
0

APP 2 2, ,

RUTGERS UNIVERSITY
Center for Expert Systems Research

Final Report:
Empirical Analysis and Refinement of

Expert System Knowledge Bases
Contract Number0 N00014-87-K-0398

Office of Naval Research

March 31,1990

0 Principal Investigators:
Sholom M. Weiss

Casimir A. Kulikowski

*' ". , --

n __ r5 1;-

0:,

Table of Contents

1. Technical Project Summary 12. Principal Innovations 1
3. Summary of Progress 13.1. Refinement Learning Procedure

44. Overview of Research Approach
55. Specific Research Reports
7

rwl TtF*TATLiENT "A" per Alan Meyrowitz

ONTR/Code 1133 •TELECON 4/25/90 V(.

cop
.1

1. Technical Project Summary

Knowledge base refinement is the modification of an existing expert system knowledge base
with the goals of localizing specific weaknesses in a knowledge base and improving an expert

system's performance. Systems that automate some aspects of knowledge base refinement can

have a significant impact on the related problems of knowledge base acquisition, maintenance,

verification, and learning from experience. The SEEK system was the first expert system

framework to integrate large-scale performance information into all phases of knowledge base

development and to provide automatic information about rule refinement. A recently developed

successor system, SEEK2 [Ginsberg, Weiss, and Politakis 881 significantly expands the scope of the
original system in terms of generality and automated capabilities. The investigators made

significant progress in automating empirical expert system techniques for knowledge acquisition,
knowledge base refinement, maintenance, and verification.

2. Principal Innovations

The investigators d.-monstrated a rule refinement system in an application of the diagnosis of

complex equipment failure: computer network troubleshooting. The expert system demonstrates
the following advanced capabilities:

e automatic localization of knowledge base weaknesses

* automatic repair (refinement) of poorly performing rules

e automatic verification of new knowledge base rules

e automatic learning capabilities

3. Summary of Progress

During the two years of the contract the following was accomplished:

0
functioning equipment diagnosis and repair knowledge base, suitable for refinement.
This is a subset of DEC's Network Troubleshooting Consultant (NTC).

*demonstration of functioning equipment diagnostic system with capabilities of
localization of weak rules, automatic refinement, automatic verification.

* demonstration of initial rule learning capabilities.

e development of case generation simulator and randomized rule modifier.

* * rompar~ive studies demonstrating superiority of PVM rule induction procedure in
low dimensional applications.

* 2

" demonstration of refinement system, using subset of DEC's Network Troubleshooting
Consultant (NTC), a rle-based expert system that gives interpretive analysis of
Ethernet/DECnet related problems. The system automatically recovers from many
forms of damage to knowledge base.

* demonstration of system with capabilities for automatic refinement, and verification of
knowledge base consistency.

" demonstration of significant automated rule learning capabilities.

* completed comparative studies of empirical techniques for machine learning, statistical
pattern recognition, and neural nets.

This work is the basis for further progress in developing an automated refinement system. We

pursued the refinement and learning tasks from both an expert system rule-based perspective and

a machine learning rule induction perspective. In order to develop the strongest form of

refinement system, we examined numerous techniques for empirical rule induction. We also

developed a procedure, Predictive Value Maximization [Weiss, Galen, and Tadepalli 901, that

shows strong results for induction of single relatively short rules. Our fundamental objective is to

mix the best rule induction procedures with a rule-based expert system to achieve the strongest

empirical results.

The fundamental approach of rule refinement is to constrain changes that can be made to the

krowledge base to those that are fully consistent with the rules of the expert-supplied knowledge

base. Unlike a refinement system, a pure learning system such as a rule induction system, attempts

to learn directly from data, unconstrained by human expert knowledge. A more constrained

learning approach maintains the expert supplied rules but allows for some additions to the rules.

* The new learning procedures added to the refinement system use generalization and specialization

models to perform 2 functions:

* add a variable to a rule to specialize the rule

e add a new rule to the knowledge base to generalize the rule

The procedure for adding components and rules is detailed in Section 3.1. Some key parts of the

procedure are analogous to current tree generation procedures such as ID3/C4 or CART, where

the split is performed on the single best node. In our case during a given refinement cycle, we

* attempt to induce the single best variable and decision threshold. The following preliminary

results were found for a knowledge base of 100 rules and 5 endpoints that previously was refined

from a performance of 73% (88/121) to 100% (121/121).

* The same 100% refinement performance was achieved with the learning capability.

0 3

When all 100 rules, with an average of 4 variables per rule, were deleted from the
knowledge base, the system was able to generate 14 rules and 21 variables that
achieved 88% (107/121) correct classification.

As a pure learning procedure, these techniques are somewhat weaker than induced decision

trees. The heuristic refinement strategy of generalization and refinement does not appear to
perform as well when train and test simulations are used to estimate the true error rate. However,

this refinement strategy is not meant to be a learning strategy that applied only to sample data. It

can readily work on an existing knowledge base and produces a new knowledge base that is
consistent with the original expert derived knowledge base. These results demonstrate the

potential for robust mixed knowledge base refinement and learning procedures.

Additional results for learning with the Network Troubleshooting Consultant are listed in table
3-1. In these simulations, the knowledge base was perturbed, and then the refinement system

attempted to fix the knowledge base. Ea .h bash is one random modification to a rule attribute in the

knowledge base. Table 3-1 lists the number of random changes made to rules in the knowledge

base, the subsequent performance of the rule-bases system using these bashed rules as measured in

correct cases, the number of refinements the leaning system makes to the knowledge base, and the

subsequent performance after refinement. There are 74 stored cases.

no. of bashes correct cases num. of refinements refined correct

1 74

2 74

4 74 -

8 72 1 74

16 69 4 74

32 66 3 74

64 66 2 74

128 57 5 72

256 47 6 72

Figure 3-1: Refinement of Randomly Perturbed Knowledge Base

In addition to the learning techniques, a limited language was developed for constraining the
refinement process based on domain specific characteristics. The following constraints were

implemented and tested:

0

0

*4

0 Disallow modifications to a specified set of rules.

* Disallow any refinements that reach erroneous conclusions for any case in a set of
specified cases.

* Restrict learning refinement such that only attributes from the specified set may be
used to add to an existing rule or to form a new rule.

3.1. Refinement Learning Procedure

The following procedure briefly outlines the techniques used to add components to existing
0 rules and to create new rules:

Add a Finding to a rule: Specializing the Rule

1. While calculating the statistics for use by the heuristics, store a list of GAIN and LOSS
cases ror each rule. GAIN is the number of cases that would be gained if the rule was

0 eliminated. LOSS is the number of cases that would be lost if the rule was eliminated.

2. The requirement for trying an experiment is that GAIN(rule)>O. Probable gain is less
than or equal to GAIN.

3. Mark the LOSS cases as H+, the GAINs as H-, others ignored.

4. Generate the best attribute to be added to this rule.

5. If there is a best attribute, add it to the rule under consideraton. Test.

0 Add A New Rule To The Knowledge Base.-Generalization

1. Calculate the number of false positive and false negative cases for a given conclusion.
If there are more FPs than FNs, skip the heuristic. Else proceed.

0 2. Go through all the cases. Mark all unknown, test cases and true positive cases to be
ignored. Mark the FN cases as H+, and the rest as H-.

3. Generate the best attribute to be used as a new rule.

0

0

* 5

Generating the Best Attribute

The following table is computed for each attribute over the indicated set of cases:

Attribute true I Attribute false

H cases A I B

H-cases CI D

1. Loop through the true/false findings. For each attribute FIN, consider both true and
false attributes. Loop through each case to set up a predictive analysis table for each
attribute.

2. Calculate the estimators and probable gain for each attribute.

* a. For adding to an existing rule, estimator = A+D-B-C probable gain = D-B

e b. For a new rule, estimator = A+D-B-C probable gain = A

3. Save the attribute with the highest estimator.

4. Loop through each numerical finding FIN.

5. Loop through the H+ cases to get each numerical VAL. Consider each attribute at
each cutoff with greater and less than operators. Loop through each case to set up a
predictive analysis table for each attribute. Calculate the estimator for each attribute.
Save the best overall.

* 6. If the probable gain>O, return the best attribute.

4. Overview of Research Approach

The following figure describes the fundamental approach of our knowledge base refinement

• research.

0"

cu0

to m

o~t C .

0-

0l Ln 0

X EJ 0 1 L >L

0~6 Ad- 4

> 0

- ej

0.0
0a0 X.

r- i - *-

- LA- 0>0

~E c- . 1: <'o- U

C))<

0 C- m.~~ 0 .-!,

600

OMw

3 0i-l - 4 0

0 7

Figure 4-1 described the simulation environment for the refinement system.

Rule

Refinement System

Cese 12nrat

Stared Cases Expert System
Knowledge Base

Figure 4-1: Simulation Environment for the Refinement System

5. Specific Research Reports

Summarizing the our key research accomplishments, the following papers and technical reports
are included in this report: reports

* Ginsberg, A., Weiss, S., and Politakis, P., Automatic Knowledge Base Refinement for
Classification Systems. Artificial Intelligence :197-226, 1988.

" Weiss, S. and Kapouleas, I., An Empirical Comparison of Pattern Recognition, Neural
Nets, and Machine Learning Classification Methods, Proceedings International Joint
Conference on Artificial Intelligence. (1989).

* Weiss, S., Galen, R., and Tadepalli, P., Maximizing the Predictive Value of Production
Rules" Journal of Artificial Intelligence, in press (1990).

" Indurkhya, N. and Weiss, S., Models for Measuring Performance of Medical Expert
Systems" Artificial Intelligence in Medicine, vol. 1, num 2, pp. 61-70 (1989).

Automatic Knowledge Base Refinement
for Classification Systems

Allen Ginsberg,1 Sholom M. Weiss, and Peter Politakis 2

Department of Computer Science, Rutgers University, New Brunswick, New Jersey

lCurrent Address: AT&T Bell Laboratories, Holmdel, N.J.
2Current address: Digital Equipment Co., Hudson, Ma.

Abstract

An automated approach to knowledge base refinement, an important aspect of knowledge acquisition

is described. Using empirical performance analysis, SEEK2 extends the capabilities of its predecessor
rule refinement system, SEEK 1171. In this paper, the progress made since the original SEEK
program is described: (a) SEEK2 works with a more general class of knowledge bases than SEEK,
(b) SEEK2 has an automatic refinement capability, it can perform many of the basic tasks involved in

knowledge base refinement without humant interaction, (c) a metalanguage for knowledge base

refinement has been specified which describes knowledge about the refinement process. Methods for

estimating the expected gain in performance for a refined knowledge base and prospective test cases

are described and some results are reported. An approach to justifying refinement heuristics is

discussed.

1. Knowledge Acquisition and the Knowledge Base Refinement Problem

The problem of summarizing an expert's domain knowledge in an efficient formal
representation, the knowledge acquisition problem, is a key problem in artificial intelligence research.
As a practical matter, the most difficuit aspect of expert system development 4-- -s:aUy the
construction of the knowledge base. The rate of progress in developing useful expert systems is
directly related to the rate at which expert knowledge bases can be assembled.

The knowledge acquisition problem can be divided into two phases. In phase one the
knowledge engineer extracts an initial rough knowledge base from the expert, rough in the sense
that the overall level of performance of this knowledge base is usually not comparable to that of

* the expert. In the second phase, the knowledge base refinement phase, the initial knowledge base is
progressively refined into a high performance knowledge base. In terms of a rule-based
knowledge base, phase one involves the acquisition of entire rules, indeed entire sets of rules, for
concluding various hypotheses. The refinement phase, on the other hand, is characterized not so
much by the acquisition of entire rules but by the addition, deletion, and alteration of

0

* 9

rule-components in certain rules in the existing knowledge base, in an attempt to improve the
system's empirwal adequacy, i.e., its ability to reach the correct conclusions in the problems it is
intended to solve. Obviously the foregoing description of knowledge base construction is an
idealization. In practice the line between these two phases is not as sharply drawn. 1

A knowledge base refinement problem can be thought of as an optimization problem in which

we start with a proposed general solution to a given set of domain problems and the goal is to

refine it so that a superior solution is obtained. The proposed solution is a working knowledge
base that is in need of minor adjustments, but not a major overhaul, i.e., one assumes that the rules

given by the expert are basically sensible propositions concerning the problem domain. The
refinements applied to the rules of this knowledge base must not only meet the obvious
requrements of being syntactically and semantically admissible, they must also be conservative, in
the sense that they tend to preserve, as far as possible, the expert's given version of the rules.

Employing rule refinements that meet these requirements makes it more likely that the

construction of a refined knowledge base will not simply be a matter of curve fitting, but will
result in a knowledge base with genuinely improved empirical adequacy, that at the same time

remains close to the actual knowledge of the expert. Thus when we speak of optimizing the
performance of a knowledge base, we mean improving performance on sample case data as much
as possible, subject to constraints of conservatism.

2. Related Work

In this section we briefly consider the relationship of this work to other work on classification

systems in statistical pattern recognition, traditional empirical machine learning, and the more
recent explanation-based machine learning techniques.

* Statistical pattern recognition and empirical machine learning classification systems both learn
from case data. Statistical techniques assume a statistical distribution or a mathematical formalism;

empirical machine learning classifiers are characterized by relatively simple sets of rules with
logical AND/OR operators. While machine learning approaches usually attempt to completely

cover the sample cases, empirically derived estimates of error rates on new cases can be relatively
* large [131.

Designers of rule based expert systems recognize the limits of learning directly from case data
and rely on experts to provide summarizing rules of their experience. These rules can havc
intermediate hypotheses and sometimes heuristic procedures for combining uncertainty measures.

* Because these expert systems rely on knowledge and experience, they potentially can operate in

'In this paper we limit our concern to knowledge bases that are structured collections of production rules. By the term
expert system, we mean a productiom ruie based classfatoi expert system 120, 11. Furthermore we confine our attention to
retnements of production rules that can be achieved as the result of the sequential application of certain generic reinement
cperanons that are either generalization or specalization operations.

10

relatively large dimensions, far exceeding what could be extracted from even representative

sample cases. Thus, case data have been traditionally limited to validation tests for rule-based

expert systems.

Our approach makes significant use of some of the key features of statistical pattern recognition

work, namely, an emphasis on optimizing the overall performance of the classification system, and

t he use of disjoint sets of cases for training and testing [5]. Train and test techniques have been

applied to rules that have been learned directly from sample case data 113]. In our work, we show

how a system with a knowledge base acquired from experts can use case data for validation,

e2hitidiion of error rates, and knowledge base refinement.

Explanation-based approaches to machine learning assume that it is possible to prove that an

instance falls under a concept using a domain theory [151. This proof may then be generalized to

vieid a general concept description. While there have been many variations on this basic idea

[4, 9, 181, explanation-based approaches share one feature: they depend upon knowledge - the

domain theory - over and above the known instances (cases), the primitive concepts of the domain,

and the experiential rules that can be acquired from domain experts.

Our approach to knowledge base refinement is designed to be used in applications where such

domain theories are either unknown, inherently uncertain or statistical in nature, too

time-consuming to specify, or too complex to be useful given current technology. For such

domains it is either impractical or simply impossible to design a refinement mechanism that

generates refinements that are guaranteed to be correct or lead to an improvement in overall

performance. This is why we employ a heuristic refinement generation procedure, and why we

test a candidate refinement for its effect on the overall performance of the classification system.

However, our approach is compatible with, and can be improved through, the use of a domain

* theory when additional knowledge is available (See Section 9).

Previous research on knowledge base refinement, in the sense defined here, has been limited.
Refining a large scale knowledge base is clearly a complex undertaking. Related empirical

machine learning work in concept learning has concentrated on the learning of entire rules from

case data and hierarchical descriptions [121, rather than the incremental refinement of rules

acquired from a human expert. Because numerous expert systems are actively under

development, in recent years there has been increased interest in immediate results to ease the

knowledge acquisition task. While restricted to relatively simple knowledge bases and

representations, a few papers have appeared on empirical refinement [11, 211. Wilkins and

Buchanan emphasize the need for a more complex form of analysis, similar to the optimization

procedures used in SEEK2.

The form of empirical analysis that is described in this paper does not exclude other forms of

analysis that are useful in knowledge acquisition. For example, systems that employ concepts and

strategies for extracting domain knowledge via interaction with an expert have seen renewed

0

* 11

interest among researchers [3, 10,61. In addition, researchers working on the Programmer's

Apprentice have reported some progress in improving knowledge acquisition in programming
tasks by combining algorithmic fragments stored in software libraries with intelligent editing

facilities [19]. While these efforts may be viewed as alternative techniques for knowledge
acquisition, they may also be viewed as complementary to an empirical approach to refinement.

3. The Basic Approach: Empirical Analysis of Rule Behavior Using Case
Knowledge

3.1. Overview

In this section we briefly review the basic approach to knowledge base refinement taken by

SEEK [17] - an approach that we have continued to employ in SEEK2. A fundamental assumption

of this approach is that case knowledge can be used in an empirical analysis of rule behavior in
order to generate plausible suggestions for rule refinement (see Figure 3-1). Case knowledge is

given in the form of a data base of cases with known conclusions, i.e., each case contains not only a

record of the case observations but also a record of the expert's conclusion for the case. Empirical
analyis of rule behavior involves gathering certain statistics concerning rule behavior with respect

to the data base of cases; suggestions for rule refinements are generated by the application of

refinement heuristics that relate the statistical behavior and structural properties of rules to
appropriate classes of rule refinements. We will shortly explicate the nature of the statistical

evidence gathered and give an example of these heuristics.

We have said that the goal of our heuristic analysis is to suggest plausible refinements. This is a
term that could have a number of legitimate meanings in this context 2, and therefore, we need to

clarify exactly what we mean. For us plausibility is a three-place relation holding among a

contemplated refinement y, a set of misdiagnosed cases M, and a body of evidence E regarding the

behavior of various rules in the current knowledge base. Since we are using heuristic analysis, we

do not, in general, expect the evidence to be so complete that we are able to determine whether y
will actually correct any of the misdiagnosed cases in M. Rather, our goal is to generate

* refinements that, given our evidence E, can be determined to have a chance of correcting one or
more of the cases in M. The more cases y has a chance of correcting, the greater its plausibility [7].

Given that a knowledge base can be expected to have a large number of rules, a refinement

system must have a mechanism for focusing its attention on small subsets of rules as potential

candidates for correcting certain misdiagnosed cases. The focus-of-attention mechanism employed
in SEEK and SEEK2 is a divide and conquer strategy and depends upon certain reasonable

assumptions concerning the logical structure of the knowledge base. We assume that the expert

2 For example, see [181.

12

METAKNOY&ED

Figure 3-1: Basic Approach to Refinement

13

and knowledge engineer can identify a finite set of final diagnostic conclusions or endpoints; these are
the conclusions that the expert uses to classify the given cases. We also assume that every rule has

only a single conclusion. One can then confine one's attention to the refinement of rules that are

involved in concluding a particular endpoint, e.g., if the domain is rheumatology one may decide

to work on refining those rules involved in concluding the single final diagnosis Systemic Lupus.
Thus at any given moment the system is applying the refinement heuristics only to a proper subset

of the rules in the domain knowledge base. Even within this chosen subset, however, another
focus-of-attention mechanism, based upon the chaining pattern of the rules in the knowledge base,

serves to constrain the refinement generation process. If our chosen endpoint is Systemic Lupus,

for example, we begin by applying the heuristics to all the rules in the knowledge base that directly

conclude Systemic Lupus, i.e., rules whose right hand side is this conclusion. A rule that directly
concludes some endpoint will, in general, have components on its left hand side that themselves

are the conclusions of some other rules; such components are called intermediate hypotheses. The

rules that conclude intermediate hypotheses may themselves include components that are

intermediate hypotheses. Whenever the refinement heuristics suggest modifying an intermediate
hypothesis IH, such as deleting it from some rule, the rules that conclude IH are thereby

implicated as candidates for refinement.

3.2. Some Statistics and A Heuristic

At the highest level, many refinements of production rules may be thought of as falling in one of

two possible classes: generalizations and specializations [14, 171. By a rule generalization we mean

any modification to a rule that makes it easier for the rule's conclusion to be accepted in any given

case. A generalization refinement is usually accomplished by deleting or altering a component on
the left hand side of the rule or by raising the confidence factor associate'd with the rule's

conclusion. By a rule specialization we mean modifications to a rule that make it harder for the
rule's conclusion to be accepted in any given case. A rule specialization is usually accomplished

by adding or altering a component on the left hand side or by lowering the confidence factor

associated with the rule's conclusion. 3

On the side of evidence for rule generalization, one of the concepts we have employed in both

SEEK and SEEK2 is a statistical property of a rule computed by a function that we call Gen(rule).

Gen(rule) is the number of cases in which

a. This rule's conclusion should have been reached but wasn't,

* b. Had this rule been satisfied, the conclusion would have been reached, and

3Confidence factors are combined according to the following rule: when two or more rules for the same conclusion are
* both satisfied, the maxnurn (absolute) confidence is used.

14

c. Of all the rules for which the preceding clauses hold in the case, this one is the closest
to being satisfied.

4

For example during the processing of a case, the Gen(r i) measure is incremented in the following
hypothetical situation for rule ri: Findings fl & f2 & f3 imply H, with confidence .9; H, is the
correct answer; f2 and f3 are satisfied, but fl is not; and the incorrect computer conclusion has a

confidence of .5.

On the side of evidence for rule specialization, one of the concepts we have defined is a
statistical property of a rule that is computed by a function we call SpecA(rule). SpecA(rule) is the
number of cases in which

a. This rule's conclusion should not have been reached but was, and

b. If this rule had failed to fire the correct conclusion would have been reached. 5

For example during the processing of a case, the SpecA(r i) measure is incremented in the
following hypothetical situation: Findings f, & f2 & f3 imply H1 with confidence .9; the rule is
satisfied, but H1 is the wrong conclusion. SpecA(ri) will be incremented when the second choice for
the computer conclusion is the correct answer.

If there is more than one satisfied rule that concludes the incorrect first choice, then none of these
rules has its SpecA measure incremented; instead we have defined an additional concept to cover
this situation called SpecB(rule): each of these rules has its SpecB measure incremented.

To get a feeling for the sort of heuristics employed by these systems, suppose that for a certain
rule r it has been found that Gen(r) > [SpecA(r) + SpecB(r)], in other words the evidence suggests
that it is more appropriate to generalize than specialize r. Another piece of information would
help us decide which component of r should be deleted or altered, viz., the most frequently missing
component, i.e., the component of r that has the lowest frequency of satisfaction relative to the cases
that contribute to Gen(r). The function that computes this statistic is called Mfmc(rule). Mfmc(rule)
also tells us the syntactic category of this most frequently missing component. For example, one
sort of component often used in medical diagnostic systems is called a choice component. These
have the form k: C1, ..., C., where k, the choice number is a positive integer and the C1's are findings

* 'A measure of how close a rule is to being satisfied in a case, based on the minimal number of additional findings
reqtured for the rule to fire, is easily computed from the case data. Speaking figuratively, one may think in terms of paths
through the knowledge base that would have led to the rule's being satisfied. Since the rule is unsatisfied, all these paths
are blocked. We look for the path that would require the least number of changes in the case data to become unblocked.
For details of the algorithm used by SEEK see [161; SEEK2's closeness measure is essentially the same.

'The correct conclusion was the second choice in the case (due to its having the second highest confidence), and the only
* circumstance preventing its being the first choice is the fact that this rule is satisfied.

0

15

or hypotheses.6 A choice component is satisfied iff at least k of its Ci's are satisfied. If we know
that the rule r should be generalized and that Mfmc(r) is a particular choice component, then a
natural thing to do is to decrease the choice number of that choice component. Being conservative
we decrease the choice number by 1.

To summarize the discussion so far we now display in full the particular heuristic we have

described.

if. Gen(rule) > [SpecA(rule) + SpecB(rule) &
Mfmc(rule) is CHOICE-COMPONENT C

Then: Decrease the choice-number of
CHOICE-COMPONENT C in rule.

Reason: This would generalize the rule so that it

will be easier to satisfy.

A complete list of the refinement concepts and heuristics currently used in SEEK2 is given in

Appendix A. Both generalization and specialization refinements are accomplished by modifying

choice numbers, confidence measures, or numerical ranges. Generalization heuristics may delete
rule components. For specialization, SEEK2 does not yet add components to rules. Our objective

has been to explore the limits of a strictly conservative strategy of refinement.

* 4. The SEEK Experience

A salient feature of the original SEEK program [171 is that it was not designed to solve the entire

knowledge base refinement problem on its own, rather it was intended to help, interactively, an

expert or knowledge engineer solve the overall problem by offering potential solutions to various

• sub-problems that arise along the way. SEEK helps its user in the following ways: (a) it provides a

performance evaluation of the knowledge base relative to the case data base, (b) using its statistical
concepts and heuristics it identifies rules that are plausible candidates for refinement and suggests
appropriate refinements, (c) a user can instruct SEEK to calculate what the actual performance

results of a particular refinement to the knowledge base would be, and if the user desires, SEEK
will incorporate the change in the knowledge base.

4.1. Basic Cycle of Operation

Although control in SEEK always resides with the user, and there are a number of paths and

facilities available to the user at almost every point, SEEK can be thought of as having a basic cycle

of operation. The system is given an initial knowledge base and the case knowledge data base.

%F'ndings are observations that are true, false or have a numerical value (such as age). Hypotheses are conclusions that
* may be assigned confidence values in the range of -1 to 1.

S

16

SEEK first obtains a performance evaluation of the initial knowledge base on the data base of cases.
This is done by running the initial knowledge base on each of the cases in the data base, and then
comparing the knowledge base's conclusion with the stored expert's conclusion. The performance
evaluation consists primarily of an overall score, e.g. 75% of cases diagnosed correctly, as well as a
breakdown by final diagnostic category of the number of cases in which the system agrees with the
expert in reaching a particular diagnosis, i.e., true positives, and the number of cases in which the
system reaches that diagnosis but the expert does not, i.e., false positives.

The user must decide on a diagnosis for which he would like to see refinements in the
knowledge base in order to obtain better performance, e.g., if the domain is rheumatology the user
may decide to try to upgrade the system's performance in diagnosing Systemic Lupus. For the
sake of brevity, we call this user-specified diagnosis the GDX for the current cycle of operation,
where the G stands for given, since this is a directive that the user must give the system. The next
part of the cycle involves computing statistical properties concerning the rules of the knowledge
base that conclude the GDX. Plausible refinements are then generated by evaluating a set of
heuristics similar to the one presented above for each of these rules, as well as any rule that

becomes implicated via an intermediate hypothesis (see Section 3.1 above).

Once SEEK has given its advice - we think of each piece of advice as a possible experiment to
improve the knowledge base - the user will initiate an experimentation phase. This is a sub-cycle
in which the user, interacting with SEEK, determines the exact effect of incorporating any one of

the proposed experiments. The user will then decide which, if any, of these refinements should be
accepted, and instructs SEEK accordingly. This ends the basic cycle, which can now be repeated
starting with the modified knowledge base. This process continues until the user is satisfied with

the overall performance evaluation.

4.2. Limitations

One of SEEK's limitations has already been mentioned: it does not have the capability to attempt
to solve a refinement problem on its own. We discuss how SEEK2 removes this limitation in
Section 5.1 below.

Another important limitation of SEEK is that it does not work with a general production rule
system, rather it expects that the domain knowledge base will be written in a form known as the
criteria table representation. This mode of representation requires the knowledge engineer to specify
a list of Major observations and a list of Minor observations for each possible (diagnostic)

conclusion in the knowledge base. Rules for reaching particular conclusions are then stated in
terms of the number of Majors and Minors for the conclusion, Requirements and Exclusions. The
latter are additional observations or conclusions, or conjunctions of such, that are relevant to the

diagnosis: a Requirement is some condition that must be satisfied to reach the conclusion; an
Exclusion is some condition that rules out the conclusion. Furthermore, any rule can reach its

0

17

conclusion at one of only three possible confidence levels, viz. possible, probable, definite. As an

example, assuming that a list of majors and minors for the conclusion Systemic Lupus has been
specified, a rule for concluding the latter might state that if (at least) two of the majors and two of
the minors are present then the conclusion is warranted at the definite level.

While this mode of representation has proven to be useful in the rheumatology domain [161 and

other medical applications, it is in fact not as powerful a representation language as that of

EXPERT [201 or similar production rule systems, in the sense that one can write knowledge bases

in general production rule languages that are not translatable into the criteria table format.

However, any criteria table can be translated into production rule syntax. Thus the set of criteria

table knowledge bases is a proper subset of the set of production rule knowledge bases.

SEEK's knowledge engineering knowledge, i.e., its statistics and heuristics, was formulated with

reference to the criteria table representation scheme, and criteria table concepts also were

embedded in the control structure of the program. As a consequence, certain forms of rule

refinement were not available or were restricted in SEEK, e.g., changing a rule's confidence factor

was limited to making jumps from one level to another, such as probable to possible. In general,

SEEK could do very little with a knowledge base that was not written in a criteria table format.

SEEK2, on the other hand, is a refinement system that will work with any knowledge base

written in EXPERT's rule representation language.7 In designing SEEK2, we found it was possible

* to decouple SEEK's knowledge engineering concepts from the criteria table representation; we

were able to apply many of these concepts in relation to features of more general types of

production rules. For example, criteria table rule-components using the notion of Majors and

Minors are special cases of rule-components using choice-functions. Decreasing or increasing the

number of Majors or Minors required by a rule, is a special case of decreasing or increasing the

* choice-number of a choice-function. Thus the example heuristic given above in Section 3.2 is a

generalization in SEEK2 of two separate similar heuristics originally stated in SEEK, one for

Majors, one for Minors.

In moving to a more general representation language as the target language for knowledge base

refinement, we broadened the scope of the set of generic refinement operations available to the

system. For example, confidence factors for generalization experiments may be increased based on

an average of the highest-weighted (erroneous) conclusion for a set of misclassified cases.8

From the programmer's point of view, SEEK's own knowledge base, the representation of its

7This language is tailored to a classification system. Unlike OPS5, where rules fire one at a time, all rules that match are
evaluated, and a relatively simple confidence scoring system is employed. The current design of SEEK2 assumes a single
correct conclusion.

SChanging the confidence measure of a concluson is usually considered more radic a than minor changes to the left hand
• side of rules.

*

18

knowledge engineering statistics and heuristics, was strictly separate from its control structure.

However, this was not the case from the point of view of the user, sirce there was no facility by
which the user, qua user and not qua programmer, could access and modify SEEK's own

knowledge base, in the way that a user can modify the domain knowledge base. Our approach to

this issue forms part of a broader project which we describe in Section 8.1 below.

5. The SEEK2 Refinement System

5.1. Automatic Refinement Capability

Unlike SEEK, SEEK2 is a system that can present plausible solutions to the overall refinement

problem without the need for interaction with an expert. The output of SEEK2 running in

automatic mode is not a list of suggested rule refinements for a particular GDX (Given Dx), rather
it is a refined version of the entire knowledge base, i.e., a set of rule refinements to the initial

knowledge base which yield an improvement in overall performance. In this section we describe

SEEK2's current automatic refinement capability. Figure 5-1 is an overview of SEZK2'. automatic

refinement control strategy.

The attempt to find a sequence of refinements that optimizes performance is a search problem.

Where there is a search problem of sufficient complexity, good heuristics must be found to guide

the search. As we will see, SEEK2's current automatic refinement algorithm is a heuristic search

algorithm, in the sense that it uses a classic weak method, hill-climbing.

When running in automatic mode SEEK2 makes three types of decisions that were previously

made by the user of SEEK: (a) choice of GDX for the current cycle, (b) which rule refinement

experiments to try, (c) which refinements to incorporate in the knowledge base given the results of

the experiments (see Figure 5-2). Additionally SEEK2 has to know when to stop.

In the current implementation, SEEK2 orders the potential GDXs in descending order according

to a simple measure on the number of false negatives and false positives, information that is given

by the performance evaluation phase. Potential rule refinement experiments for a GDX are

• ordered by simple measures on the statistics used in generating the refinement, e.g., if the

generalization heuristic given in Section 3.2 fires, the quantity Gen(rule) - [SpecA(rule) +

SpecB(rule)] is used as an estimate of the expected net gain to be derived by performing the

experiment.

• Information of this sort could be used to limit the number of experiments performed in a cycle.

However, in the current implementation, the information is used only to determine the order in
which GDXs are chosen and experiments attempted; ultimately every potential GDX (for which

perfect performance has not been obtained) is chosen, and every experiment suggested by the

heuristics is performed. In other words, an automatic refinement cycle involves attempting,

0I.. .'

* 19

-.

FiguARE ITH AGoaeiemn oto ATEgy

CURN0TTITC O

BETGX UE

INOK

TETOE ERSIS

20

according to the ordering just given, every proposed refinement experiment for every potential

final diagnostic conclusion in the knowledge base. (Of course, the number of experiments

generated by the heuristics represents a small fraction of the total number of logically admissible

refinements.) Of all these attempted experiments, SEEK2 accepts only one, the one that gives the

greatest net gain in knowledge base performarce for all final diagnostic conclusions, not just for

one GDX.9 An internal record of the accepted refinement is kept; and then the next automatic

refinement cycle begins. If the current automatic refinement cycle is such that no attempted

experiment leads to an actual net gain, SEEK2 stops.

We present a simplified example in order to illustrate these concepts. Let us suppose that we

have a rheumatology knowledge base dealing only with the two final diagnoses Systemic Lupus
0 and Rheumatoid Arthritis, that a data base of 20 cases is available, and that our human expert has

diagrosed 10 of these cases as Systemic Lupus and the other 10 as Rheumatoid Arthritis. Suppose

that the initial performance evaluation computed by SEEK2 is as follows:

0 DX True Positives False Positives

Rheumatoid Arthritis 9 / 10 6

Systemic Lupus 3 / 10 1

None 0/0 1

0 Total 12/20 8

The measure SEEK2 uses to compute GDX order is the maximum of the false negatives and false

* positives. Thus in our example Systemic Lupus would be the first diagnosis in the GDX ordering

since it has 7 false negatives, i.e., 7 out of the 10 cases that should have been diagnosed as Systemic

Lupus were not. Therefore SEEK2 will first generate refinement experiments for Systemic Lupus.

Continuing the example, suppose that rule r concludes Systemic Lupus, and SEEK2 finds that

Gen(r) = 6, SpecA(r) = 1, SpecB(r) = 0, and Mfmc(r) = Choice-Component C. These findings would

satisfy the antecedent of the refinement heuristic presented in Section 3.2. Therefore SEEK2 will

post the decreasing of C's choice-number as a refinement experiment. SEEK2's estimate of the

expected net gain of performing this experiment is given by Gen(r) - [SpecA(r) + SpecB(r)I = 5.

(This is an estimate; the only way to know what the precise effect of decreasing the choice-number

of C will be, is to decrease it, and then recompute the system's performance on all cases in the data

* base.) Once all the refinement experiments for Systemic Lupus have been posted and ordered

according to their expected net gain, SEEK2 performs all the experiments on this list as ordered. If

9While the overall performance must increase, it is possible that the performance of some condusions may decrease.

0 llI

21

SEEK2 finds that decreasing the choice-number of component C in rule r leads to an overall
performance gain of 3 cases, i.e., the bottom line performance total for both Rheumatoid Arthritis
and Systemic Lupus improves from 12 to 15/20, and this turns out to be the maximum net gain of
all the experiments for Systemic Lupus, SEEK2 records this fact.

Next, it will select Rheumatoid Arthritis as the GDX, and repeat the process. Suppose that the
aforementioned experiment for rule r yields a greater net gain than the best refinement experiment
for Rheumatoid Arthritis. Then SEEK2 will accept the refinement to rule r, i.e., it will modify its
internal copy of the domain knowledge base to reflect this refinement, and a new cycle will

commence.

The automatic refinement algorithm is a hill-climbing procedure: at each step SEEK2 is guided
totally by local information as to which proposed refinement of the current knowledge base results
in the best improvement. SEEK2 stops when none of the experiments suggested by the heuristics

leads to a net gain. Because SEEK2 does not examine all possible combinations of refinement
experiments, the accepted experiments may fail to achieve a global maximum. Moreover, because
SEEK2's heuristics are estimators that do not consider every possible refinement, the accepted
experiments may also fall short of a local maximum. SEEK2's optimization goal is tempered by
constraints of conservatism and computational efficiency.

5.2. Using Disjoint Training and Testing Sets

The best evidence for the validity of an approach can come only from actual examples of its
successful use. On this score, we can say that with respect to the rheumatology knowledge base
we have used as a test case, SEEK2 has generated refinements that are similar to those produced by
SEEK, some of which were found to be acceptable to the experts [161.10

However, some evidence of the reliability of the approach in producing refinements that
improve the general empirical adequacy of a knowledge base (not just its empirical adequacy with
respect to the given data base of cases) can be obtained via experimentation with a single
knowledge base by using various statistical techniques. In this section we describe the results of
such an experiment.

The experiment will be called a Train-and-Test experiment, and is actually a series of similar
experiments or runs. In a single typical train-and-test run the given data base of cases is divided
into two randomly selected disjoint subsets (not necessarily of equal size) preserving the
distribution of cases by endpoint. Let us call these sets a, and a2. The first phase of a
train-and-test experiment involves running SEEK2 using (T1 as case knowledge, or as the training

'°While the SEEK rdinements required human intervention during many of the refinement cycles, SEEK2 used automatic
refinement procedures.

• S

* 22

CAE

GAHERETST

EVcAUAT

IN AOMAINTIC
WNRL9SIT

SEEC

23

set. SEEK2's refined version of the knowledge base is then tested over 02 (and the combined set
oi,a,). In the second phase of the experiment the roles of 0 i and a2 are interchanged.

Figure 5-3 gives the results of such a run with training and test samples of equal size. Training
over c01 led to a performance increase of 29% (69% to 98%). When tested over the new set of cases
in a,, there was an increase in performance of 15% (78% to 93%). The results of the second run are
similar. While there was often less improvement observed over the test sets than in the training
sets in these runs, the fact is that the experiment shows that refinements that were learned by
SEEK2 with respect to one set of cases also improved empirical adequacy with respect to a new set

o cases.

This experiment has a more precise interpretation. A single train-and-test experiment can be
viewed as giving an estimate of the probability of error - i.e., the probability that the refined
knowledge base (cassL'Icr) misdiagnoses a case [5]. Under this interpretation, the total
performance ratio obtained in the test run, e.g., the 93% figure in testing set 1, estimates the
probability of error to be .07. While this figure is certainly more conservative than the .02 estimate
that would be obtained by using the results of the training run as an estimate, it is only a
point-estimate. To obtain a more reliable estimate, one needs to average over the results of many
train-and-test experiments. Alternatively, a more accurate figure could also be obtained by
employing a leaving-one-out or jackknifing technique for error estimation [5]. Unfortunately, the
general application of these techniques in knowledge base refinement would appear to be

computationally prohibitive for large-scale problems.

However, additional train-and-test runs for the rheumatology knowledge base have been
performed and these results can be used to derive a more reliable estimate of the probability of

error. In all, 15 train-and-test runs were conducted. In 6 runs, the size of the training sample was
0% of the cases; 3 runs each with training sample sizes of 33%, 67%, and 75%, respectively, were

also conducted. The average performance increase observed in the test cases in these 15 runs was
21.2%. The average total performance over the test cases was 94.5%, which gives an estimate of
probability of error of .055. The lowest overall performance over a test set obtained in any of these
runs was 90% (this occurred in a run with training sample size 67%), which yields a .1 point
estimate of probability of error. The highest overall performance over a test set obtained in any of
these runs was 100% (this occurred in a run with training sample size 75%). The average number of
rule refinements to the knowledge base was 8.

As is shown in the sample session below (see Section 6), a recent implementation of SEEK2
allows the user to perform such Train-and-Test experiments.

24

Train and Test Experiment 1

Training Set 1 Testing Set 1

Start 42/62 (69%) 46/59 (78%)

Finish 61/62 (98%) 55/59 (93%)

Overall: 116/121 (96%)

Train and Test Experiment 2

Training Set 2 Testing Set 2

* Start 46/59 (78%) 42/62 (69%)

Finish 59/59 (100%) 59/62(95%)

Overall: 118/121 (98%)

Figure 5-3: Train and Test Experiment

0 s

25

6. A Sample Session

A sample session is abstracted below. Annotations are italicized; user inputs are boxed.

Enter knowledge bass name:

The following option allows the user to establish a confidence threshold, 9, to determine whether a case is to be
considered correctly diagnosed when a tie occurs. If the knowledge base reaches the correct conclusion as well as
an additional erroneous conclusion at confidence level ai ? 8, the case will be considered misdiagnosed. If a < 8
the case wil be considered correctly diagnosed.

Enter threshold below which ties are wins (1.1): 0.5

The user has the option of dividing the data base of cases into disjoint, randomly selected, training and testing
sets, and can specify the percentage to be used for training versus testing. In this example the training sample size
is 50%.

Would you like to set up training sample? * I

Enter percentage of cases to be In training sample (1 -99):

SEEK2 now prints out the PDX (expert's conclusion) and the CDXs (knowledge base's current conclusions) for
• each case. Mnemonics are used to reference specific conclusions. This output can be suppressed.

1. Pdx: MCTD Cdx: PSS (.4) SLE (.4) RA (.4)
2. Pdx: RA Cdx: RA (.9) SLE (.4)

* 121. Pdx: RA Cdx: RA(.7)

The system now prints the current performance breakdoum by endpoint for the training set, the test sets, and the
union of these sets.

0

26

TRAINING SAMPLE TEST CASES

True Positives False Positives True Positives False Positives
RA 21/21 (100%) 7 RA 21/21 (100%) 4
MCTD 4/16 (25%) 0 MCTD 5/17 (29%) 0
SLE 6/9 (67%) 1 SLE 6/9 (67%) 3
PSS 11/11 (100%) 3 PSS 11/12(92%) 1
PM 1/2(50%) 1 PM 2/3 (67%) 0
NONE 0/0 (0%) 4 NONE 0/0 (0%) 9

Total 43/59 (73%) 16 Total 45/62 (73%) 17

ALL CASES

True Positives False Positives
RA 42142 (100%) 11
MCTD 9/33 (27%) 0
SLE 12/18(67%) 4
PSS 22/23 (96%) 4
PM 3/5 (60%) 1
NONE 0/0 (0%) 13

Total 88/121 (73%) 33

Because perfomance on the MCTD cases is the weakest, SEEK2 chooses to refine rules for MCTD first. It lists

the relevant cases; a case number with an X after it indicates that this case is not part of the training sample.

GDX: MCTD

* Relevant cases for this DX:
1.X Pdx: MCTD CDX: PSS (.4) SLE (.4) RA (.4)
4.X Pdx: MCTD CDX: SLE (.4)

11. Pdx: MCTD CDX: PSS (.7) MCTD (.4) SLE (.4) RA (.4)
12. Pdx: MCTD CDX: RA (.4)

S

The system now evaluates its refinement concepts and heuristics with respect to the relevant cases and rules, and
posts the refinement experiments generated. It then attempts each experiment in order of decreasing probable
gain. In the following example, the system is on the first cycle of refinements; no experiments have been accepted.
MCTD is ranked as the top candidate for refinement.

Suggested Experiments:

Cycle: 1; GDX rank: 1; Number of GDX experiments: 1; Total experiments: I

1. In rule 3.7, decrease the choice number of component-1 from 3 to 2
Probable gain: 8

Rule 3.7

• Choose 3 or more of the following:

Hypothesis RAYES has confidence between .9 and 1
Finding SWOLH Is true
Finding SCLDY Is true
Finding DCO Is less than 70
Hypothesis MYOSS has confidence between .9 and 1

CONCLUDE Hypothesis MCTD with confidence .4

0

27

The system prints the result, on a case-by-case basis, of performing this experiment. The net gain of the
experiment over the training cases is also given.

1.X Pdx: MCTD CDX: MCTD (.4) PSS (.4) SLE (.4) RA (.4)
2. Pdx: RA CDX: RA (.9) SLE (.4)

121. Pdx: RA CDX: RA(.7)

Net gain for experiment: 5 cases.

After considering 13 experiments, SEEK2 determines that the first experiment is the best. The knowledge base is
modified, and the first cycle of experimentation is complete. With the newly modified knowledge base, a new cycle
of experimentation begins. SEEK2 prints the the following performance summary of the accepted experiment.

EXPERIMENT 1 ACCEPTED. CYCLE 1 completed.

TRAINING SAMPLE

BEFORE AFTER

True Positives False Positives True Positives False Positives
* RA 21/21 (100%) 7 21/21 (100%) 6

MCTD 4/16 (25%) 0 9/16 (56%) 0
SLE 6/9 (67%) 1 6/9 (67%) 1
PSS 11/11 (100%) 3 11/11 (100%) 1
PM 1/2 (50%) 1 1/2 (50%) 1
NONE 0/0 (0%) 4 0/0 (0%) 2

Total 43/59 (73%) 16 48/59 (81%) 11

The following squence of experiments illustrates the way in which SEEK2 attempts to find less radical
alternatives to certain classes of refinements, and it also illustrates the use of the logical structure of the
knowledge base to control the refinement process.

0

28

Cycle: 2; GDX rank: 3; Number of GDX experiments: 4; Total experiments: 26

4. In rule 4.11, delete component-3 referencing hypothesis RD203
Probable gain: 1

Rule 4.11

Choose 2 or more of the following:

Hypothesis NEPH has confIdence between .9 and I
Finding MALAR Is true
Hypothesis SEROS has confidence between .9 and 1
Hypothesis CNS has confidence between .9 and 1
Finding HEMAN Is true

AND

Choose 2 or more of the following:

Finding FEV Is true
Finding ARTH Is true
Finding GGLOB Is greater than 1.8
Hypothesis HCMP has confidence between .9 and 1
Finding PLAT Is less than 100

AND

H ypothesis RD203 has confidence between .9 and 1

AND

Hypothesis EXI SL has confidence between -1 and .05

CONCLUDE Hypothesis SLE with confidence .9

Net gain for experiment: 1 cases.

Since the comp nt considered for deletion has an associated confidence range, SEEK2 goes on to suggest
8eneralizing the range as an alternative to deletion. Because the component being considered for deletion is an
intermediate hypothesis, SEEK2 also rwil suggest ways of modifying the rules that conclude this intermediate
hypothesis as an alternative to modifying rule 4.11.

7. Justification of the Heuristics

While certain parts of the heuristics used in SEEK and SEEK2 are obviously reasonable, e.g., to
generalize a choice component one may decrease its choice number, the statistical comparisons

* used in these heuristics may require some explanation.

We can view the basic goal of heuristic refinement generation as being the generation of
refinements that maximize expected gains in performance with respect to a given set of
misdiagnosed cases M. Or we can view it as being tempered by the desire not to degrade

29

performance over the set, C, of cases currently diagnosed correctly; the goal is to generate

refinements that maximize expected gains over the misdiagnosed cases in M, but at the same time

minimize the expected losses over C. Let us call the first policy Max-Gain, and the second
Max Gain+MinLoss. SEEK and SEEK2 adopt the latter policy, and this is why all their heuristics

contain a clause that is intended to compare expected gain with expected loss.

To elaborate on this point, we need to define some terms. We say that a knowledge base has

made a True Positive (TP) judgment whenever (the expert system using) it reaches an endpoint that

was also reached by the expert; we say that it has made a False Positive (FP) judgment whenever it
reaches an endpoint that was not reached by the expert; we say that it has made a True Negative

(TN) judgment whenever it refrains from reaching an endpoint that the expert also did not reach;
and, finally, we say that the knowledge base has made a False Negative (TN) judgment whenever

it refrains from reaching an endpoint that the expert did reach.

The goal of the overall knowledge base refinement process is to minimize the number of FP and
FN judgements of the knowledge base, consistent with the constraints of conservatism.

(Minimizing FPs is equivalent to maximizing TNs and minimizing FNs is equivalent to

maximizing TPs.) Given this overall goal, a generalization refinement may be seen as an attempt

to contribute to it by increasing the number of TPs for an endpoint (equivalently, decreasing the
number of FNs for that endpoint). A specialization refinement is an attempt to contribute to the

overall goal by decreasing the number of FPs for an endpoint (equivalently, increasing the number of

TNs for that endpoint).

However, anytime a generalization is made there is a possibility that the refinement will lead to
an increase in the number of FPs for the endpoint in question as well, which is clearly at odds with

our goal. Anytime a specialization is made there is a possibility that the refinement will lead to an
* increase in the number of FNs (equivalently, a decrease in the number of TPs) for the endpoint in

question as well, which is also at odds with our goal.

The role of the refinement generator is to produce refinements that not only have the chance of

reducing the number of FPs and FNs over the misdiagnosed cases in M, but that also have the least
* chance of generating new FPs and FNs over other currently correctly diagnosed cases in C. We

now formulate two general criteria, for generalization and specialization refinements respectively,

that characterize this point of view.

Let ATP represent the total net change (over all cases and all endpoints) in TPs that will occur

due to a generalization refinement R; let AFP represent the total net change in FPs that will occur

due to Rg . Then the refinement R contributes to our overall goal if

ATP>0 and ATP > AFP (1).

Similarly, let ATN represent the total net change (over all cases and all endpoints) in TNs that
will occur due to a specialization refinement R.; let AFN represent the total net change in FNs that

will occur due to R. Then the refinement Rs contributes to our overall goal if:

30

ATN >0 and ATN > AFN (2).

An optimal heuristic for generating generalization refinements would be one that never

suggested a refinement that violates condition (1), and, an optimal heuristic for generating

specializations would never suggest a refinement that violates condition (2). It is doubtful that

there are any truly heuristic principles that are optimal in this sense. One has to settle for

something that is less than optimal, and computationally feasible as well.

This is where refinement concepts such as Gen, SpecA, and SpecB, come into the picture. These

functions have a twofold character: they can be used as indicators of problematic rule behavior, but

they can also be used as estimators of expected gains due to refinements. Thus Gen can be used as

an estimator of ATP for appropriate generalization refinement operations, and, intuitively, this

seems plausible. Therefore, if we can find a plausible estimator of AFP for generalization

refinements then we will be able construct heuristics for generating generalizations that use these

estimators as an app -ximation to condition (1). A seemingly good concept for this role would be

something like the following:
0

AntiGen(r) = the number of correctly diagnosed cases in which:
(a) r is not satisfied,
(b) if r had been satisfied the case would have been misdiagnosed, and
(c) r is the closest to being satisfied of all the rules for

which (a) and (b) are true.

The problem with AntiGen(r) is that from a computational point of view it is not consistent with

the general refinement strategy adopted in SEEK2. When attempting to refine rules involved in

reaching endpoint DX, SEEK2 gathers information concerning cases in which either DX is reached

• by the expert or DX is concluded by the knowledge base. It does not gather information from cases

in which DX does not figure as either the expert's or knowledge base's conclusion. Aside from the

fact that the former cases are clearly most relevant to the discovery of useful refinements for these

rules, there is also a computational rationale for this policy. On the average we expect that for any

endpoint there will be far fewer cases in which it is reached by the expert or knowledge base, than

* cases in which it is not reached by the expert or knowledge base, especially if there are several a

priori equally probable endpoints. To compute AntiGen(r) requires one to analyze every correctly

diagnosed case in the data base of cases having a stored expert conclusion that does not match the

conclusion of r (to see whether the satisfaction of r would lead to a new false positive). Thus

AntiGen(r) does not conform to the policy adopted in SEEK2.

SEEK2 uses the quantity [SpecA(r) + SpecB(r)1 as ar. estimator of AFP due to a generalization

refinement, and therefore the condition

Gertr) > [SpecA(r) * SpecB(r)]

that appears in some of SEEK2's generalization heuristics are approximations to condition (1).

0

31

Although in this context we are using [SpecA(r) + SpecB(r)] as an estimator of AFP, the main role of

this quantity is as an estimator of ATN due to a specialization refinement.11

A similar account of the role of the conditions used in SEEK2's specialization heuristics can be

given. For example the comparison:

SpecA(r) > Signif(r)

is used as an approximation to condition (2). In this case, SpecA(r) is an estimator of ATN due to a

specialization refinement, and Signif(r) is an estimator of AFN for the same refinement. These

correspondences are intuitively plausible, as the reader can verify by scanning the appropriate

definitions in Appendix A.

8. A Metalanguage for Knowledge Base Refinement

In this section we briefly describe some of the important primitives of a metalanguage designed

specifically for the refinement task [7,81. Using this metalanguage one can define general

knowledge engineering concepts and heuristics, such as Gen(rule), as well as domain-specific

metaknowledge in terms of a set of primitive concepts and operations.

8.1. General and Domain-Specific Metaknowledge in Knowledge Base Refinement

* Refinement concepts sucl as Gen, Mfmc, SpecA, and SpecB and the heuristics that employ them,

are examples of general metaknowledge, i.e., general knowledge about the conditions under which

rules should be considered for refinement. Other examples of general metaknowledge would

include concepts and strategies for extracting domain knowledge via interaction with an expert

[3, 101, as well as concepts needed to encode knowledge concerning the strategic role of rules

* within the overall classification or diagnostic process [2]. An example of domain-specific

metaknowledge [2, 181 is that certain rules in a knowledge base are definitional and should never be

modified. Such knowledge involves properties of a knowledge base that are not ascertainable by

means of a general a priori procedure.

* 8.2. Motivation for a Metalanguage

While SEEK2 is currently based on general metaknowledge, there are ways in which

domain-specific metaknowledge could be used in this system. For example, the knowledge that

certain rules in a knowledge base are definitely in their correct form could be used to prevent the

* system from gathering data and attempting refinement experiments for such rules. By specifying

refinement systems in a flexible metalinguistic fashion it may be possible to capture and

incorporate such knowledge in the refinement process as the need and opportunity arise.

* '"It is a measure of current false positives that might be corrected.

32

Another motivation for a metalanguage was alluded to in Section 4.2, where we mentioned that
SEEK's knowledge base of heuristics and statistics was inaccessible to the user of the system. The
ability to access and modify this knowledge base is quite desirable for designing and
experimenting with refinement concepts. For example, some of the current statistics for SEEK2
may not be as useful with respect to an expert system that employs a scoring scheme for
combining confidence factors. Useful variants of these statistics could be defined within the same
metalanguage that we have developed for SEEK2. A high-level framework for the specification of
refinement systems thus provides an environment for conducting research in knowledge base
refinement.

Finally, another motivation for a refinement metalanguage is the issue of customization. In
general, even within one expert system framework, different styles of knowledge bases are
possible; it is likely therefore that different styles of refinement will be needed. For example, some
knowledge bases employ a taxonomic ordering of hypotheses. Such an ordering provides
knowledge that could be used, together with appropriate control heuristics, to formulate a more
efficient version of SEEK2's automatic refinement algorithm. A knowledge base refinement
metalanguage allows for the representation of such control heuristics (see Figure 5-2). Indeed, the
experimental metalanguage that is being developed allows a user to specify different control
strategies from the hill-climbing strategy employed in SEEK2. Several alternative control strategies
are mentioned briefly in Section 9.

8.3. Some Metalinguistic Primitives

SEEK2's statistical concepts can be specified in a set-theoretic metalanguage that employs only a
small number of refinement primitives together with some appropriate notions from simple set
theory, arithmetic, and logic. Using these primitives it is possible to experiment with variations on
SEEK2's statistics and define domain specific statistics as well.

A set-theoretic definition of concepts such as Gen(rule) (see Section 3.2) requires refinement
primitives of the following sorts. Some primitive variables are needed to provide the system or a
user with the ability to access various objects in the domain knowledge base and the data base of

* cases. For example, rule is a variable whose range is the set of rules in the domain knowledge base,
case is a variable whose range is the set of cases in the data base of cases, and dx is a variable whose
range is the set of possible final diagnostic conclusions in the knowledge base. In addition some
primitive functions are needed to allow one to refer to selected parts or aspects of a rule or a case,
e.g., RuleCF(rule) is a function whose value is the confidence factor associated with rule, PDX(case)

* is a function whose value is the expert's conclusion in case,12 and CDX(case) is a function whose
value is the conclusion reached for the current knowledge base in case. As an example of the way
in which these primitives can be used, note that using the notions of PDX(case) and CDX(case) one
may definf a misdiagnosed case as any case for which PDX(case) * CDX(case).

* 12PDX stands for Physician's Diagnosis and CDX stands for Computer's Diagnosis.

33

Certain special sets of objects are of importance in the knowledge base refinement process, and it
is therefore useful to have primitives that refer to them, e.g., Rules-For(dx) is a function whose
value is the set of rules that have dx as their conclusion. Finally various primitives that in some
way involve semantic properties of rules, or the performance characteristics of the knowledge base

as a whole are useful, e.g., Satisfied(kb-item, case) is a predicate that is true iff kb-item is satisfied by
the findings in case, and false otherwise, where kb-item can be a identifier for a rule, a rule

component or subcomponent; ModelCF(dx, case) is a function whose value is the system's

confidence factor accorded to dx in case.

The current heuristic rules in Appendix A can be described in this metalanguage. For further

details on the metalanguage see [7, 81.

9. Discussion

SEEK2 currently has ten statistical concepts and nine heuristics for generating refinements.

Working in automatic mode on a rheumatology knowledge base of approximately 140 rules with 5

final diagnostic categories, and using a data base of 121 cases, SEEK2 was able to increase the

overall performance of the system from a value of 73% (88/121) to a value of 100% (121/121). It

used approximately 32 minutes of Vax-785 cpu time. The total number of experiments tried was

199, out of which 10 were accepted.

* In evaluating the usefulness of SEEK2's automatic refinement capability it is important to keep
in mind that the expert is still the final judge. Despite the assured gain in performance with

respect to the given data base of cases, and the reasonable expectation of performance enhancement

with respect to new cases, the expert may agree with only a subset of the total number of

refinements suggested by SEEK2 13 . The measure of SEEK2's usefulness is not, however, simply

• how many of its experiments the expert accepts; even rejected experiments have value: they point

out areas of the knowledge base that need to be examined if enhanced performance is to be

achieved.

While we believe that we have demonstrated useful empirical refinement capabilities for expert

* classification systems, we recognize that this approach is not complete and that there am numerous

avenues for further research. We briefly mention several areas where further work is warranted:

*generalization of problem-types covered by refinement. The current SEEK2 world is
limited to production rules and classification systems.

* development of an extended knowledge base metalanguage. A prototype system has

T3"he incorporation of domain-specific metaknowledge in SEEK2 might enable the system itself to sometimes reject a
refinement that in some way violates the expert's understandLing of the domain, even though it may improve performance.

34

been developed [71 in which the current heuristics can be specified. With an
appropriate description, the efficacy of the heuristics would be subject to
experimentation. This would provide a means to evaluate the performance of heuristics
and statistical assessment measures, and allow for comparative study of alternative
policies regarding the conservatism vs. optimization trade-off. The language would
also allow for the representation of domain-specific and alternative sources of
knowledge.

* incorporation of domain-specific heuristics. This could include relatively simple forms
of knowledge about rule sets that should never be modified, classes of cases that should
never be misdiagnosed, or findings and rule components that should be modified first.
More complicated knowledge about domain principles, such as cause and effect
knowledge, could be used to verify knowledge base consistency.

* experimentation with the larger knowledge bases. While SEEK2 performs well on the
cited knowledge base, many typical expert systems have much larger dimensions. 14

* exploitation of parallelism in certain refinement operations. Larger knowledge base
* dimension significantly increase cpu-times. 15 This time may be cut dramatically by a

parallel algorithm, for example each GDX could be pursued in parallel.

* elucidation of alternative strategies for validation and refinement. There are many
alternative strategies that may be employed. These vary from strategies that consider
ties, multiple conclusions, disagreement among experts. More complex search

* strategies may be specified that pursue multiple refinement paths. For example, when
two refinements yield approximately the same improvement, we might want to
postpone selecting just one until further derived refinements are pursued.

" inclusion of automatic learning heuristics. Some forms of learning can be viewed as an
extension of refinement. Although SEEK2 has several specialization heuristics, SEEK2

* never adds a component to a rule. Domain knowledge or empirical analysis could
prove helpful in allowing for these types of rule modifications.

Validity and consistency are important goals in developing expert systems. Yet the design of

these systems is often lacking in a coherent formal approach for achieving these goals. The

* approach to knowledge base refinement described here can lead to a more solid foundation for
designing and validating expert classification system knowledge bases.

14A more recent version of the rheumatology knowledge base has 26 diagnoses, 400 intermediate hypotheses, 880
observations, and over 1000 rules.

'MThe more recent rheumatology knowledge base should take 2-3 days of cpu time for a 300 case data base.

S

35

Appendix A
SEEK2's Refinement Concepts and Heuristics

A.1. Refinement Concepts

Signif(rule) the number of cases in which PDX=CDX and this rule is the only rule that
concludes CDX with confidence > the model's confidence in the 2nd highest
ranked conclusion. The set of cases counted by Signif(rule) is denoted by
Signif-Cases(rule).

Signif-level(rule,x)
the number of the Signif-Cases(rule) cases with the property that the 2nd highest
confidence in the case is greater than x.

Gen(rule) the number of cases in which PDX * CDX and this rule would correct the case if
it had fired, and this rule is the closest to being satisfied of all rules that would
correct the case. The set of cases counted by Gen(rule) is denoted by
Gen-Cases(rule).

SpecA(rule) the number of cases in which PDX * CDX and if this rule had not fired the case
would have been correct. The set of cases counted by SpecA(rule) is denoted by
SpecA-Cases(rule).

SpecB(rule) the number of cases in which PDX * CDX and this rule is a member of a set of
two or more rules concluding CDX such that if all the members of this set had
failed to fire the case would have been correct. The set of cases counted by
SpecB(rule) is denoted by SpecB-Cases(rule).

Mfmc(rule) the most frequently missing (i.e., unsatisfied) component of this rule, relative to
a set of cases in which the rule is unsatisfied, usually those cases in which this
rule has been chosen as the candidate for generalization.

GenCF(rule) the number of cases in which PDX * CDX and this rule concludes PDX and is
satisfied and has confidence closest to the model's confidence in CDX of all the
rules satisfied for PDX. The set of cases counted by GenCF(rule) is denoted by
GenCF-Cases(rule).

Mean-Cdx-CF[GenCF-Cases(rule)]
the mean value of the knowledge base's confidence in CDX in the cases denoted
by GenCF-Cases(rule).

Mean-Pdx-CF[SpecA-Cases(rule) u SpecB-Cases(rule)]
the mean value of the model's confidence in PDX in the cases denoted by
(SpecA-Cases(rule) u SpecB-Cases(rule)).

36

A.2. Generalization Heuristics

i:. Gen(rule) > [SpecA(rule) + SpecB(rule)l &
Mfmc(rule) is equal to choice component C

Then: Decrease the choice-number of C in rule.

If: Gen(rule) > (SpecA(rule) + SpecB(rule)l &
Mfmc(rule) is some NON-CHOICE component C

Then: Delete this NON-CHOICE component in rule.

i:. GenCF(rule) > [SpecA(rule) + SpecB(rule)]

Then: Raise the confidence level of the rule to
Mean-CDX-CF(GenCF-Cases(rule)) + .5 * (Standard-Deviation).

40
If: the NON-CHOICE component that has been suggested

to be deleted from the rule ri is an INTERMEDIATE-HYPOTHESIS &
r2 is a rule that concludes the INTERMEDIATE-HYPOTHESIS
(at the indicated confidence range) &
r2 is closest to being satisfied in a plurality of the cases
in which rl was chosen to be generalized

Then: Identify the most frequently missing component of r2 relative
to the cases in which rl was chosen to be generalized;
if it is a CHOICE, lower the choice-number;
if it is a NON-CHOICE, delete it, or change its range if possible,
if it is an INTERMEDIATE HYPOTHESIS, apply this heuristic again.

i:. the NON-CHOICE component that has been suggested to be
deleted from rule ri is an INTERMEDIATE-HYPOTHESIS H
with associated confidence range (L:U) &
the majority of Gen-Cases(rl) in which H's confidence is not
in the range (LU) are ones in which H's confidence factor is below L

Then: lower the value of L in the range (L:U) in rl to
Mean-Value(confidence of H, (case I case is in Gen-Cases(rl) &
the confidence for H in case is less than L).

37

If: the NON-CHOICE component that has been suggested to be
deleted from rule rl is an INTERMEDIATE-HYPOTHESIS H with
associated confidence range (L:U) &
the majority of Gen-Cases(rl) in which H's confidence is not
in the range (L:U) are ones in which H's confidence factor is above U

Then: raise the value of U in the range (L:U) in rl to
Mean-Value(confidence of H, (case I case is in Gen-Cases(rl) &
the confidence for H in greater than L)).

If: the NON-CHOICE component that has been suggested to be
deleted from rule rl is an NUMERICAL-FINDING F with
associated value range (L:U) &
the majority of Gen-Cases(rl) in which Fs value is not
in the range (L:U) are ones in which F's value is below L

Then: lower the value of L in the range (L:U) in rl to
Mean-Value(value of F, (case I case is in Gen-Cases(rl) &
the value of F in case is less than L).

if. the NON-CHOICE component that has been suggested to be
deleted from rule rl is a NUMERICAL-FINDING F with
associated value range (L:U) &
the majority of Gen-Cases(rl) in which F's value is not
in the range (L:U) are ones in which F's value is above U

Then: raise the value of U in the range (L:U) in rl to
Mean-Value(value of F, (case I case is in Gen-Cases(rl) &
the value of F in case is greater than L)).

0

38

A.3. Specialization Heuristics

If:. SpecA(rule) > Signif(rule) &
there is a CHOICE in rule

Then: Increase the choice-number of CHOICE in rule.

If: [SpecA(rule) + SpecB(rule)] >
Signif-level(rule,Mean-Pdx-CF(SpecA-Cases(rule) u SpecB-Cases(rule)))

Then: lower the confidence level of the rule to
Mean-Pdx-CF(SpecA-Cases(rule) u SpecB-Cases(rule)) - .5 * (Standard-Deviation).

If:. SpecA(rule) > Signif(rule) > 0

Then: For every component C in rule with associated range (L:H) do the
following:

* calculate:
L' = Mean-value(C,Signif-Cases(rule)) - 2 * (Standard-deviation)
H' = Mean-value(C,Signif-Cases(rule)) + 2 * (Standard-deviation)

if L'>L, raise L to L'; if H'<H, lower H to H'.

00.

0

39

References

[11 Clancey, W.
Heuristic Classification.
Artificial Intelligence 27:289-350, 1985.

[21 Clancy, W.
The Epistemolgy of a Rule-Based Expert System: A Framework for Explanation.
Artificial Intelligence 20(3):215-251, 1983.

[31 Davis, R.
Interactive Transfer of Expertise: Acquisition of New Inference Rules.
Artificial Intelligence 12:121-157, 1979.

[4] Doyle, R.
Constructing and Refining Causal Explanations from An Inconsistent Domain Theory.
In Proceedings of the Fifth Annual National Conference on Artificial Intelligence, pages 538-544.

Philadelphia, Pa., 1986.

[51 Duda, R., and Hart, P.
Pattern Classification and Scene Analysis.
Wiley, New York, 1973.

[61 Eshelman, L. and McDermott, J.
MOLE: A Knowledge Acquisition Tool That Uses Its Head.
In Proceedings of the Fifth Annual National Conference on Artificial Intelligence, pages 950-955.

Philadelphia, Pa., 1986.

[71 Ginsberg, A.
Refinement of Expert System Knowledge Bases: A Metalinguistic Framework for Heuristic Analysis.
PhD thesis, Department of Computer Science, Rutgers University, 19%.

[81 Ginsberg, A.
A Metalinguistic Approach to the Construction of Knowledge Base Refinement Systems.
In Proceedings of the Fifth Annual National Conference on Artificial Intelligence. Philadelphia,Pa.,

1986.

[9] Hall, R.
Learning By Failing to Explain.
In Proceedings of the Fifth Annual National Conference on Artificial Intelligence, pages 568-572.

Philadelphia, Pa., 1986.

[101 Kahn, G., Nowlan, S., Mcdermott, J.
MORE: An Intelligent Knowledge Acquisition Tool.
In Proceedings of the Ninth International Joint Conference on Artificial Intelligence, pages 581-584.

Los Angeles, CA, 1985.

[11] Lee, W. and Ray, S.
Rule Refinement Using the Probabilistic Rule Generator.
In Proceedings of the Fifth Annual National Conference on Artificial Intelligence, pages 442-447.

Philadelphia, Pa., 1986.

0 |II

40

[121 Michalski, Carbonell, Mitchell (editors).
Machine Learning.
Tioga Publishing Company, Palo Alto, 1983.

[131 Michalski, R., Mozetic, I., Hong, J., and Lavrac, N.
The Multi-purpose Incremental Learning System AQ15 and its Testing Application to Three

Medical Domains.
* In Proceedings of the Fifth Annual National Conference on Artificial Intelligence, pages 1041-1045.

Philadelphia, Pa., 1986.

[141 Mitchell, T.
Generalization as Search.
Artificial Intelligence 18:203-226, 1982.

* [151 Mitchell, T., Keller, R., Kedar-Cabelli, S.
Explanation-Based Generalization: A Unifying View.
Machine Learning 1:47-80, 1986.

[161 Politakis, P.
Using Empirical Analysis to Refine Expert System Knowledge Bases.

0 PhD thesis, Department of Computer Science, Rutgers University, 1982.

[171 Politals, P. and Weiss, S.
Using Empirical Analysis to Refine Expert System Knowledge Bases.
Artificial Intelligence 22:23-48, 1984.

[181 Smith, R., Winston, H., Mitchell, T., and Buchanan, B.
* •Representation and Use of Explicit Justification for Knowledge Base Refinement.

In Proceedings of the Ninth International Joint Conference on Artificial Intelligence, pages 673-680.
Los Angeles, California, 1985.

[191 Waters, R.
KBEmacs: A Step Toward the Programmer's Apprentice.
IEEE Transactions on Software Engineering 11:1296-1320, 1985.

[201 Weiss, S. and Kulikowski, C.
A Practical Guide to Designing Expert Systems.
Rowman and Allanheld, Totowa, New Jersey, 1984.

[211 Wilkins, D. and Buchanan, B.
* On Debugging Rule Sets When Reasoning Under Uncertainty.

In Proceedings of the Fifth Annual National Conference on Artificial Intelligence, pages 448-454.
Philadelphia, Pa., 1986.

0

0

S

41

An Empirical Comparison of Pattern Recognition,
Neural Nets, and Machine Learning Classification Methods

* Sholom M. Weiss and Ioannis Kapouleas
Department of Computer Science, Rutgers University, New Brunswick, NJ 08903

Abstract
Classification methods from statistical pattern recognition, neural nets, and machine learning
were applied to four real-world data sets. Each of these data sets has been previously
analyzed and reported in the statistical, medical, or machine learning literature. The data sets
are characterized by statistical uncertainty; there is no completely accurate solution to these

0 problems. Training and testing or resampling techniques are used to estimate the true error
rates of the classification methods. Detailed attention is given to the analysis of performance
of the neural nets using back propagation. For these problems, which have relatively few
hypotheses and features, the machine learning procedures for rule induction or tree induction
dearly performed best.

1 Introduction
Many decision-making problems fall into the general category of classification [Clancey,
1985, Weiss and Kulikowski, 1984, James, 1985]. Diagnostic decision making is a typical example.
Empirical learning techniques for classification span roughly two categories: statistical pattern
recognition [Duda and Hart, 1973, Fukunaga, 19721 (including neural nets [McClelland and

• Rumehart, 19881) and machine learning techniques for induction of decision trees or production
rules. While a method from either category is usually applicable to the same problem, the two

categories of procedures can differ radically in their underlying models and the final format of
their solution. Both approaches to (supervised) learning can be used to classify a sample pattern

(example) into a specific class. However, a rule-based or decision tree approach offers a
0 modularized, clearly explained format for a decision, and is compatible with a human's reasoning

procedures and expert system knowledge bases.

Statistical pattern recognition is a relatively mature field. Pattern recognition methods have
been studied for many years, and the theory is highly developed [Duda and Hart, 1973, Fukunaga,
1972). In recent years, there has been a surge in interest in newer models of classification,

• specifically methods from machine learning and neural nets.

Methods of induction of decision trees from empirical data have been studied by researchers in

both artificial intelligence and statistics. Quinlan's ID3 [Quinlan, 1986] and C4 [Quinlan,
1987a1 procedures for induction of decision trees are well known in the machine learning

0

42

community. The Classification and Regression Trees (CART) [Breiman, Friedman, Olshen, and
Stone, 19841 procedure is a major nonparametric classification technique that was developed by
statisticians during the same period as ID3. Production rules are related to decision trees; each path

in a decision tree can be considered a distinct production rule. Unlike decision trees, a disjunctive

set of production rules need not be mutually exclusive. Among the principal techniques of
induction of production rules from empirical data are Michalski's AQ15 system [Michalski,

Mozetic, Hong, and Lavrac, 19861 and recent work by Quinlan in deriving production rules from a

collection of decision trees [Quinlan, 1987b].

Neural net research activity has increased dramatically following many reports of successful
classification using hidden units and the back propagation learning technique. This is an area

where researchers are still exploring learning methods, and the theory is evolving.

Researchers from all these fields have all explored similar problems using different classification
models. Occasionally, some classical discriminant methods are cited in comparison with results for

a newer technique such as a comparison of neural nets with nearest neighbor techniques. In this

paper, we report on results of an extensive comparison of classification methods on the same data

sets. Because of the recent heightened interest in neural nets, and in particular the back
propagation method, we present a more detailed analysis of the performance of this method. We
selected problems that are typical of many applications that deal with uncertainty, for example
medical applications. In such problems, such as determining who will survive cancer, there is no

completely accurate answer. In addition, we may have a relatively small data set. An analysis of

each of the data sets that we examined has been previously published in the literature.

2 Methods
We are given a data set consisting of patterns of features and correct classifications. This data set is

assumed to be a random sample from some larger population, and the task is to classify new

patterns correctly. The performance of each method is measured by its error rate. If unlimited

cases for training and testing are available, the error rate can readily be obtained as the error rate
on the test cases. Because we have far fewer cases, we must use resampling techniques for

estimating error rates. These are described in the next section. 1

2.1. Estimating Error Rates

It is well known that the apparent error rate of a classifier on all the training cases 2 can lead to
highly misleading and usually over-optimistic estimates of performance [Duda and Hart, 1973].

'While there has been much recent interest in the "probably approximately correct" (PAC) theoretical analysis for both
rule induction [Valiant, 1985, Haussler, 19881 and neural nets (Baum and Haussler, 19891, the PAC analysis is a worst case
analysis to guarantee for a/l possible distributlons that results on a training set are correct to within a small margin of error.
For a real problem, one is given a sample from a single distribution, and the task is to estimate the true error rate. This type
of analysis requires far fewer casm, because only a single albeit unknown distribution is considered and independent cases
are used for testing.

2This is sometimes referred to as the resubstituton or reclassification error rate.

43

This is due to overspecialization of the classifier to the data.3

Techniques for estimating error rates have been widely studied in the statistics [Efron, 19821 and

pattern recognition [Duda and Hart, 1973, Fukunaga, 1972] literature. The simplest technique for

"honestly" estimating error rates, the holdout or H method, is a single train and test experiment.

The sample cases are broken into two groups of cases: a training group and a test group. The

classifier is independently derived from the training cases, and the error estimate is the

performance of the classifier on the test cases. A single random partition of train and test cases can

be somewhat misleading. The estimated size of the test sample needed for a 95% confidence

interval is described in [Highleyman, 19621. With 1000 independent test cases, one can be virtually

certain that the error rate on the test cases is very close to the true error rate.

Instead of relying on a single train and test experiment, multiple random test and train

experiments can be performed. For each random train and test partition, a new classifier is derived.
The estimated error rate is the average of the error rates for classifiers derived for the independently

and randomly generated partitions. Random resampling can produce better error estimates than a
single train and test partition.

A special case of resampling is known as leaving-one-out [Fukunaga, 1972, Efron, 1982].

Leaving-One-Out is an elegant and straightforward technique for estimating classifier error rates.
Because .t is computationally expensive, it is often reserved for relatively small samples. For a

* given method and sample size n, a classifier is generated using n-1 cases and tested on the

remaining case. This is repeated n times, each time designing a classifier by leaving-one-out. Each

case is used as a test case and, each time nearly all the cases are used to design a classifier. The

error rate is the number of errors on the single test cases divided by n.

* Evidence for the superiority of the leaving-one-out approach is well-documented [Lachenbruch

and Mickey, 1968, Efron, 1982]. While leaving-one-out is a preferred technique, with large samples
it may be computationally expensive. However as the sample size grows, traditional train and test

methods improve their accuracy in estimating error [Kanal and Chandrasekaran, 19711.

• The leaving-one-out error technique is a special case of the general class of cross validation error

estimation methods [Stone, 1974]. In k-fold cross validation, the cases are randomly divided into k

mutually exclusive test partitions of approximately equal size. The cases not found in each test

partition are independently used for training, and the resulting classifier is tested on the

corresponding test partition. The average error rates over all k partitions is the cross-validated

*• error rate. The CART procedure was extensively tested with varying numbers of partitions and
10-fold cross validation seemed to be adequate and accurate, particularly for large samples where

31n the extreme, a classifier can be constructed that simply consists of all patterns in the given sample. Assuming
• identical patterns do not belong to different classes, this yields perfect classification on the sample cases.

0

44

leaving-one-out is computationally expensive [Breiman, Friedman, Olshen, and Stone, 1984] 4 For
small samples, bootstrapping, a method for resampling with replacement, has shown much
promise as a low variance estimator for classifiers [Efron, 1983, Jain, Dubes, and Chen,
1987, Crawford, 19891. This is an area of active research in applied statistics.

Figure I compares the techniques of error estimation for a sample of n cases. The estimated error
rate is the average of the error rates over the number of iterations. While these error estimation
techniques were known and published in the 1960s and early 1970s, the increase in computational
speeds of computers, makes them much more viable today for larger samples and more complex
classification techniques [Steen, 19881.

Holdout Random Subeampling

Trainingcases j j

Testing cases n-j n-j

Iterations I B<<n

Leaving-One-Out 10-fold C'V

Training cases n-I 90%

Testing cases 1 10%

Iterations n 10

Figure 1: Comparison of Techniques for Estimating Error Rates

Besides improved error estimates, there are a number of significant advantages to resampling.
The goal of separating a sample of cases into a training set and testing set is to help design a

* classifier with a minimum error rate. With a single train and test partition, too few cases in the
training group can lead to the design of a poor classifier, while too few test cases can lead to
erroneous error estimates. Leaving-One-Out, and to a lesser extent random resampling, allow for
accurate estimates of error rates while training on most cases. For purposes of comparison of
classifiers and methods, resampling provides an added advantage. Using the same data,
researchers can readily duplicate analysis conditions and compare published error estimates with
new results. Using only a single random train and test partition introduces the possibility of
variability of partitions to explain the divergence from a published result.

0

4Empirical results also support the stratification of case in the train and test sets to approximate the percentage
(prevalence) of each class in the overall sample.

45

2.2. Classification Methods
In this section, the specific classification methods used in the comparison will be described. We do
not review the methods or their mathematics, but rather state the conditions under which they
were applied. References to all methods are readily availab!e. Our goal is to apply each of these
methods to the same data sets and report the results.
2.2.1. Statistical Pattern Recognition
Several classical pattern recognition methods were used. Figure 2 lists these methods. These

methods are well-known and will not be discussed in detail. The reader is referred to [Duda and
Hart, 19731 for further details. Instead, we give the specific variation of the method that we used.

Linear discriminant

Quadratic discriminant

Nearest Neighbor

Bayes independence

Bayes second order

Figure 2: Statistical Pattern Recognition Methods

The linear and quadratic discriminants are the standard multivariate normal discriminants. The
linear discriminant simplifies the normality assumption to equal covariance matrices. This is
probably the most commonly used form of discriminant analysis; we used the canned SAS and
IMSL programs. A recent report has demonstrated improved results in game playing evaluation
functions using the quadratic classifier [Lee, 1988].

We used the nearest neighbor method (k=l) with the Euclidean distance metric. This is one of
the simplest methods conceptually, and is commonly cited as a basis of comparison with other
methods. It is often used in case-based reasoning [Waltz, 19861.

Bayes rule is the optimal presentation of minimum error classification. All classification
methods can be viewed as approximations to Bayes optimal classifiers. Because the Bayes optimal
classifier requires complete probability data for all dependencies in its invocation, for real
problems this would be impossible. As with other methods, simplifying assumptions are made.
The usual simplification is to assume conditional independence of observations. While one can
point to dozens of classifiers that have been built (particularly in medical applications [Szolovits
and Pauker, 19781) using Bayes rule with independence, such approaches have also been recently
reported in the AI literature (although in the context of unsupervised learning) [Cheeseman, 1988].
Although independence is commonly assumed, there are mathematical expansions to incorporate
higher order correlations among the observations. In our experiments, we tried both Bayes with
independence and Bayes with the second order Bahadur expansion.5

5Continuous variables were broken into 10 (binary) intervals with width of half a standard deviation from the mean.

S

46

2.2.2. Neural Nets
A fully connected neural net with a single hidden layer was considered. The back propagation

procedure [McClelland and Rumelhart, 19881 was employed and the general outline of the data
analysis describei in [Gorman and Sejnowski, 19881 was followed. The specific implementation

used was [McClelland and RumeLhart, 19881.6 In most experiments a learning rate of 1 and a

momentum of 0 was used.7 Patterns were presented randomly to the learning system.8 .

The analysis model of [Gorman and Sejnowski, 19881 corresponds to a 10-fold cross validation.

Unlike the other methods examined in this study, back propagation usually commences with the

network weights in a random state. Thus, even with sequential presentation of cases, the weights
for one learned network are unlikely to match the same network that starts in a different random
state. There is also the possibility of the procedure reaching a local maximum. In this analysis

model, for each train and test experiment, the weights are learned 10 times, and test results
averaged over all 10 experiments. Therefore, 10 times the usual number of training trials must be

considered. For a 10-fold cross-validation, 100 learning experiments are made.

For each data set, these experiments were repeated for networks having 0,2,3,6,9,12, or 24 hidden
units (in a single layer). This is equivalent to using resampling to estimate the appropriate number
of hidden units. Because the data sets may not be separable with these numbers of hidden units,
we took the following measures to determine a sufficient amount of computation time. Before

doing the train and test experiments, the nets were trained several times on all samples for all size
hidden units. We determined a number of epochs, i.e. complete presentations of the data set, that
was sufficient to result in each increment of additional hidden units fitting the cases better than the
lesser number of hidden units. In addition, for one problem where the data set was extremely

large, we sampled the results every 500 epochs, and computed whether the average total squared

error continued to be reduced. This indicated whether progress was being made.

One output unit was used for each class. The hypothesis with the highest weight was selected as
the conclusion of the classifier, and the error rate was computed.

This is the general outline of the procedures followed. In Section 3, we describe the variations on

this theme that were necessary for the specific data set analyses.

For computational reasons, in some instances it was necessary to reduce the number of repeated

trials to be averaged. For back propagation, we described a computational procedure that

performed 10 train and test experiments for each one that would be necessary for other methods.

'The program was readily ported to a Sun 4.
7These two parameters were changed from the program defaults because it was observed that the program converged

towards a solution much faster, and no problems were encountered with local maximums.
8For the studied data sets, sequential presentation tended to lead rather quickly to a local maximum.

47

However, the data sets described in Section 3 are not readily separable. Thus, the computation
demands are quite large. We estimate that 6 months of Sun 4/280 cpu time were expended to
compute the neural nets results in Section 3.
1.2.3. Macdine LU.,rdng Mthods
In this category, we place methods that produce logistic solutions. As indicated earlier these
methods have been explored by both the machine learning and statistics community. These are
methods that produce solutions posed as production rules or decision trees. Conjunction or
disjunction may be used as well as logical comparison operators on continuous variables such as

greater than or less than.

Predictive Value Maximization [Weiss, Galen, and Tadepalli, 1987] was tried on all data sets.
This is a heuristic search procedure that attempts to find the best single rule in disjunctive normal
form. It can be viewed as a heuristic approximation to exhaustive search. It is applicable to
problems where a relatively short rule provides a good solution. For such problems, it should have
an advantage in that many combinations are considered, in contrast to current decision tree
procedures that split nodes without considering combinations. For more complex problems, a
decision tree procedure is preferable. The appropriate rule length or tree size is determined by
resampling.

In addition, for two of the smaller data sets, an exhaustive search was performed for the optimal
rule of length 2 in disjunctive normal form. For the other 2 data sets, the published decision tree
results are available for methods using variations of I3 and its successor C4.

3 Results
In this section, we review the results of the various classification methods on four data sets. All of
the data sets have been published, and in most instances we attempted to perform the analyses in a
manner consistent with previously known results.

3.1. Iris Data
The iris data was used by Fisher in his derivation of the linear discriminant function [Fisher, 19361,
and it still is the standard discriminant analysis example used in most current statistical routines
such as SAS or IMSL. Linear or quadratic discriminants under assumptions of normality perform
extremely well on this data set. Three classes of iris are discriminated using 4 continuous features.
The data set consists of 150 cases, 50 for each class. Figure 3 summarizes the results. The first error
rate is the apparent error rate on all cases; the second error rate is the leaving-out-one error rate.
Leaving-one-out results have been previously widely disseminated for several of the statistical
pattern recognition methods.

The rule-based solution has 2 rules with a total of 3 variables.9 For the neural nets, the apparent
error rate is the average of five trials. The leaving-one-out result is the average of 5 complete
leaving-one-out trials. The nets were trained for 1000 epochs. The best neural net in terms of

9T"e optimal rule is also induced by PVM during cros-validation.

48

Method ErrApp Errc,

Linear .020 .020

QartC.0=. .027

Nearest neighbor .000 .040

Bayes independence .047 .067

Bayes 2rnd order .040 .160

Neural net (BP) .017 .033

PVM rule .027 .040

Optimal rule size 2 .020 .020

CART tree .040 .047

Figure 3: Comparative Performance on Fisher's Iris Data

cross-validated error occurs at 3 hidden units, and is the one listed in Figure 3. The relationship
between the number of hidden units and the error rates is listed in Figure 4.

0.05
0

0.04 -N

0.03

Error Rate

0.02

0.01

0 _
0 2 3 6

Number of Hidden Unim

Figure 4: Neural Net Error Rates for Iris Data

3.2. Appendicitis Data
This data set is from a published study on the assessment of 8 laboratory tests to confirm the
diagnosis of appendicitis [Marchand, Van Lente, and Galen, 19831.10 Following surgery, only 85 of
106 patients were confirmed by biopsy to have had appendicitis. Thus, the ability to discriminate
the true appendicitis patients by lab tests prior to surgery would prove extremely valuable.

- °These are patients admitted to an emergency room with a tentative diagnosis of acute appendicitis.

49

The samples consist of 106 patients and 8 diagnostic tests. Because one test had some missing

values, for purposes of comparison, we excluded results from that test. Figure 5 summarizes the

results. The first error rate is the apparent error rate on all cases; the second error rate is the

lea ving-out-one error rate

Method ErrApp Error

Linear .113 .132

Quadratic .217 .264

Nearest neighbor .000 .179

Bayes independence .113 .170

Bayes 2nd order .047 .189

Neural net (BP) .098 .142

PVM rule .085 .104

Optimal rule size 2 .085 .104

CART tree .094 .151

Figure 5: Comparative Performance on Appendicitis Data

o"Mm
0.181 10
0.16

0.14

01
Erro

u Rae 0N
of..

0.08

00

0 2 3 6 9 12
Numbef of Hidden~ Units

Figure 6: Neural Net Error Rates for Appendiciti-t Data

The rule-based solution has 1 rule with a total of 2 variables. For the neural nets, the apparent
error rate is the average of five trials. The leaving-one-out result is for a single leaving-one-out
trial.11 The nets were trained for 15000 epochs. The best neural net in terms of cross-validated

"The results for the average of 5 complete leaving-oneout trials is available for 1000 epochs. These show poorer
performance, but 100 epochs were not sufficient for training the larger number of hidden units.

50

error occurs at 0 hidden units, and is the one listed in Figure 5. The relationship between the
number of hidden units and the error rates is listed in Figure 6.

3.3. Cancer Data
A data qet for eva!ukting th.- Frognosis of breast cancer recurrence was analyzed by Michalski's
AQ15 rule induction program and reported in [Michalski, Mozetic, Hong, and Lavrac, 1986]. They

reported a 64% accuracy rate for expert physicians, and a 68% rate for AQ15, and a 72% rate for the
pruned tree procedure of ASSISTANT [Kononenko, Bratko, and Roskar, 1986], a descendant of
ID3. 12 The authors derived the error rates by randomly resampling 4 times using a 70% train and a

30% test partition.

The samples consist of 286 samples, 9 tests, and 2 classes. We created 4 randomly sampled data
sets with 70% train and a 30% test partitions; each method was tried on each of the four data sets
and the results averaged. Thus, the experimental results are consistent with the original study.
Figure 7 summarizes the results. The first error rate is the apparent error rate on the training cases;
the second error rate is the error rate on the test cases.

Method ETraia ErrTa

Linear .254 .294

Quadratic .245 .344

Nearest neighbor .000 .347

Bayes independence .241 .282

Bayes 2nd order .091 .344

Neural net (BP) .243 .285

PVM rule .226 .229

ASSISTANT tree - .280

CART tree .226 .229

Figure 7: Comparative Performance on Cancer Data

The rule-based solution has 1 rule with a total of 2 variables. 13 For the neural nets, the apparent

error rate is the average of ten training trials. Each testing result is the corresponding average
testing result of the same 10 complete trials. 14 The nets were trained for 2000 epochs. The best
neural net in terms of cross-validated error occurs at 0 hidden units, and is the one listed in Figure
7. The relationship between the number of hidden units and the error rates is listed in Figure 8.

!2The prevalence of the larger class is 70%.

:i3he same rule was induced on all four 70% training sets.

"Also considered was the best of the 10 training results and its corresponding test result. These results are within I% of
the average results.

51

0.4- ____ - _ _ _ _ - _ _ _ _

0.3 -

Error RaZe 0.2

0.1

0
0 2 3 6 9

Number of Hidden Units

Figure 8: Neural Net Error Rates for Cancer Data

3.4. Thyroid Data
Quinlan reported on results of his analysis of hypothyroid data in [Quinlan, 1987b], and in greater
detail in [Quinlan, 1987a]. The problem is to determine whether a patient referred to the clinic is
hypothyroid, the most common thyroid problem. In contrast to the previous applications,
relatively large numbers of samples are available.

The samples consist of 3772 cases from the year 1985. These are the same cases used in the
original report and were used for training. The 3428 cases from 1986 were used as test cases. There

0 are 22 (principal) tests, and 3 classes. Over 10% of the values are missing because some lab tests
were deemed unnecessary. For purposes of comparison of the methods, these values were filled in
with the mean value for the corresponding class.

Figure 9 summarizes the results. 15 The first error rate is the error rate on the 3772 training cases;
0 the second error rate is the error rate on the 3428 test cases. From a medical perspective, it is

known that (based on lab tests) excellent classification can be achieved for diagnosing thyroid
dysfunction. For these data, the correct answer stored with each sample is derived from a large
rule-based system in use in Australia. While most error rates in Figure 9 are low, it is important to
note that 1% of the total sample represents over 70 people. Over 92% of the samples are not
hypothyroid. Therefore, any acceptable classifier must do significantly better than 92%.

5'-The C4 tree cited in the original study has a training error rate of .0021 and a testing error rate of .0085. However, the

training data onntained missing values.

0

52

Method ErTra,, ErrTait

Linear .0615 .0615

Quadratic .1031 .1161

Nearest neighbor 0 .0473

Bayes independence .0297 .0394

Bayes 2nd order .0228 .0756

Neural net (BP) .0050 .0146

PVM rule .0021 .0067

CART tree .0021 .0064

Figure 9: Comparative Performance on Thyroid Data

The rule-based solution has 2 rules with a total of 8 variables. For the neural nets, the apparent

error rate is the best of 2 trials. The nets were trained for 2000 epochs. The best neural net in terms

of testing error occurs at 3 hidden units. The relationship between the number of hidden units and

the error rates is listed in Figure 10.

0.0

0.04 --

Error Rea 0.03 "

0.02

0.01 - _ _

0 3 6 9 12 24

Number of Hidden Units

Figure 10: Neural Net Error Rates for Thyroid Data

* The cpu times for training a neural net with back propagation on this size data set were great: for

3 hidden units 500 epochs required 1.5 hours of Sun 4/280 cpu time, while 24 units required 11.5

hours. In Figure 10, the apparent error rates for the larger numbers of hidden units support the

hypothesis that additional training was necessary. We initiated a new set of experiments with

53

fewer numbers of hidden units.16 We let these trials run for an unlimited period of time as long as

slight progress was being made, as indicated by sampling every 500 epochs. Therefore, for this

experiment not every size neural net was run an equal number of epochs. Figure 11 summarizes

the results of this crtort. The best result encountered during the sampling of results occurred for 3

hidden units, and this result is listed in Figure 9.

Units Epochs ErrTraia ErrT.0

0 6000 .0260 .0359

3 70000 .0050 .0146

6 45000 .0037 .0163

1 _9 24000 .0040 .0193

Figure 11: Extended Neural Network Training on Thyroid Data

4 Discussion
The applications presented here represent a reasonable cross section of prototypical problems

widely encountered in the many research communities. Each problem has few classes and is

characterized by uncertainty of classification. In some applications such as the cancer data, the

features were relatively weak and good predictive capabilities are unlikely. In others, such as the

thyroid data, the features are quite strong, and almost error-free prediction is possible.

For the smaller data sets, resampling was used. With over 100 cases, resampling techniques such

as cross-validation should give excellent estimates for the true error rate. In fact, the data from the

iris study has been reviewed over many years, and comparisons have been made on the basis of

the leaving-one-out error. It is interesting to note (for those who wish to avoid concepts such

multivariate distributions and covariance matrices), that a trivial set of 2 rules with a total of 3
variables can produce equal results.

For many application fields, this in fact is a major advantage of the logistic approaches, i.e. the

rule based or decision tree based approaches. The solution is compatible with elementary human

reasoning and explanations. It is also compatible with rule-based systems. Thus, if everything were

equal, many would choose the logistic solution.

In our experiments, everything was not equal. In every case a logistic solution was found that

exceeded the performance of solutions posed using different underlying models. PVM has an

advantage when a short rule works, but for more complex problems the decision tree would be

indicated. We note that the largest problem studied, the thyroid application, is somewhat biased

towards logistic solutions. The endpoints were derived from a rule-based system that apparently

uses the same lab test thresholds to specify high or low readings for all hypotheses.

* 'Y'e mometlim was changed to .9, and the learning rate to .5. to help prevent local maximums.

0 54

These results cannot necessarily be extrapolated to more complex problems. However, our

experience is not unique. Numerous experiments by the developers of CART [Breiman, Friedman,

Olshen, and Stone, 1984] demonstrated that in most instances, they found a tree superior to
alternative statistical classification techniques.

In our experiments, the statistical classifiers performed consistently with expectations. The linear

classifiers (with the assumption of a normal distribution) gave good performance in all cases

except the thyroid experiment. These classifiers are widely used, because they are simple and the

training error rate usually holds up well on test cases. The natural extension, the quadratic

classifier, fits better to normally distributed data, but degrades rapidly with nonnormal data. It

did poorly in most of our experiments. Similarly Bayes with independence does moderately well,

* but the 2nd order fits were not good on the test data. Nearest neighbor does well with good

features, but tends to degrade with many poor features. There are many alternative statistical

classifiers that might be tried, such nonparametric piecewise linear classifiers [Foroutan and

Sklansky, 19851. In addition, one could try to reduce the number of features for training (i.e.

feature selection), since many of these methods can actually improve performance on test cases by

feature reduction.
1 7

The neural nets did perform well, and they were the only statistical classifiers to do well on the

thyroid problem. However, overall they were not the best classifiers; they consumed enormous

amounts of cpu time; and they were sometimes equaled by simple classifiers. Research on

improving performance for neural nets training and representation is quite active, so it may be

possible that performance can be improved.

The relationship between the number of hidden units and the two error rates followed the

classical pattern for classifiers. As the number of hidden units increased, the apparent error

* decreased. 18 However, at some point, as the classifier overfits the data, the true error rate curve

flattens and even begins to increase. Much the same behavior can be observed for decision trees as

the number of nodes increases, or production rules, as the rule length increases.

The question remains open as to how well any classifier can do on more complex problems with

* many more features and many more classes, possibly non-mutually exclusive classes. There are

also questions of how many cases are actually needed to learn significant concepts. Our study

does not answer many of these questions, but helps show in a limited fashion where we are

currently with many commonly used classification techniques.

17Because the linear classifier performed poorly on the thyroid cases, we tried to train a classifier on just the lab tests,
which are the most significant tests. The results did not improve.

18 ccasionally there is some slight variability in the decrease of the apparent error rate because back propagation
* minimizes distance as opposed to errors.

0 55

0 Appendix: Induced Rules
" iris. Petal length < 3 --* Iris Setosa; Petal length > 4.9 OR Petal Width > 1.6--' Iris

Virginica
" appendicitis. MNEA>6600 OR MBAP>1 1
* cancer. Involved Nodes>0 & Degree=3
* thyroid. TSH>6.1 & FTI <65 -- primary hypothyroid; TSH>6 & T14<149 & On

46 Thyroxin=false & FTI1>64 & Surgery=false -- compensated hypothyroid

References

[Baum and Haussler, 19891
Baum, E. and Haussler, D. "What Size Net Gives Valid Generalization?" Neural Computation.
(1989) 151-160.

[Breiman, Friedman, Olshen, and Stone, 19841
Breiman, L., Friedman, J., Olshen, R., and Stone, C. Classification and Regression Tress.
Monterrey, Ca.: Wadsworth, 1984.

[Cheeseman, 1988]
Cheeseman P., Self, M., Kelly J., Stutz J., Taylor W., and Freeman D. "Bayesian

* Classification." In Proceedings of AAAI-88. Minneapolis, 1988,607-611.

[Clancey, 19851
Clancey, W. "Heuristic Classification." Artificial Intelligence. 27 (1985) 289-350.

[Crawford, 19891
Crawford, S. "Extensions to the CART Algorithm." International Journal of Man-Machine

* Studies. (1989) in press.

[Duda and Hart, 1973]
Duda, R., and Hart, P. Pattern Classification and Scene Analysis. New York: Wiley, 1973.

[Efron, 19821
Efron, B. 'The Jackknife, the Bootstrap and Other Resampling Plans." In SIAM. Philadelphia,

0 Pa., 1982.

[Efron, 19831
Efron, B. "Estimating the Error Rate of a Prediction Rule." Journal of the American Statistical
Association. 78 (1983) 316-333.

[Fisher, 19361
Fisher, R. "The Use of Multiple Measurements in Taxonomic Problems." Ann. Eugenics. 7
(1936) 179-188.

[Foroutan and Sklansky, 19851
Foroutan, I. and Sklansky, J. "Feature Selection for Piecewise Linear Classifiers." In IEEE
Proc. on Computer Vision and Pattern Recognition. San Franscisco, 1985, 149-154.

[Fukunaga, 19721
Fukunaga, K. Introduction to Statistical Pattern Recognition. New York: Academic Press, 1972.

[Gorman and Sejnowski, 19881
Gorman R. and Sejnowski T. "Analysis of Hidden Units in a Layered Network Trained to
Classify Sonar Targets." Neural Networks. 1 (1988) 75-89.

56

[Haussler, 19881
Haussler, D. "Quantifying Inductive Bias: Al Learning Algorithms and Valiant's Learning
Framework." Artificial Intelligence. 36 (1988) 177-221.

[Highleyman, 1962]
Highleyman, W. "The Design and Analysis of Pattern Recognition Experiments." Bell System
Technical Journal. 41 (1962) 723-744.

[Jain, Dubes, and Chen, 1987]
Jain, A., Dubes, R., and Chen, C. "Bootstrap Techniques for Error Estimation." IEEE
Transactions on Pattern Analysis and Machine Intelligence. 9 (1987) 628-633.

[James, 19851
James, M. Classification Algorithms. New York: John Wiley & Sons, 1985.

[Kanal and Chandrasekaran, 19711
Kanal, L. and Chandrasekaran, B. "On Dimensionality and Sample Size In Statistical Pattern
Classification." Pattern Recognition. (1971) 225-234.

[Kononenko, Bratko, and Roskar, 19861
Kononenko, I., Bratko, I., Roskar, E. "ASSISTANT: A System for Inductive Learning."
Informatica. 10 (1986).

[Lachenbruch and Mickey, 19681
Lachenbruch, P. and Mickey, M. "Estimation of Error Rates in Discriminant Analysis."
Technometrics. (1968) 1-111.

[Lee, 19881
Lee K. and Mahajan S. "A Pattern Classification Approach to Evaluation Function Learning."
Artificial Intelligence. 36 (1988) 1-25.

[Marchand, Van Lente, and Galen, 1983]
Marchand, A., Van Lente, F., and Galen, R. "The Assessment of Laboratory Tests in the
Diagnosis of Acute Appendicitis." American Journal of Clinical Pathology. 80:3 (1983) 369-374.

[McClelland and Rumelhart, 19881
McClelland, J. and Rumelhart, D. Explorations in Parallel Distributed Processing. Cambridge,
Ma.: MIT Press, 1988.

[Michalski, Mozetic, Hong, and Lavrac, 19861
Michalski, R., Mozetic, I., Hong, J., and Lavrac, N. "The Multi-purpose Incremental Learning
System AQ15 and its Testing Application to Three Medical Domains." In Proceedings of the
Fifth Annual National Conference on Artificial Intelligence. Philadelphia, Pa., 1986, 1041-1045.

[Quinlan, 19861
Quinlan, J. "Induction of Decision Trees." Machine Learning. 1 (1986) 1.

* [Quinlan, 1987a]
Quinlan, J. "Simplifying Decision Trees." International Journal of Man-Machine Studies. 27
(1987) 221-234.

[Quinlan, 1987b]
Quinlan, J. "Generating Production Rules from Decision Trees." In Proceedings of the Tenth
International Joint Conference on Artificial Intelligence. Milan, Italy, 1987, 304-307.

57

[Steen, 19881
Steen, L. "The Science of Patterns." Science. 240 (1988) 611-616.

[Stone, 19741
Stone, M. "Cross-Validatory Choice and Assessment of Statistical Predictions." Journal of the
Royal Statistical Society. 36 (1974) 111-147.

[Szolovits and Pauker, 19781
Szolovits, P., and Pauker, S. "Categorical and Probabilistic Reasoning in Medical Diagnosis."
Artificial Intelligence. 11 (1978) 115-144.

[Valiant, 19851
Valiant, L.G. "Learning disjunctions of conjunctions." In Proceedings of IJCAI-85. Los Angeles,
1985, 560-566.

[Waltz, 1986]
Stanfill G. and Waltz D. "Toward Memory-Based Reasoning." Communications of the ACM. 29
(1986) 1213-1228.

[Weiss and Kulikowski, 19841
Weiss, S. and Kulikowski, C. A Practical Guide to Designing Expert Systems. Totowa, New
Jersey: Rowman and Allanheid, 1984.

[Weiss, Galen, and Tadepalli, 1987]
Weiss, S., Galen, R., and Tadepalli, P. "Optimizing the Predictive Value of Diagnostic
Decision Rules." In Proceedings of the Sixth Annual National Conference on Artificial Intelligence.
Seattle, Washington, 1987, 521-526.

0

0

0Q

58

Maximizing the Predictive Value
of Production Rules

Sholom M. Weiss, Robert S. Galen", and Prasad V. Tadepalli*

,, Department of Computer Science, Rutgers University, New Brunswick, NJ
Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH

Abstract

A new method for empirical rule induction under conditions of uncertainty is described. The

problem is to find the single best production rule of a fixed length for classification. Predictive Value

Maximization (PVM), a heuristic search procedure through the hypothesis space of conjunctions and

isjunctions of variables and their cutoff values, is outlined. Examples are taken from laboratory

medicine, where the goal is to find the best combination of tests for making a diagnosis. Resampling

techniques for estimating error rates are integrated into the PVM procedure for rule induction.

Excellent results for PVM are reported on data sets previously analyzed in the Al literature using

alternative classification techniques.

1. Introduction

Many decision-making problems fall into the general category of classification [Clancey,
1985, Weiss and Kulikowski, 1984, James, 19851. Diagnostic decision making is a typical example.
Empirical learning techniques for classification span roughly two categories: statistical pattern
recognition [Duda and Hart, 1973, Fukunaga, 1972] (including neural nets [McClelland and
Rumelhart, 1988]) and machine learning techniques for induction of decision trees or production
rules. While a method from either category is usually applicable to the same problem, the two
categories of procedures can differ radically in their underlying models and the final format of
their solution. Both approaches can be used to classify a sample pattern (example) into a specific
class. However, a rule-based or decision tree approach offers a modularized, clearly explained
format for a decision, and is compatible with a human's reasoning procedures and expert system
knowledge bases.

Methods of induction of decision trees trom empirical data have been studied by researchers in
* both artificial intelligence and statistics. Quinlan's ID3 [Quinlan, 19861 and C4 [Quinlan,

1987a] procedures for induction of decision trees are well-known in the machine learning
community. The Classification and Regression Trees (CART) [Breiman, Friedman, Olshen, and
Stone, 19841 procedure is a major nonparametric classification technique that was developed by
statisticians during the same period as ID3. These procedures developed for decision tree

• induction are quite similar. The major distinction between CART and ID3/C4 is that the CART

59

procedure uses resampling techniques for both accurate error rate estimation and tree

pruning [Stone, 1974]. Empirical comparisons of CART-derived decision trees with traditional

statistical discriminant analysis has shown that the decision trees are very competitive in finding a

minimum error solution. In almost all instances studied, the induced decision trees were as good

or better than traditional statistical methods [Breiman, Friedman, Olshen, and Stone, 19841.

0 Production rules are related to decision trees; each path in a decision tree can be considered a

distinct production rule. Unlike decision trees, a disjunctive set of production rules need not be

mutually exclusive. Among the principal techniques of induction of production rules from

empirical data are Michalski's AQ15 system [Michalski, Mozetic, Hong, and Lavrac, 19861 and

recent work by Quinlan in deriving production rules from a collection of decision trees [Quinlan,

1987b]. Additional examples of rule induction systems can be found in [Fu and Buchanan,

1985, Spackman, 19881.

Machine learning techniques for induction of decision rules have evolved from procedures that

cover all cases in a data set to more sophisticated and less biased procedures for estimating error

rates by train and test sampling. Procedures that prune a set of decision rules and the components

of these rules have been successful in increasing the performance of an induced rule set on new

unseen test caseb [Michaliki, Moeric, Hong, and Lavrac, 1986, Quinlan, 1987a]. Empirical results

reported in the literature indicate that often a relatively short rule may provide a better solution

than a more complex set of induced rules [Michalski, Mozetic, Hong, and Lavrac, 19861.

In this paper, we describe Predictive Value Maximization (PVM), a heuristic procedure for

learning the single best decision rule of a fixed length. In contrast to the decision tree induction

techniques, a commitment is not made to split a single test node at a time. Instead, this method is a

heuristic approximation to exhaustive generation of all possible rules of a fixed length. While an

0 exhaustive search is not feasible in most applications, a small number of heuristics reduce the

search space to manageable proportions.

In Section 2, a detailed description of the underlying model is given. The complexity of

exhaustive search is presented in Section 3. The PVM procedure is described in Section 4. In

section 5, the concept of resampling and unbiased error rate estimation is introduced. In a fashion

similar to CART procedure for deciding appropriately sized trees, the PVM procedure is modified

to use resampling for finding the appropriate length rule. In Section 6.1 two data sets are

analyzed, and the results of PVM are compared with the optimal production rule solution and

with several statistical pattern recognition solutions. A comparison of results for two other data

sets reported in the machine learning literature is given in Section 6.2.

0

0 60

2. The Model of Induction

In our discussion, examples from laboratory medicine will be used. However, the solution is
general and should be applicable to many areas outside medicine. Let us assume that we are
developing a new diagnostic test whose measurement yields a numerical result in a continuous
range. For a single test, the problem is to select a cutoff point, known formally as a referent value,
that will lead to satisfactory decisions. For example, a physician may conclude that all patients
having a result greater than a specific cutoff have the disease, while others do not. For a specific
cutoff, there are four possible outcomes for each test case in the sample.' These are illustrated in
Figure 2-I. There are well-known measures to describe the performance of a test at a specific cutoff
for a sample population. These measures, defined in Figure 2-1, are sensitivity, specificity, positive
predictive value, negative predictive value, and accuracy [Galen and Gambino, 19751.

Rule Positive (R+) Rule Negative (R-)

Hypothesis Positive (H+) True Positives (TP) False Negatives (FN)

Hypothesis Negative (H-) False Positives (FP) True Negatives (TN)

Sensitivity TP / H+

Specificity TN / H-

Predictive value (.) TP / R+

Predictive value (- TN / R-

Accuracy (TP+TN) / ((H+) + (H-))

Figure 2-1: Formal Measures of Classification Performance

While all of these measures have their purpose, the one that is implicitly used in large-scale
rule-based systems is positive predictive value. Positive predictive value measures how often a
decision is correct when a test result is positive. Thus one may use a positive test that has high
predictive value in rules that confirm a diagnosis, and apply different tests when the result is
negative. Many rule-based systems may be thought of as collections of rules with very highly
positive predictive values. The two types of errors, false positives and false negatives, need not be
weighted equally. For example, in medical applications it is often required that the sensitivity be
high, i.e. few false negatives, with perhaps more false positives.

We illustrate these points by describing data taken from a published study on the assessment of
* 8 laboratory tests to confirm the diagnosis of acute appendicitis for patients admitted to an

emergency room with a tentative diagnosis of acute appendicitis [Marchand, Van Lente, and
Galen, 19831. Following surgery, only 85 of 106 patients were confirmed by biopsy to have had

For purposes of this discussion, we are eliminating the possibility of unknowns.

61

appendicitis. Thus, the ability to discriminate the true appendicitis patients by labs tests prior to
surgery would prove extremely valuable. Because acute appendicitis is life-threatening, it is
imperative to avoid false negatives, i.e. patients with appendicitis who do not receive surgery. In

the example of Figure 2-2, the white blood cell count (WBC) is used as a test to determine the true

appendicitis patients.

T+ T-

H+ 71 14

H- 6 15

Sensitivity 83.5%

Specificity 71.4%

Predictive value (+) 92.2%

Predictive value (-) 51.7%

Accuracy 81.1%

Figure 2-2: Example of the 5 Measures of Performance for WBC>10000

In summary, for a single test with a given cutoff and the application of an arithmetic operator

(less than or greater than) these five measures can be determined for a population. The problem of

determining an optimal cvatff can be described as maximizing one of these measures subject to

specific constraints on the other measures. 2 Constraints are the minimum required values for

sensitivity, specificity, predictive values, and accuracy. Finding the optimum cutoff for WBC can

be posed in the form illustrated in Figure 2-3. Not every combination of these performance

measures yields different results. In the appendicitis example, 100% sensitivity is required, i.e. no

false negatives. This is equivalent to requiring 100% negative predictive value.

MAXIMIZING Prtdictive value (+) of WBC

The constraints are given below-

* Sensitivity a 100.00%
Specificity a 0.00%
Predictive value (-) 2 0.00%
Accuracy 0.00%

Figue 2-3: Example of Problem Constraints for a Single Test

Referent value analysis, or cutoff selection, is commonly done for single tests. We have

2-ensitivity and specificity move continuously in opposite directions. For example, a 100% sensitivity cutoff wtih 0%
specificity can always be found by classifying every sample as having the hypothesis. Predictive values have no such
relationship and vary greatly.

0

62

developed procedures that allow for the possibility of choosing the set of constraints and
maximizing the remaining measure not only for one or two, but for a larger number of tests. When
more than one test is specified, combinations are formed by using logical AND or OR operators.
We formulate the problem as finding the best combination of tests that will satisfy the given

constraints for the data set.3 An additional constraint is added to the problem, in that the length of
the expression is limited by a chosen threshold. This sets a limit on the number of terms that may

be used in the decision rule. Some tests may be also deliberately excluded from consideration and

some tests may be designated as mandatory. This allows for further pruning of the search space.

In Figure 2-4 using the appendicitis data set, the problem is to find the best solution in the form of

a logical expression whose length is no greater than 3 tests.

MAXIMIZING Predictive value (+)

The constraints are given below:

Sensitivity > 100.00%
Specificity > 0.00%
Predictive value (-) > 0.00%
Accuracy 0.00%
Number of terms _ 3

Figure 2-4: Example of Problem Constraints for 3 or Fewi= Tests

At this point we note that the rules are just like many found in typical classification expert

systems, since, like productions, they are described as logical combinations of findings that are not

mutually exclusive. 4 Thus, they have the intuitive appeal of explaining decisions in a format

consistent with human reasoning, while being supported empirically by their performance over

the data set. These rules classify under conditions of uncertainty, where two types of classification
errors, false positives and false negatives, need not be considered of equal importance.

3. Complexity of Exhaustive Generation of Expressions

In Section 2, we described the problem as finding the best logical expression of a fixed length or

less that covers a sample population. In this section, we consider the complexity of exhaustively

generating and testing all possibilities. Except for relatively small populations or numbers of tests,

with few potential cutoffs, the exhaustive approach is not computationally feasible.

3 Two tests or combinations of tests may have the same value for the maximized measure. For example, two different tests
may both have 100% positive predictive value. In this situation, the conjugate measure is used to decide which test is
better. Sensitivity and specificity are treated as conjugates to one another and so are positive and negative predictive values.
When maximizing accuracy, either sentivity or specificity can be chosen as the next decisive function.

4An OR condition may encompass several conditions that are not mutually exclusive. The classification may have less
than 100% diagnost3c accuracy.

63

Equation 1 is the number of expressions having only ANDs; Equation 2 is for expressions having

either ANDs or ORs.5 In these equations, n is the number of tests, k is is the maximum number of

tests in the expression, c is the number of constants (cutoff values) to be examined for each test,

and c' is c raised to the ith power. While the number of distinct values that must be examined for

each test may vary, we have used a fixed number, c, to simplify the notation and analysis. In

Equation 2, expressions are generated in disjunctive normal form, which corresponds to that used

by the heuristic procedure described in Section 4.

k

~C'cB5 (2)

where Bi is the ith Bell number.The Bell number is the number of ways a set of i elements can be

split into a set of disjoint subsets. For i=0,1,2,3, B,=1,1,2,5 respectively [Andrews, 1976]. The Bell
number is defined recursively as

For applications having several continuous variables, the most computationally expensive

(exponential) component of Equation 2 component is ci . It is possible to devise exhaustive

procedures that do not require the examination of every value of a test found in the data set. For

each test, one may examine only those points that overlap in the H+ and H- populations. 6 Even

taking this into account, relatively small values of c will make the computation prohibitive.

Because one may allow for the repetition of a test in an expression, for example a>50 OR (a >30
AND b <20), the number of generated expressions may be substantially greater than Equation 2.

The problem of finding the best subset of features or tests is a well-known and difficult statistical
problem. For some statistical discrimination methods, such as normal linear discriminants, branch

and bound methods can find an optimal feature subset for k tests [Narenda and Fukunaga,

1977, Roberts, 19841. These procedures start with all n tests, eliminate one test at a time, and

evaluate classification performance for subset of k tests. They are only optimal in terms of specific

sit is assumed that the less than or greater than operators are selected simply on the basis of the means or medians for
each class.

6Moreover, only the smaller set of the two sets of points in the overlapping zone need be candidates for cutoffs. Each test
would have a distinct number of cutoffs that must be examined, c,. In the equations, instead of c', the products of c, for each
generated expression must be summed.

0

64

statfisical distance measures, not in terms of error rates. For production rules, such techniques are
not applicable. To compute the best k tests, it would be necessary to determine many subsets of
tests with cutoffs of size much greater than k, which is not computationally feasible for larger k
values.

4. A Heuristic Procedure for Maximizing Predictive Values

Because of the computational complexity of an exhaustive search, we have developed a heuristic
search procedure for Anding the best combination. In this section, we describe the procedure.
While this procedure is not guaranteed to find an optimal solution, the expression found should
almost always be quite good. In Section 6, empirical evidence is provided to demonstrate that in
several situations the optimal production rule is found. In almost every real experimental
situation, the logical expression found by the computer will be better than what a human
experimenter can compose. These are situations where the experimenter is analyzing new data
and does not know a priori the best rule.

Before specifying the heuristic search procedure, a few general comments can be made. In an
exhaustive search approach, it is possible to specify a procedure that needs no additional memory.
Logical expressions are generated and they are compared with the current best. The heuristic
procedure is based on an alternative beam search strategy. A relatively small table of the most
promising expressions is kept. Combinations of expressions are used to generate longer
expressions. The most promising longer expressions in turn are stored in the table and are used to
generate even longer expressions. Thus memory is needed to store the most promising or useful
expressions. In Equation 2, the exponential component is the ci. Thus, if one can reduce the value
of c, i.e. the number of cutoffs for a test, the possible combinations are greatly reduced.

The Predictive Value Maximization (PVM) procedure was originally developed for finding the
best logical combination of laboratory tests for making a diagnosis. In this section, we give a brief
overview of the procedure.

The goal is to find the single best rule of length less than or equal to n. A rule for predicting a
hypothesis or class consists of variables, constants, arithmetic operators and logical operators. The
arithmetic operators are Less than, greater than, or equals. The logical operators are AND or OR. For
example, X>30 OR Y<100 is a valid rule format. In terms of overall accuracy of classification, the
best rule is the one that has the fewest number of errors in classification where the number of
variables in the expression is no more than the stated length. The method is an approximation to
exhaustive generation of all possible rules of a fixed length or less.

For each variable, interesting constants are determined. These cutoff points are local maxima of
the predictive values. Logical expressions with variables are generated (in disjunctive normal
form) and instantiated with the interesting constants. A relatively small table of the most
promising expressions is kept. Combinations of the stored expressions are used to generate longer

65

expressions. The most promising longer expressions in turn are stored in the table and are used to
generate even longer expressions.

Figure 4-1 illustrates the key steps of the heuristic procedure. In Section 4.1, the approach taken
to greatly reduce the number of (interesting) cutoffs is discussed.

SELECT KEY GNRT NTNIT

CONSTANTSEXRSINEXESOS

FOR EACH TESTWIHVRALSWTCOTNS

r, BEST 1)S OE.SF L R N

COMBINATIONRUEINCNDAS

OF LENGTHEXRSINWT

Figure 4-1: Overview of Heuristic Procedure for Best Test Combination

4.1. Selection of Cutoffs

For each test in the data set, the median is found for the cases satisfying the hypothesis (H+) and
the cases not satisfying the hypothesis (H-). If the H+ has the greater median, the">" operator is
used. If H h_ a thc :maller median, the "<" operator is used. The equality operator "=" may also be
used for discrete (categorical) tests corresponding to simple encodings that are unordered or have
few values such as multiple choice questions.

The next task is to select the test cutoffs. For a test, cutoffs that fall at interesting boundaries are
selected. Interesting boundaries are those where the predictive values (positive or negative) are
locally maximum. For example, if WBC>10000 has a positive predictive value of 97% and
WBC>9900 and WBC>10100 each has a positive predictive value less than 97%, then 10000 is an
interesting boundary for WBC. The procedure first determines the interesting boundaries on a
coarse scale. Then it zooms in on these boundaries and collects all the interesting boundaries on a
finer scale. Finally, the boundaries are smoothened without changing the predictive statistics of
the rule. Test -cutoffs that have very low sensitivity or specificity ar- immediately pruned.7

7 In the current version of the program, 10 equally spaced intervals are used for the region where the two populations
overlap. For zooming in on an interval, 20 finer intervals are used between its 2 neighbors on the coarse scale. The
mmnimum acceptable sensitivity or specificity for a test is currently set to be 10%.

S

66

4.2. Expression Generation

Logical expressions of all test variables in all combinations are generated in disjunctive normal
form. This method avoids duplication of equivalent expressions since AND and also OR are

symmetric. For example, a AND (b OR c) must be written as (a AND b) OR (a AND c). These
expressions are stored in an expression table and longer expressions are generated combining

shorter expressions. As each new expression is generated, the test variables are instantiated in all
combinations of cutoff values. The test cutoffs were selected prior to expression generation. Figure
4-2 is a simple illustration of this process for 3 tests, (a, b, c} and expressions of length 2 or less.

a

b

C

a AND b

a AND c

b AND c

a OR b

a OR c

b OR c

Figure 4-2: Example of Expressions with Variables (tests)

If b has interesting cutoffs at b>10, b>20 and c has interesting cutoffs at c<30, c<40, c<50, then the
expression b AND c would lead to the possibilities of Figure 4-3.

b >10 AND c <30

Sb >10 AND c <40

b >10 AND c <50

b >20 AND c <30

b >20 AND c <40

b >20 AND c <50

Figure 4-3: Example of Instantiated Expression

Because new longer expressions are generated from shorter expressions that have been stored in
a table, those expressions that have been pruned will not appear in any longer expression. During

* the course of instantiation of the variables, some heuristics can be applied to prune the

possibilities. These are discussed in Section 4.3.

S

67

4.3. Heuristics for Pruning Expressions

Although the heuristic cutoff analysis limits the search space to the most interesting cutoffs, the

search space may still remain relatively large. Several heuristics and some provably correct

pruning rules are employed by the procedure. The first 3 pruning rules are always correct, the

others are heuristics that attempt to consider the most promising candidates for combination into

new longer rules.

1. If the sensitivity and specificity values of an expression are both less than the
constraints, then that expression does not contribute to any useful rules.

2. If an expression has less specificity than required, then any expression formed by
ORing that expression with another will also have less specificity than required.

3. If an expression cannot be extended to one that contains all the mandatory tests, while
satisfying the length constraint, it is immediately pruned.

4. If an expression has better positive and negative predictive values than another
expression that differs from the first only by the constants in the expression, then the
expression with lower predictive values is ignored.

5. If there are rules shorter and better than a new candidate rule, compute the sum of
their lengths. If this sum, including the length of the current rule, exceeds the
maximum length possible for any rule, then ignore the new rule. In the current
implementation, the maximum rule length is fixed as 6. As the expression length
increases, the number of potential combinations greatly increases as does the number
of entries in the expression table. The objective of this heuristic is to emphasize the
most promising shorter rules that will be combined into lengthier rules.

After all interesting expressions have been generated, the best expression in the expression table

is offered as the answer.8 Because all promising expressions are stored, a program that

implements this procedure can readily determine its next best expression. If the constraints are

made stricter, the expression table remains valid, and the procedure's new best expression is

* immediately available.

8During expression generation, whenever a superior expression is found, it is displayed. If no expression is found
meeting the constraints, this is indicated when the search terminates. Depending on the allocated table space for stonng
intermediate expressons, the program may terminate from an overflow of the table. This is unlikely to occur with

* relatively small expressions.

68

4.4. Variations on the Standard PVM Application

The standard application of PVM was described in the previous section. The basic model is for
two-class discrimination. Modifications can be made to the procedure to handle multiclass
problems and step-wise refinement.

For multi-class problems, PVM is applied to a each class vs. the negation of that class, and the
single best rule for each class is found. Thus the n-class problem is solved as n 2-class problems.
For n classes, n rules are found, and the best n-1 are used. The remaining class is selected when no
rule is satisfied. PVM is fundamentally a two class model, and it may be difficult to separate some
classes from their negation. In these instances, it may be better to generate the n best rules, select
the best one, remove the cases satisfying the rule, and then recursively re-apply the procedure. For
the examples given in Section 6, it was not necessary to recursively apply PVM.

In some situations, another form of step-wise refinement is valuable. Because PVM may initially
screen out some variables, the standard application of PVM may not work well for large numbers
of variables or a low prevalence situation (i.e. many more cases of one hypothesis than another).
PVM currently works with 18 variables at a tirre, and it uses only tests that have a minimum of
10% sensitivity or specificity. It does not apply both arithmetic operators (greater than and less
than) simultaneously to the same variable. With step-wise refinement some of these restrictions
can be overcome. Assuming a 2-class model, two strategies are worthwhile mentioning:

1. Find a highly predictive rule for a class; remove the cases satisfying the rule, and
re-apply the procedure to the remaining cases that did not satisfy the rule.

2. Find a highly sensitive rule for a class, i.e. a rule that covers most or all of the cases in
the class; remove the cases not satisfying the rule, and re-apply the procedure to the

* remaining cases that did satisfy the rule.

Situation (1) is equivalent to an OR condition, i.e. finding multiple rules to covering a class. An
example of this variation is given in Section 6.1.2. Situation (2) is equivalent to an AND condition,
i.e. extending a rule in step-wise fashion to create a longer rule. An example of this variation is

* given in Section 6.2-2.

5. Estimating Error Rates

* 5.1. Basic Principles of Error Estimation

A procedure has been described that finds a single rule that best covers the cases. It is well
known that the apparent error rate of a classifier on all the training cases can lead to highly
misleading and usually over-optimistic estimates of performance [Duda and Hart, 19731. This is
due to overspecialization of the classifier to the data. In the extreme, a classifier can be constructed

69

that simply consists of all patterns in the given sample. Assuming identical patterns do not belong

to different classes, this yields perfect classification on the sample cases.

Techniques for estimating error rates have been widely studied in the statistics [Efron, 1982] and
pattern recognition [Duda and Hart, 1973, Fukunaga, 19721 literature. The simplest technique for

"honestly" estimating error rates, the holdout or H method, is a single train and test experiment.

The sample cases are broken into two groups of cases: a training group and a test group. The

classifier is independently derived from the training cases, and the error estinate is the
performance of the classifier on the test cases. A single random partition of train and test cases can

be somewhat misleading. The estimated size of the test sample needed for a 95% confidence

interval is described in [Highleyman, 19621. The following interpretation of these results is offered
in [Duda and Hart, 19731: "If no errors are made on 50 test samples, with a probability 0.95 the true
error rate is between zero and eight percent. The classifier would have to make no errors on more
than 250 test samples to be reasonably sure that the true error rate is below two percent."

Instead of relying on a single train and test experiment, multiple random test and train

experiments can be performed. For each random train and test partition, a new classifier is derived.

The estimated error rate is the average of the error rates for classifiers derived for the independently

and randomly generated partitions. Random resampling can produce better error estimates than a

single train and test partition.

A special case of resampling is known as leaving-one-out [Fukunaga, 1972, Efron, 19821.
Leaving-one-out is an elegant and straightforward technique for estimating classifier error rates.

Because it is computationally expensive, it is often reserved for relatively small samples. For a

given method and sample size n, a classifier is generated using n-I cases and tested on the

remaining case. This is repeated n times, each time designing a classifier by leaving-one-out. Each
case is used as a test case and, each time nearly all the cases are used to design a classifier. The

error rate is the number of errors on the single test cases divided by n.

Evidence for the superiority of the leaving-one-out approach is well-documented [Lachenbruch

and Mickey, 1968, Efron, 19821. While leaving-one-out is a preferred technique, with large samples
it may be computationally expensive. However as the sample size grows, traditional train and test

methods improve their accuracy in estimating error [Kanal and Chandrasekaran, 19711.

The leaving-one-out error technique is a special case of the general class of cross-validation error

estimation methods [Stone, 1974]. In k-fold cross-validation, the cases are randomly divided into k
mutually exclusive test partitions of approximately equal size. The cases not found in each test

partition are independently used for training, and the resulting classifier is tested on the
corresponding test partition. The average error rates over all k partitions is the cross-validated

error rate. The CART procedure was extensively tested with varying numbers of partitions and
10-fold cross-validation seered to be adequate and accurate, partic-'larly for large samples where

70

leaving-one-out is computationally expensive [Breiman, Friedman, Olshen, and Stone, 198419 For
small samples, bootstrapping, a method for resampling with replacement, has shown some
promise as a low variance estimator for classifiers [Efron, 1983, Jain, Dubes, and Chen,
1987, Crawford, 19891.

Figure 5-1 compares the techniques of error estimation for a sample of n cases. The estimated
error rate is the average of the error rates over the number of iterations. While these error
estimation techniques were known and published in the 1960s and early 1970s, the increase in
computational speeds of computers, makes them much more viable today for larger samples and
more complex classification techniques [Steen, 19881.

Holdout Random Subsampling Leaving-one-out 10-fold CV

Training cases j j n-I 90%

Testing cases n-j n-j 1 10%

Iterations 1 <<n n 10

Figure 5-1: Comparison of Techniques for Estimating Error Rates

Besides improved error estimates, there are a number of significant advantages to resampling.
The goal of separating a sample of cases into a training set and testing set is to help design a

classifier with a minimum error rate. With a single train and test partition, too few cases in the
training group can lead to the design of a poor classifier, while too few test cases can lead to
erroneous error estimates. Leaving-one-out, and to a lesser extent random subsampling, allow for
accurate estimates of error rates while training on most cases. For purposes of comparison of
classifiers and methods, resampling provides an added advantage. Using the same data,
researchers can readily duplicate analysis conditions and compare published error estimates with
new results. Using only a single random train and test partition introduces the possibility of
variability of partitions to explain the divergence from a published result.

While error rates on test cases should be used to estimate the overall error rate for competing
classifiers and methods, the best classifier design uses all cases in the sample set [Kanal and
Chandrasekaran, 1971]. Resampling techniques provide better estimates of the error rates than a
single train and test partition of the sample set [Efron, 19821.

9Empirical results also support the stratification of cases in the train and test sets to approximate the percentage
(prevalence) of each class in the overall sample.

71

5.2. Resampling with PVM

Because PVM searches for a single rule of a fixed length. the procedure is particularly amenable
to resampling techniques. Resampling is not limited to error estimation and can be used to
estimate any population parameter [Efron, 19821. PVM can be used in conjunction with
resampling to estimate the expression length having the minimum expected error rate. The PVM
induction procedure described in Section 4 does not directly indicate the specific rule length that
yields the best performance. While increasing the length will never decrease performance on the
training cases, performance on test cases may decrease. Thus after a certain length, estimated error
rates may increase, due to overspecialization of the rule. Leaving-one-out and random resampling
techniques can be used to provide estimates of the error rates for a specific expression length. In
addition, these techniques can help perform a sensitivity analysis on competing expressions. Two
estimating techniques are described: leaving-one-out and random resampling.

5.2.1. Leaving-one-out

PVM uses leaving-one-out in the following manner.

For each expression length i, let Ji be the estimated error rate by leaving-one-out.
Choose length k, such that Jk is minimum, i.e. choose the length that has the minimum
expected error rate. Choose the best expression of length k using all n cases in the
sample set.

*Alternatively, let k be the length of the rule with the minimum error rate. The
leave-one-out procedure will generate n classifiers, where n is the sample size (total
number of cases). Choose the rule that repeats the most times, i.e. the modal rule. This
corresponds to a form of sensitivity analysis. Since only a single case is left out in each
cycle, the pattern that is most stable and consistent with the estimated error rate is
selected.

5.2.2. Random Resampling

When the data set is large, or the length of the expression is relatively long, leaving-one-out may
0 be computationally too expensive. PVM uses random subsampling or 10-fold cross-validation in

the following manner-

For each expression length i, let RS, be the estimated error rate by random resampling.
Choose length k, such that RSk is minimum, i.e. choose the length that has the

* minimum expected error rate. Select the best expression of length k using all n cases in
the sample set.

9 Alternatively, let k be the length of the rule with the minimum error rate. For each of
the B test samples, generate the best rule of length k or less. If a rule frequently repeats,
i.e. the mode is relatively large, choose the modal rule. If a pattern of variables and

• operators frequently repeats, but the constants vary (e.g. X> ? & Y< ?), apply the

0

72

induction method to all n cases. However, limit the process to the same variables and
logical operators, adjusting only the constants.

6. Empirical Results

Because of the underlying empirical nature of the problem, by examining hundreds of
possibilities, the program should be able to find better logical expressions than human experts
when the samples are representative. This is particularly true when the human experimenter is

examining new tests or performing an original experiment.

In the previous sections, the PVM procedure for rule induction was described. In the following
sections, we will explore a number of remaining issues related to the performance of this
procedure. Several data sets for which published studies are available were analyzed. The analysis
of these data sets should help address the following questions:

* How close is the PVM solution to the optimal solution for the underlying model of a
production rule formed by conjunction or disjunction of variables with constant
cutoffs?

* How competitive is the rule-based model to other models, such as traditional statistical
models?

* How competitive is PVM with other machine learning procedures?

6.1. Optimality and Model Adequacy

* 6.1.1. Production Rule Optimality

Several years after the appendicitis data used in our examples were reported in the medical
literature, we re-analyzed the data. The samples consisted of 106 patients and 8 diagnostic tests.
Because only 21 patients were normal, it is possible to construct an exhaustive procedure. In the

* original study, the experimenters were interested in maximizing accuracy, subject to the constraint
of 100% sensitivity. Failure to treat was much less desirable than treating too many patients. In
their paper, they cited a logical expression consisting of the disjunction of 3 diagnostic tests with
positive predictive value of 89%. Using the heuristic procedure, the following results can be
reported:

" A logical expression composed of only 2 tests with positive predictive value of 91% can
be cited. The analysis takes 3 minutes of cpu time on a VAX 785.

" Using exhaustive search, the optimal expression of length 3 or less is identical to the
one found by the heuristic procedure. The exhaustive search took 10 hours of cpu time

* on a VAX 785. The result reported in the literature was WBC>10500 OR MBAP>11% OR

73

CRP>1.2. The optimal solution is WBC>8700 OR CRP>1.8. The numbers in Figure 6-1
indicate that the shorter rule has the lower apparent error rates, ErrAp,/ on all sample
cases. Both rules do not classify 2 cases because of missing data. While the apparent
error rate is a weak estimator of the true error rate, a shorter rule of equal or better
performance is usually the better predictor on new cases, particularly when strictly
empirical learning techniques are applied. Also listed is the the leaving-one-out error
rate estimate, ErrCV, for the new rule.

Original ErrA,, New ErrAp New Errc,

Number of tests 3 2 2

Sensitivity 0.000 0.000 0.000

Specificity 0.526 0.421 0.474

Predictive value (+) 0.105 0.086 0.096

Predictive value (-) 0.000 .000 0.000

Accuracy 0.096 0.077 0.087

Figure 6-1: Comparison of Error Rates for Appendicitis Rules

6.1.2. Comparative Analysis for Iris Data

The iris data was used by Fisher in his derivation of the linear discriminant function [Fisher,
19361, and it still is the standard discriminant analysis example used in most current statistical
routines such as SAS or IMSL. Linear or quadratic discriminants under assumptions of normality
perform extremely well on this data set. Three classes of iris are discriminated using 4 continuous
features. The data sets consists of 150 cases, 50 for each class. Figure 6-2 summarizes the results for
the rule-based solution and several prominent statistical methods. 10 The optimal rules of size two
were found by exhaustive search. These rules are quite simple and fully competitive with the other
classifiers. Petal length < 3 perfectly separates Iris Setosa from the other classes and Petal length > 5
OR Petal Width > 1.7 separates Iris Virginica from the other classes with 3 errors. The PVM
procedure directly finds two rules for Iris Virginica that have one more error than the optimal
solution. By re-applying PVM to cases that did not satisfy one of the initially derived rules, the
resultant ORed rule is equivalent to the optimal rule.11

As indicated in Figure 6-2, the iris discrimination problem is not difficult. Because of the wide
citation of these data in examples for statistical programs, classification meti.ods are unlikely to be

'MThe linear and quadratic disaiminants assume a multivariate normal density function, and the results are from the
discriminant analysis packages of SAS and [MSL. This quadratic disciminator has recently been used for evaluation
functions in Al game playing with strong results [Lee and Mahajan, 19881. The cited Bayes method assumes independent
binary features; each continuous feature was divided into 10 dlsete intervals.

"The rule is in the form of F3>5.1 OR F4>1.8 OR F3>4.9 OR F4>1.6. The optimal rule also is induced during one of the
0 cross-validations.

74

Method ErrApp Errc,

Linear .020 .020

Quadratic .020 .027

Nearest Neighbor .000 .040

Bayes independence .047 .067

Optimal Rule .020 .020

PVM direct .027 040

PVM indirect .020 .020

Figure 6-2. Comparative Performance of Clasifiers on Iris Data

accepted with poor performance on the iris data. We see that even in the classic normal case, the
rule-based approach does well, and PVM finds an excellent expression. The CART work showed
that decision trees perform extremely well relatively to competitive statistical classifiers [Breiman,
Friedman, Olshen, and Stone, 19841. Because production rules are related to decision trees, we can
expect that rule-based solutions should also do well. In the next sections, we turn our attention to
comparisons with alternative machine learning methods.

6.2. Comparison with Alternative Machine Learning Methods

6.2.1. Alternative Rule Induction Methods

A data set for evaluating the prognosis of breast cancer recurrence was analyzed by Michalski's
AQI5 rule induction program and reported in [Michalski, Mozetic, Hong, and Lavrac, 1986]. There
are 286 samples, 2 decision classes (recurrence of cancer or nonrecurrence) and 9 tests. They

reported a 64% accuracy rate for expert physicians, and a 68% rate for AQ15, and a 72% rate for the
pruned tree procedure of ASSISTANT [Kononenko, Bratko, and Roskar, 19861, a descendant of

ID3. The prevalence of the larger class is 70%. The authors derived the accuracy rates by randomly
resampling 4 times using a 70% train and a 30% test partition.

* Because the authors randomly resampled, the experimental conditions can be replicated. Figure
6-3 is a summary of performance results (on the test cases). For length 2, the same expression,

Involved Nodes>O & Degree=3

was selected by PVM on each of four 70% training samples, with an average accuracy of 77% on
the test samples.12 For these data, it is feasible to attempt to derive more accurate error estimates

* than can be found by randomly resampling four times on a 70% train, 30% test partition of the data
set. By leaving-one-out the complete data set for rule length 2 and 3, one can see that the accuracy

12Using the same size partition, 20 additional trials were performed. The resultant error estimate was 76% on the test
* cases, and this rule appeared 16 times.

75

peaks at length 2 (.773 vs. .769 for length 3), and the same expression repeats itself each of the 286
times. Thus the modal rule is the only expression that is generated.

Method Variables Rules Error Rate

AQ15 7 2 32%

PVM 2 1 23%

Figure 6-3: Comparative Summa-y for AQI5 and PVM on Breast Cancer Data

6.2.2. Alternative Decision Tree Induction Methods

Quinlan briefly reported on results of his analysis of hypothyroid data in [Quinlan, 1987b], and
in greater detail in [Quinlan, 1987a]. The data consists of 3772 thyroid cases, representing almost
all thyroid tests done at the Garvan Institute during 1985. Four hypotheses are considered, 3 types
of hypothyroid disease (7.6% of the samples) and nonhypothyroidism. Because one of the classes is
represented by only one case, data are available for two classes of hypothyroid disease: primary
hypothyroid and compensated hypothyroid. Over 10% of the lab tests were unavailable, but all
cases were classified. In the original study, a single random train and test partition was used- 3143
cases for training and 629 cases for testing. In some instances, only -514 cases were used for
training.13 Quinlan's C4 program produced decision trees, and he used pruning routines to
produce a small set of production rules that performed better (than the original tree) on the test
cases [Quinlan, 1987a]. In the published study we are given a set of two induced rules. 14

The question we address is whether there are better rules that can be induced from the 3772
cases. A number of factors, which taken together, make a comparative analysis between the
published results and PVM's results seem difficult. These include the use of a single random
partition of test cases, the low prevalence of 7.6% for hypothyroidism, and the excellent very low
error rates achieved by Quinlan's C4 program. However, a new analysis is quite feasible because
3428 new cases for the year 1986 are also available. Without training on them, the 3428 new cases
can provide objective verification as to whether improved results have been achieved.

Figure 64 summarizes C4's published results and PVM's on all 3772 cases from the year 1985
and on the 3428 new cases from 1986. Only the cases from 1985 were used for rule induction. The
cases from 1986 are used solely for verification of the results. Because of the large number of cases
and high accuracy levels, the number of errors is cited instead of error rates.

13Quinlan performed experiments to examine whether it is advantageous to have a separate set of cases that are used
during training to guide the induction procedure. A second set of 629 case were drawn from the 3143 training cases for this
purpose, leaving 2514 training cases.

14A third ruJe dted for nonhypothyroid is equivalent to the absence of either of the two rules for the specified diseases.

76

Method Variables Rules Errors (1985) Errors (1986)

C4 pruned rules single holdout 8 2 31 43

PVM random resampling 8 2 17 30

Figure 6-4: Comparative Summary for C4 and PVM on Hypothyroid Data

PVM's performance was achieved using the random resampling procedure described in Section
5.2.2. The leaving-one-out procedure is computationally too expensive for this size data set. While

standard procedure would involve using 3143 training cases, we used only 2514 training cases and
629 test cases for consistency with all of Quinlan's pruning experiments. Ten randomly drawn
samples of train and test cases were used for each of the two diagnoses and the average number of

errors (on the 629 test cases) for each length is given in Figure 6-5. Lengths beyond 6 were not
considered. A length of zero represents the number of errors for no rule, i.e. the prevalence.

For the primary hypothyroid diagnosis the minimum error length is 2 and the modal rule is

TSH>6.1 & FTI <65. This is also the rule that PVM induces for all 3772 cases. The characteristics of

the random resampling analysis for the primary diagnosis are listed in Figure 6-6.

320

28 0__________

24j__________

* 20

Errors 16 0 ----Pr-m-r-12O

010
0 1 2 3 4 5 6

Rule Length
Figure 6-& Estimated (average) Errors for Hypothyroid Diagnoses

For the compensated hypothyroid diagnosis, the minimum error length is 6, and the modal rule

is

TSH>6 & T"4<149 & On Thyroxin=false & (FTI>64 or unknown) & 7T4>50 & Surgery=false.

This is also the rule that PVM induces for all 3772 cases. A shorter rule also yields good results. If

77

the rules are restricted to length 4 or less, the results are 24 errors for the year 1985 cases and 36
errors on the year 1986 cases. 15

Attribute Value

Number of runs 10

Training sample size 2514

Test sample size 629

Minimum error length 2

Modal rule TSH>6.1 & FTI<65

Rule mode j=2514 5

Modal variables rSH>? & FTI<?

Variables only mode i=2514 10

Figure 6-6: Summary of Analysis of Primary Hypothyroid Diagnosis

PVM was originally designed to find the best combinations of medical lab tests. A typical
application of this type would have a few hundred cases and relatively few unknown test results.
The PVM procedure eliminates from consideration tests not having at least 10% sensitivity or
specificity, because these are not considered good tests for a diagnostic class. We also prefer not to
classify cases when the induced rules cannot make a decision because of missing data.

As presented, the original hypothyroid data analysis is somewhat atypical of an expected PVM
application. The sample sizes are quite large, and most classes have a low prevalence. While the
PVM procedure was not modified for this application, PVM was applied in two stages. This was
also necessary for computational reasons. Lengths beyond 3 were calculated in two parts: (a) the
best rule of length 3 with 90% sensitivity, and the continuation, (b) the best rule up to an additional
length 3 for cases satisfying rule (a). In a low prevalence environment, the two part application is
helpful in the selection and filtering of useful tests and in the classification of unknowns. Tests that
have less than 10% sensitivity for all cases are not used in finding rule (a). These same unused tests
may have greater than 10% sensitivity for cases satisfying rule (a) and may be used in finding rule
(b). While some class prevalences may be low over all cases, the prevalence for classes satisfying
rule (a) may be high. This may change the classification of cases that satisfy rule (a) but are
unknown for the continuation, i.e. rule (b). PVM does not induce rules that explicitly state that a
test must be unknown to reach a conclusion. However, for the rule induced for compensated

15A more direr-t comparison with the original C4 exveriments can be made when each trial is considered a single holdout
trial, and the minimum error rule on 629 test cases is selected. None of the 10 PVM runs had more than 26 errors on the

* cases from 1985 or 39 errors on the cases from 1986, and the average was 21.5 errors for year 1985 and 33.8 for 1986.

78

hypothyroidism, P11 is the only test that has unknown values in the data set. The FTI component
of the rule is induced in the second stage, when the odds have already shifted to compensated
hypothyroidism.

ST 15 "I i

12

0 Hyperhyro'd'-

Errors

3 0 0 0"-3-0-0-0

o 1 2 3 4 5 6

Rule Length
Figure 6-7: Estimated (average) Errors for Hyperthyroid Diagnoses

The same 3772 cases from 1985 were used in a separate study of rule induction for
hyperthyroidism [Quinlan, 1987c): 2800 cases for training and 972 cases for testing. There are
sufficient cases to attempt to diagnose 3 hyperthyroid conditions. Again we ask the question
whether better rules can be induced from the 3772 cases than those cited in [Quinlan, 1987c].
Using a 2100 case training set and 700 case test set, the errors (on the 700 test cases) for each length
are summarized in Figure 6-7.

Method Variables Rules Errors (1985) Errors (1986)

C4 pruned tree single holdout 13 3 41 54

C4 pruned rules single holdout 38 7 28 48

PVM random resampUng 7 2 31 46

Figure 64k Comparative Summary for C4 and FVM on Hyperthyroid Data

Two sets of rules are cited in [Quinlan, 1987c]: the rules formed by a single decision tree and a
rule induction procedure that prunes a collection of decision trees [Quinlan, 1987b]. Their
performance and that of PVM using 10 randomly drawn samples for each diagnosis is given in

79

Figure 6-8.16 Interestingly, there are insufficient data for inducing a rule for T3 toxic, because the
expected error rate is greater than the prevalence. The rule found by PVM for hyperthyroidism is

FTI>155 &
TT4>149 & On Thyroxin=false & (TSH<0.3 or unknown)

and the rule found for toxic goiter 17 is Goiter & T3>2.8 & FTI<153.

7. Discussion

The PVM procedure was originally developed for laboratory medicine applications [Weiss,
Galen, and Tadepalli, 19871. It was intended to help researchers find combinations of numerical
tests that have greater predictive value than single tests. PVM assumes that a single short rule exists
to classify a hypothesis. It does not expect perfect classification, and it can tradeoff false positive vs.
false negative error rates.

Because relatively few tests are expected to be analyzed, an approximation to exhaustive
enumeration was considered. For several hard-ed (varying; cases, exhaustive enumeration is not
feasible, but experimental results support the contention that the PVM procedure will yield
excellent, sometimes optimal results. In two studies where the optimal results for rules of a fixed
length can be determined, PVM was able to find an optimal or near-optimal solution. Rule-based
solutions appear to be quite competitive with alternative statistical procedures, with the advantage
of simplicity and clarity of presentation. In its current implementation, PVM handles up to 18 tests
at a time; filtering procedures and multi-stage analysis can be employed to reduce the number of
tests to 18 at each stage.

In this paper, we re-analyzed data that had been analyzed using prominent machine learning
* techniques. We showed that superior rules could be induced from these data sets. In the case of

the cancer data, a simple two variable rule produces better results than the more complex rules
cited in the literature. While the published thyroid data analysis demonstrated excellent results, we
showed that somewhat better rules can be induced than those cited in the original studies.

As is used in the CART procedure, resampling techniques are employed by PVM to estimate
error rates for induced production rules. These techniques can be time-consuming, but can lead to
better induction results. Because PVM induces rules for a fixed, relatively short length, resampling
procedures are a natural extension of the basic method. The major advantage is that error estimates
can be derived, while essentially the complete data sample may be used for classifier design.

161f each trial is considered a single holdout trial, and the minimum error rule on 700 test cases is selected, then none of
the 10 runs had more than 38 errors on the cases from 1965 or 53 errors on the cases from 1986, and the average was 33.4
errors for year 1985 and 46.1 for 1986. Only one of the ten trials had more than 46 errors on the cases from 1986.

* 17This is the result for length 3 with 90% sensitivity.

80

PVM is not always superior to other empirical rule or tree induction procedures. Unlike the

alternative methods, PVM in practice is limited to the induction of single short rules in relatively

low dimensions with few classes. However, if a good solution exists in the form of a single short

rule, PVM should have an advantage. Unlike incremental empirical induction procedures that

select one test at a time, PVM examines combinations of tests with varying constants. There are

many applications, such as when testing is expensive, where a short rule is highly desirable.

In comparison with faster learning methods, such as decision trees, there is a space and time

tradeoff. PVM examines many more combinations and this takes extra time. In the cited

applications, the number of combinations stored in the expression table for a single length 3 rule

ranged from a low of 117 for the iris data to 1480 for the appendicitis data. Additional factors

affect computing time, such as the number of cases and the number of expressions examined but

rejected. The longest cpu time for induction of a single rule was for one of the thyroid diagnoses,

which took less than hour on a Sun 4/280 processor.

Researchers in machine learning have noted that relatively small pruned rules often yield better

* results than more complex sets of induced rules [Quinlan, 1987b, Michalski, Mozetic, Hong, and

Lavrac, 19861. The number and size of rules that can be effectively inferred from even large data

sets is often surprisingly small. The number of rules in many rule-based expert systems far

exceeds those found in these machine learning applications. However, the rules in an expert

system knowledge base are based on current known expertise. Induction procedures offer the

• potential to learn rules that are currently unknown. Clearly, humans are not competitive in this

form of analysis. Using strictly empirical data, it is unlikely that a human can find a better rule

than the computer. While the same argument could be made for a purely statistical analysis,

decision rules are more consistent with human decision-making. With improved techniques and

faster computers, we can expect to see greater use of induction techniques to help discover new

* decision rules and to verify and refine the quality of current rules acquired from experts.

In terms of knowledge base acquisition, this approach can prove valuable in both acquiring new

knowledge, refining existing knowledge [Willdns and Buchanan, 1986, Ginsberg, Weiss, and

Politakis, 19881, and verifying correctness of old knowledge. Because a knowledge base of rules

* summarizes much more experiential knowledge than is usually covered by a data set of cases, in

many instances this approach can be thought of as supplementary to the knowledge engineering

approach to knowledge acquisition in rule-based systems.

Acknowledgments

We acknowledge the programming support of Kevin Kern, who programmed and tested many

of the procedures described in this paper.

0

81

References

[Andrews, 19761
Andrews, G. Encyclopedia of Mathematics and its Applications I1 - The Theory of Partitions.
Reading, Mass.: Addison-Wesley, 1976.

[Breiman, Friedman, Olshen, and Stone, 19841
Breiman, L., Friedman, J., Olshen, R., and Stone, C. Classification and Regression Tress.
Monterrey, Ca.: Wadsworth, 1984.

[Clancey, 19851
Clancey, W. "Heuristic Classification." Artificial Intelligence. 27 (1985) 289-350.

[Crawford, 19891
Crawford, S. "Extensions to the CART Algorithm." International Journal of Man-Machine
Studies. (1989) in press.

[Duda and Hart, 19731
Duda, R., and Hart, P. Pattern Classification and Scene Analysis. New York: Wiley, 1973.

[Efron, 1982]
Efron, B. '"The Jackknife, the Bootstrap and Other Resampling Plans." In SIAM. Philadelphia,
Pa., 1982.

[Efron, 1983]
Efron, B. "Estimating the Error Rate of a Prediction Rule." Journal of the American Statistical
Association. 78 (1983) 316-333.

[Fisher, 19361
Fisher, R. "The Use of Multiple Measurements in Taxonomic Problems." Ann. Eugenics. 7
(1936) 179-188.

[Fu and Buchanan, 19851
Fu, L. and Buchanan, B. "Learning Intermediate Concepts in Constructing a Hierachical
Knowledge Base." In International Joint Conference on Artificial Intelligence. Los Angeles, 1985,
659-666.

[Fukunaga, 19721
Fukunaga, K. Introduction to Statistical Pattern Recognition. New York: Academic Press, 1972.

[Galen and Gambino, 19751
Galen, R. and Gambino, S. Beyond Normality: The P'edictive Value and Efficiency of Medical
Diagnoses. New York: John Wiley and Sons, 1975.

[Ginsberg, Weiss, and Politakis, 1988]
Ginsberg, A., Weiss, S., and Politakis, P. "Automatic Knowledge Base Refinement for
Classification Systems." Artificial Intelligence. (1988) 197-226.

[Highleyman, 1962]
Highleyman, W. "The Design and Analysis of Pattern Re_,ogni'ion Experiments." Bell System
Technical Journal. 41 (1962) 723-744.

[Jam, Dubes, and Chen, 19871
Jain, A., Dubes, R., and Chen, C. "Bootstrap Techniques for Error Estimation." IEEE

0 Transactions on Pattern Analysis and Machine Intelligence. 9 (1987) 628-633.

82

[James, 19851
James, M. Classification Algorithms. New York: John Wiley & Sons, 1985.

[Kanal and Chandrasekaran, 1971]
Kanal, L. and Chandrasekaran, B. "On Dirrnsiouality and Sample Size In Statistical Pattern
Classification." Pattern Recognition. (1971) 225-234.

[Kononenko, Bratko, and Roskar, 19861
Kononenko, I., Bratko, I., Roskar, E. "ASSISTANT: A System for Inductive Learning."
Informatica. 10 (1986).

[Lachenbruch and Mickey, 19681
Lachenbruch, P. and Mickey, M. "Estimation of Error Rates in Discrininant Analysis."
Technometrics. (1968) 1-111.

[Lee and Mahajan, 19881
Lee, K. and Mahajan, S. "A Pattern Classification Approach to Evaluation Function
Learning." Artificial Intelligence. 36 (1988) 1-25.

[Marchand, Van Lente, and Galen, 19831
Marchand, A., Van Lente, F., and Galen, R. "The Assessrmnet of Laboratory Tests in the
Diagnosis of Acute Appendicitis." American Journal of Clinical Pathology, 80:3 (1983) 369-374.

[McClelland and Rumelhart, 1988]
McClelland, J. and Rumelhart, D. Explorations in Parallel Distributed Processing. Cambridge,
Ma.: MIT Press, 1988.

[Michalski, Mozetic, Hong, and Lavrac, 19861
Michalski, R., Mozetic, I., Hong, J., and Lavrac, N. "The Multi-purpose Incremental Learning
System AQ15 and its Testing Application to Three Medical Domains." In Proceedings of the
Fifth Annual National Conference on Artificial Intelligence. Philadelphia, Pa., 1986, 1041-1045.

[Narenda and Fukunaga, 19771
Narenda, P. and Fukunaga, K. "A Branch and Bound Algorithm for Feature Subset
Selection." IEEE Transactions on Computers. C-26 (1977) 917-922.

[Quinlan, 19861
Quinlan, J. "Induction of Decision Trees." Machine Learning. 1 (1986) 1.

[Quinlan, 1987a]
Quinlan, J. "Simplifying Decision Trees." International Journal of Man-Machine Studies. 27
(1987) 221-234.

[Quinlan, 1987"]
Quinlan, I. "Generating Production Rules from Decision Trees." In Proceedings of the Tenth
International Joint Conference on Artificial Intelligence. Milan, Italy, 1987, 304-307.

[Quinlan, 1987c
Quinlan, J. "Induction, Knowledge and Expert Systems." In Australian Joint Conference On Al.
Sydney, Australia, 1987,.

[Roberts, 1984]
Roberts, S. "A Branch and Bound Algorithm for Determining the Optimal Fear .re Subset of
Given Size." Applied Statistics. 33 (1984) 236-241.

83

[Spackman, 19881
Spackman, K. "Learning Categorical Decision Criteria in Biomedical Domains." In
International Conference on Machine Learning. Ann Arbor, 1988, 36-46.

[Steen, 19881
Steen, L. "The Science of Patterns." Science. 240 (1988) 611-616.

[Stone, 19741
Stone, M. "Cross-Validatory Choice and Assessment of Statistical Predictions." Journal of the
Royal Statistical Society. 36 (1974) 111-147.

[Weiss and Kulikowski, 19841
Weiss, S. and Kulikowski, C. A Practical Guide to Designing Expert Systems. Totowa, New
Jersey: Rowman and Allanheld, 1984.

[Weiss, Galen, and Tadepalli, 19871
Weiss, S., Galen, R., and Tadepalli, P. "Optimizing the Predictive Value of Diagnostic
Decision Rules." In Proceedings of the Sixth Annual National Conference on Artificial Intelligence.
Seattle, Washington, 1987, 521-526.

[Wilkins and Buchanan, 19861
Wilkins, D. and Buchanan, B. "On Debugging Rule Sets When Reasoning Under
Uncertainty." In Proceedings of the Fifth Annual National Conference on Artificial Intelligence.
Philadelphia, Pa., 1986,448-454.

Models for Measuring Performance of Medical

Expert Systems

Nitin Indurkhya and Sholom M. Weiss
Department of Computer Science, Rutgers University, New Brunswick, NJ 08903

Abstract
Scoring schemes for measuring expert system performance are reviewed. Rule-based classifi-

cation systems and their error rates on sample data are considered. We present several models of

measurement that are categorized by four characteristics - mutual exclusivity of classes, unique

answers provided by the system, known correct conclusions for each case and use of confidence

factors to weight the system's conclusions. An underlying model of performance measurement

is critical in determining which scoring strategy is appropriate for a system and whether a

comparison of different medical expert systems can be made.

1. Introduction

Although many medical expert systems have been developed, relatively few have been formally

evaluated [8, 12, 21]. Different methods of measuring performance can be used for each system,

making it difficult to compare their performance. In this report several underlying models of

measuring performance are considered. Here performance refers to the error rates of systems on

sample data.

A survey of strategies for measuring performance of medical expert systems can be found in

[12] which proposes three levels of evaluation:

1. The subjective assessment of the research contribution of a developmental system.

2. The validation of a system's knowledge prior to possible clinical use.

3. The evaluation of the clinical efficacy of an operational consultation system.

In terms of these levels, this report deals with the second level of evaluation - validation of system

performance prior to possible clinical use.

* Rather than surveying performance measurement strategies in existing systems, the focus, in

this paper, is on underlying models. Classification type rule-based expert systems [2, 18] are con-

sidered, although the results can be carried over to other classification systems [7]. The discussion

is confined to scoring and measuring performance, as opposed to techniques (such as train and

test) for estimating bias in the measured error rates [4]. A review of performrace measurement

models is critical in determining which scoring strategy is appropriate for a system and whether a

comparison of different medical systems can be made.

84S"

Set of Cases Expert System

Case Data Expert Classifier

Expert's System's

Conclusion Conclusions

] Correctness Classifier

Correct Incorrect

Figure 1: Measuring Expert System Performance

2. Measurement Models For Classifiers

A performance measurement model for a classification expert system requires several basic elements.

Figure 1 illustrates the components of a standard performance measurement model. In Figure 1, the
scoring of a case depends on the system's conclusion and the expert's conclusion. The structure

of the classifier is not critical - it could be a set of rules, a decision tree or even a procedural
algorithm. The only thing that is of concern is that the classifier takes case-data as input and

outputs an answer. Thus, for evaluation purposes, the expert classifier is treated as a black box. In

fact the view taken is that of an examiner who is given a system and told to measure its performance.
The examiner does not care how the system is designed internally and focuses on the output of the
system for a given set of input values.

For the purposes of measuring performance, the following characteristics are of interest:

* Unique Answer This attribute refers to whether the system's conclusion for a case is unique.
Thus, if a classifier always outputs a single class as its conclusion for all the test cases, the
system is said to be UA restricted. Otherwise, the system is Not- UA restricted. As an example,
consider the conclusions listed in Table 1 for two systems classifying among (cioass, class2,

class3) over the same set of cases. For the given set of cases, System A is UA restricted and
* System B is Not-UA restricted. This will affect what kind of scoring strategy is best suited

for evaluating these systems. The scoring scheme for System A will be different from that for

System B.

85

Case System A System B

casel class1 classl, class2

case2 class3 class2

case3 classi classl, class3

Table 1

Mutual Exclusive Classes This attribute refers to whether, for a given case, only one class can
be satisfied. This will be true if the classes considered are mutually exclusive. It is assumed

that the classes span the space of alternatives1 . Thus, if every case can be classified in one and
only one of the classes, then we say that the domain is ME restricted. If there are cases that

can be classified in more than one class, then we say that the domain is Not-ME restricted.

Known Case Conclusion This attribute refers to whether the correct conclusion for a case is
known and undisputed. The correct conclusion can be obtained from an expert or the true
conclusion can be obtained by observation over time until the event is over. Thus, for a

system which predicts rain for the next day, the true conclusion can be obtained by waiting
until the next day and observing whether it rains or not. This will be the correct conclusion

for the case. If the true conclusion is obtainable, then it is also undisputed. However, if the

correct conclusion is obtained from an expert, then it may be disputable. For a case, two

different experts may diagnose differently.

Weighted Answers This attribute refers to whether the system's answers are classified by un-

certainty factors. If the system gives unweighted answers without any certainty factors, its

answers are considered definite. For example, given a three class situation of classl, class2

and class3, an expert system with unweighted answers might give the following output -

(class2, class3). This will be taken to mean that the case can be classified as both class2

and class3 and that both the classifications are equally definite. A system gives weighted

answers if it makes use of an uncertainty model in its reasoning. Such a system typically
provides a likelihood measure or a Confidence Factor (CF) with each class - the CF reflect-

ing how strongly the system supports this class as an answer. For example, for the three
class situation described above, an expert system with weighted answers might have output

as given in Table 2. Thus, the system has no confidence that the case can be classified as
class3 and has a higher confidence in classifying the case as class1 than as class2. In the

above example, note that the confidence factors do not sum up to 1.0. This means that the

uncertainty model is not based on probability theory. This is not unusual. Many systems

use non-probabilistic uncertainty models. For purposes of measuring performance, the theory

underlying the uncertainty model is not significant.

'If the classes do not span a complete set of possibilities, then an additional class None-of .the.above can be added
to the list of classes.

86

classl 0.7
class2 0.5

class3 0.0

Table 2

The above features will be used to categorize scoring strategies and describe models for measuring

performance.

3. Models For Systems Restricted To Mutual-Exclusivity And

Unique Answers

The simplest situation occurs when the correct conclusion for the case is undisputed and known,

the classes are mutually exclusive and span the possibilities, and the system's conclusion is unique.

A classifier for a ME-restricted domain, usually gives a unique answer for any input data2 . Thus

for a ME-restricted problem, most classifiers would be UA-restricted and for any input data would

give a unique answer. In a rule-based system, where no rules or multiple rules can be satisfied,

a unique answer is equivalent to conflict resolution in which a single answer is selected by some

criteria such as highest confidence factor, etc. These criteria can be encapsulated into a unique

answer generator. Because of this, it does not matter whether the answers are weighted or not. The

situation for UA-restricted classifiers in ME-restricted domains is shown is Figure 2. Performance

measurement models for such systems are examined in the rest of this section.

* 3.1. The Correctness Model

The most common measurement strategies are based on measuring the total number of correct

decisions made by a system. This measure is popular among machine learning systems [10] where

performance improvement is demonstrated by counting the number of correct responses before and

* after learning. The underlying model is one in which the number of correct/incorrect responses are

being noted. Thus, for example, for a two class situation (mutually exclusive classes):

System's response =C tte

Correct response Co,,t

A case is classified as correct or incorrect using Table 3. With this information, Table 4 is filled

up. The metric of perce,,tage of errors is calculated as:

of errors = C " ", et

2When classifiers for ME-restricted domains are not UA-restricted, this leads to analytical difficulties. This issue

will be discussed later on in this report.

87

Set of Cases Expert System

Case Data Expert Classifier

Exper's '1Conclusion

Conclusion Unique Answer Generator

L Correctness Classifier

Correct incorrect

Figure 2: Systems Restricted To Unique Answers And Mutual Exclusivity

CaJatevn

Cco ,ect Classl Class2

Class1 Correct Incorrect

Class2 Incorrect Correct

Table 3

Alternatively, one could use a confusion matrix (7]. A confusion matrix is a NxN table of actual

class against classified class where N is the number of classes. This is illustrated by the following

example. Suppose for a three class situation, a classifier produces the confusion matrix given in

Table 5 in scoring a set of 50 cases: Note that each entry in the confusion matrix refers to the

number of cases having the corresponding C,vte, and C,,,,t. Thus, for example, the entry in

the first row and second column means that in 2 cases Cv°tn was Class2 and Cco,ret was Classl.

* Correctly classified cases fall on the diagonal moving from the upper left to the lower right. Based

on the the confusion matrix, the overall error rate can be determined as in Table 6. This gives the

following result for the system:
% of errors = - x 100 = 28%

This model is the simplest measurement model and compares performance at a coarse level. It

does not distinguish between different types of errors.

88

S

SI

Correct Incorrect

Table 4

C#jatem _

C~orec Classl Class2 Class3

Classi 13 2 5

Class2 2 14 1

C"Zss3 3 1 9

Table 5

Correct Incorrect

Table 6

3.2. The Positive/Negative Correctness Model

Some systems use a more detailed model than the correctness model described above. Instead

of classifying a case as correct, it is now classified as True Positive or True Negative. Instead

of classifying a case as incorrect, it is now classified as False Positive or False Negative. This

classification is done with respect to a class.

As an example, the tables involved for a two class situation are shown in Table 7. Note that

the tables are with respect to class1. For N classes, the table with respect to Classl would be as

Cwcoqet Class1 Class2

Class1 True Positive False Negative

Class2 False Positive True Negative

Table 7

shown in Table 8. Using the above classification for each case, Table 9 is calculated for each class:

For each table, H1+ and H- add up to the total number of cases as do T+ and T-. The tables for

the classes are related. A FP case for classl will be a FN case for class2. The sum of all the TP's

and FN's from all the classes equals the total number of cases. Since FN's for a class are FP's for

other classes, it is enough to report TP and FP values for each class.

89

S n mn u u

C*,jstem______

C ,e Classl Class2 Class3 ... ClassN

Classl TP FN FN ... FN

Class2 FP TN FN ... FN

Class3 FP FN TN ... FN

ClassN FP FN FN ... TN

Table 8

H+ TP FN

H- FP TN

TabI4, 9

A number of metrics are possible using this model. Some of them are listed in Table 10.

A system which uses this model is described in [5]. The metrics specificity and ser sitivity are

Sensitivity TP/H+

Specificity TN/H-

Predictive value(+) TP/T+

Predictive value(-) TN/T-

Accuracy (TP+TN)/TOTAL

Table 10

commonly used in scoring laboratory tests in medicine. It is important to note that there are two

kinds of errors being distinguished: false positive errors and false negative errors. They could be

considered of unequal importance.

The computations can be done easily using a confusion matriz similar to the example given for

the correctness model. The tables described above can provide useful information for improving

the performance of the classifier. For example, it might indicate that the classifier does very well

on all the classes but one - thereby indicating that the performance can be improved by trying to

improve the results for this one class. SEEK2 [6] is an example of a system that uses the matrix of

0 True Positives, False Negatives, False Positives and True Negatives as a source of information for

improving performance which it measures using the correctness model.

90

3.2.1. The Correctness And Cost Model

This is a generalization of the positive/negative correctness model. There is now a cost factor

associated with making a FP or FN judgment. This kind of model is useful when it is known that

the cost of making a FP decision is different from making a FN decision. For example, in a situation

of approving credit card requests, the cost of a FN decision (not approving a good applicant) is

relatively low (the annual card fee and interest payments) while the cost of a FP decision (approving

an applicant who is unable to pay his bills) is high (the average annual purchases of a credit card

holder). Thus one calculates Table 11. The positive/negative correctness model is a special case

T+ T-

H+ TP FN x FNcost

H- FP . FPcost TN

Table 11

of this model with FNco.it = FPcost = 1. Note that the cost function need not be linear. For

example, if it is important that the number of FN's be not more than 50% of the FP's, then the

non-linear cost function which needs to be calculated would be f(FP, FN) = FP/FN. The same set

of metrics as used with the positive/negative correctness model are relevant here.

A number of optimality measures (br classifiers can be understood as special cases of this model.

Thus, the criteria described in [7, Pg 63] - Minimum cost, Minimax error and Fixed error rate can

be all seen to be within the scope of this model. The reader is referred to [7] for details.

4. Models For Systems Restricted To Mutual-Exclusivity And

Non-Unique Answers

In all the models discussed so far, three important assumptions have been made:

* Known Case Conclusion: The correct conclusion was known and undisputed.

ME Restricted Domain: The classes were mutually exclusive.

UA Restricted Classifier: The expert system incorporated a unique answer generator thereby

* ensuring that for any input data, the system always gave a unique answer.

These assumptions simplify considerably the factors affecting measurement. We now relax the

third of the abovementioned constraints and consider Not- UA restricted expert systems. So the

sitaation is that the classes are mutually exclusive and the classifier can give more thani one class

* as its conclusion3 .

'The conclusion for each cae is still known and undisputed.

91

40

It was mentioned earlier that when a classifier for a ME restricted domain is not UA restricted,

this leads to analytical difficulties. The reason for this is that having non-unique answers when

only one of the classes can be a correct answer leads to difficulties in evaluation. The strategies for

dealing with these problems can be categorized on the basis of whether the answers are unweighted
or weighted 4 .

4.1. Models For Systems With Unweighted Answers

In this situation non-unique answers arise because rules for more than one class are satisfied and

the system does not have a strategy for picking among the classes. Sometimes, this indicates that

the system is not properly constructed. For the purposes of evaluating such a system, the system

designers must provide schemes for picking one of the multiple answers as the answer to be used in

scoring the system. In effect, the system must be augmented with methods which act as filters to

the system output and make it UA-restricted. A good example of this can be found in AQ15 [11).

In reporting performance of AQ15, Michalski and his colleagues describe the use of special routines
of the kind mentioned above which force the system to be UA-restricted.

There are situations, however, when one could measure performance in the presence of multiple
answers. For example, let there be 100 classes and for a particular case, suppose system A narrows

its diagnosis down to 3 classes while system B narrows its diagnosis down to 20 classes. Let the

correct conclusion be among the multiple answers of system A as well as those of system B. Clearly,

system A has done better than system B. Such an evaluation is reported by Spackman 161 who
compares the performance of his learning system CRLS with AQ15. Refer to Section 5.1.2. where

the technique is discussed. However, when there are only two mutually exclusive classes, accepting

multiple answers is awkward.

4.2. Models For Systems With Weighted Answers

When the system provides weighted answers, this can give rise to non-unique answers if the system
itself does not select one of the classes as a conclusion. There are two main strategies for dealing

with this situation.

4.2.1. Using Models Restricted To Mutual-Exclusivity And Unique Answers

Given the standard interpretation of confidence factors and given the knowledge that the classes

* are mutually exclusive, for purposes of scoring the system, the class in which the system has highest

confidence can be picked as the C,,,t, s . This makes the system UA-restricted and so the ME/UA

restricted models can be used to score the system. For example, if for a case, a system gives

4 Because the systems being considered are Not-UA restricted, confidence factors do make a difference now, as

compared to the previous section where UA restricted systems were considered.
'There is the problem of how to handle ties - more than one class having the highest confidence, but this

complication shall be ignored for the moment.

92

classl 0.7

class2 0.5
class3 0.0

Table 12

Table 12 as output, then, for the purposes of scoring the system over the case, classi will be picked

as Caja tem.

4.2.2. Measurement By Averaging Weights

By picking the most certain answer, in effect, the uncertainty in the answers is being ignored. A

situation where the correct conclusion has second-highest confidence may be better than a situation

where the correct conclusion has fourth-highest confidence. By picking the class with highest

confidence, both the above situations are marked as wrong and classified equivalently. This may

not be desirable. The solution is to use techniques which measure partial correctness in these

situations by averaging over the weights. Two such techniques are described below:

Measurement Using Distance Metrics

*0 One way of measuring partial correctness is to use a closeness measure rather than forcing the

system to choose between correct and incorrect classification. For N diagnoses, consider an n-

dimensional space. Each axis is the confidence factor of a diagnosis (hence it is scaled from 0 to

1). The expert's conclusion is a point in this space and so is the system's conclusion. Consider an

appropriate distance metric between these two points in this space. The mean or variation over all

cases could be taken as a performance metric.

Thus, for example, consider the case of the earlier section. Let Cc,:,,ae for the case be class2.

Since there are 3 classes, points in 3-dimensional space need be considered. Let classf lie along the

z-azis, class2 along the y-azis and class3 along the z-azis. Then, Cc,,,ed can be represented by the

* point (0,1,0). Similarly, C,.trr, is the point (0.7,0.5,0.0). If the squared distance is taken as a

metric, then the case is assigned a score of 0.74.6 Once scores are calculated for a number of cases,

the average squared distance can be reported as a performance metric. This kind of performance

measurement using a distance metric is popular among neural net systems [151.

Measurement Using ROC Curves

This measurement strategy, described in [171, is useful in the two class situation. An ROC curve

is a plot of sensitivity against I-specificity. The values of specificity and sensitivity are calculated

for various levels of decision confidence of the system. These levels are chosen along the confidence

'The smaller this score, the better the performance on the case.

93

range. The area under the ROC curve is calculated as an performance metric. A 100% accurate

system having 100% sensitivity and 0% specificity, has an area of 1.0. This measure is independel-t

- of the occurrence of class members in the test data as well as of the decision bias of the system.

The strategy can be best illustrated by an example. Consider the data in Table 13 obtained from

an expert system that classifies patients as having Rheumatoid Arthritis (RA) or not. 121 cases

are classified by the system in four different categories. These categories are obtained by dividing

the confidence range into four intervals and classifying cases into these four categories instead of

the original two categories (RA or not-RA)7 . This gives us the results of columns 2 and 3. The

Rating category Ccorrect = RA Ccoarect $ RA Sensitivity 1 - Specificity

definitely RA 21 4 0.50 0.05

probably RA 10 5 0.74 0.11

possibly RA 7 13 0.90 0.28
definitely not RA 4 57 1.0 ±.0

total 42 79

Table 13

sensitivity and specificity are calculated by the "rating procedure". This involves viewing each

rating category as representing a threshold. All cases in higher categories are viewed as positive

decisions. Thus, viewing Possibly RA as representing a threshold, we compute the following:

Number of true positive decisions = 21 + 10 + 7 = 38
Total number of positive decisions = 42

Number of false positive decisions = 4 + 5 + 13 = 22

Total number of negative decisions = 79

Sensitivity = True Positive decisions/Total Positive decisions = 0.90

1 - Specificity = False Positive decisions/Total negative decisions = 0.28

The other values in columns 4 and 5 are calculated similarly. Thus rating information is used as

though decision thresholds were being used instead. Once we the results of columns 4 and 5, we

now have enough information to plot five points. The resulting ROC curve is shown in Figure 3
with an area of 0.87.

5. Relaxing Mutual Exclusivity Of Classes

In the previous section, it was shown that relaxing the UA restriction while keeping the ME

restriction leads to problems. Now the ME restriction is relaxed while still keeping the constraint

*• of having a known undisputed concl,ision for each case.

'The choice of four categories is arbitrary. It could have been anything else.

94

S

1.0

Sensitivity

0.5

0.0

0.0 0.5 1.0
(I -- Specificity)

Figure 3: An ROC Curve

V the classes are not mutually exclusive, multiple classes may apply to the same case data.

For example, a patient may have a bad throat, fever, diabetes and lung cancer at the same time.

Any system thkat diagnoses this set of health disorders cannot make assumptions about mutual
exclusivity of these classes. Thus, from Figure 2, the unique answer generator can be removed.

The new situation is depicted in Figure 4.

It is immediately clear that a large part of performance measurement now rests with the cor-

rectness classifier. In the earlier models, since there was only one expert conclusion and one system

conclusion for each case, the correctness classification was trivial - just check to see if expert's
conclusion was equal to the system's conclusion or not. Now, however, the problem is complicated

because there are multiple classes for the conclusions of both the expert system and the expert.

How does one score a case for which the expert system and the expert agree of some conclusions

and disagree on some others ? Any model that deals with measuring performance of such systems

must necessarily address this problem and have a scheme for resolving it.

0

5.1. Models Yor Systems With Unweighted Answers

As before, the simplest situation is considered first. Assume that the correct conclusions are known

and undisputed and that the system's conclusions are unweighted answers Note that Co,,ect and

9 C,,,t,. are sets of classes. Thus for a case one could have C-.et = (classl, class=3) and C.vot., =
(classl, class2). The models described below are proposed as possible ways of scoring such systems.

95

Set of Cases Expert System

Case Data Expert Classifier

Expert's System's

Conclusion Conclusions

SV

@ Correctness Classifier

Correct Incorrect

Figure 4: Measurement With Multiple Diagnoses

* 5.1.1. The Case Correctness Model

The simplest measure of performance is to measure how many cases are incorrect. The definition

of an incorrect case may not be domain-independent. Consider the following examples:

1. If the domain is medicine and we are dealing with a set of diseases all of which are very
expensive to test and at the same time all the diseases are life threatening, then for a case

in question, the system must match the expert exactly in its conclusions. If it guesses more
disease classes than the expert, then the further testing required to weed out the false positives
would make the system not very cost effective. On the other hand, if the system does not

guess all the diseases, then the patient will not have much confidence in the system. These

criteria translate into the following correctness classifier:

If Cco,.ect and Cyv, match exactly, then the case is correct or else it is incorrect.

* 2. Again consider a set of diseases which are extremely expensive to test for precisely. Assume
that an expert system is being installed for checking the presence of these diseases during

regular medical examinations. For the system to be effective and useful, the system must not

raise false alarms which would necessitate the expensive testing. For such a situation, the

following correctness criteria would be appropriate:

If Cvtaeeni is a subset of C a.ed then the case is correct or else it is incorrect.

!tg 96

Given that the correctness classifier classifies each case as correct or incorrect (possibly by some

domain-dependent scheme), the percentage of errors can be computed as a measure of the system

performance. The metric of percentage of errors is calculated as before:

oncorrect X 100.% of errors = Correct+ Incorrect

In many situations it is often important to determine the degree of error. Otherwise one cannot

distinguish between the performance of systems such as systems M and N listed in Table 14. Assume

Conclusions

System Case A Case B

Expert classl, class2 class2, class 3

System M class2 classi, class2, class3

System N class3 classl

Table 14

the correctness criteria is exact match. Although, both systems M and N got the cases wrong, it

seems, intuitively, that System M did better than System N. This is not reflected at all in the

measurement by case correctness.

5.1.2. The Partial Correctness Model

It was seen above that the case correctness model was relatively coarse. Another way of measuring
correctness would be to employ some kind of closeness measure rather than to force the system

to choose between correct and incorrect classification. This can be Z.chiewcd by allowing partiai
correctness of cases. The following example illustrates this strategy. Suppose that a system reports

performance on two cases as shown in Table 15. Thus for Casel, Cc,. e t contained 2 classes and

Case Ccorret Cap.tem

Camel classl, class class2, class3

Case2 class2, cass3 classi, class2, classS

0Table 15

the system got 1 of them right, so it is given a score of 1/2 on correctness. While this handles the

case of partial correctness on cases, it is inadequate unless it is coupled with some measure on how
precise the system was. One such measure is the positive predictive values . Thus, for the above

*example, we get the following two measures:

8 The ratio of the number of classes correctly identified by the tntal number of cleA*es in C..,.,,,.

97

Accuracy = 2+2 = 0.75
2+2

Predictive Value (+) = = 0.60

These metrics were in fact used in [11] to measure performance of AQ15 for cases with multiple

diagnoses.

5.1.3. The Diagnostic Performance Model

The case correctness model does not specify a system's performance relative to a class. This may

be important for a rule-based system, for example, to determine the performance of the rules for

a particular class (so that they can be refined). One way of measuring performance by diagnostic

class is as follows:

Split each case into p-cases corresponding to the number of correct classes for that case. Thus,

each p-case has one conclusion from the C,,ct's for the case which generated it. This is the

CCo,,e of the p-case. Now we measure performance for each p-case. The system classifies a p-case

as correct if the c,,.ect of the p-case is among the system's conclusions. The notions of False

Positive and True Negative can be defined similarly.

Thus for example, consider a domain where there are three classes: classl, class2 and class3.

Consider the two cases shown in Table 16. Table 17 shows the performance measurement listed by

case number Corect C.1 item

I class , class2 classl, class3

2 class1, class3 class2, class3

Table 16

diagnostic class. What has been done, effectively, is that the system is being viewed as a ME/UA

class TP/H+ False Positives

class1 1/2 0

class2 0/1 1

class3 1/1 1

total 2/4 2

* Table 17

restricted system. For each p-case, each of the Cv,tn,'s is the system's answer and is either equal

to the one and only one Ccoret for that p-case or not. Thus, all the metrics discussed earlier

for such systems are applicable here. Costs can be attached to the various false positive and false

negative errors of each clse in order tc, get a metri- wh ih mccsurcs performance more accurately.

SEEK2 [6] uses this model for handling cases with multiple diagnoses.

98

The drawback of this model is that it cannot be used to estimate the performance of the system
over cases. If one tries to do so, the performance measures will be biased towards cases with more

multiple conclusions.

5.2. Measurement Models For Handling Weighted Answers

So far non-ME restricted systems without uncertainty have been examined. This simplifies the in-

terpretation of system output. Any class that gets fired by the system rules, is a part of CYtem. In

this section scoring of systems with weighted answers for non-mutually exclusive classes is consid-

ered. In an earlier section, the effects of adding an uncertainty model to systems classifying among

mutually exclusive classes were analyzed. The main problem had been in defining what should

be considered as C.,t,. The same problem is encountered when the classes are not mutually

exclusive. It is assumed that the cxpert's conclusions are undisputed and definite, and the system

produces an ordered list of classes (ordered by some measure like confidence factor CF). The CF

attached to a class reflects the system's belief that the case can be classified in the class. For exam-

ple, consider a case for which the expert's conclusions are (classl, class2). Let the system produce

the following list of classes ordered by confidence factors: ((classl, 0.9) (class3, 0.7) (class2, 0.4)

(class4, 0.3)). Leaving aside C . for the moment, the difficulty is in assigning an interpretation

to CYstc,. There are several strategies that can be used here, each giving rise to a different scoring

scheme:

1. One strategy might be to ignore certainty factors for performance measurement. Thus, for
the above example, one would determine Cvrt,, = (class1, class2, class3, class4). All classes

with non-zero CF's would be considered as the system's answers. This strategy ignores the

reasoning under uncertainty employed by the system and is thus not a very precise measure

of performance.

2. Another alternative would be to ask the domain expert to define what an answer should be in
terms of the confidence factors of the system. This would depend on how the confidence factors

are being interpreted by the domain experts. Thus, one could decide to treat every class with

a CF greater than 0.5 as a part of Cv,,t. For the example, we get C.,.t, = ((classi,

0.9) (class3, 0.7)). Having used the CF's to determine what should be the answer, they are

ignored for scoring the system response. In general, there can be no domain-independent

way of using CF's to fix thresholds for answers because the confidence factors have different

interpretations in different domains. Thus, by this strategy, the system can use uncertainty

0 models for reasoning but is obligated to also provide a mechanism for determining acceptable

answers for performance measurement.

3. Another strategy might be to thrust the responsibility of interpreting the system's output to

the zaorrectness classifier. Thus the correctness classifier looks at the system output (which

* is a list of classes with coUfidw.±e factors) and the C,-tect (which is a set of classes) and

determines whether the system's output is acceptable as an answer or not. One way the

99

0

correctness classifier might do so is to count the number of classes in C,,,.-ct and accept an

equal number of classes from the system's output as C,,,t, and then do the performance

measurement using any of the schemes described for the situation when C.,t, is definite.

Thus, for the example, since Co,, t contains two classes, the two classes with highest CF
would be assumed to be the system's answer and Cot,- would be taken to be (classl,

class3). This is the strategy used by SEEK2 [6] in scoring cases with multiple diagnoses for

the AI/RHEUM knowledge base J8] which uses an uncertainty model.

4. Another way of measuring correctness would be some kind of closeness measure rather tia

to force the system to choose between correct and incorrect classification. This has been

discussed earlier for systems with mutual exclusivity and non-unique answers. The technique

is applicable even when the classes are not mutually exclusive.

6. Measurement When True Case Conclusion Not Known

In the preceding sections, techniques for measuring performance were described for conclusions

that are undisputed and known. In some domains the answer for each case is not truely known.

The expert himself may be wrong and so his conclusion may not be the true conclusion. Also, two
expert may give differing conclusions for the same case data. The problem here is how does one

find the gold standard, the conclusion against which to compare performance of the system. Several
methods for solving this problem can been used:

Find the true conclusion This means that the expert opinion is ignored and an attempt is made

to get the real answer by observing real-world events. For example, if one is building a system

which forecasts the next day's weather, then the true conclusion can be found by waiting until

the next day and observing the weather. As another example, consider a system trying to

determine life expectancy of cancer patients.

Compare with human expert's performance Sometimes it may not be possible to obtain the

true conclusion. In such situations, the strategy used is to measure the performance by

comparing with the performance of human experts.

This strategy was used to validate a version of MYCIN in the domain of meningitis [211. For

each of ten cases, six treatment recommendations were obtained - one was obtained using

MYCIN, one was the actual therapy used in treating the patient and the other four were

obtained from experts at four different experience levels. For each case, the six recommen-

* dations were randomly ordered and presented to eight outside experts. Each outside expert

gave his own recommendation and rated the six recommendations as identical to his own,

acceptable or unacceptable. A majority of the evaluators approved MYCIN's choice 70% of

the time. None of the other four experts achieved better approval than MYCIN.

* Allow experts to attach confidence factors What if the expert refuses to commit himself ?

Or if he cannot commit himself ? The strategy here is to allow the expert to attach confidence

100

factors to his conclusions. This strategy is particularly useful if the performance daLa is not

very extensive, and the expert attaches confidence factors which are known to be compatible

with the confidence ratings assigned by the system.9 For each case, one obtains the conclusions

from the expert with confidence factors for each class. For each class the signed difference

between the CF value of system and the expert is computed. For a case, the average difference

is computed over all classes to obtain a metric of performance over a case. Alternatively, the

average difference could be computed for each class over all cases to obtain a metric of

performance with respect to each class. Thus, for example, consider the data in Table 18

for a single case. The average difference between the confidence values for the above data

class C F c C Foot., Difference

classl 0.80 0.61 0.19

class2 0.40 0.50 -0.10

class3 0.30 0.30 0.00

Table 18

is 0.03 which is 3% of the 0 to 1 scale. Such a performance measurement was reported for

PROSPECTOR [3].

7. Conclusion

This paper has expiored the various issues involved in measuring expert system performance on

the basis of errors made on sample case data. The simplest scenario was considered first: when the

conclusion for each case is known and undisputed, the classes are mutually exclusive and the system

generates a single answer. These assumptions were then relaxed one by one and various approaches

used to the handle the problems arising therein were analyzed. Most of them have been shown

to be efforts to make the assumptions applicable again. From the point of view of performance

measurement, four features of expert systems were identified as interesting: (1) Unique Answer,

(2) Mutual Exclusivity, (3) True Conclusion Known and (4) Weighted Answers. The categorization

of measurement models has been done over these four features. In Table 19, some expert systems

have been classified on the basis of these features. In the table, ME, UA and TCK and WA refer

to the four features. A y refers to the presence of the feature and a n refers to its absence. Some

* combinations of these features are awkward. Thus, it is awkward to consider systems where the

classes are not mutually exclusive but the system always gives a unique answer. Note that some

of the systems mentioned in the table have been designed to handle cases from more than one

category. This is because some categories are broader than others. Thus, systems which handle

gThis would be the situation if a model of expert reasoning was being accurately designed and it was known that
the expert can give indefinite answers. So the uncertainty model being used would have to conform to the uncertainty
model used by the expert himself.

101

System UA ME TCK WA

INTERNIST-I [131 n n y y
MYCIN [21] n n n y

PROSPECTOR (3] n n n y

AI/RHEUM (81 n n 1 y

AQ15 (11] y y y n

CRLS (16] n y y n

SPE (19] n n y n

CASNET [20] n n n

PUFF [91 n n n n

Decision Trees [1, 14] y y y y
Classical Pattern y y y y
Recognition [41

Table 19 Categorization of some expert systems

cases with non-unique answers, can also handle cases with unique answers. Systems have been

classified into the broader category that covers the cases over which measurement is likely to be

done. Besides specific systems, two classes of systems have been categorized. The classical pattern

recognition algorithms referred to are supervised learning algorithms. Note that classical pattern

recognition algorithms and neural net systems tend to follow the simplest model of measurement.

Medical expert systems, on the other hand, tend to diverge from the simplest model. Consequently,

they need a more complex representation and are more difficult to evaluate.

Given the above categorization, one can more readily determine which set of measurement

models are appropriate for a given medical expert system. Determining the underlying performance

measurement model is critical in determining which scoring strategy is appropriate.

References

[1] Breiman, L. et al. (1984). Classification and Regression Trees, Wadsworth, Inc., Belmont,

California.

* [2] Clancey, W. (1984). Classification Problem Solving, Proc. of AAAI-84. Pgs 49-55.

[3] Duda, R.O. et al. (1979). Development of the Prospector Consultation System for Mineral

Exploration, Final Report SRI Project 6415, SRI International, Menlo Park, California.

[4] Duda, R.O. and Hart, P.E. (1973). Pattern Classification and Scene Analysis, John Wiley and

Sons, Inc., New York.

102

S• •w•m

[51 Galen, R. and Gambino, S. (1975). Beyond Normality: The Predictive Value and Efficiency of

Medical Diagnoses, John Wiley and Sons, Inc., New York.

[6] Ginsberg, A, Weiss, S.M. and Politakis, P. (1988). Automatic Knowledge Base Refinement for

Classification Systems, Artificial Intelligence 35 (1988). Pgq 197-226.

[7] James, M. (1985). Classification Algorithms, John Wiley and Sons, Inc., New York.

[8] Kingsiand III, L.C. (1985). The Evaluation of Medical Expert Systems: Ezperience with The

AI/RHEUM Knowledge-based Consultant System in Rheumatology. Proc. Ninth Annual Sym-

posium on Computer Applications in Medical Care. Pgs 292-295. IEEE Computer Society

Press, Washington D.C.

[91 Kunz, J.C. et. al. (1978). A Physiological Rule-based System for Interpreting Pulmonary Func-

tion Test Results. Rept. HPP-78-19, Heuristic Programming Project, Computer Science Dept.,

Stanford University, Stanford, CA.

[10] Laird, J. (ed). Proc. of the fifth International Conference on Machine Learning 1988, Ann

Arbor, Michigan.

[11] Michalski, R.S., Mozetic, I., Hong, J. and Lavrac,N. (1986). The AQ15 inductive learning

system: An overview and experiments. Tech. Rept. ISG 86-20, Dept. of Computer Science,

Univ. of Illinois at Urbana-Champaign, Urbana, Illinois.

[121 Miller, P.L. (1986). The evaluation of artificial intelligence systems in medicine, Computer

Methods and Programs in Biomedicine 22 (1986). Pgs 5-11.

[13] Miller, R.A., Pople, H.E. and Meyers, J.D. (1982). INTERNIST-i, An experimental computer-

based diagnostic consultant for general internal medicine. N. Engl. J. Med. 1982. Pgs 307-468.

[14] Quinlan, J.R. (1986). Induction of Decision Trees, Machine Learning 1 (1986). Pgs 81-106.

[15) Rumeflart, D.E., Hinton, G.E. and Williams, R.J. (1986). Learning Internal Representations

by Error Propagation in D.E. Rumelhart and J.L. McClelland (Eds.), "Parallel Distributed

Processing: Explorations in the Microstructure of Cognition. Vol. 1: Foundations". MIT Press.

[16] Spackman, K. (1988). Learning Categorical Decision Criteria in Biomedical Domains. Proc.

of the fifth International Conference on Machine Learning. Pgs 36-46. Univ. of Michigan, Ann

Arbor, Michigan.

[17 Swets, J.A. (1988). Measuring the Accuracy of Diagnostic Systems. Science (3) Jun 1988. pgs

1285-1293.

[181 Weiss, S.M. and Kulikowski, C. (1984). A Practical Guide to Designing Expert Systems. Row-

man and Allanheld, Totowa, New Jersey.

103

[19] Weiss, S.M., Kulikowski, C.A. and Galen, R. (1981) Developing Microprocessor-based Expert

Models for Instrument Interpreiation. Proc. of IJCAI-81. Pgs 853-855.

Lr20] Weiss, S.M. et. al. (1978). A Model-based Method for Computer-aided Medical Decision-making.

Artificial Intelligence (11) 1978. Pgs 145-172.

'213 Yu, V.L. et. al. (1979). Antimicrobial selection by a computer: A blinded evaluation by infec-

tious disease experts. J. Amer. Med. Assoc. 242 (1979). Pgs 1279-1282.

104

