#

. flio il Covy
AD_AZZQ 955 'D;;;M;':;E RIAD DNSTRUCTIONS

BEFOEE COMP TTEIND FORN
1. ALruny meee. j2. GOVY ACCESSION MO. [J3. RECIPIENT'S CATALOG NUME:LR

4. TITLE (anc Subtitie) S. YYPt OF REPORY B PERIDD COviRID
Ada Compiler Validation Summary Report: TeleSoft, |23 Nov. 1989 to 23 Nov. 1990

TC2000 Ada Version 4.0 for BBN TC2000 under nX 1.0 Version o PERTORNING DRC. RLPORT WUMBLR
(Host & Target), 891123T1.10218 :

7. AUTHOR(s) 8. CONTRACT OR GRANT MUMEER(s)
IABGy
Ottobrunn, Federal Republic of Germany.
$. PERFORMING ORGANIZATION AND ADDRESS 30. PROGRAM ELEMENT, PRIDECT, TASK
AREA & WORK UNIT NUMZ{RS

IABG,
Ottobrunn, Federal Republic of Germany.

CONTRO.LING OFFICE NAME AND ADORESS 12. REPORY DATE
Gda nggt Progéam Office £ Det

nited States Department of Defense b e
Washington, DC 20301-3081 . .
14, MONIJTORING AGENCY WAMD & ADDRESS(/f oifferent from Controling Otice) 18, SECURITY CLASS (of thisreport)
1ABG UNCLASSIFIED

? , - - -

Ottobrunn, Federal Republic of Germany. 15e. EEEtéEEE”“”“'°°"‘“““““

16. DISTRIBJTION STATEMENT (of tris Report)

Approved for public release; distribution unlimited.

17, DISTRIBLTION STATEMINY (of the abstractentered nBiock Yﬂd Herent from Report)
UNCLASSIFIED b

18. SUPP_EMINTARY NCOTES

19. KEYwORDS (Continue onreverse s:de f necessary and identify by block number)

Ada Programring language, Ada Compiler Validation Sumrmary Repcrt, Aca
Corpiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRALT [Continue Onreverse s:de if necessary ond Jent:fy by block number)

TeleSoft, TC2000 Ada Version 4.0, Ottobrunn West Germany, BBN TC2000 inder nX 1.0
(Host & Target), ACVC 1.10.

DN YO 1473 €DITIoN OF ¢ MOV 65 1S O8SOLETE
134 73 $/N 0102-1F-014-8601 UNCLASSIFIED

SICURITY CLASSIFICATION OF TWIS PAGL (WhenDete Ente
an N4 24 (ORBY

aqrem

LUFT Coprrol Humbeys

IABG nbH, a%t. 52T
Tinsfeinstrasss 20
n-3612 Sttenrunn
Wast Germany

f

-

Ada Compiler Validation Summary Report:

Compiler Wame: TC2000 Ada Version 4.0

Certificate Number:

Host and Target: BBN TC2000 under nX 1.0

#891123711.10218

Testing Completed 23 MNovember 1989 Using ACVC 1.10

This report has been reviewed and is approved.

qe

IABG mbR, Abt. SZT
Dr. S. Heilbrunner
Einsteinstr. 20
D-8012 Ottobrunn
Vest Germany

2r. A

Ada Validation Organization
Director, Computer & Software Engineering Division
Institute for Defense Analyses

Alexandria, VA 22311

P -

4
/' ////‘//

'”';',/1/" ',; ’// //

e

Ada Joint Progranm Offlce
Dr John Solomond
Director

Department of Defense
Washington DC 20301

| Accesior. Fo'

NTIS ¢ RA&'
Dlic TAH 0
WUoannagn ceod 0O
Ju. S {3 T Al e
- e e eI
By e
Distabntion]
b e e e

Ao atabibity Codes
oAvar aadgior
Dist = speeml

M

‘ (O R o o (s o WM WD SO CC et
.t R ST SO SLAY SCAE N A SO X
w
[
. .
£~
- et
tx. o
[on o k-t .
1 feo
=1 ¢ C e
0. (g=}
[. . C
e g, wl
el [TH) . .
(r g s
I 72 W - C
u . (5] LA H = (e}
(] €3 [« 2o s = O v e s fx,
Pl (35 -t LS e = (x4
Iei b £~ . o =3 . Q
E- e &) o i e 4] =
[¢« = o . - £ (T erl [. | &) et
< [C [e = E~
t |] Lo €5 EN 220 72 BT ST @) . (29 w
rCoT b~ £~ £ F [, £ M
iz [& (] LSS | [S = e [+ 3 i
(= berobel et [a N S P S I B < <
[T B 1 {p] [CYI'S |20 %! (24 + O fr, (24
€3] ot . < | s 1 (5] [I = B) oA
. [3} (r. U1 fe vy (s 3 B~ T e b o] {1
[dd) = Pl [CRIN = W H--A ©- A (&) e
T bt [Q [SN SRR (AN 2 Bl SR B] £ [72] wn
- e H 2R N SRR, 4 |79 I [
e O = fe! (1 U2 | Z &5 BN >SN W W < [zy [£5] (5}
el [CoobA x Vi BB W = W < [a
o [t=l P £- E 3 oW ot (€] E-
[(35} | e [s 2 PRt ¢ VI ¢ [a I G Jn Iy « PR 2ol 34 (& Fes bt
[= PR L, [o) 1D (T et O rL — 124 =
[x, [LA = [} S-S SRR s 4 & > o, X
) — jenlEa] =) b= o 0O [£9 - (&S .
[(&2 [SRR t-1 £z, fx o A H (24 [o [+
C -t 1 §Q el T Ay = o 0 e (24 — [e}
[« [£N fw £ | ST A < ol s VRN Sl T R [Su]] E- o
- Vi 3R, [[B oA TR A R 7 R U o ol o | &) 0. %] £~
. O [-t [Q el RN = * €3] [a [-4
bt © LOAN] E-« = n [= G T S 2 R Ao BN oa lag] [[2H [o
LN SR BRANEE o NN Ao — 1 4 C1 o TN \C -
. T (3] T —
o ! EEREEEY I SRS T [gn] «3 ¢ o [saBEea NN sl o aNN o a TR A0 BN a0
» > < 12
‘E 14 e — — -1 =
341 £ (A2 « o [&] (&)
- £~ £~ b = [=
[0., (25} I ({2} €3} €3}
el T X (o o, o o,
1 e = o & o 0. [+ 9% .
[[35} w vC et ey (24

THTRODUCTION

CHAPTER 1

THUTRCDUCTICH

This Validation Summary Report (VSR} describes the extent to which a
specific Ada compiler conforms to the &da Standard, ANST/NIL-3TD-1315A.
This report explains all technical terms usad within it and thornughly
reports the results of testing this compil=sr mwsing the ada Compiler
Validation Capability (ACVC). An Ada compilesr nust he implemented
according to the Ada Standard, and any implementation~dependent f=zatures
nust conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, 1t
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for =xamnpl=, the
maximum length of identifiers or the maximum values of integer tvpes.
Other differences between compilers result from the charactaristics of
particular operating systems, hardware, or implementation strategies. &all
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results producad
during validation testing. The validation process inciundes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to =nsure conforwity
of the compiler to the Ada Standard by testing that the corpiler ©properly
implements legal language constructs and that it identifiss and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent, but is permitted by the Ada Standard. Six
classes of tests are used. These tests are desiqned to perform checks at
compile time, at link time, and during execution.

1.1 PURPOSE OF THIS VALIDATION SUillfARY REPGRT

This VSR documents the results of the validaticn testing performed on an
Ada compiler. Testing was carried out fer the fnllowing piurpnses:

TITRODUSTTON

To attezmpr ro identifv inv langnags constrncts supported Ly the
compller that o not cenform to rhe Ada Standard

To attempt to identify anv language constructs not sunported by
the compiler but required bv the Ada Standard

To determine that the implementation-devandent behavior 1s allowed
bv the ada Standard

Testing of this compiler was conducted hy ch= IVE according to
procedures established by the Ada Jnint Program Office and administerad hy
the Ada Yalidation Organization (AVO).

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating counftry, the AV0O nav
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the '"Freedom of Information Act"”
(5 U.S.C. #552), The resuits of this validation apply only to the
computars, operating systems, and compiler <ersions 1identified in this
report.

The organizations renrasented on the signature page of this repnort do not
represent or warrant that all statements set forth in this renort are
iccurate and complete, or that the subiect compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 23301-3C81

or frem:
IABG mbH, Abt. SZT
Einsteinstr. 20
D~8012 Ottobrunn
West Germany

Questions regarding this renort or the validation test r=zsults should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 Horth Beauragard Street
Alexandria YA 22311

1.3 RE

ny

ZRENCES

1. Reference Manual for the &da Proqrarmming Lanquage,
ANSI/HIL-STD-1815A, February 1982 and 130 3552-1987.

Lo

Ada Compiler Validation Procedures and Suidelines. ada Joint

Program Office, 1 January 1987.

3. Ada Compniler Validation Capapility Taopliementzrs' Cuide, SofTach,

inc.,

e

ida

December 1986.

Compiler Validation Capability liser's Guide, Decamber 1986.

1.4 DEFINITION OF TERMS

ACVC

Ada
Commentary

Ada Standard

Apnlicant

AVF

AVO

Compiler

Falled test

Host

The Ada Compiler Validation Capability. The set of BAda
programs ‘that tests the conformity of an Ada compiler to the
Ada programming language.

An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-d4dddd.

ANSI/MIL-STD-1815A, February 1983 and ISO £652-1937.
The agency requesting validation.

The Ada Validation Facility. The AVF 1. responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Pracedurss and
Guidelines.

The Ada Validation Organization. The AVO has ovarsight
authority over all AVF practices for the purpose of
maintaining a wuniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ansure consistent practices.

A processor for the Ada language. In the context of this
report, a compiler 1is any language nrocessor, including
cross-compilers, translators, and interpreters.

An ACVC test for which the roapiler a-nerates a result that
demonstrates nonconformity to the Ada Standard.

Tha computer on which the compiler resides.

Tnapplicable An ACVC test that nuses features of the languages thar a
test compiler is not required to supnort or may lagitimatael’
support in a way other than the nne axpected bv the test.

Passed test An ACVC test for which 3 compiler gensrates “he =xpectad

rasult.

Target The computer which evecutes the code generatad by the
compiler.

Test A program that checks a compiler's conformity regarding A

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may conpriss ons or more

files.
Jithdrauwn An ACVC test found to be incorrect and not used to nheck
test conformity to the Ada Standard. A test may be 1incorrect

because it has an invalid test objective, fails to meet 1its
test objective, or contains illegal or erroneous use nf the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard 1is measured wusing the ACVC. The ACVC
contains both 1legal and 1illegal Ada programs structured into six test
classes: A, 3, C, D, E, and L. The first letter of a tast name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which a
program library is used at link time.

Class A tests ensure the successful compilation and a2xecution of legal Ada
programs with certain language constructs which cannot be verified at run
time. There are no explicit program components in a Class A tast to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed 1f no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests chack that a compiler detects 1illegal langunage usage.
Class B tesfs are not executable. Each tesrt in this class is compiled and
the rasulting compilation listing is examined to verify that avery syntax
or semantic error in the test is detected. A Class B test is nassed if
2very illzgal construct that it contains 1s detected by the compiler.

ITVTRODUCTION

~lass C tests check thas run tfime system to =nsnre that legal 2da rrograws
can be rorrectly compniled and executed. Each Class ¢ test is self-checking
and produces a PASSED, FAILED, or NOT APPULICABLE nessage indicating the
result when 1t is executed.

Class D rests check the compilation and execution capacitias af -~ connilar.
Since there 3are no capacity requirsments nlac=d on a conpiler hv the 2da
Standard for some parameters--for =zxasrle, rhs umber of identifierve
nerrittad in 31 compilation or ths number ~f nnits in a library--» comniler
nay rafuse ro compils a Class N fest and still he a3 conforming compiler.
Therefore, 1f a Class D test fails *fo cownile hacanse rhe capacity of ‘the
compilisr is exceeded, the test is classified as 1napnlicable. TIf a <lass D
t2st ~ompiles successfully, 1t is self-checking and produces 3 FASSED or
FAILED message during execution.

-~
19

Tlass E tests ara expected +0 AXecuta succ=ssinlly and check

implementation-dependent options and resolutions of ambigquitizs in rhs 2da
Standard. Each Class £© test 1is selif-rchecking and onroduces A HOT
APFLICABLE, PASSED, or FAILED message when it is compllzd and zxecured.
However, the Ada Standard nermits an 1implementation to rejact programs
containing some features addressed by Class T tests during compiiation.
Ther=fore, a Class E test is vpassed by 3 compiler if 1t 1is —cwpiled

successfully and executes to nroduce a PASSED message, cr if it is rejected
by the ceompiler for an allowable reason.

Class L tests check that incomplete or iliegal Ada programs invoiving
multiple, separately compiled units are detected and not allowed to
exacute. Class L tests are compiled separately and execution is attemnted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations 1in the main program or any units referenced by the main
nrogram are elaborated. In some cases, an implementation mav legitimately

detact errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable *t=23ts. The nackaqge REPTET
provides the mechanism by which executable tests rennrt PFASSED, FAILED. or
NCT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedurs CHECK_FILE 1s used to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECYX_FILE is
checked by a set of executable tests. These tzsfs nroduce messagss that
are examined to verify that the units are operating correctly. If thase
units are not onerating correctly, then the validation is not atterntad.

The text of =ach test in the ACVC follows conventions that are intended ‘o
2nsure *that the tfests are reasonably porranle wirhonr wodification. For
2xample, the tests make use of only the hasic set of 55 characters. rmonrain
lines with a maxinmum length of 72 characrers, use swmall numeric valnes, and
tests. However, some tests contain alues that raguire the T=2st ts ke

et A Ay -

EER SN A L A R

TMsTom1lTed Accarding to pmplerentation-sneciflo CAlnes-—- ar ~4AMle, AN
1ilzgal file naece. A list »f fhs v3lu-s nsed for this ralidirion 1s

provided in Appendix C.

% Torpiler oonst oearrsafrly nrocess -ach of the fesrs in the euite and

P

N

A=mAngrrate ._‘an(\rvniry tn rha 1da Stanpdard ‘v)'\" eirher mesting the nAass

TriTeraia givsn tor the test ar hy shawing that *ho f-et 15 ipanplicable o

“he 1opleranrtation. The applicabiliry ~F 3 test ta an vapicaentation is

onsidered e2ach time the implementation s —ralidated. A test fhat dis
Q

-

inappiicable for one wvalidation 1s 10t necessariiyv inanniicable for a
subsequent validatien. 2Any fast rhat 7as dertermined fo cantain an 11leqal
language construct or an erroncous langnage consrrnar te withdrawn from the
ACVC and, therefore, 1is not used 1n resting 3 conpllcer, The tests

withdrawn at the time of this validation are gqiven ia Zppendix D.

TONTIGURATION

TESTED

Tha candidate comp1lation systaem for this
failowing configuration:

ACVT Version: 1010

Certificate v her: $36112371.10

Bost and Target Computer:
“achine:
Operating System: nX
Memory Size: 16

T.gTi-A

ander

TATISOH CHARMCTER

-1

~ o~
LD

~
D

Ape2 of the nnrnoses of validating compllers ic ro determine the bzhavior of

a compiler

to dAiffer.

dArfferences.

in those areas of the Ada Standird that permit implanenrations

Class D and B tests snecifically rherk for sucht implzrentarion

Bewever. tests in other clacsses 3isn rharacterize an

imnlementation. The tests demonsftrate ths fallowing characteristics:

a.

Capacities.

=

[ye)
—

Pre

1)

The compiller ~orractly DrOCessSAEs a coaniiation
containing 723 variaples in the same declarative part. (Sae
test D29002K.)

The compiler corractly nrocesses tests coptaining
loon statements nested to A3 levels. (oee tests D553034..H
(3 tests).)

The compiler corractly DrcCcessas tests containing

block statzments nested to o5 levels. (S=e ftest D5KC0CLB.)

The compiler correctly Nrocesses tasts contraining
racursive procedurss separatelv ~ompiied as subunits nasted to
17 levels. (See tests D64CO0SE..G (3 tests).)

defined typres.

This implementation sunports the additional pradefi
SHORT_INTEGER, SHORT_SHORT_INTEGER and LOVG_FLOA
package STANDARD. (See tests B8A001T..Z (7 tests).

Exp-ession evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attampot to determine the order
of evaluation of expnressions, ftest results indicate the fnllowing:

1)

2)

3

Some of the default initiali.ation expressions
for record componenis are evaluated before any wvalue is
checked for membership in a component's subtype. {See test
C32117A.)

Assignments for subtypes are vperformed with the sama

precision as the base type. (See test C35712R.)

This implementation nses no =xtra bhits for axtra
and uses no extra bits for »xtra range. {S=z tast

Ca oy
11
[p]
)
[e]
-3

wr

i

>

[« 38
'

.

[W91

ko]
R

{IFISURATION IHFORMATION

[47]

4) WU¥EZRIC_ERROR 1s raised for predefined ind largest intsqger
comparison fests, and NUNERIC_TRROR 1s raised for predefinead
and largest integer membership fests, and no exeception 1is
raised for smallest integer membership rests when an integer
literal operand in a comparison or wampershin rest ic outside
the range of the base tvpe. (S~e tast CI52304.)

5) HUMERIC_ERROR 1is raised then 2 lireral operand in a
fixed-point comparison or membeérship tzst is ontside fhe range
of the base type. (See tast CI575230)

\

6) Underflow is gradual. (See tests Ci5%243..7 (28 teste).)

Rounding.

The method by which values are rnunded in type ccnversions 1s nort
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test rasults

indicate rhe following:

1) The method used for rounding to 1integer 1is round to even.
{See tasts C46012A..Z (26 tests).)

2) The method used for rounding to 1lcongest integer 1s round
to even. (See tests C46012A..2 (28 t=sts).)

3) The method used for rounding to inteqger 1in static universal
real 2xpressions is round away from zero. {See test C4A014A.)

Array types.

An implementation is allowed to raise HUMERIC_FRROR or
CONSTRAINT_ERROR for an array having = 'LEVGTH that ecxcaeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX_INT. For this
implementation:

1) Declaration of an array type or subtvne declaration with norse
than SYSTEHM.MAX_INT components raises no excention undzr the
specific circumstances test C26003A.

2) MNUMERIC_ERROR 1is raised vhen 'LEIGTH is applied to an arrav
type with INTEGER'LAST + 2 components. (See test C362023.)

3) WUMERIC_=&ROR 1s raised when an Arvay tvpe Wwith
SYSTEM.MAX_INT + 2 rcorponents is declared. (See test

C362028.)

4)

())
~—

CONFTGURATTON THFOFMATION

A packed BOOLEAN Aarray naving a 'LEUGTH exceeding INTEGER'LAST
raises NUMERIC_ERROR. (Se= fest C52103X.)

A nacked two-dimensional BOOLEAW array with nwore than
INTRGER'LAST <components ralses NUWYERIC_ERROR when the length
of a dimension is caiculatad and ~vceeds INTEGER'TAST. (See
test C52104Y.)

In assigning one-dimersional array fynas, the &~xnression 1is
evaluated in its entirecy before COUSTRATHT _RRROR is
raised when checking whether the exprassion’s subtvne 1is
compatible with the target's subtyne. ({(S«e test C52013A.)

In assigning two-dimensional array *typas, the <xpression
is not evaluated in its entiresty before COUSTRAINT_ERROR 1is
raised when checking whether the =xpression's subtype 1is
compatible with the target's subtype. ({See test C52013A.)

A null array with one dimesnsion of length greater than
INTEGER'LAST wmay raises MUMERTC_ERROR or COWSTRAINT_ERROR
21ther when declared or assigred. Alternativaly, an
implementation may accepnt the declaration. Fowever, 1l=zngths

must match in array slice assignments. This 1implementation
raises WUMERIC_ERROR. (See test E52103Y.)

Discriminated tvpes,

1) In assigning record types with discriminants, the exXpression
is evaluated in its entirsty before CONSTRAINT_FRROR is raised
when checking whether the expression’'s subtype is compatible
with the target's subtvpe. (See test C52013A.)

Aggregates.

1) In the evaluation of a multi-dimensional aqgregate, the test
results indicate that index subtype checks are
made as choices are evaluatad. (See rasts £432072 and
C432078B.)

2) 1In the evaluation of an aggregate containing subaggregates,

not all choices are evaluated before heing checked for
identical bounds. (See tast E43212R.)

CONFIGURATION INFORMATION

3) CONSTRAINT_ERROR is raised after all choices are
evaluated when a bound in a non-null range of a non-null

aggregate does not belong to an index subtype. (See test
E43211B.)

Pragmas.

1) The pragma INLINE is not supported for procedures or func-
tions. (See tests LA3004A..B (2 tests), EA3004C..D (2 tests),
and CA3004E..F (2 tests).)

Generics.

This implementation creates a dependence petween a generic body
and those units which instantiate it. As allowed by IA-408/11, if
the body is compiled after a unit that instantiates it, then that
unit becomes obsolete.

1) Generic specifications and bodies can be compiled
in separate compilations. (See tests CAl012A, CA2009¢C,
CA2009F, BC3204C, and BC3205D.)

2) Generic subprogram declarations and bodies can be
complled 1in separate compilations. {See taests CAl012A and
CA2009F.)

3} Generic 1library subprogram specifications and bedies can
be compiled in separate compilations. (See test
CAl012A.)

4) Generic non-library package bodies as subunits can
be compiled in separate compilations. (See test CA2009C.)

5) Generic non-library subprogram bodies can be
compiled in separate compilations from their stubs. (See test
CA2009F.)

6) Generic unit bodies and their subunits can be

.

7)

9)

COTNFIGURATION THFORMATION

compiled in separate compilations. {See test CA3011%.)
Generic pAackage declarations and bodies can be
compiled in separate compilations. {See tests CR2009C,

BC3204C, and BC3205D.)

Generic library nackage <enzcifications and hndizs ~An
be compiled in separate compilations. (Sre rasts
RC3204C and BC3205D.)

Generic unit hodies and their supninits can be
compiled in separate compilations. (See test CR30113.}

Input and outnut.

i)

2)

3)

4)

5)

8)

9)

10)

The package SEQUENTIAL_IO can he instantiated with nncon-
strained array types or record tvpes with discriminants with-
out defaults. [(See tests AE2101C, EE2201D, and EE2201%.)

The package DIRECT_IC cannot be instantiated with wnorn-
strained array tynes or record types with discriminants with-
out defaults. {(See tests AE2101H, £EE2401D, and EE2401G.}

Modes IN_F
s

_FIL d OUT_FILE are supported for SEQUENTIAL_IO.
(See tests CE D

..E, CE2102H, and CEZ10ZP.)

ilodes IN_FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT_IO. (See tests CE2102F, CE2102TI..3 (2 tests), CE2102R,
CE2102T, and CE2102V.)

Modes IN_FILE and OUT_FILE are supported for text filss.
(See tests CE3102E and CE3102I..K (3 tests).)

RESET and DELETE operations are sunnortad for
SEQUENTIAL_T0. (See tests CE2102G and CE21G2%.)

RESET and DELETE operations are supported for DIRECT_IO.
{See tests CE2102K and CE2102Y.)

RESET and DELETE operations ara sunnorted for text
files. (See tests CE3102F..G (2 ftests), CE3104C, CE3110A, and

CE3114R.)

Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

Temporary sequential filss ars givan namas and not
deleted when closed. {See test CEZ108A.)

COMFIGURATION T

14)

HFORMATION
Termporary direct files are nor f1ven 1ames an
deleted when closed. (See rast CE2108C.)
Temporary tavt filec nrc nat given names and not
when closed. iSee test CE2112a.)
fore than one internal fila ~an he agsociated
each axternal file for seguential files hen
onlv. {See tests CS2l07A..E (5 restsg), "T2102L. CE21:0
CE2111D.)
More than one 1internal file can ha issociatead
each external file for direct files when reading only.
tests CE2107F..H (3 tests), CEZ1i0D and CEZIT11H.!
lore than one internal file ran be associated
2ach external file for rext fil=2s when reading onl
tests CE31114..E (5 tests), CE31148B, and <CE3115

d not

pon

e

eleted

ilth
r-ading
7., and

l

CHAPTER 3

TEST THFORMATION

3.1 TEST RESULTS

Yersion 1.10 of the ACVC comprises 3717 tests.

determined that 312 tests were 1napplicable to this

Whean

TEIT THFORMATTON

this compiler
tested, 44 tests had been withdrawn because of test errors. The

All inapplicable tests were processed during validation testing sxcept
201 zxecutables tests that use floating-point

that supported by the implementation.
nrocessing, or grading for 12 tests were

demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results

conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

demonstrate

precision
odifications to the code,

required to successfully

RESULT TEST CLAS
A B c D
passed | 128 1130 2018 17 24 44 381
Inapplicable 1 8 297 0
Withdrawn 1 2 35 0
TOTAL 130 1140 2350 17

34

46

implementation.

exczeding

acceptable

3.3 SITARY OF TEST RESULTS BY CHAPTER

RESULT TEST CHAPTER T
2 3 4 5 6 7 3 4 10 11 12 13 14

Passed 198 573 545 244 172 99 161 332 129 36 250 341 281
/A 14 75 135 4 0) 5 N 3 0 2 2% 1o
Vdrn 1 1 0 4] 0 0 9] 2 5 8 1 15 4
TOTAL 213 A50 680 248 172 99 16k 334 137 36 253 404 315

3.4 VITHDRAWN TESTS

The following 44 tests were withdrawn from ACYC Version 1.10
at the time of this validation:

£28005¢C A390056G B97102E C97116A 3C30N9R CD2A6ZD
CD2A63A CD2A63B CD2A63C CD2AG3D CDZAAAA CN236R3B
CD2a65C CD22AAD CD2AT3A CD2A73B CD2A73C CD2AT723D
CD2A76A CD2AT768B CD2AT6C CDZAT6D CDZAB1G CD2A33G
CD2A84l CD2A84H CD50110 CD2B15C CD7205¢ CDZD11B
CD5007B ED7004B ED7005C =D7005D EDTO0RC ED700ARD
CD7105A CD7203B CD7204R CD7205D CE2I0T7T TE3L11L7

CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn,

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compnilers because thev make use of faatures
that a compiler is not required by the Ada Standard fo support. Others may
depend on the rasult of another test that 1is =zither inapplicable or
withdrawn. The applicability of a test to an implementation 1is considered
each time a validation is attempted. A test that 1s inapplicable for one
validation attempt 1is not necessarily inapplicabhle for a subseguent
attempt. For this validation attempt, 312 ‘tests were inaonlicable for

a. The following 201 tests are not applicable bhecanse they have
floating-noint type declarations requiring more digits than
SYSTEM.HMAX_DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)

C35706%L;. .7 (14 tasts) C357G7L..7 14 tests)

C35703L..T (14 tests) C35302L..7 715 tests)
"

C45241L..Y (14 tests) C45321L..

(14 testsg)

)

@

TEST INFORUATICN

C45421L..Y (14 tests) Ci5521L..2 (15 fests)
C45524L..Z (15 tests) C456215L..2 (15 tests)
C45641L..Y (14 tests) C46012L..2 (15 tests)

C35508T, ©35803J, €35508¥, and C355081 are not applicable hecause
they 1include enumeration representation rlauses for ROOLEAN tvnes
in which the representaticn 7alues are other than (FALSE => O,
TRUE => 1). TUnder the tzrms of AI-00325, this implementation is
not raguired to support such representation rlausss,

C3576Z4 and B86001T are not applicahls hecause this implsementation
supports no pradefined type SHORT_FLOAT..

C45531M..P (4 tests) and C45532M..P (4 tests) are not anplicable
because they acquire a value of SYSTEM.MAX_MANTISSA greater than
32.

C52008B 1is not applicable bacause this implementation generates
code to calculate the maximum object size for fvne REC2 at run
time which yields a number exceeding INTEGER'LAST and raises
NUMERIC_FERROR.

C36001F is not applicable bhecanse, for this implementation, the
package TEXT_IO 1is dependent upon package SYSTEU. These tests
recompile nackage SYSTEH, making vackage TEXT_IO, and

hence package REPORT, obsolete.

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT. ~

The following 16 tests are not applicable because this
implementation does not support a predefined type LONG_INTEGER:

£45231C €45304C €45802C C15503C €45564C
C45504F C45611C C45613C C45614C C45631C
€45632C B52004D C55B07A B55B09C B8AOOLW
CD7101F

CA2009C, CA2009F, BC3204C and BC3205D are not applicable bDbecause
this inplementation creates a dependence between a generic body
and those wunits which instantiate it (See Section 2.2.1 and
Appendix F of the Ada Standard).

LA3004A, EA3004C, and CA3004E are not applicable because this
implementation does not support pragma INLIUE for nrocedures.

LA3004B, EA3004D, and CA3004F are not anplicable hecause this

.

ia.

implementation does not support pracgma INLIIE for functions.

CD1a09c¢,

CD2A41A..B
are not applicable because of restrictions on

(2 tests), CD2A41E

and CD2ad2A..J (10 r
"SIZE length cl

for floating point types.

CD1CO4E 1s

support component clauses specifving

not applicable bhecause this imnlementation does
more than 38 bits for Hn

components of a record.

CD2A61I..J

(2 tests)

are not annplicanic

'SIZE length clauses for array fvpes.

esrs)
auses

nnft

0jecah

bzcause of vrestrictions on

CD2A84B..I (38 tests) and CDZ2A84K. (2 tests) ars not apolicable
because of restrictions on 'SIZE 1cngth clauses for access rynes.
aE2101H, EE2401D, and EE2401G use 1instantiations o»f nackage
DIRECT_IO with wunconstrained array types and record tvpes with
discriminants without defaults. These instantiations are reisctad
by this compiler.
CE2102D 1is 1inapplicable because this 1imnlazmentation supports
CREATE with IN_FILE mode for SEQUENTIAL_IN.
CEZ102E 1is 1inapplicable because this implemencation supporrs
CREATE with OUT_FILE mode for SEQUENTIAL_IO.
CE2102F 1is 1inapplicable because this implementaticn supports
REATE with INOUT_FILE mode for DIRECT_IO.
CE2102I is 1inapplicable because this implementation supports

CREATE with

IN_FILE mode for DIRECT_IO.

CE2102J 1is 1inapplicable because this 1implementation supports
CREATE with OUT_FILE mode for DIRECT_IO.

CE2102¥ is inapplicable because this imnlementation sunnorts OPEN
with IN_FILE mode for SEQUENTIAL_IO.

CE21020 is inapplicable because this implementation supports RESET
with IN_FILE mode for SEQUENTIAL_IO.

CE2102P is inapplicable becausa this implemenfation supports OPEN
with OUT_FILE mode for SEQUENTIAL_IO.

CE2102Q is inapplicable because this implementation supports RESET
with OUT_FILE node for SEQUENTIAL_IO.

CE22102R 1s inapplicable because this implemantation supports OPEN

with I{OUT_FILE

~ode for DIRECT_IO.

ac.

ad.

af.

ag.

ah.

ai.

ak.

al.

am.

an.

A0.

TEIT INFORMATION

ey

CR210ZS 1is inanplicable because this iwplementation sunports RESET
with INOUT_FILE ~ode for DIRECT_IO.

CE2102T is inapnlicable bacause this implementation supports OPEHN
with I¥_FILE mode for BIRECT_TO.

CE2102U is inanplicable because this implementarion supports RESET
with TM_FILE mode for DIRECT_TO.

CE2102V is inappiicable becauss this implementarion suwnports NPEN
with OUT_FILE mode for DIRECT_IO.

CE2102V is inapplicable because this implementation supports RESET
with OUT_FILE mode for DIRECT_TO.

CE21078..E (4 tests), CE2107L, <CE2110B, and CEZ111D ares not
applicable because multiple internal files cannot be associated
with the same external file when one or more files is writing
for saquential files. The n©proper excepticn 1s raised when
multiple access 1is attempted.

CE2107G..H (2 tests), CEZ110D, and CE2111H are not applicable
because multiple internal files cannot be associated with the same
extarnal file when one or more files is writing for direct files.
The proper exception 1s raised when muitiple access is attempted.

CE3102E is inapplicable because text file CREATE with IN_FILE unode
is supported by this implementation.

CE3102F is inapplicable because text file RESET 1is supported by
this implementation.

CE3102G is inapplicable because text file deletion of an external
file is supported bv this implementation.

CE3102I is inapplicable because text fila CREATE with OUT_FTLE
mode is supported by this implementation.

CE31023 is inapplicable because text file OPEN with IV _FILE wmode
is supported by this implementation.

CE3102K is inapplicable because text file OPEN with OUT_FILE mode
is supported by this implementation.

CE3111B, CE3111D..E (2 ‘tests), <CE3114B, and CE31154 are not
applicable because multiple internal files cannot be associated
with the same external file when one or mora filas is writing for
text files. The proper exception 1s raised when aultiple access
is attempted.

3.6 TEST, PROCESSING, AND EVALUATION HODIFICATIONS

It is =avpacted that some tests will require mnodifications of code,
processing, or evaluation in order to «compensate for legitimate
inplementation hehavier. odifications are made by the AVF in cases where
legitimate implementation behavior prevents th- sucressful completion of an
{otherwise) applicable test. Examples of such modifications 1include:
addiny a length clause to alter the default size of 2 collection; splitting
a Class B test 1into subtests so that all <rrors are detectad; and
confirming that messages »nroduced by an ~xecutable <“est demonstrate
conforming behavior that was not anticipatad bv the *ast (such as raising
one exception instead of ancther).

Hodificaticons were required for 12 tests.

The following tests were split because syntax 2rrors at nne point resulted
in the compiler not detecting other a2rrors in the test:

B71001E B71001K B71001Q B71001W BA2001C
BA2001E BA3006A BA3006B BA3007B BAROORA
BA3008B BA3013A (6 and M)

3.7 ADDITIONAL TESTIUG INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACYC Version 1.10 produced
bv the TeleGen2 Ada Develonment System for a computing svstem hased on
the same 1instruction set architecture was submitted to the AVF by the
applicant for review. Analvsis of these results demonstratad that the
TeleGen2 System successfully passed all applicable tests, and it
exhibited the expected behavior on all inapplicable tests. The appiicant
certified that testing rasults for thes computing system of this wvalidation
would be identical to the ones submitted for review prior tn wvalidaticn.

3.7.2 Test ilethod

Testing of the TC2000 Ada Compiler using ACY Version 1.10 was
conducted on-site Dby a validation team from the AVFE. The
configuration in which the testing was performed is described by the
following designations of hardware and software components:

Host and Tarqget Compnter: BBN TC2000

Host and Target Operating System: nX 1.0

% cartridge containing the customized ftest suite was lcaded onto a SUN-3
and transferred wia Ethernet to the host computer.

The compiler was testad using command scripts onrovided by TeleSoft
ind reviewed by the validation team. The tests vers compiled using the
command

ada -y 2000 -3 -Y <(test file

and linked with the command

ald -V 2000 =-§ -¥W +link_target=hbn <nain unit
The qualifier was added to the compiler ~all for class B and E tests.

-L
See Appendix E for explanation of compiler and linksr switches.

Tests were compiled, linked, and execnted (as appropriate) using two com-
puters. Test output, compilation listings, and iob logs werse
capturad on magnetic tape and archived at the AVF. The listings =xamined
on-sites by the validation team were also Archived.

3.7.3 Test Site

Testing was conducted at TeleSoft, San Diego, USA, and wvas completed on
23 Jlovember 1989.

LEIRATTAN OF CONFORHAICE

APPENDIZX A

DECLARATION OF COUFCRMANCS

TeleSoft and BBN have submitt=sd the following Declaration of Conforrance
concernlng the TCz000 Ada Compiler.

/ﬂ/

DECLARATION OF CONFORMANCE

Compiler Implementor: TELESOFT
Ada Validation Facility: 1ABG, Dept. SZT. D-8012 Ottobrunn
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configiration

Base Compiler Name: TC2000 Ada
Version: 4.0

Host Architecture ISA: BBN TC2000
OS & VER =: nX 1.0
Target Architecture ISA: Same as Host
OS & VER #: Same as Host

Implementor’s Declaration

[, the undersigned. representing TELESOFT, have implemented no deliberate extensions
to the Ada Language Standard ANSI/MIL-STD-1815A in the compiler(s) listed in this
declaration. 1 declare that BBN Advanced Computers Inc., is TELESOFT’s licensee of
the Ada language compilers listed above and, as such, is responsible for maintaining said
compiler(s) in conformance to ANSI/MIL-STD-1815A. All certificates and registrations
for the Ada language compiler(s) listed in this declaration shall be made only in the
licefsee’s corporate e.

TELESOFT

Ll AL Wil o Date:Zg(/l/W((L Led /'770
//
Raymond A. Parra, Vice Pfesident and General Counsel

Licensee’s Declaration

BBN Advanced Computers Inc. assures that a'l reasonable steps are taken by BBN
Advanced Computers, Inc. to maintain the Ada language cumpiler(s) listed above in
conformance to ANSI/MIL-STD-1815A and agrees to the public disclosure of the final
Validation Summary Report. BBN Advanced Computers. Inc. agrees to comply with the
Ada Joint Program Office policy on the use of the VALIDATED ADA certification mark.
Further. BBN Advanced Computers Inc. declares that to the best of its knowledge the
Ada language compiler(s) listed, and their host/target configurations are in compliance
with the Ada Language Standard ANSI/MIL-STD-1815A.

WA/— Date: 8 December 1990

BBN Advanced CofgButers Inc.
Name and Title: _Stuart B. Zigun, Director of Contracts

APPENDIN ¥ OF THE 2da <TINDAFD

APPENDIX B

APPENDIX ¥ OF THE Ada STANDARD

The only allowed inplementation dependencies correspond to
implementation-dependent vragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The 1implementation-dependent
characteristics of the TC2000 Ada Compiler, as described in this Appendix,
are provided by TeleSoft. Unless specificallv notad otherwise, referesnces
in this appendix are to compiler documentation and not to this report.
Implemeéntation-specific portions of the package STANDARD, which are not a
part of Appendix F, are:

package STANDARD is

type INTEGER 1is range -2147483648 .. 2147483647;
type SHORT_INTEGER is range -32768 .. 32787;
type SHORT_SHORT_INTEGER is range -128..127;

type FLOAT is digits 6 range -1.70141E+38 .. 1.70141E+32;
type LOWG_FLOAT is digits 15
range -8.98846567431158E+307 .. 8.98846567431158E+307;

type DURATION is delta 2#1.0#E~14 range -86400.0 .. 86400.0;

end STANDARD;

ATTACHMENT B

Appendix F OF THE Ada LANGUAGE REFERENCE MANUAL

1. Implementation Dependent Pragmas
2. Implementation Dependent Attributes
3. Specification of Package SYSTEM
4. Restrictions on representation clauses
5. Implementation dependent naming
6. Interpretation of expressions in address clauses
7. Restrictions on unchecked conversions
8. I/O Package characteristics
100CT89 Page 20

Appendix F
1. Implementation Dependent Pragmas

pragma COMMENT(<string_literal>);

It may only appear within a compilation unit.

The pragma comment has the effect of embedding the given
sequence of characters in the object code of the compilation unit.

pragma LINKNAME(<subprogram name>, <string literal>);

It may appear in any declaration section of a unit.

This pragma must also appear directly after an interface pragma
for the same <subprogram name>. The pragma linkname has the
effect of making string literal apparent to the linker.

pragma INTERRUPT(Function Mapping);

It may only appear immediately before a simple accept statement,
a while loop directly enclosing only a single accept statement,

or a select statement that includes an interrupt accept alternative.
The pragma interrupt has the effect that entry calls to the
associated entry, on behalf of an interrupt, are made with a
reduced call overhead.

pragma IMAGES(<enumeration _type>,Deferred) or
pragma IMAGES(<enumeration_type>,Immediate);

It may only appear within a compilation unit.

The pragma images controls the creation and allocation of
the image table for a specified enumeration type. The
default is Deferred, which saves space in the literal pool

by not creating an image table for an enumeration type
unless the 'Image, 'Value, or "Width attribute for the type
is used. If one of these attributes is used, an image table

is generated in the literal pool of the compilation unit in
which the attribute appears. If the attributes are used in
more than one compilation umt, more than one image table is
generated, eliminating the benefits of deferring the table.

pragma SUPPRESS ALL;

It may appear anywhere that a Suppress pragma may appear as
defined by the Language Reference Manual. The pragma
Suppress _All has the effect of turning off all checks

defined in section 11.7 of the Language Reference Manual.

The scope of applicablility of this pragma is the same as

that of the pre-defined pragma Suppress.

100CT89 Page 21

Appendix F, Cont.

2. Implementation Dependent Attributes

'Offset Attribute

*Offset along with the attribute *Address, facilitates machine code
insertions. For a prefix P that denotes a declared parameter
object, P’Offset vields the statically known portion of the

address of the first of the storage units allocated to P. The

value is the object’s offset relative to a base register and is

of type Long Integer.

INTEGER ATTRIBUTES

’Extended Image Attribute

Usage: X'Extended _Image(ltem,Width,Base,Based,Space_IF Positive)

Returns the image associated with Item as per the Text lo definition.

The Text _lo definition states that the value of Item is an integer

literal with no underlines, no exponent, no leading zeros

(but a single zero for the zero value) and a minus sign if negative.
If the resulting sequence of characters to be output has fewer than
Width characters then leading spaces are first output to make up

the difference. (LRM 14.3.7:10,14.3.7:11)

For a prefix X that is a discrete type or subtype; this attribute

is a function that may huve more than one parameter. The parameter

Item must be an integer value. The resulting string is
without underlines, leading zeros, or trailing spaces.

100CTs89

Page 22

Appendix F, Cont.

Parameter Descriptions:

Item -- The user specifies the item that he wants the
image of and passes it into the function. This
parameter is required.

Width -- The user may specify the minimum number.of
characters to be in the string that is returned.

If no width is specified then the default (0) is
assumed.

Base -- The user may specify the base that the image is
to be displayed in. If no base is specified then
the default (10) is assumed.

Based -- The user may specify whether he wants the string
returned to be in base notation or not. If no
preference is specified then the default (false)
is assumed.

Space_If Positive -- The user may specify whether or not the sign bit
of a positive integer is included in the string
returned. If no preference is specified then
the default (false) is assumed.

Examples:
Suppose the following subtype was declared:
Subtype X is Integer Range -10..16;

Then the following would be true:

X'Extended Image(5) = "5"
X'Extended Image(5,0) = "5"
X'Extended Image(5,2) ="35"
X'Extended Image(5,0,2) ="101"
X’Extended Image(5,4,2) =" 101"
X'Extended Image(5,0,2,True) = "241014£"
X'Extended Image(5,0,10.False) = "5"
X'Extended Image(5,0,10,False,True) =" 3"
X'Extended Image(-1 ,0.10,F alse,False) = "-1"

X Extended_lmage(1,0,10,False,True) ="-1"
X'Extended Image(-1,1,10,False,True) ="-1"
X’Extended Image(-1,0,2,True,True) = "-2414"
X'Extended Image(-1,10,2,True,True) =" -2#1#"

100CTs9 Page 23

Appendix F, Cont.

’Extended Value Attribute

Usage: X’Extended Value(Item)

Returns the value associated with Item as per the Text lo definition.
The Text lo definition states that given a string, it reads an

integer value from the beginning of the string. The value returned
corresponds to the sequence input. (LRM 14.3.7:14)

For a prefix X that is a discrete type or subtype; this attribute
is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing
spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINT ERROR is raised.
Parameter Descriptions:
Item -- The user passes to the function a parameter of the
predefined type string. The type of the returned
value is the base type X.
Examples:
Suppose the following subtype was declared:

Subtype X is Integer Range -10..16;

Then the following would be true:

X’Extended Value("5") =5
X'Extended Value(" 5") =5
X’Extended Value("2#101#") =5
X'Extended Value("-1") =-1
X'Extended Value(" -1") =-1

100CT89 Page 24

Appendix F, Cont.
'Extended Width Attribute
Usage: X'Extended_Width(Base,Based,Space If Positive)
Returns the width for subtype of X.

For a prefix X that is a discrete subtype; this attribute
is a function that may have multiple parameters. This attribute
yields the maximum image length over all values of the type

or subtype X.

Parameter Descriptions:

Base — The user specifies the base for which the width
will be calculated. If no base is specified
then the default (10) is assumed.
Based ~— The user specifies whether the subtype is stated
in based notation. If no value for based is
specified then the default (false) is assumed.
Space_If Positive — The user may specify whether or not the sign bit
of a positive integer is included in the string
returned. If no preference is specified then the
default (false) is assumed.

Examples:
Suppose the following subtype was declared:
Subtype X is Integer Range -10..16;
Then the following would be true:

X’Extended Width =3 - "10"

X’Extended_Width(10) =3 - "10"
X'Extended Width(2) =5 - "10000"
X’Extended Width(10,True) =7 --"-10£104"
X’Extended_Width(Q,True) =8 -- "2#10000&"
X'Extended Width(10,False,True) =3 -"16"

[

X'Extended Width 10,True,False) =7 - ".10#10="

(

_ (
X'Extended Width(10,True,True) =

(

(

B 7 ~ " 10#162"
X’Ext,ended_Width 2,True,True) =9 --"2#100004"
X'Extended Width(2.False,True) =6 -- " 10000"

100CTs9 Page 25

Appendix F, Cont.

ENUMERATION ATTRIBUTES

’Extended Image Attribute

Usage: X'Extended Image(ltem,Width,Uppercase)

Returns the image associated with Item as per the Text lo definition.
The Text_lo definition states that given an enumeration literal,

it will output the value of the enumeration literal (either an

identifier or a character literal). The character case parameter

is ignored for character literals. (LRM 14.3.9:9)

For a prefix X that is a discrete type or subtype: this attribute

is a function that may have more that one parameter. The parameter
Item must be an enumeration value. The image of an enumeration
value is the corresponding identifier which may have character case
and return string width specified.

Parameter Descriptions:

Item

Width

-- The user specifies the item that he wants the image of and

passes it into the function. This parameter is required.

— The user may specify the minimum number of characters to
be in the string that is returned. If no width is

specified then the default (0) is assumed. If the Width
specified is larger than the image of Item, then the

return string is padded with trailing spaces; if the

Width specified is smaller than the image of Item then

the default is assumed and the image of the enumeration

value is output completely.

Uppercase -- The user may specify whether the returned string is in

100CTS89

uppercase characters. In the case of an enumeration
type where the enumeration literals are character
literals. the Uppercase is ignored and the case
specified by the type definition is taken. If no
preference is specified then the defauit (true) is
assumed.

Page 26

Appendix F, Cont.
Examples:
Suppose the following types were declared:

Type X is (red, green, blue, purple);
Type Y is (’a’, 'B’, ’c’, 'D’);

Then the following would be true:

X’Extended Image(red) = "RED"
X'Extended Image(red, 4) ="RED"
X'Extended Image(red,2) = "RED"
X’Extended Image(red,0,false) = "red"
X’Extended Image(red,10,false) = "red "
Y’Extended Image(’a’) = g
Y'Extended Image(’B’) = "B
Y'Extended _Image(’a’,6) = My’ "
Y’Extended Image(’a’,0,true) = My

’Extended _Value Attribute
Usage: X’Extended Value(Item)

Returns the image associated with Item as per the Text_Io definition.
The Text_lo definition states that it reads an enumeration value
from the beginning of the given string and returns the value of

the enumeration literal that corresponds to the sequence input.

(LRM 14.3.9:11)

For a prefix X that is a discrete type or subtype; this attribute

is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing

spaces in the string X are ignored. In the case where an illegal

string is passed, a CONSTRAINT _ERROR is raised.

Parameter Descriptions:
Item -- The user passes to the function a parameter of the

predefined type string. The type of the returned
value is the base type of X.

100CTs9 Page 27

Appendix F, Cont.
Examples:
Suppose the {ollowing type was declared:
Type X is (red, green, blue, purple);

Then the following would be true:

X'Extended Value("red") = red
X’Extended Value(" green") = green
X’Extended Value(" Purple") = purple
X’Extended Value(" GreEn ") = green

'Extended Width Attribute

Usage: X’Extended Width

Returns the width for subtype of X.

For a prefix X that is a discrete type or subtype; this attribute

is a function. This attribute yields the maximum image length over

all values of the enumeration type or subtype X.

Parameter Descriptions:
There are no parameters to this function. This function
returns the width of the largest (width) enumeration literal
in the enumeration type specified by X.

Examples:

Suppose the following types were declared:

Type X is (red. green. blue, purple);
Type Z is (X1, X12, X123, X1234);

Then the following would be true:

X’Extended Width =6 -- "purple"
Z’Extended Width =35 - "X1234"

100CT89 Page 28

Appendix F, Cont.
FLOATING POINT ATTRIBUTES
'Extended Image Attribute
Usage: X'Extended Image(Item,Fore.Aft.Exp.Base,Based)

Returns the image associated with Item as per the Text lo definition.
The Text lo definition states that it outputs the value of the
parameter [tem as a decimal literal with the format defined by the
other parameters. If the value is negative then a minus sign

is included in the integer part of the value of Item. If Exp

is 0 then the integer part of the output has as many digits as

are needed to represent the integer part of the value of Item or

is zero if the value of Item has no integer part. (LRM 14.3.8:13,
14.3.8:13)

For a prefix X that is a discrete type or subtype; this attribute

is a function that may have more than one parameter. The parameter
Item must be a Real value. The resulting string is

without underlines or trailing spaces.

Parameter Descriptions:

Item - The user specifies the item that he wants the image of and
passes it into the function. This parameter is required.
Fore -- The user may specify the minimum number of characters for

the integer part of the decimal representation in the
return string. This includes a minus sign if the

value is negative and the base with the '#’ if based
notation is specified. If the integer part to be output
has fewer characters than specified by Fore, then leading
spaces are output first to make up the difference. If no
Fore is specified then the default (2) value is assumed.

Aft -~ The user may specify the minimum number of decimal digits
after the decimal point to accommodate the precision desired.
If the delta of the type or subtype is greater than
0.1 then Aft is one. If no Aft is specified then the
default (X'Digits-1) is assumed. If based notation is
specified the trailing '#’ is included in aft.

Exp -- The user may specify the minimum number of digits in the
exponent: the exponent consists of a sign and the exponent.
possibly with leading zeros. If no Exp is specified then
the default (3) is assumed. If Exp is O then no exponent
is used.

100CT89

Page 29

Appendix F, Cont.

Base - The user may specify the base that the image is to be
displayed in. If no base is specified then the default
(10) is assumed.

Based -- The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (false) is assumed.

Examples:
Suppose the following type was declared:
Type X is digits 5 range -10.0 .. 16.0;

Then the following would be true:

X'Extended Image(5.0) = " 5.0000E+00"
X’Extended Image(5.0,1) = "5_0000E+00"
X'Extended Image(-5.0,1) = ".5.0000E+00"
X’Extended Image(5.0,2,0) =" 5.0E+00"
X’Extended Image(5.0,2,0,0) ="5.0"
X’Extended Image(5.0,2,0,0,2) = "101.0"
X'Extended Image(5.0,2,0,0,2,True) = "2#101.0#"
X'Extended Image(5.0,2,2,3,2,True) = "2#1.1#E+02"

'Extended Value Attribute
Usage: X'Extended Value(Item)

Returns the value associated with Item as per the Text lo definition.
The Text lo definition states that it skips any leading zeros,

then reads a plus or minus sign if present then reads the string
according to the syntax of a real literal. The return value is

that which corresponds to the sequence input. (LRM 14.3.8:9.
14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute

is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing

spaces in the string X are ignored. In the case where an illegal
string is passed. a CONSTRAINT _ERROR is raised.

100CT89 Page 30

Appendix F, Cont.
Parameter Descriptions:

Item -- The user passes to the function a parameter of the
predefined type string. The type of the returned
value is the base type of the input string.

Examples:
Suppose the following type was declared:

Type X is digits 5 range -10.0 .. 16.0;

Then the following would be true:

X'Extended Value("5.0") =5.0
X'Extended_Value("0.5E1") = 5.0
X'Extended Value("24#1.013E2") = 5.0

'Extended Digits Attribute
Usage: X'Extended Digits(Base)
Returns the number of digits using base in the mantissa of model
numbers of the subtype X.
Parameter Descriptions:
Base -- The user may specify the base that the subtype is
defined in. If no base is specified then the default
(10) is assumed.
Examples:
Suppose the following type was declared:
Type X is digits 5 range -10.0 .. 16.0;

Then the following would be true:

X'Extended Digits =35

100CTS89 Page 31

Appendix F, Cont.
FIXED POINT ATTRIBUTES
'Extended Image Attribute
Usage: X’Extended _lmage(Item.Fore,Aft,Exp,Base,Based)

Returns the image associat~d with Item as per the Text lo definition.
The Text lo definition states that it outputs the value of the
paras®ter [tem as a decimal literal with the format defined by the
other parameters. If the value is negative then a minus sign

is included in the integer part of the value of Item. If Exp

is O then the integer part of the output has as many digits as

are needed to represent the integer part of the value of Item or

is zero if the value of Item has no integer part. (LRM 14.3.8:13,
14.3.8:15)

For a prefix X that is a discrete type or subtype; this attribute

is a function that may have more than one parameter. The parameter
Item must be a Real value. The resulting string is

without underlines or trailing spaces.

Parameter Descriptions:

Item -- The user specifies the item that he wants the image of and
passes it into the function. This parameter is required.
Fore -- The user may specify the minimum number of characters for

the integer part of the decimal representation in the
retarn string. This includes a minus sign if the

value is negative and the base with the '#’ if based
notation is specified. If the integer part to be output
has fewer characters than specified by Fore, then leading
spaces are output first to make up the difference. If no
Fore is specified then the default (2) value is assumed.

Aft -- The user may specify the minimum number of decimal digits
after the decimal point to accommodate the precision desired.
If the delta of the type or subtype is greater than
0.1 then Aft is one. If no Aft is specified then the
default (X'Digits-1) is assumed. If based notation is
specified the trailing '#’ is inciuded in aft.

Exp -- The user may specify the minimum number of digits in the
evponent: the exponent consists of a sign and the exponent,
possibly with leading zeros. If no Exp is specified then
the default (3) is assumed. If Exp is © then no expone. .
is used.

100CTs9

Page 32

Appendix F, Cont.

Base -- The user may specify the base that the image is to be
displaved in. If no base is specified then the default
(10) is assumed.

Based -- The user may specify whether he wants the string returned

to be in based notation or not. If no preference is
specified then the default (false) is assumed.

Examples:
Suppose the following type was declared:
Type X is delta 0.1 range -10.0 .. 17.0;

Then the following would be true:

X'Extended Image(5.0) =" 5.00E+00"
X'Extended Image(5.0.1) = "5.00E+00"
X’Extended:lmage(-S.O.l) = "-5.00E+00"
X’Extended Image(5.0.2.0) =" 5.0E+00"
X'Extended Image(5.0,2,0,0) =" 50"
X'Extended Image(5.0,2,0,0.2) = "101.0"
X’Extended:lmage(5.0.2,0,0,2,True) = "2#101.0#"
X'Extended Image(5.0,2,2.3,2,True) = "2#1.14E+02"

'Extended Value Attribute

Usage: X’Extended Value(Image)

Returns the value associated with Item as per the Text lo definition.

The Text lo definition states that it skips any leading zeros. °
then reads a plus or minus sign if present then read the string
according to the syntax of a real literal. The return value is
that which corresponds to the sequence input. (LRM 14.3.8:9.
14.3.8:10)

For a prefix X that is a discrete type or subtype: this attribute

is a function with a single parameter. The actual parameter Item

must be of predefined type string. Any leading or trailing
spaces in the string X are ignored. In the case where an illegal

string is passed. a CONSTRAINT ERROR is raised.

100CT89

Page 33

Appendix F, Cont.
Parameter Descriptions:

Image — The user passes to the function a parameter of the
predefined type string. The type of the returned
value is the base type of the input string.

Examples:
Suppose the following type was declared:

Type X is delta 0.1 range -10.0 .. 17.0;

Then the following would be true:

X’Extended Value("5.0") = 5.0
X’Extended Value("0.5E1") =5.0
X’Extended Value("2#1.01#E2") = 5.0

’Extended_Fore Attribute

Usage: X’Extended Fore(Base,Based)

Returns the minimum number of characters required for the integer

part of the based representation of X.

Parameter Descriptions:

Base —~ The user may specify the base that the subtype would be

displayed in. If no base is specified then the default
(10) is assumed.

Based -- The user may specify whether he wants the string returned

to be in based notation or not. If no preference is
specified then the default (false) is assumed.

100CTs89

Appendix F, Cont.
Examples:
Suppose the following type was declared:
Type X is deita 0.1 range -10.0 .. 17.1;
Then the following would be true:

X'Extended Fore =3 --"-10"
X’Extended Fore(2) =6 - " 10001"

'Extended Aft Attribute
Usage: X'Extended Aft(Base,Based)
Returns the minimum number of characters required for the fractional
part of the based representation of X.
Parameter Descriptions:
Base -- The user may specify the base that the subtype would be
displayed in. If no base is specified then the default
(10) is assumed.
Based -- The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (false) is assumed.
Examples:
Suppose the following type was declared:

Type X is delta 0.1 range -10.0 .. 17.1;

Then the following would be true:

X’Extended Aft =1 --"1" from 0.1
X’Extended Aft(2) =4 --"0001" from 2#0.0001#
100CTs89

Page 35

Appendix F, Cont.

3. Specification of Package SYSTEM
with Unchecked_Conversion;
package System is

type Name is (TeleGen2);
System Name : constant name := TeleGen2;

Memory Size : constant := (2 ** 31) -1: --Available memory. in storage units
Tick : constant := 1.0 / 100.0; --Basic clock rate, in seconds

-—— == === ===

Storage Unit : constant := §;

Min _Int : constant := -(2 ** 31);

Max Int : constant := (2 ** 31) -

Max_Digits : constant := 15;

Max Mantissa : constant := 31;

Fine_Delta : constant:= 1.0 / (2 ** Max_Mantissa);

subtype Priority is Integer Range 0 .. 63;

type Memory is private;
type Address is access Memory;

Null Address: constant Address := null;
type Address Value is range -(2**31)..(2**31)-1;
function Location is new Unchecked Conversion (Address_Value, Address);

function Label (Name: String) return Address;
pragma Interface (META, Label);

100CT89

Page 36

function ">" (Left, Right: Address) return Boolean;
pragma Interface (META, ">");

function "<" (Left, Right: Address) return Boolean;
pragma Interface (META, "<");

function ">=" (Left, Right: Address) return Boolean;
pragma Interface (META, ">=");

function "<=" (Left, Right: Address) return Boolean;
pragma Interface (META, "<="});

function "+" (Left: Address; Right: Address Value) return Address;
function "+" (Left: Address Value; Right: Address) return Address;
pragma Interface (META, "+");

function "-" (Left: Address; Right: Address Value) return Address:
function "-" (Left: Address; Right: Address) return Address Value;
pragma Interface (META, "-");

type Subprogram Value IS
record
Proc_addr : Address;
Parent frame : Address;
end record;

procedure Call (Subprogram: Subprogram_Value);
procedure Call (Subprogram: Address);

pragma Interface (META., Call);

Max Object Size : CONSTANT := Max Int;
Max Record Count : CONSTANT := Max _Int;
Max Text lo Count : CONSTANT := Max _Int-1:
Max Text lo Field : CONSTANT := 1000;

private
type Memory is
record
null:
end record:

end System:

100CTs89 Page 37

—4J

Appendix F, Cont.
4. Restrictions on Representation Clauses
The hardware needs a minimum of 32 bits to represent floating point
and access types. Therefore, specifying a size of less than 32 bits cannot
be handled simply by the underlying hardware (LRM 13.1 (10)).

The Compiler supports the following representation clauses: .

Length Clauses: for enumeration and derived integer types 'SIZE
attribute (LRM 13.2(a))

Length Clauses: for composite types *SIZE attribute (LRM 13.2(a)

Size clauses for composite types are rejected when the

specified size implies compression of composite components.
Length Clauses: for access types 'STORAGE SIZE attribute (LRM 13.2(b))
Length Clauses: for tasks types 'STORAGE _SIZE attribute (LRM 13.2(c))
Length Clauses: for fixed point types 'SMALL attribute (LRM 13.2(d))

Enumeration Clauses: for character and enumeration types other than

boolean (LRM 13.3)

Record representation Clauses (LRM 13.4) with following constraints:
- Each component of the record must be specified with
a component clause.
- The alignment of the record is restricted to mod 2,
word (16 bit)aligned.
- Bits are ordered right to left within a byte.

Address Clauses: for objects. entries and external subprograms

(pragma INTERFACE used) (LRM 13.5(a)(c))
This compiler does NOT support the following representation clauses:
Enumeration Clauses: for boolean (LRM 13.3)

Address Clauses: for packages, task units, and non-external Ada
subprograms (LRM 13.5(b))

100CTs89 Page 38

Appendix F, Cont.
5. Implementation dependent naming conventions

There are no implementation-generated names denoting implementation
dependent components.

6. Interpretation of Expressions in Address Clause

Expressions that appear in address specifications are interpreted as the
first storage unit of the object.

7. Restrictions on Unchecked Conversions
Unchecked conversions are allowed between any types or subtypes unless
the target type is an unconstrained record or array type.
8. I/O Package Characteristics
Sequential 1O can be instantiated for unconstrained array
types or unconstrained types with discriminants without default values,
but not Direct IO.
In TEXT IO the type COUNT is defined as follows:
type COUNT is range 0 .. 2_147 483 _646;
In TEXT IO the subtype FIELD is defined as follows:
subtype FIELD is INTEGER range 0..1000;
In TEXT IO, the Form parameter of procedures Create and Open is not

supported. (If you supply a Form parameter with either procedure. it
is ignored.)

100CT89 Page 39

o

TEST PARANETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-~dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST 1in 1its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these nanes
before the test 1is run. The values used for this validation are given

below:
Name and Meaning Value
SACC_SIZE 32

An integer 1literal whose value
is the number of bits sufficient
to hold any wvalue of an access

type.
SBIG_ID1 199 * 'A' & '1'
An identifier the size of the
maximum input line length which
is identical to $BIG_ID2 except
for the last character.
$BIG_ID2 196 * 'aA' & '2'
An identifier the size of the
maximum input line length which
is identical to $BIG_ID1l except
for the last character.
SBIG_ID3 100 % AT & '3 & 99 'Y

an i1dentifier the size of the
maximum input line length which
1s 1dentical to SBIG_ID4 «except

Mame and !leaning
for a character near the middle.

SBIG_ID4
an identifiesr the size of the
maximum 1input line length which
is identical to $BIG_ID3 except
for a character near the middle.

$BIG_INT _LIT
An integer 1literal of value 298
with enough 1eading zeroes so
that it is the size of the
maximum line length.

SBIG_REAL_LIT
A universal real 1literal of
value 650.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG_STRING1

A string 1literal which when

catenated with BIG_STRINGZ

vields the image of BIG_IDI1.
$BIG_STRING2

A string 1literal which when

catenated to the end of
BIG_STRING1 yields the image of
BIG_ID1.

SBLANKS
A sequence of blanks
characters 1less than the
of the maximum line length.

twenty
size

SCOUNT_LAST
A universal
literal whose
TEXT_IO.COUNT'LAST.

integer
value is

SDEFAULT_YEM_SIZE
An integer literal whose
is SYSTEY.MEMORY_STIZE.

value

SDEFAULT_STOR_UNIT
An integer literal whose
is SYSTEM.STORAGE_UNIT.

value

Valne

100 * i

19-7 * 10' & "298"

195 = '0° & "690.0"

vt &100* 'A' & XTI

99 * QA' & lll & t ey

R

2_147_483_R46

2147483647

Name and lleaning

SDEFAULT_SYS_NAME

The value of the constant
SYSTEM.SYSTEH_UAHE.

SDELTA_DOC
A real literal whose value 1is
SYSTEM.FINE_DELTA.

SFIELD_LAST
A universal integer
iiteral vhose value is
TEXT_IO.FIELD'LAST.

SFIXED_NAME
The name of a predefined
fixed-noint type other than
DURATION.

SFLOAT _NAME
The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or

LONG_FLOAT.

SGREATER_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

SGREATER_THAN_DURATION_BASE_LAST
A universal real literal that is
greater than DURATION'BASE'LAST.

SHIGH_PRIORITY
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$TLLEGAL_EXTERNAL _FILE_NAME1L
An external file name which
contains 1invalid characters.

SILLEGAL_EXTERNAL_FILE_NAHE2
An axternal file name
is too long.

which

Value

TELEGEN?2

2#1.04E-31

1000

NO_SUCK_FIXED_TYPE

NO_SUCH_FLOAT_TYPE

100_000.0

131_073.0

A3

BADCHAR* " /%

/AIONAME/DIRECTORY

Mare and Heaning

SINTEGER_FIRST

A universal integer literal
whose value 1is TINTEGER'FIRST.

SINTEGER_LAST
A universal integer literal
whose value 1s INTEGER’LAST.

SINTEGER_LAST_PLUS_1
A universal integer literal
whose value is INTEGER'LAST + 1.

SLESS_THAN_DURATION
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS_THAN_DURATION BASE_FIRST
R universal real literal that is
less than DURATION'BASE'FIRST.

SLOV_PRIORITY
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRICRITY.

SHANTISSA_DOC
An integer literal whose value
is SYSTEM.MAX_MANTISSA.

SMAX_DIGITS
Haxinum digits supported for
floating-point types.

$HAX_IN_LEN
Maximum input line length
permitted by the implementation.

SUAX_INT
A universal integer literal
whose value 1s SYSTEH.MAX_INT.

SHAX_INT_PLUS_1

A universal integer 1l1iteral
whose value is SYSTEU.H{AX_TUT+1.

Value

-2147483648

2147483647

2147483648

-100_000.0

-131_073.0

31

15

2147483647

2_147_483_#43

ilame and Meaning

SHAX_LEN_INT_BASED_LITERAL

A universal integer based
literal whose wvalue 1is 2#11#
with enough leading zeroes in
the nmantissa to be ¥AX_IN_LEN
long.

SHRX_LEN_REAL_BASED_LITERAL
A universal re2al based literal
whose value 1is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX_IN_LEN long.

SHAX _STRING_LITERAL

a string literal of size
MAX_IN_LEN, including the quote
characters.

SHIN_INT
A universal integer literal

whose value is SYSTEM.MIN_INT.
SMIN_TASK_SIZE
An integer literal whose wvalue
is the number of bits raquired
to hold a task object which has
no entries, no declarations, and

"NHULL;" as the only statement in

its body.
SNAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_THTEGER.
SNAME_LIST
A list of enumeration 1literals
in the type SYSTEM.NAME,

separated by commas.

SNEG_BASED_INT
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the rapresentation
for SYSTEM.MAX _INT.

Value
”: " & 195 F3 IOI & 1111:"
"R L 93 x 'O L "FLET:¢

] &198 * 'A' & LR L]

-2147483648

32

SHORT_SHORT_INTEGER

TELEGEN2

164#FFFFFFFE#

Name and i{eaning

SNEW_MEM_SIZE

An integer literal whose value
1s a npermittad argument for
pragma HEMORY_SIZE, other than
SDEFAULT_ME¥_SIZE. If there is
no other value, then nse
SDEFAULT_MEM_SIZE.
SHEW_STOR_UNIT
An integer literal whose walue

is a permitted argument for
pragma STORAGE_NNIT, other than
SDEFAULT_STOR_UNIT. 1If there is
no other permitted value, then

use value of SYSTEM.STORAGE_I'NIT.

SNEW_SYS_IAME
A value of the type SYSTEI.NAME,
other than $SDEFAULT_SYS_NAME. If
there is only one value of that
type, then use that value.

STASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

STICK

A real literal
SYSTEI.TICK.

whose value 1is

VYalue

2147483647

[ex]

TELEGEN?Z

32

0.01

APPENDIX D

VITHDRAWN TESTS

Some tests are withdrawn from the ACYC because thev do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicatad. = reference of the fornm
AI-ddddd is to an Ada Commentarv.

a. E28005C This test expects that the string "-- TCP OF PAGE. --
63" of line 204 will appear at the top of the listing page due
to a pragma PAGE in line 203; but line 203 contains text that
follows the pragma, and it is this that must appear at the top

of the page.

b. A390056 This test unreasonably expects a component clause to
pack an arrav component into a minimum size (line 30).

c. B97102E This test contains an unitended illegality: a select
statement contains a null statement at the place of a selective

walt alternative {line 31).

d. C937116A This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation
mav use interleaved execution in such a way that the evaluation
of the guards at lines 50 & 54 and the execution of task CHANGING-
_OF _THE_GUARD vresults 1in a call to REFORT.FAILED at one of
lines 52 or 56.

e. BC30098 This test wrongly expects that circular instantiations
will be detected in several compilation units even though none of
the wunits is illegal with respect to the units it depends on; by
AI-00256, the illegalitv need not be detected until executicn 1is
attempted (line 95).

f. CD2A62D This test wrongly requires that an array object's size
be no greater than 10 although its subtvype's size was specified
to be 40 ‘line 137).

CD2A63A..D, CD2A66A..D, CDZAT3A..D. CDIXT7AA..D (16 tastsg] These
tests wrongly attempt to check the size of obiescrs nf a derived
tvpe {for which a 'SIZE length clause :s given) by nassing rhem
to a derived subprogram (which iaplicitly ronverts them to the
parent type (Ada standard 3.4:14)). 3additionally, thevy use the
"SIZE length clause and attribute. +hose interpretarion 1is

considered problematic by rhe WGS9 2ARG.

CD2A81G, CD2A83G, CD2A8B4N & 17, & CD50110 (% rests] These tests
assume that dependent tasks will rerminars while the main pro-
gram executes a loop that simply tests for task tzrmination; this
is not the case, and the main nrogram ay loop indefinitelv
{lines 74, 35, 86 & 96, 36 &% 96, and 53, rasp.).

CD2B15C & <CD7205C These tests expect that a1 'STORAGE_SIZE
length clause provides precise control over the number of
designated objects in a collection; the ida standard 13.2:15
allows that such control must not be expected.

CD2D11B This test gives a SMALL representation clause for a
derived fixed-point type fat line 30) that defines a set of
model numbers that are not necessarily vepresented in the
parent type; by Commentary AI-00099, all nodel numbers of a

derived fixed-point <type nmust be representable values of the
parent type.

CD5007B This test wrongly expects an inmplicitly declared sub-
program to be at the the address that is spnecified for an un-
related subprogram (line 303).

ED7004B, EDT7005C & D, ED7006C & D (5 tests] These tasts check
various aspects of the use of the three SYSTEM vragmas; the AVO
withdraws these tests as being inappropriats for validation.

CDT10%A This test requires that successive calls tc CALENDAR.-
CLOCK change by at least SYSTE!.TICK; however, bv Commentary
AI-00201, it 1is only the expect=d freaquency of change that ~ust
he at least SYSTEM.TICK--particular instances of change =may b=
less (line 29).

CD7203B, & CD72048B These tests use the 'SIZE length clauss and
attribute, whose interpretation 1s considered probleraric hy
the WG9 ARG.

CD7205D This test checks an invalid test objective: it treats
the specification of storige to be reserved for a task's
activation as though it were like the specification of storage
for a collection.

CE21071 This test requirass that objects of two similar scalar
tvpes Dpe distinguished when read from a file--DATA_FRROR is

YITHORAW TFSTS

exnectsd *o he raised by an attempt tro read one object as of
the other type. However, it is not clear exactly how the Ada
standard 14.2.4:4 is to be interpreted; thus, this test objective
is not considerad valid. (line 90)

CE31i1cC This tast requires certain hzhavior, when two files are
associated with the same =2xternal file, that is not raquirad by
the Ada standard.

CE3301a This test «contains several calls to END_OF_LIVNE &
EWD_OF_PAGE that have no paramefrer: these calls were intended
to specifv a file, not to vefer to STANDARD _INPUT {lines 103,
107, 1138, 132, & 136).

CE3411B This test requires that a text file's column number be
set to COUNT'LAST in order to check that LAYOUT_ERROR is raised
bv a subsequent PUT operation. But the former operation will
generally raise an exception due to a lack of available disk
space, and the test would thus encumber validation testing.

APPEIDIX E

COMPILER AalD LINKER OPTICIHS

References and nage numbers in rhis appendix are ~onsistent
with compiler documentation and not with this report.

In addition fo the switches described in the sequ=l tne
following switches are available:

-V +enable_traceback
allow internal compiler errors to pronagate all the way
out. The default is to inhibit internal exceptions call
chains from being displaved.

-W -debug_info
inhibits insertion of Ada symbolic debugger information
into the working sublibrary. This will sneed up
compilation. The default is to 1insert all information
into the working sublibrary.

-W +link_target=bbn
generates a Berkeley Unix stvle link script. The default
is to generate a System V style link script.

COMPILATION TOOLS

2.1. The Ada Compiler (‘‘ada”)

The TeleGen2 Ada Compiler is invoked by the ada command. Unless you specify otherwise.
the front end, middle pass. and code generator are executed each time the compiler is invoked.

Before you can compile. you must (1) make sure you have access to TeleGen2, (2) create a
library file, and (3) create a sublibrary. These steps were explained in the Getting Started section
of the Overview. We suggest you review that section. and then compile. link, and execute the
sample program as indicated before you attempt to compile other programs.

This section focuses specifically on command-level information relating to compilation. that
is. on invoking the compiler and using the various options to control the compilation process.
Details on the TeleGen2 compilation process and guidelines for using the compiler most
effectively are in the Compiler chapter of the User Guide volume. (You might want to look at
Figure 3-1 in that volume right now, to give you insight into the TeleGen2 compilation process
and to see how the options mentioned in this Command Summary volume relate to the actual
compilation process.)

The syntax of the command to invoke the Ada compiler is:

ada {<‘‘common_option’’>} {<option>} <input_spec>

where:

<‘“common_option”> | None or more of the following set of options that are com-
mon to many TeleGen2 commands:

—I(ibfile or —t(emplib
-V{space_size
—v(erbose

These options were discussed in Chapter 1.

<option> None or more of the compiler-specific options discussed
below.
<input_spec> The Ada source file(s) to be compiled. It may be:

« One or more Ada source files, for example:
/user/john/example
Prog_A.text
ciosrc/calc_mem.ada
calcio.ada myprog.ada
*.ada
« A file containing names of files to be compiled. Such a
file must have the extension '‘.ilf"". You can find de-
tails for using input-list files in the User Guide portion
of your TeleGen2 documentation set. |

« A combination of the above.

Please note that the compiler defaults are set for your convenience. In most cases you will
not need to use additional options: a simple ‘‘ada <input_spec>" is sufficient. However. options

24AUGS9 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 2-3

T

TeleGen2 Command Summary for UNIX-Based Host Compilers

are included to provide added flexibility. You can. for example, have the compiler quickly check
the source for syntax and semantic errors but not produce object code (—e(rrors_only) or you can

compile. bind, and link an main program with
options are provided for other purposes.

a single compiler invocation (-m(ain). Other

The options available with the ada command, and the relationships among them. are
illustrated in the following figure. Remember that each of the options listed is identified by a

dash followed by a single letter (e.g.. “*—e”").

The parenthesis and the characters following the

option are for descriptive purposes only; they are not part of the option.

]

I
~I(ibfile <libname>
|

1
—t(emplib <sublib>{,...}
J

- V(space_size 2000

—-v(erbose

f
—e(rrors_only

(_compile to object)
T
—~d(ebug
- |
~i(nhibit <key>t

-k(ieep
—O(ptimi;e <key>+t
—S(our|ce_asm
—u(pdate._!lib <key>+?

!
—x(ecution_profile
}

{
—C(ontext 1

—E(rror_abort 999

|
—L(ist
L

—~F(ile_only _errs
)

o —s(oftware_float

-m(ain <unit>

]

[<input_spec> |

t (1) <key> for —O: refer to aopt. (2) <kev> for —u: i or s: 8 is the defauit. (2} <key> for ~u: a or certain combinations of

2-4 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft

24AUGS9

"

J

COMPILATION TOOLS

The options available with the ade command are summarized in Table 2-2. The default
situation (that is, what happens if the option is not used) is explained in the middle column.
Each option is described in the paragraphs that follow the table.

Table 2-2. Summary of Compiler Options

Discussed

ti Default
Option elan in Section

Common options:

—l(ibfile <libname> Use liblst.alb as the library file. 1.4.1
—t(emplib <sublib...> None 1.4.1
~V(space_size <value> Set size to 2000 Kbytes. 1.4.2
—v(erbose Do not output progress messages. 1.4.3
~d(ebug Do not include debug information in 2.1.1
object code. (—d sets —k(eep.)
~E(rror_abort <value> Abort compilation after 999 errors. 2.1.2
—e(rrors_only Run middle pass and code generator, 2.1.3
not just front end.
~i(nhibit <key>+ Do not suppress run-time checks, source | 2.1.4

line references, or subprogram name
information in object.

—k(eep Discard intermediate representations of | 2.1.3
secondary units.
-m(ain <unit> Do not produce executable code 2.1.6
(binder/linker not executed).
-O(ptimize <key>t Do not optimize code. 2.1.7
g —2(oftware_float Use hardware floating-point support. 2.1.8
—u(pdate_lib <key>t Do not update library when errors are 2.1.9
' found (multi-unit compilations).
—x{ecution_profile Do not generate execution-profile code. 2.1.10
Listing options:
—C(ontext <value> Include 1 line of context with error 2.1.11.1
message.
~L(ist Do not generate a source-error listing. 2.1.11.2
-F(ile_only _errs Do not generate an errors-only listing. 2.1.11.3
only.
-S(ource_asm Do not generate assemnbly listing. 2.1.11.4
2.1.1. -d(ebug - Generate Debugger Information. The code generator must generate

special information for any unit that is to be used with the TeleGen2 symbolic debugger. The
generation of this information is enabled by use of the —d option. The use of —d automatically

t (1) <key> for = O: refer to eept. (2) <key> for —w: i or 8; s is the defauit. (2) <key> for ~u: a or certain combinations of
lne.

24AUGS9 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 2-5

PRI

TeleGen2 Command Summary for UNIX-Based Host Compilers

sets the —k(eep option. This to make sure that the High Form, Low Form. and debugger
information for secondary units are not deleted.

To see if a unit has been compiled with the —d(ebug option. use the als command with the
-X(tended option. Debugger information exists for the unit if the “‘dbg_info” attribute appears
in the listing for that unit. The default situation is that no debugger information is produced.

Performance note. While the compilation time overhead generated by the use of —d{ebug is
minimal. retaining this optional information in the Ada library increases the space overhead.

2.1.2. -E(rror_abort — Set an Error Count for Aborting Compilation. The compiler
maintains separate counts of all syntactic errors, semantic errors, and warning messages detected
by the front end during a compilation.

A large number of errors generally indicates that errors in statements appearing earlier in
the unit have ‘‘cascaded” through the rest of the code. A classic example is an error occurring in
a statement that declares a type. This causes subsequent declarations that use the type to be in
error, which further causes all statements using the declared objects to be in error. In such a
situation, only the first error message is useful. Aborting the compilation at an early stage is
therefore often to your advantage; the — E option allows you to do it.

The format of the option is:
—E <value>

where <value> is the number of errors or warnings allowed. The default value is 999. The
minimum value is 1. Caution: If you do not use the —FE option, it is possible to have 999
warning messages plus 999 syntax errors plus 999 semantic errors without aborting compilation,
since each type of error is counted separately.

2.1.3. —-e(rrors_only — Check Source But Don’t Generate Code. This option instructs
the compiler to perform syntactic and semantic analysis of the source program without
generating Low Form and object code. That is, it calls the front end only, not the middle pass
and code generator. (This means, of course, that only front end errors are detected and that only
the High Form intermediates are generated.) This option is typically used during early code
development where execution is not required and speed of compilation is important.

Note: Although High Form intermediates are generated with the —e option, these intermediates
are deleted at the end of compilation. This means that the library is not updated.

The —e option cannot be used with —S{ource_asm, since the latter requires the generation of
object code. If ~e is not used (the default situation), the source is compiled to object code (if no
errors are found). The —¢ option is also incompatible with —k(eep, —d{ebug, —O(ptimize, and
other options that require processing beyond the front end phase of compilation.

2.1.4. —i(nbibit - Suppress Checks and Source Information. The —i(nhibit option
allows you to suppress, within the generated object code, certain run-time checks, source line
references. and subprogram name information.

The Ada language requires a wide variety of run-time checks to ensure the validity of
operations. For exampile. arithmetic overflow checks are required on all numeric operations. and
range checks are required on all assignment statements that could result in an illegal value being
assigned to a variable. While these checks are vital during development and are an important
asset of the language. they introduce a substantial overhead. This overhead may be prohibitive

2-6 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 24AUGS9

COMPILATION TOOLS

in time-critical applications.

Although the Ada language provides pragma Suppress to selectively suppress classes of
checks. using the pragma requires you to modify the Ada source. The —i(nhibit option provides
an alternative mechanism.

The compiler by default stores source line and subprogram name information in the object
code. This information is used to display a source level traceback when an unhandled exception
propagates to the outer level of a program: it is particularly valuable during development, since it
provides a direct indication of the source line at which the exception occurs and the subprogram
calling chain that led to the line generating the exception.

The inclusion of source line information in the object code, however, introduces an overhead
of 6 bytes for each line of source that causes code to be generated. Thus, a 1000-line package
may have up to 6000 bytes of source line information. For one compilation unit, the extra
overhead (in bytes) for subprogram name information is the total length of all subprogram names
in the unit (including middle pass-generated subprograms), plus the length of the compilation
unit name. For space-critical applications, this extra space may be unacceptable; but it can be
suppressed with the —i(nhibit option. When source line information is suppressed, the traceback
indicates the offset of the object code at which the exception occurs instead of the source line
number. When subprogram name information is suppressed, the traceback indicates the offsets of
the subprogram calls in the calling chain instead of the subprogram names. (For more
information on the traceback function, refer to the Programming Guide chapter in your
Reference Information volume.)

The format of the —i(nhibit option is:
—i <suboption>{<suboption>}

where <suboption> is one or more of the single-letter suboptions listed below. Combinations of
suboptions are possible. When more than one suboption is used, the suboptions appear together
with no separators. For example, *“~i Inc”.

1lline_infoj Suppress source line information in object code.

niame_info, | Suppress subprogram name information in object
code.

cihecks| Suppress run-time checks -- elaboration. overflow,

storage access, discriminant, division, index, length,
and range checks.

all| Suppress source line information, subprogram name
information. and run-time checks. In other words, a
(=inhibit all) is equivalent to Inc.

As an example of use, the command....
ada -v -i lc my_file.ada

...inhibits the generation of source line information and run-time checks in the object code of the
units my_file.ada.

24AUGS9 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft

2

TeleGen2 Command Summary for UNIX-Based Host Compilers

2.1.5. —k(eep — Retain Intermediate Forms. As a default, the compiler deletes the High
Form and Low Form intermediate representations of all compiled secondary units from the
working sublibrary. Deletion of these intermediate forms can significantly decrease the size of
sublibraries — typically 50% to 80% for multi-unit programs. On the other hand. some of the
information within the intermediate forms may be required later. For example, High Form is
required if the unit is to be referenced by the Ada Cross-Referencer (azr). In addition,
information required by the debugger and the Global Optimizer must be saved if these utilities
are used. For these reasons. the —k option is provided with the ede command. The —k option:

» Must be used if the compiled unit is to be optimized later with aopt; otherwise, aopt
issues an error message and the optimizer aborts.

« Should be used if the unit is to be cross-referenced later; otherwise, an error message is
issued when the Ada Cross-Referencer attempts to cross-reference that unit.

= Need not be used with —d(ebug, since —k is set automatically whenever —d is used.

To verify that a unit has been compiled with the —k(eep option (has not been “squeezed™),
use the als command with the —X(tended option. A listing will be generated that shows whether
the intermediate forms for the unit exist. A unit has been compiled with —k(eep if the attributes
high_form and low_form appear in the listing for that unit.

2.1.6. —-m(ain — Compile a Main Program. This option tells the compiler that the unit
specified with the option is to be used as a main program. After all files named in the input
specification have been compiled, the compiler invokes the prelinker (binder) and the native
linker by calling ald to bind and link the program with its extended family. An executable file
named <unit> is left in the current directory. The linker may also be invoked directly by the
user with the ald command.

The format of the option is:

—m <unit>

where <unit> is the name of the main unit for the program. If the main unit has aiready been
compiled, it does not have to be in the input file. However, the body of the main unit, if
previously compiled, must be present in the current working sublibrary.

Note: Options specific to the linker (invoked via ald) may be specified on the ada command line
when the —m option is used. With —m, the compiler will call ald when compilation is complete,
passing to it ald-specific options specified with the ada command. For exampile...

ada -m welcome -T2 -onew sample.ada

...instructs the compiler to compile the Ada source file, sample.ada, which contains the main
program unit Weicome. After the file has been compiled. the compiler calls the linker, passing to
it the —T and —o options with their respective arguments. The linker produces an executable
version of the unit, placing it in file new as requested by the - o option.

2.1.7. -O(ptimize - Optimize Object Code. This option causes the compiler to invoke
the global optimizer to optimize the Low Form generated by the middle pass for the unit being
compiled. The code generator takes the optimized Low Foria as input and produces more
efficient object code. The format of this option is: ,

-0 <key>

2-8 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 24AUGS9
s ————————]

COMPILATION TOOLS

where <key> is at least one of the optimizer suboption keys discussed in the Global Optimizer
chapter. Please refer to that chapter for all information regarding the use of the optimizer. The
chapter discusses using the optimizer as a standalone tool for collections of compiled but
unoptimized units and using the ~O(ptimize option with the ade command. The latter topic
includes a definition of the —O(ptimize suboption key values plus a presentation of two other ada
options (-G(raph and -I(nline_list, not shown on the ada chart) that may be used in
conjunction with the -O(ptimize option. Note: We strongly recommend that you do not
attempt to use the optimizer until the code being compiled has been fully debugged and tested.

2.1.8. -s(oftware_float — Use Software Floating-Point Support. This option may not
be available with your TeleGen?2 system; please consull the Overview portion to see if it 1s
provided. The Ada linker selects hardware floating-point support by default. If you do not have
hardware floating point support or if you wish to generate code compatible with such machines,
use the —s option. In addition: If you use the —s option, the library file you use for compilation
must contain the the name of the software floating point run-time sublibrary, s_rt.subé. Refer to
the Library Manager chapter in your User Guide volume for more information on the run-time
sublibrary.

2.1.9. —u(pdate_lib - Update the Working Sublibrary. The —u(pdate_lib option tells
the compiler when to update the library. It is most useful for compiling multiple source files.
The format of the option is:

-ua <key>

where <key> is either *“s” (source) or “i” (invocation).

i “i” tells the compiler to update the working sublibrary after all files submitted in that
invocation of ada have compiled successfully. If an error is encountered, the library is
not updated. even for source files that compile successfully. In addition, all remaining
source files will be compiled for syntactic and semantic errors only. Implications: (1)
If an error exists in any source file you submit. the library will not be updated, even if
all other files are error free. (2) Compilation is faster, since the library is updated
only once, at the end of compilation.

gt

s (This is the default; it is equivalent to not using the —u(pdate_lib option at all.) “s
tells the compiler to update the library after all units within a single source file
compile successfully. If the compiler encounters an error in any unit within a source
file. all changes to the working sublibrary for the erroneous unit and for all other units
in the file are discarded. However. library updates for units in previous or remaining
source files are unaffected. Implications: (1) You can submit files containing possibie
errors and still have units in other files compile successfully into the library. (2)
Compilation is slightly slower, since the library is updated once for each file.

24AUGS9 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 2-9

TeleGen2 Command Summary for UNIX-Based Host Compilers

Therefore: .
Use ““u s” (or no —u(pdate option) when:

You're not sure all units will compile successfully.
Compilation speed is not especially important.

Use **u i when:
You are reasonablyv certain vour files will compile successfull\.
Fast compilation is important.

2.1.10. -x(ecution_profile — Generate Profile Information. The -x(ecution_profile
option uses the code generation phase of compilation to place special information in the generated
code that can be used to obtain a ‘“‘profile” of a program’s execution. This information is
generated by a facility known as “the profiler.”” Refer to your User Guide volume for information
on how to use the profiler to obtain execution timing and subprogram call information for a
program.

Important: If any code in a program has been compiled with the ~x(ecution_profile option,
that option must also be used with ald when the program is bound and linked. Otherwise,
linking aborts with an error such as ““Undefined RECORD$SCURRENT".

2.1.11. Listing Options. The listing options specify the content and format of listings
generated by the compiler. Assembly code listings of the generated code can also be generated.

2.1.11.1. —-C(ontext - Include Source Lines Around the Error. When an error |
message is sent to stderr, it is helpful to include the lines of the source program that surround the

line containing the error. These lines provide a context for the error in the source program and

help to clarify the nature of the error. The —C option controls the number of source lines that
surround the the error.

The format of the option is:
—C <value>

where <value> is the number of source context lines output for each error. The defauit for
<value> is 1. This parameter specifies the total number of lines output for each error (including
the source line that contains the error). The first context line is the one immediately before the
line in error; other context lines are distributed before and after the line in error. Let’s say that
trialprog.ada, which consists of the following text...

2-10 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 24AUGS9
]

COMPILATION TOOLS

package P is
type Tl is range 1..10;
type T2 is digits 1;

type Arr is array (1..2) of integer; type T3 is new Arr; -- OK.
package Inner is
type Inl is new T1; -- ERROR: T1 DERIVED.
type In2 is new T2; -- ERROR: T2 DERIVED.
type In3 is new T3; -- ERROR: T3 DERIVED.

type Inarr is new Arr; -- OK.
end Inner;
end P;
...were compiled as follows:

ada -e -C 2 trialprog.ada

(The —e option here is used for error checking and ~C(ontext is set to 2 to display two lines of
source.) The output produced would look like this:

7: package Inner is
8: type Inl is new T1; -- ERROR: T1 DERIVED.

>>> Illegal parent type for derivationm <3.4:15,7.4.1:4

type Inl is new T1; -- ERROR: T1 DERIVED.
type In2 is new T2; -- ERROR: T2 DERIVED.

oooooo

> Illegal parent type for derivation <3.4:15,7.4.1:4>

0 00

9: type In2 is new T2; -- ERROR: T2 DERIVED.
10: type In3 is new T3; -- ERROR: T3 DERIVED.

> Illegal parent type for derivation <3.4:15,7.4.1:4>

2.1.11.2. -L(ist —~ Generate a Source Listing. This option instructs the compiler to
output a listing of the source being compiled. interspersed with error information (if any). The
listing is output to <file_spec>.l, where <file_spec> is the name of the source file (minus the
extension). [l <file_spec>.l already exists, it is overwritten.

If input to the ada command is an input-list file (<file_spec>.ilf), a separate listing file is
generated for each source file listed in the input file. Each resulting listing file has the same name
as the parent file, except that the extension **.I"”” is appended. Errors are interspersed with the
listing. If you do not use —~L (the default situation), errors are sent to stdout only: no listing is
produced. -L is incompatible with —F.

24AUGS9 INTRO-1381N-V1.2(UNIX-H) @ 1989 TeleSoft 2-11

TeleGen2 Command Summary for UNIX-Based Host Compilers

2.1.11.3. -F(ile_only_errs - Put Only Errors in Listing File. This option is used to
produce a listing containing only the errors generated during compilation; source is not included.
The output is sent to <file_spec>.l. -F is incompatible with —L.

2.1.11.4. -S(ovrce_asm — Generate a Source/Assembly Listing. This option instructs
the compiler to generate an assembly listing and send it to a file named <unit>.<ext>, where
<unit> is the name of the unit in the user-supplied source file and <ext> is the file extension (it
may be *‘s” or something else, depending on your configuration). The listing consists of assembly
code intermixed with source code as comments. If input to the ada command is an input-list file
(<file_spec>.ilf), a separate assembly listing file is generated for each unit contained in each
source file listed in the input file. If —Sis not used (the default situation), an assembly listing is
not generated.

2-12 INTRO-1281N-V1.2(UNIX-H) © 1989 TeleSoft 24AUGS9

COMPILATION TOOLS

2.2. The Ada Linker (*‘ald”)

The TeleGen2 Ada Compiler produces object code from Ada source code. The TeleGen2
Ada Linker takes the object (of a main program) that is produced by the compiler and produces a
UNIX executabie module. The TeleGen2 Ada Linker will be called ‘“the linker™ in the remainder
of this manual.

To produce executable code, the linker (1) generates elaboration code and a link script (this
is called *binding™ or “prelinking”) then (2) calls the UNIX link editor (ld) to complete the
linking process.

The linker is invoked with the ald command; it can also be invoked with the —m(ain :ption
of tie ada command. In the latter case the compiler passes appropriate options to the linker. to
direct its operation.

In the simplest case. the ald command takes one argument — the name of the main unit of
the Ada program structure that is to be linked — and produces one output file — the executable
file produced by the linking process. The executable file is placed in the directory where ald was
executed. under the name of the main unit used as the argument to ald. For example, the
command

ald main

links the object modules of all the units in the extended family of the unit Main. The name of
the resulting executabhle file will simply be “main’. Important: When using the ald command,
the body of the main unit to be prelinked must be in the working sublibrary.

The general syntax of the ald command is:

ald {<‘‘common_option”>} {<option>} <unit>

where:

<‘*‘common_option’’> | None or more of the following set of options that are
common to many TeleGen2 commands:

—I(ibfile or —t(emplib
~V(space_size
—v(erbose

These options were discussed in Chapter 1.

<notion > None or more of the options discussed in the following
sections.

<unit The name of the main unit of the Ada program to be
linked.

The options available with the ald command and the relationships among them are illustrated
beiow,

24AUGS89 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 2-13

TeleGen2 Command Summary for UNTX-Based Host Compilers

ald

| 1
—I(ibfile <libname> —t(emplib <sublib>{,...}
L J

~V(space_size 2000
-v(ei'bose
—b(im':l_.onl_v
—~o(utput Lﬁle_spec>
—P(ass._opnlions ‘string
—p(ass_obj:ect.s 'string’

1

0 —s(oftware_float
|
-S(*““asm_listing”
|
~T(raceback 15

t
~x(ecution_profile

v L
—D(elay _NonPreempt ~w(‘““timeslice” 0
L j

~X(ception_show (
|

-Y 8192 ibytes-iong|
|

—y 1024 |bytes-natural|

2.2.1. -b(ind_only - Produce Elaboration Code Only. To provide you with more
control over the linking process. the —b option causes the linker to abort after it has created the
elaboration code and the linking order, but before invoking the UNIX link editor. This option
allows you to edit the link order for special applications and then invoke the link editor directly.
The link order is contained in an executable script that invokes the link editor with the
appropriate options and arguments. The name of the script produced is <unit>.lnk, which is
placed in vour working directory. To complete the link process, enter **<unit>.lnk".

The name of the file containing the elaboration code is <unit>.obm, which is placed in the
object directory of the working sublibrary.

For System V versions of UNIX. the file names generated as a result of linking are created
bv appending the 3-letter extension to the unit name and truncating the resuit to 14 characters.

2.2.2. -o(utput - Name the Output File. This option allows vou to specifv the name of
the output file produced by the linker. For example. the command...

ald -o yorkshire main ' i)

...causes the linker to put the executable module in the file yorksaire.

2-14 INTRO-1281N-V1.2(UNIX-H) © 1989 TeleSoft 24AUGS9
-]

COMPILATION TOOLS

2.2.3. —P(ass_Options - Pass Options to the Linker. This option allows you to pass a
string of options directly to the UNIX link editor. For example, the command

ald -P -t -r’ main

adds the string *—t —r”" to the options of the link editor when it is invoked. The options must be
quoted (double or single quotes).

2.2.4. —p(ass_objects - Pass Arguments to the Linker. This option allows you to pass
a string of arguments directly to the UNIX link editor. For example, the command

ald —p ’cosine.o /usr/lib/libm.a’ main

causes the link editor to link the object file cosine.o (which it expects to find in the current
working directory), and to search the library /usr/lib/libm.a for unresoived symbol references.
(The location of the libm.a library may be different on your system.) Remember that the link
editor searches a library exactly once at the point it is encountered in the argument list, so
references to routines in libraries must occur before the library is searched. That is, files that
include references to library routines must appear before the corresponding libraries in the
argument list. Objects and archives added with the —p option will appear in the linking order
after Ada object modules and run-time support libraries, but before the standard C library
(/lib/libc.a). This library is always the last element of the linking order.

You can also use the —p option to specify the link editor’s —!{ option, which causes the link
editor to search libraries whose names have the form */lib/libname.a’” or *‘/usr/lib/libname.a”.
For example, the command

ald -p ’-ixyz’
causes the link editor to search the directories /lib and /usr/lib (in that order) for file libzyz.a.

2.2.5. -S(*“asm_listing’”” - Produce an Assembly Listing. The -S option is used to
output an assembly listing from the elaboration process. The output is put in a file,
<file>.obm.s, where -<file> is the name of the main unit being linked. (The file extension may be
different on your system.)

2.2.8. —-s(oftware_float — Use Software Floating-Point Support. This option may not
be available on your TeleGen? system. Please consult the Overview portion of this volume to see if
it s provided. The Ada linker currently selects hardware floating-point support by default. This
default situation is provided for users of systems with an arithmetic coprocessor. If you do not
have hardware floating point support or if you wish to generate code compatible with such
machines. use the —s option. In addition: if you use the —s option, the library file you use for
compiling and linking must contain the name of the software floating point run-time sublibrary,
s_rt.sub. Refer to the Library Manager chapter in your User Guide volume for more information
on the run-time sublibrary.

2.2.7. -T(raceback - Set Levels for Tracing Exceptions. When a run-time exception
occurs (and is not handled by an exception handler), the name and line number of the unit where
the exception occurred is displayed along with a recursive history of the units which called that
unit. (See the ‘‘Exception Handling’ section in the Programming Guide chapter of your
Reference Infrrmation volume for a more complete explanation of exception reports.) The - T
option allows you to set the number of levels in this recursive history. For example. the

24AUGS89 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 2-15

]

TeleGen2 Command Summary for UNIX-Based Host Compilers

command

ald —-T 3 main

specifies that traceback histories will be three levels deep. The default value for this option is 15.

When an exception occurs, the run-time support systemn stores the history in a preallocated
block of memory. Since the size of this biock is determined by the - T option. setting this value
to a large number can introduce objectionable overhead in deeply nested. time-critical code. You
may wish to make this value smaller for well-tested programs.

2.2.8. -x(ecution_profile - Bind and Link for Profiling. This option is used for units
that have been compiled with the —r option. Use of -z with ada causes the code generator to
include, in the object, special code that will later be used to provide a profile of the program'’s
execution.

[f —z is used with ada, it must be used with ald as well. The —z option of ald instructs the
linker to link in the profiling run-time support routines and generate a subprogram dictionary,
profie.dic, for the program. The dictionary is a text file containing the names and addresses of
all subprograms in the program. The dictionary can be used to produce a listing showing how
the program executes.

Refer to the Ada Profiler chapter in your User Guide volume for a full discussion of the
profiier.

2.2.9. Tasking Options. The f{ollowing ald options are binding options used for task
execution. They are therefore useful only for linking programs that contain tasking code.

2.2.9.1. -D(elay NonPreempt - Specify Non-Preemptive Delay. By default, the
TeleGen2 run-time is set for preemptive delay handling. That is, an active task is preempted if
another task is waiting that has a priority equal to or greater than that of the active task.

The - D option allows you to specify non-preemptive delay handling. With non-preemptive
delay, a task is scheduied only when a synchronization point is reached. —D(elay _NonPreempt is
incompatible with the —~w option (see below).

2.2.9.2. —-w(“timeslice’’ - Limit Task Execution Time. The -w option allows you to
define the maximum time a task may execute before it is rescheduled. The format of the option
is:

-w <value>

where <value> is the maximum time the task is to execute, in milliseconds. before a task switch
occurs between it and a task having the same or higher priority. The default value is 0 (no
timeslice). If you choose a value greater than 0, it must be at least as great as the clock interval
time.

Since rescheduling of tasks is incompatible with interrupt-scheduling. —w is incompatible
with —=Df{elay NonPreempt (see above).

2.2.9.3. -X(ception_show - Report Unhandled Exceptions. By defauit. unhandled
exceptions that occur in tasks are not reported: instead. the task terminates silently. The - X
option allows you to specifv that such exceptions are to be reported. The output is similar to
that dispiayed when an unhandled exception occurs in a main program.

2-16 INTRO-1281N-V1.2(UNIX-H) © 1989 TeleSoft 24AUGS9

N
-

COMPILATION TOOLS

2.2.9.4. -Y and -y - Alter Stack Size. In the absence of a representation specification for
task storage_size. the run time will allocate 8192 bytes of storage for each executing task. You
can change the amount of space allocated for tasking by using the — Y and —y options.

—7Y specifies the size of the basic task stack. The format of the aption is:
=Y <value>

where <value> is the size of the task stack in 32-bit (long_integer) bytes. The default is 8192.

~y specifies the stack-guard size. The stack-guard space is the-amount of additional space
allocated per task to accommodate interrupts and exception-handling operations. The format of
the option is:

-y <value>

where <value> is the size of the stack-guard size in 16-bit (natural) bytes. The value given must
be greater than the task-stack size. The default is 1052 bytes; this is the amount allocated unless
otherwise specified.

A representation specification for task storage size overrides a value supplied with either
option.

24AUGS9 INTRO-1281N-V1.2(UNIX-H) © 1989 TeleSoft 2-17

