
UNCLASSIFIED .
SECU QP2y CLASSIFICATIO Or T HIS PAGE (W hen ODatpErtereda

REPORT DOCUMENTATION PAGE U,, RrtI.*s'sDEFORE COVP.ETr:NC FOO.'

1. REPORT NUMBLR 12. GOvT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

00 4. TITLE (ardSubr,rle) 5. TYPE OF REPORT A PERIOD COVERED

o Ada Compiler Validation Summary Report: InterACT 16 Nov. 198.9 to 16 Nov. 1990
orporation, InterACT Ada Mips Cross-C-ompi1er System Relea, s

1.0 MicroVAX 3100 Cl'ster (Host) to MIP§ R2000 in an Inte- 5. PERFORMING'bRG. REPORT NUMBER
;r dAd nr1ifions (Target), 891116S1.10233

O 7. AUT.OR(s) 8. CONTRACT OR GRANT NuMBER(s)

N National Institute of Standards and Technology
N Gaithersburg, Maryland, USA

9I. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PRCjECT. TASK

National Institute of Standards and Technology
AREA & WORK UNIT NUMBERS

Gaithersburg, Maryland, USA

II. CONTROLLING OFFICE NAME AND ADDRESS
Ada Joint Program Office
United States Department of Defense Ii. N O O A Lb
Washington, DC 20301-3081

14. MONITORING AGENCY NAME & ADDRESS(Ifdifferent from Controlling Office) 15. SECURITY CLASS (of tPz report)

UNCLASSIFIED
National Institute of Standards and Technology 1S. JCASEFICATI0,,'DOw%RADIN,
Gaithersburg, Maryland, USA N/A

15. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. OISTRIBi.TION STATEMENT ,of .heabIranttMno f dfferent from Report)

UNCLASSIFIED O TIC
0E LECTE

I,..O.....

19. KEY WORDS (Continue on reverse side if neceuary amddentify by blo(k number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Corpiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on revere side of necessary ond ide ntf) by block number)

InterACT Ada Mips Cross-Compiler System Release 1.0, Gaithersburg, MD, MicroVAX 3100

Cluster under VMS 5.2 (Host) to MIPS R2000 in an Integrated Solutions, INC Advantedge

2000 Board (bare machine)(Target), ACVC 1.10.

DD Iu, 1473 EDITIO, OF I NOv 65 IS OBSOLETE
I JAN 73 S/N OIozLF-0 -6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (,,n Dot afntered)

90 04 24 095

AVF Control Number: NIST89ACT575_21.10

1 February 1990

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 891116S1.10233
InterACT Corporation

InterACT Ada Mips Cross-Compiler System Release 1.0
MicroVAX 3100 Cluster Host and MIPS R2000 in an Integrated

Solutions, INC Advantedge 2000 Board (bare machine)

Completion of On-Site Testing:

16 November 1989

Prepared By:

Software Standards Validation Group
National Computer Systems Laboratory

National Institute of Standards and Technology _ __ _-

Building 225, Room A266 Accesior F"
Gaithersburg, Maryland 20899 NTIS Cli4&I

0ojC JAB

Prepared For:
Ada Joint Program Office By.

United States Department of Defense Duto'_
Washington DC 20301-3081

Avitj Id!ltY Crode s

Avail 2"*d or
Dist S . 1ct

'A1

Ada Compiler Validation Summary Report:

Compiler Name: InterACT Ada Mips Cross-Compiler System Release 1.0

Certificate Number: 891116S1.10233

Host: MicroVAX 3100 Cluster under VMS 5.2

Target: MIPS R2000 in an Integrated Solutions, INC
Advantedge 2000 Board (bare machine)

Testing Completed 16 November 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Va idation c i Ada VaYidation Facility
Dr. David K. Jeff son Mr. L. Arnold Johnson
Chief, Information Systems Manager, SoftwarL-Standards

Engineering Division Validation Group
National Computer Systems National Computer Systems
Laboratory (NCSL) Laboratory (NCSL)

National Institute of National Institute of
Standards and Technology Standards and Technology

Building 225, Room A266 Building 225, Room A266
Gaithersburg, MD 20899 Gaithersburg, MD 20899

Ada Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

/. /7//!?l / _

, / /2 ,2 t 7;'" />-; / iy
'Ada Joint Program Office

Dr. John Solomond
Di rector

Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUM1MARY REPORT 1-2

1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 3-6
3.7 ADDITIONAL TESTING INFORMATION 3-6
3.7.1 Prevalidation 3-6
3.7.2 Test Method3-6
3.7.3 Test Site3-7

APPENDIX A CONFORMANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX E COMPILER OPTIONS AS SUPPLIED BY
InterACT Corporation

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC)., An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that
is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.
The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure
conformity of the compiler to the Ada Standard by testing that the
compiler properly implements legal language constructs and that it
idertifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent, but is permitted
by the Ada Standard. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, and during
execution.

1-1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This 2 R documents the results of the validation testing performed on an

Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by GEMMA Corporation under the
direction of the AVF according to procedures established by the Ada
Joint Program Office and administered by the Ada Validation Organization
(AVO). On-site testing was completed 16 November 1989 at InterACT
Corporation, 417 Fifth Avenue, New York, New York, 10016.

1.2 USE OF THIS VALIDATION SUIMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedom of Information
Act" (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standards Validation Group
National Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

1-2

Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, Version 2.0, May 1989.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validatior Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

Ada An Ada Commentary contains all information relevant to
the Commentary point addressed by a comment on the Ada
Standard. These comments are given a unique
identification number having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and

1-3

technical support for Ada validations to ensure
consistent practices.

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,
including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the

test

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding
a particular feature or a combination of features to the
Ada Standard. In the context of this report, the term
is used to designate a single test, which may comprise
one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be
incorrect because it has an invalid test objective,
fails to meet its test objective, or contains illegal or
erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC

contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce errors
because of the way in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal
Ada programs with certain language constructs which cannot be verified
at run time. There are no explicit program components in a Class A test

1-4

to check semantics. For example, a Class A test checks that reserved
words of another language (other than those already reserved in the Ada
language) are not treated as reserved words by an Ada compiler. A Class
A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check the run time system to ensure that legal Ada
programs can be correctly compiled and executed. Each Class C test is
self-checking and produces a PASSED, FAILED, or NOT APPLICABLE message
indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a
conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test compiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the
Ada Stand .. Each Ciss E test is self checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is
rejected by the compiler for Ln allowable reaqon.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated. In some cases, an
implementation may legitimately detect errors during compilation of the
test.

Two library units, the package REPORT and the procedure CHECKFILE,
support the self-checking features of the executable tests. The package

REPORT provides the mechanism by which executable tests report PASSED,

1-5

FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat some compiler optimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure
CHECKFILE is used to check the contents of text files written by some
of the Class C tests for Chapter 14 of the Ada Standard. The operation
of REPORT and CHECKFILE is checked by a set of executable tests. These
tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters.
contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all

implementations in separate tests. However, some tests contain values
that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an
implementation is considered each time the implementation is validated.
A test that is inapplicable fcr one validation is not necessarily
inapplicable for a subsequent validation. Any test that was determined
to cont-in an illegal language construct or an erroneous language
construct is withdrawn from the ACVC and, therefore, is not used in
testing a compiler. The tests withdrawn at the time of this validation
are given in Appendix D.

1-6

CHAPTER 2

CONFIGLRATION INFORMATION

2.1 CONFIGURATION TESTED

The ,:andidate compilation system for this validation was tested under
the following configuration:

Compiler: InterACT Ada Mips Cross-Compiler System
Release 1.0

ACVC Version: 1.10

Certificate Number: 891116SI.10233

Host Computer:

Machine: MicroVAX 3100 Cluster

Operating System: VMS 5.2

Memory Size: 32MB

Target Computer:

Machine: MIPS R2000 in an Integrated Solutions INC

Advantedge 2000 Board

Operating System: bare machine

Memory Size: 4MB

Communications Network: RS232 Link

The Ada program is compiled on the MicroVAX, the InterACT Embedded
Systems Linker is run under VAX/VMS and produces a Mips load module in

InterACT's own format.

The execution controllers are a pair of cooperating processes. The
Remote Process Administrator (RPA) runs under VAX/VMS, and is a

2-1

translator/'downloader. The Remote Process Monitor (RPM) runs on the
target Mips machine. They communicate via a RS2332 link.

The RPA is invoked with a Mips load module as input which is translated
into one or more Unix-style (a.out) format files. The RPA then
instructs the RPM to download file(s) via a pair of Ethernet

server/client processes. It then directs the RPM to start execution of

the Ada program. As the Ada program executes, it calls the RPM to
perform input/output. When the Ada program finishes its execution, it
gi.ves control back to the RPM. The RPA then gives control back to the
'user in V.X,/'MS.

z.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas nf the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing

723 variables in the same declarative part. (See test
D29002K.)

(2) The compiler correctly processes tests containing loop

statements nested to 65 levels. (See tests D55AO3A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(I) This implementation supports the additional predefined type

LONG_FLOAT in the package STANDARD. (See tests B86001T..Z
(7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at
which constraints are checked are not defined by the language.

2-2

While the ACVC tests do not specifically attempt to determine
the order of evaluation of expressions, test results inaicate
the following:

(1) All of the default initialization expressions for record
components are not evaluated before any value is checked
for membership in a component's subtype. (See test

C32117A.)

(2) Assignments for subtypes are performed with the same

precision as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision
and uses all extra bits for extra range. (See test
C35903A.)

(4) NLMERICERROR is raised when a literal operand in a
comparison or membership is outside the range of predefined

Integer and in a comparison or membership test that is
greater than System.Max_Int. No exception is raised when
an integer literal operand in a comparison is outside the
range of the base type. (See test C45232A.)

(5) NLMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the
range of the base type. (See test C45252A.)

(6) Underflow is gradual.(See tests C45524A..Z(26 tests).)

d. Rounding.

The method by which values are rounded in type conversions is
not defined by the language. While the ACVC tests do not
specifically attempt to determine the method of rounding, the
test results indicate the following:

(1) The method used for rounding to integer is round away from

zero. (See tests C46012A..Z (26 tests).)

(2) The method used for rounding to longest integer is round
away from zero. (See tests C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test
C4AOI4A.)

e. Array types.

An implementation is allowed to raise NUMERIC ERROR or

CONSTRAINTERROR for an array having a 'LENGTH that exceeds

2-3

STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementatioii:

(1) Declaration of an array type or subtype declaration with
more than SYSTEM.MAXINT components raises no exception.
(See test C36003A.)

(2) NUMERIC ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C36202A.)

(3) NUMERIC ERROR is raised when 'LENGTH is applied to an array
type with SYSTEM.MAXINT + 2 components. (See test
C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding
INTEGER'LAST raises NUMERIC ERROR when the array objects
are declared. (See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises a NUMERICERROR when the
subtype is declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERICERROR or CONSTRAINTERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However,
lengths must match in array slice assignments. This
implementation raises NUMERIC ERROR when the array type is
declared. (See test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array t- cs, the expression is
not evaluated in its entirety before _jNSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the
expression is evaluated in its entirety before
CONSTRAINTERROR is raised when checking whether the
expression s subtype is compatible with the target's
subtype. (See test C52013A.)

g. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, the

2-4

test results indicate that index subtype checks are made as
choices are evaluated. (See tests C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate

does not belong to an index subtype. (See test E43211B.)

h. Pragmas.

(1) The pragma INLINE is supported for functions or procedures.

(See tests LA3004A..B (2 tests), EA3004C..D (2 tests), and
CA3004E..F (2 tests).)

i. Generics.

(1) Generic specifications and bodies can be compiled in
separate compilations. (See tests CAI012A, CA2009C,

CA2009F, BC3204C, and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3OIIA.)

(3) Generic subprogram declarations and bodies can be compiled
in separate compilations. (See tests CA1OI2A and CA2009F.)

(4) Generic library subprogram specifications and bodies can
be compiled in separate compilations. (See test CAlOI2A.)

(5) Generic non-library subprogram bodies can be compiled in
separate compilations from their stubs.(See test CA2009F.)

(6) Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

(7) Generic library package specifications and bodies can be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

(8) Generic non-library package bodies as subunits can be
compiled in separate compilations. (See test CA2009C.)

Input and output.

(1) The package SEQUENTIALIO can be instantiated with
unconstrained array types or record types with

2-5

discriminants without defaults. (See tests AE2101C,
EE2201D, and EE220IE.)

(2) The package DIRECTTO can be instantiated with
unconstrained array types or record types with
discriminants without defaults. (See tests AE21OIH,
EE2401D, and EE240IG.)

(3) The director, AJPO, has determined (AI-00332) that every
call to OPEN and CREATE must raise USE ERROR or NAMEERROR
if file input/output is not supported. This implementation
exhibits this behavior for SEQUENTIALTO, DIRECTIO, and
TEXT_TO except for text 1O standard input and standard
output.

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 718 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for
201 executable tests that use floating-point precision exceeding that
supported by the implementation. Modifications to the code, processing,
or grading for 8 tests were required to successfully demonstrate the
test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

A B C D E L

Passed 123 1126 1630 17 13 46 2955

Inapplicable 6 12 685 0 15 0 718

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 195 572 532 242 172 99 158 331 135 36 250 157 76 2955

Inapplicable 17 77 148 6 0 0 8 1 2 0 2 212 245 718

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 16o 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time
of this validation:

A39005G B97102E C97116A BC3009B CD2A62D CD2A63A
CD2A63B CD2A63C C02A63D CD2A66A CD2A66B CD2A66C
CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D CD2A76A
CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G CD2A84M
CD2A84N CD2BI5C CD2DllB CD5007B CDS0110 CD7105A
CD7203B CD7204B CD7205C CD7205D CE2107I CE3111C
CE3301A CE3411B E28005C ED7004B ED7005C ED7005D
ED7006C ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 718
tests were inapplicable for the reasons indicated:

a. The following three tests, C241131..K, are not applicable
because the max line length of 126 characters is exceeded.

b. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

3-2

C24113L. .Y (14 tests) C35705L..Y (14 tests)
C35706L. .Y (14 tests) C35707L..Y (14 tests)

C35708L. .Y (14 tests) C35802L..Z (15 tests)
C45241L. .Y (14 tests) C45321L..Y (14 tests)

C45421L. .Y (14 tests) C45521L..Z (15 tests)
C45524L. Z (15 tests) C45621L..Z (15 tests)

C45641L. .Y (14 tests) C46012L..Z (15 tests)

c. The following 170 tests are not applicable because 'SIZE
representation clauses are not supported.

A39005B CD1009B
CD1009P CD2A21A..E (5 TESTS)
CD2A22A..J (10 TESTS) CD2A23A .E (5 TESTS)
CD2A24A..J (10 TESTS) CD2A31A .D (4 TESTS)
CD2A32A..J (10 TESTS) CD2A41A .E (5 TESTS)
CD2A42A..J (10 TESTS) CD2A51B .E (4 TESTS)
CD2A52A..D (4 TESTS) CD2A52G. .J (4 TESTS)
CD2A53A..E (5 TESTS) CD2A54A .D (4 TESTS)

CD2A54G..J (4 TESTS) CD2A64A. .D (4 TESTS)
CD2A65A..D (4 TESTS) CD2A61A. .L (12 TESTS)
CD2A62A..C (3 TESTS) CD2A71A .D (4 TESTS)
CD2A72A..D (4 TESTS) CD2A74A. .D (4 TESTS)
CD2A75A..D (4 TESTS) CD2A81A..F (6 TESTS)
CD2A83A..C (3 TESTS) CD2A83E..F (2 TESTS)
CD2A84B..I (8 TESTS) CD2A84K..L (2 TESTS)

CD2A87A CD2A91A..E (5 TESTS)
CDlC03A CDlCO4A
CDlC04C CD1OO9A
CDI009C..I (7 TESTS) CD10090
CD1009Q ED2A26A
ED2A56A ED2A86A.

d. C355081, C35508J, C35508M, C35508N, C87B62A, ADlC04D, AD3015C,
AD3015F, AD3Ol5H, AD3015K, CDIC04B, CDlCO4E, CD3015A,B,D,E (4
TESTS), CD3015G, CD30151, CD3015J, CD3015L, CD4051A..D (4 TESTS)
these 24 tests are not applicable because representation clauses
are not supported for derived types.

e. C35702A and B86001T are not applicable because this
implementation supports no oredefined type SHORTFLOAT.

f. The following 16 tests are not applicable because this
implementation does not support a predefined type SHORTINTEGER:

C45231B C45304B C45502B C45503B

C45504B C45504E C45611B C45613B
C45614B C45631B C45632B B52004E
C55B07B B55BO9D B86001V CD71OIE

3-3

g. C45531M..P(4 tests) and C45532M..P(4 tests) aren't applicable
because the fixed point definitions are not supported.

h. C4AOI3B is not applicable because the evaluativn of an
expression involving 'MACHINE_RADIX applied to the most
precise floating-point type would raise an exception; since
the expression must be static, it is rejected at compile
time.

i. The following 16 tests are not applicable because this
implementation does not support a predefined type

LONGINTEGER:

B52004D B55B09C B86001W C45231C
C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C
C45631C C45632C C55BO7A CD7101F

j. B8600IX, C45231D, and CD71OIG are not applicable because this
implementation does not support any predefined integer type
with a name other than INTEGER or LONGINTEGER.

k. B86001Y is not applicable because this implementation
supports no predefined fixed-point type other than

DURATION.

1. B8600lZ is not applicable because this implementation supports
no predefined floating-point type with a name other than FLOAT,
LONGFLOAT, or SHORTFLOAT.

m. C86001F is not applicable because, for this implementation, the
package TEXT_10 is dependent upon package SYSTEM. These tests
recompile package SYSTEM, making package TEXTIO, and hence
package REPORT, obsolete.

n. C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

o. CA2009C, CA2009F, BC3204C, and BC3205D are not applicable
because this implementation requires that generic bodies be
located in the same file or precede the instantiation. In these
four tests the Generic bodies are all in separate files and
those files come after the instantiation. If either of these
two conditions were reversed, the tests would report passed and
would then be applicable.

p. The following 21 tests are not applicable because, for this
implementation, Address clauses for constants are not supported:

3-4

CD501B CD5OIlD CD5OIlF CD5OIlH
CD5OllL CD501N CD5OllR CD5012C
CD5OI2D CDSO12G CD5013B CD5O12H

CD5OI2L CD5Ol3D CD5OI3F CDSOI3H
CD503L CD5013N CD5313R CD5OI4U CD5OI4W

q. The following 245 tests are inapplicable because sequential,
text, and direct access files are not supported:

CE2102A..C (3 tests) CE2102G..H (2 tests)
CE2102K CE2102N..Y (12 tests)
CE2103A..D (4 tests) CE2104A..D (4 tests)
CE2105A..B (2 tests) CE2106A..B (2 tests)
CE2107A..H (8 tests) CE2iO7L
CE2108A..B (2 tests) CE2108C..H (6 tests)
CE2109A. .C (3 tests) CE2110A..D (4 tests)
CE2111A. .I (9 tests) CE2115A..B (2 tests)
CE2201A. .C (3 tests) CE2201F..N (9 tests)
CE2204A. .D (4 tests) CE2205A
CE2208B CE240IA..C (3 tests)
CE2401E..F (2 tests) CE240IH..L (5 tests)
CE2404A..B (2 tests) CE2405B
CE2406A CE2407A..B (2 tests)
CE2408A. B (2 tests) CE2409A..B (2 tests)
CE2410A. .B (2 tests) CE2411A
CE3102A. .B (2 tests) CE3102F..H (3 tests)
CE3102J. .K (2 tests) CE3103A
CE3104A. .C (3 tests) CE3107A..B (2tests)
CE3108A. B (2 tests) CE3109A
CE3110A CE3111A..B (2 tests)
CE3111D..E (2 tests) CE3112A..D (4 tests)
CE3114A..B (2 tests) CE3115A
CE3208A CE3302A
CE3305A CE3402A
CE3402C..D (2 tests) CE3403A..C (3 tests)
CE3403E..F (2 tests) CE3404B..D (3 tests)
CE3405A CE3405C..D (2 tests)
CE3406A..D (4 tests) CE3407A..C (3 tests)
CE3408A..C (3 tests) CE3409A
CE3409C..E (3 tests) CE3410A
CE3410C..E (3 tests) CE3411A,C (2 tests)
CE3412A CE3413A
CE3413C CE3602A..D (4 tests)
CE3603A CE3604A..B (2 tests)
CE3605A..E (5 tests) CE3606A..B (2 tests)
CE3704A..F (6 tests) CE3704M..O (3 tests)
CE3706D CE3706F..G (2 tests)
CE3804A..P (16 tests) CE3805A..B (2 tests)
CE3806A..B (2 tests) CE3806D..E (2 tests)
CE3806G..H (2 tests) CE3905A..C (3 tests)
CE3905L CE3906A..C (3 tests)

3-5

CE3906E..F (2 tests) EE2201D
EE2201E EE2401D
EE2401G EE3102C
EE3203A EE3301B
EE3402B EE3405B
EE3409F EE341OF

EE3412C

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,

processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases

where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection- splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that was not anticipated
by the test (such as raising one exception instead of another).

Modifications were required for 8 tests.

Modification was required for 1 A Class test, AD7006A. The assignment
at line 23 was modified via use of a number declaration, as there is no
predetermined integer type whose range includes SYSTEM.MEMORYSIZE.

The following 6 B Class tests were split because syntax errors at one
point resulted in the compiler not detecting other errors in the test:

B33301B B55AOlA BAIIOIB BC11O9A BC1109C BCIO19D

Modification was required for I C Class test, C87B62B. A length clause
specifying a collection size for type JUST LIKELINK was added to
prevent CHECK from raising a STORAGEERROR.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10
produced by the InterACT Ada Mips Cross-Compiler System Release 1.0 was
submitted to the AVF by the applicant for review. Analysis of these
results demonstrated that the compiler successfully passed all
applicable tests, and the compiler exhibited the expected behavior on
all inapplicable tests.

3.7.2 Test Method

Testing of the InterACT Ada Mips Cross-Compiler System Release 1.0 using

3-6

ACVC Version 1.10 was conducted on-site by a validation team from the
AVF. The configuration in which the testing was performed is described
by the following designations of hardware and software components:

Host computer: MicroVAX 3100 Cluster
Host operating system: VMS 5.2
Target computer: Mips R2000 in an Integrated

Solutions, INC. Advantedge 2000
Board

Target operating system: Bare machine
Compiler: InterACT Ada Mips Cross-Compiler System

Release 1.0

The host and target computers were linked via RS232.

A magnetic tape containing all tests except for withdrawn tests and
tests requiring unsupported floating-point precision was taken on-site
by the validation team for processing. This tape could not be read so
the prevalidation test suite which was already on disk was used to
perform the on site validation. A copy of this test suite was placed on
magnetic tape and subsequently compared to the original on site test
suite and shown to be the same.

TEST INFORMATION

The test suite resided on disk. The full set of tests was compiled and
run on the MicroVAX 3100 cluster and all executable tests were
transferred to the Mips R2000 via RS232 and run. Results were printed

from the host computer.

The compiler was tested using command scripts provided by InterACT and
reviewed by the validation team. The compiler was tested using all
default option settings.

Tests were compiled, linked, and executed (as appropriate) using a
single host and target computer. Test output, compilation listings, and
job logs were captured on magnetic tape and archived at the AVF. The
listings examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at InterACT Corporation, 417 Fifth Avenue, New
York, N Y 10016 and was completed on 16 November 1989.

3-7

APPENDIX A

DECLARATION OF CONFORMANCE

InterACT has submitted the following Declaration of
Conformance concerning the InterACT Ada Mips Cross-
Compiler System.

A-I

APPENDIX A

Declaration of Conformance

Customer: InterACT Corporation

Ada Validation Facility: National Institute of Standards & Technology

ACVC Version: 1.10

Ada Implementation

Ada Compiler Name- InterACT Ada MIPS Cross-Compiler System

Version: 1.0

licroVAX 3100 Cluster VMS 5.2Host Computer System:

Target Computer System: MIPS R2000 in an Integrated Solutions, Inc.

Advantedle2000 board (bare machine)

Customer's Declaration

I, the undersigned, representing InterACT declare that InterACT has no knowledze of
deliberate deviations from the Ada Language Standard ANSI/MIL-STD-lSSA in the
implementation(s) listed in this declaration.

Signature Date

I-"/(- z2,A/

A-i

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the InterACT Ada Mips Cross-
compiler System Release 1.0, as described in this Appendix, are provided
bv InterACT Corp. Unless specifically noted otherwise, references in
this appendix are to compiler documentation and not to -his repcrt.
implementation-specific portions of the package STANDARD, which re not
a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147_483648..2_147_483_647;

type FLOAT is digits 6,
range -2#I.0#El26..2#O.IIIlIIIIlIIIIIlIIllII#El26

type LONGFLOAT is digits 15
range 2l.OElO24..
2=0.III=EI024"

type DURATION is delta 2**(-14) range -131_072.0..131_071.0;

end STANDARD;

B-I

Appendix F

Appendix F of the Ada Reference Manual

This appendix describes all implementation-dependent characteristics of the Ada language as implemented by
the InterACT Ada Mips Cross-Compiler, including those required in the Appendix F frame of.Ada RM.

F.I. Predefined Types in Package STANDARD

This section describes the implementation-dependent predefined types declared in the predefined package
STA"DARD [Ada RMAnner C], and the relevant attributes of these types.

Integer Types

One predefined integer type is implemented, INTEGER. It has the following attributes:

INTEGER'FIRST = -2 147 483 648
INTEGER'LAST = 2 147 483 647
INTEGER*SIZE = 32

Floating Point Types

Two predefined floating point types are implemented, FLOAT and LONG-FLOAT. They have the follc',,,ing
attributes:

FLOAT'DIGITS - 6
FLOAT'FIRST -2#1.0#E126
FLOAT'LAST - 2#0.11111111111111 111111#E126
FLOAT'MACHINE EMAX = 128
FLOAT-MACHINE-EMIN = -126
FLOAT'MACHINE MANTISSA = 24
FLOAT'MACHINE OVERFLOWS = TRUE
FLOAT'MACHINE RADIX = 2
FLOArMACHINE ROUNDS = TRUE
FLOArSAFEEMAx - 126
FLOATSAFE LARGE = 2#0.111111111111111111111#E126
FLOAT'SAFE SMALL - 2#0.1#E-L26
FLOATSIZE = 32

F-2 Appendix F of the Ada Reference Manual

LONG FLOATDIGITS - 15
LONG FLOAT FIRST -2#1.0#E1024
LONG FLOAT'LAST = 2#0.111# A

LONG FLOATMACHINE EMAX = 1024
LONG FLOAMACHINE EMIN -1022
LONG FLOATMACHINE-MANTISSA 53
LONG FLOATMACHINE OVERFLOWS = TRUE
LONG FLOAT'MACHINE RADIX = 2
LONG FLOATMACHITNE ROUNDS - TRUE
LONG FLOATSAFE EMA X 1024
LONG FLOAT'SAFE LARGE 2#0.11, 4
LONG FLOAT'SAFE- SMALL 2#0.1#E-1024
LONG-FLOATSIZE - 64

Fixed Point Types

One kind of anonymous predefined fixed point type is implemented: fixed. Note that this name is not defined
in package STANDARD, but is used here only for reference.

For objects of fixed types, 32 bits are used for the representation of the object.

Forfixed there is a virtual predefined type for each possible value of small [Ada RM 3.5.9J. The possible values
of small are the powers of two that are representable by a LONGFLOAT value (or if a length clause is used,
any number representable by a LONGFLOAT value).

The lower and upper bounds of these types are:

lower bound of fixed types = -2 147 483 648 * small
upper bound of fixed types = 2 147 483 647 small

A declared fixed point type is represented as that predefinedfixed type which has the largest value of small not
greater than the declared delta, and which has the smallest range that includes the declared range constraint.

Any fixed point type T has the following attributes:

T'MACHINE OVERFLOWS = TRUE
T'MACHINE-ROUNDS FALSE

Type DURATION

The predefined fixed point type DURATION has the following attributes:

DURATION'AFT - .5
DURATION'DELTA = DURATION'SMALL
DURATION'FIRST = -131072.0
DURATON'FORE = 7
DURATION'LARGE = 131071999938965E05
DURATION'LAST = 131071.0
DURATION'MANTISSA = 31
DURATION'SAFE LARGE = DURATION'LARGE

Appendix F of the Ada Reference Manual F-3

DURATION'SAFE SMALL - DURATION'SMALL
DURATION'SIZE = 32
DURATION'SMALL = 2*(-14) = 6.10351562500000E-05

F.2. Pragmas

This section lists all language-defined pragmas and any restrictions on their use and effect as compared to the
definitions given in Ada RM.

Pragma CONTROLLED

This pragma has no effect, as no automatic storage reclamation is performed before the point allowed by the
pragma.

Pragma ELABORATE

As in Ada RM.

Pragma ININE

This pragma causes inline expansion to be performed, except in the following cases:

1. The whole body of the subprogram for which inline expansion is wanted has not been seen. This
ensures that recursive procedures cannot be inline expanded.

2. The subprogram call appears in an expression on which conformance checks may be applied, i.e., in a
subprogram specification, in a discriminant part, or in a formal part of an entry declaration or accept
statement.

3. The subprogram is an instantiation of the predefined generic subprograms
UNCHECKED CONVERSION or UNCHECKED DEALLOCATION. Calls to such subprograms
are expanded inline by the compiler automatically.

4. The subprogram is declared in a generic unit. The body of that generic unit is compiled as a secon-
dary unit in the same compilation as a unit containing a call to (an instance of) the subprogram.

5. The subprogram is declared by a renaming declaration.

6. The subprogram is passed as a generic actual parameter.

A warning is given if inline expansion is not achieved.

Pragma INTERFACE

This pragma is supported for the language names defined by the enumerated type INTERFACE LANGUAGE
in package SYSTEM.

Language ASSEMBLY

Ada programs may call assembly language subprograms that have been assembled with the VAX/VMS-hosted
InterACT Mips Assembler. The compiler generates a call to the name of the subprogram (in all upper case).
If a call to a different external name is desired, use pragma INTERFACE-SPELLING in conjunction with

F4 Appendix F of the Ada Reference Manual

pragma INTERFACE (see Section F.3).

Parameters and results, if any, are passed in the same fashion as for a normal Ada call (see Appendix P).

Assembly subprogram bodies are not elaborated at runtime, and no runtime elaboration check is made when
such subprograms are called.

Assembly subprogram bodies may in turn call Ada program units, but must obey all Ada calling and environ-
mental conventions in doing so. Furthermore, Ada dependencies (in the form of context clauses) on the called
program units must exist. That is, merely calling Ada program units from an assembly subprogram body will
not make those program units visible to the Ada Linker.

A pragma INTERFACE (ASSEMBLY) subprogram may be used as a main program. In this case, the pro-
cedure specification for the main program must contain context clauses that will (transitively) name all Ada
program units.

If an Ada subprogram declared with pragma INTERFACE (ASSEMBLY) is a library unit, the assembled sub.
program body object code module must be put into the program library via the Ada Library Injection Tool (see
Chapter 7). The Ada Linker will then automatically include the object code of the body in a link, as it would the
object code of a normal Ada body.

If the Ada subprogram is not a library unit, the assembled subprogram body object code module cannot be put
into the program library. In this case, the user must direct the Ada Linker to the directory containing the object
code module (via the /user.rts qualifier, see Section 5.1), so that the InterACT Mips Embedded Systems
Linker can find it.

Other Languages

It is possible to use pragma INTERFACE (ASSEMBLY) to call subprograms written in other languages (such
as FORTRAN, Pascal, and C) supported by MIPS Computer Systems, Inc. compilers. This is because the
object code format and the compiler protocols [MIPS Appendix DI used by the Compiler System are the same
as those used in the MIPS-supplied compilers.

To do this, compile such subprograms on a MIPS computer system (making sure they are compiled for a big-
endian configuration), and then transfer the object files (and any language runtime library object files needed
by the subprograms) to VAX/VMS. (Make sure the transfer preserves the binary nature of the files.) Then
proceed as with assembly language subprograms.

Pragma LIST

As in Ada RM.

Pragma MEMORY SIZE

This pragma has no effect. See pragma.SYSTEM NAME.

Pr3grna OPTIMIZE

This pragma has no effect.

Appendix F of the Ada Reference Manual F-5

Pragma PACK

This pragrna is accepted for array types whose component type is an integer or enumeration type that may be
represented in 32 bits or less. The pragma has the effect that in allocating storage for an object of the array
type, the object components are each packed into the next largest 2 ' bits needed to contain a value of the com-
ponent type. For example, integer components with the range constraint -8 .. 7 are packed into four bits;
boolean components are packed into one bit.

The representation of packed array objects is such that the ordering of bits within words is defined to be big-
endian. For example, in a packed array (0..31) of boolean, which occupies a word, component 0 is the most
significant bit and component 31 is the least significant bit. Note that this convention differs from the one used
in [MIPS p. 2-6] for bit-ordering. (The representation ordinarily does not matter, unless assembly language
programming or other external interfaces are involved.)

This pragma is also accepted for record types but has no effect. Record representation clauses may be used to
.pack' components of a record into any desired number of bits; see Section F.6.

Pragma PAGE

As in Ada RM.

Pragma PRIORITY

As inAda R. See the Ada Mips Runtime Executive Programmer's Guide for how a default priority may be set.

Pragma SHARED

This pragma has no effect, in terms of the compiler (and a warning message is issued). However, based on the
current method of code generation, the effect of pragma SHARED is automatically achieved for all scalar and
access objects.

Pragma STORAGEUNIT

This pragma has no effect. See pragma SYSTEM NAME.

Pragma SUPPRESS

Only the 'identifier" argument, which identifies the type of check to be omitted, is allowed. The "[ON = >J
n ame" argument, which isolates the check omission to a specific object, type, or subprogram, is not supported.

Pragma SUPPRESS with all checks other than DIVISION CHECK results in the corresponding checking code
not being generated. The implementation of arithmetic operations is such that, in general, pragma SUPPRESS
with DIVISION CHECK has no effect. In this case, runtime executive customizations may be used to mask the
overflow interrupts that are used to implement these checks (see theAda Mips Runtime Eecutive Programmer's
Guide for details).

Pragma SYSTEM-NAME

This pragma has no effect. The only possible SYSTEM NAME is Mips. The compilation of pragma
MEMORY-SIZE, pragma STORAGE-UNIT, or this pragma does not cause an implicit recompilation of
package SYSTEM.

F-6 Appendix F of the Ada Reference Manual

F.3. Implementation-dependent Pragmas

F.3.1. Prgma EXPORT

This pragma is used to define an external name for Ada objects, so that they may be accessed from non-Ada
routines. The pragma has the form

pragma EXPORT (object-name [,exfemal namestringliteral]);

The pragrna must appear immediately after the associated object declaration. If the second argument is omit-
ted, the object name in all upper case is used as the external name. Note that the Mips Assembler is case-
sensitive; the second argument must be used if the external name is to be other than all upper case.

The associated object must be declared in a hbrary package (or package nested within a library package), and
must not be a statically-valued scalar constant (as such constants are not allocated in memory).

Identical external rnmes should not be put out by multiple uses of the pragma (names can always be made

unique by use of the second argument).

As an example of the use of this pragma, the objects in the following Ada library package

package GLOBAL is

ABLE : FLOAT;

pragma EXPORT (ABLE);

Baker : STRING(I..8);

pragma EXPORT (Baker, "Baker");

end GLOBAL;

may be accessed in the following assembly language fragment

tw S8,ABLE 5 get vatue of ABLE

ta $9SBaker # get address of Baker

F.3.2. Pragma IMPORT

This pragma is used to associate an Ada object with an object defined and allocated externally to the Ada pro-
gram.

pragma IMPORT (object-name [xternal namestringliteralj);

The pragma must appear immediately after the associated object declaration. If the second argument is omit-
ted, the object name in all upper case is used as the external name. Note that the Mips Assembler is case-
sensitive; the second argument must be used if the external name is to be other than all upper case.

The associated object must be declared in a library package (or package nested within a library package). The
associated object may not have an explicit or implicit initialization.

Appendix F of the Ada Reference Manual F-7

As an example of the use of this pragma, the objects in the following Ada library package

package GLOBAL fs

ABLE : FLOAT;
pragma IMPORT (ABLE);

Baker : STRING(1..8);
pragrm IMPORT (Baker, "Baker");

end GLOBAL;

are actually defined and allocated in the following assembly language fragment

.gtobt ABLE

.tcomm ABLE. 4

.globt Baker

.Lcomi Baker, B

F.3.3. Pragma INTERFACE SPELLING

This pragma is used to define the external name of a subprogram written in another language, if that external
name is different from the subprogram name (if the names are the same, the pragma is not needed). Note that
the Mips Assembler is case-sensitive; this pragma must be used if the external name is to be other than all
upper case. The pragma has the form

pragma INTERFACESPELLING (subprogramname, external name string literal);

The pragma should appear after the pragma INTERFACE for the subprogram. This pragma is also useful in
cases where the desired external name contains characters that are not valid in Ada identifiers.

Example:

procedure Connect Bus (SIGNAL : INTEGER);
pragma INTERFACE (ASSEMBLY, ConnectBus);
pragma INTERFACESPELLING (ConnectBus, "ConnectBus");

F.3.4. Pragma SUBPROGRAM-SPELLING

This pragma is used to define the external name of an Ada subprogram. Normally such names are compiler-
generated, based on the program library unit number. The pragma has the form

.6

pragma SUBPROGRAM.SPELLING (subprogram name [,extemal.namestring literal]);

The pragma is allowed wherever a pragma INTERFACE would be allowed for the subprogram. If the second
argument is omitted, the subprogram name in all upper case is used as the external name. Note that the Mips
Assembler is case-sensitive; the second argument must be used if the external name is to be other than all upper
case.

This pragma is useful in cases where the subprogram is to be referenced from another language.

F-8 Appendix F of the Ada Reference Manual

F.4. Implementation-dependent Attributes

None are define.

F.S. Package SYSTEM

The specification of package SYSTEM is:

package SYSTEM is

type ADDRESS is new INTEGER;
ADDRESS NULL : constant ADDRESS := 0;

type NAME is (Mips);

SYSTEM NAME : constant NAME :z Mips;

STORAGE UNIT : constant :a 8;
MEMORY SIZE : constant :4 4 * 1024 * 1024 * 1024;

MININT : constant := -2_147 483 647-1;
MAXINT : constant :a 2_147..483 647;
MAX-DIGITS : constant :a 15;
MAX MANTISSA : constant := 31;
FINE DELTA : constant :z 1.0 / 2.0 ** MAX MANTISSA;
TICK : constant := 1.0;

subtype PRIORITY is INTEGER range 0. ;

type INTERFACELANGUAGE is (ASSEMBLY);

-- these are the possible ADDRESS values for interrupt entries
MOx : constant := 1 t 4; - (MOD is reserved word)
TLBL : constant = 2 * 4;
TLBS : constant :a 3 * 4;
AdEL : constant := 4 * 4;
AdES constant :a 5 4;
ISE : constant :z 6 * 4;
DOBE : constant :z 7 4;
Sys : constant :a 8 4;
Bp : constant:= 9 4;
RI : constant :210 * 4;
CpU : constant 11 4;
Ovf : constant :a 12 * 4;
Reserved13 : constant :a 13 * 4;
Reserved14 : constant :a 14 * 4;
Reserved15 : constant : 15 * 4;
IPO : constant :z 2**0 * 1024;
IPi : constant :z 2"t1 * 1024;
IP2 : constant : 2*2 * 1024;
IP3 : constant :- 2*3 * 1024;
IP4 : constant :2 2**4 * 1024;
IP5 : constant :z 22*5 * 1024;

end SYSTEM;

Appendix F of the Ada Reference Manual F-9

F.6. Representation Clauses

In general, no representation clauses may be given for a derived type. The representation clauses that are
accepted for non-derived types are described by the following:

Length Clause

Three kinds of length clauses are accepted, specifying the number of storage units to be reserved for a collec-
tion (attribute designator STORAGE SIZE), the number of storage units to be reserved for an activation of a
task (STORAGE SIZE), or the small for a fixed point type (SMALL). Length clauses specifying object size for
a type (SIZE) are not allowed.

Enumeration Representation Clause

Enumeration representation clauses are accepted.

Record Representation Clause

Alignment clauses are allowed for values 2 and 4.

In terms of allowable component clauses, record components fall into three classes:

* integer and enumeration types;

• statically-bounded arrays or records composed solely of the above;

* all others.

Components of the "integer/enumeration" class may be given a component clause that specifies a storage place
at any bit offset, and for any number of bits, as long as the storage place is large enough to contain the com-
ponent and does not cross a word (32-bit) boundary. Unsigned representations (for example, an integer with a
range of 0..3 being represented in two bits) are allowed, but the component subtype must belong to the
predefined integer base type normally associated with that many bits (for example, an integer with a range of
0..2"32-1 being represented in 32 bits is not allowed). Biased representations (for example, an integer with a
range of 7..10 being represented in two bits) are not allowed.

Components of the "array/record of integer/enumeration" class may be given a component clause that specifies
a storage place at any bit offset, if the size of the array/record is less than a word, or at a word offset otherwise,
and for any number of bits, as long as the storage place is large enough to contain the component and none of
the individual integer/enumeration elements of the array/record cross a word boundary.

Components of the "all others" class may only be given component clauses that specify a storage place at a word
offset, and for the number of bits normally allocated for objects of the underlying base type.
Components that do not have component clauses are allocated in storage places beginning at the next word

boundary following the storage place of the last component in the record that has a component clause.

Records with component clauses cannot exceed 1K words (32K bits) in size.

The ordering of bits within storage units is defined to be big-endian. That is, bit 0 is the most significant bit and
bit 31 is the least significant bit. Note that this convention differs from the one used in [MIPS p. 2-6] for bit-
ordering.

F-10 Appendix F of the Ada Reference Manual

F.7. Implementation-dependent Names for Implementation-dependent Components

None are defined.

F.S. Address Clauses

Address clauses are allowed for variables (objects that are not constants), and for interrupt entries. Address
clauses are not allowed for constant objects, or for subprogram, package, or task units.

Address clauses occurring within generic units are always allowed at that point, but are not allowed when the
units are instantiated if they do not conform to the implementation restrictions described here. (Note that the
effect of such address clauses may depend on the context in which they are instantiated; for example, whether
multiple address clauses specifying the same address are erroneous may depend on whether they are instan-
tiated into library packages or subprograms.)

Address Clauses for Variables

Address clauses for variables must be static expressions of type ADDRESS in package SYSTEM.

It is the user's responsibility to reserve space at link time for the object. See the Mips Embedded Systems Linker
Reference Manual for the means to do this.

Type ADDRESS is a 32-bit signed integer. Thus, addresses in the memory range
16#8000_0000#..16#FFFF FFFF# (i.e., the upper half of target memory) must be supplied as negative
numbers, since the positive (unsigned) interpretations of those addresses are greater than ADDRESS'LAST.
Furthermore, addresses in this range must be declared as named numbers, with the named number (rather than
a negative numeric literal) being used in the address clause. The hexadecimal address can be retained in the
named number declaration, and user computation of the negative equivalent avoided, by use of the technique
illustrated in the following example:

X: INTEGER;
for X use at 16#7FFFFFFF#; -- legal

Y: INTEGER;
for Y use at 16#FFFFFFFF#; -- illegal

ADDR HIGH : constant:= 16#FFFF FFFF# - 21*32;
Y : INTEGER;
for Y use at ADDR HIGH; -- legal, equivalent to unsigned 16#FFFFFFFF#

Address Clauses for Interrupt Entries

Address clauses for interrupt entries do not use target addresses but rather, the values in the target Cause regis-
ter that correspond to particular interrupts. For convenience these values are defined as named numbers in
package SYSTEM, corresponding to the mnemonics used in [MIPS pp. 5-4, 5-5.

The following restrictions apply to interrupt entries. The corresponding accept statement must have no formal
parameters and must not be part of a select statement. Direct calls to the entry are not allowed. If any excep-
tion can be raised from within the accept statement, the accept statement must include an exception handler.
The accept statement cannot include another accept statement for the same interrupt entry.

Appendix F of the Ada Referznce Manual F-11

When the accept statement is encountered, the task is suspended. If the specified interrupt occurs, execution of
the accept statement begins. When control reaches end of the accept statement, the special interrupt entry pro-
cessing ends, and the task continues normal execution. Control must again return to the point where the accept
statement is encountered in order for the task to be suspended again, awaiting the interrupt.

There are many more details of how interrupt entries interact with the target machine state and with the Run-
time Executive. For these details, see the Ada Mips Runtime Executive Progranmer's Guide.

F.9. Unchecked Conversion

Unchecked conversion is only allowed between values of the same size. In addition, if
UNCHECKED CONVERSION is instantiated with an array type, that type must be statically constrained.
Note also that cal to UNCHECKED CONVERSION-instantiated functions are always generated as inline
calls by the compiler, and cannot be instantiated as library units or used as generic actual parameters.

Unchecked conversion operates on the data for a value, and not on type descriptors or other compiler-
generated entities (with the sole exception that records containing discriminant-dependent arrays have
compiler-generated extra components representing array type descriptors).

For values of an access type, the data is the address of the designated object; thus, unchecked conversion may
be done in either direction between access types and type SYSTEM.ADDRESS (which is derived from
INTEGER). The named number SYSTEMADDRESSNULL supplies the type ADDRESS equivalent of the
access type literal null.

For values of a task type, the data is the address of the task's Task Control Block (see the Ada Mips Runtime
Executive Programmer's Guide).

F.IO. Input-Output

The predefined library generic packages and packages SEQUENTIAL 10, DIRECT10, and TEXT 10 are
supplied. However, file input-output is not supported except for the standard input and output files. Any
attempt to create or open a file will result in USE-ERROR being raised.

TEXT 10 operations to the standard input and output files are implemented as input from or output to some
visible device for a given Mips environment. Depending on the environment, this may be a console, simulator
files, etc. See the Ada Mips Runtime Executive Programmer's Guide for more details. Note that by default, the
standard input file is empty.

The range of the type COUNT defined in TEXT 1O is 0.. INTEGER'LAST.

The predefined library package LOW LEVEL1 is empty.

In addition to the predefined library units, a package STRING OUTPUT is also included in the predefined
library. This package supplies a very small subset of TEXT 10 operations to the standard output file. The
specification is:

F-12 Appendix F of the Ada Reference Manual 1%

package STRING_OTPUT. is

procedure PUT (ITEM : in STRING);

procedure PUTLINE (ITEM : in STRING);

procedure NEW-LINE;

end STRING-OUTPUT; r

By using the 'IMAGE attribute function for integer and enumeration types, a fair amount of output can be done
using this package instead of TEXT 10. The advantage of this is that STRINGOUTPUT is smaller than
TEXT 10 in terms of object code size, and faster in terms of execution speed.

Use of TEXT 10 in multiprogramming situations (see Chapter 5) may result in unexpected exceptions being
raised, due toThe shared unit semantics of multiprogramming. In such cases STRINGOUTPUT may be used
instead.

F.11. Other Chapter 13 Areas

The following language features, defined in [Ada RM 13], are supported by the compiler:

* representation attributes [13.72 13.7.3]

* unchecked storage deallocation [13.10.1)

Note that calls to UNCHECKEDDEALLOCATION-instantiated procedures are always generated as inline
calls by the compiler, and cannot be instantiated as library units or used as generic actual parameters. Olt

Change of representation [13.6] and machine code insertions [13.8] are not supported by the compiler. ,

F.12. Miscellaneous Implementation-dependent Characteristics

Uninitialized Variables

There is no check to detect the use of uninitialized variables. The effect of a program that refers to the value of
an uninitialized variable is undefined. A compiler cross-reference listing may be of use in finding such vari-
ables.

F.13. Compiler System Capacity Limitations

The following capacity limitations apply to Ada programs in the Compiler System:

the names of all identifiers, including compilation units, may not exceed the number of characters
specified by the INPUTLINELENGTH component in the compiler configuration file (see Section
4.1.4);

a sublibrary can contain at most 4096 compilation units (library units or subunits). A program library
can contain at most eight levels of sublibraries, but there is no limit to the number of sublibraries at
each level. An Ada program can contain at most 32768 compilation units.

Appendix F of the Ada Reference Manual F- 13

The above limitations are diagnosed by the compiler.

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension T.ST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

$ACCSIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIG_IDl <125*"A">1
Identifier the size of the
maximum input line length with
varying last character.

$BIGID2 <125*"A">2
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 <62*"A">3<63*"A">

Identifier the size of the
maximum input line length with
varying middle character.

$BIGID4 <62*"A ">4<63*"A">
Identifier the size of the
maximum input line length with
varying middle character.

$BIG INTLIT <123*"">298
An integer literal of value 298
with enough leading zeroes so

that it is the size of the

maximum line length.

$BIG REAL LIT <120*"0">69.OEI

C-1

A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the

maximum line length.

$BIGSTRING1 "<63*"A">"
A string literal which when
catenated with BIG STRING2
yields the image of BIGIDl.

$BIGSTRING2 <62"A >In

A string literal which when
catenated to the end of
BIGSTRING1 yields the image of
BIGIDl.

$BLANKS 106
A sequence of blanks twenty
characters lesi than the size
of the maximum line length.

$COUNTLAST 2_147_483_647
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$DEFAULTMEMSIZE 4*1024*1024*1024
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULTSTOR UNIT 8
An integer literal whose value

is SYSTEM.STORAGEUNIT.

$DEFAULT SYS NAME Mips

The value of the constant
SYSTEM.SYSTEMNAME.

$DELTADOC 1.0/2.0**(SYSTEM.MAXMANTISSA)
A real literal whose value is
SYSTEM.FINEDELTA.

$FIELDLAST 35
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FIXEDNAME NOSUCHFIXEDTYPE
The name of a predefined
fixed-point type other than
DURATION.

C-2

$FLOATNAME NOSUCHFLOATTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORTFLOAT, or
LONGFLOAT.

$GREATER_THAN_DU RATION 131_071.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATERTHAN_D URATION BASE LAST 131_072.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGHPRIORITY 255
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGALEXTERNALFILENAMEl ILLEGALFILENAME_1
An external file name which
contains invalid characters.

$ILLEGALEXTERNALFILENAME2 ILLEGALFILENAME_2
An external file name which
is too long.

$INTEGER FIRST -2_147_483_648
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGER LAST 2_147_483_647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGERLASTPLUS_1 2_147_483_648
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESSTHAN DURATION -131_072.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESSTHANDURATION BASEFIRST -131073.0
A universal real literal that is

C-3

less than DURATION'BASE'FIRST.

SLOWPRIORITY 0
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSADOC 31
An integer literal whose value
is SYSTEM.MAXMANTISSA.

$MAX_DIGITS 15
Maximum digits supported for
floating-point types.

$MAXIN LEN 126
Maximum input line length
permitted by the implementation.

$MAXINT 2_147_483_647
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAX_INTPLUS_1 2_147_483_648
A universal integer literal
whose value is SYSTEM.MAXINT+l.

$MAXLENINTBASEDLITERAL 2:<l2l*0">ll:
A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

$MAXLENREALBASEDLITERAL l6:<ll9*"0">F.E:
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAX_STRINGLITERAL "<124*"A">"
A string literal of size
MAX IN LEN, including the quote
characters.

$MIN_INT -2_147_483_648
A universal integer literal
whose value is SYSTEM.MININT.

$MIN_TASKSIZE 32

C-4

An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME NOSUCHINTEGERTYPE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONGFLOAT, or LONGINTEGER.

$NA.MELIST Mips
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEGBASEDINT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

$NEW_MENSIZE 4*1024*1024*1024
An integer literal whose value
is a permitted argument for
pragma memory size, other than
$DEFAULT_MENSIZE. If there is
no other value, then use
$DEFAULT_MEXSIZE.

$NEWSTORUNIT 8
An integer literal whose value
is a permitted argument for
pragma storageunit, other than

$DEFAULTSTORUNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

$NEW SYS NAME Mips
A value of the type SYSTEM.NAME,
other than SDEFAULTSYSNAME. If
there is only one value of that
type, then use that value.

$TASK_SIZE 32

C-5

An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one inout
parameter.

$TICK 1.0
A real literal whose value is
SYSTEM.TICK.

C-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 44 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the
form AI-ddddd is to an Ada Commentary.

A39005G
This test unreasonably expects a component clause to pack an array
component into a minimum size (line 30).

B97102E
This test contains an unintended illegality: a select statement
contains a null statement at the place of a selective wait alternative
(line 31).

C97116A
This test contains race conditions, and it assumes that guards are
evaluated indivisibly. A conforming implementation may use interleaved
execution in such a way that the evaluation of the guards at lines 50 &
54 and the execution of task CHANGING OF THEGUARD results in a call to
REPORT.FAILED at one of lines 52 or 56.

BC3009B
This test wrongly expects that circular instantiations will be detected
in several compilation units even though none of the units is illegal
with respect to the units it depends on; by AI-00256, the illegality

need not be detected until execution is attempted (line 95).

CD2A62D
This test wrongly requires that an array object's size be no greater
than 10 although its subtype's size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D 116 tests]
These tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length clause
and attribute, whose interpretation is considered problematic by the WG9
ARG.

CD2A81G, CD2A83G, CD2A84M & N, & CD50110
These tests assume that dependent tasks will terminate while the main

program executes a loop that simply tests for task termination; this is
not the case, and the main program may loop indefinitely (lines 74, 85,
86 & 96, 86 & 96, and 58, resp.).

D-1

CD2BI5C & CD7205C
These tests expect that a 'STORAGE SIZE length clause provides precise
control over the number of designated objects in a collection; the Ada
standard 13.2:15 allows that such control must not be expected.

CD2DllB
This test gives a SMALL representation clause for a derived fixed-point
type (at line 30) that defines a set of model numbers that are not
necessarily represented in the parent type; by Commentary AI-00099, all
model numbers of a derived fixed-point type must be representable values
of the parent type.

CD5007B
This test wrongly expects an implicitly declared subprogram to be at the
address that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests]
These tests check various aspects of the use of the three SYSTEM
pragmas; the AVO withdraws these tests as being inappropriate for
validation.

CD7105A
This test requires that successive calls to CALENDAR.CLOCK change by at
least SYSTEM.TICK; however, by Commentary AI-00201, it is only the
expected frequency of change that must be at least SYSTEM.TICK --

particular instances of change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose
interpretation is considered problematic by the WG9 ARG.

CD7205D
This test checks an invalid test objective: it treats the specification
of storage to be reserved for a task's activation as though it were like
the specification of storage for a collection.

CE21071
This test requires that objects of two similar scalar types be
distinguished when read from a file--DATA ERROR is expected to be raised
by an attempt to read one object as of the other type. However, it is
not clear exactly how the Ada standard 14.2.4:4 is to be interpreted;
thus, this test objective is not considered valid. (line 90)

CE3111C
This test requires certain behavior, when two files are associated with
the same external file, that is not required by the Ada standard.

CE3301A
This test contains several calls to END OF LINE & ENDOFPAGE that have
no parameter: these calls were intended to specify a file, not to refer
to STANDARDINPUT (lines 103, 107, 118, 132, & 136).

D-2

CE3411B
This test requires that a text file's column number be set to COUNT'LAST
in order to check that LAYOUTERROR is raised by a subsequent PUT

operation. But the former operation will generally raise an exception
due to a lack of available disk space, and the test would thus encumber
validation testing.

E28005C
This test expects that the string "-- TOP OF PAGE. --63" of line 204

will appear at the top of the listing page due to a pragma PAGE in line

203; but line 203 contains text that follows the pragma, and it is this

that must appear at the top of the page.

D-3

APPENDIX E

COMPILER OPTIONS AS SUPPLIED BY

InterACT Corporation

Compiler: InterACT Ada Mips Cross-Compiler System
Version 1.0

ACVC Version: 1.10

E-1

Chapter 4
The Ada Compiler

The Ada Compiler translates Ada source code into Mips R2000/R3000 object code.

Diagnostic messages are produced if any errors in the source code are detected. Warning messages are also
produced when appropriate.

Compile, cross-reference, and generated assembly code listings are available upon user request.

The compiler uses a program library during the compilation. An internal representation of the compilation,
which indudes any dependencies on units already in the program library, is stored in the program library as a
result of a successful compilation.

On a successful compilation, the compiler generates assembly code, invokes the Mips Assembler to translate
this assembly code into object code, and then stores the object code in the program library. (Optionally, the
generated assembly code may also be stored in the library.) The invocation of the Assembler is completely
transparent to the user.

4.1. The Invocation Command

The Ada Compiler is invoked by submitting the following VAX/VMS command:

$ adaups{qualifier) source-file-spec

4.1.1. Parameters and Qualifiers

Default values exist for all qualifiers as indicated below. All qualifier names may be abbreviated (characters
omitted from the right) as long as no ambiguity arises.

source-fl1spec

This parameter specifies the file containing the source tet to be compiled. Any valid VAX/VMS filename may
be used. If the file type is omitted from the specification, file type ada is assumed by default. If this parameter
is omitted, the user will be prompted for it. The format of the source text is described in Section 4.2.

4-2 The Ada Compiler

/list
/nollst (default)

The user may request a source listing by means of the qualifier /list. The source listing is written to the list file.
Section 4.3.2 contains a description of the source listing.

If /nolist is active, no source listing is produced, regardless of any LIST pragmas in the program or any diagnos-
tic messages produced.

In addition, the /Ust qualifier provides generated assembly listings for each compilation unit in the source rMe.
Section 43.6 contains a description of the gearrated assembly listing.

/noxref (default)

A cross-reference listing can be requested by the user by means of this qualifier. If /xref is active and no severe
or fatal errors are found during the compilation, the cross-reference listing is written to the list file. The cross-
reference listing is described in Section 4.3.4.

/library =flde-spec
/Iibrary = adanipslibrary (default)

This qualifier specifies the current sublibrary and thereby also specifies the current program library which con-
sists of the current sublibrary through the root sublibrary (see Chapter 2). If the qualifier is omitted, the subli-
brary designated by the logical name adamipslibrary is used as the current sublibrary.

Section 4.4 descnbes how the Ada compiler uses the current sublibrary.

/conflguration_rile file-spec
/configurationrdle = adarnipsconfig (default)

This qualifier specifies the configuration file to be used by the compiler in the current compilation.

If the qualifier is omitted, the configuration file designated by the logical name adamips config is used by
default. Section 4.1.4 contains a description of the configuration file.

/keep assembly
/nokeep assembly (default)

When this qualifier is given, the compiler will store the generated assembly source code in the program library,
for each compilation unit being compiled. By default this is not done. Note that while the assembly code is
stored in the hibrary in a compressed form, it nevertheless takes up a large amount of library space relative to
the other information stored in the library for a program unit.

This qualifier does not affect the production of generated assembly listings.

The Ada Compiler 4-3

/nocheck

When this qualifier is given, all units in this compilation will be compiled as though a pragma SUPPRESS, for
each kind of check, is present at the outermost declarative part of each unit. (See Section F.2 for a description
of the effect of pragma SUPPRESS.) By default this is not done.

/debug
/nodebag (default)

When this qualifier is given, the compiler will generate symbolic debug information for each compilation unit in

the source file and store the information in the program. library. By default this is not done.

This symbolic debug information is used by the InterACT Symbolic Debugging and Simulation System.

It is important to note that the identical object code is produced by the compiler, whether or not the /debug
qualifier is active.

/nooptlmlze

A small portion of the optimizing capability of the compiler places capacity limits on the source program (e.g.,
number of variables in a compilation unit) that are more restrictive than those documented in Section F.13. If a
compile products an error message indicating that one of these limits has been reached (e.g., "*** 1562S-0:
Optimizer capacity ecceeded. Too many names in a basic block"), use of this /nooptlmlze qualifier will bypass
this particular optimizing capability and allow the compilation to finish normally.

/MPORANT',VOTE" Do not use this qualifier for any other reason. Do not attempt to use it in its positive
form (/optimize), either with or without any of its keyword parameters. The /optimize qualifier as defined in
the delivered command definition file is preset to produce the most effective optimization possible; any other
use of it may produce either non-optimal or incorrect generated code.

/progress
/noprogress (default)

When this qualifixr is given, the compiler will write a message to sys$output as each pass of the compiler starts
t3 run. This information is not provided by default.

Examples of qualfier usage

$ adamplp navigation constants

S adamlps/llst/aref event scheduler

$ adamips/progJllb=test versions.alb sys$user. [source] altitudes

