
March 1986 -. Report No. STAN-CS-86-1105
~~ Also unumbered CSL-86-294

N Software-Cont rolled Caches
N in the VMP Multiprocessor

by

David R. Cheriton

Gcrt A. Slavenburg

Patrick D. Boyle

Department of Computer Science

Stanford University
Stanford, CA 94305

&b

>U,,

won"

SECURITY CLASSIFICATION OF THIS PAGE ("W"e, Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLETING FORM

1. RE PORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & P1RIOO COVERED

Software-Controlled Caches in the VMP Technical
Multiprocessor

S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(#) @. CONTRACT OR GRANT NUMBER(a)

David R. Cheriton, Gert A. Slavenburg and N00039-83-K-0431
Patrick D. Boyle

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Department of Computer Science AREA A WORK UNIT NUMBERS

Stanford University
Stanford, Ca. 94305

Ii. CONTROLLING OFFICE NAME AND ADDRESS It. REPORT DATE

Defense Advanced Research Projects Agenc"/ March 1986
1400 Wilson Blvd. 13. NUMBER OF PAGES

Arlington, VA 22209 12
14. MONITORING AGENCY NAME & ADORESS(It dlfferent from Controlling Office) IS. SECURITY CLASS. (of thia report)

Navalex

ISs. DECL ASSIP IC ATION/DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thl Report)

Approved for public release: Distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract seered In Block 20, it different trom Report)

iI. SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on rev,ere side If neceaary and identify by block number)

20 ABSTRACT (Continue on revere aide If neceairy and Identify by block number)

VMP is an experimental multiprocessor that follows the familiar basic
design of multiprocessors, each with a cache, connected by a shared
bus to global memory. Each processor.--bs a-synchronous, virtually
addressed, single master connection to its cache, providing very high
bandwidth. An unusually large cache page size and fast sequential
memory copy hardware make it feasible for cache misses to be handled
in software, analogously to the handling of virtual memory page
faults. Hardware support for cache consistence is limited to a

DD I 1473
SECURITY CLASSIFICATION OF THIS PAGE (When Do,* Entered)

SECURITY CLASSIFICATION OF THIS PAGE (When Dots Entered)

19. KEY WORDS (Continued)

20 ABSTRACT (Continued)

simple state machine that monitors the bus and interrupts the
processor when a cache consistency action is required.

In this paper we show how the VMP design provides the high memory
bandwidth required by modern high-performance processors with a
minimum of hardware complexity and cost. We also describe simple
solutions to the consistency problems associated with
virtually addressed caches. Simulation results indicate that the
design achieves good performance p,-oviding data contention is not
excessive.

Accession For

"T~ 17 A~

7~I

TEED

DD FOR" IA"(BACK)
1 JAN 731 7'3

EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Software-Controlled Caches

in the VMP Multiprocessort

David R. Cheriton Gert A. Slavenburg Patrick D. Boyle
Stanford University Philips Research Stanford University

Abstract memory without significant performance degrada-
tion, rather than connecting a large number of proces-

VMP is an experimental multiprocessor that follows sors of more modest 3r not ..-
the familiar basic design of multiple processors, each shared memory[17]. By high-performance, we mean
with a cache, connected by a shared bus to global the 20-30 MIPS microprocessors of modest cost ex-
memory. Each processor has a synchronous, virtu- pected in the near future.
ally addressed, single master connection to its cache, This particular focus is motivated by three obser-
providing very high memory bandwidth. An unusu- vations. First, it appears to be much easier to pro-
ally large cache page size and fast sequential memory gram parallel applications for shared memory ma-
copy hardware make it feasible for cache misses to chines than for networked processors because man-
be handled in software, analogously to the handling agement of the shared program state is familiar and
of virtual memory page faults. Hardware support for direct. Second, initial experimentation[5,13] with
cache consistency is limited to a simple state machine parallel applications indicates that few, fast proces-
that monitors the bus and interrupts the processor sors are more effective than many slow processors,
when a cache consistency action is required. simply because most applications exhibit a low degree

In this paper, we show how the VMP design pro- of parallelism. Finally, we are interested in medium
vides the high memory bandwidth required by mod- to high performance workstations with uniprocessor
ern high-performance processors with a minimum of or multiprocessor configurations. For these machines,
hardware complexity and cost. We also describe si- the processor of choice is obviously the microproccs-
pie solutions to the consistency problems associated sor of greatest performance within standard VLSI
with virtually addressed caches. Simulation results technology.
indicate that the design achieves good performance The performance of future processors will be lim-
providing data contention is not excessive. ited primarily by the memory bandwidth provided.

This work was sponsored in part by the National Current conventional processors, such as the Mo-
Science Foundation Grant DCR-83-52048 am, 1 1 -, torola 68020, run at about 75 to 80 percent memoryPhilips Research, Bell-Northern Research, AT In- bandwidth utilization. Some RISC processors achieve
formation Systems and NCR. much higher utilization. Thus, the primary design

problem for multiprocessor machines is providing suf-
ficient memory bandwidth to a shared memory to

1 Introduction accommodate multiple processors. This view argues
for per-processor caches with very efficient processor-

VMP is an experimental shared memory multiproces- cache coupling.

sor being built at Stanford University. It follows the

familiar model[4] of multiple processors connected by In the VMP design, each processor has a syn-
a shared bus to global memory with per-processor chronous, virtually addressed, single master connec-
caches to reduce bus traffic. tion to its cache, providing very high memory band-

Our research focuses on the problem of connect- width except on cache miss. An unusually large cache

ing multiple high-performance processors to a shared page size and fast sequential memory copy hardware
make it feasible for cache misses to be handled in soft-

t A version of this paper will be presented at the 13th ware, analogously to the handling of virtual memory
Symposium on Computer Architecture in June 1986. page faults. Hardware support for cache consistency

Page 1

isfied at maximum speed because the processor is
Local C U the Ringle master of the cache and it executes syn-
Memory Cache chronously with respect to the cache, i.e. no arbi-

Memory tration is required and there is no virtual-to-physical
address translation as part of a cache reference.

The processor is connected to some local memory in
Bus Monitor Cache Controller the same synchronous, single-master fashion. High-
(action table) Iorder bits of the address discriminate local memory

Block Copier references from cache references so no significant de-
Bus Interface lay is introduced by having the two memories. Local

memory is required for storing the code and data as-
sociated with cache miss handling, ensuring there can

Figure 1: VMP Processor Board Organization be no cache miss in the cache miss handling software.
On cache miss, the cache controller signals a pro-

cessor exception interrupt (bus error) and generates
is limited to a simple state machine that monitors a suggested cache slo8 2 to use for the missing cache
the bus and interrupts the processor when a cache page.
consistency action is required. On exception interrupt, the processor saves its

We argue that these simple hardware resources, state on the supervisor stack in local memory and
operated under software control, provide memory traps to the cache miss handler routine, also stored
bandwidth for a very high-performance processor and in local memory. The processor writes out the cache
bring the power of the processor and the flexibility page if it has been modified. It then maps the vir-
of software management to bear on the cache man- tual address that generated the miss to the physical
agement (and virtual memory) problem. Simulation address for the associated cache page. Assuming the
results indicate that the design achieves good per- virtual memory page is present in the main memory,
formance providing data contention is not excessive, the processor instructs the block copier to copy the
We also describe simple solutions to the consistency required data from main memory into the cache, spec-
problems associated with virtually addressed caches. ifying the cache flags to be assigned to the cache slot
The paper emphasizes the techniques rather than our if the copy succeeds. Concurrently with the copy op-
specific hardware design. eration the processor updates its data structures de-

The next section describes the cache miss han- scribing the current cache contents, returns from the
dling mechanism. Section 3 describes our approach original exception and continues execution as soon as
to cache consistency, including consistency with re- the copy operation completes. If the copy operation
spect to virtual address translation. Section 4 de- fails (for instance because it is aborted by one of the
scribes additional details of the VMP design. Section bus monitors), the cache flags are left unchanged and
5 provides some indication of expected performance the processor traps again in retrying the instruction,
for VMP and raises some software issues with the de- causing it to try again. If the required data is not in
sign. Section 6 compares this design to some other main memory, the operating system page fault han-
representative multiprocessor designs. We close with dler is given control.
a summary of the key points plus an indication of The virtual-to-physical mapping may be performed
future directions. in a variety of ways[9]. A two-level page table is the

scheme proposed for VMP. With page tables stored
in virtual memory, a cache miss may result in ad-

2 Cache Access and Cache ditional cache misses as the processor references the

Miss Handling page table. Each such miss results in the processor
stacking another level of exception state on the su-

The processor is directly connected to a virtually pervisor stack contained in local memory. Some mini-

addressed cache, as depicted in Figure 1. That is, mum amount of page table information is maintained
the cache contents are addressed by virtual address, in local memory (or non-cached global memory) so

rather than by physical addresses.1 Thus, in the ab- there is a small bounded depth to page table misses.
sence of a cache miss, the memory reference is sat-

2A cache slot is the cache edement holding a cache page.

'An address space identifier is included as part of the ad- The term cache page is used the same as wrttal page is used
dress presented to the cache so that the cache need not be for conventional virtual memory systems. A cache page frame

flushed on context switch, is a portion of main memory corresponding to one cache page.

Page 2

After handling the cache misses (if any) involved with virtual-to-physical address translation on cache miss
virtual address translation, the processor returns to and, if page tables are stored in virtual memory, has
handling the original cache miss. the possibility of incurring a real page fault as part

A cache miss can also occur when the processor of cache miss handling.
attempts to write data for which it has not secured The software implementation of cache miss han-
write access. In this case, it negotiates write permis- dling has the benefit of replacing rather complex
sion using the cache consistency protocol described in cache-control hardware with relatively simple hard-
Section 3. ware: local memory that holds the cache manage-

Cache miss handling by the processor is facilitated ment software. It also offers the flexibility to exper-
by the hardware providing fast data transfer. This iment with different techniques of virtual-to-physical
hardware exploits three main techniques for perfor- address translation and cache loading and replace-
mance: ment policies without hardware modification.

The major concern with software controlled caches
aSequential Memory Access: Main memory is performance. We claim that, by choosing an un-

boards are optimized for fast sequential opera- conventionally large cache page size (and keeping the
tion by using static column RAM chips (which number of cache slots and degree of associativity large
provide 60 nanosecond access to successive lo- enough), one reduces the cache miss rate so that the
cations). The first access to the memory board overhead of software cache anagemeun iz .-,nt 3 prob-
takes 300 ns but each subsequent sequential ref- lem. The effect of cache page size on cache hit ratio
erence takes less than 100 ns. is discussed in Section 5.

are It remains to address the problem of maintaining
Sptimizeforsequential uscesotbBus g p s cache consistency. Note that, with a virtually ad-
optimized for sequential access by issuing a sin- drsecahaheositnysntsrclyau-

gle ddres fr a ranfer nd hen impy stob- d ressed cache, cache consistency is not strictly a rul-gle address for a transfer and then simply strob- tpoesrise igepoesrccecnb
ing he atawors arors, rlyig o th sorce tiprocessor issue. A single processor cache can being the data words across, relying on the source

and destination modules to automatically incre- inconsistent with respect to itself if the same physical

ment the source and destination addresses. This inemory is mapped to two different virtual addresses

block transfer mode and both virtual addresses are represented in the (sin-is provided by the VMEbus gloe)trcache.od

in our prototype machine. gh) cache.

e Block Copier: A specialized block copy mech-
anism is embedded in the cache controller that 3 Cache Consistency
allows us to take advantage of the sequential
access on the VMEbus and memory board. It There are two cache consistency problems to solve:

also eliminates the instruction fetching overhead
which would arise if the processor did the copy.3 * ensuring that all copies of a cache page are con-

The block copier can operate concurrently with sistent across all processors, and

the CPU executing out of local memory. * ensuring that the virtual-to-physical translation

The block copier significantly reduces the bus occu- implicit in the per-processor caches is consistent

pancy for the transfers as well as the elapsed time. with that specified by the system page tables.

For example, the VMEbus-based VMP block copier We first describe the cache consistency protocol and
should transfer data at 40 megabytes per second, then how this protocol is implemented with the aid
achieving 100 percent VMEbus utilization during the of the bus monitor.
transfer. In contrast, a simple copy loop using the
processor can achieve less than 5 megabytes per sec-
ond at best. The block copier allows some overlap 3.1 Cache Consistency Protocol
of the copy time with the bookkeeping performed by Cache consistency is maintained by a variant of
the processor on cache miss.

Cache miss handling is more complicated with a the distributed ownership protocol described by

virtually addressed cache than with a physically ad- Frank[11] and Goodman[12]. Main memory is viewed

dressed cache. A virtually addressed cache requires as a sequence of cache page fames.4 For consistency,
a cache page must be in one of two states:

3The elimination of instruction fetch is secondary in effect
compared to the use of sequential access, given that a copy 4 Our prototype allows for experimentation with cache page
loop fits in the processor's os-chip instruction buffer. sizes of 128, 256, and 512 bytes.

Page 3

* shared - Main memory contains the most re- transaction, the physical address of the bus trans-
cently written value of the cache page. Several action and the contents of the bus monitor's action
copies of the block may exist elsewhere, all of table. The bus monitor's action table contains a two-
them being identical to that in main memory. bit entry per physical cache page frame6 (of main

" private - Some cache i contains the only copy of memory) indicating:

the page. In this case, cache i is said to own this e 00 - do nothing
cache page.

The processors use an extended form of read and @ 01 - interrupt local processor on read-private,

write bus transactions that specify if ownership is be- assert-ownership (ignore read-shared or notify)

ing requested or released. It is up to each processor * 10 - abort bus transaction and interrupt local
to observe and respond to bus transactions so as to processor on any consistency-related bus trans-
ensure each page of memory is in one of the two legal actions (including read-shared)
states.

There are six types of bus transactions associated 9 11 - interrupt processor on a notification trans-
with bus monitor operation (plus the normal ones action.
which are not, those used by DMA devices and CPUs
to access device registers). A processor issues one The main function of the bus monitor is to enforce
of these six types of bus transactions, depending on cache consistency, however the action table code 10
the reason for the bus transaction (the first five are can be used to "protect" a page (prevent its modifi-
consisiency-relaied bus transactions): cation or a change in its state), and entry 11 can be

* read-shared - to acquire a non-exclusive or used for notification (see 5.4).
The action table of the bus monitor associated with

a particular CPU is normally updated as a side effect

" read-private - to acquire an exclusive copy of a of (and concurrently with) a consistency-related bus
cache page. The processor issues this bus trans- transaction issued by that CPU. Thus, in the corn-
action when it incurs a cache miss on a write to mon cases, checking and updating the action table
an address within that cache page but has no over the bus does not entail additional bus occupancy.
copy of that cache page. The action table can also be updated by the CPU us-

* assert-ownership - to gain exclusive ownership ing the write action table bus transaction. Update
as part of a consistency-related bus transaction only

of a cache page without reading it from main takes place if the bus transaction is not aborted. The
memory. It presumably acquired a shared copy consistency check interval and action table update in-
of the cache page earlier using a read-shared terval, each of 150 nanoseconds, are overlapped with
operation, the block transfer, as shown in Figure 2. On abort,

" write-back - to write the cache page back to the bus transaction is terminated at the end of the

main memory, releasing ownership of the page. current memory reference. The assert-ownership bus
transaction is a degenerate form of this behavior since

* notify - to send notification to a processor (de- it does not involve block transfer. Updating the ac-
scribed in 5.4) tion table as part of bus transactions minimizes bus

" write action table - to write an entry in the overhead for action table management and avoids the

action table (described below), cost of a dual-ported action table, the other solution.

To allow the processor to execute concurrently with Note that completion of a few transfers during the

bus transactions, we provide a simple state machine consistency check does not compromise the correct-

called a bus monitor that monitors the bus and inter- ness of main memory because write-back is the only

rupts the processor when either consistency actions (does not share the cache tag matching hardware, the cache

are required or notification is signalled. flap, or even have a copy of the flags) and thus does not re-
duce the cpu/cache bandwidth. It can operate at the leisurely
pace of our relatively long bus transtions rather than at the

3.2 Per-Processor Bus Monitor memory reference speeds required when using small cache page
sizes.

The bus monitor5 performs one of four actions on SAllowing a maximum of 8 megabytes of physical memory

each bus transaction depending on the type of bus for the prototype with 128 (256, 512) byte pages, each bus
monitor ha 16 (8, 4) kilobytes of memory for its action table.

$The main difference between our bus monitor and a A larger physical memory would require additional memory for

"snoop" is that the bus monitor is not connected to the cache the action table.

Page 4

block transfer a read-private or assert-ownership bus transaction,
the processor invalidates the cache slots holding this

Tme cache page and sets the k-th action table entry to 00.
action table update Consequently, when a cache page becomes privatc,

consistency check all other cached copies of the page are discarded in

acquire bus parallel.

request bus Private Copy: The k-th action table entry is set
to 10 causing the bus monitor to abort the bus trans-
action and interrupt the processor on all consistency-

Figure 2: Action Table Update in a Bus Transaction related bus transactions on this page (including write-
back operations which are protocol violations). On
interrupt, the processor writes out the cache page (if

bus transaction that modifies main memory. Write- dirty). If the bus transaction was read-private (or
backs are only issued if a cache is releasing a privately assert-ownership), it invalidates the cache page and
held page and so are never aborted (unless there has sets the action table entry to 00. If not, it "down-
been a consistency protocol violation). grades" the cache page to read-only and changes the

The bus monitor is connected to the processor by action table entry to 01 (shared). The processor is-
a non-maskable interrupt and a FIFO queue of in- suing the bus transaction detects that the bus trans-
terrupt requests. Each time a bus transaction occurs action was aborted and retries the bus transaction.
that should interrupt the procc.sor, a word is queued This scheme also solves the alias consistency prob-
in the FIFO for the processor. The word specifies the lem that arises with a physical cache page mapped
type of bus transaction and the physical address asso- to two or more different virtual addresses. Each pro-
ciated with the bus transaction. The FIFO provides cessor observes the consistency protocol "competing
a maximum of 128 entries, minimizing the likelihood against itself". Thus, for instance, should a processor
of an interrupt word being lost. However, the FIFO issue a read-shared for a cache page its cache already
also sets a flag for the processor when an interrupt owns (referenced by a different virtual address), its
word is dropped because the FIFO is full. own bus monitor will abort the bus transaction and

The bus monitor is a fairly general-purpose hard- interrupt that CPU. In response to the interrupt, the
ware resource available to each processor. We plan CPU flushes (or writes back) the owned page. The
to explore its use in a variety of settings. However, read-shared bus transaction is then retried.
its primary use is for ensuring cache consistency, as Using this protocol, a request for a shared copy of
described in the next two subsections. a shared cache page is satisfied immediately. A re-

quest for a shared copy of a private cache %age fails

3.3 Cache Page Consistency but causes the owner to relinquish ownership, allow-
ing the requestor to succeed on retry. A request for a

Each processor sets the action table of its bus moni- private copy of a shared cache page succeeds imme-
tor according to the cache pages its cache holds and diately but causes all cache copies of the cache page
acts on bus monitor interrupts so as to enforce this to be discarded. A request for a private copy of a
2-state consistency of cache pages. There are three private cache page fails but causes the owner to re-
cases to consider for each cache page frame k in phys- linquish ownership.
ical memory, corresponding to there being no copy, Each processor is trusted to set its bus monitor ac-
a shared copy or a private copy of the page in the tion table appropriately for the cache pages it holds
processor's cache. and to act on interrupts from the bus monitor accord-

No Copy: The action table entry for cache page ing to this protocol. Information about the state of
k is 00, indicating that the bus monitor can ignore all each cache page and the mapping from physical ad-
bus transactions on this cache page. dress to cache page is maintained by the processor in

Shared Copy: The k-th action table entry is set the local memory.
to 01 causing the bus monitor to ignore read-shared The consistency scheme is deadlock-free because
transactions, and interrupt on read-private or assert- ownership of cache pages can be preempted (no block-
ownership bus transactions. Write-back operations ing) and a processor is guaranteed to make at least
are protocol violations and result in an abort and one successful reference to a newly acquired page be-
interrupt. Note that, due to virtual memory aliasing, fore that page is flushed from the cache (non-zero
the cache may contain (shared) multiple copies of this progress). One worst case example is that of two pro-
cache page in different cache slots. On interrupt from cessors simultaneously attempting to acquire a pri-

Page 5

vate copy of a cache page. In this case, the first by a bus monitor. Once the DMA transfer completes,
processor to acquire the bus gets the page, then the the processor can release its lock on this area of mem-
second issues the read-private resulting in an inter- ory at the operating system level and clear the corre-
rupt to the first processor by the first's bus monitor sponding entries in the bus monitor's action table.
leading to subsequent flushing of the page from the
first processor's cache, and so on. However, inter-
rupts are only serviced between instructions and the
CPU blocks on the cache controller nid-instruction 3.4 Virtual Address Translation Con-
while awaiting the completion of the block transfer. sistency
Thus, the first processor makes at least one success-
ful reference so the contention results in performance A virtually addressed cache implicitly stores a por-
degradation but not deadlock. tion of the virtual-to-physical address mapping spec-

Correctness of consistency maintenance is rendered ified in the operating system page tables. To ensure
independent of the processor's ability to keep up with consistency, this implicit mapping must be updated
bus monitor interrupts as follows. The interrupt when the page tables change. This problem of vir-
FIFO includes a flag that indicates that an interrupt tual address translation consistency is handled in a
word was dropped (which only occurs if the processor straight-forward fashion in our design, as described
is unable to keep up with the bus monitor interrupt below.
rate). When this flag is set, the processor recovers by The operating system and cache management soft-
invalidating (or rereading) shared cache entries from ware ensure that every valid cache slot corresponds
main memory and updating its bus monitor action to some portion of a virtual memory page currently
table. Note that loss of the interrupt word for a bus in main memory. To change the mapping of virtual
transaction requesting ownership of cache page owned page vp which currently maps to physical page pp,
by this processor is not a problem since the bus trans- the processor first issues a read-private for the cache
action is aborted by the bus monitor and then retried page pt corresponding to the page table entry for
by the requesting processor until successful. vp. If the page table is in virtual memory, obtaining

Dropping an interrupt word in the bus monitor exclusive ownership of pt may entail page faults as
FIFO is extremely unlikely for several reasons. First, well. The processor then issues an assert-ownership
the FIFO queue provides considerable buffer space on page pp, causing all cached copies to be flushed
giving the processor time to handle bursts of con- or written back, depending on whether the copy is
sistency actions. Second, the only operations that shared or private. This flushes the implicit mappings
leave the processor unresponsive to these interrupts for this virtual page in all other processor caches. The
for a significant tie are its block transfers. Ljur- processor then updates the page table entry and re-
ing the transfer the bus is fully consumed so other linquishes ownership of the two cache pages. Note
bus transactions cannot occur, limiting the rate of that cache page pp need not be read into the cache of
accumulation of interrupt words. Finally, the rate of the processor performing this mapping operation.
interrupt word generation is no worse than the rate of Deletion of an address space can be handled simi-
cache misse, which is assumed to be reasonably low. larly with an assert-ownership on every resident page
(Of course, there is no problem with the bus monitor in th a ae .
keeping up with the rate of bus transactions.) in the address space.

The flexibility of the bus monitor allows VMF,- A similar technique can be used to keep page ta-
standard DMA devices to be used in the system. To ble reference information consistent with cache page

set up a DMA into a particular area of memory, the references in the cache. The page-out daemon can

operating system code acquires a high-level lock on periodically use assert-ownership to flush cache pages

that area of memory so that it is not accessed by chosen as candidates for reclamation out of all caches.

other processors. The cache management software The processors then update the page table reference

then does an assert-ownership bus transaction on this information if they subsequently refer to these cache

area of memory, forcing every other processor to dis- pages.

card any cached copies of this memory or write back The software implementation of address translation
the private copy, if any. It then sets the bus moni- in combination with the bus monitor and local mem-
tor to abort any consistency-related bus transactions ory allows considerable latitude in handling virtual
addressing this area (which should not occur in any address translation consistency. We have sketched a
case). Since DMA operations have no associated con- basic scheme permitting the storage of page tables in

sistency operation the DMA completes without abort either physical memory or virtual memory.

Page 6

4 Details of VMP virtual memory require supervisor privilegt . 6

Virtual addresses are mapped into the 4-way set as-
This section provides some details of VMP, the multi- sociative cache. The cache page replacement strategy
processor machine we are building to investigate the is LRU, with the replacement slot "suggested" by the
performance of the cache design described in the pre- hardware based on references. For each cache slot.
vious sections. flags are maintained that indicate: valid, modifi6d.

The system consists of the following major compo- exclusive-ownership, supervisor writable, user read-
nents: able and user writable. Because the cache matches

* A shared central bus (VMEbus) that is used on <ASID, VirtAddress>, the operating system sim-
for all communication between processing nodes, ply changes the ASID to specify th" new address
memory and I/O devices, space on each context switch.

e A central memory connected to the bus. The The cache in the prototype is configurable for a
Aermemory connimzetd te tfer b. che choice of 128, 256 or 512 byte cache pages to allow usmemory is optimized to do the transfer of cache t xeietwt ait fccepg ie h
pages at 40 MBytes/Second. to experiment with a variety of cache page sizes Thfe

number of sets is variable from 1 to 4, and number of

e I/O units which adhere to the standard VME pages per set is variable from 16 to 256. In addition
protocol and can be obtained from external sup- to txperimenting with different hardware configura-
pliers. Expected I/O units include an Ethernet tions, we are interested in investigating the benefit
interface and a framebuffer. of software tv..hniques that improve the utilization of

* Several VMP processor boards. large cache blocks.

Each VMP processor board consists of a 68020
CPU running at maximum speed (currently 60 5 Expected Performance
nanosecond cycle, 180 nanosecond memory cycle)
coupled to a 68881 FPU (Floating Point Coproces- We are building a prototype of the VMP design that
sor), local RAM (32 KBytes), a 4-way set associative is highly instrumented in order to measure perfor-
256 KByte cache that responds to virtual addresses, mance and investigate the effects of: different cache
a bus monitor (with associated action table), and lo- page sizes, cache sizes, associativity, m ifications to
cal devices (UART, timer). The CPU, FPU, local the cache management software, and various software
RAM, local devices and bus monitor are connected techniques for improving locality and reducing con-
to a private onboard bus which may be connected tention. This machine is an initial prototype for the
to the VME interface through the bus isolator. The VMP design since the choices of processor (68020
bus isolator permits concurrent execution of the CPU over a RISC-style processor), bus (VMEbus over a
accessing local memory with transfers between the much higher-speed bus) and memory boards (com-
cacke and VME memory. Note the absence of compo- mercial sequential-access VME memory over high
nents found in other systems: memory management performance boards) make a significant concession to
unit, translation lookaside buffer and reverse transla- budget and fast construction over ideal performance.
tion buffer. The prototype will allow us to evaluate the expected

The basic VMP processor board organization is performance of this design since, as pointed out by
shown in Figure 1. The memory space seen by the Clark[8], trace-driven simulation is trequently a poor
CPU is divided into 5 regions. The lowest addressed indication of real performance. However, since our
region (227 bytes or 128 MBytes) maps straight- prototype is not yet operational, we provide some ex-
through to VME address space and is used to access pected performance figures based on: simulation, in-
device registers and execute boot ROM code. The struction counts for the key software cache manage-
next region (128 MB) is set aside for local accesses ment routines, and timings for hardware components
(local memory, ASID register, bus monitor FIFO, and In the VMP design, the performance of a processor
other local devices). The third region (128 MB) ad- is degraded by three factors:
dresses cache control. The fourth region (128 MB)
addresses kernel virtual address space. The last re- a Cache Misses - some proportion of the result-
gion (3.5 Gigabytes) is the user virtual address space, ing bus transactions are also retried when an
which is extended by an 8 bit Address Space Identi- ownership conflict arises on the data,
fier ASID. 7 Accesses to regions other than the user

7This is similar in function to the context register in the This organization allows the kernel space to be part of each
SUN workstatioa archliteetusr. u virtual space.

Page 7

Cache Pa ,, Replaced Elapsed Bus Cache Page Elapsed Time Bus Time
Size Page Time Time Size (bytes) (Psecs) (psecs)

(bytes) State (psecs) (psecs) 128 17 4.4
128 not modified 17 3.5 256 21 8.3
256 not modified 20 6.6 512 29 16.
512 net modified 26 13.0
128 modified 17 7.0
256 modified 23 13.2 Table 2: Average Cache Miss Cost
512 modified 36 26.0

Table 1: Elapsed Time and Bus Time per Cache Miss go-
So - Pane Size

o Consistency Interrupts - both for cache data o 70 -
as well as page table updates, ? 0 (bytes)

60- 2

* Bus Load - which affects the time for the above
two operations. 0.250 0. .75 1- 50 0.25 0.6 0.75 1,0

In this discussion, we first estimate processor perfor- Miss Ratio (%)
mance as a function of the cache miss ratio for differ-
ent cache page sizes, assuming no consistency inter- Figure 3: Processor Performance to Cache Miss Ratio
rupts and no bus contention. We then use simulation
results (cache miss ratios) to determine the ranges
for the cache parameters which will give the desired assume a mix of different cache miss scenarios with 75
processor performance. Finally, we calculate bus uti- percent of the replaced pages being unmodified then
lization per processor as a function of the miss ratio the average cache miss cost is given in Table 2.
to estimate the number of processors that one can Figure 3 plots the processor performance as a func-
feasibly configure without significant bus contention. tion of the miss ratio, assuming the average cache
Consistency interrupts introduce the same overheads miss cost is incurred on each miss, with data for cache
as cache misses (and possibly increase the miss ratio page sizes of 128, 256 and 512 bytes. The processor
by flushing cache entries). Thus, consistency over- performance is normalized so that processor perfor-
head can be incorporated in these performance esti- mance with no cache misses is 0.S
mates by hypothesizing a higher miss ratio than that Note that the miss ratio is a function of the cache
suggested by the simulations. page size so it is inappropriate to use this graph to

compare the benefits of different cache page sizes.
Next we determine the characteristics of the cache

5.1 Cache Miss Time that are required to achieve a sufficiently low miss
The elapsed times for a cache miss (assuming no bus rate, given the large cache page sizes, to realize rea-
contention and no bus transaction abort) are given sonable processor performance.
in Table 1. These times assume a 16 MHz 68020
running with 0 wait state access to cache memory 5.2 Cache Miss Ratio and Processor
plus a block copier and memory that perform block Performance
transfers in 300 nanoseconds for the first long word
(32-bits) and 100 nanoseconds for each subsequent The ranges of the variable hardware parameters of
long word. These times were calculated by summing the VMP prototype (cache size from 64K to 256K
instruction execution times for the cache miss handler bytes, page size of 128, 256 or 512 bytes) were estab-
and the time to update the cache (one block transfer lished using four VAX 8200 traces obtained by the
if the page to be replaced was not modified, two block ATUM technique[2]. These traces include VMS op-
transfers if it was modified). Block transfer time is
overlapped with the CPU processing where possible. 'performance = (1 + MissRatio

,the sotware time associated with AverageMtaCoat * Ref #Perlnatr * IntrErecuttonRate)- '
Clearly, tmiss From MacGregor[Ib]: Ref&Perin.x.l.2 and

handling (about 15 psecs) means that there is lim- IntrErecutionRate = (7clock,/inst * 60nseca/clock) - =
ited benefit using in a smaller cache page size. If we 2.4 MIPS

Page 8

1.4
Page S:ze

Page Size 30- (bytes)

1.2 (bytes) 512
64 13

1.0 128 0
a: 256 0 520-

V 08 512 * 256

06 10 , 52

04- a 512 .A 0.

0.2 0

0 0 025 05 075 10

32 64 118 256 Miss Ratio (%)

Cache Size (KBytes)

Figure 4: Cache Miss Ratio and Cache Size Figure 5: Bus Utilization to Cache Miss Ratio

byte cache page size, with a miss ratio under 0.6%,
erating system references and a small degree of mu]- the bus utilization by a single processor is under 107c.
tiprograrnming. The trace lengths vary from 358,000 Using a simple single-server (the bus) multiple-client
to 540,000 four-byte references. (several processors, ignoring DMA 1/0 devices) queu-

The cold-start simulation results of a 4-way set as- ing model, and observing the request service times,

sociative cache for various cache sizes and cache page we estimate that one can accommodate up to 5 pro-

sizes are summarized in Figure 4. These low miss cessors on a single bus. Additional processors can

ratios contrast with most cache measurements pub- be expected to degrade individual processor perfor-

lished to date. However, with the parameters of our mance by increasing bus contention as well as possi-

cache, it is better compared to a 4-way set associa- bly increasing the miss ratio because of consistency

tive translation lookaside buffer with 512, 256 or 128 contention.

sets of 4 entries (with 128, 256 or 512 byte cache
page sizes) except that the cache also has the asso- 5.4 Consistency Overhead and Sys-
ciated data. Smith[19] indicates that .4% miss ratio ter Software
has been observed in TLB's with 128 sets of 2.

In these traces operating system references account The effect of consistency interrupts can be incorpo-

for approximately 25% of the references and 50% of rated into the above figures by assuming a higher miss

the misses, and the application programs employ no ratio. The rate of consistency interrupts and its ef-

special locality enhancing techniques. We anticipate fect on the cache miss ratio are unknown and highly

that application of appropriate software techniques dependent on the programming of the system and the

could lead to even lower miss ratios. cache page size. For instance, the straightforward use

Applying these results, for example, using a 256 of test-and-set locks on the same cache pages as the

byte cache page size and 128 kilobyte total cache size, data being modified could result in enormous con-

one would expect a miss ratio of 0.24 giving processor sistency overhead. Thus, this design requires "good

oefomnd oe87% according to Figure 3. behavior" from the software it is executing to realize
performance of 7its performance, just as the performance of virtual

memory systems is highly dependent on program be-

havior. We are developing software support at the

5.3 Bus Utilization and Number of operating system and programming system level that
Processors is tuned for the VMP design. In this vein, we are

interested in exploring how far the software support

can go to ensure good behavior, as opposed to how
Each cache miss results in bus traffic. Table 2 pro-
vides the bus cost for the "average" cache miss. Fig- 10bus utilization is the bus use time during the exe-

ure 5 shows bus utilization as a function of the cache cution of N instructions divided by the execution time
(including miss handling) of N instructions. Utl =

miss ratio for the three cache page rizes, using this (MissRatio * BunTimePerMiss)/((InstrExecutionRa e

average bus cost per miss. ° For example, for a 256 RefsPerlnstr)- + MtssRatto * M,.sServiceElapsedTime)

Page 9

well the hardware can deal with bad behavior. ensure consistency. This relies on using a language
For operating system supi'ort, we are porting the V that includes explicit constructs for accessing shared

kernel[6] to VMP and adding kernel-supported lock- data, such as the monitor construct[15], and all data
ing and queuing primitives. These primitives can be sharing being properly controlled by these constructs.
implemented either using the notification facility of- Except for instructions which selectively flush cache
fered by the bus monitor, or by using non-cached, entries, this scheme requires no hardware support
globally-addressable physical memory. A process re- for consistency. However, the MIPS-X scheme must
questing the lock accesses the lock as part of a kernel flush all shared data in anticipation of shared access
operation and suspends for a timeout period if the whereas the VMP scheme only flushes on demand. It
loc z is taken. As an additional optimization, the pro- remains to be seen which is most expensive and how
cessor can set the action table entry associated with application-sensitive the behavior is.
this memory to II (notify) so it can wake up the pro- The performance
cess to retry when the lock is cleared. As another of cache memories for single processor machines has
operating system support mechanism, we are plan- been studied extensively[12,19,18]. Much of this work
ning to allow the application to specify whether an studies much smaller cache page sizes, so the results
area of virtual memory is going to be shared or not. have limited application. However, as mentioned pre-
If not, a read cache miss to this area is handled by a viously, our expected performance is consistent with
read-private bus transaction, eliminating the need to that expected and observed with TLB's of compara-
later do an assert-ownership on the first write oper- ble size.
ation. Since the data is not shared, this should not There has also been interest in cache consistency
conflict with other processors and may in fact serve pr .tocols for multiprocessor machines[ll,12,18,10,3].
to flush this data from the cache of another proces- The cache consistency algorithm we describe is ba-
sor that was previously running this process. It is sically the ownership protocol used in the Synapse
interesting to note that the bus monitor can also be multiprocessor[ll]. The alternative to an owner-
used to implement interprocessor messages: the bus ship protocol is to use a write-broadcast protocol,
monitor would interrupt the processor when a mes- as used with the snoopy cache schemes.[10] With a
sage is written to the cache page corresponding to its write-broadcast protocol, the system bus acts as a
mailbox. Other specialized uses are also possible, an sequencer, imposing a total ordering on memory up-
example being notification locks, dates consistent with that observed by each proces-

To realize the maximum performance offered by sor. However, a write-broadcast scheme requires a
VMP, programming systems need to recognize the data path from the bus to the cache that can up-
importance of clustering related data on cache pages date the cache as required at near memory-reference
and compiling code and data for high cache page speed. (Replicating or dual-porting the cache flags
utilization. These demands on software technol- can reduce the contention at some cost in hardware.)
ogy are significant but are also a common theme It also requires a write-broadcast on every update
in previous efforts to redefine some of the hard- of (potentially) shared memory at the level of the
ware/software boundaries. We have been exploring a unit of indivisible memory update, typically a mem-
parallel programming paradigm which we call tor*- ory word or byte. This precludes the use of the
form processing[7] that draws analogy from the pro- large cache page sizes required for very low cache
cessing structure of the (human) office. Determining miss rates. Finally, it requires the cache either be
the quantitative effects of these programming tech- physically addressed with a virtual-to-physical trans-
niqucs in the VMP prototype is a focus of future re- lation between the processor and cache or a physical-
search. to-virtual address translation for use by the bus spy.

(Note that the latter translation may be one-to-many
unless virtual address aliasing is ruled out.) Thus,

6 Related Work a write-broadcast approach requires a multi-master
cache together with physical-to-virtual address trans-

A central focus of our work has been to better un- lation and complex bus spy hardware, all operating
derstand the proper trade-off between hardware and at near memory-reference speed.
software. Our design proposes operating system con- Most researchers have focused on the performance
trol of the caches with suitable hardware support to of different cache consistency protocols, looking only
make this efficient. An alternative software control at the bus traffic levels. However, the consistency
scheme proposed for the MIPS-X project[l] is to have schemes providing the lowest bus traffic also tend to
the compiler generate cache control instructions to be the most complex and present a potential bottle-

Page 10

neck between processor and cache memory, especia!ly clustering related data on cache pages and compiling
as processor and memory speeds increase. In con- code and data for high cache pege utilization. These
trast, we are interested in cache consistency schemes demands on software technology are significant but
that are simple enough so there is minimal complex- also a common theme in previous efforts to redefine
ity in the processor-to-cache path and so a significant some of the hardware/software boundaries.
portion of the cache management can be performed
in software.

Finally, there appears to be some issues in design-

7 Concluding Remarks ing processors for a VMP-like design. First, the ideal
VMP processor is as fast as memory technology al-

We have described the design of VMP, a shared- lows. Faster processors reduce the speed advantage
memory multiprocessor machine that uses software- of implementing complex control logic in hardware.
controlled virtually addressed caches. We have ar- Second, the processor has minimal overhead for tak-
gued that the basic approach of a virtually addressed ing a bus error (or suitable cache miss signal) trap
cache with the processor being its single master pro- and returning from the trap, including making some
vides the high memory bandwidth connection that registers available for the trap handler. Fortunately,
will be required by processors of the future. Using many of the RISC-style processors appear to being
this high-speed processor in combination with the lo- going in these directions.
cal memory for cache management software and high-
speed block data transfer hardware makes cache miss
handling in software efficient. The software imple-
mentation provides a high degree of flexibility as well.

There are two major novel aspects of the design. 8 Acknowledgements
First, an unusually large cache page size is used in
combination with a large total cache size and a high-
speed block data bus transfer facility, reducing the The Stanford Center for Integrated Systems and
cache miss ratio so that software control of the caches Philips Research made the collaboration among *he
is feasible. This eliminates the need for a considerable authors possible. We are grateful to Tim Mann,
amount of specialized hardware, including memory Michael Stumm, Ross Finlayson and Helen Davis for
management unit and cache miss handler. Instead, their critique of the design and early versions of th-
we simply provide per-processor local memory for the paper, and to Naguine Navab for her work on the
cache management code and data. cache control software. We thank Anant Agarwal

S-cond, the simple bus monitor in combination for providing the cache simulation results and Digital
with software control solves the consistency problems Equipment Corporation for supplying the instruction
associated with a virtually addressed cache. In par- traces.
ticular, the scheme handles virtual address aliases or
synonyms with no restrictions and virtual address
translation consistency. It also allows DMA devices
to be accommodated with no special consistency sup-
port.

The bus monitor state machine is a hardware re-
source provided to the processor for cache consis-
tency. However, the generality of the mechanism sug-
gests there may be other uses.

The challenge of the VMP design is in the soft-
ware. Clearly, the cache management software itself
must be highly optimized as well as correct. More-
over, VMP operating system software must provide
means of synchronization between processes that does
not induce the thrashing that one would expect with
conventional test-and-set busy-wait loops on top of
the VMP design. Finally, programming systems for
the VMP design need to recognize the importance of

Page 11

References [12] JR. Goodman.
Using Cache Memory to Reduce Processor-

[11 A. Agarwal and M. Horowitz. Memory Traffic.
MIPS-X Internal and Ezternal Caches. In Proc. Tenth International Symposium on
Technical Report, Computer Systems Labora- Computer Architecture, pages 124-131, June

tory, Stanford University, 1985. 1983.

[2] A. Agarwal, R.L. Sites, and M. Horowitz. [13] A. Gupta, C. Forgy, and R. Wedig.
ATUM: A New Technique for Capturing Address Parallel Algorithms and Architectures for Rule-

Traces Using Microcode. Based Sytes.
In Proc. 13th Int. Symp. of Computer Architec- In Proc. 15th Int. Symp. of Computer Architec-

ture, June 1986. ture, June 1986.

[31 J. Archibald and J.-L. Baer. [14] W.D. Hillis.
An Evaluation of Cache Coherence Solutions in The Connection Machine.

Shared-Bus Multiprocessors. MIT Press, 1985.
Technical Report 85-10-05, Computer Science, [15] C.A.R. Hoare.

U. of Washington, October 1985. Monitors: An Operating System Structuring

[4] C.G. Bell. Concept.
Multis: a new class of multiprocessor computers. CACM, 17(10):549-557, October 1974.
Science, 228:462-467, April 1985. [16] D. MacGregor and J. Robinstein.

[5] David R. Cheriton and Michael Stumm. A Performance Analysis of MC68020-based Sys-

The Multi-Satellite Star: Structuring Parallel tems.

Computations for a Workstation Cluster. IEEE Micro, 5(6):50-70, December 1985.
To appear in Distributed Computing. [17] C.L. Seitz.

[6] D.R. Cheriton. The Cosmic Cube.

The V kernel: A Software Base for Distributed CACM, 28(1):22-33, January 1985.

Systems. [18] A.J. Smith.
IEEE Software, 1(2), April 1984. Cache Evaluation and the Impact of Workload

Choice.
[7] D.R. Cheriton. in Proc. 1th nt. Syp. on Computer Archi-

Workform Processing: a model and language for tec page 6473 ACmpG Archu
paralelcomptaton.tecture, pages 64-73, ACM SIGARCH, June

parallel computation.19.

Stanford University, Computer Science Techni- 1985.
cal epor, t appar 186.also SIGARCH Newsletter, Volume 13, Issue 3,cal Report, to appear 1986. 1985.

[8] D. Clark. [19] A.J. Smith.
Cache Performance in the VAX-11/780. Cache Memories.
ACM Thans. on Computer Systems, 1(1), Feb. Computing Surveys, 14(3), September 1982.

1983.

[9] H.M. Deitel.
Introduction to Operating Systems.
Addison-Wesley, 1983.

[10] R. Katz et al.
Implementing a Cache Consistency Protocol.
In Proc. 12th Int. Symp. on Computer Architec-

ture, pages 276-283, ACM SIGARCH, June
1985.

also SIGARCH Newsletter, Volume 13, Issue 3,
1985.

[11] S. Frank.
Tightly-coupled Multiprocessor System Speeds

Memory Access Times.
Electronics, 57(1), January 1984.

REFERENCES Page 12

