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1. INTRODUCTION

The dynamic determination of optimum routes between nodes is fundamental in the opera-
tion of multihop packet-radio networks (PRNET), but may become very costly for PRNETs with
several mobile nodes. A number of routing schemes have been proposed in the past to cope with
this problem, and can be classified as centralized, distributed, and hierarchical. In the centralized
scheme, also called station-mode routing [KAHN-78], a single node (called the station) ascertains
the best path between each pair of nodes and upon request sends the requisite routing information
to nodes in the PRNET. This routing strategy would be unacceptable for large PRNETS because
of its inherent vulnerabilities [GAFN-81; WEST-82]. In a PRNET using the fully distributed
scheme (also called stationless mode [WEST-82]), which we shall call a flar PRNET, all the nodes
participate as peers in the same distributed algorithm to determine dynamically the best path to
every node. Finally, a number of hierarchical routing schemes have been proposed for the
management of routing information in large PRNETs [BAKE-81, 83; MACG-82; NILS-80;
SHAC-84a]. The main idea of such schemes is to allow each node to maintain exact routing infor-
mation regarding nodes very close to it, and less detailed information regarding nodes farther
away from it. The objective of doing so is to obtain a reasonable compromise among the size of
routing tables, number of updates required to maintain such tables, and the speed with which
updates are propagated.

In this paper, we analyze the performance of the hierarchical routing strategy for large,
mobile PRNETS previously proposed by Shacham and Klemba [SHAC-84a, 84c], and compare it
with other hierarchical and fully distributed routing strategies. We focus on two main perfor-
mance figures in our analysis: (1) the time required to obtain consistent routing tables at all the
nodes of a PRNET after topological changes, and (2) the length of the paths that can be obtained
with different routing strategies. We chose to analyze worst-case network performance, rather
than average network performance, to be able to obtain as general PRNET design guidelines as
possible by making minimum assumptions about the topological characteristics of the PRNET.

In Section 2 we describe the hierarchical routing scheme ... v, >ted by Shacham and Klemba,
and in Section 3 we compare its performance with those of other - - mes. In doing so, we extend
the results presented by Hagouel [HAGO-83] and by Baratz and Jaffe [BARA-83) on path lengths
in hierarchical networks; our results on path lengths can also be applied to networks with point-to-
point links. In Section 4 we address the optimization of network organization with respect to the
quality of routing in PRNETs using the upper bounds on path lengths obtained in section 3.
Finally, in Section 5 we discuss the results presented in sections 3 and 4, and outline how our

results can be applied to the design of PRNETs.
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2. A HIERARCHICAL ROUTING STRATEGY FOR LARGE
PRNETS

2.1 BASIC NETWORK ORGANIZATION

The routing scheme proposed by Shacham and Klemba [SHAC-84a, 84c] is similar to the
multistation scheme [BAKE-81), and is based on three major premises:

(i) The nodes of the PRNET are organized into m levels of clusters (where m = 1) to reduce
the length of routing tables. Nodes represent clusters at Level 0, a group of nodes is a dus-
ter at Level 1 (called 1-cluster), and a cluster at Level & (called k—cluster) is the union of
clusters at Level k — 1.

(2) The updating of routing information among clusters is carried out on an event—driven basis
(i.e., immediately after every topological change), but by only a few nodes called
global—routing nodes or GRN (one per 1-cluster). This is done in the hope of accelerating
the dissemination of updates that affect a large number of nodes, while update traffic levels
are kept down.

(3) Each node participates in two parallel updating procedures. One procedure updates routing
information about other nodes that are close by; the other updates routing information about
distant nodes organized into clusters and is controlled by GRNs.

Figure 1 illustrates a PRNET organized into three levels of clusters; the links between nodes
of the figure indicate radio connectivity. Every node must be affiliated with at least one 1-cluster
to coinmunicate with the other nodes in the PRNET. Those nodes that have radio connectivity
with nodes in different 1-clusters are called boundary nodes. Two 1-clusters that have az least one
boundary node in common (i.c., one that is affiliated with both clusters) are said to overlap. In
contrast, two 1-clusters connected by boundary nodes that are only affiliated to any one of them
are said to be adjacent disjoint 1-clusters. Note that clusters at levels 2 and above never overlap
(to be explained later). The difference between overlapping and adjacent disjoint 1-clusters can be
appreciated by observing Figure 1(a). Cluster A.1 and Cluster A.2 overlap because Nod : g is affi-
liated with both clusters. In contrast, Cluster A.1 and A.3 are disjoint but adjacent hecause nodes
a and b have radio connectivity with each other but belong to only one of the two 1-clusters. The
procedure by which a node becomes affiliated with a 1-cluster is not addressed in this paper.
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Each node maintains two routing tables:

(1) A node—level routing table (NRT), which contains routing information about nodes in the
same 1-cluster with which the node is affiliated.

(2) A group—level routing table (GRT), which contains routing information about the clusters in
the same higher-level clusters to which the node belongs.

The nodes within a given 1-cluster update their NRTs as if they constituted a small, flat
PRNET. The GRN's of the PRNET are organized as a virtaual network; the nodes of this network
are the GRN’s, and a link is defined between two GRN's if and only if there is radio connectivity
among boundary nodes of their respective 1-clusters, The messages exchanged among GRN's are
forwarded through multihop paths formed by node-to-node links; simple nodes in those paths sim-
ply forward such messages towards the destination GRN's and retransmit the messages as necessary
to ensure reliable transmission. Hence, the network of GRN's constitutes a virtual point—to—point
network; Figure 1(b) illustrates the virtual network of GRN's for the PRNET of Figure 1(a). The
virtual network of GRNs utilizes the routing scheme proposed by Kamoun and Kleinrock
[KAMO-76] to update the GRTs of GRNs. A more detailed description of the contents of NRTs
and GRT', together with the procedures followed to update them, is provided in the next two sub-
sections,

2.2 NRT UPDATE

In small, single-channel PRNETs with flat organizations, a node can receive only one
collision-free message at a time from the radio channel, nodes can be highly mobile, and link qual-
ity may change fairly often. In such PRNETS, it appears that periodic routing-table update algo-
rithms based on next-node tables® and with no retransmission of updates, such as the tier-routing
algorithm (WEST-82], are a good choice for such networks, and is, therefore, the type of algo-
rithm used in our scheme. Simple nodes, boundary nodes, and GRN's within the same 1-cluster
participate as peers in a periodic routing update algorithm on the basis of their NRTs. The NRT of
a given node contains an entry for each node in its 1-cluster; each entry specifies the next node to
a given 1-cluster destination and the length (i.e., number of links between nodes) of the shortest
path to that destination. NRTs are updated by means of node~level updates (NLUs) transmitted
periodically and without retransmissions within a 1-cluster. An NLU contains all the entries in the
NRT and GRT of a node; the rationale for including the content GRT's in the NLUs is explained
below.

* A next-node table specifies summary routing infarmation consisting of the next node and the length of the
minimum path to every node in the PRNET.

-4.




Note that boundary nodes and GRN's must maintain an entry in their NRT's for each node in
all the 1-clusters with which they are affiliated. Whenever either a simple node or a GRN receives
NLUs from boundary nodes referring to 1-clusters with which it is not affiliated, it simply ignores
them. This guarantees that information in NRT' is not propagated across clusters’ boundaries.

2.3 GRT UPDATE

Because of the point-to-point nature of a virtual network of GRNs, it is possible to employ a
reliable, event-driven algorithm to maintain consistent GRT', i.e., an algorithm in which updates
are sent whenever topological changes occur and in which reliable transmission of updates is
ensured. More specifically, the network of GRN's is organized in m cluster levels by means of the
Kamoun-Kleinrock scheme, which implies that

(1) Clusters of GRNs (clusters at levels 2 and above) are disjoint.

(2) All GRNs in the network of GRN's participate as peers in the same algorithm to update the
entries of their GRTs.

(3) The GRT of a GRN contains m — 1 j—subtables (1 < j=<m — 1). A j-subtable contains
entries for all j-clusters within the GRN’s (j + 1)-cluster. Each such entry specifies: (a) the
destination j-cluster; (b) the next GRN in the chain of GRN's to that destination; (c) at least
one boundary node towards the next GRN; (d) the number of GRN-to-GRN hops in that
chain.

Entry (b) above permits routing of messages from a node to remote clusters through adja-
cent clusters, while entry (c) allows a node to route messages to boundary nodes in its own 1-
cluster towards remote clusters. The distance from a GRN to its own k-cluster is set to 0, while
the length of the shortest path from a GRN to a remote k-cluster equals one plus the minimum of
the shortest path lengths reported by its neighbor GRNs for that destination. Figure 1 (c) illus-
trates the content of the GRT and NRT for Node 1 of Figure 1 (a).

Cluster—level updates (CLUS) from a GRN are transmitted reliably on an event-driven basis
to all its neighbor GRN'S in the same way in which updates are transmitted among nodes in the
scheme proposed by Kamoun and Kleinrock [KAMO-76). Each CLU contains entries consisting of
the identifier of a destination j-cluster, the next GRN in the chain towards it, and the number of
GRN-t0-GRN hops in that chain. Each such entry corresponds to an entry of a GRN’s GRT that
was updated because of a change in connectivity with neighbor GRNs, or because of CLUs
received from other GRNs. A GRN sends a CLU to a neighbor GRN containing only that routing
information that refers to common destinations in their GRTs. Hence, if two GRNs, x and y, are
in the same k-cluster, but in different (k — 1)-clusters, GRN x sends CLUs to GRN y that refer to
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clusters at levels equal to or larger than k.

As we have said, each node stores a GRT with the information necessary to route packets
across 1-clusters. However, the GRN's are the only ones that can initiate the update of GRTs by
exchanging CLUs; simple nodes or boundary nodes that receive CLUs simply forward them
without any further processing. When GRNs generate CLUs, they distribute the completely
updated GRTs to simple nodes and boundary nodes as part of the next NLUs transmitted periodi-
cally by the GRN's of 1-clusters. Simple nodes and boundary nodes are capable of updating their
GRTs because each NLU contains the entire GRT and NRT of the transmitting node; hence, a GRN
that updates its GRT communicates such updates to the rest of the nodes in its 1-cluster in the next
NLU (transmitted periodically). Note that a complete GRT and NRT must be included in each
NLU because NLUs may be lost and no NLU is retransmitted.

2.4 ROUTING AMONG NODES IN DIFFERENT CLUSTERS

Consider two simple nodes who lie within the same (k + 1)-cluster, but in different k-
clusters: a simple Node a in k-cluster A and Node b in k-cluster B. The only information that
Node a has to route messages to Node b consists of the next GRN towards k—cluster B and one
or more boundary nodes within Node a’s 1-cluster towards that GRN. Accordingly, nodes carry
out routing as follows:

(1) Node a looks up its GRT to obtain the next GRN towards the destination cluster; the entry in
its GRT provides at least one boundary node towards that destination.

(2) Node a looks up its NRT for a next node towards that boundary node.
(3) The nodes in the path from a to b perform the same type of procedure.

Boundary nodes must move packets across boundary nodes. As we have stated previously,
boundary nodes of overlapping clusters maintain routing information about all the nodes in the 1-
clusters to which they belong; hence, they can forward messages across 1-cluster boundaries as any
simple node. One way to support routing across nonoverlapping 1-clusters is for boundary nodes
to add an entry in their NRT for each adjacent boundary node; such entries would specify that the
adjacent boundary nodes are 1 hop away (i.e., they are the next nodes towards themselves).




3. PERFORMANCE OF THE PROPOSED SCHEME

In this section we compare the hierarchical routing scheme being proposed with other
schemes. Specifically, we consider the following cases:

(1) A PRNET organized according to the scheme described in the previous section, which we
shall refer to as a G—network.

(2) Aflat PRNET

(3) A PRNET in which all the nodes are organized according to the Kamoun-Kleinrock scheme.
We shall refer to this type of PRNET as a K —network

Figure 2 illustrates the structure of K-networks using the same PRNET depicted in Figure 1
as a G-network. An examination of both figures shows that the basic difference among K-
networks and G-networks is the metric assumed to measure the distance from a node to any other
node in a remote cluster. In the G-network of Figure 1, the distance between Node 1 and any
destination in a remote j-cluster (j = 1) is the number of GRN-to-GRN hops from Node 1's 1-
cluster to any 1-cluster in the remote j-cluster; for instance, the distance from Node 1 to any desti-
nation within 2-cluster C is five hops. In contrast, in the K-network of Figure 2, the distance
between a node and a destination in a remote cluster (i.e., the highest-level cluster that the source
and the destination do not share) is measured by the shortest path (in node-to-node hops) to a
boundary node in such a remote cluster. For instance, the distance from Node 1 to any node in 2-
cluster C is twelve node—to—node hops. Note that if the PRNET had a flat organization, Node 1
would have to know the shortest distance to all the other 26 nodes in the PRNET.

3.1 MAXIMUM PATH LENGTHS-QUALITY OF ROUTING

Organizing a PRNET into hierarchies reduces the amount of information possessed by each
node about the topology of the network. Accordingly, the routing decisions made by a
hierarchical-network node may not yield the best possible routes; in this subsection we quantify
this effect. We obtain the ratio of the worst-case path lengths that can be obtained in G-networks
and K-networks with respect to the optimum path lengths obtained in flat networks. We must
point out that the worst cases for G-paths and K-paths described here can in fact be attained, as
will be apparent from the derivations that follow.

We shall assume throughout this subsection that the routing tables (VNRT's and GRT') of net-
work nodes are correct and that clusters do not overlap. Furthermore, we consider that links are
bidirectional and that internodal distances are measured in number of hops. We shall refer to the
shortest path between two nodes of a flat PRNET as a flat path.

-7
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3.1.1 K-Networks

Hagouel has shown that, in the worst case, the shortest paths obtained between two nodes of
different m-clusters in » k-level network (m = k) based on routing tables constructed according to
the Kamoun-Kleinrock scheme can be 2™ — 1 times longer than the minimum paths that would be
obtained in a flat network [HAGO-83). Baratz and Jaffe [BARA-83] have shown the same result
for the case in which m = 2. This result was obtained under the assumption that the actual
minimum path between any two nodes in the network must always lie within a 1-cluster common
to both nodes. However, as has been pointed out by Baratz and Jaffe [BARA-83], there may
exist some networks in which that condition cannot be achieved. The following two theorems
extend Hagouel's result, as well as Baratz and Jaffe’s, by postulating that the shortest path
between two nodes, assuming a flat organization, may or may not be fully contained within a 1-
cluster common to both nodes.

In the following, v/ shall refer to the paths obtained on the basis of routing tables structured
according to the Kamoun-Kleinrock scheme as K—paths. A K-path between two nodes that belong
to the same j—cluster must be contained within that cluster in its entirety.

Theorem 1: Consider a two-level K-network in which all 1-clusters have diameters® less
than or equal to d node—to—node hops. If w is the length in node-to-node hops of the shortest
K-path traversed between two different nodes in the K-network, and w,, is the length of the flat
path between the same nodes given a flat network organization, then

r=-le+% (where d = 1) 1)

Wopt

Proof: If the two nodes (a and b) belong to the same 1-cluster, the K-path between them
can be as long as d, the largest diameter of a 1-cluster. On the other hand, as shown in Figure 3,
the two nodes could be connected to the same boundary node of an adjacent 1-cluster; hence we
obtain the following:

rts-g-sl-i-%

@

Now let us assume that the two nodes g and b are located in different 1-clusters (C(a) and
C(b), respectively), and let us consider Figure 4. The minimum K-path obtained between a and b
equals x; | J x, | x; , where (a) x, is the (minimum) path traversed within C(a) from Node a to
a boundary node; (b) x, is the minimum K-path between C(a) and C(b); and (c) x, is the
minimum path between the boundary node reached at C(b) and Node b. Similarly, the shortest
* The diameter of a network is the length of the longest minimum route between any two of its nodes.
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path between the same pair of nodes, given a flat network organization, equals y, |J y, | », (as
shown in Figure 4). Hence:

eyl * Jegl + ey
S B F DA+ bl ®)

According to the Kamoun-Kleinrock scheme, in a 2-level K-network each node knows the
shortest distance to every 1-cluster. Hence, the K-path from any Node a in C(a) to a boundary
node in C(b) (e.g., BN,) has shortest length, which means that

bl + bal + bl 2 Iyl + sy @

simply because BN, must be closer (in hops) to a than b (Figure 4). Using the inequality of (4) in
(3), we obtain:

I
b+ bl + b3l ©

In the worst case, [r;], the length of the minimum path between the boundary node reached
at C(b) and Node b, can be as long as 4. On the other hand, ly;| may be as small as 0 or 1,
depending on whether the destination node, b, is a boundary node or not.

rsl+

Let Node b be a boundary node, i.e., ly;| = 0. Then equation (5) becomes

R e ©

Because nodes a and b lie in different 1-clusters and no duster overlap may occur, ly,| = 1;

the worst case occurs when ly,| = 1. If Node a is a boundary node (ly,| = 0) then Node a must

be adjacent to Node & (Jx,| = 0); because every node must know its neighbors, this implies that

r =1=1+ d72. If Node a is not a boundary node, then ly,| > 0, and the worst case is obtained

when ly,| + ly,] = 2 (i.e., either when a is a boundary node and there is an intermediate node
between a and b, or when both |y, | and ly,| equal 1). For this case Equation (1) holds.

Now assume that Node b is not a boundary node, i.e., ly;] = 1. Then Equation (5) becomes

rs<1+

d
DEEE @
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Again, because a and b lie in different clusters, ly,| + ly;| = 1, and the worst case satisfies
Equation (1). o

FIGURE 3

J

FIGURE 4
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Theorem 2: Consider an m—level K-network in which all 1-clusters have diameters of
lengths less than or equal to d node-to-node hops. Under stationary conditions, if w is the length
(in node-to-node hops) of the K-path traversed between two nodes in different k-clusters of the
K-network (k = m ), and w,, is the length (in node-to-node hops) of the flat path between the
same nodes, then

rk=-wi-52"2(2+—g-)—1 for 2sk=m. (8)
opt

Proof: By induction on k.

Letr, (i = 1,2, ..., k) denote the ratio of w over W, for an i-level K-network. Fori = 1,
r, must be one since 0—level clusters correspond to the nodes themselves. From theorem 1, we

know thatr, < 1 + -g-=2°(2+g-) -1

Now assume that, at level k = n, r, obeys the inequality r, < 2"~2(2 + 'g-) -1,

and postulate a K-network of n + 1 levels. Figure 5 shows the minimum K-path between an arbi-
trary pair of nodes a and b that belong to different n-clusters. It also shows a minimum path
when no clustering is assumed. The minimum K-path between a and b equals x; | x, | x5 ;
similarly, the shortest path between the same pair of nodes, given a flat network organization
equals y; U y2 U y;. Hence:

= lml + el + )
1 = BIF b bl ©)

Let a be an shortest path between Boundary Node BN, and b when no clustering is
assumed; because a is the shortest, it follows that

laf = ] + leal + wy, (10

From our inductive assumption, we know that

sl = lal [2”'2(2 + %) - 1] 11)

Using the same arguments as in Theorem 1, we obtain [x;| + |x,| =< w,,. Substituting this
inequality, and (10) and (11) in (9), we obtain

Fasy S 27742 + -g-) -1 12)
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and the theorem follows by induction. o
3.1.2 G-Networks

Consider a connected G-network. Refer to the paths obtained according to the cluster-level
route tables of GRNs as G—paths. A G-path between two nodes in the same k—cluster must be
contained fully within that cluster. The following results specify the worst-case ratio between
optimum paths obtained in flat networks and optimum G-paths.

Theorem 3: Consider a G-network of two levels (i.e., nodes and 1-clusters) in which all 1-
clusters have diameters less than or equal to d node-to-node hops. If w is the length in node-to-
node hops of the shortest G-path traversed between two different nodes in the G-network, and
W, is the length of the flat path between the same nodes, then

w
r o sd+1 (13)
Proof: As was the case in the proof of Theorem 1, if the two nodes (a and ) belong to the
same 1-cluster, then

rs-‘zisd+1 (19)

Now assume that the two nodes g and b are located in 1-clusters (C(a) and C(b), respec
tively) and consider Figure 4 again. The minimum G-path obtained between a and b equals
x; J x3 U x5 ; the shortest path between the same pair of nodes, given a flat network organiza-
tion, equals y; |J y; {J 3. Hence, r equals the RHS of Equation (3).

Intercluster routing is based on the GRTs that only GRN's update and distribute among the
nodes in their own clusters. Hence, a given G-path between nodes in different 1-clusters is selected
based only on two things: (1) the length in GRN-to-GRN hops of the intercluster path from the
originating node’s GRN to the destination node’s GRN; (2) the length of the path from the ori-
ginating node to the nearest boundary node (in terms of node-to-node hops) in the node’s 1-
cluster that leads to the next GRN in the path to the destination GRN. Because w is a shortest G-
path, c,:,thenumbaofl-dusterstraversedinxz, mustbelasthmorequaltocyl,thenumberof

clusterstraversedinyz.lxtcy:=x— 1,thenc, SK - 1.
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Since the number of hops in each cluster included in y, must be at least one, it follows that
ly.] = K (Figure 4). On the other hand, from Figure 4 we observe that
imK-1
ol = X + ‘21 h (15)
Since by assumption all the clusters in the G-network have diameters less than or equal to d, we
obtain that [x,] = K + (KX — 1)d. Because Node a does not know the length of the path along
which the message will travel within C(b) and a 1-cluster can have a diameter as long as d, |x,| can
be as long as d. Hence:

jgy| + K (1 + d)
bl + bsl + K

(16)

As it was done for Theorem 1, let Node b be a boundary node, then ly,| = 0. If Node a is a
boundary node (ly;| = 0) then |x,| = 0 and the RHS of Equation (16) becomes 1 + 4. If Node a
is not a boundary node (ly,| > 0) then the worst case occurs when [x,| = d and ly,| = 1. With
these values Equation (16) becomes

rsd+xf_1 an

The RHS of (17) has d + 1 as its upper bound when X tends to infinity.

Now assume that Node b is not a boundary node, then ly;| = 1. If Node a is a boundary
node, then ly,| = [x,| = 0, and with [y,] = 1 (worst case), Equation (16) becomes

K (1+4d)
rs S5TF (18)

The RHS of (18) also has 1 + d as its upper bound when X tends to infinity. If Node a is not a
boundary node, then ly;] = 1 and |x,| = d. Hence:

+K) +
rs_duzf)x K (19)

Again, the RHS of (19) has 1 + J as its upper bound as K tends to infinity, and the theorem fol-
lows. o

Corollary 1: Assume an m—level G-network in which all 1-clusters have diameters of
lengths less than or equal to d node-to-node hops. Under stationary conditions, if w is the weight
of the G-path traversed between two nodes in two different k-clusters of the G-network ( k < m),
and w,,, is the weight of the flat path between the same nodes, then

r,,=-;"’—sz“2(2+d)—l for 2sksm. (20)
opt
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Proof: This corollary follows immediately from Theorem 2 and Theorem 3. The proof is
by induction on k as in Theorem 2, but with r, < d + 1 (which follows from Theorem 3). O

3.2 OVERLAPPING

Overlapping of clusters may offer a number of advantages in terms of the PRNET's vulnera-
bility in case of resource failure. Furthermore, it could permit the smooth transition of a node
from one cluster to another, as well as the routing of messages to nodes even after the failure of
some GRN's or the partition of 1-clusters. Here, we analyze whether overlapping also makes G-
network paths and K-network paths significantly shorter.

Corollary 2: Consider an m—level K-network in which all 1-clusters have diameters of
lengths less than or equal to d node-to-node hops. Assume further that all adjacent 1-clusters
overlap in at least one boundary node. Under stationary conditions, the ratio of the length of the
K-path between two nodes in two different k-clusters of the network and the flat path between the
same nodes, if we assume a flat network organization, is bounded by

n=-s2%2+4)-1 fo 2sksm (21)
opt

Proof: The proof of this corollary follows exactly the form of theorems 1 and 2. For
k = 1, the proof is exactly the same as in Theorem 1, except that in this case boundary nodes
must belong to all the 1-clusters that they join. o

Hence, overlapping of 1-clusters does not reduce the worst-case ratio of K-path lengths to
flat path lengths.

Corollary 3: Consider a two-level G-network in which all 1-clusters have diameters less
than or equal to d node-to-node hops. Assume further that overlapping must occur among adja-
cent 1-clusters. Under stationary conditions, the ratio of the length of the G-path between two
nodes of the G-network and the flat path between the same nodes is bounded by

ro= ;‘: <d ()

Proof: The proof of this corollary follows exactly the form of Theorem 3. In this case,

however, if the two nodes belong to the same 1-cluster, the G-path between them can be as long

as d, while the two nodes could be connected to another node ¢ in another duster through a path

of four hops, as shown in Figure 6. Hence, r < d/4 < d. Another difference in the proof is that

the lengths of the links between adjacent 1-clusters equal 0 because adjacent 1-clusters must over-
lap. Therefore;
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lmK-1
e = ‘21 h = XK-1)d (23
Using the above expression for |x,|, following the same procedure as in Theorem 3 and con-
sidering the limit as X - @, we obtain the result in (22). O

Corollary 4: Consider an m—level G-petwork in which all 1-clusters have diameters of
lengths less than or equal to d node-to-node hops and in which adjacent 1-clusters overlap in their
boundary nodes. Under stationary conditions, the ratio of the length of the G-path between two
nodes in two different k-clusters of the network (k = m) and the flat path between the same
nodes, if we assume no clustering, is bounded by

= 42— s 2%-%1 +4d) -1 for 2sk=m. (24)
Wopr
Proof: The proof of this corollary follows directly from Theorem 2 and Corollary 3. The
proof is by induction on k as in Theorem 2, but with r, s d (which follows from Corollary 3).
o

Equations (20) and (24) show that there is some improvement in the worst-case ratio of G-
paths to flat paths when 1-clusters overlap.

3.3 TIME OF CONVERGENCE

To provide an unbiased comparison between hierarchical and flat routing schemes, instead of
considering any particular update algorithm, we will assume that the best—possible update algo-
rithm is used in both cases. The best possible update algorithm (which we shall call the
BPU algorithm) for a given network (flat or hierarchical) converges as fast as possible and with a
minimum number of update messages. For a network of V nodes and diameter D, such an algo-
rithm would require D synchronous update cycles to converge to a stable state [SCHW-80] in the
worst case (e.g., when all routing tables must be updated). The fact that a BPU algorithm takes
D cycles to complete implies that an update message must be forwarded through a chain of D
internodal hops from the beginning to the end of the update procedure.

-16 -
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A BPU algorithm can be either periodical or event-driven. A periodical BPU algorithm is one in
which update messages are sent out by each node at regular intervals; in an event-driven BPU
algorithm updates are sent out as a result of a topological change by those nodes affected by such
a change. By assuming reliable transmissions and a constant propagation delay over the radio
links, synchronous operation of a BPU algorithm is obtained. The number of synchronous update
cycles times the longest propagation delay for each update provides an upper bound on the con-
vergence time of the algorithm [JOHN-83).

In the case of K-networks and flat PRNETS, an event driven PBU algorithm would create
too many collisions in the radio channel; hence, we will assume a periodic BPU algorithm in such
cases. For the case of G-networks, we will assume that a periodical BPU algorithm is used to
update NRTs, and that an event-driven BPU algorithm is used to update GRTs, and assume syn-
chronovs operation of such algorithms to analyze the worst case. This strategy is feasible because
of the relatively small size of 1-clusters and the relatively few GRNs of a G-network.

The results of this section provide a lower bound for the worst-case convergence times of
routing algorithms in flat and hierarchical PRNETs (G-networks and K-networks). We use such
bounds solely to assess the relative benefits of hierarchical and flat network organizations; worst-
case convergence times for specific algorithms are presented elsewhere [GARC-84].

Throughout this subsection we assume that no transmission errors occur in the radio channel
and that all radio links are bidirectional.

3.3.1 Updates Affecting NRTs

As we have stated, the update of NRTs is carried out within a 1-cluster just as in a PRNET
with a flat organization. The following proposition specifies the worst-case convergence time after
failure in flat PRNETSs.

Proposition 1:  Consider a flat PRNET with diameter D. Assume that a topological change
occurs and that there are no more after that. Then, the time required by the PRNET to converge
to a stable state after the topological change has been detected is bounded by [D . Tp] under the
BPU algorithm. T, is the time between the transmission of two consecutive periodic updates by
the same node.

Proof: The nodes of a flat PRNET transmit their updates periodically every T, seconds;
nodes in radio connectivity must access the channel at different times to avoid collisions. In the
worst case, after a Node a has sent its update corresponding to Cyde j, it will not be able to
receive and process the update for Cycle j from a neighbor b before it has to send its update for
Cydle j + 1. Hence, each update cycle will take T, seconds at each node and the proposition
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holds because the BPU algorithm takes D synchronous update cycles to converge. O

It follows from the above that, in a PRNET organized as a G-network but using a periodic
BPU algorithm to update NRTs, the maximum convergence time after a topological change that
does not affect the connectivity among GRNs is [d . Tp}, where d is the maximum diameter of a
1-cluster of the G-network and Tp is the time between two NLU transmissions from the same
node.

3.3.2 Updates Affecting GRTs

If the proposed hierarchical routing scheme is implemented, the contents of GRT's need to be
changed only after the following two cases of topological change: (1) changes on links or boundary
nodes joining two or more clusters; (2) the addition, deletion, or partition of a cluster. We will
consider just the first case, as it does not involve dluster reconstitution mechanisms that are highly
dependent on the type of overlapping among clusters, the treatment of which lies beyond the
scope of this paper.

The following proposition and theorem show the worst-case convergence time after a
cluster-level topological change for K-networks and G-networks.

Proposition 2: Consider a PRNET that uses a periodic BPU algorithm and whose nodes
are organized as an m—level K-network. Assume that a topological change occurs, and that there
are no more after that. Then, under synchronous operation, the time ¢, required by the network
to converge to a stable state after such a topological change is detected is bounded by ¢, < D T,
where D is the diameter of the same network when a flat organization is assumed, and 7 is the
time between the transmission of two consecutive periodic updates by the same node.

Proof: According to the scheme proposed by Kamoun and Kleinrock [KAMO-76], the net-
work is organized into nonoverlapping clusters, and the nodes participate as peers in the updating
of their routing tables. An example of the structure of such routing tables is depicted in Figure 2
(b). Each routing table entry contains the length in node-to-node hops of the minimum path to
either a given node in the same 1-cluster or the boundary node of a remote cluster [KAMO-76].
Hence, the failure or addition of a single node-to-node link or a single node could indeed affect
the distance from a node to a distant cluster (e.g., in Figure 2 (a), the failure of link (d,e) would
cause the distance from Node 6 to Cluster C.3 to increase by one).
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In the worst case, the distance in node-to-node hops from the node that detected a topologi-
cal change affecting intercluster connectivity and a given node could be as long as D, the diameter
of the network with flat organization. Since updates among nodes are transmitted periodically
every T, seconds by any given node, this proposition follows from Proposition 1. a

Theorem 4: Consider an m-level G-network whose 1-clusters are disjoint and with diame-
ters shorter than or equal to 4 node-to-node hops. Assume that a periodic BPU algorithm is used
to update NRTs and an event-driven BPU algorithm is used to update GRTs. Furthermore,
assume that a change in intercluster links or boundary nodes occurs that affects the connectivity
among GRNs in the same (k + 1)-cluster, and that there are no more topological changes after-
wards. Let T be the longest propagation time for a CLU forwarded between two adjacent nodes,
and T, be the time between two consecutive NLU transmissions. Then, the time required for that
PRNET to converge to a stable state after such topological change is bounded by

LS [A+dm - Q=d)T; + dT, @5)

Proof: For a GRN to note that its logical comnectivity with another adjacent GRN has
changed, it must be notified by any of the boundary nodes of its 1-cluster. This could take as long
as d T seconds because a boundary node can be as many as d hops away from its GRN. Only
after this time has elapsed can the cluster-level update procedure start among GRNss.

Let D, be the maximum diameter of a k-cluster measured in node-to-node hops. We have
assumed that the maximum diameter of a k-cluster is d (k — 1)-cluster-to-(k — 1)-cluster hops;
hence, a path of length D in the k-cluster will include [d + 1] (k ~ 1)-clusters connected by d
links between boundary nodes. Therefore, D, can be expressed recursively as follows:

D, = 1+d)D,_,+d (26)

D, =d

By induction on k, the solution to the above recurrence relation can be shown to be
D, = (1 + d)* — 1. Hence, a packet sent across an m-cluster may have to traverse as many as
(1 + d)™ - 1 node-to-node hops within the cluster. If a BPU algorithm is used and all GRN's had
to update their GRTs (worst case), the entire diameter of the only m-cluster in the PRNET may
have to be traversed (from the GRN that starts the cluster-level update procedure to the last GRN
that receives a CLU during the last cycle of the procedure). Hence, it follows that the completion
of the cluster-level update procedure among GRN's may account for as many as [(1 + &)™ - 1] T
seconds in the worst case.




Finally, each GRN has to distribute the resulting updates in its GRT to the rest of the nodes
in its 1-cluster. Since such updates are distributed by means of NLUs, it follows from Proposition
1 that this process can take as long as [d . Tp] seconds. Hence, as many as [d . T,] seconds may
elapse after all GRNs have updated their GRTs before all nodes in all clusters have consistent
GRTs.

Adding up the three terms obtained above, we get the result in Equation (25). s]

4. NETWORK STRUCTURE OPTIMIZATION

In the previous section, we looked at two hierarchical network organization strategies (G-
networks and K-networks) and obtained upper bounds on the convergence time and shortest path
lengths in PRNETs organized according to those two schemes. Such bounds depend on the
number of cluster levels and the maximum diameter of the clusters (which in turn depends on the
number of elements in a cluster). It is clear that shorter cluster diameters and fewer cluster levels
will provide shorter convergence times and routes. However, the number of elements ¢ in a
k—cluster (i.e., (k — 1)—clusters) and the number of cluster levels, m, are related to each other
for m = 2. In other words, for a fixed number of nodes, the smaller a cluster is in an m-level
PRNET (m = 2), the more clusters are needed and (potentially) the more cluster levels there
must be to obtain the same upper bounds on path lengths in G-networks and K-networks. In this
section we establish a relation between the number of cluster levels and the size of clusters that
minimizes the upper bound of optimum G-path and K-path lengths, which are indeed achievable.
Previous work on the design of hierarchical networks has focused on minimizing the length of
routing tables [KAMO-76; SHAC-84b). However, while reducing the length of routing tables is
important in large networks with hierarchical structures, an optimum table size is not as critical a
design objective as reducing the length of the paths traversed in such networks.

To simplify the problem of determining an optimum number of clusters and an optimum
cluster size that would minimize the upper bound of G-path lengths we treat the number of duster
levels (m) and the number of elements in a cluster (¢) as real numbers. Furthermore, we assume
that every k—cluster is formed by exactly ¢ (k = 1)—clusters.

Consider an m-level G-network with nonoverlapping 1-clusters. Let V be the number of
nodes in the network and ¢ be the size of every cluster at every level. Because the diameter of a
cluster must be less than or equal to ¢ — 1, it follows from (20) that

ra,s2" " 2(c+1) - 1 1))
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Because there is no overlap among 1-clusters and since all clusters at all levels are assumed
to have the same size c, it follows that ¢ must equal VV™. Substituting this value of ¢ in (27), and
defining R,, as the maximum value that r,, can take, we obtain

1
R,=2""2(Vm"+1) - 1 (28)

Equation (28) shows that R, is continuous for all values of m. Taking the derivative of R,
with respect to m and equating to zero we obtain the following equality:

[V"-i-l]m’lnv—l )

Solving (29) for all real values of m is a rather difficult task. Fortunately, we can simplify
the problem significantly by considering large values of V. For large values of V, R, can be

approximated by

= 272(e) - 1; (30)
from which we obtain that the real value of m that minimizes R, is given by:

[ n2) H Vv>1 (31)

With ¢ being V™, it follows that the length of the routing table size, m, of every node
would be

1
n=my”r (32)

Consider now an m-level G-network in which all adjacent 1-clusters must overlap in at least
one boundary node. Again, because the diameter of a cluster must be less than or equal to ¢ - 1,
it follows from (24) that

R,=2""2(c) - 1 (33)

Because adjacent clusters must overlap and all clusters must be of the same size, it follows
that ¢ = VU™ + 1. Taking the smallest possible cluster size we obtain Equation (28). With ¢
being V'™ + 1, it follows that the length of the routing table size, v, of every node would be

nm,h,=m[V-:'-+1] (34)
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As expected, overlapping of 1-clusters requires longer routing tables; however, the overhead
imposed by overlapping 1-clusters is in = o~° >f m, which is quite small for the values of m
expected in real PRNETS.

For the case of K-networks with nonoverlapping 1-clusters, we have that

1
R, =2""%3+vm) ~ 1 35)

If we make the assumption that V >> 3 we obtain the same results presented above for G-
networks.

Equation (31) provides only an approximztion of the real optimum value of m when V is
very large. Table I shows the value of m,, obtained by solving (29) numerically and by using
Equation (31). It is clear from these results that the error incurred with our approximation is rela-
tively small (smaller than 0.2) and always positive. Since we are only interested in integer values
of m,, (denoted m,,), the RHS of (31) provides a very good approximation of the true optimum
value of m.

Table |
OPTIMAL VALUES OF m

v ":‘opt ) Mopte

{numeric soluzion) | (Eq. (31)
10 1.6339 1.8226
102 2.4062 25776
103 3.009 3.1569
104 3519 3.6452
109 3.9679 4.0755
108 4.3726 4.4645
107 4.7435 48222

1




5. SUMMARY AND DESIGN CONSIDERATIONS

In this paper we have analyzed the performance of a hierarchical routing scheme for large-
scale PRNETs relative to that of flat PRNETs and those organized by means of the Kamoun-
Kleinrock scheme [KAMO-76]. Our focus was on two principal performance figures: (1) the qual-
ity of the routing dedisions made by the nodes; (2) the time required for all nodes to update their
routing tables after topological changes. Our results on optimum path lengths expand upon previ-
ous results by Hagouel [HAGO-83] and Baratz and Jaffe [BARA-83]. While only worst-case con-
ditions were analyzed, we can draw a number of important design considerations as to the struc-
ture a hierarchical PRNET should have.

Table II lists the values of m (Equation (31) ) and ¢ (i.e., VV") that would minimize the
upper bound of G-path lengths in G-networks with no cluster overlapping for five different values
of V. The values of n ( Equation (32) ) and r,, are also shown. It is interesting to note that,
while minimizing the value of n was not our goal, n remains within very reasonable bounds even
for very large networks. There is a good reason for preferring a small 1, which is the fact that
NLUs in G-networks, and all updates in K-networks, contain complete routing tables. In G-
networks, however, there exists the alternative of distributing cluster-level updates to simple nodes
and boundary nodes using CLUs rather than as part of periodic NLUs (as it has been proposed in
this paper). This would mean that GRT's could be of any size, but would increase the traffic in the
network. It is clear from the data in Table II that compact clusters, i.e., clusters with short diame-
ters, are desirable in G-networks for achieving short G-paths and short convergence times.

In contrast to our approach, Kamoun and Kleinrock optimized the values for ¢ and m with
respect to the value of m for the case of K-networks, which results in m = In(V) and ¢ = e.
Table III shows the values of m, ¢, M, and r,, (Equation 8) for the same values of V of Table II.
Optimizing the organization of a hierarchical network on the basis of the length of its routing
tables can potentially result in very long hierarchical paths (as compared with the shortest paths
obtained in flat networks) because of the resulting large number of cluster levels.

In the absence of collisions in the channel, the worst-case convergence time of a PRNET
with a hierarchical routing scheme based on GRNs (a G-network) is much faster than the worst-
case convergence time of a flat PRNET or a K-network. The main reason for this is that, in G-
networks, cluster-level updates can be propagated across clusters on an event-driven basis (rather
than periodically) by only a few selected nodes. Since the transmission time of a CLU is very
short (as it contains only those entries that must be updated in GRN’s GRTs) and the radio channel
of a PRNET has a high transfer rate (400 kbps in the DARPA PRNET) the time needed to pro-
pagate a CLU between two adjacent nodes (T,) is very small. In contrast, the time between
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periodic updates in flat PRNETS has to be relatively long (e.g., about 7.5 seconds in the DARPA
PRNET [WEST-82]).

It is easy to see from propositions 1 and 2 and Theorem 4 that when the best possible update
algorithms are assumed for both G-networks and K-networks, the worst-case convergence time of
G-networks is indeed much smaller than those of flat PRNETs and K-networks. As an example,
assuming that d = ¢/2 (a conservative estimate) and using the entries in Table II, it can be shown
that t. = O(d Tp) in all cases; on the other hand, in real networks it is reasonable to expect that
the diameter of the whole PRNET is much longer than the diameter of a 1-cluster (D >> d) spe-
cially for large V.

In the worst case, as expected, optimum G-paths and K-paths between two distant nodes can
be much longer than the shortest paths obtained with a flat network organization between the
same nodes, provided that the routing tables of the flat network were all correct. However,
because periodic updating algorithms need to be used in flat PRNETS, it may take many seconds
to obtain consistent routing tables after topological changes affecting the connectivity of a large
number of nodes. Hence, highly suboptimal routes may be generated in large flat PRNETS.

Since usually d = 2, the paths that can be obtained with the proposed hierarchical network
organization can be longer than those achievable by using the Kamoun-Kleinrock scheme alone,
provided that the same number of cluster levels and cluster size have been used in both types of
networks. However, the ratio between the two cannot exceed 2. Furthermore, if the optimum
structure proposed by Kamoun and Kleinrock (obtained by minimizing n) were used, it could be
possible to obtain a lower quality of routing in the K-network than in the corresponding optimum
G-network even for the case in which d equals ¢ — 1 (see Table II).

As expected, overlapping of 1-clusters in K-networks does not provide any advantages in
terms of path lengths. From the results in (22) and (24), it is clear that overlapping of clusters in
G-networks provides some advantage from the standpoint of intercluster path length; furthermore,
as it was discussed in Section 4, the overhead in routing table size imposed by overlapping 1-
clusters is really small (of the order of m). However, the desirability of overlapping should be
assessed according to the robustness it would provide to the network and the complexity of the
algorithms it would introduce. Shacham [SHAC-84b) discusses the issue of overlapping clusters in
more detail.




We can conclude from the foregoing that the proposed G-networks constitute a viable
approach to the organization of large PRNETs with mobile nodes; they provide a reasonable
compromise between quality of routing decisions and the speed with which routing table updates
are propagated. Further research will be necessary to clarify such issues as: (1) their performance
(e.g., throughput and end-to-end delay) under average conditions assuming specific routing algo-
rithms; (2) the optimization of such networks with respect to path lengths; (3) the effect of over-
lapping on the capadity of the PRNET to respond to cluster partitions, creations, and deletions,

Table 1l
G-NETWORKS
.3
nooes | ME3V | um neme | r <(Eq.20)
{integer value)
102 3 5 15 2d+ 3
103 3 10 30 2d+ 3
104 4 10 40 ad+ 7
105 4 18 72 ad+ 7
106 5 16 80 8d+ 15
Table (1
K-NETWORKS
NODES m=InV c=3 n=mec rm < (Eq(8)
102 3 15 4d + 15
103 3 21 16d + 63
104 9 3 27 64d + 255
105 12 3 36 §12d + 2047
108 14 3 42 163844 + 32767
NOTE:

d = lsrgest diameter of any cluster (< c-1)
n*= length of routing table

me= number of cluster levels

c= gize of g ciuster
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