e S S ————— e

DI FILE COPY (@
AD-A221 472 o1 -

A ———
9L- O O 56

I!OSIE(:E A Programming
Environment for Expert
Systems

Henry A. Sowizral and James R. Kipps |

DTIC

ELECTE
MAY 151930

“E

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

o

raa .

e S AR S Wi MU e T s vt

The research described in this report was sponsored by the De-
fense Advanced Research Projects Agency under ARPA Order No.
3460-9, Contract No. MDA903-82-C-0061, Information Processing
Techniques.

Library of Congress Cataloging in Publication Data

Sowizral, Henry A., 1955-
ROSIE : a programming environment for expert systems.

“Prepared for the Defense Advanced Research Projects
Agency.”

“October 1985.”

“R-3246-ARPA.”

Bibliography: p.

1. Expert systems (Computer science) 2. ROSIE
(Computer system) I. Kipps, James R. (James Randall),

1960- . IL. United States. Defense Advanced
Research Projects Agency. III. Rand Corporation.
IV. Title.

QA76.76.E95569 1985 006.3’3 85-20494

ISBN 0-8330-0676-2

The Rand Publication Series. The Report is the principal
publication documenting and transmitting Rand’s major
research findings and final research results. The Rand Note
reports other outputs of sponsored research for general
distribution. Publications of The Rand Corporation do not

necessarily reflect the opinions or policies of the sponsors of
Rand research.

Copyright © 1985
The Rand Corporation

Published by The Rand Corporation

P LR

R-3246-ARPA

ROSIE® A Programming
Environment for Expert
Systems

Henry A. Sowizral and James R. Kipps

October 1985

Prepared for the
Defense Advanced Research
Projects Agency

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

IR e o TR e v e R RATAY A

oo P 90 05 14 169

PREFACE

The ROSIE! project is an ongoing research effort concerned with
expert system language design and development. This report provides
an overview of the ROSIE language, a description of its new concepts
and features, an evaluation of its successes and failures to date, and an
indication of future research directions. The version described in this
report is ROSIE 2.5, which runs under Interlisp-D (on Xerox SIP 1100
series processors) and VAX-Interlisp (on VAX computers). ROSIE 2.5
is also currently being ported to PSL.

This report is not a reference manual. The primary documentation
on ROSIE is contained in Hayes-Roth et al., Rationale and Motivation
for ROSIE, The Rand Corporation, N-1648-ARPA, November 1981;
Fain et al., The ROSIE Language Reference Manual, The Rand Cor-
poration, N-1647-ARPA, December 1981; and Fain et al., Programming
in ROSIE: An Introduction by Means of Examples, The Rand Corpora-
tion, N-1646-ARPA, February 1982. These documents describe the
earlier ROSIE 1.0 version. A new ROSIE 2.5 reference manual is
currently being written.

This work was supported by the Defense Advanced Research Proj-
ects Agency (Information Processing Techniques Office) under contract
MDA-903-82-C-0061.

IROSIE is a trademark of The Rand Corporation. Accession For
1

NTIS GRA:I

DTIC TAB g
Unannounced O
Justification___]
By.

Distribution/

Avallability Codes
Avail and/or
Dist Special

Al |

iii

ke e T e T A ae -

SUMMARY

ROSIE is an English-like programming language that has evolved
over the years into a highly readable, expressive, and powerful tool for
building expert systems. Because the language mirrors English, it also
serves as a medium of interaction between the knowledge engineer (the
computer expert who creates the expert system) and the domain expert
(the person whose expertise the system reflects).

This report describes the ROSIE language, emphasizing recent
changes and additions. The changes have been made mainly to the
internals of ROSIE. They make the language far more perspicuous;
they simplify its structure and make it more modular. Additions to the
language include meta-elements, shared databases, and demons.

Meta-elements are ROSIE elements that capture specific linguistic
structures. The three meta-elements described in this report are propo-
sitions (basic sentences), intentional descriptions (methods for accessing
elements in the database), and intentional actions (suspended procedure
calls).

Shared databases provide ROSIE with a facility for coordinating
interactions among multiple experts without introducing significant
changes to the language. Shared databases act just like databases;
however, several ROSIEs can access and modify the shared database
concurrently.

Demons, programs that awaken on specific conditions, provide
ROSIE with additianal power. They can guard databases to prevent
inconsistencies; they\ can mimic a frame-like programming style; and,

describes its new fqcilities. The advantages and disadvantages of
i and a look is taken at future directions.

(ke)—

DA T KL 4 e R o e e e

ACKNOWLEDGMENTS

We would like to thank the people involved with the current version
of ROSIE, especially Larry Baer, Jill Fain, Bruce Florman, and Jed
Marti. We would also like to thank Robert Anderson and Marietta
Gillogly for their help in developing this report. James Dewar and
Geneva Henry provided insightful and cogent reviews. Their sugges-
tions substantially improved the report. But especially, we would like
to thank Philip Klahr for repeatedly reading and commenting on ear-
Yier drafts. We alone take responsibility for any errors or inaccuracies
that remain.

e ——— 19 it ey 5 Wk

e e o T —— BT P gt

CONTENTS

PREFACEi ittt ittt tetnanaenenans iii

SUMMARYttt ittt tetnaennenas v

ACKNOWLEDGMENTS ¢t iititinrernnnnens vii
Section

I INTRODUCTIONc¢iiiiiiiiinietnenannn 1

Whatis ROSIE?ciiir i iiiiiiinnenns 1

What Are Rule-Based Expert Systems? 2

ROSIE Philosophy and Architecture 3

Examples ittt rienrnanas 4

Historical Perspective 7

II. THEROSIELANGUAGE0cvuu. 9

Fundamental Representational Structures 10

BasicElementsc..c0c0.... 10

Basic Relational Forms 12

Propositionscciiirrennunenns 13

Intentional Descriptions 15

Intentional Actions 16

Databasescoviiiiiunnnnnnnnn 17

Shared Databasesc0ue.... 19

Rulesetsciiiiiiiimnrennnnnnnn 21

Demons00t iiiiiiinnennennn 23

Montorsc.c.iiiiininenennneenenns 27

Linguistic Structuresc..... 27

Termsiiiiiiiitiintiennenneas 28

Descriptionsciiiiernnnnn 29

VerbPhrasesc.0iitveren.n 32

Sentencesoitiiiiiireneraenan 34

Conditionsciiiiiiiiiiirnnnnnn 35

RulesandActions 35

III. INITIAL EVALUATIONOFROSIE 38

Major ROSIE Applications 38

Advantagesof ROSIE 38

Disadvantages of ROSIE 40

Future Directionscviivivenenn. 41

Conclusionscivivivuernnnnnenns 43

REFERENCES0iiiiiiitirneenonennenennens 45

ix

g T e

I. INTRODUCTION

WHAT IS ROSIE?

ROSIE (Rule-Oriented System for Implementing Expertise) is a pro-
gramming environment for artificial intelligence (AI) applications. It
provides particular support for designing expert systems, systems that
embody knowledge of a domain and operate using that knowledge.

ROSIE uses a near-English syntax for representing facts and rules.
A person who is not familiar with programming languages can pick up
a ROSIE program, read it, and understand it, almost as if it were
English. The design of the ROSIE language rests on the assumptions
that a restricted subset of English can capture and encode knowledge
sufficiently well for a practitioner in the subject area (domain) to read
and understand it, while at the same time retaining a sufficiently for-
mal structure for mechanical interpretation by computer. Such a
language can greatly facilitate communication between the knowledge
engineer who must accurately capture relevant expertise and the
domain expert whose expertise determines the final system.

An English-like programming language need not capture all of the
subtlety and richness of English. Experts in a field tend to develop a
shorthand, or jargon, for commonly held concepts or beliefs, which per-
mits them to communicate with one another rapidly and effectively.
Jargon also serves as a rather formal notation for expressing domain
concepts, and ROSIE allows a notation close to the normal jargon of
experts to be used for this purpose. For example, the following rule
shows how the language of lawyers maps onto ROSIE!:

[RULE1: RESPONSIBILITY FOR USE OF PRODUCT]
IF the use of the product (at the time of the plaintiff’s loss)?
is foreseeable,
and that use is reasonable-and-proper
or that use is an emergency
or (there is a description by the defendant of that use
and that description is improper)
or there is no description by the defendant of that use,
[THEN]3assert the defendant is responsible for the product’s use.

'Modeling legal decisionmaking, a major application of ROSIE, is described in Water-
man and Peterson (1881).

2Parentheses are used in ROSIE rules to eliminate possible surface-level ambiguities,
such as determining which description is modified by a prepositional phrase. This par-
ticular set of parentheses specifies that of the plaintiff’s loss modifies time and not use (as
would be the case were the parentheses excluded). The parenthesized clause following
the second or serves to group the two enclosed sentences as a singular logical unit.

38quare brackets surround comments in ROSIE.

1

- N R

2 ROSIE: A PROGRAMMING ENVIRONMENT FOR EXPERT SYSTEMS

The basic ROSIE rule form, IF conditions, actions, represents
prescriptive expertise, which states what to do in various circumstances,
rather than merely stating facts. We refer to facts as descriptive

knowledge.

WHAT ARE RULE-BASED EXPERT SYSTEMS?

ROSIE was designed for building systems that reason symbolically.
Many such systems incorporate and act on knowledge or expertise that
is normally associated with human experts. The human expert knows
facts, or assertions, about his area of expertise (e.g, medicine, ge-
ology, the bond market), and he knows rules of inference that allow
him to reason within that domain. The rules of inference are not
guaranteed to produce the desired answer. They are not formal algo-
rithms, but heuristics—rules of thumb or appropriate guides to reason-
ing. We call systems based on an expert’s knowledge of his domain
expert systems.

Rule-based systems provide an appropriate methodology for imple-
menting expert systems. Rules are a natural formalism for capturing
expertise, and they have the flexibility required for incremental
development. As a problem changes or the programmer’s perception of
it changes, a rule-based system can be modified or extended gracefully,
whereas traditional structured programs often must undergo drastic
restructuring to accommodate new models or situations. For example,
if the legislature were to pass a flurry of new laws that affect the
respongsibility for the product’s use, we can extend our rule-based legal
reasoning system by inserting the new laws as rules and possibly
removing old rules or reestablishing precedence among the rules.

Rule-based expert systems* contain three main components: (1) a
database of facts or assertions about some subject matter; (2) a set of
rules of the form IF conditions, action (or assertion); and (3) a monitor
(sometimes called an inference engine) that executes a set of rules,
given a database. A monitor determines which rules can fire, resolves
the conflict if more than one rule can fire, and then executes the
chosen rule.

ROSIE supports all three components of a rule-based expert system.
Assertions and denials modify a database of facts. Rulesets group rules

‘We distinguish rule-based expert systems from those based on the predicate calculus
or systems of intercommunicating objects. Although a ROSIE user can construct various
types of expert systems, to simplifv the present discussion we restrict our attention to
rule-based systems.

— -

T

INTRODUCTION 3

into meaningful chunks. The user labels a ruleset with a particular
word, either a noun, a comparative verb, or an imperative verb. Each
ruleset also has an associated monitor. ROSIE provides three different
kinds of monitors for controlling the execution of rules within a
ruleset: sequential, cyclical, and random monitors. With planned
future developments, ROSIE will allow an expert system developer or
knowledge engineer to tailor-make monitors. This freedom will give
the knowledge engineer tremendous flexibility. He will be able to
create control strategies that meet his exact needs, including monitors
that perform forward chaining (deducing consequences from the facts
in the database), backward chaining (goal-directed invocation of
rulesets that attempt to prove a goal either by further invocation of
rulesets or by directly finding the fact in the database), or mixed initia-
tive strategies that combine both forward and backward chaining.

ROSIE PHILOSOPHY AND ARCHITECTURE

ROSIE is a general-purpose tool for writing expert systems. It can
support essentially any control strategy and data organization. A
well-organized expert system written in ROSIE can represent logic and
data in a highly readable form. Such readable code greatly facilitates
interaction between the domain expert and the expert system
developer.

We chose readability over writability as a major feature of the
ROSIE language. The two concepts are by no means equivalent. In
fact, as ROSIE moves closer to English, its readability may actually
make the language more difficult to write. Negative interference with
English (the inability to remember whether a construct is valid ROSIE
or valid English) can make writing ROSIE programs difficult. Under-
standing these tradeoffs is an important aspect of the ROSIE research
project.

ROSIE provides rich, expressive power fo1 creating and manipulat-
ing a database of concepts. It supports adjectives, prepositional
phrases, and relative clauses inside descriptions to generate sets of ele-
ments; it supports class structures and concepts of set membership and
inclusion; it supports both transitive and intransitive verb phrases; it
supports string pattern matching, the definition of rulesets and predi-
cates, and other important capabilities. Recent features include the
ability for a database to be shared by multiple ROSIE programs, the
definition of demons (programs that awaken to perform some actions
when an event occurs, such as searching the database for a specific
proposition), and the introduction of meta-structures to provide ROSIE

R

e TS SR BTN R L £ Ty

4 ROSIE: A PROGRAMMING ENVIRONMENT FOR EXPERT SYSTEMS

programs with a self-referential capability (the ability to describe,
access, modify, and use linguistic structures).

A particular ROSIE expert system, also referred to as a performance
program, consists primarily of the ruleset memory and the active data-
base. The ruleset memory stores the performance program’s rules of
inference, the prescriptive knowledge that provides the system with the
intelligence it needs to solve particular problems. The active
knowledge base stores the program’s descriptive knowledge, the facts
that specify the particular problem requiring solution and the inter-
mediate conclusions reached by the performance program. Addi-
tionally, a performance program may use multiple databases, although
only one database can be active at any time.

At a minimum, a performance program uses the ruleset memory and
the active database. More elaborate programs also incorporate one or
more inactive databases. Multiple databases can serve a variety of pur-
poses. For example, they can represent alternative viewpoints or per-
spectives concerning a problem. Thus one database might represent
the viewpoint of one corporation or superpower, and the other data-
bases might represent other corporations or political regimes. The per-
formance program can switch from database to database, analyze each
perspective, and assess the various viewpoints. Alternatively, a
knowledge engineer might wish to segment knowledge along a func-
tional, structural, or procedural line. For example, a generalized diag-
nostic system could use the active database to drive its deductive com-
ponent. One database might hold general diagnostic knowledge, and
other databases might contain symptomatic and diagnostic information
relevant to a particular subsystem. With the general database active,
the system could determine which system subcomponent failed. The
system could then activate the relevant subsystem database and con-
tinue the diagnosis in a more constrained environment.

EXAMPLES

Examples provide a good introduction to ROSIE. Our first example
is an expert system fragment that plans a camping trip. The expert
system’s user provides the weather conditions, the length of stay, and
other parameters that describe his outing. The expert system uses this
information to decide what equipment, food, and clothing the camper
should bring along on the trip. The expert system consists of two
parts: (1) the invariant camping knowledge captured as facts, and (2)
the pragmatics of choosing equipment, food, and clothing, captured in
rulesets.

INTRODUCTION L]

We start with some of the facts. The following assertions build a
(partial) database of facts:

Assert t-shirt is a light layer and
flannel shirt is a second layer and
light sweater is a cool third layer and
heavy sweater is a warm third layer and
down-jacket is a coat.

Assert each of the light layer, the second layer, the warm third
layer and the coat is a piece of clothing (in a layered
top for winter).

Assert ‘Layered clothing is effective against the cold’ is a winter
reason for (any piece of clothing (in a layered top for winter)).

Assert ‘Cold nights’ is a summer reason for the cool third layer.

This set of assertions establishes some important knowledge con-
cerning camping. Campers know that multiple layers of light or
medium-weight clothing provide more protection against the cold than
a few pieces of heavy or thick clothing. Campers also know that lay-
ered clothing allows them to regulate heat loss by adding or removing
clothing. The assertions estahlish some of this information. They also
include justification for some of the equipment. The first assertion
defines the concept “layered clothing” and associates a particular piece
of clothing with each layer. The second assertion identifies the layer of
clothing that a camper should use in wintertime. The third assertion
provides the expert system with a justification for using layered cloth-
ing in wintertime. The fourth assertion provides a rationale for includ-
ing a light sweater in the clothing list for summertime.

This set of assertions also illustrates ROSIE’s linguistic constructs.
The first assertion shows how ROSIE can group related assertions into
one rule, using the and conjunction. The second assertion introduces
the each of iterator. An each of iterator causes its surrounding action
(in this case assert) to repeat once for each of its terms—an assert
using the light layer, another using the second layer, and so on. The
third and fourth assertions show some of the complexity that ROSIE
can represent.

The second part of the expert system defines the reasoning used in
selecting equipment, food, and clothing for the trip. We capture this
knowledge with ROSIE’s rulesets. A procedural ruleset illustrates how
we define the imperative verb choose-warm-clothes:

6 ROSIE: A PROGRAMMING ENVIRONMENT FOR EXPERT SYSTEMS

To choose-warm-clothes:

[1] Let the clothing-list be <>.

[2] For each piece of clothing (in a layered top for winter),
add that piece to ‘the clothing-list’.

[3] Assert the winter reason for (any piece of clothing (in a
layered top for winter) is preferred.

[4] Add (a warm pair of pants) to ‘the clothing-list’.

[5] Add (a heavy pair of socks) to ‘the clothing-list’.

[6] Add (the hiking footwear) to ‘the clothing-list’.

[7] Assert the winter-spring reason for the hiking footwear is preferred.

[8] For each winter accessory,
add that accessory to ‘the clothing-list’.

[9] If the weather will be turning rainy,
add (the rain-gear) to ‘the clothing-list’,

End.

A top-level procedure, produce a checklist, invokes the choose-warm-
clothing ruleset as well as other rulesets to create our camping check-
list:

To produce a checklist:

[1] Gather constraints.

[2] Select the month:

<‘NOV’, ‘DEC’, JAN’, ‘FEB'>

‘ let the season be winter and choose-warm-clothes;
: <‘SEP’, ‘OCT’, ‘MAR’, ‘APR’>
let the season be fall-spring and choose-moderate-clothes;
3 Default:
‘ let the season be summer and choose-cool-clothes.
[3] Choose-food.
[4] Choose-equipment.
[5] Print-checklist.
End.

First, produce a checklist calls gather constraints, a ruleset to determine
the type of camping trip and the conditions surrounding the trip.
Then, depending on the time of year and anticipated weather condi-
tions, it chooses appropriate clothing, food, and equipment. Finally, it
displays the choices and, if needed, justifies them.

These examples illustrate ROSIE’s readability. Later sections of
this report describe some of ROSIE’s major linguistic structures and
provide examples of their use. More substantial examples of systems
written in ROSIE may be found in Callero et al. (1984), Fain et al.
(1982), and Waterman and Peterson (1981).

v r——— ———

INTRODUCTION 7

HISTORICAL PERSPECTIVE

ROSIE has been an ongoing research effort at Rand since 1979.
The language has grown and evolved in many ways over the years. We
have worked at improving its expressive power without sacrificing its
readability, at regularizing its grammar without sacrificing its expres-
siveness, and at extending its semantics without introducing new com-
plexities.

The historic precursor to ROSIE was the Rand Intelligent Terminal
Agent, RITA (Anderson and Gillogly, 1976; Anderson et al., 1977).
Influenced by the success of early rule-oriented styles of knowledge
representation and the appeal that their English-like explanation facili-
ties had for users, RITA was a first attempt at making rule-based pro-
gramming languages easier to use and understand. Production rules in
RITA were defined using an English-like syntax with a restricted set of
options. RITA’s database consisted of object/attribute/value triples.
Its monitors allowed either pattern-directed control (forward chaining)
or goal-directed control (backward chaining). Although its syntactic
and expressive power was limited, RITA showed that a stylized form of
English could describe procedural knowledge in rule-based languages.

The preliminary ROSIE design (Waterman et al., 1979) was pro-
posed as a logical extension of RITA. The proposal outlined the defi-
ciencies in RITA and described how they might be overcome. RITA
was developed in the C programming language on a PDP 11/45 mini-
computer. This limited environment severely restricted RITA’s design.
To circumvent the problem of RITA’s inability to scope rules, ROSIE
introduced the concept of rulesets.

ROSIE was initially developed using Interlisp on a DECSYSTEM-
20. The implementers of early versions of ROSIE adopted several of
RITA’s best features, such as its input/output (I/0) pattern matcher.
They also extended RITA’s expressiveness and semantics. By 1981,
the ROSIE design was relatively stable, and we began developing in-
house applications, We also distributed copies of ROSIE (Version 1.0)
to sites outside of Rand.

The first released version of ROSIE included direct support for
many special-purpose operations. These were hardwired into ROSIE'’s
grammar, as they are in other programming languages, because they
did not fit into ROSIE’s general linguistic structure. Some operations
required special arguments, and others performed actions that were
considered expedient in a programming language.® As the number of

5These operations included large-grained database operations (dump, activate, clear,
deactivate, etc.), I/O operations (open,-close, send, read, etc.), utility operations (dir, type,
delete, copy, parse, build, load, etc.), and other miscellaneous operations.

—

e A ————

8 ROSIE: A PROGRAMMING ENVIRONMENT FOR EXPERT SYSTEMS

special-action verbs began multiplying, the grammar grew increasingly
complex, and the need to simplify (or orthogonalize) it became
apparent. Examples of orthogonalization are the removal of the dis-
tinction between system-defined and user-defined operations, and the
introduction of new data elements, i.e, patterns, to eliminate the need
for special arguments.

The ROSIE system eventually outgrew the capacity of the
DECSYSTEM-20, and in 1982, the development moved to VAX-
Interlisp on a VAX 11/780 and Interlisp-D on the Xerox SIP 1100
(Dolphin). In 1983, we distributed ROSIE (Version 2.3) and began
simplifying the language, expanding its functionality, and improving its
performance. Two parallel efforts since that time have been the port-
ing of ROSIE to Portable Standard Lisp (PSL) and the development of
a ROSIE compiler in C. We have also examined the needs of ROSIE
users and added several new concepts, including meta-elements, shared
databases, and demons.

We are currently examining ways of turning ROSIE into its own
meta-language and optimizing the resulting code. Future releases of
ROSIE will retain the strong features of the current ROSIE, while
extending the language’s expressiveness and power.

II. THE ROSIE LANGUAGE

We have pursued several different objectives in designing the ROSIE
environment. Our primary goal has been to create a language that
encourages writing very readable code. To achieve this, we adopted
two design criteria: minimality and completeness. These criteria
embody two ordinarily competing qualities. Minimality argues against
redundancy and verbosity, while completeness requires broad coverage
of English-language structures. The net result is a language that
serves as a general programming language for a very large range of
tasks. It does not, however, make any particular kind of programming
task trivial (contrary to what might be expected from a language
designed specifically for a narrow class of problem-solving tasks).

We have used natural English as our guide wherever possible. Of
course, English has many features that resist translation into precise
computational interpretations. Nevertheless, we have given reasonable
and relatively natural interpretations to a large number of complex
linguistic constructs such as prepositional phrases, relative clauses, and
sequences of adjectives. ROSIE recognizes and treats specially many
English function words, such as articles, quantifiers, prepositions, and
auxiliary verbs. However, ROSIE cannot distinguish content words,
such as nouns and adverbs, because it does not understand their mean-
ing. ROSIE has only a superficial knowledge of English, so the user
has responsibility for insuring the appropriate application of the sur-
face language to support the desired semantic interpretations.

In our attempt to achieve maximal readability, we have replaced
some anachronistic forms of programming diction. Most importantly,
we replaced “If condition then action else alternate_action” with “If con-
dition, action, otherwise alternate_action.” Those familiar with com-
puter languages, and rule-based programming languages in particular,
may initially find this design choice problematic. However, this return
to proper English conforms to the principal design heuristic behind
ROSIE: Let English be your model.

We divide our discussion of the ROSIE language into two areas.
First, we describe ROSIE’s fundamental structures—its lowest-level
representations for knowledge. Second, we describe ROSIE’s linguistic
structures—the expressive qualities of the language.

e e S T

10 ROSIE: A PROGRAMMING ENVIRONMENT FOR EXPERT SYSTEMS

FUNDAMENTAL REPRESENTATIONAL STRUCTURES

A knowledge engineer represents a domain expert’s knowledge, using
ROSIE’s fundamental structures. These structures combine with one
another to form more complex structures. Ultimately, they are stored
in databases and rulesets. As mentioned earlier, databases store
descriptive knowledge, and rulesets store prescriptive or procedural
knowledge. ROSIE represents descriptive knowledge as a set of primi-
tive propositions in a database. The propositions might include the
initial conditions of the problem, intermediate inferences drawn in the
course of the expert system’s computation, and final conclusions.
ROSIE represents prescriptive knowledge by means of rulesets that
consist of a monitor and a set of rules. The prescriptive knowledge
describes how to solve a problem, given some facts. Each ROSIE-
based expert system consists of one or more databases and one or more
rulesets.

ROSIE uses its fundamental structures to store both types of
knowledge. Though a ROSIE programmer creates both descriptive and
prescriptive structures when programming, the program can manipu-
late only descriptive structures. ROSIE performance programs cannot
yet access, modify, or generate new prescriptive information (i.e.,
rules).

ROSIE’s fundamental structures include basic elements, basic rela-
tional forms, meta-elements (propositions, intentional descriptions, inten-
tional actions), databases, shared databases, rulesets, demons, and moni-
tors.

Basic Elements

ROSIE’s elements define its space of concepts. These elements—
ROSIE’s datatypes—include names, strings, numbers, tuples, class ele-
ments, and patterns.

The name element allows ROSIE programs to represent literal
names consisting of one or more words, for example, John, Ship #3,
and Tom Thumb. Multiword names provide a knowledge engineer with
considerable flexibility in naming objects and concepts.

The string is a sequence of characters delimited by quotation marks
(i.e., double quotes). Strings distinguish between upper- and lower-case
characters and allow a greater range of expression than ROSIE’s other
elements. ROSIE provides operators, such as substring and concatena-
tion, for manipulating strings.

ROSIE supports three types of number elements: simple numbers,
unit constants, and labeled constants. A simple number is the familiar

BN . T Tt

‘THE ROSIE LANGUAGE 11

datatype found in most programming languages—an integer or floating
point number, such as 10 or 2.718, with no units or labels. Unit con-
stants and labeled constants, on the other hand, are more complex and
unique to ROSIE. A unit constant is a number followed by some com-
posite units of measure, which can be combined under multiplication,
division, or exponentiation. ROSIE carries the units along in computa-
tion and correctly manipulates them, e.g.,

Display 88 KM/HR * .625 M/KM.
55.0 M/HR

Display 9.8 M/KG*SEC12 * 5 KG.
49 M/SEC12

A labeled constant is a number prefixed by an arbitrary number of
tokens, called a label. For example,

probability .4
time frame 19

are both labeled constants. Units and labels improve the expressive-
ness and readability of numeric computations. This capacity enhances
the representational power of numbers, making their occurrence in
ROSIE code meaningful.

The tuple combines a list of elements into a single structure. Any
member of the ordered tuple can be of any element type including
another tuple, for example,

<Raoul Wright, “Are you sure?”, 2.4 children/family>
<matrix, <2, 3, 1>, <1, 3, 4>, <3, 3, 5>>

The class element specifies an entire set of elements. It is specified
by a ROSIE description indicating which elements belong to the class,
for example,

any number
any man whose father is ugly
any child where that child does wear sneakers

The pattern was formerly a special ROSIE construct available only
for 1/0 and matching operations. But in an effort to simplify and clar-
ify the language, we promoted patterns to full element status. They
remain the key construct underlying I/O and string manipulation.
Additionally, a user may now assert them and thereby put them into
the database or pass them as arguments to rulesets.

12 ROSIE; A PROGRAMMING ENVIRONMENT FOR EXPERT SYSTEMS

A pattern is a sequence of subpatterns enclosed in braces and
separated by commas. Each subpattern in turn represents a restriction
on the successive portions of the text string. The pattern either gen-
erates a string or matches against a string. For example, the subpat-
tern 3 blanks represents a sequence of three blank characters, and the
subpattern one or more numbers represents a sequence of one or more
numeric digits. Some samples of patterns will help illustrate the
underlying concepts:!

Pattern Matching String
{anything, “Fred”, anything, end} I know Freddy Smith
Freddy can’t come
Fred
{something, “Tina”, anything, “k"} My Tinak
Tiny Tina can blink
{3 or more letters, file: 1245<carriage-return>
{"1%"1%"}, 1 blank, los angeles, 90025 <carriage-return>

1 or more numbers, return}

Besides the “standard” types of elements, ROSIE also supports more
unusual elements, such as propositions, intentional descriptions, and
intentional actions which we call meta-elements. Meta-elements extend
the kinds of knowledge that can be expressed, represented, and ma-
nipulated. Though meta-elements are elements, and thus descriptive in
nature, they capture intents rather than fixed quantities. Before we
can discuss propositions, the first of the three meta-elements, we must
introduce ROSIE’s basic relational forms.

Basic Relational Forms
ROSIE relies on five basic relational forms to denote class member-

ship, predication, predicate complements, transitive verbs, and intransi-
tive verbs. The basic forms and an example of each follow:
element is a class-noun
Australia 11 is a vessel
element is adjective
Australia 11 is seaworthy
element is predicate-complement element
Australia II is slightly underpowered

1The first pattern uses the keyword anything, which matches sero or more characters.
The second pattern uses the keyword something, which matches one or more characters.

THE ROSIE LANGUAGE 13

element does verb
Australia II does float

element does verb element
Martin does sail Australia IT

We may also negate each relational form (for example, Austrelia I
is not seaworthy), and we may include tense (for example, Australia IT
was seaworthy). Tense information creates a separate and distinct
relational form, e.g., is @ man is independent of was @ man. The “is a
class-noun,” “is adjective,” and “does verb” relational forms all specify
unary relationships. The “is predicate-complement element” and “does
verb element” relational forms specify binary relationships.

We can extend the number of elements in a relationship by append-
ing prepositional phrases, as in

Australia II is moored in Newport for the race
Australia 11 is rapidly drifting toward shore
Australia II does not have favor with Mr. Connors

The primitive relational forms provide the core for propositions.

Propositions

A proposition captures a basic relation as an element. ROSIE de-
limits a proposition by enclosing it in single quotation marks, for
example,

‘Martin Scheider did punish Bill Mark in class’
‘7 is a prime’

Since ROSIE permits a performance program to access, manipulate,
and relate elements, propositions permit a knowledge engineer to
operate with basic relations. For example, we can use the proposition
‘Warren is interested in T-bills’ as an element in an assertion about a
bank'’s belief system:

Midbank does believe ‘Warren is interested in T-bills’

With this assertion in a database, a performance program can now
access and manipulate this belief in a variety of ways, for example,

If the bank does believe any thing,
consider that thing as unreliable.
Assert every proposition that Midbank does believe.

14 ROSIE: A PROGRAMMING ENVIRONMENT FOR EXPERT SYSTEMS

The proposition provides a powerful capability to extend the range
of problems ROSIE can handle. We demonstrate another aspect of the
power that propositions provide by writing an inference engine in
ROSIE, which uses propositions to represent rules in a database.
Rules 4 and 7, taken from an animal classification system, exemplify
this:

[rule 4] Let the consequent of a new rule be ‘animal is a bird’
and assert each of ‘animal does fly’
and ‘animal does lay eggs’
is an antecedent of that rule.

[rule 7] Let the consequent of a new rule be ‘animal is an ungulate’
and assert each of ‘animal is a mammal’
and ‘animal does have hoofs’
is an antecedent of that rule.

The two assertions?> not only encode the animal classification
knowledge, but they also construct a meta-language that we can exploit
in writing inference engines. Specifically, they provide a language that
permits us to access the antecedent and the consequent of a rule
independently.

Our illustrative inference engine provides a mixed-initiative infer-
ence capability. In this type of inference engine, we separate
knowledge into facts and goals. We have a solution when we can infer
the goals from the facts. The inference engine can use the rules in the
database to chain forward from facts and backward from goals. It
identifies all the rules that can fire in either the forward or backward
direction, then discriminates among them to choose the next rule to
apply. If it prefers one rule over all the others, it applies that rule;
otherwise it stops. The top-level loop of our inference engine is

To infer:

Execute cyclically.

[1] Discriminate among every rule that is capable of firing.
[2] If there is a preferred rule, apply that rule.

End.

The infer ruleset uses a number of subsidiary rulesets. One, a predi-
cate named is capable of firing, decides if a rule can fire by checking its
antecedents against the fact space and the rule’s consequents against
the goal space. If all the rule’s antecedents match the fact space or all

>The let construct provides a variant method for asserting information into ROSIE's

THE ROSIE LANGUAGE 15

of its consequents match the goal space, the rule can fire. The
ruleset’s code follows:

To decide a candidaterule is capable of firing:
[1] If every antecedent of the candidaterule is a fact,
assert the candidaterule is chaining forward
and conclude true.
[2] If every consequent of the candidaterule is a hypothesis,
assert the candidaterule is chaining backward
and conclude true.
[3] Conclude false.
End.

After infer identifies all the rules that can fire, it selects the rule
that is most preferred.® The infer ruleset presents the candidate rules
for firing to discriminate one at a time. Thus, discriminate must decide
only between the current most-preferred rule and the newest rule under
consideration. The code for discriminate is

To discriminate among a newrule:
[1] If there is a preferred rule,
if the newrule is preferable to that rule,
deny that rule is preferred
and assert the newrule is preferred,
otherwise
assert the newrule is preferred.
End.

Intentional Descriptions

An intentional description is an implicit reference to a class of ele-
ments. ROSIE descriptions (discussed later) are normally used in con-
junction with a determiner or quantifier to immediately access one,
some, or every member of a class of elements. Intentional descriptions
provide a mechanism by which this access process can be suspended.
In a sense, intentional descriptions act as pointers to element sets,
serving a function similar to that of call-by-name in ALGOL.

Intentional descriptions take the form of a description prefixed by a
determiner and delimited with single quotes, such as,

‘the equipment list’
‘a command’
in our case, we choose forward chaining over backward chaining and lower-
numbered rules over those with larger rule numbers. However, by changing the is prefer-
able to predicate, infer can use another criterion for choosing a rule.

o — v

18 ROSIE: A PROGRAMMING ENVIRONMENT FOR EXPERT SYSTEMS

Intentional descriptions permit knowledge engineers to represent and
relate indefinite elements (e.g., a plan, a target, a counter) and generic
concepts (e.g., the product’s use, the blue side, the clothing list).* The
explicit elements referenced by an intentional description may or may
not exist (i.e., the set of elements described may be null).

The set elements referenced by an intentional description can be
accessed via the phrase instance of. Thus, the instance of ‘the clothing
list’ might produce the tuple <PARKA, HAT, T-SHIRT>, while every
instance of ‘a target at any airfield’ might produce RUNWAY, MUNI-
TIONS SOFT, POL SOFT, and MUNITIONS ASSEMBLY AREA.

The call-by-name facility in ROSIE permits rulesets to affect global
relationships specified by an intentional description. As an illustra-
tion, consider providing a generic facility to add elements to an existing
set. The ROSIE rule

If the weather will be turning rainy,
add (the rain-gear) to ‘the clothing list’.

uses the intentional description ‘the clothing list’ as an implicit refer-
ence to a tuple of elements. The add routine

To add an item to a list:
[1] Let the instance of the list be
the concatenation of (the instance of the list)
with <the item>.
End.

then accesses the explicit instance of that tuple and modifies it to
include a new item.

Intentional Actions

The last meta-element, the intentional action, enables a knowledge
engineer to represent an unexecuted action in the database and then
perform that action at a later time. Intentional actions provide the
raw material necessary to build systems that make plans and then exe-
cute those plans. Intentional actions also provide the raw material for
building rudimentary simulations.

‘ROSIE’s indefinite article was an early attempt to provide such a facility. An indef-
inite description (e.g., a truck), when used for the first time, would add the relation
TRUCK #1 is a truck to the database. Thereafter, the truck would evaluate to TRUCK
#1. Although this technique proved adequate for many cases, attempting to represent
multiple indefinite trucks led to difficulties. While multiple instances could be asserted
wm,nmmmwmmlmmMmtwunhﬁommn

THE ROSIE LANGUAGE 17

An intentional action suspends the invocation of an imperative verb.
A possible invocation of the imperative verb “move” might be

Move USS Nimitz from Le Havre to New York.

However, if this statement is used as an intentional action (i.e., is de-
limited by single quotes, as in ‘Move USS Nimitz from Le Havre to
New York’), the intended maneuver is suspended and the knowledge
engineer can use it in a relationship. The knowledge engineer could,
for example, store it in the database using the following:

Assert ‘Move USS Nimitz from Le Havre to New York’
is an action for time 100.

Later the performance program could evaluate the intentional action
using the action

Evaluate every action for time 100.

The meta-elements—propositions, intentional descriptions, and
intentional actions—represent three of ROSIE’s linguistic structures.
Given a proposition, a ROSIE program can assert it into the database,
remove it from the database, or test for its presence in the database.
The intentional description stores an unevaluated description or access
operator. That description can represent an indefinite concept or a
particular relationship in the database. A ruleset can use intentional
descriptions to change or retrieve the elements associated with a par-
ticular relationship in the database and to direct other rulesets to the
same relationship. The intentional action stores an unevaluated
imperative. Access to unevaluated actions permits ROSIE programs to
plan, capture intended actions, and then later perform those actions.

Databases

ROSIE uses its database to store facts about the world as well as
intermediate computational results. These facts and intermediate
results must be propositions, which are stored using a three-valued logic
system. ROSIE may store a proposition in the database as true, or as
false, or the database may not contain that proposition at all (which
ROSIE interprets as indeterminate). The three-valued logic provides
ROSIE with an “open-world assumption,” which implies that ROSIE
may not have complete information about a particular situation and
will not infer truth or falsity from the absence of a relevant proposi-
tion.

The user adds to the database by asserting new propositions or by
defining particular values for named elements:

e o

18 ROSIE: A PROGRAMMING ENVIRONMENT FOR EXPERT SYSTEMS

Assert Australia I1 is a vessel
Let the vessel be Australia II.
Assert Australia IT is not a loser.

ROSIE provides only limited support for handling contradictions. If
the user asserts Australia II is a vessel and then asserts Australia II is
not a vessel, a simple contradiction occurs. Only the latter of the two
assertions will appear in the database. ROSIE stores propositions as a
basic relationship with an attached truth value—a proposition is either
provably true, provably false, or it does not exist in the database.

Asserting the negation of a proposition only changes its truth value.
The user must deny the proposition to remove it from the database:

Deny Australia II is a vessel.

Conditionals allow users to check a database for the truth or falsity
of a proposition:

If Australia 11 is a vessel, . . .

The database plays a central role in ROSIE. Every assertion results
in a database store command, and most conditions require testing the
database. By modularizing the database in the design of ROSIE, we
have laid the groundwork for independent system improvements. In
particular, advances in database technology may ultimately feed into
future implementations of ROSIE systems.

Most expert systems written in ROSIE contain more than a single
database. The standard database in ROSIE is named GLOBAL. For
complex applications, the user may activate other databases and
operate on propositions stored within them. Users with very large
databases may be able to modularize them and separately dump,
restore, and activate each portion as needed. Multiple databases may
also function to maintain separate contexts, or worlds, for hypothetical
reasoning.

Special system rulesets have been written to simplify testing, adding,
and removing propositions to designated databases. The following
example illustrates some of these concepts:

Add ‘US inflation rate is too high’ to European viewpoint.
Add ‘European opinion is unnecessarily negative about US economy’
to US viewpoint.
If ‘US inflation rate is too high' is true in European viewpoint
and the US'’s inflation rate > 12 percent,

remove ‘European opinion is unnecessarily negative about US economy’

from US viewpoint.

THE ROSIE LANGUAGE 19

This example refers implicitly to the GLOBAL database and explicitly
to the US viewpoint and European viewpoint databases.

Shared Databases

Distributed expert systems, also called distributed heuristic agents
(Sowizral, 1983), consist of multiple expert systems that consult with
one another to solve a common problem. ROSIE provides support for
building such systems with a mechanism called shared databases.’

A shared database acts like a normal database: It stores relation-
ships; it allows a program to make assertions, denials, and conditional
tests; and it may be active or inactive. But beyond these expected
activities, a shared database links together the heuristic agents that
share it. Like the blackboard model of HEARSAY-II (Erman and
Lesser, 1975), a shared database provides a common, consistent, but
changing scratchpad for use by multiple agents. Unlike the blackboard
model, agents can concurrently access and modify a shared database,
and, also unlike the blackboard model, only those objects “sharing” a
particular database have access to it.

ROSIE ensures that each agent sharing a database has exactly the
same information as any other agent sharing that database. A change
made to a shared database by one agent is visible to all the other shar-
ing agents. ROSIE does not ensure that each agent has identical infor-
mation at all times, but rather, that each agent’s shared database
“experiences” the same changes in exactly the same order that the
other agents experience. All agents do not see a particular change at
the same time, nor is the elapsed time between any two changes at one
agent necessarily equal to the elapsed time between the same two
changes at some other agent. Nevertheless, all the agents receive the
same set of stimuli in the same order and in roughly the same time
frame, so it is quite easy for a knowledge engineer to write deadlock-
free code.

The shared-database facility hides the many vagaries of distributed
programming from the knowledge engineer. He can develop distributed
heuristic agents without worrying about concurrency issues such as the
arbitration of concurrent updates to the shared database, ensuring reli-
able communications, and global consistency. The shared-database
facility provides knowledge engineers with an effective mechanism for
writing distributed heuristic agents, and, when used in conjunction
with the demon facility (described in a later section), for constructing
fairly intricate control structures with little difficulty.

5The shared-database facility exists only for the Xerox SIP 1100 version of ROSIE,
not the VAX-Interlisp version.

———l

20 ROSIE: A PROGRAMMING ENVIRONMENT FOR EXPERT SYSTEMS

Description. A shared database has a name that identifies it glo-
bally. An agent can turn a database into a shared database by execut-
ing

SHARE DATA IN database-name

The database may or may not contain information. If no shared data-
base with that name exists in the system, then the contents of the
database become the initial contents for the shared database. If the
system already contains a shared database with that name, however,
this agent simply joins that community and receives a copy of that
shared database. In the process, the agent loses whatever it had in its
database at the time it invoked the “share data in” action.
An agent can stop sharing a database by executing

LOCALIZE DATA IN database-name

After this action executes, the specified database no longer shares its
contents with other agents in the system. It retains all the information
it contained at the time the agent “localized it,” and any changes to it
will not affect the shared database with the same name; likewise,
changes to the shared database will not affect the now-local database.

The remaining shared-knowledge-base operations are identical to the
operations permitted on a normal database. A knowledge engineer can
assert sentences, deny sentences, and test sentences against the
knowledge base. The assertion or denial of a sentence completes
immediately; however, because a modification gets sequenced globally,
the change caused by it may not appear until some time in the future.
Tests against the database return a value immediately.

An agent can have more than one shared database. An agent can
share one of its databases with one set of agents, another database with
another set of agents, and another with yet another set of agents. In a
sense, agents can belong to multiple committees that interact with one
another using a semipublic forum. At one extreme, all agents can
share one common database. At the other, two agents can interact
privately by sharing a database just between themselves.

Architectures for Interacting Heuristic Agents. We have writ-
ten several systems of distributed heuristic agents using shared
knowledge bases. Among those systems were an intelligent secretary, a
concurrent search and rescue scenario, and an adaptive route planning
system. The shared-database facility proved more than adequate for
communicating among agents. Shared databases provide large latitude
for decomposing and organizing complex problems into concurrent,
cooperating tasks.

THE ROSIE LANGUAGE 21

Information fusion presents one problem area for which ROSIE’s
shared-database facility can provide a possible architecture. For exam-
ple, several data concentrator expert systems could analyze the raw
data that come into the system, identify items of interest, and report
these findings to the integrator expert system through the shared data-
base. The data concentrator reduces the volume of information to a
manageable level. The integrator sees only the interesting information,
but from a much broader perspective. The integrator may perform the
! required computation by itself, or it may also serve as a concentrator

for a higher-level integrator.
) Committee problem solving provides another area of interest for
using multiple heuristic agents and ROSIE’s shared-database facility.
The database acts as the committee meeting room. The various agents
place approaches, comments, and solutions in the shared database.
This common knowledge then drives their individual attempts to solve
the problem before them.
Yet another use for ROSIE’s shared databases is to permit a
knowledge engineer to connect existing expert systems into a
conglomerate system. For example, we might have several expert sys-
tems that solve problems only in their narrow specialty. Instead of
combining them into one monolithic expert system, we can coordinate
| their concurrent execution with a fourth expert system. That new
expert system would then interact with the end user, translate the
information he provides into a form suitable for use by the expert sys-
tems, and translate the requests presented by those expert systems into
queries for the end user.

Rulesets

One of the many features that distinguish ROSIE from other rule-
based languages is its facility for rule subroutining. A ROSIE user may
control the applicability and context of rules by organizing them into
logical units called rulesets. ROSIE provides the user with three dif-
ferent kinds of rulesets for modularizing his program: procedure, gen-
erator, and predicate rulesets. Each serves a different function; each

| gets invoked differently; each returns differently.

An example of a procedural ruleset is

. To move a vessel from a source to a destination:
! [1] Deny the vessel is docked at the source.

‘ [2] Assert the vessel is docked at the destination.
i End.

Y T —

22 ROSIE: A PROGRAMMING ENVIRONMENT FOR EXPERT SYSTEMS

This ruleset essentially updates the database when invoked by a state-
ment such as

Move USS Nimitz from Le Havre to Auckland.

Generator rulesets produce either a single value or all the members
of some class. References to generators within ROSIE rules cannot be
distinguished from references to the database elements. Thus, some-
one who reads ROSIE code is unaware of what produces a particular
element or set of elements. An example generator ruleset is

To generate a vessel:

[1] Produce every maveable object at every port.
[2] Produce every mouveable object under sail.
[3] Produce every steamship.

End.

This ruleset would be invoked by a statement such as
Display every vessel.

Predicate rulesets provide a means for determining the truth or fal-
sity of any ROSIE primitive sentence through direct computation.
When ROSIE tests a proposition against the database and the result is
indeterminate, it invisibly invokes the corresponding predicate ruleset,
if such a ruleset exists. The predicate ruleset can conclude true or
false, or it can simply return and thus imply an indeterminate value.
An example predicate ruleset is

To decide a vessel is seaworthy:

[1] If the vessel does float, conclude true.
[2] If the vessel does leak, conclude false.
End.

This ruleset would be invoked by a statement such as

If Australia 11 is seaworthy,
move Australia II from Sydney to Newport.

Each ruleset type corresponds to a particular word class: generators
correspond to nouns, procedures to imperative verbs, and predicates to
comparative verbs. Rulesets allow domain words to be defined opera-
tionally in whatever fashion the knowledge engineer chooses, and only
as precisely as necessary.

e

THE ROSIE LANGUAGE 23

ROSIE users may additionally define system rulesets, which permit
programmers to include Interlisp code in their ROSIE system. System
rulesets may not call ROSIE rulesets. Thus they serve mainly to pro-
vide access to system parameters such as time-of-day, date, or other
important information that ROSIE does not provide directly.

Demons

The word “demon” has come to have a specialized meaning in pro-
gramming: It refers to a program (or ruleset) that lies dormant until a
particular condition occurs, then is activated and takes some action.
The ROSIE system samples changes to the database at key stages in
the execution of a program. When a test or change occurs that meets a
demon’s condition for awakening, that demon becomes active. Demons
can be used, for example, for tracing and debugging during program
development, and for checking database consistency as the database
undergoes changes.

The demon facility in ROSIE allows a knowledge engineer to selec-
tively capture control during the course of a performance program’s
execution. Demons cannot take control of a computation haphazardly;
they get invoked at precise points. In ROSIE, they are invoked (1)
before a proposition is asserted, denied, or tested against the database;
(2) before the database starts generating any elements from a descrip-
tion; (3) before each element gets produced by a generator matching a
description; and (4) before invoking an imperative verb. These points
in the ROSIE operating cycle define four classes of demons.

A demon can decide whether or not the operation it preempted
should occur. It can exit by using a return statement and thus prevent
the completion of an operation, or it can exit by using continue, which
causes the preempted operation to complete.

Demons do not capture all assertions, denials, etc. Rather, they cap-
ture all assertions, denials, or operations that match their defining
forms. Thus a knowledge engineer may selectively intercept the asser-
tion of an is a man relation or the testing of an a personl does love a
person2 relation. A knowledge engineer can exercise precise control
over the relations in the database and thus ensure its consistency. For
example, the following demon checks the age of any person we wish to
define as a man:

Before asserting a person is a man:

[1] If the person’s age is greater than or equal to 21,
continue.

End.

e ettt e L

24 ROSIE: A PROGRAMMING ENVIRONMENT FOR EXPERT S8YSTEMS

If the person is 21 years of age or older, it permits the redefinition;
otherwise it does not. A demon must explicitly continue for the
preempted operation to complete; otherwise, the demon returns and
impedes the interrupted operation.

Using Demons for Communication Between Distributed
Agents. Demons simplify the communication control structure of dis-
tributed heuristic agents. Without demons, a distributed agent must
continually poll the shared database to discover any new information.
With demons, an agent can respond to changes in the database as they
happen.

Distributed agents use shared databases for communicating among
one another. Agents send new information by asserting or denying
propositions in the shared database. They receive information by test-
ing for propositions or by generating elements from the shared
knowledge base. To write an effective agent without using demons, a
knowledge engineer must know what information to look for and when
1o look for it. An agent's standard structure usually consists of an
infinite loop that checks for the presence of the anticipated informa-
tion in the shared database and, when the agent discovers one of the
possibilities, performs the appropriate actions—a process similar to
hardware polling.

Demons significantly alter an agent’s communication control struc-
ture. No longer must an agent check its shared database for new infor-
mation. The knowledge engineer can write a before asserting or before
denying demon for each of the possible communications. Then, when
the information of interest appears in the shared database, the demon
processes it directly. This changes an agent’s computational structure
from a “polling-driven” computation to an “interrupt-driven” computa-
tion.

The demon facility permits agents to capture attempts to assert,
deny, or test propositions; to start generating elements; to produce ele-
ments; and to invoke verbs. However, in a shared database, only global
asserts and denies will cause demons to execute. The other operations
(testing propositions, beginning to generate elements, and producing
elements) work only with an agent’s local copy of the shared database.
Thus, the demons that do not capture modifications execute only for
the agent performing such operations.

A shared database can provide the necessary medium for communi-
cation without ever storing any information. This activity could result
in a cluttered database, but demons can act as “sentries” that guard the
database’s contents. By “returning” rather than “continuing,” a demon
can capture the communication, perform the required computation, and
prevent the modification from entering the local database.

THE ROSIE LANGUAGE 25

Using Demons to Emulate Frames. The demon facility allows
ROSIE programmers to write frame-based performance programs. A
frame is an abstract specification for a class of entities, which allows
programmers to write systems from a behavioral perspective. Each
entity, or instance of a frame, consists of a name, attributes, and the
associated values of those attributes. Each attribute may also have
three routines associated with it. The routines are invoked as a side
effect of performing some operation on an attribute’s value. The if-
added routine is invoked whenever a value is added to the attribute; the
if-removed routine is invoked whenever a value is removed from an
attribute; and the if-needed routine is invoked whenever an attribute is
queried for a value. In this paradigm, computations occur as side
effects initiated by the manipulation of an attribute.

We can use the demon facility to manage frames. For each new
frame type we can write two demons, one to capture control at the
time of the frame’s creation and the other to capture control at its de-
struction. The two demons also create and destroy the frame’s associ-
ated attributes. For each manipulation of a frame, we must write a
demon to capture the intended action and correctly update the affected
frames.

Managing a meeting calendar provides a good example of the use of
frames. Two different kinds of frames are needed, one to represent a
meeting and another to represent a person. Attributes of a meeting
include its participants, its starting time, its anticipated duration, its
location, and its topic. To use the demon facility in defining a meeting
frame with these attributes, we could write

Before asserting a meeting is a meeting:

[1] Assert <> is a participants of the meeting
and assert NOTHING is a topic of the meeting
and assert <> is a start of the meeting
and assert <> is a duration of the meeting
and assert <> is a location of the meeting

[2] Continue.

End.

(The corresponding denying a meeting is a meeting demon would be
defined similarly.)
We can now create meetings with ROSIE'’s create verb, for example,

Create a meeting
and let "Setting priorities” be the topic of that meeting
and let 8am be the start of that meeting
and let 1 hour be the duration of that meeting
and let room 247 be the location of that meeting.

26 ROSIE: A PROGRAMMING ENVIRONMENT FOR EXPERT SYSTEMS

When this action executes, create first generates a new name element
from the description’s class noun (meeting in this case) and a number.
For example, assume that the new name element is MEETING #34.
After generating a new name element, create automatically asserts that
MEETING #34 is a meeting. The assertion causes the before asserting
a meeting is a meeting demon to execute. It then asserts <> is a parti-
cipants of MEETING #34, NOTHING is a topic of MEETING #34,
<> is a start of MEETING # 34, etc. Finally, the demon continues by
allowing MEETING #34 is a meeting to be added to the database.
Now our original create statement continues executing with let “Setting
priorities” be the topic of that meeting. Because of ROSIE’s ability to
handle anaphora, that meeting evaluates to MEETING #34; and
because of the demon, the topic of MEETING # 34 already exists, per-
mitting the use of the definite description.

The “person” frame operates similarly. It consists of two fields, the
person’s name and the person’s meetings. The demon is defined by

Before asserting a person is a person:

[1] Assert no name is a name of the person
and assert <> is a meetings of the person.

[2] Continue.

End.

With a frame for meeting and another for person, we can now write
routines for manipulating these frames. The two activities we wish to
illustrate are adding a person to a meeting and removing a person from
a meeting. We define a demon that captures the assertion that a per-
son will attend a meeting:

Before asserting a name will attend a meeting:
Private subject.
[1] If the name is a name of any person,
let the subject be that person,
otherwise, create a person
and let that person’s name be the name
and let the subject be that person.
[2] Add the meeting to ‘the subject’s meetings’.
[3] Add the subject to ‘the meeting’s participants’.
End.

This demon first uses the person’s name to locate that person’s frame.
It then updates that person’s list of meetings and updates the
meeting’s list of participants. Rather than continuing and letting a

THE ROSIE LANGUAGE 27

fact such as JOHN will attend MEETING # 34 enter the database, the
demon returns, ensuring that unnecessary information does not clutter
up the database. Similarly, we can write a demon that captures the
assertion that a person will not attend a meeting:

Before asserting a name will not attend a meeting:
Private subject.
[1] If the name is a name of any person,
let the subject be that person,
otherwise,
send {“I know of no person named”, the name, “.”, CR}
and return.
[2] Remove the meeting from ‘the subject’s meetings’.
[3] Remaove the subject from ‘the meeting'’s participants’.
End.

Monitors

ROSIE associates a monitor or control program with each ruleset
which specifies the execution order for all the rules in the ruleset.
Currently, ROSIE supports three different monitors called sequential,
cyclic, and random. These monitors execute a ruleset’s rules in stan-
dard ways. The sequential monitor executes each rule in sequence and,
after executing the last rule, causes the ruleset to return. The cyclic
monitor also executes the rules in the ruleset in sequence; however,
rather than returning when it executes the last rule, it reexecutes the
first rule, and so on. The random monitor repeatedly executes the
rules in the ruleset by choosing the next rule to execute at random.
Future versions of ROSIE will permit knowledge engineers to write
their own monitors.

LINGUISTIC STRUCTURES

Our main goal in developing ROSIE is to provide an understandable
programming language. We have used English to guide this develop-
ment, because it is the language of choice for most domain experts.
Ideally, ROSIE should mimic English exactly. However, this extreme
position presents two problems. First, an expressive and broadly based
language, such as English, allows users to express concepts that might
not map directly onto fundamental representational structures (of
ROSIE or any other programming language). Second, users often need
programming idioms (e.g., variables, for loops) that are awkward to
express in English.

28 ROSIE: A PROGRAMMING ENVIRONMENT FOR EXPERT SYSTEMS

ROSIE allows programmers to specify complex sentences, but it can-
not store such sentences directly in the database. Instead, it decom-
poses a complex sentence into its fundamental structures. ROSIE’s
complex linguistic forms extend the limited expressive capabilities of
its basic representational forms and give the language an appearance
much like that of English.

It is difficult to describe ROSIE’s linguistic structure because the
language is self-recursive. That is, some linguistic constructs rely on
other linguistic constructs that rely on the former constructs. In the
following discussion, we first present terms, which resemble noun
phrases. Terms refer to specific things (i.e., ROSIE elements). A term
may be either an explicit element (e.g., Ronald Reagan) or a description
which refers to an element (e.g., The United States President).
ROSIE'’s descriptions present a difficulty with recursion, because a
description can be modified by prepositional phrases (embedded terms)
or relative clauses (embedded verb phrases). Next we consider
ROSIE'’s verb phrases, both relational and comparative forms. This
leads into a discussion of sentences and conditions. Finally, we discuss
ROSIE’s higher-level linguistic constructs, rules and actions.

Terms

ROSIE terms act as noun phrases. Terms permit ROSIE program-
mers to access, manipulate, and store elements. A term always gen-
erates one or more values, which are always elements. When a term
evaluates, it becomes the element it generates. For example, when the
term the mayor of Los Angeles evaluates, it becomes the element TOM
BRADLEY. Thus, Assert the mayor of Los Angeles is happy would
assert the proposition ‘TOM BRADLEY is happy’ in the database.

Four kinds of terms exist: (1) element terms, which consist of the
elements and element constructors; (2) expressions, which allow a user
to compute a numeric quantity; (3) description-based terms, which com-
pute values by searching the database and optionally invoking rulesets;
and (4) linguistic forms that refer to elements. This last class of terms
includes possessive and anaphoric forms.

The element term includes all the elements and the special linguistic
forms that create new elements. The number probability .7 is not only
an element but also a number term. Similarly, names, strings, tuples,
patterns, propositions, class elements, intentional descriptions, and
intentional actions also serve both as elements and as terms. The
terms that create new elements look much like actual elements; how-
ever, they permit the inclusion of embedded terms. The proposition
constructor illustrates this point well: When ROSIE encounters a

[P SO

THE ROSIE LANGUAGE 29

proposition term, it evaluates all embedded terms until only elements
remain (since proposition elements can contain only a single primitive
relational form and elements). For example, the proposition terms

‘John Smith was late for work’
‘The teacher did punish the student in class’

‘3 + 4 is aprime’
could evaluate to

JOHN SMITH was late for WORK’ ®
‘MARTHA did punish JAMES in CLASS’
‘7 is a prime’

Expressions also serve as terms. Expressions include the standard
arithmetic infix operators as well as unary negation. ROSIE, with its
built-in rulesets, also provides transcendental functions and other
unary arithmetic operators. Typical expressions terms might include 3
+ 4 or the liquid’s volume * the liquid’s density.

Every description-based term consists of a quantifier (some, every)
or a determiner (a, an, the), followed by a description. For example,
every big burly man that does eat quiche uses the quantifier every and
implicitly iterates the enclosing action once for each element it gen-
erates. Thus, had the programmer used this term in the action Display
every big burly man that does eat quiche, when ROSIE evaluated the
statement, it would execute it once for each element that satisfies the
description big burly man that does eat quiche.

Descriptions

ROSIE would be quite stilted if it permitted only simple linguistic
forms such as elements. A richer, more English-like flavor results from
the use of descriptions, which represent elements much as variables
represent values. A description consists of any number of adjectives
followed by a class-noun followed by any number of prepositional
phrases and possibly some relative clauses:’

The sleek red vessel
Every vessel that does start on time

When descriptions and the basic relational forms are mixed, the
resulting sentences are capable of expressing complex concepts that are
both readable and understandable, e.g.,

*When ROSIE evaluates a term, it generates an element. ROSIE prints all elements
in upper case.
"The examples include determiners and quantifiers to make reading the descriptions

A LS AR G RL L — y triTee oy B PR S T e e e me e -

80 ROSIE: A PROGRAMMING ENVIRONMENT FOR EXPERT SYSTEMS

The vesse!l that does not start on time
is not likely to win

Every eligible vessel that is moored in Newport
is likely to race

Descriptions identify a base class (e.g., vessel) along with restrictions
that narrow that class to the concept of interest (e.g., seaworthy vessel
that is docked in Newport). In ROSIE, a description is always preceded
by either a quantifier or a determiner. This is followed by the descrip-
tion itself, consisting of any number of adjectives, the base class noun
with its prepositional attachments, and any number of relative clauses.
Thus, a description designates a set of elements generated by the base
class noun and constrained by the modifiers.

Since descriptions are used extensively to retrieve and add
knowledge, it is important to understand how ROSIE interprets them.
ROSIE interprets each modifier of the base class noun independently.
The ROSIE assertion

Assert John is a big burly man who does eat quiche.
causes the addition of four propositions to the database:

JOHN is a man.

JOHN is big.

JOHN is burly.

JOHN does eat QUICHE.

ROSIE’s interpretations of descriptions can lead to potential pitfalls.
For example, with the additional assertion

Assert John is a small fry.

the database would contain

JOHN is a man.

JOHN is a fry.

JOHN is big.

JOHN is small.

JOHN is burly.

JOHN does eat QUICHE.

This database would generate the same element, JOHN, when asked
Display every small man and Display every big man.

B e N

e e i

THE ROSIE LANGUAGE 31

We also use descriptions to retrieve information from the database.
For example, the two actions Display every seaworthy vessel and
Display every vessel that is seaworthy both generate the same elements.
Each action first generates the set of all elements that are is a vessel.
Next, ROSIE prunes this set by checking that each element also is
seaqworthy.

Thus, adjectives and class nouns are closely related but have dif-
ferent semantics. The “is a class-noun” relation establishes member-
ship in a set, as in

Fudge is a sweet

The “is adjective” form modifies or predicates the element, as in
Fudge is sweet

In the first phrase, we establish fudge as a sweet. In the latter phrase,
we establish that sweet describes or modifies fudge. ROSIE treats
these two uses of sweet entirely separately. Asserting either of these
propositions does not affect the other; and ROSIE cannot infer one
from the other automatically without the user first establishing some
additional relationships (e.g., that any sweet is sweet).

Prepositional phrases in English add specifics to a description. They
play a significant role in ROSIE, becoming an integral part of the data-
base relation by specializing the class definition. For example, the
three phrases

a spot in the sun
a spot on the sun

a spot

have distinct meanings. ROSIE differentiates among descriptions with
dissimilar prepositional phrases even when the class name is the same
in all of them.

Relative clauses also add specifics to an English description, and they
perform the same function in ROSIE. But unlike prepositional
phrases, ROSIE’s relative clauses restrict the set of elements generated
by a description rather than becoming part of the database relation.
ROSIE provides a number of distinct relative clause forms. The fol-
lowing are examples of descriptions with relative clauses and the rela-
tionships they represent.

32 ROSIE: A PROGRAMMING ENVIRONMENT FOR EXPERT SYSTEMS

Description:
A company which is bankrupt
An employee of ITT who does play tennis and who did retire

Relationships represented:
<element> is a company
<element> is bankrupt

<element> is an employee of ITT
<element> does play tennis
<element> did retire

Verb Phrases

Verb phrases provide the mechanism for constructing ROSIE sen-
tences. Together with terms, ROSIE’s verb phrases can perform a
variety of functions. They can, for example, form basic relationships,
compare elements, test propositions against the database, and deter-
mine the cardinality of a set of elements.

ROSIE permits five basic verb phrases, each capturing a specific
class of English usage, and each mapping onto one of the five relational
forms. The first basic verb phrase is class membership, using the is,
was, and will verbs in conjunction with the indefinite article a or an.
These verb phrases can include be and the negative not. Examples are

John Smythe is a doctor
Bill Walsh will not be a witness
Martha Jones was an individual with glasses

The second basic verb phrase is predication. This is similar to the
class membership form, but it replaces the indefinite article with a
“relation-name” and can also add “prepositional elements.” Examples
are

Tom is happy
Rena was not alone at the time

Carol will be late (at the sound of the bell)

The predicate complement, the third kind of verb phrase, creates binary
relations between the subject of the sentence and the term following
the predicate complement. Examples are

Martin is nuclear powered
The play was not really exciting
US Steel will be running rapidly toward Bethlehem

P S

THE ROSIE LANGUAGE 33

The fourth type of basic verb phrase is the intransitive verb, as in

Spot did eat
Raoul does eat with a fork
Billy will not eat without a fuss

The final verb phrase type is the transitive verd, as in

Every student does study biology at school
Susan will cook a steak for dinner
Jill did not divide by 2

In addition to the basic verb forms, a few built-in comparative verb
forms allow comparison of numbers and other elements. Element
equality is tested using the equality sentence form, which can be writ-
ten tersely using the = character or in expanded natural English as is
equal to:

<terml> is equal to <term2>
<terml> = <term2>

<terml> is not equal to <term2>
<terml> =~ <term2>

When number elements are tested for equality, they are equal only if
both have the same units or labels and represent the same numeric
value. Numbers that have different units or labels are not equal
regardless of their numeric values. For example, these sentences will
all test true:

33.2=33.2

40 miles/hour = 40 miles/hour
82 miles = 82.0 miles

17 apples ~ 17

17 apples ~ 17 oranges

ROSIE includes relational forms for comparing number elements,
e.g., greater than, not greater than, greater than or equal to, not greater
than or equal to, and similarly for the less than comparisons. Com-
parisons can be made only between numbers with the same units or
labels. All other comparisons are illegal and will generate errors.
Comparative verb forms are not basic verb forms, and therefore they
cannot be used in propositions or asserted into the database.

The remaining legal verb forms make a variety of tests which may
or may not involve the database. Some are supplied for convenience;

34 ROSIE: A PROGRAMMING ENVIRONMENT FOR EXPERT SYSTEMS

others expand ROSIE’s capabilities in fundamental ways. Like verb
forms, these forms are not basic sentences and therefore cannot be
used in propositions or asserted into the database. They include sen-
tences such as

‘John is a student’ is provably true
‘John is not a student’ is provably false
‘John is not exemplary’ is provably true
‘John is exemplary’ is provably false

These verb forms allow ROSIE to test proposition elements against
the database. A proposition is provably true if it is found in the data-
base, and it is provably false if its negation is found. If neither the
positive nor the negative of the proposition exists in the database, the
test is not provably true and the test is not provably false will both test
true.

Verb forms that test the cardinality of a class of elements take the
form

If there is a file for the employee, print that file.
If there is no file for the employee, request data.
If there is just one enemy ship, attack that ship.
If there is more than one enemy ship, surrender.

Sentences

The largest syntactical unit a programmer can add to a database is
the primitive sentence. However, ROSIE permits the expression of
more complex sentences. To add these to a database, ROSIE first
decomposes the complex sentence into a set of primitive sentences. As
we shall see, conditions, actions, rules, and rulesets all incorporate sen-
tences to effect their results. The constructs discussed above (e.g.,
terms, descriptions, verb phrases, etc.) are the building blocks of
ROSIE sentences.

ROSIE’s primitive sentences are those that define a single relation-
ship. They are constructed using the legal relational forms, with terms
in place of elements. The following are examples of primitive sen-
tences:

John is a man

The student did not fail the exam

John does support the Republican candidate
Every boy does like some girl

John’s father will not succeed in business

Any friendly ship was attacked before 1300 hours

Y

THE ROSIE LANGUAGE 35

There are also sentences that test the element generated by the term
against the constraints of the description. All relationships must test
true for the test to succeed. The not option negates the result of the
test. If the tested sentence is a primitive sentence, it tests true only
when a sentence in the database matches it exactly or when a predicate
matching the sentence concludes true. For example,

If John is an exemplary student of math, display John.
If John is not an exemplary student who did pass the final
and who did pass the midterm, disqualify John.

Other typical sentences are formed with the verb phrases described
previously.

Conditions

Conditions are sentences.that occur within the context of a test such
as if, while, or until. Boolean combinations of sentences can be formed
with the words and and or. The negation of a sentence is formed by
inserting the word not in its appropriate location within the verb
phrase of the sentence. The Boolean connectives and and or are given
ordinary precedence during parsing, so that and groups conditions with
higher precedence. To aid readability when several conditions partici-
pate in some test, the conditions can be separated by commas or
grouped within parentheses.

Two example conditionals are

While John is happy and Mary is sad, . . .
If the value > 0 or the sum isequal to 5, . . .

Rules and Actions

Rules constitute the principal syntactic category of ROSIE. A
ROSIE rule begins with the keyword If followed by a condition and the
rule’s associated actions. ROSIE permits de “nerate rules that consist
only of actions. Degenerate rules are equival. .. to If “true”, actions.

Actions are ROSIE’s workhorses. They act upon ROSIE’s database;
they interact with the user; and they control the system’s inferencing.
There are several important types of actions, including

1. Actions that determine which propositions are affirmed in the
database.
2. Actions that define conditional behaviors.

. —— -

36 ROSIE: A PROGRAMMING ENVIRONMENT FOR EXPERT SYSTEMS
3. Actions that control iterations.
4. Actions for input and output.
5. Actions to invoke and terminate rulesets.
6. Actions for file management.
We describe each of these in turn.

1. The database contains affirmed propositions, which can be posi-
tive or negative, depending on the verb form used. Because ROSIE
supports three possible truth-values (true, false, and indeterminate),
the user must employ a variety of actions to manipulate the different
types of data that can arise. The primary way in which the user
affects the database is by asserting sentences. The assert action takes
as its argument one or more sentences separated by and. Each of these
is interpreted as one or more primitive sentences, and each is affirmed.
When a primitive sentence is affirmed, its negation is denied. The
effect of the deny action is to delete the primitive sentence from the
database if it exists.

2. ROSIE supports several actions that define conditional behaviors
and conditional looping. These include the if, unless, while, and until
constructs.

3. ROSIE supports a variety of types of iterative actions. The most
significant of these is the for each action. This action takes a quanti-
fied description and an action as its arguments. ROSIE performs the
action for the corresponding set of database elements that match the
description. The for each action can be augmented with optional until
and while conditions which restrict the iteration of the for each in the
expected ways. The for each iteration terminates as soon as the until
condition is satisfied or the while condition is no longer true. The user
may also elide the for each and retain the while or until iterator.

4. ROSIE supports very flexible communications with other sys-
tems. The basic output action is send, and the basic input action is
read. Send and read can address files, that is, data structures on the
local machine. The key construct underlying the I/O and string-
manipulation facilities in ROSIE is the pattern. A pattern is a descrip-
tion of a string, which can be as simple as a string constant or as com-
plex as a regular expression defining the strings of interest.

5. Programs implicitly invoke predicate and genérator rulesets.
Each ruleset type exits using distinct actions. Procedural rulesets exit
using the return action. Generator rulesets exit using either the pro-
duce or return actions. Predicate rulesets exit using either the conclude
or return actions.

6. An entire package of other actions has been provided for interact-
ing with files. The parse action reads a file of ROSIE source code,

THE ROSIE LANGUAGE 37

checks it for syntactic errors, produces an executable parsed version of
the original file, and also produces a text version of the original file
that may be edited. When the user loads the parsed version of the file,
ROSIE immediately executes any rules in the file and indicates which
rulesets have been defined. It also establishes the conditions necessary
for interactive editing of rulesets.

ROSIE also provides many facilities to edit, maintain, and manipu-
late files, and it supports other constructs, including flow control
actions. These are covered in detail in The ROSIE Language Reference
Manual (Fain et al., 1981).

|
:
i

e YT S RN GO SO

e e ——

III. INITIAL EVALUATION OF ROSIE

MAJOR ROSIE APPLICATIONS

The ROSIE environment has been used for major system develop-
ment work by Rand projects and by external groups. Three examples
illustrate the diversity of these applications: the development of a
model of legal decisionmaking (Waterman and Peterson, 1981); the
design of the TATR tactical air target recommender (Callero et al.,
1984); and the design of an experimental workstation (Adept) to aid
combat intelligence analysts and combat operations decisionmakers
(Beebe et al., 1984).

The legal decisionmaking expert system demonstrated the appropri-
ateness of using rule-based techniques to encode formal rules of law
together with informal rules of procedure and strategy. The project
explored a number of techniques for encoding legal knowledge. The
final system took a restricted product-liability situation, examined it,
and calculated a final dollar figure that represented the amount of
money a plaintiff could recover in court.

The TATR system was designed to aid Air Force tactical air tar-
geteers in planning strikes against enemy airfields. The system makes
two major interacting choices: It chooses which airfields to strike and
which targets to strike on those airfields. The planning system exam-
ines its options, evaluates the options against a set of metrics, and
chooses the set that maximizes the effect on the enemy.

The Adept Workstation, developed by TRW Defense Systems, is an
ambitious effort to aid military analysts in assessing enemy activities,
using near-real-time intelligence analysis. Much of the processing of
diverse intelligence information involves the use of expert “heuristic”
knowledge. The objectives of the project were to verify the functional
design of the workstation for situation assessment and to demonstrate
the feasibility of applying Al techniques to this domain. The project
included an explicit working demonstration system consisting of about
200 rules programmed in a combination of ROSIE and Lisp.

ADVANTAGES OF ROSIE

ROSIE has been in use for major system development for approxi-
mately four years. Sufficient experience in its use has been gathered to
allow an initial assessment of its advantages and disadvantages.

-t e

e AT s

INTTIAL EVALUATION OF ROSIE »

We believe major advantages have been demonstrated in all of
ROSIE’s applications. For example, results of an explicit evaluation
phase for the Adept Workstation are summarized by Beebe et al.
(1984) as follows:!

. . . the capabilities and potential of the Al software implementation
was most appreciated. “Most encouraging was the thought patterns
in the . .. software.” ... it has “the greatest potential for modifica-
tion and enhancement.” . . . The analysts strongly approved having
the code, that is the ROSIE rule base, in English-like form. This “is
important if the analyst is to trust the automated system.”

The primary advantages of ROSIE are its readability, flexibility, and
expressiveness.

Readability. A knowledge engineer can write an application in
ROSIE so that a specialist in that application area can read it and
understand it. However, a knowledge engineer can also write obscure
code in ROSIE—just as programmers can in other programming
languages and writers can in natural languages. Whether a reader can
understand the final system depends heavily on the overall structure of
the program and its knowledge base. If the expert system’s architec-
ture matches the problem, the program almost always allows graceful
expansion of the system. Often, a domain specialist can make straight-
forward additions or modifications directly, using existing ROSIE code
as a template and modifying the language within that template. On
the other hand, if a knowledge engineer writes the expert system with
little thought to an appropriate underlying structure, the richness of
ROSIE permits writing a diversity of structures that even the most
psychic readers would find difficult to understand, modify, or expand.

Readability remains an important concern. Any tool or methodology
that improves communication between a computer-trained knowledge
engineer and the domain expert with whom that knowledge engineer
must interact eases the construction of the expert system. Problems of
the interface between the knowledge engineer and the domain expert
present a very difficult barrier. If the domain expert cannot verify or
understand the translation of his expertise, communication problems
are exacerbated. It is clearly advantageous to have a medium that can
serve as a common meeting ground for the knowledge engineer and the
domain expert to use in discussing ideas and their representation.

Flexibility. Complex models are usually written as traditional
computer programs, using deeply nested logic and specially tailored
data structures. These models tend to be difficult to change,

The within this are taken from filled out

q\wmiomm e excerpt questionnaires by

v~ T T

e v

40 ROSIE: A PROGRAMMING ENVIRONMENT FOR EXPERT SYSTEMS

particularly when changes affect the fundamental structure of the pro-
gram or data. In contrast, ROSIE—like other rule-based languages
tailored for the production of expert systems—allows, even encourages,
the development of highly modular programs that retain considerable
flexibility even as they expand.

ROSIE programs are primarily constructed from a set of conditional
rules. ROSIE encourages structuring these programs with named
rulesets that cluster rules into operations, generators, or predicates,
which chunk important prescriptive knowledge into single units. How-
ever, ROSIE programs are predominantly “flat” structures composed of
rules and assertions of facts. As such, they permit the graceful intro-
duction of additional rules (or whole rulesets) and assertions. The
resulting flexibility in the program’s structure permits additions or
even “repackaging” of rules into new rulesets that can dramatically
modify program behavior without major reprogramming.

Expressiveness. ROSIE is a rich, complex language. It includes a
wide variety of linguistic forms and permits the expression of complex
concepts. We believe the English-like expressive power of ROSIE goes
sufficiently beyond that of traditional programming languages to per-
mit new modes of expression that could conceivably make the differ-
ence between the ability to express a model and either not making the
attempt or floundering in the process.

DISADVANTAGES OF ROSIE

In its present form, ROSIE is not without disadvantages. We
believe there are two primary areas where improvement is needed:

1. Efficiency. ROSIE as currently implemented in Interlisp exe-
cutes too slowly to permit effective development and testing of
complex models.

2. Writability. It is difficult to rewrite some English-language
concepts in ROSIE.

Limited Efficiency. ROSIE was developed without concern for
size or speed. Our objective was to ease the development of complex
models. Yet models developed with ROSIE quickly grow to such a size
that development, debugging, and testing involve frustrating delays.
Somse of the inefficiency is due to the implementation of ROSIE within
Interlisp, which is already a complex system; some is due to the
inherent complexity of ROSIE; and some is due to inefficiencies in
implementation.

INITIAL EVALUATION OF ROSIE 41

Currently, we are rewriting ROSIE from Interlisp into PSL (Port-
able Standard Lisp). This will not only. circumvent Interlisp’s size and
complexity, it will also increase the availability of the ROSIE language,
since PSL runs on a wide variety of machines. We are also improving
the implementation and searching for ways to improve overall execu-
tion speed.

Limited Writability. Although knowledge engineers can express
many and varied concepts in ROSIE, often quite naturally, they may
encounter difficulty in finding appropriate linguistic forms for some
concepts. ROSIE’s expressiveness and its resulting complexity cause
this difficulty. Its proximity to English causes negative interference—a
knowledge engineer may try to express a concept using correct English
phrasing, only to find that ROSIE does not support that phrasing.
Mapping a correct English phrase into correct ROSIE structure may be
difficult.

A language is “writable” if a user can learn it easily and can then
easily write code that is relatively error-free, both syntactically and
semantically. Restricting a language’s syntax to a small, orthogonal,
and intuitive set of constructs can go a long way toward making a
language writable. Such restrictions tend to make a language’s rules of
composition easier to remember and apply. We are in the process of
orthogonalizing the language and are finding minimal but expressive
constructs that have already helped make ROSIE more writable.

FUTURE DIRECTIONS

We continue to improve ROSIE by evaluating its strengths and
weaknesses, then modifying, extending, or enhancing it as appropriate.
User feedback plays an important role in this process. ROSIE has a
range of users, each of whom wishes to solve problems differently, to
use ROSIE differently. These users are generally either knowledge
engineers interested in solving some problem in a particular domain or
tool builders interested in providing generic help for performance-
program developers. These two user types inevitably merge, to some
degree. Knowledge engineers realize that some portion of their system
can help other users, and tool builders realize that the act of develop-
ing systems provides the perspective necessary to build useful tools.
Both types eventually find their implementation language inadequate;
most of them want ROSIE to work slightly differently, to provide more
control over inferencing, or to provide more expressive representation.
Each user has his or her own set of desired “improvements” to ROSIE.

¢ e a s s o b

L N

42 ROSIE: A PROGRAMMING ENVIRONMENT FOR EXPERT SYSTEMS

Future changes to ROSIE fall into four categories: (1) expressive-
ness; (2) support for specialized structures; (3) meta-structures, meta-
linguistics, and meta-control; and (4) knowledge-based optimization.

Expreesiveness. ROSIE's expressive power is quite broad, permit-
ting the direct representation of a wide range of syntactic constructs.
However, it does not cover all of English. Some linguistic forms that
ROSIE cannot support, such as passive sentential forms, can be re-
stated in other ways that are acceptable to ROSIE. Other linguistic
forms, primarily modals expressing what could be the case, or what
should happen, are presently quite difficult to map into ROSIE. It is
very difficult to express thoughts like John should sue Mary or Susan
might like windsurfing. Extending ROSIE’s linguistic constructs
remains a large part of our research effort and will require careful
study to identify graceful ways of extending the language.

Support for Specialized Structures. The primary goal of the
ROSIE language research project is the development of a computer
language that is directly readable by experts in a discipline. These
experts not only use specialized jargon, they also structure their infor-
mation in specialized ways. For example, information might be suc-
cinctly and readably presented in tabular form, such as a decision table
(Shapiro et al., 1985). Also, experts often describe situations in terms
of a set of objects, each having certain attributes with associated values
or attached procedures (McArthur et al., 1984). Decision tables and
objects seem sufficiently important to warrant their direct inclusion in
ROSIE.

Meta-structures, Meta-linguistics, and Meta-control. Meta-
linguistics will enable us to substantially improve the expressiveness of
ROSIE without increasing ambiguity. Meta-linguistic constructs per-
mit self-reference, that is, they allow a language to refer to itself.
Phrases such as the antecedent in the third rule or the description that
references the theory of strict liability can permit a knowledge engineer
to write code that examines and manipulates procedural knowledge.
Meta-linguistics and the supporting meta-structures will provide the
support necessary to construct programs that reason self-reflexively,
that can explain their actions, that can modify themselves, and that
can learn.

Meta-linguistics and meta-structures will permit ROSIE users to
tailor the language themselves. A full meta-language will allow users to
write new monitors and thus control inferencing on a per ruleset basis.
For example, the sequential monitor might be rewritten as

]
1
;
!

PR

Jrr—

T S PR A v A Sy s 2 T

INITIAL EVALUATION OF ROSIE 43

To execute a set-of-rules in sequential order:

[1] loop: if the set-of-rules is empty, return.

(2] evaluate the first rule in the set-of-rules.

[3] let the set-of-rules be the tail of the set-of-rules.
[4] goto loop.

End.

Knowledge-Based Optimization. As ROSIE has evolved into a
stable and mature programming environment, performance has become
a critical issue. ROSIE is too slow for many applications, and as we
expand it to include meta-linguistic capabilities, it will slow down even
more. To correct this weakness, we are developing methods not only to
optimize ROSIE’s internal code but also to optimize the code that
ROSIE generates when it compiles a ROSIE program into Lisp. We
are applying some of these techniques in our rewriting of ROSIE into
PSL. One such technique, symbolic evaluation, allows us to expand
function calls that have at least one constant argument into an
equivalent call on a new function. The new function does not need the
constant argument, since it assumes that value. This process of sym-
bolic evaluation generates code that executes more rapidly but may, at
times, require more memory. With judicious application of the tech-
nology, however, we can increase the running speed of many routines
without suffering any cost in memory.

Symbolic evaluation alone cannot hope to achieve the necessary
speed improvements, but symbolic evaluation together with other tech-
niques that use the program’s knowledge can. One such technique
could analyze a ruleset together with all the other rulesets that use it
or that it uses. In the process, the optimizer constructs a database of
global information concerning each ruleset that can be used in applying
optimization rules.

CONCLUSIONS

ROSIE is a powerful expert system programming language. Its com-
bination of English-like syntactic structure and intuitive semantics
makes it a powerful prototyping and development environment for
knowledge engineers and domain experts, both of whom can use it to
communicate with one another and with the computer.

ROSIE has shown that syntactic parsing techniques can go a long
way toward humanizing programming languages. Syntactic resolution
of word usage seems sufficient for encoding the prescriptive knowledge
of a domain. Admittedly, domain semantics—the meaning ascribed to
words within a domain—are very important to understanding ideas

e

-

Bt caadiCR

44 ROSIE: A PROGRAMMING ENVIRONMENT FOR EXPERT SYSTEMS

within that domain, but a knowledge engineer needs only to define
them as completely as needed.

ROSIE’s major drawback, its slow execution speed, remains a con-
straint on broader use. We are attacking this problem directly, and we
expect that future versions of ROSIE will not only be expressive, read-
able, and writable, but will also support development and execution of
expert systems in reasonable time frames.

— e s .

REFERENCES

Anderson, R. H., M. Gallegos, J. J. Gillogly, R. B. Greenberg, and R.
Villanueva, RITA Reference Manual, The Rand Corporation,
R-1808-ARPA, September 1977.

Anderson, R. H,, and J. J. Gillogly, Rand Intelligent Terminal Agent
(RITA): Design Philosophy, The Rand Corporation, R-1809-
ARPA, February 1976.

Beebe, H. M., H. S. Goodman, G. L. Henry, and D. S. Snell, “The
Adept Workstation: A Knowledge Based System for Combat In-
telligence Analysis,” Proceedings of the 7th MIT/ONR Workshop
on C3 Systems, MIT, Cambridge, Massachusetts, 1984.

Callero. M., D. A. Waterman, and J. R. Kipps, TATR: A Prototype
Expert System for Tactical Air Targeting, The Rand Corporation,
R-3096-ARPA, August 1984.

Erman, L. D., and V. R. Lesser, “A Multi-Level Organization for Prob-
lem Solving Using Many Diverse Cooperating Sources of
Knowledge,” Proceedings of the Fourth International Joint Confer-
ence on Artificial Intelligence, Thilisi, USSR, 1975.

Fain, J., D. Gorlin, F. Hayes-Roth, S. Rosenschein, H. Sowizral, and D.
Waterman, The ROSIE Language Reference Manual, The Rand
Corporation, N-1647-ARPA, December 1981.

Fain, J., F. Hayes-Roth, H. Sowizral, and D. Waterman, Programming
in ROSIE: An Introduction by Means of Examples, The Rand
Corporation, N-1646-ARPA, February 1982.

Hayes-Roth, F., D. Gorlin, S. Rosenschein, H. Sowizral, and D. Water-
man, Rationale and Motivation for ROSIE, The Rand Corpora-
tion, N-1648-ARPA, November 1981.

McArthur, D., P. Klahr, and S. Narain, ROSS: An Object-Oriented
Language for Constructing Simulations, The Rand Corporation,
R-3160-AF, December 1984.

Quinlan, J. R., INFERNO: A Cautious Approach to Uncertain Infer-
ence, The Rand Corporation, N-1898-RC, September 1982.

Schwabe, W., and L. M. Jamison, A Rule-Based Policy-Level Model of
Nonsuperpower Behavior in Strategic Conflicts, The Rand Cor-
poration, R-2962-DNA, December 1982.

Shapiro, N.,, H. E. Hall, R. H. Anderson, and M. LaCasse, The
RAND-ABEL Programming Language: History, Rationale and
Design, The Rand Corporation, R-3274-NA, August 1985.

¢
1
{
1
¢

46 ROSIE: A PROGRAMMING ENVIRONMENT FOR EXPERT SYSTEMS

Sowizral, H. A., “Experiences with Distributed Heuristic Agents in
ROSIE,” Proceedings of the IEEE Conference on Systems, Man,
and Cybernetics, Bombay, India, 1983.

Waterman, D. A., R. H. Anderson, F. Hayes-Roth, P. Klahr, G. Mar-
tins, and S. J. Rosenschein, Design of a Rule-Oriented System for
Implementing Expertise, The Rand Corporation, N-1158-1-ARPA,
May 1979.

Waterman, D. A., and M. A. Peterson, Models of Legal Decisionmaking,
The Rand Corporation, R-2717-1CJ, 1981.

