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Abstract

The I/O automaton model of Lynch and Tuttle is extended to allow modelling of shared memory
systems, as well as systems that include both shared memory and shared action communication.
A full range of types of atomic accesses to shared memory is allowed, from basic re2ds and writes
to read-modify-write. The extended model supports system description, verification and analysis.
As an example, Dijkstra's classical shared memory mutual exclusion algorithm is presented and
proved correct.
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1 Introduction

Reasoning about algorithms for asynchronous concurrent systems is difficult, primarily because of
the arbitrary interleaving of process steps that may occur in an execution. As a result, researchers
have turned to formal models in order to define problems precisely, give unambiguous descriptions
of algorithms, and construct careful proofs for safety and progress properties. These models allow
one to be explicit about the possible interleavings that may occur in a distributed system and may
specify which of those interleavings are to be considered "fair" to the individual system components.
Examples include CSP [4], in which system components communicate by sending messages over
synchronous channels, and UNITY [1], in which components communicate by reading and modifying
shared variables.

The I/O automaton model [7, 8] is particularly well-suited for modelling distributed algorithms
described using message passing. The I/O automaton model is a (not necessarily finite) state
machine model that provides extra support for classifying actions as input or output and for de-
scribing fairness conditions. Precise problem statements are defined in terms of the input and
output actions that occur at the boundary between the algorithm and its "environment." These
problem statements may include nontrivial liveness constraints on the behavior of the algorithm.
Careful algorithm descriptions are constructed by specifying the states and transition relations of
I/O automata. A range of proof techniques, from simple assertional reasoning to hierarchical pos-
sibilities mappings, may be used to verify an algorithm satisfies a problem statement. In addition,
the model can be used for carrying out complexity analysis and for proving impossibility results.
The communication mechanism in a distributed system is modeled as an explicit I/O automaton
that shares actions with the other system components. Therefore, the model can accommodate a
variety of message-passing systems, from systems with strictly FIFO message delivery to those in
which messages may be delivered out of order or not at all.

Although the I/O automaton model provides excellent support for modelling message-passing
algorithms, many of the important asynchronous concurrent algorithms are described using shared
memory. And in some cases one might wish to use both shared-memory and message-passing to
describe different parts of an algorithm. Therefore, it would appear that introducing a shared-
memory mechanism into the I/O automaton model would be a useful unification of these two
approaches. The shared memory model of Lynch and Fischer [5] introduced the separation of input
and output actions, and was a precursor of the current I/O automaton model. However, until now
it has not been clear how to integrate the two basic approaches.

In this paper, we extend the I/O automaton model to allow modelling of shared memory systems,
as well as systems that have both shared memory and shared action communication. A full range
of types of atomic accesses to shared memory is allowed, from basic reads and writes to atomic
read-inoC,fy-write. We define a special class of actions, called "shared memory actions," to model
atomic accesses to shared memory. Each shared memory action contains exora information that
corresponds to the contents of the shared memory before and after the action occurs. A "shared
memory automaton" is then defined to be an I/O automaton that satisfies certain natural conditions
regarding its shared memory actions. For example, one condition captures the idea that an access
to shared memory must be prepared to observe any value in the memory.

Since shared memory automata are simply special cases of I/O automata, all the I/O automa-
ton model definitions and properties (notably composition and fairness) apply to shared memory
automata as well. We show that composing of a collection of shared memory automata (for a given
set of shared variables) yields another shared memory automaton (for the same set of variables).
To combine shared memory automata having different (not necessarily disjoint) sets of shared vari-
ables, we define an "augmentation" operator that is used to expand the set of shared variables
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for each component before composing. We show that the natural compositionality results hold
when we combine shared memory automata in this way. For example, projecting the execution

of a composition on the individual components yields executions of those components. Since we
expose the observed state of shared memory in the behavior of an automaton, we also achieve

compositionality of the behaviors of shared memory automata. That is, in the standard sense of
I/O automaton composition, the behaviors of a composition of shared memory automata are the
same as the composition of the behaviors of the individual automata.

Shared memory automata operate in a system in which the environment is free to change the
contents of the shared memory at any time. We define a "closeout" operator, which takes a shared
memory automaton and a set of variables and produces a new sliared memory automaton in which
the given set of variables is made private, absorbed into the local state. In this way, we restrict
the set of components in a system that may access portions of the shared memory.1 We provide an
analogous closeout operator on sets of behaviors, and we show that the behaviors of a closed out
automaton are the same as the clc-ed out behaviors of the original automaton.

Just as does the original I/O automaton model, our extended model supports careful prob-
lem specification (including both safety and progress properties), unambiguous system description,
verification and analysis. Both safety and progress properties of algorithms may be shown using
standard proof techniques (e.g., invariant assertions and variant functions). To illustrate these tech-
niques, we present and prove the correctness of Dijkstra's classical shared memory mutual exclusion
algorithm using the shared memory I/O automaton model.

The first author is currently developing the Spectrum Simulation System, a research tool for
the design of distributed algorithms [3]. Spectrum consists of a language and simulator based on
the I/O automaton model. Users express distributed algorithms as I/O automata and simulate
them directly, using the semantics of the formal model. A graphical interface is provided for con-
structing systems of automata and animating their executions. Using I/O automaton composition,
Spectrum users may define composed types hierarchically, study simulations at varying levels of
detail, and create specialized debugging and .nalysis devices. Incorporating the shared memory
extensions (specifically, the closeout operator) into this system will allow simulation of message-
passing algorithms, shared memory algorithms, and hybrid algorithms all within a single formal
framework. rhis is an added benefit of building a powerful unified model that accommodates both

message-passing and shared memory communication. Although Spectrum does not yet support the

closeout operator, we were able to use Spectrum to simulate the example algorithm presented in

Section 4 by explicitly constructing the closed out automaton. The invariants and variant function
were mechanically checked for random executions of the algorithm.

The remainder of the paper is organized as follows. In Section 2, we review the I/O automaton
model. We define our extensions for shared memory in Section 3 and show some important prop-

erties that follow from these definitions. In Section 4, the extended model is used to present and
prove correct Dijkstra's shared memory mutual exclusion algorithm. The paper concludes with a
summary and discussion.

2 The I/O Automaton Model

The following introduc6on to the I/0 automaton model is adapted from [8], which explains the

model in more detail, presents examples, and includes comparisons to other models.

'The ability to closeout with respect to a subset of the shared variables (as oppo.sed to the entire set) may be
likened to lexical scoping of variable declarations in a conventional programming language.
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2.1 I/O Automata

I/O automata are best suied for modelling systems in which the components operate asyn-
chronously. Each system component is modeled as an I/O automaton, which is essentially a
nondeterministic (possibly infinite state) automaton with an action labeling each transition. An
automaton's actions are classified as either 'input', 'output', or 'internal'. An automaton can es-
tablish restrictions on when it will perform an output or internal action, but it is unable to block
the performance of an input action. An automaton is said to be closed if it has no input actions;
it models a dosed system that does not interact with its environment.

Formally, an action signature S is a partition of a set acts(S) of actions into three disjoint
sets in(S), out(S), and int(S) of input actions, output actions, and internal actions, respectively.
We denote by ext(S) = in(S) U out(S) the set of external actions. We denote by local(S) =
out(S) U int(S) the set of locally-controlled actions. An I/O automaton consists of five components:

9 an action signature sig(A),

* a set states(A) of states,

, a nonempty set start(A) 9 states(A) of start states,

e a transition relation steps(A) C states(A) x acts(A) x states(A) with the property that for
every state s' and input action 7r there is a transition (s', 7r, s) in steps(A), and

* an equivalence relation part(A) partitioning the set local(A) into at most a countable number
of equivalence classes.

The equivalence relation part(A) will be used in the definition of fair computation. Each class of
the partition may be thought of as a separate process. We refer to an element (s', 7r, s) of steps(A)
as a step of A. Yi ( ,'- r, s) is a step of A, then ir is said to be enabled in s'. Since every input action
is enabled in every state, automata are said to be input-enabled. This means that the automaton
is unable to block its input.

An execution of A is a finite sequence So, r1, sl,..., i,,, s,, or an infinite sequence so, 71, s1, 72,...
of alternating states and actions of A such that (si, iri+i, si+i) is a step of A for every i and
so E start(A). The schedule of an execution a is the subsequence of a consisting of the actions
appearing in a. The behavior of an execution or schedule a of A is the subsequence of a consisting of
external actions. The sets of executions, finite executions, scueduies, finite schedules, behaviors, and
finite behaviors are denoted execs(A) , finexecs(A), scheds(A), finscheds(A), behs(A), andl finbehs(A),
respectively. The same action may occur several times in an execution or a schedule; we refer to a
particular occurrence of an action as an event.

The separation of input and output actioits will be important in our shared memory extensions
for two reasons. First, the fact that each action is under the control of exactly one component
means that by simply using actions to model updates to the shared memory, we capture the notion
of a single module making an atomic update to shared memory (without any active participation
by other modules). Second, the fact that input actions are always enabled means that we can
use shared memory input actions to construct modules that passively observe the shared memory
accesses by others without interfering. We will return to these points in Sect on 3.7.

2.2 Composition
We can construct an automaton modelling a complex system by composing automata modelling
the simpler system components. When we compose a collection of automata, we identify an output
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action r of one automaton with the input action r of each automaton having 7r as an input action.
Consequently, when one attomaton having ir as an output action performs ir , all automata having
7r as an action perform 7r simultaneously (automata not having 7r as an action do nothing).

Since we require that most one system component controls the performance of any given action,
we must place some compatibility restrictions on the collections of automata that may be composed.
A countable collection {Si~i} of action signatures in said to be strongly compatible if for all i,j E I
satisfying i 9 j we have

1. out(Si) n out(Sj) =

2. int(Si) n acts(Sj) = 0, and

3. no action is contained in infinitely many sets acts(Si).

We say that a collection of automata are strongly compatible if their action signatures are strongly
compatible.

The composition S = HjIi. Si of a countable collection of strongly compatible action signatures
{Si}iEI is defined to be the action signature with

* in(S) = Ui~iin(Si) - UiEiout(Si),

* out(S) = Uierout(Si), and

* int(S)= UiEiint(Si).

The composition A = flI=, Ai of a countable collection of strongly compatible automata {Ai}iEI is
the automaton defined as follows: 2

* sig(A) = IEi sig(Ai),

* states(A) = f'ieI states(Ai),

o start(A) = l"I start(Ai),

* steps(A) is the set of triples (sj,,r, s2) such that, for all i E I, if 7r E acts(Ai) then (s[i],ir, !r[i]) E
steps(Ai), and if 7r 0 acts(Ai) then !rj[i] = s[i], and

* part(A) = UiEIpart(Ai).

Given an execution a = srsi ... of A, let aIAi (read "a projected on Ai") be the sequencl
obtained by deleting rjs when 7rj 0 acts(Ai) and replacing the remaining 9 by s[i].

In defining the behaviors of a composition, it is sometimes convenient to hide actions, making
them internal actiois of the composition. The hidden actions are usually locally controlled actions
of the composition that are also inputs to some of its own components.

21tere start(A) and states(A) are defined in terms of the ordinary Cartesian product, while sig(A) is defined in
terms of the composition of actions signatures just defined. Also, we use the notation 31i] to denote the ith component
of the state vector g.
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2.3 Fairness

Of all the executions of an I/O automaton, we are primarily interested in the 'fair' executions -
those that permit each of the automaton's primitive components (i.e., its classes or processes) to
have infinitely many chances to perform output or internal actions. The definition of automaton
composition says that an equivalence class of a component automaton becomes an equivalence
class of a composition, and hence that composition retains the essential structure of the system's
primitive components. In the model, therefore, being fair to each component means being fair to
each equivalence class of locally-controlled actions. A fair execution of an automaton A is defined
to be an execution a of A such that the following conditions hold for each class C of part(A):

1. If a is finite, then no action of C is enabled in the final state of a.

2. If a is infinite, then either a contains infinitely many events from C, or a contains infinitely
many occurrences of states in which no action of C is e'abled.

We denote the set of fair executions of A by fairexecs(A). We say that 13 is a fair behavior of A if P3
is the behavior of a fair execution of A, and we denote the set of fair behaviors of A by fairbehs(A).
Similarly, P3 is a fair schedule of A if P3 is the schedule of a fair execution of A, and we denote the
set of fair schedules of A by fairscheds(A).

In our example progress proof of Dijkstra's mutual exclusion algorithm, we will rely on the
built-in fairness feature of the I/O automaton model in order to reason about progress in a system
containing several active, non-failing processes accessing passive shared memory.

2.4 Problem Specification

A 'problem' to be solved by an I/O automaton is formalized as a set of (finite and infinite) sequences
of external actions. An automaton is said to solve a problem P provided that its set of fair behaviors
is a subset of P. Although the model does not allow an automaton to block its environment or
eliminate undesirable inputs, we can formulate our problems (i.e., corzectness conditions) to require
that an automaton exhibits some behavior only when the environment ob-erves certain restrictions
on the production of inputs.

We want a problem specification to be an interface together with a set of behaviors. We therefore
define a schedule module H to consist of two components, an action signature sig(H), and a set
scheds(H) of schedules. Each schedule in scheds(H) is a finite or infinite sequence of actions of H.
Subject to the same restrictions as automata, schedule modules may be composed to form other
schedule modules. The resulting signature is defined as for automata, and the schedules scheds(H)
is the set of sequences / of actions of H such that for every module H' in the composition, liH' is
a schedule of H'.

It is often the case that an automaton behaves correctly only in the context of certain restrictions
on its input. A useful notion for discussing such restrictions is that of a module 'preserving' a
property of behaviors. A set of sequences P is said to be prefix-closed if / E P whenever both /
is a prefix of a and a E P. A module M (either an automaton or schedule module) is said to be
prefix-closed provided that finbehs(M) is prefix-closed. Let M be a prefix-closed module and let P
be a nonempty, prefix-closed set of sequences of actions from a set 4 satisfying b n int(M) = 0.
We say that K preserves P if /3irIl E P whenever /3l E P, 7r E out(M), and fl7rIM E finbehs(M).
Informally, a module preserves a property P iff the module is not the first to violate P: as long
as the environment only provides inputs such that the cumulative behavior satisfies P, the module
will only perform outputs such that the cumulative behavior satisfies P. One can prove that a



composition preserves a property by showing that each of the component automata preserves the

property.

3 Shared Memory Definitions

In this section, we present a set of definitions that extends the I/O automaton model in order to

allow modelling shared memory algorithms. We do not redefine any concepts, but simply add new

concepts to the existing model. We model each system component that accesses shared memory as

a restricted I/O automaton called a "shared memory automaton". The fact that shared memory
automata are simply special cases of IO automata means that all the standard definitions and
properties of I/O automata (e.g., composition and fairness) can be used directly in descriptions

and proofs of shared memory algorithms.

3.1 Variables

We will model shared memory in terms of a collection of variables, so the first step is to define
what is meant by a variable. We define a variable x to have a domain dom(x) of values and an
initial value init(x) E dom(x). Given a set X of variables, we model a state of X by an assignment
mapping for X, denoted fx, that maps each variable x E X to a value in dom(x). We let Fx denote
the set of all possible assignment mappings for X. We define init(X) to be the assignment mapping

fx E Fx such that Vx E X, fx(x) = init(x). If X and Y are sets of variables such that Y C X,
we define fxlY to be the assignment mapping fy E Fy such that for all y E Y, fy(y) = fx(y). If
X and Y are disjoint sets of variables, and Sx, Sy are sets of assignment mappings for X and Y,
respectively, then we define Sx o Sy to be the set of assignment mappings S for X UY such that for
all s E S, sIX E Sx and slY E Sy. As shorthand, we may represent a singleton set of assignment
mappings by its only element. For example, if fx is an assignment mapping for X, we write fx o Sy
instead of {fx} o Sy. Analogously, for fx E Fx and fy E Fy, we let fx o fy represent its only
element when it is clear from context that a mapping (rather than a set of mappings) is calle! for.
If f E Fx, x E X, and v E dom(x), we define f.,=,] to be the assignment mapping f' such that
f'I(X \ {x}) = fJ(X \ {x}) and f'(x) = v.

3.2 Shared Memory Actions

Since the only "sharing" that occurs in the I/O automaton model is the sharing of actions, we
construct shared memory on top of the existing shared action mechanism. We begin by defining a
special type of action called a "shared memory action" that will be used to model accesses to the
shared variables3.

We fix £, a universal set of access labels. Let X be a set of variables. We define a shared
memory action for X to be a triple of the form (f , a, fx), where f , fx E Fx and a E C.4 We let
sm-acts(X) denote the set of all possible shared memory actions for X. We say that 7r is a shared
memory action iff it is a shared memory action for some X. We say a' is a sharedmemory step (for
X) iff its contained action is a shared memory action (for X).

To construct signatures for shared memory automata, we need the following technical definition.
Let II be a set of actions and X a set of variables. We say that II is complete for X iff V7r E I, if

3In some sense, this is the reverse of what is often done to incorporate message passing into a shared memory
model. In UNITY [1), for example, shared queue variables are declared to model "channels" and atomic accesses to
these shared queues model "sending" and "receiving" data across the channels.

4These triples are action names, not to be confused with the steps of an automaton.
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7r = (fUx,a,fx) is a shared memory action for X, then Vfyx,fx E Fx,(f~x,a, fX) E I.
Let X and Y be sets of variables such that Y C X. If 7r = (fA., a, fx) is a shared memory action

for X, we define its projection on Y, denoted irIY, to be (ffY, a, fxIY), a shared memory action
for Y. If P is a sequence of actions, all of whose shared memory actions are shared memory actions
for X, then we define lY to be the sequence that results from replacing each shared memory
action of P3 by its projection on Y. Projections on sets of shared memory actions, signatures
containing shared memory actions, and sets of sequences containing shared memory actions are
defined analogously. If a = (s', 7r, s) is a step with 7r a shared memory action for X, then alY is
defined to be (s', rJY, s).

3.3 Shared Memory Automata

Let X be a set of variables, and let A be an I/O automaton all of whose shared memory actions are
external shared memory actions for X. Let shared-in(A) denote the set of shared memory actions
that are inputs to A, and let shared-out(A) denote the shared memory actions that are outputs of
A. Vie say that A is a shared memory automaton for X iff it satisfies the following conditions:

1. The sets of actions shared-in(A) and shared-out(A) are each complete for X.

2. For all steps (s', (f', a, fx), s) E steps(A),
if (f , a, fx) E shared-out(A), then for all fx' E Fx, there exists a state . and some fx E Fx
such that (s', (fl,ya, fx),. ) E steps(A).

3. In the equivalence relation part(A), any two output actions (fl, a, fx) and (fl, a, fx) are
elements of the same equivalence class.

The first condition says that if A has a shared memory action with a given label a, then it has all
possible shared memory actions with label a. For input actions, this means that A must be prepared
to handle any value it may observe in the shared variables (since inputs are always enabled). For
output actions, this condition is simply a technical restriction that makes composition of shared
memory automata work out properly, as we will see later. The condition also makes describing the
signatures of shared memory automata more convenient, since we need not list all the allowable
values of the shared variables for each shared memory action label used.

The second condition says that for each shared memory output step, there exists a step from
the same state for each possible assignment of the shared variables. In essence, this says that the
preconditions of an output action may not depend on the values of the shared variables. This
corresponds with the notion that one cannot observe the values of shared variables except by
accessing them, and that one must be prepared to handle any value that might be observed.

The third condition says that the equivalence class membership of an output action may not
depend upon the values of the external variables. This is a technical condition that prevents
a nonsensical situation in which executions must be "fair" to the different values of the shared
variables.

Since a shared memory automaton is an I/O automaton, all the standard I/O automaton
definitions for executions, schedules, behaviors, compo.'tion, and fairness carry over to shared
memory automata.

Theorem 1: The composition of a strongly compatible collection of shared memory automata for
X is a shared memory automaton for X.

Proof: We know that the coraposition of a strongly compatible collection of I/O automata is
an I/O automaton. Furthermore, since external actions of the components are external actions

7



of the composition, we know that all of the shared memory actions are external actions in the
composition. All of these are shared memory actions for X. It remains to be shown that the
composition satisfies the three conditions imposed on shared memory automata for X. Condition
1 holds, since the union of complete sets of actions is clearly a complete set. For condition 2, we
note that composition does not introduce any new output actions, nor does it remove any existing
output actions. Furthermore, input-enabling and the definition of composition imply tha !or each
output step (s , 7r, si) of a component Ai, for all states s' of the composition A, if s'IAi = s , then
there exists a state s of A such that (s' , r, s) is a step of A. Thus, Condition 2 holds. Since
the equivalence relation of the composition is the union of the individual equivalence relations of
the components, any two actions in the same equivalence class in a component are in the same
equivalence class in the composition. Since the set of shared memory output actions for each
component is complete, strong compatibility assures us that no two shared memory output actions
with the same label occur in different classes of the composition. This guarantees Condition 3. n

So far, we have given a general set of definitions for modelling collections of modules that access
shared memory. Our accesses allow a module to atomically read the entire contents of memory,
perform some local computation (possibly resulting in a state transition), and update the entire
contents of shared memory. This general type of shared memory access is, of course, an expensive
operation to implement. Therefore, we would like to define systems in which the shared memory
accesses are more restricted. For example, in the most restricted case, we might only allow read or
write accesses to single shared variables.

Let A be a shared memory automaton for X, let a be an access label of A, and let x E X. We
say that a is a

1. read access to x iff V(s', (f', a, f), s) E steps(A),

(a) f =f' and

(b) Vf E Fx such that f(x) = f'(x), (s', (f, a, f), s) E steps(A).

2. write access to x with value v iff V(s', (f', a, f), s) E steps(A),

(a) f f(x---] and
(b) VjE x, (s', (f, a, S) E steps(A).

In a read access to x, the shared memory is unmodified and the new state of A depends only
upon the value observed in variable x. In a write access to x, the "before" and "after" states of
shared memory differ only in the value of variable x, and the new state of A and the new value of
x are independent of the "before" state of shared memory.

We now define a restricted class of shared memory automata called "single-variable read-write
automata." In such automata, each access label for a shared memory output is constrained to be a
read access or a write access to a single variable. Let A be a shared memory automaton for X, and
let 7P be a partition of the access labels for actions in shared-out(A) such that there exist exactly
two classes in 0 for each variable in x E X, denoted 4',(x) and 0',(x). The partition V) is called the
access partition of A. We say that A is a single-variable read-write automaton under V) iff Vx E X,
Or() contains only read accesses to x and 0,,(x) contains only write accesses to x. We say that
such an ,.utomaton can read x iff Or(x) is nonempty, and can wrzte x iff 4O'(x) is nonempty. If Q is
a collection of single-variable read-write automata, then a component of Q is said to own a variable

x if it is the only component that can write x; in this case, x is said to be a single-writer variable.
klulti-writer, single-reader, and multi-reader variables are defined in the obvious way.
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Other classes of shared memory automata could be constructed in a similar manner. For
example, one might define test-and-set or memory-to-memory-swap accesses and define automata
in which the access labels are appropriately partitioned into additional clac.oes. In fact, this style of
definition can be used to define shared memory accesses for operations on arbitrary data types, such
as enqueue and dequeue. Of course, any shared memory algorithm could be expressed and studied
using the general shared memory automaton definition only, but being specific about the types of
shared memory accesses allowed makes the assumptions about the underlying shared memory more
explicit, and also may help simplify reasoning about the algorithm.

3.4 Augmentation and Augmented-Composition

In building up I/O automaton systems, we may wish to compose collections of shared memory
automata having different (either intersecting or disjoint) sets of shared variables. We would like
the result of this composition to be a shared memory automaton for Z, where Z is the unioii of
the sets of shared variables of the automata being composed. In order to accomplish this, we first
"augment" each of the automata with additional shared variables so that its set of shared variables
is Z. Then we compose as usual.5

We now define what is meant by augmenting an automaton. Let X and Z be sets of variables,
with X C Z. Given a shared memory automaton A for X, we define augment(A, Z), read "the
augmentation of A to Z," to be the automaton B as follows:

* in(B) = {7r Esm-acts(Z) : 7rIX Eshared-in(A)} U
(in(A)\shared-in(A)).

* out(B) = {r Esm-acts(Z): irX Eshared-out(A)} U
(out (A)\ shared-out(A)).

* int(B) = int(A).

* states(B) = states(A).

* start(B) = start(A).

* steps(B) = all steps a = (s', 7r, s) such that either

1. a E steps(A) and 7r is not a shared memory action, or
2. 0IX E steps(A) and 7r Eshared-in(B), or
3. o iX E steps(A), 7r = (f', a, fz) Eshared-out(B), and fTl(Z - X) = fzl(Z - X).

* part(B) = {C C local(B) : CJX E part(A)} such that part(B) forms a partition of the
locally-controlled actions of B.

Essentially, we augment A by making the signature comphnte for Z, while leaving the set of states
unchanged. For each step involving a shared memory action 7r for X, we substitute the set of all
steps in which 7r is replaced by a shared memory action for Z (call it 7r') such that ir'IX = 7r. For
output actions steps, we make the further restriction that if 7r' = (fT, a, fz), theft "' and fz differ
only in their assignments to the variables of X. This models the fact that outputs of B only change
the values of shared variables in X. We do not make this restriction for input actions because

5When composing a shared memory automaton with an "ordinary" I/O automaton, no augmentation is necessary,
since an ordinary I/O automaton is by definition an SMA for any set of variables X.
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they are always enabled. This also highlights the fact that the shared memory accesses of B are
independent of all shared variables other than those in X. The partition of B is constructed from
that of A to reflect the differences in their signatures.

Theorem 2: Let X and Z be sets of variables, with X C Z, and le. A be a shared memory
automaton for X. Then augnzent(A, Z) is a shared memory automaton for Z.

Proof: Immediate from the definitions of augmentation and shared memory automata. 0

Our next result, Theorem 5, says that augmentation does not (in any significant way) affect the
behavior of an automaton. This is proved using the following lemmas.

Lemma 3: Let X and Z be sets of variables such that X C Z. If A is a shared memory automaton
for X and CeA is an execution of A, then there exists an execution aB of B = augment(A, Z) such
that aBIX = aA.

Proof: Clearly, if aA contains no actions, the claim holds. For the inductive hypothesis, let
aA = a'ArAs be an execution of A, and let ce' be the execution of B such that a'IX = aA.
Clearly the state of A after a' is the same as the state of B after a'. Let this state be S'. It
remains to be shown that some rB is enabled from s' in B, resulting in state s, where 7rBIX = irA.
If irA is not a shared memory action, then the result is trivial, since the steps of A and B differ
only with respect to shared memory actions. If irA is a shared memory action (flx, a, fx), then by
the definition of augmentation, there must be a step (s', rB = f , a, fz), s) E steps(B) such that
7rBIX = 7A. a

Lemma 4: Let X and Z be sets of variables such that X C Z. If A is a shared memory automaton
for X and aB is an execution of B = augment(A, Z), then there exists an execution aA of A such
that aA = aBIX.

Proof: If CeB has no actions, the claim holds. For the inductive hypothesis, let aB = ckrBS
be an execution of B, and let a' be the execution of A such that a'IX = a . Clearly the state

of B after a' is the same as the state of A after a'. Let this state be s'. It remains to be shown
that some 7rA is (nabled from s' in A, resulting in state s, where IrA = 7rBIX. If 7rB is not a shared
memory action, then the result is trivial as before. If 7rB is a shared memory action (f , a, fz),
then by the definition of augmentation, the step (s', (fTIX, a, fzlX), s) E steps(A). Therefore, the
second claim holds. M
Theorem 5: Let X and Z be sets of variables such that X C Z. If A is a shared memory

automaton for X, then

1. behs(augment(A, Z))IX = behs(A), and

2. fairbehs(augment(A, Z))IX = fairbehs(A).

Proof: Part 1 is immediate from Lemmas 3 and 4.
For Part 2, let aA be a fair execution of A, and let 8A = beh(aA). From Lemma 3, we know

that there exists an execution aB of B = augment(A, Z) such that aBIX = aA. To show that
aB is fair, we apply the definition of augmentation. From the construction of steps(B), a shared
memory action 7r E act(B) is enabled in state s of B only if 7iXY is enabled in state s of A. The
remaining actions 7r E acts(B) are enabled in in state s of B only if 7r is enabled in state s of A.
Furthermore, any two actions 7r and 7r' are in the same equivalence class of B iff irIX and ir'X are
in the same equivalence class of A. So, since CaA is fair, aB is fair.

Now, to show the oth ," direction, let CeB be a fair execution of B. By Lemma 4, there exists an
execution aA of A such that aA = a(BIX. To show that aA is fair, we argue similarly to above. u
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We can now define augmented-composition, making use of the augmentation definition and stan-
dard I/O automaton composition.

Augmented--Composition: Let {Xi}iel be a collection of (not necessarily d'sjoint) sets of vari-
ables, let Z = UjiXi, let each Ai be a shared memory automaton for Xi, and let the collection
{augment(Ai)}iei be strongly compatible. We define the augmentcd composition fJI Ai to be the
ordinary I/O automaton composition rhEI augment(At, Z).

Theorem 6: Let {Xi}lie be a collection of (not necessarily disjoint) sets of variables, let Z =
UiEIXi, let each Ai be a shared memory automaton for Xi, and suppose that the collection of
automata {augment(At, Z)}t 6 I is strongly compatible. Then the augmented composition I Ai
is a shared memory automaton for Z.

Proof: By Theorem 2, for each Ai, a?,graent(Ai, Z) is a shared memory automaton for Z.
Therefore, by Theorem 1, the result holds. a

The following three compositionality results follow immediately from the corresponding results in
[8], cogether with Theorems 5 and 6. The first result says that an execution of an augmented-
composition induces executions of the component shared memory automata.

Corollary 7: Let {Xi}ie be a collection of sets of variables, where Z = Ui IXi. Let {Ai}ir1 be a
collection of automata such that each Ai is a shared memory automaton for Xi. Let the collection
of automata {augment(At, Z)}tE1 be strongly compatible, and let A = rI+1 Ai. If a E execs(A)
then (alaugment(A, Z))IXt E execs(At) for every i E I. Moreover, the same result holds if execso
is replaced by fairexecsO, schedsO, fairschedsO, behsO, or fairbehsO.

The next result says that executions of component shared memory automata can often be pasted
together to form an execution of the augmented-composition.

Corollary 8: Let {Xt}ie1 be a collection of sets of variables, where Z = UitIXi. Let {Ai}~ie be a
collection of automata such that each Ai is a shared memory automaton for Xi. Let the collection
of automata {augment(At, Z)}ie1 be strongly compatible, and let A = 1+1 Ai. Suppose ai is a
(fair) execution of Ai for every i E I, and let 6O be a sequence of actions in acts(A) such that
(fllaugment(At, Z))iXi = sched(rt) for every i E I. Then there is a (fair) execution a of A such
that 6 = sched(a) and at = (a]augment(At, Z))IXt for every i E I. Moreover, the same result
holds when acts() and schedso are replaced by ext( and beho.

Finally, schedules and behaviors of component shared memory automata can also be pasted together
to form schedules and behaviors of the augmented-composition.
Corollary 9: Let {Xi;}iE be a collection of sets of variables, where Z = Ui~iXi. Let {A.}iEi

be a collection of automata such that each Ai is a shared memory automaton for Xi. Let the
collection of automata {augment(At, Z)};ie be strongly compatible, and let A = Ht I Ai. Let 83
be a sequence of actions in acts(A). If (Pllaugment(At, Z))IXt E scheds(At) for every i E I, then
13 E scheds(A). Moreover, the same result holds when actsO apd scheds() are replaced by ext(
and behsO, respectively, and similarly when replaced by actsO and fairscheds0 or by ext( and
fairbehsO.
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3.5 The Closeout Operator

So far, we have introduced shared memory actions to model accesses to shared variables, and we
have defined a special kind of I/O automaton containing shared memory actions ;n its signature.
We have interpreted the first triple of each action as the "before state" of shared memory and
the third component as the "after state." However, we have not yet placed any restrictions on
the the relationship between the "after state" of one shared memory action and the "before state"
of the next. A shared memory automaton is not guaranteed that the value it writes to a given
shared variable will be the value observed by the next system component reading that variable. In
other words, we permit the environment to freely modify the values in shared memory. We would
like to construct systems in which the set of components that may modify a particular shared
variable is fixed, closed to the environment. We therefore define a "closeout" operator, which takes
a shared memory automaton A and produces a new automaton B such that some or all of the
shared variables of A become part of the local state of B. In this way, the "absorbed" variables can
be touched only the by the actions of B. Since A may be the result of composing several shared
memory automata, the closeout operator achieves the desired result of restricting shared variable
accesses to a particular collection of system modules.

We now define the closeout operator C. Since the state of an automaton may be thought of as
a mapping from a set of variables to a set of values, we will feel free to operate on states as if they
were assignment mappings. Let X and Y be disjoint sets of variables, let Z = X U Y, and let A be
a shared memory automaton for Z. We define B = C(A, X) as follows:

• sig(B) = sig(A)IY

s states(B) = states(A) o F-,

* start(B) = start(A) o init(X),

* steps(B) contains exactly the following set of steps: for each step (s', ir, s) in steps(A),

1. if 7r = (f ,a, fz) is a shared memory action, then
(s' o (fZlX), (fIY, a, fzlY), s o (fzlX)) E steps(B),

2. if ir is not a shared memory action, then

{(s' o fx, a, s o fx) : fy E Fx} 9 steps(B), and

& part(B) = part(A), where each class is projected on Y.

Essentially, the variables in X are absorbed into the internal state of the "closed out" automaton.
If x E X, we use the familiar record notation s.x to refer to the value of x in a particular state s
of B. That is, if SB = SA o fx, where SA is a state of A, then SB.X = fx(x).

Given the definition of the closeout operator, we get the following natural result.

Theorem 10: Let A be a shared memory automaton for Z and let X and Y be disjoint sets of
variables such that Z = X U Y. Then B = C(A, X) is a shared memory automaton for Y.

Proof: To show that B is an I/0 automaton, we must demonstrate that for all states s' and
input actions 7r of B, there exists a state s of B such that (s:, 7r, s) E steps(B). Since this property
is true of A, and since shared-in(A) is complete, this property is also true of B by the construction
of steps(B). (When we construct the steps of B, completeness of shared-in(A) guarantees that we
include all possible values for X in the "before states" of the steps for each input action.)

We now show that I/0 automaton B is a shared memory automaton for Y. Clearly, all the
shared memory actions of B are external shared memory actions for Y. We now show that each
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of the three conditions in the definition of a shared memory automaton hold for B. For the first
condition, since shared-in(A) is complete for Z, shared-in(B) = shared-in(A)IY must be complete for
Y. Similarly, for shared-out(B). The second condition requires that for every step (s', (fy, a, fy), s)
in steps(B), if (fy, a, fy) E shared-out(B), then for all fy E Fy, there exists a state 9 and some
fy E Fy such that (s', (fl',, a, fi), ) is in steps(B). Since this condition is true for A, we know that
for each shared memory output action label a, there exists a step (s', (fx' o f,, a, fx o fy),s) for
every possible assignment mapping f o fy. for Z. Therefore, when we project on Y in constructing
steps(B), we have a step (s', (fy,a, fy),s) for each possible assignment mapping fyr for Y. The
third condition, regarding membership of equivalence classes, is obviously true of B. W

3.6 Closeout for behaviors

We nov give a closeout definition for behaviors that is analogous to the one for automata.
Let X and Z be sets of variables with X C Z. If P is a sequence of actions of a shared memory

automaton A for Z, then we say that P is consistent for X iff the following conditions hold:

1. if (fz, a, fz) is the first shared memory action in /3, then f [X = init(X), and

2. if (fz', a,, f ) and (fz, a2, fz) are shared memory actions in 8 such that no shared memory
action occurs between them, then f [X = fThX.

If E is a set of sequences of actions of a shared memory automaton for Z, then we define C(z, X)
to be the set Tix I(Z - X), where Ex is the subset of E containing exactly tho.,e sequences that are
consistent for X.

Lemma 11: Let X and Z be sets of variables such that X C Z. Let A be a shared memory
automaton for Z, and let CB be an execution of B = C(A, X) with behavior fPB. Then there exists
an execution aA of A, with behavior PA consistent for X, such that PAI(Z - X) = P6B.

Proof: Let Y = Z - X. We construct the sequence aA from CeB as follows. For each step
(St o fx,7r,,s o fx) in CCB, if 7r = (fy,a, fy) is a shared memory action of B, then we let the
corresponding step in aA be (s' , (f' o f , a, fy o fx), s); and if 7r is not a shared memory action,
we let the corresponding step in aA be (s', 7r, s).

Let PB = beh(CeA). Clearly, PBIY = PA. It remains to be shown that aA is an execution
of A and that PA is consistent for X. We show that CiA is an execution of A by showing that
each step of aA is in steps(A). Let a = (s' o fK, r, s o fx) be a step of B. If ir = (fy,a, fy) is
a shared memory action of B, then by the construction of steps(B) in the definition of closeout,
(s', (fy, o f~x, a, fyo fx), s) must be a step of A. Similarly, if 7r is not a shared memory action, then
(s', r, s) must be a step of A. Therefore, the construction produces an execution of A.

Finally, we show that PA is consistent for X. Since every initial state of C(A, X) is in states(A) o
init(X), it must be that the first shared memory action (f , a, fz) of PB has f'IX = init(X), so
the first consistency condition is satisfied We know that the second consistency condition must
be satisfied, since any two successive steps (s"', irl,ss") and (S, r2, S) of any execution must have
8// = s/ , the assignments to the variables of X are part of the state ofC(A, X), and the only actions
that may change the values for X in the state of C(A, X) correspond to shared memory actions for
for Z. 0

Lemma 12: Lt X and Z be sets of variables such that X C Z. Let A be a shared memory
automaton for Z and iec aA be an execution of A with behavior PA. If PA is consistent for X, then
there exists an execution 'YB of B = C(A, X) such that PAI(Z - X) is the behavior of aB.
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Proof: Let Y = Z - X. Let aB be the execution constructed from aA as follows. For each
shared memory action r in aa, let the coiresponding action in aB be irjY. Leave the remaining
actions as in aA. For each state s in aA, let the corresponding state in aB be s o (fzX), where fz
is the third component of the preceding shared memory action in aA (or fz = init(Z) if there is
no preceding shared memory action).

Clearly I3AIY = beh(o!B). We claim that CeB is an execution of B. To prove this claim, we
proceed by induction on the length of aB, showing that each action is enabled from the state in
which it occurs. Clearly, if CeB contains no actions, then the claim holds. Let (s', -, SA) be a step of
aA, and let a' be the portion of aB up to (but not including) the action rIY for the corresponding
step in aB. We wish to show that if a' ends in state s', then the step (St-IY, SB) E steps(B),

where SB is the next state of aB. By the construction, we know that S = s' o (fA[X), where f
is the third component of the preceding shared memory action in aA (or f = init(Z) if there is
no preceding shared memory action), and similarly for 5B. There are two cases for 7r:

1. If 7r is not a shared memory action, then clearly it is enabled from S4, since (by the construc-
tion) s' and s' are identical except that s' does not assign values to the variables in X.
Furthermore, since nr is not a shared memory action, SBIX = S' X, so the step exists by the
definition of the closeout operator.

2. If 7r = (fz,, a, fz) is a shared memory action, then consistency of PA requires that fz be
the third component of the preceding shared memory action in aA (or init(Z) if there is no
such preceding action). By the definition of closeout, we know steps(B) contains the step
(sA o (f IX), (fTZIY, a, fzlY), SA o (fzlX)). And by the construction, SA o (fzX) = s' and
$A o (fzIX) = $B. Therefore, the desired step exists.

In both cases, irlY is enabled and leads to state sB.

Theorem 13: Let X and Z be sets of variables such that X C Z. If A is a shared memory
automaton for Z, then

1. behs(C(A,X)) = C(behs(A),X), and

2. fairbehs(C(A,X)) = C(fairbehs(A),X).

Proof: Part 1: Let Y = Z - X. By Lemma 11, we know that if PJY is a behavior of C(A,X),
then P is a behavior of A that is consistent for X. Therefore f!Y E C(behs(A), X), by definition. If
PlY E C(behs(A), X), then by definition of closeout on behaviors, Pl is consistent for X. Therefore,
Lemma 12 tells us that PJY E behs(C(A,X)).

Part 2: First, we show that fairbehs(C(A, X)) contains C(fairbehs(A), X). Let PB be a fair
behavior of B = C(A, X), and let aeB be an execution of B with beh(aB) = PB. Construct
execution aA of A from aB as in the proof of Lemma 11 such that beh(aA)l(Z - X) = PB. Since
A is a shared memory automaton, we know that shared-out(A) is complete and that for any given
access label a E £, all shared memory actions with label a belong to the same class. Furthermore,
by the definition of closeout, 7A and 7r' belong to the same equivalence class in A iff rAIX and
rAIX belong to the same equivalence class in B. Therefore, given that aB is fair, we can show
that aA is fair by arguing that an action n-A is enabled in state SA of aA iff rAIX is enabled in
the corresponding state SB of aB. This is easily seen from the construction of steps(B): since
• = SDI(Z - X).

Now, we show that C(fairbehs(A), X) contains the set fairbehs(C(A,X)). Let PA be a fair
behavior of A that is consistent for X, and let aA be an execution of A with beh(aA) = P8A.
Construct execution aB of C(A, X) from aA as in the proof of Lemma 12 such that PAI(Z-- X) =
beh(aD). The remainder of the proof is argued as above. u
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3.7 Discussion

Important in defining our shared memory extensions were the built-in features of the I/O automaton
model, most notably composition an,! the separation of inputs and outputs. By using the built-in
notion of an output action being under the control of a single process, we wej , able to capture
the idea of a single module making an atomic update to shared memory (wkhout any active
participation by other modules). In addition, by exposing the values of the shared variables as
part of the shared memory accesses, we were able to not only carry forward the compositionality
properties of I/O automaton behaviors but also provide a useful notion of a shared memory action
as an input. We expect normal communication through shared variables to be modeled using
output actions only, but the input actions allow a module to passively observe the accesses to
shared memory made by other processes. We see two potential uses for this feature. First, one
might use shared memory actions as inputs to construct external processes that are not part of
the algorithm but monitor the use of shared memory (possibly as a means to check algorithms in
a simulation system). Second, in a modular algorithm design, it may be appropriate to divide a
task into several I/O automaton components such that only one component accesses the shared
memory while the others are kept "informed" of these accesses by receiving them as inputs (e.g.,
to model a collection of processes "snooping" on a memory bus to update local caches).

4 Example: Dijkstra's mutual exclusion algorithm

In order to illustrate the shared memory extensions just presented, we apply them to Dijkstra's
classical shared memory mutual exclusion algorithm. We begin by defining the mutual exclusion
problem in terms of the I/O automaton model. We then present Dijkstra's algorithm as a compo-
sition of shared memory automata. The safety and progress proofs that follow demonstrate how
proofs using standard assertional techniques may be expressed straightforwardly using this model.

4.1 The Mutual Exclusion Problem

Fix n, a positive integer, and let 2 = {1, 2,..., n}. We define schedule module M with sig(M) as
follows:

Inputs: UserTryi, i E I Outputs: Criti, i E I
UserExiti, i E 11 Remi, i E .-

Schedule module M interacts with an environment that may be thought of as a collection of n
user processes ui, i E -, where each process ui has outputs UserTryi and UserExiti, and has inputs
Criti and Remi. A UserTryi action means that process ui wishes to enter its critical section. A
Criti action by M gives ri permission to enter its critical section. A UserExitj action means that
process ui is leaving its critical section. Finally, the Remi action gives ui permission to continue
with the remainder of its program. If P3 is a sequence of actions of M, then we define f1i to be
the subsequence of P containing exactly the UserTryi, Criti, UserExiti, and Remi actions. Before
defining the allowable schedules of M, we define the set of well-formed and user-live sequences of
actions of M. Let /3 be a sequence of actions in sig(M). We say that /3 is well-formed ifi for all i E 1,
all prefixes of 61Ji are prefixes of the infinite sequence UserTryi, Criti, UserExiti, Remi, UserTryi,
Criti,.... This says, for example, that a process will not issue a try request while in its critical
section. If /3 is a sequence of actions of S, we say that P3 is user-live iff for all i E 11, fijl is either
infinite or does not end with Criti. Informally, this says that no user ui stops in its critical section.
An execution is said to be well-formed (user-live) iff its behavior is well-formed (user-live).
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We define the set scheds(M), the allowable external behaviors of M, as follows. Let 83 be a

sequence of actions in sig(M). Then /3 E scheds(M) iff the following conditions hold:

1. M preserves well-formedness in P3.

2. If P3 is well-formed, then

(a) (mutual exclusion) Vij E 2, if Criti and Critj occur in /3 (in that order), then UserExiti
occurs between them.

(b) (progress) if P is user-live, then either /3 is infinite or Vi, 01i ends with Remi.

Condition (2a) is the safety property: no two processes ait in their critical sections simulta-
neously. Condition (2b) is the progress property: either all processes eventually end up in their
remainder regions or some process enters the critical region infinitely often. Both properties are
guaranteed only if the user processes preserve well-formedness, and the progress condition is guaran-
teed only if user processes eventually exit the critical region. In this variant of the mutual exclusion
problem, only . very weak progress requirement is made. For example, correct solutiom to this
problem admit executions in which a process is locked out of the critical section.

4.2 Dijkstra's Mutual Exclusion Algorithm

In this section, we model Dijkstra's shared memory mutual exclusion algorithm [2] as an il-
lustration of our shared memory extensions to the I/O automaton model. As presented here, the
variable names and structure more closely follow the description in [6], although the algorithm is
the same.

We implement schedule module Al by a collection of n automata pi, i E -, where each pi
interacts with ui through shared actions and interacts with the other pj's using shared variables.
Each pi has three state components: stage E {try, read, check, set, control2, final-check, failed, crit,
exit, done, remainder}; k, an integer in the range 1 to n; and checked, a set of integers in the range
1 to n. Initially, stage = remainder, k is arbitrary, and checked is the empty set. Automaton pi is a
shared memory automaton for V, where V has the following variables: k, an integer in the range 1
to n; and control[j] for j E IT, which take on values from {0,1,2}. Initially, k has an arbitrary value
and all control variables are 0. The code for automaton pi is shown in Figure 1. Shared memory
actions are listed by their access labels and distinguished by daggers (t); all other actions are listed
by their action names. All actions of pi are outputs, except UserTryi and UserExiti, which are
its inputs. "Pre" and "Eff" denote "precondition" and "effect", respectively. For shared memory
actions, the step (s', (v', a, v), s) is in steps(pi) exactly when the precondition for a is satisfied in
state s' and s and v are derived from s' and v' according to the effect clause. For all other output
actions, the step (s' , 7r, s) is in steps(pi) exactly when the precondition for 7r is satisfied in state s'
and state s is derived from state s' according to the effect clause. If an action has no precondition,
it is always enabled. If a state component or variable is not mentioned in the effect clause, it is
left unchanged by the action. The partition consists of a class for each i E Z" that contains all the
output actions of pi.

Essentially, the algorithm proceeds in two stages. After receiving a UserTryj input, pi sets its
control -,- iable to 1 and enters stage one. In stage one, it continually reads k and checks to see if
control[k] is 0. If it finds a 0 in control[k], it sets k to its own index i. If it reads k and finds it equal
to i, pi proceeds to stage two and sets its control variable to 2. In stage two, pi performs a final
check by examining the control variables of all the other processes. If any of these control variables
are found to be 2, then pi fails and returns to stage one (where it sets its control variable back 1).
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a User]yi
Eff:- s.stagei = try

t Tryi
Pre: s'.stagei E (try, failed}
Eff:- v.control[i] 1

s.checkedi = i}
s.stagei read

t Read,
Pre: s'.stagei read
3ff: s.ki = v'.k

if s.ki = i then
.5.stage, = contro12

else
s.stagei = check

t Check(A)
Pre: s'.stagei check

i = .k
Eff: if v'.controlUi] = 0 then

s.stagei = set
else

s.stagei = read

t Setj
Pre: s'.stagcei set
Eff:- v.k= i

s.stagei read

t Oontrol2i
Pre: s'.stagei control2
Eff:- v.control(i] = 2

s.stagei final-check

t Fina1Check(j)i
Pre: s'.stagei final-check

j 0 s'.checkedi
Eff:- if v'.controlUj] = 2 then

s.stage1 = failed
else

s.checkedi = s'.checkedi U (j}

0 Oriti
Pre: s'sae final-.check

i 8'.checkedil =n
Eff:- s.stagei crit

* UserExiti
Eff: s.stagei exit

s.checkedi = {i)

t Reseti
Pre: s'.stagei = exit
Eff: ?.control[iJ = 0

s.stagei done

*Remi
Pre: s'.stagei done
Elf: s.stagei remainder

Figure 1: Transition Relation for pi in Dijkstr&'s Algorithm
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Otherwise, pi finds all the control variables to be less than 2 and issuere a Criti action, allowing ui
to proceeO to the critical section. After ui leaves the critical section (and issues a UserExit; action),
pi resets its control variable to 0 and issues a Remi action.

We associate with each pi an access partition ai as follows: For each j E 1, or(control[j],
contains the labels Check(j)i and FinalCheck(j)i. Also, 0/ (control[i]) cortains the labels Tryi,
Control2;, and Reseti. And for each j $ i, 7i/,(control[j]) is empty. Finally, 4-.(k) contains Readi
and o/ 1(k) contains Seti. The following result follows immediately from inspection of he code.

Lemma 14: For all i E 1, automaton pi is a single-variable read-write automat'n under )'.

We let system S = C(fl 1<i<npi, {k, control[if, i E T:}) be the composition of the processes of
Dijkstra's algorithm, closed out on k and the control variables. Furthermore, we hide all shared
memory actions of S so that the external signatures of M and S are the same. One may note that
all the pi's in system S can read and write shared variable k, whereas the variable control if may
be written only by pi and read by the other pj's. That is, each conlroqi] is owned by pi,. while k is
a multi-writer variable.

We wish to show that system S solves schedule module M. The proof has three parts. First, we
show that S preserves well-formedness in all executions, Condition (1) of module M. In Section 4.3,
we give the safety proof, Condition (2a). Finally, we present the progress proof, Condition (2b), in
Section 4.4.

If i is a process index and s is a state of system S, we say that process pi is a contender in state
s, written contender(i, s), iff s.stagei E {read, check, set, control2, final-check, failed}.

Lemma 15: Let a be an execution of system S with behavior /. Then system S preserves well-
formednss in 83.

Proof: By iduction on the length of a. For the base case, if a contains no actions, then it is
well-formed. Let a = a'sir, where beh(a') is well-formed and 7r is an output action of S. There are
two cases.

* If 7r is a Criti action, then by the preconditions of that action it must be that pi is a contender
in state s. Therefore, the last action in beh(a')Ii must be UserTryi, for any other action would
leave pi in a non-contender state.

* If ir is a Remi action, then by the preconditions of that action it must be that stage;= done
in state s. Therefore, the last action in 'lji must be keseti, for any other action would leave
pi in a state with stagei 5 done. Since Reset; is only enabled when stagei = exit, the last
action in beh(/3')Ii must be UserExiti, for any other action would leave pi in a state with
stage;i exit.

In both cases, /3 is well-formed. u

The following lemma will be used in the safety proof to rule out the occurrence of UserTry and
UserExit actions from certain states.

Lemma 16: Let a be an execution of syster. S with behavior fl. If / is well-formed, then for
all states s in a, if s is immediately followed by a UserTry (UserExiti) action, then s.stagei is
remainder (crit).

Proof: If s is followed by UserTryi, then by definition of well-formedness, the preceding action
in flji is a Rem; action, and a Remi action leaves stage; = remainder. Furthermore, no output
actions of pi are enabled while stage; = remainder. If s is followed by UserExiti, then by definition
of well-formedness, the preceding act.on in f3ji is a Criti action, and a Criti action leaves stagei=
crit. Furthermore, no output actious of pi are enabled while stage; = crit. u
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4.3 Safety Proof

Let s be a state of system S. To denote the set of processes in (or about to enter) their critical
sections, we define the set ready(s) = {i : (s.stagei = crit) V (Is.checkediI = n)}. The proof is
based on a set of invariants, proved in the following Lemma. 6 Using Spectrum, this Lemma was
checked mechanically for all states of random executions of the algorithm.

Lemma 17: Let a be a well-formed execution of system S. In states s of a, for all processes pi
and pj, the following facts hold:

1. s.control[i] = 2 iff s.stagei E {fina-check, failed, crit, exit}.

2. If s.checkei {i} then s.stagei E {final-check, failed, crit}.

3. If i 0 j, then i E s.checkedj = j V s.checkedi.

4. If i E ready(s) then s.checkedi = {1, 2, ...n}.

5. If s.stagej E {control2, final-check, failed, crit, exit, done}, then s.ki = i.

Proof: In the initial state of S, Vi E 1, control[i] = 0, checkedi = {i}, and stages = remainder.
Therefore, all the facts hold in the initial state. Let a = a'7rs, and assume that the facts hold in
all states of a', and specifically in the last state s' of a'. We consider each fact in turn, showing
that it must hold in state s as well.

1: If s'.control[i] = 2, then by the induction hypothesis s'.stagei E S = {fina-check, failed,
crit, exit}. Therefore, ir must be either Tryi, FinalCheck(j)i, Criti, UserExiti, or Resets.
(Lemma 16 rules out UserTryi.) The actions FinalCheck, Criti, and UserExiti do not change
the value of control[i] and result in s.stagei E S. The actions Tryi and Resets both cause
s.control[i] # 2, but also result in s.stagei 0 S. Therefore, the property is preserved if
s'.control[i] = 2.

If s'.control[i] # 2, then by the induction hypothesis s'.stagei V S. Therefore, 7r must je
either UserTryi, Tryi, Readi, Check(j)i, Seti, Control2i, or Remi. (By Lemma 16, UserExiti
is ruled out.) Actions UserTryi, Readi, Check(j)i, Seti, and Remi do not change the value
of control[i] and result in s.stagei 0 S. Furthermore, the action Tryi sets control[i = 1 and
results in s.stagei 0 S. Finally, the action Control2i sets control[i] = 2, but also results in
.s.stagei E S. Therefore, the property is preserved if s'.control[i] 0 2.

2: If s'.checkedi = {i}, then the only possibility for 7r which could cause s'.checkedi 0 {i} is
FinalCheck(j)i. This action is only enabled if s'.stage[i] = final-check. The FinalCheck(j)i
either does not change stages or sets s.stagei = failed. Therefore, the property is preserved.

If s'.checkedi 0 {i}, then by the induction hypothesis, 9'.stagei E {final-check, failed, crit}.
Therefore, the only possibilities for 7r which could cause s.stagei {fina-check, failed, crit}
are Tryi and UserExiti. (The action UserTryi is ruled out by Lemma 16.) However, in both
caseb, 6.uheckedi - 'It', so the property is preserved.

3: The proof is by contradiction. Suppose i 0 j such that i E s.checkedj and j E s.checkedi.
Without loss of generality, suppose that i E s'.checkedj, and let ir be the action that adds j to
checkedi. (By the induction hypothesis, we know that j s'.checkedi.) The only possibility

6Although the last invariant of Lemma 17 is used only in the liveness proof, we present it here because of its
similarity to the others.
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for 7r is FinalCheck(j)i. By the transit .. relation, 7r can only add j to checkedi if s'.control[j]
y 2. However, by the induction hypo, tesis (Fact 2), we know that s'.stagej E {final-check,
failed, crit), since s'.checked 6  {j . Therefore, by Fact 1, we know that s'.control[j] = 2, a

contradiction.

4: Recall, from the definition, that i E ready(s) iff s.stagei = crit V Is.checkedil = n. By a
pigeonhole argument, the fact clearly holds when Is.checkedil = n. If s'.stagej crit, then
the only possibility for 7r to make s.stagei = crit is the Criti action. That action has as a
precondition that Icheckedil = n, and does not change the value of checkedi. Therefore, the
property is preserved. If s'.stagei = crit, then the only possibility for r to make Is.checkedi[ #
n is UserExiti, but this also results in stagei = exit.

5: If s'.stagei E {control2, final-check, failed, crit, exit, done}, then by the inductive hypothesis,
s'.ki = i. Furthermore, the only action which can change ki is a Readi action, which is only
enabled if stagei = read, so s.ki = s'.ki = i. If s'.stagei {control2, finalJcheck, failed, crit,
exit, done}, then the only possible action for 7r which could cause s.stagei to be in that set
is a Readi action. (Lemma 16 rules out UserExiti.) However, the Read; action can only set
s.stagei = control2 if s.ki = i. Thus, the property is preserved.

All five facts hold in state s.
We can now show that no two process,:' -,iy be in (or about to enter) their critical sections.

Theorem 18: If - is a state of systmn, ';, Iready(s)j < 1.
Proof: By contradiction. Suppose "-t Iready(s) > 1. Then by Fact 4 of Lemma 17, there

must exist two processes pi and pj such that s.checkedi = s.checkedj = {1, 2, ...n}. However, this
contradicts Fact 3 of Lemma 17.

It follows that the algorithm satisfies mutual exclusion.

Corollary 19: Let a be a well-formed execution of system S. Then i,j E 1, if Criti and Critj
occur in a (in that order), then UserExiti occurs between them.

Proof: By well-formedness and inspection of the code for system 5, if a Criti action occurs in
a then stagei = crit in all states up until the next UserExit; action. Suppose (for contradiction)
that there exist two processes pi and pj such that Criti and Critj occur in a (in that order) and no
UserExit; occurs between them. Then after Critj occurs, stagei = crit and stagej = crit. However,
by Theorem 18 and the definition of ready, this is impossible. u

4.4 Progress Proof

In this section, we show that Dijkstra's algorithm makes progress: if a process is attempting to
enter the critical section, then eventually it or some other process will enter the critical section.
We define a "no-progress execution" of system S and then show that no such executions exist. The
proof is by contradiction: We define a well-founded variant function, or progress metric. Then we
show that in no-progress executions the function is nonincreasing and must eventually decrease.
Since no infinite-length decreasing chains are possible, this shows that no-progress executions do
not exist. The notion of fairness, which we inherit "for free" from the original I/O automaton
model, is used to show that the variant function eventually decreases.

Let -1 = a# be a fair well-formed user-live execution of system S. Furthermore, let none of the
following actions occur in 0: UserTry, Crit, UserExit, Rem. If fi begins with a state in which some
process has stage 5 remainder, then 8 is said to be a no-progress execution suffix and ' is said to
be a no-progress execution.
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Lemma 20: Let / be a no-progress execution suffix, and let s be a state in /P. Then Vi E 27,
s.stagei d {crit, exit, done}.

Pro. i tmediate from the definitions of no-progress execution suffix, fairness, and pi.

Before defining the variant function, we identify an important predicate on system states. If s
is a state of S, we say that s is consistent, denoted consistent(s), iff for all i E Y, contender(i, s)
=€ s.ki = s.k.

We now define the variant function. Given state s of system S, we define

f(s) = (A, B, C, D, E, F, G, H, I, J, K),

where each tuple component has the nonnegative integer value defined as follows:

A = I{i: s.stagei = tryfl.

B = I{i: s.stagei = read}I if -'contender(s.k, s),
0 otherwise.

C = I{i: s.stagei = check A -,contender(s.ki,s)}I.

D = 0 if contender(s.k, s), 1 otherwise.

E = I{i: s.stagei = set}I.

F = I: s.stagei = control2 A i z s.k}l.

G = I{i: s.stagei = final-check A i 0 s.k}I.

H = I{i: contender(i,s) A ki 0 s.k}1.

I = Fi(n - Icheckedil), for all i 6 s.k such that
s.stagei = final-check.

J = Ifi : s.stagei = failed A i # s.k}1.

K = n if (-,consistent(s) V s.stage,.k 0 final-check),
n - Ichecked,.kI otherwise.

We define a lexicographic total order on the element. in the range of f. We will show that f
is nonincreasing and will eventually decrease in a no-progress execution suffix, but first we explain
the components of f. The components A, E, F, G, and J simply count the number of processes in
a certain stage (in some cases ignoring the process whose index is the value of the shared variable
k). These components measure progress of the contenders through the different stages of the
algorithm. Components B and C serve a similar purpose for the "read" and "check" stages, but
are more complicated because contenders may cycle through these two stages while they wait for
some other process to "get out of the way." Component B's purpose is to count the number of
processes in the "read" stage; however, when the shared variable k is the index of a contender,
B = 0. In this way, the value of B does not increase when a contender "backs off" to read k again.
Component C counts the number of processes in the "check" stage whose local k variables contain
indices of non-contenders.

Component D becomes 0 when the shared variable k is set to the index of a contender, and
remains 1 otherwise. Components I and K both count down the number of indices that are missing
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from the checked sets of processes whose stage is "final-check." Component I hold the sum of this

count for all the contenders whose indices are not equal to the shared variable k. Component K

holds this count for the (at most one) contender whose index is equal to the shared variable k, but

only starts counting down after all other contenders are "out of the way," meaning that their local

k's are equal to the shared k.
In studying the variant function, two important progress "landmarks" should be noted. The

first is when component D reaches 0, after which point the value of k is always the index of a

contender. After D reaches 0, the second landmark is when component H reaches 0, meaning

that all later states are consistent. After this pcint, all processes other than pk cannot escape the

Read-Check cycle, so nothing stands in Pk'S way.
We now show that the value of the variant function f is nonincreasing in no-progress execution

suffixes, and that only certain steps leave f unchanged. Using Spectrum, this lemma (and earlier

incorrect versions of it) was checked for random algorithm executions. That is, for each step it was

mechanically verified that either (1) progress was being made (see Lemma 20), or (2) the variant

function decreased, or (3) the variant function was unchanged and one of the exceptions held.

Lemma 21: Consider any state s' in P, a no-progress execution suffix. If action 7r of process pi

occurs from state s' producing state s, then the following conditions hold:

1. f(s') > f(s), and

2. either f(s') > f(s) or one of the following hold:

(a) 7r is a Read action and s'.ki = s'.k, a contender, or

(b) 7r is a Check action and s'.ki is a contender, or

(c) 7r is a Try action, i = s'.k, and s'.stagei = failed, or

(d) 7r is a Control2 action and i = s'.k, or

(e) 7r is a FinalCheck action, i = s'.k, and
-nconsistent(s').

Condition (1) says that the variant function is nonincreasing. Condition (2) says that every action

must decrease the variant function, except for a few special cases. Exceptions (2a) and (2b) handle

the case of a process cycling through the "read" and "check" stages, waiting for some other process

to get out of the way. Note the relationship between items (2a) and (2b) and the variant function

components B and C, respectively. A process does not make progress when it reads the same value

of the shared variable k that it read the previous time. Similarly, a process does not make progress
if it discovers that the control variable corresponding to its local k is nonzero. Exceptions (2c),

(2d), and (2e) pertain only to the contender whose index is the value of the shared variable k.

Process Pk may "back off" several times before it finally enters the critical section, and the variant
function is carefully constructed not to change when pk backs off. These last three exceptions are
the necessary result.

Proof: By case analysis. For each possible action, we note the changes in the components of

the variant function f. (We will use A' and A to denote the first components of f(s') and f(s),

respectively. Similarly for B' and B, etc.) Each case may be verified by Lemma 20 and inspection
of the preconditions and effects of the action under consideration.

* If 7r = (v', Tryi, v), there are three cases:
(1) If s'.stagei = try, then A' > A, decreasing f.
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(2) If s'.stagei = failed and i 6 s'.k, then J' > J, and no components increase. (Component
B cannot increase because Fact (5) from Lemma 17 tells us that if stagei = failed, then ki = i,
a contender by definition.) Therefore, f is decreased.
(3) If s'.stagei = failed and i = s'.k, then f(s') = f(s), satisfying Condition 1 and exception
2c.

* If 7r = (v', Readi, v), there are three cases:
(1) If s'.k is not a contender, then B' > B and A is unchanged, so f decreases.
(2) If s'.k 5 s'.k, then H' > H and no higher order components are increased, so f decreases.
(3) If s'.ki = s'.k, a contender, then f(s') = f(s), satisfying Condition 1 and exception 2a.

* If r = (v', Check(j)i, v), there are two cases:
(1) If s'.ki is a contender, then f(s') = f(s), satisfying Condition 1 and exception 2b.
(2) Otherwise, C' > C, and A and B are unchanged, so f is decreased.

* If 7r = (v', Set, v), then B = 0, D = 0, E' > E, and A and C are unchanged. Therefore f
decreases.

* If 7r = (v', Control2i, v), there are two cases:
(1) If i = s'.k then f(s') = f(s), satisfying Condition 1 and exception 2d.
(2) Otherwise, F' > F and no higher --der components are changed, so f decreases.

* If 7r = (v', FinalCheck(j)i, v), there are three cases:
(t) If i $ s'.k, then I' > I and no higher order components are changed, so f decreases.
(2) If i = s'.k and -consistent(s'), then f(s') = f(s), so Condition 1 and exception 2d are
satisfied.
(3) If i = s'.k and consistent(s'), then K is the only component that may change. Suppose,
for contradiction, that K does not decrease. By the effects of FinalCheck and the definition
of K, the only way for this to happen is for s'.control[j] = 2. If s'.control[j] = 2, then Fact
1 of Lemma 17 tells us that s'.stage[j] E {final-check, failed, crit, exit}. Therefore, by Fact
5 of the same Lemma, s'.kj = j. Since s' is consistent, s'.kj = S'.k, and we have stated that
s'.k = i. So, by transitivity, j = i. By the preconditions on FinalCheck, j s'.checkedi.
But i E s'.checkedi, since i E checkedi initially and no action may remove it from that set.
Therefore j 3 i, a contradiction.

In each case, the Lemma holds. The set of cases is complete by Lemma 20 and the definition of a
no-progress execution. 9

We have just shown that the value of the variant function f never increases in a no-progress
execution suffix, and that only certain steps leave its value unchanged. Now we will show that a fair
execution cannot proceed using only those certain steps, so the function must eventually decrease.

Corollary 22: Let a be a no-progress execution suffix. Then f must eventually decrease in a.
Proof: Suppose that f is fixed in a', a suffix of a. Then, by Lemma 21 for all states s' of a',

if r occurs from Q', then one of the following bold:

* ir is a Read action and s'.ki = s'.k, a contender, or

* 7r is a Check action and sa'.ki is a contender, or

* 7r is a Try action, i = s'.k, and s'.stagei = failed, or
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* r is a Control2 action and i = s'.k, and

* 7r is a FinalCheck action, i = s'.k, and -nconsistent(s').

Since no action in a' is a Set action, the shared variable k is fixed in a'. Fairness tells us that all
contenders must continue taking steps. (Inspection of the code will reveal that a contender always

has some step enabled.) Therefore, by the four conditions above, all contenders other than Pk

must have stage E {read, check}; otherwise their steps would decrease the value of f, contradicting

our assumption that f is fixed. Therefore, by the same fairness argument, a Read action must
eventually occur for each of these contenders, after which point its local value of k matches the
shared k.

Let a" be the suffix of a' after which all contenders other than Pk have their local k's equal
to the shared k. Now, consider Pk, which must continue to take steps in a", and let s" be a state

in a" from which Pk takes a step. If Pk takes a FinalCheck step, then by Fact 5 of Lemma 17,
s.kk = s".k. However, this implies that s" is consistent. Therefore, the conditions above imply
that no FinalCheck actions can occur. If Pk takes a Control2 step, then a FinalCheck action will
become enabled and remain enabled until it occurs, so fairness tells us that a FinalCheck action
will eventually occur, but we have just ruled this out. The oily remaining actions for pk are Read,
Check, and Try. If Pk takes a Read step, then it will observe that the shared k contains its own
index and proceed to stage = control2, meaning that it must eventually take a Control2 step, which
we have already ruled out. If Pk takes a Check step, then since (by statement 2 above) s".kk is
a contender, it will proceed to stage = read, meaning that it must eventually take a Read step,
which we have just ruled out. Finally, if Pk takes a Try step, it will also proceed to stage = read.
Therefore, if Pk continues to take steps, it eventually will decrease the value of f, giving us our
contradiction. u

Our main liveness result follows immediately.

Theorem 23: The set of no-progress executions for Dijkstra's algorithm is empty.
Proof: By Lemma 21, we know that the value of the variant function f is nonincreasing in a

no-progress execution suffix. Furthermore, by Lemma 22, the value of f never reaches a fixed point.
Therefore, since f cannot infinitely decrease, the theorem holds. M

Finally, we show that the above theorem implies that Dijkstra's algorithm satisfies the required
progress property.

Corollary 24: Let a be a fair well-formed user-live execution of system B. Then either Vi, ali
ends with Remi, or 3i such that ali is infinite.

Proof: By contradiction. Suppose that a is finite and that there exists some 1 E T such that all
does not end with Remi. Then there exists a suffix of a in which Pi has stage 0 remainder and ali
is empty for all i. This is a no-progress executiov suffix, by definition. Therefore a is a no-progress
execution, which is a contradiction of Theorem 23.

5 Conclusion

We have extended the I/O automaton model to allow modelling of shared memory systems, as
well as systems that include both shared memory and shared action communication. The extended

model was shown to support all types of atomic accesses to shared memory, from the very restrictive
single-variable reads and writes t, operations on arbitrary abstract data types. By building our
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shared memory model on top of I/O automata, we could take advantage of the fairness definitions
and compositionality properties already present in that model. This resulted in a unified model
with relatively few new concepts. An example algorithm, Dijkstra's classical shared memory mutual
exclusion algorithm, was presented in this model and its safety and progress properties were shown
using standard assertional - ,d variant function techniques.
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