, as these local

I controllers are primarily aimed at the higher frequency motions.

3 So, in conclusion, it would appear that this approach should be relatively easy

to implement, but the shape control ability of the control design needs to be inves-

3 tigated, and this will be done in Chapter 4.

I
I
I
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3.3 Block Diagonal FeedbackI
3.3.1 IntroductionI
This form of the local controller is important because, although it is an isolated

controller, it allows for some sophistication since each control command within an

element can be calculated using all of the measured information within that region

of the structure. This type of controller allows for communication within an element

but no external communication to other elements. This can pose a problem for the

control design since points which are e (i.e., both are close) on either side of a

node are equally important to the control calculation at that location, but if one

I measurement is outside of the element, then it is unavailable to be used in the

calculation of the control command. Two forms of the control structure will be

analyzed. The first is a full gain matrix the size of the element. The second is a

gain matrix which itself is composed of block diagonal matrices i.e., the controller

gains have been developed for a "bay" which is smaller than the element. This

would allow for a restriction on the communication within an element.

The architecture of this type of local controller is given in Figure 3.2. The

resulting form of the gains for this case and a methodology for calculating them

will be developed in the following sections.I
3.3.2 The Calculation of the Gains

Specifying the components of the state vector which can be used for the feedback

is similar to performing output feedback since the structure of the gain matrix is

being specified before the optimization is performed. The problem to be looked at

* here is essentially a constrained feedback problem.

The aim is to develop a controller that can only feed back the states within

an element. If the structure is broken up into N elements, the resulting control
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Figure 3.2: The architecture for a local controller based on block
diagonal feedback.

3 equation is

U, Fqj 0 .. 0 q, Fl 0 ... 0 q,

U2  0 Fq2  0 q0 0 F0 0 42 (3.3)

I UN 0 0 FqN qN 0 0 F& 4  N

where q, and ut represent vectors of the states and control for each element, and

the Fq, are block matrices. Equivalently, this can be written as

u=-Fq-F4 4 (3.4)

where

UH T [Uf T I ... u T]T  (3.5)
Tq [q ... q T] T  (3.6)

F, = BD(F 1,F,2,...,F) (3.7)

I F4 = BD(F 4,,F#2,...,Fj,) (3.8)
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where BD(...) means that the matrix consists of the listed matrices as the elements

I of the main diagonal (i.e., it is block diagonal) and it is assumed that F. are block

matrices which are the appropriate size for the elements chosen for the hierarchic

architecture. This is the specified form of the gain matrix, and it corresponds to an

extra constraint on the optimization procedure.

Due to the similarity between this work and the output feedback problem, the

3 equations for this simpler case will be discussed first. The results for most of

what will follow are derived in Appendix A. The standard output feedback problem

assumes that only certain states can be measured and fed back by the controller.

The system dynamics are represented as

I = Az+Bu (3.9)

i = Cz (3.10)

where z E R", y E RP, and u E Rm , and A, B, and C are appropriately sized

3 matrices for the plant. The control is taken to be of the form

u = -Fy = -FCz (3.11)

3 and the performance metric is taken to be the minimization of the cost J defined

as

j= if (zRz + uTRUUu)dt (3.12)

with the standard restrictions that R. = RT > 0 and R. = R T >_ 0, and the
triple (A, B, P;2z is both stabilizable and detectable. Then, as derived in refer-

ence [38] and in Appendix A by a slightly different method, the necessary condition

is

3 PRuFCQCT - BTPQCT = 0 (3.13)

where the symmetric postitive definite matrices P and Q solve the Lyapunov equa-

tions

PAj + AcP + R, - CTFTR..FC = 0 (3.14)

QACI+AdQ+E = 0 (3.15)
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where

A1 = A- BFC (3.16)

is the closed loop dynamics and E represents the covariance of the states at the

inital condition. Note that an augmented cost L is introduced in the appendix and

it is essentialy equal to the cost J adjoined with the Lyapunov Equation 3.15 by

the Lagrange multiplier matrix P which solves Equation 3.14. There are a couple

of points to note about these equations. First, they are strongly coupled, in the

sense that each equation contains at least two of F, P, and Q. The main difference

between these necessary conditions and the more familiar ones for full state feedback

is the addition of the C matrix in Equation 3.13. Note that if C 1 exists, then this

I equation reduces to

RUFC - BTp = 0 (3.17)

Then the solution, Q, of Equation 3.15 is no longer necessary for the solution of

Equation 3.13, and Equation 3.14 reduces to the standard Riccati equation.

In Appendix A, the necessary conditions for the case where some of the blocks of

the gain matrix are specified 21 priori to be zero are also developed. In this case, the

set of necessary conditions becomes Equations 3.14 and 3.15 and a third equation

I which is
aL 0 (3.18)I aF,

where Fk represents a non-zero sub-block of the gain matrix. What distinguishes

the two cases is that only those components of the gradient which correspond to

free parameters of the gain can be set to zero, and the rest are undetermined. So,

in this case, the augmented cost now only has a zero gradient with respect to the

non-zero blocks of F.

I In reference [38] it was noted by Levine and Athans that these equations are

particularly difficult to solve for several reasons. As was discussed previously, they

are coupled matrix equations which are of the same order as the plant. There is also
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the possibility that non-optimal solutions to these necessary conditions may exist,

Iwhen a local minimum (as opposed to the global minimum) is found. From several

examples for different element sizes that have been tried for a beam, it has also been

Ifound that the successive iteration technique outlined in reference [38] possesses poor

convergence properties as the singular values of the second derivative were found to

be much larger than one, and there was no contraction mapping.

*The solution of this output feedback problem has been analyzed in many papers.

One of the most important of these contributions was by Kosut in reference [34].

This paper introduces suboptimal approximations of the optimal output feedback

gains based on projections of the optimal full state feedback (LQR) gains. These

projections are based on a weighted pseudo-inverse of the measurement matrix of

the system. This paper is important because it arises from a recognition of the

difficulty of solving the optimal output feedback problem. The major difficulty

with this approach is that the results are sub-optimal and can produce very poor

closed loop performance. However, example problems based on small scale models

have indicated that, if the "correct" information is available to be fed back, then the

Isuboptimal closed loop performance is a very good approximation of the optimal

results. The difficulty arises in determining and measuring the "correct" information

Ifor a given structure and performance specification. The simplest example is that,

to be able to perform active damping, the "correct" information to be measured

and fed back is the velocity.

Many other papers have addressed the issue of a numerical solution to the nec-

essary conditions. These include discussions on topics such as the different gradient

search techniques t0at can be employed (see reference [14]) and how to develop

good initial guesses which are -, critical in the solution procedure [53]. However,

any numerical approach to solve these optimal necessary conditions still faces the

problems associated with the dimension of the plant which governs the order of

the matrix equations to be solved. For any system which is large enough to be
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of interest, these equations will be of such a high order that they will be virtually

impossible to solve.

With this difficulty in mind, a technique will be presented here which takesI advantage of the symmetry and large extent of the structure to reduce the plant

dimension (and consequently the order of the matrix equations) to a more manage-

able level. Since the end effects for a long structure tend to be negligible in the

middle, it can be assumed that the structure's length is effectively infinite. This

will have little influence on the results, but will help to simplify the analysis in the

* following sections.

The technique employs a spatial discrete transform on the structure to decom-

pose it into many reduced order problems which are indexed by a transform vari-

able. This idea was developed by Chu [16] and expanded by Wall [66] to include

I analysis of the control and estimation of large scale systems which possess spatial

symmetry. More recently, this decomposition technique has been employed in the

continuous sense in references [24,47]. The continuous approach applies a fourier

decomposition directly to the differential equation for the structure, provided that

these can be written down. The method that will be employed here actually applies

a discrete transform to a finite element approximation of the structure to create a

smaller FEM for each value of the index variable. The following sections will discuss

how this transformation can be applied to the symmetric plant, and the associated

benefits for the control design will also be discussed.

I
3.3.3 Transformations for Spatially Symmetric Systems

The following discussion will first of all describe the transformation which is appro-

priate for finite systems with circular symmetry which are called circulant system.

The aim will be to rederive the necessary conditions of the control problem in the

transformed domain. This will be followed by an extension to systems of infinite
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dimension which are known as toeplitz systems. To begin the discussion, define a

block circulant matrix [66] of order N as one that- can be partitioned in the form

A0  AN-, AN-2 ... A1

Al A0  AN-, A 2

A= A2  A1  Ao As (3.19)

AN-1 AN-2 AN-S AO

where the A, E RnX' . The dynamics of a Nth order circulant system are then

defined to be of the form

i = Ax+Bu (3.20)

y = CX (3.21)

I where now A E RNn× Nn, B E RNnxNm, and C E R N p × N' are appropriately sized

block circulant matrices. For now, assu-ne that this model can be derived using a

Ifinite element method and has the right circulant form. Another method for devel-

oping the transformed model directly will be presented in Section 3.4.2. Typically,

the number of subs:-ztems, N, is much larger than the dimension of each subsystem,

An example of a block circulant system is shown in Figure 3.3. This corresponds

3 to four equal subsystems connected in a circle such that the complete system is

symmetric. There are four nodes which represent the boundaries between the sub-

systems. In the example shown, the A, correspond to the dynamic influences of the

degrees of freedom in subsystem i on those in subsystem 0. The important proper-

ties of a circulant system are that each subsystem has the same internal dynamics,

A0 , and the influence of any one subsystem on another is a function only of the

I relative separation between the two. As presented in reference [66] and to some

extent in [16], the following discussion will show the spatial transform (actually a

I discrete fourier transform) that can be used to decouple the dynamics of the system.
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Figure 3.3: An example of a circulant system. The arrows represent
the influence of that subsystem on subsystem 0.

Another definition is required to complete the process. The transformation

matrix Oj is defined to be

2I-
III N IW N - )  (3.22)

I, iW N-1 , - ) Ij, ( N -1)( N - 1)

3 where it is assumed that there are N circulant blocks in the system, Ii is the (i x i)

identity matrix, and WN = A, i.e., the Nh complex root of 1. The transformation

matrix can be expressed in a more compact notation as

('0')k - I, w( -1)( -1) (3.23)

Note an interesting property of the inverse of tj that

I (~1 = i,(W)(1()= (3.24)
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where (.)* denotes the complex conjugate of the expression. This equation has

employed the fact that w, = w- 1 , which follows directly from the definition of w,

given above. So, the inverse transformation matrix is very easy to calculate directly.

I It is this 4n matrix which forms the basis of the spatial transformation. It can

be shown that if A is taken to have the form expressed in Equation 3.19, then

Ao o ... 0

m -1A1 (3.25)

0 0 AN- I

where
N-i

Ak = Ai w- t  (3.26)
i=O

1 N-1
Ak -- E i ZA (3.27)

mfor k = 0, 1, ..N -1. N i=O

So, the transformed block circulant matrix is block diagonal with blocks which

are the discrete fourier transform of the top row of the circulant matrix. There are

several very important and time saving properties concerning the symmetry of the

transformed block matrices of this system which are discussed and proved by Wall

3 in reference [66]. Considering an A matrix of the form of Equation 3.19, then, for

instance, it is shown that

I Re = Re{AN-} (3.28)

Im{A} = -Im{AN-k} (3.29)

If the matrix A is symmetric, then AL = ATNk and the following identities hold

Re{ ;k} = Re{'Tk} (3.30)

I Im{Ak} = -IM {Iy} = Im{I AH} (3.31)
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where the (.)H denotes the hermitian which is the complex conjugate transpose of

the matrix.

Having shown how the transformation can be applied to a circulant matrix to

I produce a block diagonal matrix, the next step is to apply the transformation to

the circulant system defined above. Defining

- IX 
(3.32)

I then transforming Equations 3.20 and 3.21 yields
| d_

-d = + TRu (3.33)I dt
I ]7 U'Y (3.34)

where each of the transformed matrices denoted as (.) is block diagonal. Since this

means that each of the subsystems is not influenced by the others in terms of either

observation, control, or dynamic spillover, then it can be said that the transformed

systems are decoupled in this new representation in the spatial frequency domain.

These equations can also be rewritten to reflect this decoupling by expressing the

I dynamics of the kth subsystem as

d Y- = ; X1 + _t . (3.35)

y k = UkX' VkE [0,1,...,N-1] (3.36)

This decoupling technique can be applied to more complex equations as well.

For example, for the steady state time invariant Lyapunov equation of the form of

Equation 3.15

AQ + QAT + E = 0 (3.37)

where A, Q, and E are all block circulant matrices of order N, and Q is symmetric,

then applying the transformation yields

InIAt,tn'QP,, + , ,D n *-1r = 0 (3.38)
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So the transformed equation is
AQ, + -A-T + U=O0 (3.39)

Note that AT = . Since each of the transformed matrices in Equation 3.39 are

block diagonal, then this equation can be written in the equivalent decoupled form

AiQ,+Q,A4+ Ej=0 ViE [0,1,...,N-11 (3.40)

where (.), denotes the is diagonal sub-block of the matrix. This representation

means that the (Nn)th order problem has been reduced to N, nth order problems.

Since the solution of a the Lyapunov equation is an n- operation, then it can be

3seen that this step has considerably reduced the amount of :omputation required,

which is especially important considering the role of this equation in the numerical

solution procedure which will be discussed at the end of the next section. Of course,

there is some overhead involved in forming the transformed systems, but this can

be implemented efficiently as a FFT, which is an n2 log 2 n operation [37] but need

only be performed once.

IThe same decoupling transformation can be shown to hold for the Riccati equa-

tion if all the matrices are block circulant. It should also be noted that R -1 = -

IThe resulting transformed equation is

-H- _p + -- I---I A P I .-- RUU B P = 0 (3.41)

which again is equivalent to N decoupled equations. This shows how the two

Lyapunov equations of Section 3.3.2 can be transformed into the spatial frequency

domain and represented in a decoupled manner. In Appendix A, it is also shown

how the third necessary condition can be transformed as well. For the case where

no blocks of the gain matrix F are constrained to be zero, the necessary condition

can be written as
aL
-=0 ViE [0,1,...,N-1] (3.42)
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which is shown in Appendix A to be equivalent to the results in Section 3.3.2. The

I constrained gain case for a circulant system is also investigated in Appendix A.

Denoting the indices of the non-zero gain blocks by the set a, then it is shown in

the Appendix A and by Wall in reference [66] that the resulting necessary condition

is
-H -H- Fk = o  VkE a (3.43)

i=O

Then Equations 3.40, 3.41 and 3.43 represent the transformed necessary conditions

of the control problem given in Section 3.3.2 when the gain structure of Equation 3.3

I is imposed and the system is block circulant. Note that constraining some of the

gain blocks to be zero recouples the necessary conditions in the transformed domain.

The extension of this work to infinite dimensional systems toeplitz systems fol-

lows from the analysis done by Chu in reference [16]. Since the system matrices

are now assumed to be infinite dimensional, the equations are best represented in

3terms of summations. For a model of an infinite string of identical subsystems, the

system dynamics for the kth subsystem are given by

ik = 1 (Ak-izi + Bk-,uj) (3.44)
i-00

00

yI = C k-i, (3.45)

for -oo < k < oo. These equations indicate quite clearly that it is only the separa-

tion distance k - i which determines the influence of one subsystem on another.

As with the circulant system, it is necessary at this point to introduce the

transformation which will decouple the equations. The format of the transformation

I will be shown to be very similar to the one introduced for circulant systems, but

an important distinction will be noted once the transformed equations have been

developed. The decoupling can be achieved by employing the two-sided z-transform,

which has many applications in both digital signal processing [51] and digital control

[25]. This can be compared with the transformation for the circulant system which
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was the discrete fourier transform. The z-transform of a sequence hi, -oo < I < oo,

* is given as [25]

H(z) = Z [hi]- hjz-' (3.46)
-=-co

The inverse transform is more complicated in this case as it requires integration

I around a closed contour (typically the unit circle IIz112 = 1) in the complex plane

hi = Z - ' [H (z)] - j H(z)z'l-dz (3.47)

where the contour is taken in the region of convergence of H(z). The region of

convergence is defined to be the region of the z-plane for which the summation of

Equation 3.46 is absolutely convergent.

To apply this transformation to the system of Equations 3.44 and 3.45, it is then

necessary to define the transform of the state vector as
00

X(z) = Z- -  (3.48)

1=-0c

Then
cc

X (z) h-

5=-cc00ts)

-- , (A,_zx, + BI-zu 1) z-1 (3.49)
I=-cc Li= c

To proceed further, the convolution property of the z-transform must be introduced

I [25]
z[ E fA(i) f2(I -i)] F= F(z) F2(Z) (3.50)

Applying this to Equation 3.49 and the measurement equation yields

k(z) = A(z)X(z) + B(z)U(z) (3.51)

* Y(z) = C(z)X(z) (3.52)
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where it has been implicitly assumed that these transformations exist. This will be

I the case as long as the summation of Equation 3.46 is absolutely convergent which

is true if and only if [25]

E IhIl < oo (3.53)
I=00

The extension to the matrix case is simply that this condition must hold for every

element in the matrix.

I These equations represent decoupled systems which are a function of a continu-

ous complex index z. This is the major difference between the circulant and toeplitz

transformed systems, since the index for the first case is only evaluated at a finite

number of points around the unit complex circle. Consequently, the two systems

will be virtually identical when the continuous index variable for the toeplitz system

is approximated at a finite number of points on the unit circle.

As with the circulant system, it is possible to set up the control problem for a

toeplitz system. The transformation can then be applied to this problem, and it is

possible to express the necessary conditions in the transformed domain. Using the
~definition

<A(z)>0= 1 jA(z)z-ldz 
(3.54)

which is the zeroeth element of the inverse transformation, then, from Wall and

Appendix A, the transformed necessary conditions are

< C(z)Q(z)C(z)F(z)' R .u (z) >o - < C(z)Q(z)P(z)B(z) >o= 0 (3.55)

where P(z) and Q(z) solve

P(z) [A(z) - B(z)F(z)C(z)] + [A(z) - B(z)F(z)C(z)]H P(z)+

- + R(z) + C(z)HF(z)HR .(z)F(z)C(z) = 0 (3.56)

I [A(z) - B(z)F(z)C(z)] Q(z) + Q(z) [A(z) - B(z)F(z)C(z)]H + E(z) = 0 (3.57)
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where it is recognized that since z will be evaluated on the unit circle, z - 1 = Z* and

then A (z-X)T = AH.

These are very similar to the circulant equations, the major difference being that

the summation has been replaced by an integration, but this is in keeping with the

observation that one has a discrete index, and the other has a continuous one. This

integral would be approximated numerically as a summation at a discrete number

* of points.

Since in general wN is a complex number, the transformed equations will be

complex. This is a problem, as it requires the solution of complex coupled matrix

equations. If the matrix A is complex so that it can be written as

SA= Re{A} + jlm{A} (3.58)

I where A E C"' and X, Y E Rn"", then another way to represent it in terms of its

real elements isI Re (A> Im{A}]3.9-Im{AJ Re{A,

That these two representations are equivalent in the sense that they yield the same

eigenvalues and elgenvectors can be seen by noting that, if a Unitary transformation

matrix T, is defined as

], (3.60)

I where TH = Tj-
1 , then

A TH'jTJ = T Rea{AJ IRe {A] T (3.61)

From the properties of Unitary transformations, it is then known that the two rep-

resentations of the matrix A will yield the same set of eigenvalues and eigenvectors

I [50].
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This approach can also be applied to the Lyapunov equation which results in a

real representation of a complex matrix equation. Taking the standard Lyapunov

equation 3.40 with complex Ak, Q, and Zk matrices expressed in the alternative

I form given above, then the equation can be rewritten as*[Re{At} Im{x-} Re{fk} Im{~'k} +
-ImjAkj Re{AX} -Im{l&} Re{fk}

I -Im{k} Rei{Qk} Im{Ak} Re{k} Im{jk} Re k} (3.62)

where for example, through Equations 3.30 and 3.31, the symmetry of Q requires

II that

* Re{U,}-" Re{QTk}

so that Equation 3.62 can be rewritten as*~R [ ;i IeT Im{} 1x [ Re{} Im{k1+

-Im{jk} Re{k} ] Im{7k} Re{Qk}

l Im Q- Re{k} i } Ie{X} ReIAm } Re{' ---0

(3.63)

which is now a standard Lyapunov equation of order 2n.

The benefit of this approach is that it allows standard real programs such as

reference [41] to be employed. These typically have been written to provide very

accurate solutions and are usually numerically robust. The disadvantage is that

i the system size has doubled, so instead of N(n)', the cost is N(2n)3 , which negates

some of the benefit derived from transforming the equations, but still represents a

I significant saving over the original cost of (Nn)3
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Up to this point, it has been shown how the control problems can be transformed

into the spatial frequency domain, decoupled, and reduced in dimension. For the

case where no constraints were placed on the gain matrix and all the states are

I available to be fed back, it was also shown that the resulting equations are decou-

pled, but when a constraint on the allowable form of the gain matrix is imposed,

then two of the equations remain decoupled, but the third turns into a summation

over the free gain blocks. The advantage of size reduction is still retained, which

makes it feasible to employ a numerical solution procedure to obtain the optimal

gains. The purpose of the next section will be to provide a discussion of the tech-

niques that were employed to obtain the solutions of the optimal constrained gain

* feedback problem.

3.3.4 An Overview of Multivariate Function Minimization

The numerical techniques that can be employed to locate the extremal values of a

multivariate function, M(x), have been well documented, for example see reference

3 [58]. Consequently, the aim of this section is only to provide an overview of the

techniques that were employed to find the optimal gains for the constrained control

that was outlined in the previous sections. If it can be assumed that M(x) (taken

to be the augmented cost L as a function of the gain matrix) has continuous second

derivatives, then the function may be approximated in the neighborhood of x (i.e.,

at x + Ax) as

SM(X +&X) = M(X)+ Tg(X) + +H(x)AZ +... (3.64)

2

I Briefly, the necessary conditions for z to be a strong minimum (assuming the cost

is to be minimized as the typical problem) of the function can be summarized as

g(X,) = 0 (3.65)

I H(xi) > 0 (3.66)
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The aim here is to minimize the cost subject to the constraints imposed on

I the gain matrix which have been included in the necessary conditions. The free

parameters are the elements of the gain matrix. Since the function is not in general

quadratic, the solution technique will be inherently iterative in nature, with each

step of the form

X + -z + CakPh (3.67)

where zxk is the current estimate of the minimum, zk+1 is the updated estimate, ak

is the step size, and Ph is the direction of the step at time k. Most of the notion in

I this section is in the form of column vectors, but the rectangular gain matrix F can

be rearranged so that its columns are the elements of a column vector. The various

techniques that can be employed to solve for the minimum of this function are

distinguished by the method used to formulate the direction vector p , i.e., whether

they use the first or second derivatives and whether these are found analytically or

by numerical approximation.

A typical iteration involves a line search along the direction pt from the original

estimate z until a new minimum has been found. This new value, zk,+ is then used

to reevaluate the search direction, and a new line search is started. This continues

until the error in the solution of the necessary conditions is below a given tolerance

or until it is determined that no solution exists (the number of iterations exceeds a

maximum) or that an incorrect path and/or a local minimum has been found.

One of the simplest methods of computing pt is the method of steepest descent

which involves the calculation of the gradient of the function with respect to the

gain F at the current estimate. For the problem at hand, the gradient of the cost

with respect to the gain is one of the three necessary conditions and it can be

obtained analytically. Since a successful search step requires the function M to

decrease along the line, then it is required that Mh+I < Mh, so using Equation 3.67

Mk+1 = M(Xk + C Mk +hgk PM (3.6)
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as a -4 0+ , then it is required that
1TIA gPA; < 0 (3.69)

simply choosing

Pk = -gh (3.70)

will give the steepest descent direction for ph.

3So, given that a direction for the line search can be obtained from the first

derivative of the function, all that remains is to determine the step size ak. This

is actually done by incrementing the value of at until a region of uncertainty can

be found. This essentially is a bracket about a local minimum of M(z) in the

3direction of Ph. The value of a is increased or decreased by multiplicative scale

factors depending on the perceived slope of the surface along the direction of the

Iline search and the function is evaluated at zk + aph and zk + SPk until the middle

value is lower than the two extremes. Once this coarse region of uncertainty has

Ibeen located, the next step is to employ a technique to reduce the width of the

bracket. Reference [58] discusses several of these methods. Some of these methods

involve function evaluations within the bracket, whereas others employ polynomial

interpolation of the function within this small region to find the local minimum.

These latter group can be shown to have better rates of convergence, but have

the disadvantage of requiring more information per step. In the program written

for this work, a quadratic polynomial fit was selected to reduce the bracket size

3as it gives a high rate of convergence. Although the line search requires repeated

function evaluations, it is found that these are a small fraction of the time required

to evaluate the second derivative as will be discussed later.

This first order method provides acceptable rates of convergence far from the

Isolution, but a second order method can offer much higher rates of convergence

near the minimum. One commonly employed second order technique is known

3as Newton's method. This approach is based on a Taylor series expansion of the
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gradient of the function

I gk+1 --- g (Zk + Pk) -- gk + Hkpk (3.71)

where H is the second derivative matrix known as the hessian. The motivation for

this method is to produce a step such that gk+l = 0. Of course, since the function is

not in general quadratic, this cannot usually be achieved in one step, so an iteration

is required. However, this statement is sufficient to define the current line search

I direction as

0 = g(zI + Pk) gk + Hkp (3.72)

ph = -Hj 1 gt (3.73)

I provided that the hessian matrix can be inverted which will generally be true near

a solution if it is a strong mimimum. This method actually gives both the direction

and the step size, but this can be modified by including a line search. For this

direction to be one along which a descent occurs, it is necessary that

-gpk = gk > 0 (3.74)

I which is true provided Hk > 0 and gt 0 0. These conditions will be met near a

strong minimum, but in general they will not be, so this method is only particularly

useful when a good initial guess exists. The main benefit of this method is that the

rate of convergence is second order, which is the fastest rate availabl, [58].

As will be shown later, the major problem with this approach is that the hes-

sian matrix is very expensive to determine numerically for a large order system,

and from Equation 3.73 it can be seen that this matrix must be inverted as well.

This poses problems in terms of the computation requirements and in terms of the

numerical robustness. These problems demand that the calculations be done to

I a high precision, a fact which significantly slows down the running speed of the

program. Another major problem is that the region for which convergence is guar-

I anteed for the second order technique is fairly limited. This problem can partially
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be overcome by employing a first order gradient minimization technique for the first

3 set of line searches until the step sizes become relatively small indicating that this

type of method is no longer effective. This in turn can be taken to indicate that

m a stationary point is being approached, and a switch to the second order Newton

technique is made. TJ nfortunately, the first problem cannot really be avoided as the

hessian must be calculated. However, it is possible to just update the result once

the estimate is adequately close to the optimal answer using an approximate Quasi-

Newton method. Reference [58] outlines several of these Quasi-Newton methods,

but the Broyden-Fletcher-Goldfarb-Shanno (BFGS) te-hnique is recommended as

thc most widely accepted.

3 For the BFGS method, the update is actually done for the inverse of the hessian

as Equation 3.73 shows that it is this matrix which is required to determine the

direction vector. So, if

!dk = H;-1  (3.75)
I and

& AXk = ZXk± - XZ (3.76)

Agk = gk+1 - gk (3.77)

then the update equation fo! Ht+i is given by

r Ak~gl [T T T

A= - ] AAAgk g t - _ _ _ Axk A&Xk (3.78)

m which is a far cheaper operation than the procedure discussed below for computing

the hessian directly.

3 This completes the discussion of the techniques used in the numerical solution

of the necessary conditions. The next se.tion outlines the algorithm employed to

m calculate the hessian and gradient matrices which were shown above to be central to

the solution procedure. The next section also shows why the size reduction allows

I the solution of this problem to become computationally feasible.
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i sian

The analysis in this section makes frequent use of the concept of the derivative of

a scalar or a matrix with respect to another matrix. As mentioned in the previous

I section, to perform this step, the matrices can be written as vectors. In this way,

the differentiation is equivalent to the derivative of a vector valued function of a

I vector variable with respect to the vector. The vector representation of a matrix

will be written in lower case, so that

f = Vect[F] F = Mat[f] (3.79)

i The following is a brief outline of the steps involved in the calculation of the

hessian and gradient of a function. The gradient, L, is actually one of the necessary

conditions and it is derived in Appendix A. It is shown there that the resulting

3 equation for the optimal output feedback problem with no constraints on the form

of the gain matrix is

I LF = CQCT FT R, - CQPB (3.80)

Lf = Vect[L.] (3.81)

In order to be able to calculate this value, it is necessary to evaluate the current

3 values of P(F) and Q(F) from the appropriate Lyapunov equations which are also

given in Appendix A. These three values P, Q, and F can then be substituted into

i Equation 3.80 to yield the current value of the gradient. This process requires the

solution of two Lyapunov equations to obtain the updated values. For this case, the

extension to the circulant or toeplitz transformed systems is straightforward, as it

only involves a switch to the appropriate set of necessary conditions, which are also

i given in Appendix A.

However, it is far more complicated and expensive to determine the hessian of

the function. Using the definition of the gradient given above, the hessian can be
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df(Lf) Af=-Af+ -_Ap + Aq (3.82)

If the gradient and gain, matrices are written in vector form, then the evaluation

of this expression will result in a symmetric matrix. The partial derivatives of the

augmented cost with respect to P, Q, and F can be determined analytically from

Equation 3.80 in the following way

ALpAP L,(P+AP)-Lp(P)aP

=[CQCTF TRU, - CQ (P + AP) B] _ [CQCTF TR.I. - CQPB]

I -CQAPB (3.83)

Then 2'Ap-- Vect[%' AP]. Similarly, it can be shown that
8 LF A
-AQ GAQ (CTFTR, - PB) (3.84)
O Q

- -AF cQT AFTR,,. (3.85)

which can then also be written in vector form. In Equations 3.83 through 3.85, it

still remains to determine the appropriate values of AP and AQ. It is possible to

calculate these values from the other two necessary conditions. Since the solutions of

the Lyapunov equations, P and Q, depend on F, then the derivatives of these three

I variables are not independent, and the changes of the first two must be consistent

with the changes in F. This constraint can be imposed through the Lyapunov

I equations by requiring that

(P + AP)[A - B (F + AF) C] + [A - B (F + AF) C]T (P + AP) + R..

+ CT (F + AF)T R. (F + AF) C = 0 (3.86)

U The zeroeth order (in A) expression will then just be the original Lyapunov equa-

tion. The first order expression will be a constraint equation for the change in the

P given a change in F which can be written as

APA 1 + AAP +[CTAFTR.FC +TFTRU.AFC] = 0 (3.87)
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where A,, = A - BFC. The same will hold for the other necessary condition, with

the resulting constraint equation of the form

A, 1AQ + AQA,- [BAFCQ + Q(BF =0 (3.88)

These two equations represent Lyapunov equations in AP and AQ driven by the

combinations of the change in the gain matrix.

These Equations 3.80 through 3.88 allow the hessian to be evaluated using the

following algorithm. The first step is to solve for the updated values of P and Q.

The next step is to set the (i,j)th element of the AF matrix equal to one and the

rest equal to zero. Then the resulting AP and AQ matrices are evaluated from

Equations 3.87 and 3.88. These three values of AP, AQ, and AF are then used

in Equations 3.83 through 3.85 to evaluate these separate derivatives, which are

combined using Equation 3.82. The result will be the derivative of Lp with respect

to the (i, j)t" element of the gain matrix, which represents a column of the hessian

I matrix. Repeating this for each element of the gain matrix, will eventually yield

a numerical approximation of the hessian. Notice that it is necessary to solve two

I Lyapunov equations to determine P(F) and Q(F), and that two more must be

solved to determine AP and AQ, a task which must be repeated for every element

of the gain matrix. This explains why the calculation of the hessian can be such a

time consuming and expensive process, and why a reduction in the number of free

parameters in the gain matrix and the size of the plant (the Lyapunov equation) is

* so important.

The extension to circulant systems is a little trickier for this case as there are P,
and i, matrices to be calculated for each value of i E [0,..., N-1]. The derivative

of the gradient must be taken with respect to each of these terms. The resulting

equation is very similar to Equation 3.82 except that it must be written as a

summation over all values of the index variable. The resulting equation for the

I

I



I
I special case of a block diagonal gain matrix so that Yk FO V k E [0,... , N-i] is

d L! + N-L 9L Ali + N-1 (L8(L ) = -Ef + (3.89)

I where the same procedure given above can now be employed, except that it must

be done for each value of the index variable, so this will require the solution of

many more Lyapunov equations per iteration, but, as mentioned earlier, each of the

problems is much smaller in size.

3.3.6 The Solution Algorithm

The previous sections have developed theory necessary to present a method of cal-

culating the gains for the constrained feedback problem for a block circulant system.

The purpose of this section is to combine the discussions from these sections and

to provide an outline of the algorithm used to calculate the feedback gains.

A circulant model of a beam (to be discussed in detail in Chapter 4) similar

to the one shown in Figure 3.3 was used as the plant in Equations 3.9 and 3.10.

This step requires the selection of both the number of bays in the model, and the

number of nodes per bay. As will also be discussed in Chapter 4, the distance

between the nodes was maintained at 1 unit so that the actual "size" of the model

changes with the total number of nodes. In this example, the control problem for

I the local controller was selected to be a displacement weighted shape controller,

and every actuator was taken to have an equal contribution to the cost. With these

assumptions, each of the plant and control weighting matrices are then of the block

circulant form shown in Equation 3.19. It was assumed in this work that every state

in the bay can be measured so that C = I.

The next step was to use Equation 3.26 to transform the system and control

matrices into the spatial frequency domain. Note that this in fact only requires the

top row of each of the circulant matrices, which saves a large amount of storage
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space. Due to the relative ease of performing matrix multiplications in this envi-

roment, these two steps were performed using a MATRIXx program. The next

step was to use the optimization program that was developed to minimize the cost

Iof the transformed system subject to the imposed constraints. This program was

written in VAX FORTRAN because of the higher processing speeds available and

is essentially a direct coding of the algorithms presented in Sections 3.3.4 and 3.3.5.

The program is an extension of the work performed by Mercadal [42]. Both the gra-

dient and Newton methods were employed to find the solution. The Quasi-Newton

method was investigated, but examples showed that the convergence properties were

particularly poor, so this technique was not included in the final set of programs.

One problem with most optimization procedures is that they typically are very

sensitive to the initial conditions. A good approach that was implemented to elim-

iate this problem was to expand the results from one bay size so that they can be

used as the initial guess for a larger bay. This helped to reduce the initial error in

* the solution and decreased the required number of gradient steps before the second

order method could be employed.

IThe final step in the algorithm was to check that these are in fact the optimal

gains. Another MATRIXx program was used to check that the gains solved the

necessary conditions. The discussion as to whether the solutions are in fact the

global minimum (as opposed to a local one) is delayed until the next section which

will provide an overview of the results obtained.

I
3.3.7 Discussion of the Results

UThe purpose of this section is to present some of the results obtained using the algo-

rithm outlined in Section 3.3.6. As was discussed there, convergence was found to

occur much faster if the results from one bay size were used as the initial conditions

for the next size up. However, for the sake of clarity, the results for the smaller bay
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sizes have not been included, and only the results for the largest bay investigated,

Iwhich has 9 nodes per bay, are shown in Figure 3.4 through 3.7. There are two

components to the gain, the displacement and velocity parts. A row of these matri-

Ices corresponds to the feedback gains of all nine states to the actuator. A column of

these matrices corresponds to the feedback gains on the state to all of the actuators.

INote that the figures include three dimensional plots of the gains which allow the

diagonal dominance to be easily visualized. Two dimensional plots across the rows

are also included so that the peaks and gain shapes can be seen.

As was noted in the previous section, the question arises as to whether the

optimal solution has in fact been obtained since both local minima and saddle

points would solve the first order necessary conditions. An answer to this question

can be found by considering the gains for the optimal unconstrained problem which

will be developed in the next section, the results of which are shown in Figure 3.13.

These graphs indicate that the gain matrices are diagonally dominant, and that the

width of the non-zero part is on the order of 5 nodes. Of course, this is completely

dependant on both the plant and the control weighting. However, for the example

Ibeing investigated here, this indicates that it should be possible to develop a model

with bays which are sufficiently large enough that the boundary effects are negligible

Ifor the middle controllers and the gains for the constrained and unconstrained cases

can be compared directly. The results shown in Figures 3.4 through 3.7 show that

this is in fact the case. Whereas the gains for the smaller bay sizes (2 or 3 nodes) are

dominated by the boundary effects, the results for a much larger bay show that, for

instance, the velocity gains for the middle five actuators are virtually identical to

the optimal unconstrained solution. Note that the displacement gains are "thicker",

so the boundary effects persist further into the gain block.

It can also be seen from this figure that the boundary effects have quite an

influence on the gains of the controllers at both ends of the bay. The peak value of

the gain for the end controllers is less than one half that for the controllers at the
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Figure 3.4: The displacement weighted displacement gain matrix
for a nine node bay.
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Figure 3.5: The displacement weighted velocity gain matrix for a
nine node bay.
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internal nodes. However, it also appears that the entire gain for the end controllers

I has been reduced by a similar scale factor. Since there are no significant non-zero

gains at nodes further away from the controller than a central controller would

require, it appears that an end controller does not use any additional information

from inside the bay. This is an interesting point because it indicates that, although

almost half of the information has been truncated for the end controllers (they

cannot feedback displacments or velocities outside of the bay), the gain "shape" is

very similar to that for the unconstrained case (to within a scale factor).

One other point to be discussed about this technique is that, although the size

reduction does make it feasible to obtain the solution, calculating the optimal gains

can be a very time consuming process. In particular, the calculation of the hessian

is a very expensive operation, and typically would take 24 hours of CPU time on a

Vax Station II for a bay size of 9 nodes and 10 bays in the system. Of course, this

is nothing compared to the amount of time that would have been required for the

full model. Computational times for smaller bay sizes are more reasonable, with

problems of 5 or 6 nodes per bay and 20 bays requiring about 1 day to completely

I finish the algorithm. It is interesting to note that the second order Newton method

was found to converge very rapidly to the optimal solution, with step reductions in

the error of 4 or 5 orders of magnitude typically occurring on the last step.I
34 Block Tri-Diagonal FeedbackI
3.4.1 Introduction

This form of the gain structure is important because it allows for some communi-

cation between the local controllers. In contrast to the previous cases that were

examined, an exchange of information both internal and external to the finite con-

trol element is allowed, but it is restricted tr occur only with adjacent elements.
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Since each controller has more information available than the previous cases, this

I should allow the overall performance to improve. It also helps to eliminate the

problem mentioned earlier in which a controller is a short distance from a sensor

but they are separated by an element boundary so the measurement cannot be

used for feedback. However, there are the associated penalties that the local pro-

cessors must be more sophisticated since they are required to perform more tasks,

and the computer architecture will be more complicated to allow information to be

exchanged between elements.

As is shown in Figure 3.8, this type of control can be implemented in two ways.

The first allows each local controller to measure the sensors in its element and then

local communication between the controllers is employed to exchange the informa-

tion with the adjacent processors. The second approach allows each controller to

directly measure the sensors from its own element and its neighbors. Either setup

will allow for the block tri-diagonal gain structure that is desired. A comparison

of these designs will show the trade-off between having the extra measurement

hardware built into the structure and having to do local communication between

I processors.

The second technique requires a more complicated wiring set up and several

processors must obtain the measurements from each sensor, but little local coordi-

nation between the controllers is required. The first approach is more compact in

that it is conceptually neater, but it has a major disadvantage in that it requires the

local controllers to be coordinated and dedicate some portion of their loop cycle to

sending an? receiving information from its neighboring processors. There are delay

3 issues involved here as well, as some information is transferred rather than directly

measured.

I There is a subset of the full block tri-diagonal form of the gain matrices which

is of particular importance. This is the banded gain matrix where the band width

is small enough to be covered by only one extra set of off-diagonal block matrices.
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I
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I..
I

I Figure 3.8: The architecture for a local controller based on block
tri-diagonal feedback. The top figure (a) corresponds to
the case where a local controller measures the sensors
within that element and then shares this information
with adjacent processors. The lower figure (b) is the
case where each local controller measures the required
information directly from each finite control element.
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(a) (b) 0

IF~ 0

I Figure 3.9: Two types of gain matrices for the block tni-diagonal
feedback approach. The figure on the left (a) corre-
sponds to the full block tni-diagonal feedback, and the

one on the right (b) to the banded feedback.

If the bandwidth is smaller than the element size then it is not necessary for all

of the main diagonal block to be full. Consequently, only parts of the three block

3 matrices in a given row need to be non-zero. The advantage of this technique is

that it reduces the amount of information that must be passed from processor to

processor, or conversely, how far into the adjacent elements the extra measurement

wires must be extended. The form of the gain matrices for the two cases are shown

I in Figure 3.9.

The resulting form of the control equation now is

.. Fiq Fiq2  0 0 q

IU 2  F2qi F2q2 F2qs 0 q

Ut3  0 F~q F~q8  0 q

IUN 0 0 0 FNqN- 1 FN9NqN

I 9'

I
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F 1 F24  0 ... 0 q,

F241 F242 F243  0 42

m0 F3  F43 0 (3.90)

0 0 0 FN4N_1 FNq N

where q, and ui again represent the vectors of the states or control for each element,

m and Fkqi the gain block matrix for controller k from the state component q,. For

this tri-diagonal restriction, i = k - 1, k, k + 1, i.e., only the closest neighbor gain

I blocks are allowed to be non-zero. In this case, no restriction is made on the actual

structure within the gain blocks, only on the blocks which can be non-zero. In this

way, the case of the purely banded gain matrix can also be included. The following

m section will outline a simple method for calculating the appropriate gain matrices.

m 3.4.2 Calculation of the Gains

One approach to selecting the gain blocks is to compute the optimal full state

feedback (assuming all measurements can be made within the element) gains for

the structure and then employ some form of truncation on the allowable extent of

the gains so that the desired structure can be obtained. This assumes that the

gains will be fairly banded so that the block tri-diagonal structure will include all

of the important gain values. In the limit, as the gains become more banded, it

m may be conceivable to capture the important structure within the width of one

element, so the off-diagonal blocks will only be non-zero in the upper right or lower

m left corners to compensate for information lost near the ends of the element (this is

shown by the shaded part of the gain matrix in Figure 3.9). The gains obtained for

m the examples investigated here do possess a high degree of bandedness. For other

cases where this assumption does not hold another approach will be discussed later.

I The full state feedback gains are computationally intensive to calculate for the
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I Figure 3.10: A model of an infinite dimensional symmetric beam.

full sized system. Consequently, a procedure for calculating the gains for very large

structures that possess a high degree of spatial symmetry will be developed. For this

work, it is assumed that the structure, taken to be a uniform beam, is symmetric

along its entire length. The previous work with the block diagonal feedback it only

assumed that the beam consisted of repeated bays. Of course, a uniform beam is

symmetric at this level as well.

I The first step in the design procedure is to employ the z-transformation on the

symmetric structure to obtain the transformed dynamics A(z), B(z), and C(z). This

can be done by recognizing the length of the structure which is being repeated and

then performing the analysis given below. First, take a uniform beam as shown in

Figure 3.10. By recognizing that the bay (qo - qj) is repeated along the entire length

of the beam, it is possible to reduce this infinite system using a z-transform. As

with the more familiar example of the discrete time case, it is possiblc to associate

a power of z with the relative displacement between the node of interest, q0, and

any other node.

Using q to denote the degrees of freedom at a node, then a finite element rm.odel

of the beam in Figure 3.10 would give the dynamic equations as

SM4 + Kq = %u (3.91)
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I Figure 3.11: The form of the FEM mass and stiffness matrices for
the infinite beam example. Each square corresponds to
the appropriate element matrix of the FEM.

where M, K, %P, q, and u are infinite dimensional, and M and K have the internal

form shown in Figure 3.11. T is in fact diagonal as each actuator is associated

directly with a node T = diag(Oi). Each block along the diagonal in Figure 3.11 is

the element mass or stiffness matrix for the FEM, and these can be partitioned in

* the following way

M.1,6  M 11 Ml12 ]K1  K 1 K1  (3.92)
Ml21 Ml22  K 1 I2

For a beam, M, is a 4 x 4 matrix consisting of 4, 2 x 2 block matrices since there

are two degrees of freedom (displacement and rotation) per node, and 2 nodes per

element. Then, employing the z-transform on the vector of states and controls as

I
I
I
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discussed above, q and u can be re-written in the transformed representation as

z-lqo  Z-Uo

q(z) = qo u(z) = Uo (3.93)

z'q0  z1uo

z 2 qo Z2Uo

Looking across the row of Equation 3.91 which uses the states q-1 , q0, and q,

(z-Iq, qo, and zqo), this equation can be written as

I M21z-' 0 + (M.1 + M22)4o + M 2Z40 + K 21z-'qo + (K1 + K22)qo + K 12zqo = PoUo
* (3.94)

which, in fact would be the same for all the rows. This follows directly from the

definition of u(z) and Equation 3.91. Equation 3.94 can be rewritten in a far more

compact manner asrrr[i FiF' ]o]&u
M 1 1 M1  IK 11 Ku][II M11 M12 1 1o 4+ 1ilK2 IIqo = OoUo (3.95)

zI M 21  M 22  zI zI K 21 K 22 zj

for all values of z - ej$ 0 E [0,27r]. Note that, since Ijzl12 - 1, then z - 1 = z*. This

provides for a very easy way to develop the transformed system matrices directly

from the element matrices of the FEM. This result can easily be extended to the case

where the symmetry is at the bay level by introducing a different transformation

matrix T2. For a repeated bay with n nodes

S[12 0

T2 0 1.-2 (3.96)
L zI2 02,.-2

After this step of transforming the system dynamics, it is possible to perform the

mass condensation procedure discussed in Chapter 2 to eliminate the rotational
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degrees of freedom from the model. The resulting M(z) and K(z) matrices can

then be used to form A(z), B(z), and C(z).

As is shown in Section 3.3.3, this transformation greatly simplifies the uncon-

strained full state feedback control design as it decouples the necessary conditions

and allows for much smaller systems to be used. The penalty is that this design

process must be done for every value of z around the unit circle to generate the

gains at each spatial frequency. Clearly, this cannot be done analytically for any

system of appreciable size, so the solution must be approximated. As with digital

control design [251, it is convenient at this point to introduce a new variable w which

is related to z via

W = 1z 1 (3.97)

where, if z = e' s, hen w = jv = j tan ~L. So, as z goes around the unit circle

anti-clockwise from I to -1, w moves up the jv axis from 0 to oo. It is then useful to

use L, to define 0 which in turn defines z. Then log-spacing v aliows for a convenient

representation of the gains in the spatial frequency domain. The next step requires

that the control problem (i.e., the weighting matrices) be transformed into the

frequency domain using techniques very similar to those used in Section 3.3.3.

Given that the system and control weighting matrices can easily be transformed,

it is then possible to employ a LQR solver at each frequency to obtain the gains

as a function of frequency at a discrete number of points around the unit circle.

Typical plots for various state weightings are given in Figures 3.12, 3.14, and 3.16.

The weightings investigated were velocity, energy, and displacement. The next step

is to perform the inverse z-transform defined by Equation 3.46 to generate the

I optimal gains as a function of the spatial coordinate. The results for the same set

of weightings are given in Figures 3.13, 3.15, and 3.17. For the sake of comparison,

I the optimal regulator gains for a long beam were computed for the displacement

weighting case, and the gains for an actuator located in the middle of the beam are

presented in Figure 3.18. As would be expected, the results are virtually identical.
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Figure 3.12: The displacement weighted gains in the frequency do-
main. The dotted line is the feedback on velocity and
the solid is the feedback on the displacement.
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Figure 3.13: The displacement weighted gains in the spatial domain.
The circles are the feedback on the velocity at that node
for an actuator at the origin, and the crosses are the
feedback on the displacement.
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Figure 3.14: The energy weighted gains in the frequency domain.
The dotted line is the feedback on velocity and the solid
is the feedback on the displacement.
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Figure 3.15: The energy weighted gains in the spatial domain. The
circles are the feedback on the velocity at that node
for an actuator at the origin, and the crosses are the

I feedback on the displacement.
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Figure 3.16: The -ielocity weighted gains in the frequency domain.

The dotted line is the feedback on velocity and the solid

is the feedback on the displacement.
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3 Figure 3.17: The velocity weighted gains in the spatial domain. The

circles are the feedback on the velocity at that node

for an actuator at the origin, and the crosses are the

3 feedback on the displacement.
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Figure 3.18: The optimal displacement weighted regulator gains for
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are the feedback on the velocity at that node for an

actuator at the origin, and the crosses are the feedback

on the displacement.
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3.4.3 ConclusionsI
From the results presented, it is clear that this technique represents a relatively easy

and convenient method to calculate the optimal feedback gains for a large structure

with spatial symmetry. The results for the different weightings show that the gains

for this example are quite strongly banded, with the displacement weighting having

the largest "width". Provided that the gains are banded sufficiently relative to the

finite control element size, then just using the truncated optimal gains will be a

sufficiently good approximation for the suboptimal gains. Results in Chapter 4 will

I show how well the banded and full block tri-diagonal gain structures approximate

the optimal solution.

If the analysis shows that too much information is lost by the truncation opera-

tion, i.e., the important part of the gain structure is relatively "wide", then it may

be necessary to perform an optimization similar to the one done in the previous

5 section, with the modification that the restriction on the form of the gain matrix

be relaxed so that F can be block tri-diagonal.I
3.5 A Decentralized Implementation of Full State

FeedbackI
3.5.1 Introduction

The purpose of this section is to discuss the final form for the local controller.

This architecture uses the gains calculated for the centralized full state feedback

but they are implemented in a decentralized manner. This design is based on the

concept of the disturbance information "flowing" along the structure as "waves".

A control architecture is developed which complements this way of looking at the

movement of information in a structure. This is achieved by approximating the
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Figure 3.19: A schematic of the decentralized implementation of full

state feedback.

gains obtained in the previous section as a function of the spatial frequency and

writing them in a state space representation. The controllers use the measurements

from either side of their location to calculate the appropriate commands. These

measurements are then passed onto the adjacent processors to continue the cycle.

The resulting architecture is shown in Figure 3.19. The information is very rapidly

transmitted from controller to controller in both directions along the structure, and

I the actual command calculation at each node will be shown to be relatively simple.

In contrast to the other types of controllers considered earlier, the one developed

I in this section relies almost entirely on the direct communication between local

controllers. The purpose of this section is to provide an overview of the architecture

and to present a methodology for calculating the state space representation. As

was done in Sections 3.3 and 3.4, an example based on the displacement gain of a

displacement weighted controller will be examined.

I
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3.5.2 Calculation of the Gains

It will be assumed during this discussion that the procedure outlined in Section 3.4.2

for calculating the gains as a function of spatial frequency has already been em-

ployed, so that F0 (w) exists. The next step is to form an approyimation for this

gain over a specified frequency range. For the displacement weighted gains shown

in Figure 3.12, it has been found through experience that matching the gains at

low frequencies is far more important in terms of obtaining a good approximation

for the gains in the spatial domain than matching at high frequencies. A curvefit-

ting program (see reference [52]) was employed to obtain tiie poles and zeroes for

a transfer function approximation of the original curve. Since the number of poles

I determines the order of the finite difference approximation, it is desirable to obtain

a good match with as few poles as possible. However, due to the complexity of

I the gains shapes, it was not always possible to match the curves exactly at every

frequency with a small set of poles and zeroes.

The gain curve is approximated in the w-plane. The approximation was con-

strained to have only four poles and zeroes, so it can be expressed as

[(w -bi)(w - b2)(w - bs)(w - b4) 1
F(w) = K. 1(w - a,) (w - a2) (w - as) (w - a4) .(3.98)

For this example, the zeroes were found to be in two real pairs which are symmetric

I about the imaginary axis. The four poles were found to be symmetric about both

axes, so, for example, b3 = -bl and as = a*. It is possible to obtain a representation

I of the approximate gain in the z-plane using the method of pole-zero mapping and

the transformation

1- (3.99)

which is the inverse transform of Equation 3.97. In direct analogy to the discrete

time case, I represents the distance between the nodes in the spatial domain. In this

I example, I = 1. Equation 3.99 is used with w taking on the values of ±bj, ±b 2,..., a*
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as in Equation 3.98, to generate the corresponding poles in the z-plane. The map-

* ping is completed by imposing the condition that

F(w)l.=o = F(z)l. (3.100)

so, in the z-plane, the gain can be approximated as

F~~z) =I ( Z - Zi) (Z - -) (Z - Z2) (Z -~(z)= (z-p- )(z p)(z P)(z- (3.101)

In the z-plane, the poles lie on two radial lines and are reciprocals with respect to the

I unit circle Ilzl12 = 1. This result is a direct consequence of the assumed symmetry of

the plant. A pole distribution with this symmetry with respect to the unit circle will

have non-causal pulse responses (equivalent to a spatial representation of the gains)

which are symmetric about the origin. So, as would be expected, the information

obtained from both directions will be treated in the same manner.

Once this step of obtaining a rational fraction z-plane approximation of the gains

has been completed, it is possible to inverse z-transform the gains and express them

as functions of the spatial coordinate. For this example of the displacement gain

for the displacement weighted control design the approximate gain can be shown to

* be of the form

F(x) = K [6() + G 1r IZ (C1 Cos XO + C2 sin Ix1O)] (3.102)

I where z E (-oo, oo) is an integer which denotes the relative number of nodes that

separates the two points of interest. The poles are given by P1 = rej' and p2 =ei

The coefficients K,, G1, cl and C2 are coefficients which depend on the pole and

zero locations. 6(x) denotes the Kronecker delta function which is equal to one for

x = 0 and zero for all other values of x. Plots of this function for typical values of r

and 0 calculated for this example are given in Figure 3.21 where the analytic result

is also compared to the numerical inversion of the optimal gain.

I This completes the analysis required to approximate the gain. The next step is

to develop a way of expressing the control calculation in terms of a simple multipli-

I cation of the measurement information which is travelling to the left and right of a
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Figure 3.20: Comparison of the optimal (solid) and approximate

gains (dotted) in the frequency domain (w).
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Figure 3.21: Comparison of the optimal (circles) and approximate

3 (x's) gains as a function of the node number.
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given location. A more detailed schematic showing this split is given in Figure 3.22.

With a transfer function representation of the gain available in z-plane, it is possi-

ble to obtain a more useful state-space description. This can easily be done using

I any conversion algorithm (such as the one in MATRIXx). The result is two sets

of finite difference equations which relate the control commands to the information

"flowing" past the actuator location from either the left or right. This informatior

is stored in the vectors qc(i) and q.,(i). For the displacement part of the gain, the

finite difference equations can be written as

qc(i + 1) = Acq,(i) + BCyd(i) (3.103)

uc,(i) = QCqc(i) + DCyd(i) (3.104)

I tu?(i) = C.:q.(i) (3.105)

I qac(i - 1) = a.,qa,(i) + BacYd(i) (3.106)

u4 Cd(i) = Caqa,(i) (3.107)

where (.), represents the causal part, and (')d represents the displacement part of

the gain. It can easily be shown that the system matrices are equal (i.e., A., - A=,

Bac = Bc, and Cac = C.), which is to be expected given the symmetry of the gains.

I The state space representation is developed in two parts, with the the distinction

between the two being the information that each has available to calculate the

control commands. The causal ('), representation uses the information which is

moving to the right, and the anti-causal (.), uses that which is moving to the

left. Implementating the models in Equations 3.103 through 3.107 Figure 3.22,

and including the correct gains and the delta function at the origin, the complete

architecture is of the form shown in Figure 3.23. The complete control at any

I station i is then

u(i) K. [y(i) + G, [u(i) + u, (i)II (3.108)

I = K. [y(i) (1 + GID,) + G1 [ut(i) + Ua,(i)]] (3.109)
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Figure 3.22: A more detailed representation of the control architec-
ture for the decentralized implementation. There are
two flows of information. This figure shows that the
two tasks of calculating the control commands and pro-

cessing the information flow can be separated.
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which would hold for every node along the structure.

I This completes the discussion of the control architecture. The implementation

of this controller is somewhat more difficult than the previous designs as it must

be discrete in both space and time. Information is not directly measured by every

controller. Instead, each sensor is measured by one controller and the information

is passed onto the neighboring nodes. The information is then modified to account

for the distance travelled (essentially multiplied by the complex pole so that it is

reduced in magnitude and phase shifted), added to the current measurement at the

new location, and then passed on to continue the cycle. This will require a very

rapid flow of information along the length of the structure so that the measurements

are still relatively valid. The required "speed" of the information flow will depend

on how fast the disturbances propogate in the structure. It will be very easy to pass

information from controller to controller within a finite control element if they are

all implementated within the same processor. However, this architecture will also

require very rapid inter-processor communication. The bandedness of the gains will

also play an important role in the implementation since it will determine how far

the information must travel before the gains are so small that the influence will be

negligible.

*3.6 Conclusions

The purpose of this chapter was to present and analyze various types of local control

designs for the hierarchic control architecture. Four types of controllers were intro-

3 duced. Of these, colocated control is the simplest to implement since it only requires

the information to be exchanged between the sensor and actuator pairs. Block di-

agonal feedback represented the next level of sophistication. It does not allow for

communication between processors, but the actuator commands are calculated from

the measurements at every sensor in the finite control element. Allowances were
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Figure 3.23: A representation of the full local control architecture,
showing the split between the causal and anti-causal
parts of the control calculation. The complete control
command is the sum of u. and u6 c.
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also made in this design for splitting the finite control element into smaller "bays"

I and restricting the information flow within an element. A transformation was in-

troduced which reduced the model dimensions so that a numerical approach to the

I optimal gain calculation would be feasible. A comparison of the results obtained

for a large "bay" with the unconstrained optimal solution showed good agreement,

indicating that the global minimum had been found.

3 The third control architecture makes allowances for communication directly be-

tween adjacent processors. The gains used for this case were the truncated uncon-

strained full state feedback gains which were developed for a long symmetric beam.

A transformation based on the beam FEM element mass and stiffness matrices was

introduced. This provided an easy method of calculating the gains for various state

weighting matrices. Two methods of implementating the controller were discussed.

3 One method only allows each processor to directly obtain the information from the

sensors within the corresponding finite control element. This must then be passed

3 to the neighboring processors. In a similar fashion, information is also received from

the adjacent processors. The other method allows each processor to directly mea-

I sure the necessary information from the sensors in all three finite control elements.

The resulting gains for both cases could be full block tri-diagonal or banded.

The last controller implements the centralized full state feedback gains in a de-

3 centralized manner. Information is passed in "pipelines" in both directions along

the structure. The controllers are finite difference representations of the optimal

3 gains which have been approximated in the spatial frequency domain. In this way,

each actuator can eventually obtain the information from every sensor. The im-

3 plementation of this controller will require a very rapid exchange of information

between the processors.

3 These controllers will be compared in the following two chapters. Chapter 4 will

investigate their performance as decentralized controllers and as local controllers in

I the hierarchic control architecture. Chapter 5 will then compare their implementa-
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* Chapter 4

I
Examples

I

4.1 IntroductionI
The purpose of this chapter is to show by example the benefits that can be obtained

by using an hierarchic control architecture to control the vibratory motion of an

"intelligent" structure. The secondary purpose is to expand on the design algorithm

3 presented in Chapter 2 and to develop a hierarchic controller for a one dimensional

structure. In the examples that will be discussed here, a long beam with many

I sensors and actuators distributed along its length will be analyzed. The design and

evaluation models for this structure will be discussed in Section 4.2. Some issues

I concerning the implementation of the control architecture will be discussed in this

section as well.

Due to the assumed nature of the structure, i.e., the large number of sensors and

actuators, it will be very difficult to develop a suitable test article in the laboratory.

There is also a major difficulty associated with the computer architecture that will

be required to implement this form of control. This problem was originally investi-

gated by Miller in reference [48] and a solution was developed. However, test results

appeared to indicate that this setup was very difficult to operate and program and
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was not particularly suitable for expansion to a large scale system. There are numer-

ous studies which have investigated computer architectures for large scale systems,

see references [55,36]. There is an accompanying work by David Warkentin which is

I investigating the problem of designing a more suitable computer architecture, with

special emphasis on the single chip micro-computer technology that is now readily

available. Further experimentation in the laboratory will have to be delayed until

the results of that work are known. Consequently, the evaluation models for the

controller will only be computer models. To further clarify the capabilities of the

control design, it will be assumed that the sensors and actuators are perfect. Some

of the analysis performed on the beam in this chapter was originally done for a rod

* in reference [29].

Several examples will be studied in this chapter. For clarity, these will be sep-

arated into several parts. Section 4.2 discusses the development of the evaluation

model of the beam. The mass condensation procedure discussed in Section 2.3

is used to reduce the order of the system and generate the design model. Some

approximations required to efficiently implement the technique are also discussed.

I The section concludes with a discussion of the interpolation matrix, leading to the

formation of the global model. Section 4.3 presents the control design for this

coarser model of the beam. The influence of just the global controller on the struc-

ture is compared with a full order design. This process is then repeated for the

alternative case where only the n, lower modes of the global design model are re-

tained. Section 4.4 studies the various local control designs developed in Chapter 3.

The designs investigated include the colocated natural control, two block diagonal

controllers, and two block tri-diagonal controllers. These are studied in terms of

their performance as both dec .ntralized controllers and as local controllers it; the

hierarchic architecture. They are compared directly with a full order LQR design.

Section 4.5 then combines the local and global controllers from the previous two

sections. The pole locations are shown for two cases. A comparison of the perfor-
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mance of these combined controllers is done using a graph which examines the state

cost and control effort trade-off at several design points.

The aim of this analysis will be to show that near optimal performance can

3 be obtained using the hierarchic architecture if an appropriate local controller is

used. A comparison of the local controllers will indicate that the more sophisticated

3 designs can offer a slight performance improvement. The decision of which to use

is delayed until the operations count is analyzed in Chapter 5.U
14.2 Discussion of the Model

The purpose of this section is to introduce the evaluation and design models for the

st-iicture, and to discuss some of the issues involved in the implementation of the

control architecture. The evaluation model for the control architecture was taken

to be a beam because it provides some degree of complexity and can be used to

approximate other structures, but it can still be modelled as a one dimensional

structure. A 30 node beam (Figure 4.1) was selected for this example. To simplify

3 Isome of the analysis of the local control designs in Chapter 3, the distance between

the structural nodes of the beam was taken to be 1 unit so that the length of the

3 nentire beam is n - I (i.e., 29) units. The characteristic length of the beam was

taken to be the distance between the structural nodes since the actual length of

3 the beam is relatively unimportant provided that there are a sufficient number of

nodes in the structure that the end effects have a negligible influence for most of

3 the central portion of the beam.

A finite element model of an undamped free-free uniform beam was developed

using the standard element matrices given in reference [461 which have been slightly

modified so that the states are (q, 0) rather than (q, h10). The element mass and

1
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I
Figure 4.1: A 30 node beam model.

stiffness matrices are

156 22h, 54 -13h,

Made- m 1h, 22h, 4hl 13h, -3h2 (4.1)

420 54 13h, 156 -22h,

-13h, -3h2 -22h, 4h2

1 12 6h, -12 6h,

EI 6h, 4h 2 -6h, 2h 2
K.L. = El6i / 1  2/ (4.2)

/4 -12 -6hi 12 -6h(
6h, 2h2 -6h, 4h2

I where m, and EI are the corresponding structural properties per unit length, and

h, is the length of each element. For the work performed here, both El and m,

were assumed to be unity. Since the nodes are spaced one unit apart, h, is unity

as well. By assembling these element matrices and then rearranging the states to

correspond to those shown below, the resulting equations of motion can then be
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I expressed a
e Mqq Mqeo ] + Kqq Kq q [F (4.3)

lq mo][ Koe Koo 0 0

where q and 0 are the vectors of the states at the nodes, and only force actuators

are assumed to exist. Typical relative magnitudes of these block matrices (in a

two-norm sense) are

IIMqKqqJ12 48 IMf 'KeeJ2 - 360

These ratios, combined with the selection of the force actuators, indicate that the

rotational coordinates are suitable to be designated as the slave degrees of freedom

in the condensation procedure outlined in Section 2.3.

i Following the procedure in that section, it is then possible to develop a condensed

model of the beam which only consists of the displacement degrees of freedom with

system matrices Mo.,d and Kond defined as

Kcond = Kqq- KqeK 1 Keq (4.4)

Mod = Miq- KqOK;O'Moq - MqeK;'Koq + KqoK;O'MooK;'Keq (4.5)

as given in Chapter 2. It is interesting at this point to compare the modal frequencies

of the full order model with those of the condensed model. The results are given

in Table 4.1 and plotted in Figure 4.2. As mentioned in Section 2.3, and as will

i be discussed in more detail later in this section, it is often more convenient to use

the condensed stiffness with a lumped mass approximation of the finite element

model (i.e., a statically condensed model). The modal frequenices for this case are

also included in Table 4.1. These frequencies are compared with the quoted values

from reference [12] and the frequencies from the full order beam model. Archer [2]

shows that a beam finite element model based only on the translational coordinates

can provide a reasonable model of the lower frequency modes of a free-free beam.
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Archer compared the percentage difference between experimental results and the

modal frequencies obtained from models using both the rotational and translational

coordinates and just the translational coordinates. The analysis shows that the

errors for both cases are reasonably small for the first five flexible modes, and

that the first method has a relative error which is about 1 as large as the second.
These results are also compared with the frequencies from models based on lumped

mass approximations and the relative errors for these methods were typically found

to be an order of magnitude larger. The results presented here confirm that the

* frequencies for a condensed model are a much better match than those from a model

based on a lumped mass approximation. The results for both approximations are

close to the reference values for the first 12 flexible modes. The deviation is more

readily apparent for the higher frequency modes.

I Figure 4.3 contains a three dimensional plot of the condensed mass matrix for

this example. The most important thing to notice from this figure is that the matrix

is very strongly banded which indicates that the lumped approximation should be

fairly good. One other important point is that the influence of the end effects on

the central portion of the beam are negligble, leaving a symmetric uniform beam

for most of the structure. This is important for some of the local control designs

in Chapter 3. Several design methodologies assume that the structure is symmetric

(i.e., the block diagonal and block tri-diagonal approaches), so it is important that

the design and evaluation models consist of a large central region which is uniform.

As discussed in Section 2.7, the first step in the algorithm is to select the number

and the locations of the global nodes. For the examples done here, 6 global nodes

I (ngn) were employed, which results in 5 finite control elements (ne), of which the

middle 3 are identical, but the end two are different due to the fact that one of the

global nodes coincides with a structural node (Figure 5.5). Notice that it is riot in

general necessary for the global and structural nodes to coincide. In this example

with a beam, each global node has 2 degrees of freedom, i.e., ng1 .f = 2, for a design
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Table 4.1: A comparison of the flexible mode frequencies (rad/sec) with various
approximations of the mass matrix in the FEM.

Flexible Mode Full Mass Condensed Mass Lumped Mass Reference
Number Matrix FEM Matrix FEM Matrix FEM

1 0.0266 0.0266 0.0265 0.0266
2 0.0733 0.0733 0.0729 0.0733
3 0.144 0.144 0.143 0.144
4 0.238 0.238 0.235 0.238
5 0.355 0.355 0.350 0.355
6 0.496 0.496 0.488 0.496
7 0.660 0.660 0.648 0.660
8 0.848 0.849 0.830 0.848
9 1.06 1.06 1.03 1.06
10 1.30 1.30 1.26 1.29
11 1.55 1.56 1.51 1.55
12 1.84 1.84 1.78 1.83

21 5.51 5.70 4.95 5.42
22 6.06 6.31 5.33 5.94
23 6.62 6.96 5.70 6.48
24 7.22 7.63 6.03 7.04
25 7.84 8.30 6.33 7.63
26 8.49 8.93 6.58 8.24
27 9.13 9.46 6.77 8.88

28 9.69 9.81 6.89 9.53
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Figure 4.2: A comparison of the modal frequencies (rad/sec) for various approxi-
mations of the mass matrix in the FEM. The dotted line correspondsto the full model. The solid line corresponds to the condensed model,
and the dashed line is the lumped model. These results show that us-m ing the condensed mass matrix provides a much better approximation
of the original model than does the lumped mass approach.
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Figure 4.3: A 30 node beam mass matrix for which the rotation
coordinates have been condensed out. This is plotted
to display both the bandedness and symmetry of the
mass matrix. The figure also shows that the central
portion of the beam is uniform.
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model total of n. = 12. The interpolation functions used in the formation of the

T. matrix were the standard Hermite polynomials, Li [46] which were used in the

formation of the element matrices of the beam FEM. These relate the displacement

I at each internal node of the finite control element to the displacements and rotations

at the end points. The displacement can then be written in terms of four functions

I which are parameterized by the variable 1t

q (Y7) = L, (7) qg, + L 2 (17) 8O, + Ls (q) qg, + L4 (17) O, (4.6)

whereweeL, (17) = 1 - 3172 + 2173 L2 (?7) = h, (q - 2172 + 173 ) (47

L3 (17) = 3172 -273 L 4 (7) = hi (_t, + n3)

and 0 < 77 < 1. The subscript (). corresponds to the information at the left global

node, (7 = 0), ard (')0 to the right global node, (17 = 1). Plots of these four shape

function are given in Figure 4.4. The interpolation matrix T. is then found by

3 evaluating the expression in Equation 4.6 at each of the values of r7 within the finite

control element which correspond to structural nodes and then storing the resulting

coefficients in a matrix. The full T. matrix can then be formed by assembling these

blocks for each finite control element, as shown in Figure 4.5.

I Note the form of the T. matrix for a finite control element. It can be split into

two parts. One part relates the nodes in the finite control element to the global node

on the left. and the other relates the nodes to the global node on the right. For finite

control element i, with global nodes i and i + 1, the corresponding blocks of the T.
matrix are Ti andT7+,a notation which was introduced in Figure 2.2. As was

3 discussed in Section 2.6, it is also possible to use modes rather than approximate

shape functions in the formulation of T..

From Equation 2.14 with the weighting matrix W = M, Equation 2.31, Fig-

ure 2.4, and the discussion in Section 2.5, it can be seen that to form the estimates

I of the global node values, the measured displacements and velocities must be mul-
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tiplied by an aggregation matrix, TTM. As shown in Figure 4.5, the T matrix is

in some sense diagonal, but Figure 4.3 shows that, although the condensed mass

matrix, M o0 d is highly banded, it is in general a full matrix. Thus, TTM,,d would

I in general be a full matrix as well. In the ideal case, the matrix TTM would be

block diagonal. This would correspond to a situation where the information from

each finite control element could be aggregated to the global values without any

reference to information from the neighboring elements. However, if this aggrega-

tion matrix is full, then the measurements from each element (column dimension

of TT M) would contribute to every global value (row dimension of TTM). This is

shown below in an example for a simpler case which assumes that the mass matrix is

block tri-diagonal. Based on the bandedness of M, 0 ,d shown before, this should be

a very good approximation for the mass matrix. The mass matrix will be assumed

to consist of blocks M0 along the diagonal and the first minor diagonal consists of

blocks M 1 . The resulting form of the T matrix is shown in Figure 4.6.

U The significance of this result is that, if M1 5 0, then there are four non-

zero matrices in each column of TTM. Consequently, each set of measurements

I within an element must be multiplied by four matrices to obtain the four vectors

of information which must be communicated to the central computer. This is in

contrast to the multiplication by two matrices and the communication of two vectors

of information if M, = 0, i.e., the mass matrix is block diagonal (or diagonal). The

advantage of having more off-diagonal blocks in the mass matrix is that it provides a

much better approximation. This gives a better weighted distribution of the control

and it allows for a better filter when the control is applied to the evaluation model.

However, as can be seen from the analysis above, this involves a substantial increase

in the workload of the local controllers, virtually doubling the number of operations

required to perform this aggregation step. This fact, plus the strong bandedness

of the condensed mass matrix shown in Figure 4.3 led to decision to implement

the observation and control filtering using a block diagonal mass approximation
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3 Figure 4.6: The aggregation matrix with a block tri-diagonal ap-
proximation of the condensed mass matrix. This figure
shows that the matrix TTM contains four non-zero rowsper column if M1 0 0, which increases the workload of
each local controller.
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Table 4.2: The flexible mode frequencies (rad/sec) from the global
model.

Flexible Mode Global Model
Number Frequency

1 0.0266
2 0.0735
3 0.145
4 0.239
5 0.384
6 0.550
7 0.762
8 1.03
9 1.59
10 1.66I

as the weighting matrix W. In fact, since a block diagonal approximation has

discontinuities at the finite control boundaries, a lumped mass approximation was

used, which results in a diagonal W matrix.

I Having discussed some of the implementation issues, it is now possible to derive

the global, or coarser, model of the structural dynamics which can be represented

by the equation

M,4, + K,,qg = ('IS,) Q, (4.8)

where the condensed mass and stiffness matrices have been used in the formation

I of the global values to provide the best model possible. The open loop frequencies

of this reduced order model are given in Table 4.2. These values can be seen to

agree well with the lower frequency modes for the full and condensed models given

in Table 4.1. As would be expected from any finite element approximation, this

agreement degrades for the higher frequency modes. This is a result of the fact

that the coupling influence of the residual system is much higher for these modes.

As was discussed in Chapter 2, this suggests that it would beneficial (in terms of

reducing the amount of coupling between the global and residual systems), to use
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a high number of global nodes but only retain a subset of the global modes. This

should improve the performance of the combined systems since it will reduce the

dynamic coupling, but as mentioned in Section 2.6, care must be taken to ensure

- that the desired closed loop performance can still be obtained with the reduced set

of modes, i.e., the global control authority must be kept high enough.

U To implement this alternative which uses only the lower set of modes, the fol-

lowing steps should be performed. First, the global system of Equation 4.8 should

be formed as before. The eigenvalues and eigenvectors of this system should then be

calculated, sorted, and normalized. Only the eigenvectors of the n, lower frequency

modes should be retained to form 0b,. The new interpolation matrix, T., = Tolg,

can then be formed, and a new model and closed loop system based on this shape

function can be derived exactly as before in Chapter 2.

The influence of the reduced coupling on the closed loop performance will be

explored in more detail in the next section once the global controller has been

I derived. The implementation differences between retaining all or only a subset of

the global modes was addressed in Section 2.6, and the differences in terms of the

I computational requirements will be investigated in Chapter 5.

I
4.3 The Global Control DesignI
The next step in the design procedure is to formulate the control problem. A

regulator based on a LQR design is used as the global controller. As with any

design of this type, the question of what to optimize, or how to pick the penalty

matrices remains. The aim here is to use a realistic cost function which includes a

penalty on the overall motion of the structure. A suitable performance objective is

to minimize the line-of-sight (LOS) displacement between the two ends of the beam.

An additicnal penalty on the displacement at each node was also included, with the

I goal of performing shape control on the entire structure. Finally, a third term
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I
penalizing the total energy of the system was added to maintain a sufficient level

I of damping in the higher frequency modes of the system. To be consistent with the

assumption that the beam is uniform along its length, each actuator was penalized

by the same amount. Then, the cost function is taken to be of the standard form

J = 0 f X (TRz + u T Ruu) dt (4.9)

with the state x = [q T 4T]T and the penalty matrices R.. and Ru defined as

R,, = 1C, TCIo,+a#l 0]+a ] 1 (4.10)

CIS = I 2 n--I - n+I n+2 2n--1 2n]

I Go= 10.. 0 -1 0 0 ... 0 0

u.= pi. (4.11)

where, a, = V and 2 = -L. Then, using Equations 2.13 and 2.22, the appropriate

consistently transformed cost for the global model of Equation 4.8 is given by

3o f 0 (4RZg + QTR9UgQ) dt (4.12)

I R , TT 0 Tor

ST=[ T R 4 O] (4.13)

I = STR.UUS (4.14)

In this analysis, the filtering matrices are based on a weighting matrix W =

MImPiPd. The influence of the global controller on the structure can be compared

i directly with the full state feedback regulator. The closed loop poles are compared

in Figure 4.7. Note that there are the global design model closed loop poles, the closed

I loop poles and the full order regulator closed loop poles. The first set corresponds to

the poles obtained when the global controller is applied to the global design model.

The second set are the poles obtained when the global controller is applied to the
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condensed design model. The difference between these first two is that the design

model ignores the coupling between the global and residual subsystems. The last

set corresponds to those obtained when the LQR gains are applied to the condensed

model. The effects of the coupling can be seen in the figure through the influence

of the global controller on the higher frequency modes and the difference between

Ithe global design model closed loop poles and the closed loop poles. The results in

Figure 4.7 indicate that the lower frequency closed loop poles are similar to those

I obtained from the optimal regulator. It is also evident that this agreement degrades

for the higher frequency modes of the global model.

There is a negligible difference between using the condensed or lumped mass

approximation in the design of the global model as each provides a fairly good

representation of the lower frequency modes. Where this choice does become im-

portant though is in the weighting matrix used in the filtering. Figure 4.9 shows

the same controller designed above using the condensed mass approximation in the

*design model but implemented using both the condensed mass and the lumped mass

approximations as the weighting matrix. Since the condensed mass is a far better

approximation to the mass matrix of the full model, it provides a much better filter

for the global control on the residual system. This graph indicates that the choice

Iof a good approximation for the mass matrix can significantly improve the filtering

out of the control spillover. However, previous analysis has already shown that this

Irequires a substantial increase in the implementation costs at the lower level. In the

example presented here the poles of the residual system tend to be stabilized by the

interaction, and those of the global model are made slightly less stable. However,

3this appears to be a result of the internal dynamics of the plant and cannot be

generalized to other cases.

When only the nl 9 lower modes of the global system are retained, the resulting

closed loop pole locations are as shown in Figure 4.8. They indicate that the

3decoupling between the two subsystems is improved. However, a slight performance
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IFigure 4.9: A comparison of two approximations of the mass ma-
trix used in the control and observation filtering. Both

controllers use the same global control design. The cir-

Io

cles represent the closed loop poles obtained when tl'e
lumped approximation is used as W. The crosses are

the closed loop poles obtained when M,,.d is used as
w.
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decrease can be expected due to the fact that the closed loop poles do not agree

I as well (due to the double aggregation step) with the optimal ones as do the poles

obtained when all of the global modes are employed. In this development, some

modes are now no longer considered to be part of the global model, so they will be

influenced by the residual feedback. If the global model is made too small, then the

ability of the central controller to govern the gross motions of the structure will be

significantly impaired, and the local controllers will have to control modes which

are very important to the performance objective.

I
4.4 A Comparison of the Local Control Designs

4.4.1 Introduction

The purpose of this section is to investigate the performance of the various local

5 controllers developed in Chapter 3. This will include colocated natural feedback, two

types of block diagonal feedback and two forms of the block tri-diagonal feedback.

The controllers will be discussed in terms of their applicability as both decentralized

controllers and as local controllers in the hierarchic architecture. There are two

I main points to consider here. The modelling technique using shape functions is

not perfect so there will be some dynamic coupling between the global and residual

models. Also, the observation and control filtering is not perfect due to some of the

decisions made (such as using the lumped mass approximation as the filter weighting

matrix) based on implementation issues. Of course there will be errors in the model

as well. As a result, the controller from one model can then be expected have an

influence on the closed loop poles of the other model. For this reason, it is desirable

to develop a local controller that does not have a very high control authority for the

lower frequency modes since these typically are the ones which are modelled by the

global design model. This will have the effect of reducing the influence of the local
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control on the global design model poles. For a given level of spillover or coupling,

Ithe higher the control authority, the larger the influence on the closed loop poles.

This is in contrast to the aim for the design of a decentralized controller, which

is obtain as much control authority as possible (or necessary, depending on the

control design) at each frequency. As will be seen, this spillover is most prevalent

for the modes which are at the boundary of the global and residual models. The

*filtering employed in the hierarchic architecture is capable of removing nearly all of

the influence of the residual controllers on the lower frequency global design model

poles, even with the lumped mass approximation as the weighting matrix (see the

discussion in Section 4.2).

The global cost function of Equation 4.9 penalizes three measurements of the

structural motion, namely the LOS displacement of the end points, the sum of the

Isquared displacements at each node, and the total energy. Using a modal cost

analysis [63], it is possible to show that the higher frequency modes have little

Icontribution to the LOS cost, but they do contribute significantly to the other

two. Consequently, the "optimal" local controller is based on a cost function which

penalizes only the displacements and the total energy.

The local controllers will be investigated by comparing the location of the close0

loop poles relative to the optimal locations for the weighting given above. Two

cases are actually presented. The first (lefthand graph) plot compares the poles of

the decentralized controller to the optimal pole locations. The second (righthand

*graph) plot shows the influence of the filtered local controller exactly as it would

implemented in the hierarchic architecture. Referring to Equation 2.38, if the local

feedback gains are F, and Fj, then implementating the decentralized control results

in closed loop dynamics given byI
M4 + Kq = -Fq - F4 (4.15)

I
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For the filtered local control case, the resulting dynamics are given by

M4+Kq= i (JTLTeI2g~)q

{(ITOT;L)T Fi(I-TgTO-L)}14 (.6

1 4.4.2 Colocated Feedback

Although two colocated control methods were discussed in Chapter 3, only the

second, natural control, was implemented in this analysis. A value of 0 = 0.10

I_ was selected for this example since it represented an average location of the higher

frequency closed poles for the optimal regulator. Later work will look at several

different values, so the actual value of 8 is not critically important.

The closed loop pole locations for the two cases are shown in Figure 4.10. Note

the trend that the higher frequency poles have more negative real parts. This is

an influence of using the lumped mass, M1,p,,1d, to weight the control commands in

Equation 3.2 rather than the mass matrix of the model, M,d. Rather than being

the identity matrix, McdMum,,pd is a full matrix with the major difference being

at both ends whj boundary effects dominate. If Mcond had been used instead,

then the poles would lie on the vertical line, Re(s) = -0.10. Numerical results have

shown that the highest frequency pole has a real part which is approximately twice

that of the lowest frequency pole. This result was also found to hold for much larger

values of #. A comparison with the optimal pole locations shows that matching the

I two sets of poles at lower frequencies would result in higher frequency poles which

are significantly overdamped. Based on these results, this is not expected to be a

I particularly efficient decentralized controller.

I
I
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4.4.3 Block Diagonal Feedback

Two block diagonal controllers were developed in this example. One was based

on the full finite control element of six nodes, while the other splits this into two

bays of three nodes. The actuator commands in a bay are then constrained to be

computed only from the sensors within that bay.

3 The algorithm for calculating the gains was outlined in Section 3.3.6. The model

used in the analysis is as shown in Figure 3.3. A finite element model of a beam

I based on the element matrices of Equations 4.1 and 4.2 was used. To form the

circulant model, the assembly steps for the end blocks had to be modified so that,

for instance, the structual node to the left of the one at the left end of the beam was

in fact the node at the right end. So, the "doughnut" shape was formed by looping

the beam elements around upon themselves. This structure was then split into the

required number of bays (20 were used in this work on the doughnut), and the

transformation developed in Section 3.3.3 was used to reduce the plant size. The

controllers when then optimized using the algorithm presented in Section 3.3.6. A

displacement and total energy penalty was put on the states and an equal penalty

3 of unity was attributed to each controller.

The results for these two cases are shown in Figures 4.11 and 4.12. The good

3 agreement of the poles in the lefthand graphs of each figure indicates that both

types of feedback should provide reasonable performance as decentralized con-

trollers. Since the full sized gain blocks allow information to be fed back over larger

distances, the full block diagonal feedback should provide better long wavelength

U performance than the one which is split up into two bays. This can be seen by the

better low frequency agreement of the two sets of closed loop poles in Figure 4.11.

The agreement at higher frequencies is fairly good for both cases as well, indicating

that these modes are not being significantly overdamped. The important area of

agreement of the poles for decentralized controllers is the lower frequency modes.

1
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However, in the hierarchic set-up, this region is governed by the global controller.

ISo, for local controllers, it is important that the poles match well for the lower

frequency modes of the residual model. For these filtered controllers, the agreement

Iin this frequency region appears to be good in both cases.

As was discusssed before, the problem with designing a local controller with bet-

ter control authority over the lower frequency modes is the increase in the coupling

that can be expected between the local control and the higher frequency poles of

the global design model. This is apparent when the righthand graphs (filtered local

control) in Figures 4.11 and 4.12 are compared. The higher authority of the full

sized gain block manifests itself through a slightly larger post-filtering influence on

the poles of the global design model. However, this filtered feedback still gives a

slightiy better agreement for the lower frequency residual model modes.

4.4.4 Block Tri-Diagonal Feedback

Due to the diagonal dominance of the displacement and energy weighted optimal

Igains developed in Chapter 3, the truncation method developed in the Section 3.4

could be used to create both the block tri-diagonal and banded feedback matrices.

IFor the latter case, a width of 5 nodes was found to be necessary to obtain all of the

important information in the gain structure. Since these gains are essentially the

optimal gains minus the very small feedback terms on distant nodes, it would be

expected that the closed loop pole locations will agree quite well with the optimal

regulator poles. The results in Figures 4.13 and 4.14 indicate that this is in fact

the case. In both cases, the low frequency agreement is excellent, but it would

appear that this does not hold quite as well for the higher frequency poles, though

the results for the full gain block case appear to agree slightly better. As was

discussed before, the higher control authority for the lower frequency poles presents

a spillover problem in the filtered case, but the magnitude of the problem would be
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fairly comparable for both of these types of feedback, and worse than that for the

i block diagonal examples.

The filtered results show that the agreement for the lower frequency residual

model poles is very good in both cases. The higher frequency agreement for the full

gain block is much better than that for the banded feedback.

i 4.4.5 Conclusions

As would be expected, the results clearly indicate that the block tri-diagonal de-

signs are the best decentralized controllers. However, they also indicate that the

decentralized block diagonal designs can give reasonable closed loop performance.

However, comparing the designs in terms of their primary job function as filtered

local controllers it is clear that the block diagonal and block tri-diagonal controllers

are virtually identical. The colocated uniform damping controller is clearly a poor

3= choice as a decentralized controller.

U 4.5 An Analysis of the Full Hierarchic Control

i Designs

IAs stated earler, the aim of this chapter is to demonstrate that it is possible to

obtain closed loop performance which is comparable to the optimal solution using

i a hierarchic control architecture. The question of the computational savings over

other full order centralized controllers will be left until Chapter 5. With this aim

of comparing the performance in mind, the various local controllers analyzed in

the previous section have been combined with the global controller of Section 4.3.

The closed loop poles locations are shown in Figures 4.15 and 4.16. The two cases

i combine the global controller with local controllers based on natural colocated feed-

back and a block diagonal feedback. Only two examples are provided since, apart
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3 from the extra coupling due to the addition of the other controller, these plots are

virtually identical to those in Figures 4.7, 4.10, and 4.12.

To investigate the closed loop performance even further, the response to a unit

3 velocity impulse applied at about I the length of the beam was obtained for each of

the global and local control combinations. The measurement matrix, C, was taken

to be R1 so that y'y provides the contribution to the cost function of Equation 4.9

at each time interval. The states were also measured directly so that the squared

control effort could be found using the feedback matrices. The totals of these state

and control terms were then summed over the entire impulse response. This was

3 repeated for several control weightings, and the results are compared in Figure 4.17.

The control axis is actually the average squared control effort as the total sum is

U divided by n.

The resulcs in Fgure 4.17 show the trade-off between the achievable performance

and the control effort required. There are several important points to address. By

definition, the optimal LQR controller represents the "lowest" achievable line on

this graph. Any other design will give a state/control cost pair which lies above

this boundary. Another curve has been drawn on the graph to show the expected

performance if one of the simplest forms of decentralized feedback, namely natural

3 Icontrol, is employed. The difference between the optimal and the uniform damping

solution is readily apparent for this fairly realistic cost function. The third set of

points corresponds to the hierarchic controller designed using the global controller of

Section 4.3 with a local control based on uniform damping. This figure graphically

3 shows the performance improvements that can be obtained by including the second

level of control in the hierarchic control architecture (see Figure 2.4).

3 The optimal curve consists of the results from several control designs (i.e., sev-

eral p values). The marked point corresponds to the design point (p = 1) for the

I global controller. This global design was then combined with the various local con-

trollers which were also designed with various parameter settings. As was discussed

144I



I
I
I
I

10 00+
0+

9 0+

0+
8 0+

7 G-

4 40

5i +0

+ 0

4 i + 0

+ 0

3 + 0
* +0

+ 0
2 + 0

+ 0
+ 0

+ + 0
10+ 0i 1 0 W4+ 0+

0 , , I , , I , , , I , , , I
-1 -. 8 -. 6 -. 4 -. 2 0

Real Axis

Figure 4.15: The closed loop poles for a full hierarchic controller
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Figure 4.16: The closed loop poles for a full hierarchic controller with

a local control based on block diagonal feedback (circles)
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before, each important control parameter (0 for uniform damping or p for the opti-

mal solutions) was increased and decreased by a factor of about 2 to generate three

local control designs. For the hierarchic designs, there are two control parameters.

I Fixing the global control parameter (p) results in a locus of state/control cost points

for various values of the local control parameter. For each value of the global pa-

rameter, there will be a point on the locus which minimizes the separation from

the LQR boundary. This is the "optimal" point for this global design. Repeating

this procedure and connecting the set of points then generates the appropriate cost

curve for this combination of hierarchic and local designs. For simplicity, only one

global control design point is shown, but the results indicate that some very inter-

esting conclusions can be made. The results for the five local control designs are

shown in Figure 4.18.

Comparing the performance of the local controllers in terms of the separation

of the "optimal" point from the LQR boundary, it is clear that the two block tri-

3 diagonal designs are the best. The full block diagonal approach is slightly worse,

but better than the two bay approach. All four of these designs are better than the

I results obtained using the uniform damping as the local controller, so these esults

agree with the observations made from investigating the pole locations. What is also

I apparent from this figure is that most of the performance improvement relative to

the decentralized controller has been obtained by including the global controller, and

that the extra performance improvements obtained by using the more sophisticated

* local control designs are apparent but relatively small.

One important point is that the performance of the local controller would be

more critical for the global design based on fewer global modes. In this case, the local

control will influence more lower frequency modes which will have a large influence

on the cost, so it is important that the controller be designed appropriately. Just

damping these modes at the same level as the higher frequency ones will either

result in very poor closed loop performance or many overdamped modes.
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I
One other way to analyze the results of the hierarchic controller is to apply it

to the evaluation model. In this case, this is taken to be the beam finite element

model before the condensation procedure is applied. In this way, the evaluation

model is twice as large as the design model. The closed loop pole locations for

the same same global controller and the uniform damping and block diagonal local

I controllers are shown in Figure 4.19. These results indicate that the level of spillover

to the unmodelled modes is very similar for both designs.

*4.6 Conclusions

In conclusion, it is clear that the hierarchic controller can offer much better closed

loop performance than the decentralized natural control, and the selection of a good

local controller should allow the performance (state cost and control effort required)

to approach that of the LQR optimal controller. Both of the block diagonal and

3 block tri-diagonal feedback approaches provide very comparable performance. It

would be difficult to recommend one technique over the others based purely on

I these performance results. Chapter 5 will investigate the implementation costs of

these designs to determine the cost of these performance improvements.

I
I
I
I
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II Chapter 5
I

Implementation Issues

I
5.1 Introduction

The main purposes of this chapter are to present the operations count for the

hierarchic control architecture and to show the implementation benefits that can be

obtained by employing this design. In particular, the local control designs discussed

l in Chapters 3 and 4 will be ,westigated, and some conclusions about the relative

implementation costs will be made. These results will then be combined with the

performance analysis in Section 4.5 to make a final decision concerning the most

efficient local controller. Section 5.3 then discusses the closed loop stability of

the hierarchic architecture. Section 5.4 addresses the issue of the robustness of the

architecture to sensor and actuator failure, and Section 5.5 investigates the question

of how to locate the processors.

II
I
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5.2 Operations CountI
5.2.1 Introduction

The primary purpose of this section of the chapter is to develop the operations

count for the local and global controllers for the special case of the hierarchic con-

trol architecture being applied to a one dimensional structure. The computational

requirements will be expressed in terms of the number of multiplications and ad-

ditions required in total and for each type of processor in particular. Figure 5.1

I shows the assumed form of the structure. With the following definitions

n = the number of structural nodes

no = the total number of global degrees of freedom

Ino = the number of global nodes

Sn0d = the number of degrees of freedom per global node

h o = the number of structural nodes per finite control element

n, = the number of finite control elements

n, = the number of retained global modes

These values are related through the following set of relations

n, = ngi1 (5.1)

n = n, (h,) (5.2)

nl = fnlgnnl (5.3)

U Note that it is not assumed that the global nodes coincide with the structural nodes

1 in general, but it is assumed that the internal finite control elements are all identical,

with h9 nodes between the global nodes. The finite control elements at either end

have ho - 1 internal nodes and one node that coincides with a global node.
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Figure 5.1: The assumed layout of the global and structural nodes
for the operations count.

5.2.2 Task Analysis for the Controllers

3 As can be seen from Figure 2.4, there are several tasks that the controllers at each

level must perform. Going around the control loops as the operations would be

done, the jobs are:

I. Each local processor must read the information from the sensors and form the

I contributions to the global node values [local].

II. These values must be communicated to the global processor [combined], added

together [global] and then normalized [global].

I III. These global values, q,, are then returned to the local processors [combined],

interpolated [local], and subtracted from the original measurements [local].

IV. The local control commands Q, can then be calculated from residuals e [local].

I V. The global control commands Qg can be caculated from q, [global].
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VI. The local processors must calculate the global component of the local control

IQf [local].

VII. These values are then communicated to global processor [combined], added

together [global], and subtracted from the global commands [global], to form

Q - Q1.

VIII. These commands are then normalized [global] and communicated down to the

local processors [combined].

I IX. These control commands are then interpolated, added to the original set Qe

to form u, and then applied to the actuators [local].

The following is a detailed calculation of the operations count for a one di-

mensional structure where it is assumed that there are two global nodes per finite

control element and that each structural node has one degree of freedom. The

Imass matrix is assumed to be diagonal so that, in terms of the operation count,

T1M - To - [n x no]. The communication required at the ith step is denoted by

I comm .

I. Form the contributions to the global node values.

(T TMq)., 2, x h]-[h. x 1]

CI=2 oj hg M(5.4)6'1 ~ h = r0 1 h - 1 A

per element. This amount should be doubled to account for as well.

I II. Communication of the states up and normalization.

i. Communicate 2ne, (non - 1) pieces of information from the local pro-

cessors to the global processor.
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ii. Aggregrate the information to form the full set of global values.

CZ, = n,,o, (n,- - 2) A (5.5)

I iii. Normalization.

M I'j,- [n. x n.]. [n. x 1]

C, (n g)2  M (5.6)
n. (n. - 1) A

so that

I I(n)2 + comm, (5.7)I (ng) 2 - 2n.... A

where these results must be doubled to account for 4.

II. Communication of the global states down and interpolation.

i. Communicate 2n,,, (nn - 1) pieces of information from the global pro-

cessor to the local processors.

ii. Interpolation.

II(Tg,,., [h. x 2n,.,].- [2,n,.., x 1]
Q, h 2n,"f, M (5.8)

12n.... s -1 A

i per element.

iii. For the subtraction, there will be h. sign changes and additions per

i element.

so that

Cs = 2hg n9,,, + comm2  (5.9)
n..,1 A

per element and these results must be doubled to account for q.
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IV. C 4 for the local control calculation will be added later.

V. Global control.

Fq, - [n, x n,]. [n , x 1]

I= (no)2  M (5.10)nI (n, - 1) A

which must be doubled to account for 4. and then (n) A must be done to

combine the two components of the control, so that

Q 2 2(n g)2  M (.1

no (2nh - 1) A

VI. Global component of the local control.

Q! = TQOM

C6 = 2n hg- (5.12)
1h-1 A

per element.

I VII. Communication of the control up and subtraction.

i. Communicate 2n#"f (non - 1) pieces of information from the local pro-

cessors to the global processor.

Iii. Aggregate the information to form the complete set of global values.

C71 = n1 ,ov - 2) A (5.13)

iii. For the subtraction, there will be no sign changes and additions.

~so that

s C 7 = 2nj, (nn - 1) A + comm3  (5.14)
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VIII. Normalization and communication of the modified control down.

i. Normalization. 8 {(ng)2 M (5.15)
n .l (n. - 1) A

I ii. Communicate 2n, 1 (ng, - 1) pieces of information from the global pro-

cessor to the local processors.

so that

I =n,) + comm (5.16)
n. (n. - 1) A

I IX. Interpolation and addition.

i. Interpolation of the commands.

C9 = hA 2n... (5.17)2n Oof - 1 A

3 per element.

ii. For the subtraction, there will h. sign changes and additions per element.

N so that

C9 = 2h{ 9411 M (5.18)
1 n Odof A

* per element.

This completes the analysis of the tasks to be performed by each of the con-

trollers. There are several totals which are of importance. These include the total

3 computational requirements, and the totals for each processor. For the total of the

global processor, the following summation must be made

i Cjoba = 2C2 + Cs + C7 + Ce (5.19)
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where the communication terms are ignored for now. For the local processors, the

I corresponding sum is

3Co. = 2C, + 2C3 + C4 + C6 + C9  (5.20)

so that, using Equations 5.7, 5.11, 5.14, and 5.16
Ic,,.,l= 2 (n 0)2 M + 2 (no)2 M

2., A nA

+ (0 1 M] + (n,)2 M
I2ngdof (non l A no (n - 1) A

= 5 (n) 
] (5.21)I (n()2 - 6ngo A (.1

and, from Equations 5.4, 5.9, 5.12, and 5.18

CIocl 4ngdf ho M + nMlo M + C4

hg-1 A ngo, A

12n hMI +C4 (5.22)L 6n... (2h, -1) A

These represent the total computational requirements for each processor. It is

I these values which are most important in sizing the individual processors. The total

for all processors can be obtained from

I Ctotal = Cglobal + neClol (5.23)

I so that, employing the relations in Equations 5.1 through 5.3

5 ( n g)2.M I + n 1n . . , h + n C 4

5 (n0)2 - 6n,,, A 6n ,,, h -

5 (n)2 + 12nng4 , M + C4

0(h)2 + 12nn , - 6n, A
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which represents the total computational requirements per update, assuming that

the two loops operate at the same rate, an assumption which will be relaxed in the

* following section.

3 5.2.3 Incorporating Different Controller Frequencies

Typically it will be undesirable to operate each of the control levels at the same

update rate. The aim of this section is to introduce a technique which allows the

local controllers to operate at a much higher rate than the global controller since

they are governing different modes of the structure. As was mentioned earlier in

Section 2.5, the problem with this approach is that it would require the two filtering

loops in Figure 2.4 to operate at the much higher rate, thus involving the central

processor. However, it is possible to avoid this using a technique of computing the

global components of the states and local control, and then using them for an entire

3 global update cycle. The assumption being that, on average, these values will not

change much during this time period. Some measure of the deviation during an

3 interval could be evaluated at the local level and a correction then could be applied

during the next interval. A decrease in performance relative to the case in which

3 the filtering is done at the faster rate should be expected since the filtering out of

the global components of the motion and control is no longer complete. This results

3 in some extra spillover between the two models. However, employing this technique

would allow for very fast and simple control to be performed at the local level. This

I is another trade-off in the performance and/or cost analysis that must be done.

Without the filtering steps, each local processors needs only to perform three

operations per loop. These are

I I. A subtraction to form the residuals e, hgA per element

3 I. Calculate the local control commands, C 4
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III. Add the global command (a constant for the time interval) and the filtered

local control commands, hA per element.

Using the variable p to denote the number of local updates per global update, the

total computational requirements for each update then is given byI 0 M] +P)le{C4+ [= I IC_~ ~ ~ ~ 1 Crf~) tttPl- g A pt , 0 M1-- ) 2nehg A 2hg A

5 (n g)2 + 12n ,of M

5 (ng)2 + 12 nngd, - 6n, - 2n A

* + p rf 4 +[ M (5.25)---- 2n A

Typically, the command update rate should be faster than the fastest mode being

controlled. Thus, p can be considered to be a measure of the relative frequencies of

3 the modes to be controlled by the two levels. For a rod, the modal frequency tends

to go as n, but for a beam it goes as n2 , so that, since the local model is of order

3 n, and the global is of order n., then

ng

For abeam:p = ( (5.27)

5.2.4 Operations Count with only the Lower Modes Re-

tained

i The advantages of using only the lower half of the global modes available in terms

of reducing the dynamic spillover were shown in Section 4.3. The purpose of this

section is to produce the operations count when this modification is implemented

5 as shown in Section 2.6 so that a fair comparison with the case where all the global

modles are retained can be made. Figure 2.6. shows the appropriate modifications
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that must be made to the control architecture. It can be seen that the tasks per-

formed by the local processors are unchanged, but the steps for the global processor

are now

I. Aggregate and normalize the data from the local processors, as before, to form

qj.

II. Compute 01 q, to be sent down to the local processors.

III. Compute the global control based on the lower modes.

IV. Aggregate the local control and use 01T to reduce the information.

I V. Normalize the commands.

- The number operations required for these steps can be enumerated following the

results in Section 5.2.2. It is assumed that only n, modes are retained so that the

1 matrix is n x ni.

3 I. Aggregation and normalization.

3 i. Aggregation.

L= n0gdf (ngn - 2) A (5.28)

I ii. Normalization.

I Ugg ) () T  [n, x n.]. [n. x 1]

L12 n (n.) M (5.29)
l (nig - I) A

I so that

L,= n (n.) M (5.30)I nj (n. - 1) +- nd, -.tgn - 2) A
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II. Compute 0q.

O'q, [n, x nil . [n, x 1]

L 2 = J (nl)ni M (5.31)
I n. (n - 1) A

III. The calculation of the global control is the same as before.

Ls= (n,) 2  M (5.32)
ng(2n-1) A

IV. Aggregation and reduction of the control.

U i. Add the commands sent from the local controller.

IL4 = CG = n!f (ngn - 2) A (5.33)

5 ii. Reduce the commands.

, = (01) T Qg_ [n x .] -[n. xl]

L nj (n.) M (5.34)
L (n. - 1) A

3 iii. For the subtraction, there will be ni sign changes and additions.

so that

L4 - nj(n.) M (5.35)tn~ng + no - 2right, A

V. 
Normalization.

L5  (n.) n M (5.36)
n. (na - 1) A
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The total computational requirements for the central processor can then be obtained

I from

Cloe,, = 2L, + 2L 2 + Ls + L 4 + Ls (5.37)

[Gower = 2 n ) (n]Cn.. =n - 1) + nd, (ngn. 2)A

. - A n J2n-1)

+ [( .) M + 2 (n2 ) M

nig +, n. - 2ngf A j (n, - 1)

typcal y,(,-,n, )' + 6nin, (5.38)S2 (nj) 2 + 6ning - 3n, - 6ngdf A

where typically nj % ing, so that the total for the central computer now goes as

3 . (ng) 2 rather than 5 (ng) 2 as before. So, it would appear that this modification not

only improves the decoupling performance of the controllers, but also requires fewer

computations to implement than the case where all the global modes are retained.

5.2.5 Operation Counts for the Local Controllers

I Several local controllers were studied in Chapter 3. The purpose of this section is

to outline the computational requirements of these various techniques. Three types

will be studied. These include colocated rate and displacement feedback, block

diagonal feedback, and block tri-diagonal.

I. Colocated Uniform Feedback. The feedback is done directly from a set of

* measurements to the actuator at the same location as explained in Section

3.2.

3u = -# 2 Mqj - 2fM
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A calculation which must be performed at each of the n structural nodes, so

I that the total computational requirements are then

{,o 2n M (5.39)
n A

II. Block Diagonal Feedback.

The feedback is from all sensors in an element to all actuators in an element.

I Then, for a finite control element with h. nodes

Fq.q. - [h. x h,]. [h. x 1]

which requires,UC- h, h, M 40
j h9-1 A

operations per element. There are also hA to add the displacement and

3velocity components together The total requirements are then given as

nfC4BD =nhg 2h9 M
II 2h9 - 1 A

n- 2n M
2ffgI (5.41)rign- 1 2n-ngn-t- A

I The analysis in Chapter 4 also investigates a second case for which the gain

matrix is composed of block diagonal matrices which have been developed for

"bays" which are smaller than the finite control element. In particular, the

case for which the element is split into two independent bays was considered.

3 In this case, the control commands within a bay are only calculated from

the the sensor measurements within that bay. For this half block diagonal

example, the computational requirements become

3 nC4HBD =- 2 { 2hg2 A
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nl M (5.42)nn-1 n-ngn+l A

i III. Block Tri-Diagonal Feedback.

I There are two cases to be looked at here. The first one is the "worst" case

for which the gain is taken to be three full gain blocks. The other interesting

3 case considered in Section 3.4 is the one for which the gains are banded.

i. Full Gain Blocks.

I F-
Fi_ 1 F + j] q [hg x 3h,] [3h, x l]

I qj+1

which requires

I C 4 8T7D = h, 3h9  M (5.43)
S3h - 1 A

I per element. There are also hA to add the displacement and velocity

components together The total requirement then, taking the end effects

I into account, is

6h' 4h 2 M

lC4BT, = (n.-2)[ +
h9 (6h -1) A hg (4h -1)A

= - ~ ~eg [6hg M][ -4 (h9 )2 M]

[ (6h,- 1) A][-4(h,)2 A]

_1( -- l )2 (6n,,.- 10) M
-1) (6n -10)- -n A

(5.44)

I ii. Purely Banded Feedback.
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Assume that the control at each point is calculated from m locations on

Ieither side of the point. Then m = 0 corresponds to colocated feedback,

and m = 1 corresponds to feedback from adjacent nodes. Then, each

control calculation will require 2m + 1 M and 2m A. These results must

3be doubled, and then n additions are required to add the displacement

and velocity components. The total, taking into account the end effects

3would then be

G 4 BTD2 = { n(4m+2)-2m(m+1) MS(4m+1)-2m(m+1) A

5.2.6 Communication Requirements

3In the analysis of the tasks to be performed that was detailed in Section 5.2.2, four

communication operations were enumerated. Two of these were from the local pro-

cessor to the global processor, and the remaining two were in the opposite direction.

The total number of pieces of information that must be communicated between the

3levels for these two cases are listd below.

3I. Local to global direction.

i. comm1 - 4ngdf (non - 1)

ii. comm3 - 2ngt, (non - 1)

III. Global to local direction.

5 i. comm 2  4notf (no, - 1)

ii. comm4 ,- 2nrigh (nn - 1)I
There is also the requirement of local communication between closest neighbors

3for some of the lower level control designs. These results are difficult to analyze in
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the same manner as the operation counts since they depend entirely on the param-

U eters of the system. Parameters which are of particular importance are the types

of processor, the operating speed, the bus network, the method of communication

i (serial or parallel), the work load of the computers (the priority of the communi-

cation), and the protocol of the communication. The influence of these parameters

are will be analyzed by the upcoming work by David Warkentin.

5.2.7 Typical Examples

I For a single chip micro-computer similar to the INTEL 80C196KB it is given in the

data books that, using short integers and indirect addressing, a MULT(3) command

(A x B --+ C) requires approximately 19 clock cycles. In comparison, an ADD(3)

command requires only 7. So, for the purposes of comparison, it would be a good

approximation to use A -- 1M. Using this result, Equation 5.25 then becomes

C, = 4 (5 (n) 2 + -2nu., 2nl, + 2 - 1) + pn6 C4  (5.46)

where
w 

For a rod: ng.. = 1 (q) 
(5.47)

3 For a beam: ng.,1 = 2 (q, 0) (5.48)

and the appropriate values of p were given in Equations 5.26 and 5.27. Then, for

i each global update, the global processor must perform

Cgm~bW = 1 (5n' + 12n) - 2ngn - in Rod3 gn 3(5.49)I- = 3 (20n2 + 24n) - 4n, - in Beam

equivalent operations, while each local processor must perform

Cloca = lhg + 4 Rod or Beam (5.50)

n at a rate which is p times the global update rate. In comparison, full state feedback

requires 2n 2 M and n (2n - 1) A, or in (8n - 1) equivalent operations, at an update

rate that goes as n2 .
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These requirements are compared in Figures 5.2, 5.3 and 5.4. It is recognized

3= that the full state feedback approach is inappropriate for this example, but it is

included for the sake of comparison. From the figures, it is apparent that the hi-

erarchic architecture offers a significant advantage over the full state feedback in

terms of the total operations count. What is more important however, is that the

workload of any individual processor is significantly reduced. This fact is partic-

ularly true for the local computers, with the workload being reduced to the point

where fairly simple inexpensive components could be used, or alternatively, it would

be possible to operate at a much higher bandwidth.

For sake of comparison, two points have been taken from the graphs and are

listed in Table 5.1. The first column corresponds to the example studied in Chap-

ter 4. The second column corresponds to a system with twice as many global nodes,

but four times as many structural nodes.

Table 5.1: A comparison of the operations count for two system
sizes.

Controller Type 30 Structural Nodes 120 Structural Nodes

ngn = 6 ngn = 12

Full state feedback 2390 38360

Global controller 1876 7552

Average requirements 5 controllers 11 controllers

per local controller

Colocated natural control 14 28

Block diagonal: full 82 302

Block diagonal: two bays 46 171

Block tri-diagonal: full 248 980

Block tri-diagonal: banded 75 154

with width m = 2

1
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These results compare only the total requirements at each level. They do not

include the frequency at which the operations would be performed. A comparison of

the global requirements and those for full state feedback clearly indicate that there

is a structural model size above which a given global model offers a substantial

reduction in the total computations required. For the local controllers, one result

I that stands out is that using the full block tri-diagonal feedback approach at the

local level is very expensive. As would be expected, the simplest local control using

colocated natural feedback requires the fewest number of computations in both

examples. The full block diagonal feedback approach is more expensive than the

colocated and block tri-diagonal banded methods, but it is far cheaper than the full

block tn-diagonal technique. Splitting the finite control element into 2 "bays" cuts

the requirements approximately in half. So, in summary, it would appear that the

colocated approach is the cheapest, the 2 bay block diagonal and block tri-diagonal

banded approaches are comparable, the full block diagonal method is slightly more

expensive than these two, and the full block tri-diagonal approach is by far the most

costly of all. The curves in Figures 5.3 and 5.4 indicate that these trends hold for

* a wide range of structural and global nodes.

These results, coupled with the small performance improvements associated with

I the more sophisticated local architectures, indicate that the most efficient hierarchic

combination is a good global design with a simple and easy to implement local design

i which can then operate at much higher frequencies.

I
5.3 Closed Loop StabilityI
5.3.1 IntroductionI
One question that remains to be discussed is that of the overall stability of the closed

loop system. As was shown in Chapter 2, for the purpose of the control design, the
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system can be written as two coupled dynamic systems. Through the choice of

I appropriate matrices for the observational and control filtering shown in Figure 2.4,

it is discussed in Section 2.5 how it is possible, in the ideal case, to eliminate both the

control and observation spillover completely. The resulting systems are then only

coupled dynamically through the stiffness matrix if the weighting matrix is selected

to be the mass matrix M. However, as was discussed in Chapter 4 and Section 5.2,

some of the performance and/or cost trade-offs (such as using the lumped mass

matrix as the weighting matrix) allow "leakage" in this filtering, so that in reality

it will not be complete.

It was shown in Section 2.6 that it is possible to reduce this dynamic spillover by

selecting the appropriate modes as the shape functions, or just using the lower set of

the global modes. This is another performance and/or cost trade-off. Theoretically

* it is possible to reduce the coupling to an arbitrarily small level by choosing the

open loop modes as the shape functions. In practice however, this would offer no

I computational advantage over the full state feedback method. In fact it would

require more computations to implement due to the overhead, but this would be

I done in a partially decentralized manner. With approximate mode shapes or finite

element approximations, this dynamic coupling will be present, and it presents a

difficult obstacle for the stability analysis since it introduces spillover.

It will be assumed in this work that the separate controllers have been designed

so that the two closed loop systems are stable. The purpose of this section is to

present some arguments about the stability of the overall system when the two

subsystems are dynamically coupled together. As will be shown, it has only been

possible to develop necessary conditions if a constraint is imposed on the gain

matrices. Sufficient conditions will be derived as well, but they are very conservative

and overspecify the required gains by several orders of magnitude. Although it has

been hard to develop a more general proof of stability, it should be note that no

I case of instability has been observed for the examples that have been investigated.
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For the modelling approach developed in Chapter 2, the frequency spectrum

I can be split into three regions called the global modes, the residual modes, and the

truncated modes. The influence of the two controllers on each of these three regions

I must be considered. By design, the influence of the global controller on the global

modes, and of the local controllers on the residual modes will be stabilizing and

should provide satisfactory performance. For the influence of the global controller

on the truncated modes, an argument based on the frequency separation and the

controller roll-off can be employed to show that the effect would be negligible. Since

the local controllers can be designed to be positive real, then it is guaranteed that,

although spillover will occur between the residual and truncated modes, the effect

will be to stabilize this latter set. The two remaining controller/system influences

to consider are the effect of the local control on the global modes and that of the

global control on the residual modes. These depend on how well the modes are

approximated and the ability of the filters which are implemented to decouple the

subsystems. The basic argument is to claim that the filtering steps eliminate the

direct control spillover from one system to another and that the dynamic spillover

3 is a secondary effect sc the influence is "small". The results in Chapter 4 showed

that the global component of the local controllers was filtered out very well for both

3 of the weighting matrices used, so this claim holds for this case. However, it was

also found that the influence of the global controller on the residual model depends

I to a large extent on the weighting matrix used in the filters, see Figure 4.9. If the

condensed mass matrix is used, then the direct control spillover is very small. This

issue complicates the analysis even further. The work done here assumes that the

observation and control filtering is perfect, and only the influence of the dynamic

coupling need be examined.

II
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5.3.2 Lyapunov Test

If an assumption about the structure of the gain matrices (i.e., their positive defi-

niteness) for the global and local controllers is acceptable, then it is possible to prove

that the two coupled systems will be stable using a standard Lyapunov function

test. The closed loop dynamics are given by

Me~+Kq= -TLTF 0 T-L + (i -TO-LT T _F(T -L)}

_ {T.-LTFOT,-L + ( -T.-T ) F, (~I _ TgT-L)J LTT

= -Flq- F24 (5.51)

or, equivalently, that M 4 F24 + ( K + F ) q 0 (5.52)

It is assumed that the mass matrix, M, is both symmetric and positive definite. The

stiffness matrix K is symmetric, but is only positive semidefinite since rigid body

3 modes may be included in the model. If a matrix is positive definite, i.e., A > 0,

and another matrix B is not rank deficient, then it can be shown that BTAB > 0.

3 So the gain matrices F and F2 defined above will be positive definite provided that

the matrices F,, F,, F,, and Fj are positive definite since the filtering matrices are

I of full rank. Finally, since the closed loop stiffness matrix K + F, is the sum of

positive semidefinite and positive definite matrices, then it is positive definite as

I well.

So, if the global and local controllers are positive real, then each of the matrices

in Equation 5.51 are positive definite. Stability of the closed loop system can then

3 be proved using a standard Lyapunov function based on the total energy for the

closed loop system

3V (q, 4) +1 + T (K + F) q (5.53)

Since the closed loop mass and stiffness matrices are positive definite this quadratic

function is positive semidefinite. The derivative with respect to time of this function
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is

a = 4Tq M + 4 T (K + F) q (5.54)

I = -4 T F2 4 (5.55)

The theorem for Lyapunov stability states that the system is stable if a function

V (q, 4) can be found such that it is positive semidefinite for all q and only zero at

q = 0, and that its time derivative is negative semidefinite. The degree of stability

(asymptotic or neutral) depends on the range over which the derivative is zero.

Asymptotic stability occurs if the derivative is zero only at the origin. Since it

is assumed that M > 0 and K + F1 > 0, then the system will be asymptotically

I stable if F2 > 0, and only Lyapunov (neutrally) stable if F2 >? 0. This argument is

basically that coupling two "passive" systems will not destabilize the overall system.

This restriction on the gain structure is relatively easy to impose for some of the

local controllers, especially for the colocated design. This will be a little more

difficult for the global controller as it is designed more with performance in mind.

However, several design methods for positive definite controllers are available, for

example [40,8].

5.3.3 Connective Stability

I The purpose of this section is to investigate the question of the influence of the

dynamic coupling on the overall stability of the system. With this aim in mind,

a technique developed in reference [60] to analyze the overall stability of complex

dynamic systems which can be broken into coupled subsystems is introduced. A sim-

ilar analysis is developed by Yam [69]. This anaiysis regards the dynamic coupling

3 between the stable systems as perturbations to the design models, and provides con-

ditions such that the coupled design models will remain stable. From Equation 2.27,

the closed loop dynamics matrix of the coupled global and residual design models
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is of the form

-A, = Ago A (5.56)
A,g Arr

where [A 9 A,

9g( 0 4 ] (5.57)m -M;; 1 (Koo + Fg) -M;;1Fj

---- A,= -Mjg1Kgr 0 -M,-rKg, 0

A,, = ( MI. (5.59)
- Mr-1 (K, r + TrT F, T,) - M,-,T rT

3and the state vector x is of the form

x = x , = qg .x = q (5.60)
_ r 49 4

Since it is assumed that the control and observation spillover have been eliminated

by the filtering, the full system corresponds to two stable systems coupled by ma-

l trices which are independent of the control gains. The coupling is purely a function

of how well the interpolation functions model the lower modes of the open loop

3system. In the perfectly modelled case, they would both be zero.

For this analysis, the Lyapunov function is taken to be a sum of the functions

3for the individual subsystems

V(z9 , z7) = (zT~g zH,) (5.61)

where Hi solves

SAH, + HA, + I= 0 i E {g,r} (5.62)

The procedure for proving stability requires the introduction of a 2 x 2 test matrix

W= [ %A(H,) w9 wo, (5.63)2o 2)AM(H,) W, 9
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where Av (-) is the maximum eigenvalue of (.) and - A! (AKAj) ij E {gr}.

A theorem proved in reference [60] states that the full system is connectively aymp-

totically stable in the large if the leading principal minors of the test matrix W are

such that

WO < 0 (5.64)

Wogwrr - WgrWog > 0 (5.65)

Note that, from Equation 5.56, only wtg and Wr depend on the feedback gains.

Also note that Equation 5.64 is guaranteed by the assumption that the isolated

systems are asymptotically stable. Then, Equation 5.65 provides an equation for

3 directly comparing the feedback requirements of the isolated systems (w99 , Wrr) and

a measure of the dynamic coupling in the model (w79 , wr). Typical values taken

from examples in Chapter 4 would give a test matrix of

S0.124 11.379 (5.66)
4.065 -0.0042

i so that

Wgg = -0.124 < 0 (5.67)

i wggW, -wgrWg = -46.254 < 0 (5.68)

3 From these results, the problem with this approach is immediately apparent.

The test is very conservative since it is based on the worst case singular values of the

off-diagonal coupling matrices. With the levels of coupling seen in the examples of

Chapter 4, the closed loop design model poles would have to be orders of magnitude

i more stable than they are in the current designs to meet this condition. However,

the results in Chapter 4 indicate that these large safety margins are unnecessary,

3 as much smaller values for the feedback gains stabilize the overall system.

So, in conclusion, it is clear that arguments based on connective stability will

I not work in this case as they are far too conservative. However, if the correct mass
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matrix is used in the observation and control filtering and the feedback matrices

are positive definite, then the overall system can be proven to be stable using a

Lyapunov test.

[[ 5.4 Controller Robustness

Since a sensor or actuator failure is inevitable in any real structure, it is important

to analyze the performance degradation that can be expected in the closed loop

3= response. This discussion will not be concerned with how a failure is detected, as it

is assumed that a FDI system exists which can isolate the faults. The aim here will

Ibe to provide a method for handling a small number of failures so that the controller

is robust enough to provide good performance until the parts can be replaced. The

approach used in this work will be to reconfigure the control design based on another

condensation technique. The most straightforward way of reconfiguring the design

-- after a failure is to repeat the mass condensation developed in Section 2.3 to obtain

a model based on the original degrees of freedom minus those lost due to the failures.

However, this process will generally have very little effect on the global model, so3 it is not necessary to perform all of this reconfiguration. It is only really necessary

to redesign the local control.

Since the local mass of the structure plays such an important part in deter-

mining the decay rates, the reconfiguration of the local controllers is based on a

mass weighted distribution of the gains. This is particularly simple for the uniform

damping local controller since the gains are directly mass weighted in the equations.

I The reconfiguration process simply requires the elimination of the lost node, and

the local mass is then shared between the adjacent controllers. The shape function

I matrix T. must also be modified as well to remove the lost node. This is a simple

step if the lumped mass approximation is being used since just setting the appropri-

ate element of the mass matrix diagonal equal to zero has the effect of eliminating
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the node from the analysis.I
5 5.5 Selecting the Appropriate Processor Location

The question of where and how to locate the processors of the local controllers is

an issue that remains from the earlier work done in by Ward [67]. From the figures5 presented in Chapter 2, it would appear that there are two obvious ways that the

micro-computers can be distributed. One method is to associate them with the

global nodes, and the other is to associate them with the finite control elements.

As will be shown in this section, there is one key point which distinguishes these

two methods, favouring the second one.

As was discussed in Chapter 2, in particular Section 2.5, the local controller relies

on the formation of the residual, e, to calculate the control commands. In order to

determine this value, it is necessary to know the measurements at every point, the

global values at the end points, and the interpolation functions. It is the formation3 of the residual vector, e, which distinguishes one method from another. Why this

is the case is probably best explained by looking at the operations required in each

3 case. Consider, as an example, the one dimensional cases shown in Figure 5.5. The

first case associates the processors with the global nodes, the second associates them

3 with the finite control elements.

First, note that case 2 requires one less processor, a fact which is magnified for

I the two dimensional case (42 = 16 versus 32 = 9). However, it is not clear that

this is necessarily a benefit because, although it would mean that there are fewer

processors to embed, the work load of each processor may be large enough to require

a very sophisticated system at the local level.

To discuss the formation of the residual, e, look first at case 1. It can be seen

that both processors P2 and P3 are required to obtain the same set of measurements
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(a) Control Element I Control Element 2 Control Element 3

ICase I

I g2 93  g4

I Control Element 1 Control Element 2 Control Element 3

I
...., -- .... Case 2

ig g3  g4I
Figure 5.5: Two ways of associating the processors. Case 1 (a) as-

sociates the processors with the global nodes. case 2
(b) associates the processors with the finite control ele-

ments.
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within finite control element 2. So, there is either a duplication of the measurements,

Ior some local communication is required. Once each processor has obtained the

necessary measurements, it can form the contributions to the global node value

Iq, by multiplying this information by the shape function [T T ('-1 ) Ti]. These 

pieces of information are then communicated to the central processgr, normalized

and communicated back down. This procedure is described in far more detail in

*Section 5.2.

After the global values have been returned to each local processor, the question

remains as to how the residual, e, can be computed. The way to determine it is

simply to multiply the shape function by qp, and then subtract tl'se values from the

measurements However, within an element, it is necessary to obtain both endpoints

and use both of the relevant shape functions to determine the interpolated values.

So, either each processor can store both shape functions (one for each of the elements

to which it is attached), receive both global estimates, and perform the residual

Icalculation independently, or the neighboring processors can pool information and

compute the residual vector together. The first method will mean that there must be

I duplication of effort by neighboring controllers, and the second method will require

local communication for each controller to obtain the residual vector. Notice that

this will become far more complicated for the two dimensional case.

5 In contrast to the complexity of case 1, case 2 provides a fairly intuitive set-up.

Each controller is associated with one finite control element, and directly measures

all of the information required to compute the contributions for the global values.

Note that it will be necessary to communicate nearly twice as much information to

the central computer since these contributions cannot be added locally. This will

also require the global controller to add the estimates together. The same increase

in information communicated back down is required since adjacent processors will

both require the value at the node which separates them. Again though, in contrast

I to the first case, each controller has both shape functions (only the same ones used
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in the aggregation are required), the measurements, and the global node values all

i available to internally calculate the residual, e.

Thus, the approach represented in case 2 appears to have a slight disadvantage

of requiring more information to be communicated between the central and local

computers, but due the apparent advantages mentioned above, the method of asso-

ciating the processors with the finite control elements was selected for use over the

* other method presented in case 1.

I
I
I
I
I
I
I
I
I
I
I
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I Chapter 6
I

Conclusions and

1 Recommendations

I
6.1 Summary

This thesis has extended the hierarchic control architecture for the control of large

flexible intelligent structures which was originally developed in references [29] and

[67]. By combining two levels of controllers, the architecture has the advantage of

the good global control authority of a central processor and the benefit of reduced

implementation costs associated with the parallel design of the local controllers.

Several decentralized control designs were developed to act as the lower level con-

trollers. These are distinguished by the constraint on the amount of information

available to each actuator to calculate the command. These designs were compared

as both decentralized controllers and as local controllers in the hierarchic archi-

tecture. This comparison was done using an example of a long uniform beam by

investigating the closed loop pole locations and by graphing the state and control

costs of the impulse responses of the different closed loop systems. The implemen-

tation costs of the various combinations of controllers was also investigated.
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6.2 Conclusions and Contributions

1. The performance results in Section 4.5 clearly support the claim that the hier-

I archic control architecture can yield near optimal performance with a. realistic

control objective (a combination of LOS, sum of the squared displacements,

and total energy) aild a -fairly complex plant model. Theelimination of the

observation and control spillover through the filtering loops means that the

two control levels can easily be designed separately. This helps to simplify the

control synthesis. The architecture is specially designed for intelligent struc-

tures which have a large number of actuators and sensors, the implementation

cost analysis shows that significant computatonal savings over other full order

centralized schemes can be achieved for modest sized systems.

2. For the local control level, several types of decentralized controllers were de-

signed for this beam model. These include a colocated natural control aesign,

two block diagonal approaches, and two block tri-diagonal designs. These

latter four were designed as displacement and energy weighted controllers to

complement the global design. When compared as decentralized controllers,

the two block tri-diagonal clearly designs offered the best performance, but

these would require communication between the local processors, so the block

diagonal approach probably is the most efficient decentralized design. The

results in Section 4.5 indicate that a slight increase in the performance of

the closed loop system can be obtained by using a more sophisticated (than

colocated natural control) local controller, but the improvement is small com-

pared to the improvement made over just using natural control by adding the

higher, global level of control.

I 3. The implementation sosts for the various global and local designs were also

compared. The colocated local controller design was shown to be significantly

cheaper than the other approaches. The block diagonal designs become par-
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ticularly expensive when the finite control elements get large since they are

essentially a local full state feedback, and the feedback calculation is quadratic

with the element size. The block tri-diagonal designs require local communi-

cation of the processorb, s,' these designs are hard to compare directly. The

results show that the most efficient hierarchic design is one which has a well

designed global controller and a simple, easy to implement local design which

performs the required stability of the higher modes. This conclusion is for

made for this combination of structure and control objective, and it may

change for other examples such as surface control of a segmented mirror which

will require more performance at local level. The more sophisticated designs

could be used, but the increased calculation cost means that the operation

speed would have to be decreased.

I 4. As mentioned, a block diagonal decentralized control design was developed.

This design was based on a circulant model approximation of a long beam.

This method takes advantage of the spatial symmetry of the beam to employ

the analysis originally developed by Wall [66]. Chapter 3 outlined the proce-

dure for transforming the necessary conditions of the optimal control problem

from a sized Nn x Nn problem to N, n x n problems, which makes the solution

numerically feasible. A series of software programs based on numerical search

algorithms were developed to solve for the optimal block diagonal gains. Sev-

eral sized problems were tried, and comparing the results with the optimal full

state feedback gains indicated that the global minimium had been found. For

this problem with strongly banded feedback gains, the combination of gradi-

ent and Newton search algorithms was found to be particularly effective, but

the Quasi-Newte&-, BFGS method was found to have convergence difficulties.

5. A decentralized control approach based on a finite dimensional approximation

3 of the full state feedback was also developed. This implementation requires

that information must be transferred very rapidly from processor to processor,
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but it eliminates the need for a central computer. This design is based on a

view of the disturbances "flowing"along a structure as "waves", and the
implementation is done in such a way as to complement this model. This is a

promising technique, but it will require more work before it can be extended

3 to two dimensional problems.

6. An analysis of some of the performance/implementation cost trade-offs yielded

I some interesting results. It was shown in Section 5.5 that associating the

processors with the finite control elements is superior to associating them

with the global nodes. This conclusion should hold for both one and two

dimensional structures. Also, an analysis of the implementation costs suggest

that the filter weighting matrix, W, should be, at worst, block diagonal so

that the aggregation step can be done performed more efficiently by the local

controllers. Two cases were considered, W = Muped and W = Mond. It was

found that the direct residual control spillover onto the global design model

was virtually independent of W, with the filtering being performed effectively

3 in either case. However, the direct global control spillover was shown to be

strongly influenced by the choice of W, with Mmond resulting in almost no direct

3 spillover at all. However, due to the associated implementation penalty, this

value was not used, and all of the results in Chapter 4 use W = Mumped.

I 7. The stability of the closed loop system for a positive semi-definite (M > 0,

K > 0) plant can be guaranteed using a hierarchic control architecture if the

gain matrices are constrained to be positive definite. Other stability argu-

3 ments, such as connective stability, are far too conservative for this approach.

8. The first alternative implemetation procedure of Section 2.6 was shown in

I Chapter 4 to significantly decrease the dynamic coupling of the global and

residual models. This is especially important for eliminating the global control

I spillover onto the residual modes. It was also noted that care must be made
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to ensure that the global model has sufficient authority over the important

modes for the control objective. This design would probably require a more

sophisticated local control design since fewer of the lower frequncy modes are

under the direct influence of the global controller.

6.3 Recommendations

I 1. The work in this thesis has been based on a computer model of a long uniform

beam. To really test the architecture, it is necessary that a "real" model of

a large flexible structure be controlled. This could either be in the form of a

more complex computer model or an actual laboratory experiment. Due to

the overhead associated with the architecture, this latter task is recognized as

being a particularly difficult one. However, this would allow the architecture

to be compared with other designs, and would highlight the benefits that it

offers.

2. Other work is being done on this project by David Warkentin to investigate

the most efficient microprocessor architecture and the feasibility allowing lo-

cal processor communication when the electronics are embedded. When this

work has been completed, the two investigations can be combined to yield a

5 complete analysis of the local control design.

3. In Chapter 2 the mass condensation approach was introduced to allow for

examples in which not every degree of freedom has an actuator and sensor.

This needs to be extended to more complicated models which have regions of

both high and low sensor and actuator density.

4. Other global control design approaches should be used to meet other perfor-

mance objectives such as robustness to plant uncertainty.

I
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* Appendix A

I
The Necessary Conditions for a

Constrained Optimal Regulator

i The aim of this appendix is to develop the necessary conditions for various control

problems. This will include cases where the gain matrix is both unconstrained and

where several blocks of the matrix are specified 'a priori to be equal to zero. The

3 necessary conditions will also be derived for the normal case and the transformed

cases as discussed in Chapter 3.

The first example to be considered is the output feedback problem, resulting in

the necessary conditions developed by Levine and Athans [38]. Taking the system

3 dynamics to be of the standard form

± = Ax+Bu (A.1)

y = Cx (A.2)

i and the cost to be

I 1oo TRZ + uTR u)dt (A.3)

where R -, = RrT > 0, Ru, = R,,u > 0, and the triple (A, B, ) is both stabilizable

and detectable. An additional constraint that the control be determined from the
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outputs y is then imposed

u = -Fy = -FCx (A.4)

so that the cost can be rewritten as

1 TfoXT (Rzz + CTFTRuUFC) xdt (A.5)
2 J

In general the minimization of the cost J will be a function of the initial condition

of the states x(O). To eliminate this dependence, it is assumed that the initial states

are zero mean random variables with covariance E which is typically taken to be

the identity matrix. The problem then becomes the minimization of the expected

value of the cost, E[J], which can be written as

i-E[J] = 1t TFR.. FCQ (A.6)
2 1{zQCF.uFQ

I with the condition that the symmetric positive definite matrix Q solves

(A - BFC) Q + Q (A - BFC)T + = 0 (A.7)

This constraint can be appended to the cost with a Lagrange multiplier matrix P

to give the definition of the augmented cost

L= -1 trace R..Q + CTFTRuuFCQ

+ P((A-BFC)Q+Q(A-BFC)T+E)} (A.8)

The necessary conditions for optimality can then be determined by evaluating

I the equations

aL 0 (A.9)

nP _0 (A.I0)

a L --0 ( A .1 1 )| aF
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Clearly, Equation A.10 will return Equation A.7. Equation A.9 will yield the

3 Iexpression for P

P(A - BFC) + (A - BFC)Tp + R22 + CTFTRUFC = 0 (A.12)

and Equation A.11 yields cQcTFTR .. CQPB = 0 (A.13)

I These three equations constitute the necessary conditions for the output feedback

problem provided that no it priori constraints are placed on the gain matrix.

The case for which only certain blocks of the gain matrix F are allowed to be

non-zero will be examined for the special case that the system is block circulant.

This type of matrix is defined and discussed in Chapter 3. For a Nth order block

circulant system, F is a Nn x Nn matrix that can be written in terms of N, n x n

matrices
N-IN-i

F= Ei,+, FkfII+z ,=(i+k)rodN (A.14)
k=O j=O

where Ii is a Nn x n column vector of n x n block matrices of which the ith block is

the n x n identity matrix and the remaining N- 1 blocks are zero. Substituting this

expression into Equation A.8 and rearranging, it can be shown that the resulting

form of the necessary condition of Equation A.11 is

I L N-1 pC
HT N-i (B- R,,+FCQCr)i+1 = 0 i=(i+k)modN (A.15)

i=0

If it is assumed that the system matrices (A, B, C, E) are block circulant, then

as was shown by Wall [66], the resulting P, Q, and F matrices will also be block

circulant and the expression for the augmented cost can be transformed using the

techniques developed in Section 3.3.3 to obtain

L = ltrace{-zzQ+C F -UUFCQ

3+ F (A-RT (A-16)
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where, by the results discussed in that section, each of these transformed matrices

I is block diagonal, i.e., P = BD(P'A). Since the aim of this work is to look at the ex-

ample in which parts of the gain matrix are constrained to be zero, the expression

of particular interest is the derivative of the augmented cost with respect to the

transformed gain blocks. This expression can be determined from Equation A.16,

and it will be seen that there are tw. terms which are associated with the P ex-

pression, and a third which comes from the quadratic expression in F. Using the

identity

trace (ArBT) = trace (AB) (A.17)

it can be shown that

a= -H FH R -C~, 1  V iE [0, 1,...,N-1] (A.18)

I The other two Equations A.7 and A.12 transform directly as discussed in Sec-

tion 3.3.3 and are given by

(:T _ R U) q + H( -" + 0 (A.19)

P RABF ) + (:T-BFC) P+R 2 +CU F R ZFi=O0 (A.20)

The component of the total derivative of the augmented cost with respect to the

gain matrix F can then be ixpressed as
I1

AL - trace FF'(a (A.21)

Since, by Equation 3.26

N-I

-Ti= FwtNk ViE (0,1,...,N-11 (A.22)
k--0

so that N-1N~ ,- ' VIE[1 N1

AT= I AFkwks Vi e [0,1,...,N-I] (A.23)
k=O
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and

1 1 N-1 j'aL\ TN-1
AL- tracejEZ --) EZAFko (A.24)

i=O k=

Strace -N1 (aL T _
ki AFk (A.25)

k=O \i=O (F

I So the necessary condition (from AL = 0) can be written from Equation A.21 as

-- = 0 Vie [0,1,...,N-1] (A.26)

or, equivalently from Equation A.25, as

a N-1 [ia T
I= F-= ) wiki) =0 Vk E [0,1,...,N-1] (A.27)

This is exactly the same as Equation A.13 since this corresponds to the un-
constrained gain case. What is important to note here is that these necessary

conditions are uncoupled in the sense that each of the transformed subsystems are

completely independent of the dynamics, measurements, or control of all of the

other subsystems. This ailows the designer to obtain the solution for each of the N

transformed systems without reference to any of the others. It is this decoupling

and size reduction which makes this approacb particularly appealing.

However, for the case where only a subset of the gain blocks are free, the APj

are not independent sijice only a subset of the untransformed gain blocks AF can

be varied arbitrarily If the set of the indices of the free gain blocks is denoted as

I a, where a E [0,1,..., N-i] then Equation A.23 must be replaced with

AFY= AFkw -k'  ViE [0,1,...,N-1] (A.28)
kEa

and the necessary condition of Equation A.27 becomes,

=, 50 Vk E a (A.29)

201

I



I
I

By substituting the expression for the partial derivative from Equation A.18, and

noting that the transpose of the complex matrices becomes the hermitian, then the

necessary conditions can be rewritten as
I N-i

I' H, - - , w'k = 0 Vk E a (A.30)

i=0

an equation which was originally developed by Wall [66]. For this case, the other two

necessary conditions of Equations A.19 and A.20 remain unchanged. Notice that

constraining some of the gain blocks to be zero recouples the necessary conditions in

the transformed domain. However, the size reduction is still preserved as the plant

dimensions have been reduced from Nn x Nn to N, n x n systems. The special

case for which all the states can be measured can be easily obtained by setting

C=c=I.

As discussed in Chapter 3, for toeplitz systems the transformation is very similar,

so the equations will not be developed here completely. The notation for this

sections follows that adopted by Chu [16]. Then, assuming that the conditions

discussed in Chapter 3 about the existance on the transformation are met, and that

I <A(z)>o= -- fA(z)z-'dz (A.31)

which is the zeroeth element of the inverse z-transformation introduced in section

3.3, then the transformed necessary conditions are

I < C(z)Q(z)C(z)F(z)HR,,(z) >o - < C(z)Q(z)P(z)B(z) >o= 0 (A.32)

* where P(z) and Q(z) solve

P(z) [A(z) - B(z)F(z)C(z)] + [A(z) - B(z)F(z)C(z)H P(z)+

+ R..(z) + C(z)HF(z)HR..(z)F(z)C(z) = 0 (A.33)

* [A(z) - B(z)F(z)C(z)] Q(z) + Q(z) [A(z) - B(z)F(z)C(z)IH + E(z) = 0 (A.34)

where it is recognized that, since z will be evaluated on the unit circle, z- 1 = z*

and then A (z-,)T = AH.
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