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1. INTRODUCTION

The dynamic determination of optimum routes between nodes is fundamental in the opera-

tion of multihop packet-radio networks (PRNE), but may become very costly for PRNETs with

several mobile nodes. A number of routing schemes have been proposed in the past to cope with

this problem, and can be classified as centralized, distributed, and hierarchical. In the centralized

scheme, also called station-mode routing [KAHN-78], a single node (called the station) ascertains

the best path between each pair of nodes and upon request sends the requisite routing information

to nodes in the PRNEr. This routing strategy would be unacceptable for large PRNETs because

of its inherent vulnerabilities [GAFN-81; WEST-82]. In a PRNET using the fully distributed

scheme (also called stationless mode [WEST-82]), which we shall call a flat PRNEr, all the nodes

partidpate as peers in the same distributed algorithm to determine dynamically the best path to

every node. Finally, a number of hierarchical routing schemes have been proposed for the

management of routing information in large P1NETs [BAKE-81, 83; MACG82; NILS.80;

SHAC-84a]. The main idea of such schemes is to allow each node to maintain exact routing infor.

mation regarding nodes very dose to it, and less detailed information regarding nodes farther

away from it. The objective of doing so is to obtain a reasonable compromise among the size of

routing tables, number of updates required to maintain such tables, and the speed with which

updates are propagated.

In this paper, we analyze the performance of the hierarchical routing strategy for large,

mobile PRNETs previously proposed by Shasam and Kiemba [SHAC-84a, 84c], and compare it

with other hierardical and fully distributed routing strategies. We focus on two main perfor-

mance figures in our analysis: (1) the time required to obtain consistent routing tables at all the

nodes of a PRNET after topological changes, and (2) the length of the paths that can be obtained

with different routing strategies. We chose to analyze worst-case network performance, rather

than average network performance, to be able to obtain as general PRNET design guidelines as

possible by making minimum assumptions about the topological characteristics of the PRNET.

In Section 2 we describe the hierardhical routing scheme , e; : i qd by Shacham and Klemba,

and in Section 3 we compare its performance with those of other - =es. In doing so, we extend

the results presented by Hagouel [i1AGO83] and by Baratz and Jaffe (BARA-83] on path lengths

in hierardhical networks; our results on path lengths can also be applied to networks with point-to-

point links. In Section 4 we address the optimization of network organization with respect to the

quality of routing in PRNETs using the upper bounds on path lengths obtained in section 3.
Finally, in Section 5 we discuss the results presented in sections 3 and 4, and outline how our

results can be applied to the design of PRNETs.
-1-



2. A HIERARCHICAL ROUTING STRATEGY FOR LARGE

PRNETS

2l BASIC NETWORK ORGANIZATION

The routing scheme proposed by Shadiam and Memba [SHAC-84a, 84c] is similar to the

multistation scheme [BAKE-81], and is based on three major premises:

(i) The nodes of the PRNET are organized into m levels of chers (where m a 1) to reduce

the length of routing tables. Nodes represent dusters at Level 0, a group of nodes is a dus-

ter at Level 1 (called 1-duster), and a duster at Level k (called k-chut) is the union of

clusters at Level k - 1.

(2) The updating of routing information among dusters is carried out on an event-driven basis
(i.e., immediately after every topological change), but by only a few nodes Called
global-routing nodes or GRV (one per 1-duster). This is done in the hope of accelerating

the dissemination of updates that affect a large number of nodes, while update t-rir levels

are kept down.

(3) Each node participates in two parallel upidating procedures. One procedure updates routing
information about other nodes that are dose by; the other updates routing information about

distant nodes organized into dusters and is controlled by GRNs.

Figure 1 illustrates a PRNET organized into three levels of dusters; the links between nodes
of the figure indicate radio connectivity. Every node must be affiliated with at least one 1-duster
to comnmunicate with the other nodes in the PRNET. Those nodes that have radio connectivity
with nodes in different 1-clusters are called boundary nodes. Two 1-duster that have at least one

boundary node in common (i.e., one that is affiliated with both custers) are said to overlap. In

contrast, two 1-clusters connected by boundary nodes that are only affiliated to any one of them
are said to be adjacent disjoint 1-dusteri. Note that dusters at levels 2 and above never ovw'iap

(to be explained later). The difference between overlapping and adjacent disjoint 1-dusters cm be
appreciated by observing Figure 1(a). Custer A.1 and Custer A.2 overlap because Noe.; a is affi-

liated with both clusters. In contrast, Cluster A. I and A.3 are disjoint but adjacent because nodes

a and b have radio connectivity with each other but belong to only one of the two 1-dusters. The
procedure by which a node becomes affiliated with a 1-duster is not addressed in this paper.

-2-
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Each node maintains two routing tables:

(1) A node-level routing table (NR7), which contains routing information about nodes in the

same 1-cluster with which the node is affiliated.

(2) A group-level routing table (GRT), which contains routing information about the dusters in

the same higher-level clusters to which the node belongs.

The nodes within a given 1-duster update their NRTs as if they constituted a small, flat

PRNET. The GRNs of the PRNET are organized as a vktual network; the nodes of this network

are the GRNs, and a link is defined between two GRNs if and only if there is radio connectivity
among boundary nodes of their respective 1-dusters. The messages exchanged among GRN's are
forwarded through multihop paths formed by node-to-node links; simple nodes in those paths sim.

ply forward such messages towards the destination GRNs and retransmit the messages as necessary

to ensure reliable transmission. Hence, the network of GRNs constitutes a vir-uad point-to-point

network; Figure 1(b) illustrates the virtual network of GRIs for the PRNET of Figure 1(a). The

virtual network of GRN's utilizes the routing scheme proposed by Kamoun and Kleinrock

[KAMO-76] to update the GRTs of GRIs. A more detailed description of the contents of NRTs

and GRTs, together with the procedures followed to update them, is provided in the next two sub-

sections.

2.2 NRT UPDATE

In small, single-chainl PRNETs with /at organizations, a node can receive only one
collision-free message at a time from the radio channel, nodes can be highly mobile, and link qual-

ity may change fairly often. In such PRNETs, it appears that periodic routing-table update algo-

rithms based on next-node tables* and with no retransmission of updates, such as the tier-routing

algorithm (WEST-82], are a good choice for such networks, and is, therefore, the type of algo-
rithm used in our scheme. Simple nodes, boundary nodes, and GRNs within the same 1-duster

partidpate as peers in a periodic routing update algorithm on the basis of their NRTs. The NRT of

a given node contains an entry for each node in its 1-duster; each entry specfies the next node to

a given 1-cluster destination and the length (i.e., number of links between nodes) of the shortest

path to that destination. NRTs are updated by meas of node-dee update (NLUs) transmitted
periodically and without retanmissions within a 1-chster. An NLU contains all the entries in the

NRT and GRT of a node; the rationale for including the content GRTs in the NLUs is explained

below.

* A next-node tabie specifies summary routing information cisti d the next node and the length df the
minimum path to every node in the PRNET.
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Note that boundary nodes and GRNs must maintain an entry in their NRTs for each node in

all the 1-clusters with which they are affiliated. Whenever either a simple node or a GRN receives

NLUs from boundary nodes referring to 1-dusters with which it is not affiliated, it simply ignores

them. This guarantees that information in NRTs is not propagated across dusters' boundaries.

2.3 GRT UPDATE

Because of the point-to-point nature of a virtual network of GRNs, it is possible to employ a

reliable, event-driven algorithm to maintain consistent GRTs, i.e., an algorithm in which updates

are sent whenever topological changes occur and in which reliable transmission of updates is

ensured. More specifically, the network of GRNs is organized in m duster levels by means of the

Kamoun-Kleinrock scheme, which implies that

(1) Causters of GRA's (dusters at levels 2 and above) are disjoint.

(2) All GRls in the network of GRNs participate as peer in the same algorithm to update the

entries of their GRTs.

(3) The GRT of a GRN contains m - 1 j-sutabks (1 s j < m - 1). A J-subtable contains
entries for all j-dusters within the GRN's (j + 1)-duster. Each such entry specifes: (a) the

destination j-duster; (b) the next GRN in the chain of GRNs to that destination; (c) at least

one boundary node towards the next GRN; (d) the number of GRN-to-GRN hops in that

chain.

Entry (b) above permits routing of messages from a node to remote dusters through adja-
cent dusters, while entry (c) allows a node to route messages to boundary nodes in its own 1-
duster towards remote dusters. The distance from a GRN to its own k-chster is set to 0, while

the length of the shortest path from a GRN to a remote k-cluster equals one plus the minimum of

the shortest path lengths reported by its neighbor GRNs for that destination. Figure I (c) illus-

trates the content of the GRT and NRT for Node I of Figure 1 (a).

Cluster-level updates (CLUs) from a GRN are transbmtted reliably on an event-driven basis

to all its neighbor GRNs in the same way in which updates are transmitted among nodes in the

sdhne proposed by Kamoun and KComrock [KAMO-76J. Each CLU contains entries consisting of

the identifier of a destination j-duster, the next GRN in the dain towards it, and the number of

GRW-to-GRN hops in that chain. Each such entry corresponds to an entry of a GRWs ORT that

was updated because of a dange in connectmty with neighbor GRNs, or because of CLUs

received from other GRi~s. A GRN sends a CLU to a neighbor GRN containing only that routing

information that refers to common destinations in their GRTs. Hence, if two GRNs, z and y, are

in the same k-luster, but in different (k - 1)-dusters, GRN x sends CLUs to GRN y that refer to
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dusters at levels equal to or larger than k.

As we have said, each node stores a GRT with the information necessary to route packets

across 1-clusters. However, the GRNs are the only ones that can initiate the update of GRTs by

exchanging CLUs; simple nodes or boundary nodes that receive CLUs simply forward them

without any further processing. When GRIls generate CLUs, they distribute the completely

updated GRTs to simple nodes and boundary nodes as part of the next NLUs transmitted periodi-

cally by the GRNs of 1-dusters. Simple nodes and boundary nodes are capable of updating their

GRTs because each NLU contains the entire GRT and NRT of the tramsmitting node; hence, a GRN

that updates its GRT communicates such updates to the rest of the nodes in its 1-duster in the next

NLU (transmitted periodically). Note that a complete GRT and NRT must be included in each

NLU because NLUs may be lost and no NLU is retransmitted.

2.4 ROUTING AMONG NODES IN DIFfERENT CLUSTERS

Consider two simple nodes who lie within the same (k + 1)-duster, but in different k-

dusters: a simple Node a in k-duster A and Node b in k-duster B. The only information that

Node a has to route messages to Node b consists of the net GRN towards k-duster B and one

or more boundary nodes within Node a's i-duster towards that GR. Aagordingly, nodes carry

out routing as follows:

(1) Node a looks up its GRT to obtain the next GRN towards the destination duster; the entry in

its GRT provides at east one boundary node towards that destination.

(2) Node a looks up its NAT for a next node towards that boundary node.

(3) The nodes in the path from a to b perform the same type of procedure.

Boundary nodes must move packets aoss boundary nodes. As we have stated previously,

boundary nodes of overlapping clusters maintain routing information about all the nodes in the 1-

dusters to which they belong; hence, they can forward messages across 1-duster boundaries as any

simple node. One way to support routing across nonoverlapping 1-lusters is for boundary nodes

to add an entry in their NAT for each adjacent boundary node; such entries would specify that the

adjaent boundary nodes are 1 hop away (i.e., they are the next nodes towards themselves).

-6-



3. PERFORMANCE OF THE PROPOSED SCHEME

In this section we compare the hierarchical routing scheme being proposed with other

schemes. Specifically, we consider the following cases:

(1) A PRNET organized according to the scheme described in the previous section, which we

shall refer to as a G-network.

(2) A flat PRNET

(3) A PRNET in which all the nodes are organized arding to the Kamoun-Kleinrock scheme.

We shall refer to this type of PRNET as a K-network

Figure 2 illustrates the structure of K-networks using the same PRNET depicted in Figure 1

as a G-network. An examination of both figures shows that the basic difference among K-

networks and G-networks is the metric assumed to measure the distance from a node to any other

node in a remote duster. In the G-network of Figure 1, the distance between Node 1 and any

destination in a remote j-duster (i a 1) is the number of GRN-to-GRW hops from Node l's 1-

duster to any 1-cluster in the remote j-duster; for instance, the distance from Node 1 to any desti-

nation within 2-duster C is five hops. In contrast, in the K-network of Figure 2, the distance

between a node and a destination in a remote duster (i.e., the highest-level duster that the source

and the destination do not share) is measured by the shortest path (in node-to-node hops) to a
boundary node in such a remote duster. For instance, the distance from Node 1 to any node in 2-

duster C is twelve node-to-node hops. Note that if the PRNET had a fiat organization, Node 1

would have to know the shortest distance to all the other 26 nodes in the PRNET.

3.1 MAX[MUM PATH LENGTHS-QUALrrY OF ROUTING

Organizing a PRNEr into hierarchies reduces the amount of information possessed by each

node about the topology of the network. Accordingly, the routing decisions made by a

hierarchical-network node may not yield the best possible routes; in this subsection we quantify

this effect. We obtain the ratio of the worst-case path lengths that can be obtained in G-networks

and K-networks with respect to the optimum path lengths obtained in flat networks. We must

point out that the worst cases for G-paths and K-paths described here can in fact be attained, as

will be apparent from the derivations that follow.

We shall assume throughout this subsection that the routing tables (NRTs and GRTs) of net-

work nodes are correct and that dusters do not overlap. Furthermore, we consider that links are

bidirectional and that internodal distancs are measured in number of hops. We shall refer to the

shortest path between two nodes of a flat PRNET as a fiat path.

-7-
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3.1.1 K-Networks

Hagouel has shown that, in the worst ce, the shortest paths obtained between two nodes of

different m-dusters in P k-level network (m : k) based on routing tables constructed acarding to

the Kamoun-Kiceinrock scheme can be 2'" - 1 times longer than the minimum paths that would be

obtained in a flat network [HAGO.83]. Baratz and Jaffe (BARA-83] have shown the same result

for the case in which m = 2. This result was obtained under the assumption that the actual

minimum path between any two nodes in the network must always lie within a 1-cluster common

to both nodes. However, as has been pointed out by Baratz and Jaffe [BARA-83], the may

exist some networks in which that condition cannot be achieved. The following two theorems

extend Hagouel's result, as well as Baratz and Jaffe's, by postulating that the shortest path

between two nodes, assuming a fiat organization, may or may not be fully contained within a 1-

duster common to both nodes.

In the following, v-.: shall refer to the paths obtained on the basis of routing tables structured

according to the Kamoun-Kleinrock scheme as K-pads. A K-path between two nodes that belong

to the same j-duster must be contained within that duster in its entirety.

Theorem 1: Consider a two-level K-network in which all 1-dusters have diameters* less

than or equal to d node-to-node hops. If w is the length in node-to-node hops of the shortest

K-path traversed between two different nodes in the K-network, and w, is the length of the flat

path between the same nodes given a flat network organization, then

r = :9 1+ d (where dmI) (1)
W4. 2

Proof. If the two nodes (a and b) belong to the same 1-duster, the K-path between them

can be as long as d, the largest diameter of a 1-duster. On the other hand, as shown in Figure 3,

the two nodes could be connected to the same boundary node of an adjacent 1-cluster; hence we

obtain the following:

r d (2)

2 2

Now let us assume that the two nodes a and b are located in different 1-dusters (C(a) and

C(b), respectively), and let us consider Figure 4. The minimum K-path obtained between a and b

equals x, U x2 U x3 , where (a) x, is the (minimum) path traversed within C(a) from Node a to

a boundary node; (b) x2 is the minimum K-path between C(a) and C(b); and (c) x3 is the

minimum path between the boundary node reached at C(b) and Node b. Similarly, the shortest

* The diameter of a network is the length of the longest rrdnixuzm rote b tween any two of its nodes.

-9-



path between the same pair of nodes, given a flat network organization, equals Y1 U Y2 U Y3 (a

shown in Figure 4). Hence:

r = 1b + IX21 + l(313)

According to the Kamoun-Kleinrock sdeme, in a 2-level K-network each node knows the

shortest distance to every 1-duster. Hence, the K-path from any Node a in C(a) to a boundary

node in C(b) (e.g., BNb) has shortest length, which means that

L'l+ b'1+ b'l > I€1+ IX1 (4)

simply because BN b must be doser (in hops) to a than b (Figure 4). Using the inequality of (4) in

(3), we obtain:

r -9 1 + ' + 3l (5)
W +2W + 1731

In the worst case, kx3j, the length of the minimum path between the boundary node readed

atC(b) andNodeb, canbeaslongasd. On the other hand, 1 1 maybeassmal as0 or 1,

depending on whether the destination node, b, is a boundary node or not.

Let Node b be a boundary node, i.e., 31 = 0. Then equation (5) becomes

d,5l + (6)

Because nodes a and b lie in different 1-dusters and no duster overlap may occur, 21 ;-- 1;

the worst case occurs when 2= 1. If Node a is a boundary node (Ly I = 0) then Node a must

be adjacent to Node b (fr11 = 0); because every node must know its neighbors, this implies that

r = I s 1 + d/2. If Node a isnot a boundary node, then Ly1 I > 0, and the worst cam is obtained

when I + 72 
= 2 (i.e., either when a is a boundary node and there is an intermediate node

between a and b, or when both 17 I and 1721 equal 1). For this ease Equation (1) holds.

Now assume that Node b is not a boundary node, i.e., 1731 z 1. Then Equation (5) becomes

r 1 + d
W 10+W+

-10 -



Again, because a and b lie in different dusters, Ly I + b'21 L- 1, and the worst caue satisfies

Equation (1). 0
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Theorem 2: Consider an m-level K-network in which all 1-dusters have diameters of

lengths less than or equal to d node-to-node hops. Under stationary conditions, if w is the length

(in node-to-node hops) of the K-path traversed between two nodes in different k-dusters of the

K-network ( k ! ,i ),and w,, is the length (in node-to-node hops) of the flat path between the

same nodes, then

Sw 2 -(2 +12-) - 1 for 2!sk:%n (8)
wq 2

Proof. By induction on k.

Let r1 (i = 1, 2, ... , k) denote the ratio of w over w,,, for an i-level K-network. For i = 1,

r1 must be one since 0-level dusters correspond to the nodes themselves. From theorem 1, we

know thatr 2 
< 1 + A=29 (2+A) - 1.

Now assume that, at level k = n, r, obeys the inequality r,, S 2 - 2 ( 2 + .- ) - 1,

and postulate a K-network of n + 1 levels. Figure 5 shows the minimum K-path between an arbi-

trary pair of nodes a and b that belong to different n-dusters. It also shows a minimum path

when no clustering is assumed. The minimum K-path between a and b equals x1 U x U x3 ;

similarly, the shortest path between the same pair of nodes, given a flat network organization

equals Y1 U Y2 U y3. Hen:

l + 21 + 4rs1+ = b' + v2I + (9)

Let a be an shortest path between Boundary Node BN and b when no clustering is

assumed; because a is the shortest, it follows that

IGO : ki r+ kIl+ W'' (10)

From our inductive assumption, we know that

1x31 I I=1 2--2(2 + - (11)

Using the same arguments as in TMorem 1, we obtain rII + x21 :s w,,. Substituting this

inequality, and (10) and (11) in (9), we obtain

+ 211-1(2 + d) - 1 (12)
2

- 12 -



and the theorem follows by induction. o

3.1.2 G-Networks

Consider a connected G-network. Refer to the paths obtained accrding to the duster-level

route tables of GRNs as G-padh. A -path between two nodes in the same k-duster must be

contained fully within that duster. The following results specify the worst-case ratio between

optimum paths obtained in flat networks and optimum G.paths.

Themem 3: Consider a G-network of two levels (i.e., nodes and 1-dusters) in which all 1-

dusters have diameters less than or equal to d node-to-node hops. If w is the length in node-to-

node hops of the shortest G-path traversed between two different nodes in the 0-network, and

we, is the length of the flat path between the same nodes, then

= w :5 d + 1 (13)wq

Proof: As wasthecaseimin tihproof of "eoml , if thetwo noesm(aandb) blong to the

same 1-duster, then

r. -S d + 1 (14)
2

Now assume that the two nodes a and b are located in 1-dusters (C(a) and C(b), respec-

tively) and consider Figure 4 again. The minimum G-path obtained between a and b equals

x1 U x2 U3 x3 ; the shortest path between the same pair of nodes, given a flat network organiza-

tion, equals y' U y2 U y3. Hence, r equals the R1-S of Equation (3).

Interduster routing is based on the GRTs that only GRNs update and distribute among the

nodes in their own dusters. Hence, a given G-path between nodes in different 1-dusters is selected

based only on two things: (1) the length in GRN-to-GM hops of the interduster path from the

originating node's GRN to the destination node's GRN; (2) the length of the path from the ori-
ginating node to the nearest bomdary node (in terms of node-to-node hops) in the node's 1-

duster that leads to the next GRN in the path to the destination GRN. Because w is a shortest G-

path, c,2, the number of -dusters traversed in x2, must be less than or equal to cy,, the number of

dusters traversed in Y2- Let cy= - K - 1, the C=S K - I.

- 13-



Since the number of hops in each duster included in Y2 must be at least one, it follows that

Ly2 t z K (Figure 4). On the other hand, from Figure 4 we observe that

i-K- 1
1=-11 -" K + 1' , (15)

Since by assumption all the lusters in the 0-network have diameters less than or equal to d, we

obtain that fr21 S K + (K - 1)d. Because Node a does not know the length of the path along

which the message will travel within C(b) and a 1-duster can have a diameter as long as d, fr31 can

be as long as d. Hence:

r 11 + ( + d) (16)LvI+ s+I 6K

As itwas done for "heorem 1, let Node b be a boundary node, then t 3 l= = 0. IfNodea isa

boundary node (&11i =0) then k1l = 0 and the RM of Equation (16) becomes 1 + d. If Node a

is not a boundary node (y11 > 0) then the worst case oazrs when fr1]ffid and lY[ = 1. With

these values Equation (16) becomes

rs d + K (17)

The RHS of (17) has d + 1 as its upper bound when K tends to infinity.

Now assume that Node b is not a boundary node, then '31 2! 1. If Node a is a boundary

node, then Ivi = ki = 0, and with 1y31 = I (worst am), Equation (16) becomes

r : Kr (I+ d) ( 8
I( +d)1+K

The RE of (18) also has I + d as its upper bound when K tends to infnity. If Node a is not a

boundary node, then [L I 1 and 1 5 d. Hence:

r S d(1+K) + K (19)
2+/K

Again, the RES of (19) has 1 + d as its upper bound as K tends to infinity, and the theorem fol.

lows. o

Corolary 1: Assume an m-level G-network in whidh all 1-dusters have diameters of

lengths less than or equal to d node-to-node hops. Under stationary conditions, if w is the weight

of the G-path traversed between two nodes in two different k-dusters of the G-network ( k S M),

and wr, is the weight of the flat path between the same nodes, then

r = S s 2 k-2( 2 + d) - 1 for 2sksm. (20)

W-1-
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Proof: This corollary follows immediately from Theorem 2 and Theorem 3. The proof is

byinduction on k as in Theorem 2, but with r2 Z d + I (which follows from Theorem 3). 3

3.2 OVERLAPPING

Overlapping of dusters may offer a number of advantages in terms of the PRNETs vunera-

bility in case of resource failure. Furthermore, it could permit the smooth transition of a node

from one duster to another, as well as the routing of messages to nodes even after the failure of

some GRNs or the partition of 1-dusters. Here, we analyze whether overlapping also makes G

network paths and K-network paths significantly shorter.

Corolary 2: Consider an m-level K-network in whid all 1-dusters have diameters of

lengths less than or equal to d node-to-node hops. Assume further that all adjacent 1-dusters

overlap in at least one boundary node. Under stationary conditions, the ratio of the length of the

K-path between two nodes in two different k-dusters of the network and the flat path between the

same nodes, if we assume a flat network organization, is bounded by

rk W S 2k-2(2 + A) - 1 for 2<k:Sm. (21)

Proof: The proof of this corollary follows exactly the form of theorems 1 and 2. For

k = 1, the proof is exactly the same as in Theorem 1, except that in this case boundary nodes

must belong to all the 1-dusters that they join. D

Hence, overlapping of 1-dusters does not reduce the worst-case ratio of K-path lengths to

flat path lengths.

Corollary 3: Consider a two-level 0-network in which all 1-dusters have diameters less

than or equal to d node-to-node hops. Assume further that overlapping must occur among adja-

cent 1-dusters. Under stationary conditions, the ratio of the length of the G-path between two

nodes of the G-network and the flat path between the same nodes is bounded by

r w s d (22)
WIt"

Proi. The proof of this corollary follows exactly the form of Theorem 3. In this ae,

however, if the two nodes belong to the same 1-duster, the G-path between them can be as long

as d, while the two nodes could be connected to another node c in another duster through a path

of four hops, as shown in Figure 6. Hence, r s d/4 s d. Another difference in the proof is that

the lengths of the links between adjacent 1-dusters equal 0 because adjacent 1-dusters must over-

lap. Therefore;
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Using the above expressinn for fr)l, following the same procedure as in Theorem 3 and con-

sidering the limit as K - w, we obtain the result in (22). 3

Corolary 4: Consider an m-level Gnetwork in which ail 1-dusters have diameters of

lengths less than or equal to d node-to-node hops and in which adjacent 1-dusters overlap in their
boundary nodes. Under stationary conditions, the ratio of the length of the G-path between two
nodes in two different k-dusters of the network (k s m) and the flat path between the same

nodes, if we assume no dustering, is bounded by

k = w ,2 2 (1 + d) - I for 2sksm. (24)W4W

Proof. The proof of this corollary follows directly from Theorem 2 and Corollary 3. The
proof is by induction on k as in Theorem 2, but with r2 s d (which follows from Corollary 3).

0

Equations (20) and (24) show that there is some improvement in the worst-cue ratio of G-
paths to flat paths when 1-clusters overlap.

3.3 TIME OF CONVERGENCE

To provide an unbiased comparison between hierrical and flat routing schemes, instead of
considering any particular update algorithm, we will assume that the ben-posibla pdate algo.
rithm is used in both caes. The best possible update algorithm (which we shall call the
BPU algorithm) for a given network (flat or hierarchical) converges as fast as possible and with a

minimum number of update messages. For a network of V nodes and diameter D, such an algo-

rithm would require D syndhronous update cycles to converge to a stable state [SCHW-80] in the
worst case (e.g., when all routing tables must be updated). The fact that a BFU algorithm takes
D cydes to complete implies that an update message must be forwarded through a dain of D

internodal hops from the beginning to the end of the update procedure.

- 16-
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A BPU algorithm can be either periodical or event-driven. A periodical BPU algorithm is one in

which update messages are sent out by each node at regular intervals; in an event-driven BPU

algorithm updates are sent out as a result of a topological change by those nodes affected by such

a change. By assuming reliable transmissios and a constant propagation delay over the radio

links, synchronous operation of a BPU algorithm is obtained. The number of synchronous update

cycles times the longest propagation delay for each update provides an upper bound on the con-

vergence time of the algorithm [JOHN-83].

In the case of K-networks and flat PRNETs, an event driven PBU algorithm would cat

too many collisions in the radio channel; hence, we will assume a periodic BPU algorithm in such

cases. For the case of G-networks, we will assume that a periodical BPU algorithm is used to

update NRTs, and that an event-driven BPU algorithm is used to update GRTs, and assume syn-

chronovs operation of sudh algorithms to analyze the worst case. This strategy is feasible because

of the relatively small size of 1-clusters and the relatively few GRis of a G-network.

The results of this section provide a lower bound for the worst-case onvergence times of

routing algorithms in flat and hierarchical PRNETs (G-networks and K-networks). We use such

bounds solely to assess the relative benefits of hierartdical and flat network orgwuizmdons; worst-

case convergence times for specific algorithms are presented elsewhere [GARC-84].

Throughout this subsection we assume that no transmission errors occur in the radio channel

and that all radio links are bidirectional.

3.3.1 Updates Affecting NRTs

As we have stated, the update of NRTs is carried out within a 1-duster just as in a PRNET

with a flat organization. The following proposition specifies the worst-case convergence time after

failure in flat PRNETs.

Proposition 1: Consider a flat PRNET with diameter D. Assume that a topological change

occurs and that there are no more after that. Then, the time required by the PRNET to converge

to a stable state after the topological change has been detected is bounded by [D . Tp] under the

BPU algorithm. T is the time between the transmis ion of two consecutive periodic updates by

the same node.

Proof. The nodes of a flat PENET trasmit their updates periodically every Tp seconds;

nodes in radio connectivity must access the channel at different times to avoid colisions. In the

worst case, after a Node a has sent its update corresponding to Cycle j, it will not be able to

receive and process the update for Cycle J from a neighbor b before it has to send its update for

Cycle i + 1. Hence, each update cycle will take Tp seconds at each node and the proposition
. 18-



holds because the BPU algorithm takes D synchronous update cydes to converge. 3

It follows from the above that, in a PRNET organized as a G-network but using a periodic

BPU algorithm to update NRTs, the maimum convergence time after a topological change that

does not affect the connectivity among GRIVs is [d. Tp], where d is the maximum diameter of a

1-duster of the G-network and Tp is the time between two NLU transmissions from the same

node.

3.3.2 Updates Affecting GRTs

If the proposed hierarchical routing scheme is implemented, the contents of GRTs need to be

changed only after the following two cases of topological change: (1) changes on links or boundary

nodes joining two or more dusters; (2) the addition, deletion, or partition of a duster. We will

consider just the first case, as it does not involve duster reconstitution mechanisms that are highly

dependent on the type of overlapping among dusters, the treatment of which lies beyond the

scope of this paper.

The following proposition and theorem show the worst-case convergence time after a

duster-level topological change for K-networks and Gnetworks.

Proposidon 2: Consider a PRNET that uses a periodic BPU algorithm and whose nodes

are organized as an m-level K-network. Assume that a topological change occum, and that there

are no more after that. Then, under synchronous operation, the time t, required by the network

to converge to a stable state after such a topological change is detected is bounded by t' S D Te ,

where D is the diameter of the same network when a filat organization is assumed, and Tp is the

time between the transmission of two consecutive periodic updates by the same node.

Proof: According to the scheme proposed by Kamoun and Kleinrock [KAM0-76], the net-
work is organized into nonoverlapping dusters, and the nodes particpate as peers in the updating

of their routing tables. An example of the structure of such routing tables is depicted in Figure 2

(b). Each routing table entry contains the length in node-to-node hops of the minimum path to

either a given node in the same 1-duster or the boundary node of a remote duster [KAMO-76].

Hence, the failure or addition of a single node-to-node link or a single node could indeed affect

the distance from a node to a distant duster (e.g., in Figure 2 (a), the failure of link (d,e) would

cause the distance from Node 6 to Custer C.3 to increase by one).
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In the worst case, the distance in node-to-node hops from the node that detected a topologi-

cal change affecting interduster connectivity and a given node could be as long as D, the diameter

of the network with flat organization. Since updates among nodes are transmitted periodically

every Tp seconds by any given node, this proposition follows from Proposition 1. 0

Theorem 4: Consider an m-level G-network whose 1-dusters are disjoim and with diame-

ters shorter than or equal to d node-to-node hops. Assume that a periodic BPU algorithm is used

to update NRTs and an event-driven BPU algorithm is used to update GRTs. Furthermore,

assume that a change in interduster links or boundary nodes occurs that affects the connectivity

among GRNs in the same (k + 1)-duster, and that there are no more topological changes after-

wards. Let T, be the longest propagation time for a CLU forwarded between two adjacent nodes,

and Tp be the time between two consecutive NLU transmissions. Then, the time required for that

PRNET to converge to a stable state after sudh topological change is bounded by

t, 5 [(l+d)" - (1-d)]T E + dTp (25)

Proof. For a GRN to note that its logical connectivity with another adjacent GRN' has

changed, it must be notified by any of the boundary nodes of its 1-duster. This could take as long

as d T, seconds because a boundary node can be as many as d hops away from its GRW. Only

after this time has elapsed can the duster-level update procedure start among GRNs.

Let Dk be the mavi, mm diameter of a k-duster measured in node-to-node hops. We have

assumed that the maximum diameter of a k-duster is d (k - I)-duster-to-(k - 1)-duster hops;

hence, a path of length D in the k-duster will indude [d + 1] (k -1)dusters connected by d

links between boundary nodes. Therefore, Dk can be expressed recursively as follows:

Dk = (1+d)Dk.l+d (26)

Df d

By induction on k, the solution to the above recurrence relation can be shown to be

Dk = (1 + d)k - 1. Hence, a packet sent ross an m-duster may have to traverse as many as

(1 + d)" - 1 node-to-node hops within the duster. If a BPU algorithm is used and all GRis had

to update their GRTs (worst case), the entire diameter of the only m-duster in the PRNEr may

have to be traversed (from the GRN that starts the duster-level update procedure to the last GRN

that receives a CLU during the last cycle of the procedure). Hence, it follows that the completion

of the duster-level update procedure among GRNs may account for as many as [(1 + d)" - 1] T,

seconds in the worst case.
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Finally, each GRN has to distribute the resulting updates in its GRT to the rest of the nodes

in its 1-duster. Since such updates are distributed by means of NLUs, it follows from Proposition

1 that this process ca take as long as [d . Tp] seconds. Hmce, as many as [d . Tp] seconds may

elapse after all GRNs have updated their GRTs before all nodes in all dusters have consistent

GRTs.

Adding up the three terms obtained above, we get the result in Equation (25). 0

4. NETWORK STRUCTURE OPTIMIZATION

In the previous section, we looked at two hierarchical network organization strategies (G

networks and K-networks) and obtained upper bounds on the convergence time and shortest path

lengths in PRNErs organized acording to those two schemes. Such bounds depend on the

number of duster levels and the maximum diameter of the dusters (which in turn depends on the

number of elements in a duster). It is dear that shorter duster diameters and fewer duster levels

will provide shorter convergenc times and routes. However, the number of elements c in a

k-duster (i.e., (k - 1)-dusters) and the number of duster levels, m, are related to each other

for m a 2. In other words, for a fixed number of nodes, the smaller a duster is in an m-level

PRNET (m z 2), the more dusters are needed and (potentially) the more duster levels there

must be to obtain the same upper bounds on path lengths in G-networks and K-networks. In this

section we establish a relation between the number of duster levels and the size of dusters that

minimizes the upper bound of optimum G-path and K-path lengths, which are indeed achievable.

Previous work on the design of hierarchical networks has focused on minimizgin the length of

routing tables [KAMO-76; SHAC-84b]. However, while reducng the length of routing tables is

important in large networks with hierarhical structures, an optimum table size is not as critical a

design objective as reducing the length of the paths traversed in such networks.

To simplify the problem of determining an optimum number of dusters and an optimum

duster size that would minimize the upper bound of G-path lengths we treat the number of duster

levels (m) and the number of elements in a duster (c) as real numbers. Furthermore, we assume

that every k-duster is formed by exactly c (k - 1)-dusters.

Consider an m-level G-network with nonoverlapping 1-dusters. Let V be the number of

nodes in the network and c be the size of every duster at every level. Because the diameter of a

duster must be less than or equal to c - 1, it follows from (20) that

rS2'- 2 (c+1) - 1 (27)
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Because there is no overlap among 1-clusters and since all dusters at all levels are assumed

to have the same size c, it follows that c must equal VLA". Substituting this value of c in (27), and

defining Rm as the maximum value that r,,, can take, we obtain

R. = =2m -2 (V+ ) -1 (28)

Equation (28) shows that R. is continuous for all values of m. Taking the derivative of R.

with respect to m and equating to zero we obtain the following equality:

[V'a+1 M2 1 (29)

Solving (29) for all real values of m is a rather difficult task. Fortunately, we can simplify

the problem significantly by considering large values of V. For large values of V, R. can be

approximated by

R. = 2"- 2 (C) - 1 ; (30)

from which we obtain that the real value of m that minimizs R. is given by:

I(2) V >> 1 (31)

With c being VII-, it follows that the length of the routing table size, 71, of every node

would be

= V (32)

Consider now an m-level G-network in which all adjacent 1-dusters must overlap in at least

one boundary node. Again, because the diameter of a duster must be less than or equal to c - 1,

it follows from (24) that

R.-2"- 2 (C) - 1 (33)

Because adjacent dusters must overlap and all dusters must be of the same size, it follows

that c 2 V1'" + 1. Taking the smallest possible duster size we obtain Equation (28). With c

being V" + 1, it follows that the length of the routing table size, -q, of every node would be

11',e = m [Vo + 1 (34)
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As expected, overlapping of 1-dusters requires longer routing tables; however, the overhead

imposed by overlapping 1-dusters is in o ' f m, which is quite small for the values of m

expected in real PRNETs.

For the case of K-networks with nonoverlapping 1-dusters, we have that

I

RON = 2-- 1( 3 + V-) 1 (35)

If we make the assumption that V >> 3 we obtain the same results presented above for G

networks.

Equation (31) provides only an approximation of the real optimum value of m when V is

very large. Table I shows the value of m obtained by solving (29) numerically and by using

Equation (31). It is dear from these results that the error incurred with our approximation is rela-

tively small (smaller than 0.2) and always positive. Since we are only interested in integer values

of m,, (denoted m,), the RH of (31) provides a very good approximation of the true optimum

value of m.

Table I

OPTIMAL VALUES OF m

V np t  mopt
V (numeric soliu:ion) (EQ. (31)

10 1.6339 1.8226
102 2,4062 2.5776

103 3.009 3.1569

104 3.519 3.6452

105 3.9679 4.0755

106 4.3726 4.4645

107 4.7435 4.8222
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5. SUMMARY AND DESIGN CONSIDERATIONS

In this paper we have analyzed the performance of a hierardical routing scheme for large-

scale PRNETs relative to that of flat PRNETs and those organized by means of the Kamoun-

Kleinrock scheme [KAMO-76]. Our focus was on two principal performance figures: (1) the qual-

ity of the routing decisions made by the nodes; (2) the time required for all nodes to update their

routing tables after topological changes. Our results on optimum path lengths expand upon previ-

ous results by Hagouel [HAGO-83] and Baratz and Jaffe [BARA-83]. While only worst-case con-

ditions were analyzed, we can draw a number of important design considerations as to the struc-

ture a hierarchical PRNET should have.

Table H lists the values of m (Equation (31) ) and c (i.e., Vi"") that would minimize the

upper bound of -path lengths in G-networks with no duster overlapping for five different values

of V. The values of q ( Equation (32) ) and r. are also shown. It is interesting to note that,

while minimizing the value of -q was not our goal, -q remains within very reasonable bounds even

for very large networks. There is a good reason for preferring a small -q, which is the fact that

NLUs in G-networks, and all updates in K-networks, contain complete routing tables. In 0-

networks, however, there exists the alternative of distributing duster-level updates to simple nodes

and boundary nodes using CLUs rather than as part of periodic NLUs (as it has been proposed in

this paper). This would mean that GRTs could be of any size, but would incease the traffic in the

network. It is dear from the data in Table I that compact dusters, i.e., dusters with short diame-

ters, are desirable in G-networks for achieving short G-paths and short convergence times.

In contrast to our approach, Kamoun and Kleinrock optimized the values for c and m with

respect to the value of 7 for the case of Knetworks, which results in m = ln(V) and c = e.
Table HI shows the values of m, c, il, and r. (Equation 8) for the same values of V of Table IL

Optimizing the organization of a hierarchical network on the basis of the length of its routing

tables can potentially result in very long hierarchical paths (as compared with the shortest paths

obtained in flat networks) because of the resulting large number of duster levels.

In the absence of collisions in the channel, the worst-cae convergence time of a PRNET

with a hierarchical routing scheme based on GRIs (a 0-network) is much faster than the worst.

case convergence time of a flat PRNET or a K-network. The main reason for this is that, in G

networks, duster-level updates can be propagated across dusters on an event-driven basis (rather

than periodically) by only a few selected nodes. Since the transmission time of a CLU is very

short (as it contains only those entries that must be updated in GRN's GRTs) and the radio channel

of a PRNET has a high transfer rate (400 kbps in the DARPA PRNET) the time needed to pro-

pagate a CLU between two adjacent nodes (TE) is very small. In contrast, the time between

.24-



periodic updates in flat PRNETs has to be relatively long (e.g., about 7.5 seconds in the DARPA

PRNET [WESr-82]).

It is easy to see from propositions 1 and 2 and Theorem 4 that when the best possible update

algorithms are assumed for both G-networks and K-networks, the worst-case convergene time of

0-networks is indeed much smaller than those of flat PRNETs and K-networks. As an example,

assuming that d = c/2 (a conservative estimate) and using the entries in Table 11, it can be shown
that t, = O(d Tp) in all cases; on the other hand, in real networks it is reasonable to expect that

the diameter of the whole PRNET is much longer than the diameter of a 1-duster (D >> d) spe-

dally for large V.

In the worst case, as expected, optimum G0paths and K.paths between two distant nodes can

be much longer than the shortest paths obtained with a flat network organization between the

same nodes, provided that the routing tables of the flat network were all correct. However,

because periodic updating algorithms need to be used in flat PRNETs, it may take many seconds

to obtain consistent routing tables after topological changes affecting the connectivity of a large

number of nodes. Hence, highly suboptimal routes may be generated in large flat PRNETs.

Since usually d a 2, the paths that can be obtained with the proposed hierarchical network

organization can be longer than those achievable by using the Kamoun-Kleinrodc scheme alone,

provided that the same number of duster levels and duster size have been used in both types of

networks. However, the ratio between the two cannot exceed 2. Furthermore, if the optimum

structure proposed by Kamoun and Kleinrock (obtained by minimizing q1) were used, it could be

possible to obtain a lower quality of routing in the K-network than in the corresponding optimum

G-network even for the case in which d equals c - 1 (see Table II).

As expected, overlapping of 1-dusten in K-networks does not provide any advantages in
terms of path lengths. From the results in (22) and (24), it is dear that overlapping of dusters in

G-networks provides some advantage from the standpoint of interduster path length; furthermore,

as it was discussed in Section 4, the overhead in routing table size imposed by overlapping 1-

dusters is really small (of the order of m). However, the desirability of overlapping should be

assessed according to the robustness it would provide to the network and the complexity of the

algorithms it would introduce. Sacham [SHAC-84b] discusses the issue of overlapping dusters in

more detail.
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We can conclude from the foregoing that the proposed Gnetworks constitute a viable

approach to the organization of large PRNETs with mobile nodes; they provide a reasonable

compromise between quality of routing decisions and the speed with which routing table updates
are propagated. Further research will be necessary to clarify such issues as: (1) thdir performance
(e.g., throughput and end-to-end delay) under average conditions assuming specific routing algo-
rithms; (2) the optimization of such networks with respect to path lengths; (3) the effect of over.
lapping on the capacity of the PRNET to respond to duster partitions, creations, and deletions.

Table II

G-NETWORKS

m(Eq. 31)
NODES v1/m n. mc rm 4 (Eq. 20)

(integer value) _ _ _ _

102 3 5 15 2d + 3

103 3 10 30 2d + 3

104 4 10 40 4 + 7

105 4 18 72 4d + 7

106 5 16 80 8d + 15

Table I I I

K-NETWORKS

NODES m - InV c =3 1 . mc rm •(Eq (8)

102 5 3 15 4d + 15

103  7 3 21 16d + 63

104 9 3 27 64d + 255

105 12 3 36 512d + 2047

106 14 3 42 16384d+ 32767

NOTE:
C - largest diameter of any cluster l4 c-1)
TI length of routing table

m - number of cluster levels

c - size of a cluster
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