
RADC-TR-89-377
Final Technical Report
February 1990 ;,0AD-A220 g6o

EXPLANATION AND THE THEORY OF
EXPERT PROBLEM SOLVING
Ohio State University

Sponsored by
Defense Advanced Research Projects Agency
ARPA Order No. 5309 D

ELECTE-, .
APR17 1990,

* ~APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.--

. -_ -_ . - t
4

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

Reproduced From U. U4
Best Available Copy

EXPLANATION AND THE THEORY OF EXPERT PROBLEM SOLVING

B. Chandrasekaran

Contractor: Ohio State University
Contract Number: F30602-85-C-0010
Effective Date of Contract: 16 January 1985
Contract Expiration Date: 31 August 1989
Short Title of Work: Explanation and Theory of

Expert Problem Solving
Program Code Number: 6E20
Period of Work Covered: Jan 85 - Jan 89

Principal Investigator: John Josephson
Phone: (614) 292-0208

RADC Project Engineer: Robert N. Ruberti
Phone: (315) 330-3528

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced
Research Projects Agency of the Department of
Defense and was monitored by Robert N. Ruberti,
RADC (COES), Griffiss APB NY 13441-5700 under
Contract F30602-85-C-0010.

UNCLASSIFIED
SECURITY-CLAtSSFICATION OF THIS PAGE

SI I IIII IIII ,,, ,Form Approved
REPORT DOCUMENTATION PAGE Mo.0•e

la. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A

i7J!CU1ITY CLASSIFICATION AUTHORITY 3. OISTRIUTIO•/AVAILARILITY OF REPORT
Approved for public release;

1b. DECLASS1FICATION/DOWNGRAIING SCHEDULE distribution imlimited.N/A _
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITOAING ORGANIZATION REPORT NUMBER(S)
N/A RADC-TR-89-377

6U. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Ohio Stat~e Universit~y I (ff appRome Air Development Center (COES)

L.b DDRESS $Ar T Inteligence Research 7b. ADDRESS (04y, State, and ZIPCode)Lab for Rsr
Dept of Computer & Information Science Griffiss AFB NY 13441-5700
1314 Kinnear Rd, Columbus,: Franklin Cty OH

Ca NAME OF FUNDING/SPSNSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Defense Advanced (if ppikable) F30602-85-C-0010

Research Projects Agency ISTO
SC. ADORESS(City, State, andi ZIPCode) 10. SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd PROGRAM ' PROJECT ' TASK I WORK UNIl
Arlington VA 22209-2308 ELEMENT NO. NO. NO. ACCESSION NO.

62301E E309 00 01
It. TILE security casslfcation)

EXPLANATION AND THE THEORY OF EXPERT PROBEM SOLVING

12. PERSONAL AUTHOR(S)
B. Chandrasekaran

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year Month, Day) 1S. PAGE COUNT
Final FROM Jan 85 TO Jan 89 February 1990 450

16. SUPPLEMENTARY NOTATION
N/A

17. COSATI CODE5 16. SUBJECT TERMS (Contkm un oreverse Nf necessay= Won-*dntt by =lc numbr.)
FIELD GROUP SUN.GROUP Artificial Intelligence
12 05 Explanat ion

I Problem Solving
19. AMSTT (1ont0nue on rve If neceumy and wdert/6 by bwok number)
L This report sammarixes the activities and results of a four-year project that started in
the middle of January 1985. This effort concentrated on the development of technology
for providing knowledge-based expert planning and problem-solving systems with explanation
capabilities. This technology enables such systems to explain and justify their
decisions, recommendations, problem solving strategies and use of problem data so that
users of such systems can have confidence in the consultations and advice provided by the
expert system., ~ /

AJ ". I • fC

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
E3 UNCLASSIFIED/UNLIMITED M SAME AS RPT. 0 OTIC USERS UNCLASSIFIED

AME I I. IligerAM t V. FJUPVNSI LI INDIVIDUAL 22tIMHJL1f-J All, Code) 22c. ~!E

DD Form 1473, JUN 86 Previodus oama obsolete. SECURITY ClASSIFICATION OF THIS PAGE

UNCLASSIFIED

Chapter 1

Introduction

This document reports on a four-year project undertaken with sponsorship of
DARPA under the Strategic Computing Program. The aim of the project has
been to advance the theory of knowledge-based systems, with special emphasis
on enhancing the abilities of such systems to explain and justify their reasoning
and conclusions. Providing good explanations is important to enable human
users to evaluate whether to accept conclusions, and to facilitate debugging of
knowledge bases and problem-solving mechanisms.

Our approach to making systems explainable has been based on two main sets
of ideas. The first requires knowledge-based systems to be constructed out of
a set of "generic-task" building blocks which are specified at a higher level
of abstraction than the rule-frame-proposition level which forms the basis of
almost all of the current technology. Specifying systems at this higher level
makes it possible to generate perspicuous explanations closer to the conceptual
level of a system's users and designers. Furthermore, explanations of problem-
solving strategies can arise directly from the task-specific architectures that come
with the generic tasks. Software-engineering advantages come along with this
style of system building as well. The second set of ideas centers on the use of
su-uctural and functional models of the underlying domain to provide explanations
that a knowledge system's compiled or purpose-tuned knowledge base cannot

support. Structural and functional models are also useful in support of problem-
solving activity, allowing for flexibility and breadth of coverage that is difficult
or impossible to achieve with compiled knowledge alone.

The detailed elaboration of these ideas and their embodiments in software as
languages and tools give rise to a coherent technology for building knowledge-
based systems. The present power of this technology extends only as far as the
generic tasks that have been so-far analyzed, and the representational power of
the languages developed for representing structure and function, but that is far
enough to directly support certain commonly occurring forms of reasoning central
to the abilities to perform routine diagnosis, design. and planning. Building
knowledge systems in this way ensuces that such systems are in important respects
explainable, and that explanations are couched in vocabulary at especially useful
levels of abstraction.

Besides direct progress on explanation-generation. we report progress on a num-
ber of related fronts in knowledge-based Al. For purposes of exposition we divide
the work into six topics: progress on explanation-generation proper. tbundations
for explainable knowledge systems. analysis of certain specific knowledge-based
reasoning tasks. development of system-building tools. applications of the the-
ory and tools to various domains. and foundations of Al. The remainder of this
report consists of introductory discussions of each of these topics. and a series
of appendices which report some of the technical content.

Appendix A is a summary of Michael C. Tanner's Ph.D. dissertation on jus-
tifying diagnostic conclusions. Appendix B is a summary of Anne Keuneke's
Ph.D. dissertation on generating causal explanations of diagnostic conclusions.
Appendix C is an article by Chandrasekaran. et. al.. on explaining control strate-
gies. Appendix D is an explication by B. Chandrasekaran of the main points of
the generic task approach with a discussion of its applicability to diagnosis and
routine design. Appendix E is a survey paper on the classification task by B.
Chandrasekaran and A. Goel. Appendix F is the description of a mechanism for
the abductive assembly task by 3. Josephson. et. al. Appendix G is an analysis
of the design task by B. Chandrasekaran. Appendix H is a brief description of
the generic task toolset with a description of some of the explanation-generation
and other advantages over other approaches to building knowledge systems. Ap-
pendix I describes an application of the generic task approach and tools to an

2

operator advisor system for a nuclear power plant. Appendix J is a discussion of
competing Al paradigms by B. Chandeasekaran. Appendix K is a model of robot
perception as layered abduction by J. Josephson. Finally, Appendix 1. lists the
publications and technical reports that arose wholly or in part out Of the project,
with abstracts included for the major entries.

Accession For

HTIS GRAMI
DTIC TAB 3
Unannounced Q
Justifioation

Distribution/
AvAilabilityCodes

Avail and/or
3 Dist Speoila

.,,,';#

Chapter 2

Explanation

A number of. knowledge systems have been built that explain, either as their
primary purpose or as a secondary feature. Most authors writing on knowledge
systems consider explanation to be an essential feature of such systems. and
devote some energy to describing the explanatory capabilities of their particular
program. However there is often a conflation of user modeling and user interface
issues with the more central issue of how a system's knowledge is used to form
the content of explanations. There is even some natural confusion between the
explanations given by programs that explain their own decisions, and those given
by programs that have the problem-solving goal of explaining events outside
themselves. Generating good explanations is important, but doing so will require
that certain conceptual clarifications be wade.

2.1 What Explanation Is

According to Webster's Third New International Dictionary the word "explain"
is derived from the Latin explanare, "to level, make plain or clear." (13] But.
what does it mean to "make plain or clear" in the context of knowledge systems?

4

And just what is it about a knowledge system that an explanation makes "plain
or clear"?

One type of explanation that knowledge systems have generated is, roughly, sci-
entifict explanation, i.e., explaining the world. Several problem-solving systems
can be characterized abstractly as explaining a set of data. For example, we
can view medical diagnosis as the generation of disease hypotheses to explain
symptoms (as done by INTERNIST [16]). The Red system generates antibody
hypotheses to explain the results of tests performed in the hospital blood bank
(15]. and.DENDRAL hypothesizes molecular structures to explain spectroscopiW

-data [2]. Philosophers of science have proposed logical reconstructions of how
theories can be considered explanations of observed phenomena [1, 14]. Schank
recently discussed the kinds of explanation people deem acceptable in everyday
life, and developed a compuational theory of how to generate such explana-
tions [IS.

The other major type of explanation seeks to have programs explain their own
decisions. that is. to apply system knowledge to (1) help users understand how
the system reached its conclusions. (2) help debug the knowledge base and
problem-solving behavior, and (3) convince users that the system's conclusions
are reasonable.

Typically knowledge systems produce the two kinds of explanation by very dif-
ferent processes. Systems such as Red and Internist, whose task is to explain
data. do so by means of a reasoning process that can associate potential explainers
with the data they might explain. They explain themselves by "'introspection,"
i.e., by examining their own problem-solving knowledge and their own memory
for the problem-solving episode., So while, conceptually, the two major kinds of
explanation are similar, operationally, they are very different.

We c•n separate the explanation-generation problem in knowledge systems into
three top-level functions: generating the content, being responsive, and the
human-computer interface.

Generating an explanation's basic content. Given user queries about some as-

5

pect of system's decision making, we need to generate an information
structure containing the elements that make up an explanation. An es-
sential element in cons 'tructinj such an explanation is how knowledge of

teproblem-solving tAs comes into play during explanation. Explanation
content can be put together in two Ways:

By introspecting- That is. by examining'a record of its own problem
solving activity and picking appropriate traces containing information
relating to users' queries, or by retrieving portions o~f the knowledge
base that were used in making the decision and thus Can be used to
support it. To do this we need to know how a problem solver can
comprehend its own problem-solving. activity.

By concocting-That is. by producing a justitication that does not depend
on how.the decision was actually made. but that independently makes
the decision plausible. Constructinr~g such ex post facro justifications
or explanations is necessary when problem solvers have no accvss
to records of their own problem solving activity, or when iniforma-
tion contained in those records is unnecessary or incomprehensible to
users. The explanation argues convincingly that the answer is correci
without actually referring to the derivation process. just as a mathe-
mnatical proof persumides without necessarily representing thev process
by which a mathematician discovered the theor,ým Generatirfil such
an explanation is an interesting problem-solving process in its own
right (see Wick, et at. (20]. for a particular approach to this problem).

Responsiveness-shaping. xplanations to match user knowledge. It may not
be necessary to communicate all of the available explanation con.tent to
users.. Systes apply knowledge of user goals, ,tate of knowledge, and
the dialog ssructure to filterd , shape, and organize the output of the expla-
nation content wn that explanations respond to user needs.

The human-computer linterface. The two preceding functions produce all the
information needed conceptually and logically f.r the required explana.
tion, However, presentation issues remain: specifically, how an appropriate
"h.manscomli er interface effectively displays o at d presents information to
users. Some explanations are best presented in natural language. and some
in picpv4 or graphical form (pie charts, for example).

If explanation content is inadequate or inappropriate-sno matter how good the-

teo6

orines for responsiveness and interface functions are--then correspondingly poor
"explanations Will be presented. Thus generating the correct explanation content
is the central problem in explanation generation. Accordingly, we have concen-
trated on one aspect of this problem; namely, basing the explanation content on
introspection of the sysiem's own problem-solving behavior. We can break this
d'own into" the following three types of explanation:

Trace-based explanption--Explaining why certain decisions were or were not
made. This type of explanation re!ates portions of the data in a particular
case to the knowledge for making specific decisions or choices. (In an
earlier paper we called this type I explanation [8].)

.,,.Knowledge justification--Explaining elements of the knowledge base. For ex-
ample. we can justify a system's compiled knowledge by linking it to deep
knowledge from which it was derived. (For a discussion of issues related
to "deep" and "compiled" "knowledge see Chandrasekaran and Mittal [7].)
(In our earlier paper this was called type 2 explanation [8].)

Strategic explanation--Explaining the problem solver's control behavior and
problem-solving strategy. (Called ype 3 explanations in our earlier pa-
per (8].)

Typically, trace-based and strategic explanations report on a problem solver's run-
time behavior and so (in general) they cannot be precompiled without running
into combinatorial problems. In principle, explanation structures for knowledge
justification can be attached to the knowledge fragments at the time the knowl.
edge base is put together.

Figure 2.1 outlines these aspects of explanation. We have been working on a
functional representation for deep models of devices to produce knowledge jus-
tifications, relating the domain knowledge to problem-solving knowledge (19]
[6]. The theory of generic problem-solving types is especially suited to build-
ing systems that explain their control strategy (strategic explanation above) [5].
See Appendix C. Systems built using this generic-task approach are typically
composed of knowledge-level agents with well-defined problem-solving roles.
Consequently they can also produce trace-based explanations-how data match

7

knowledge-based on each agent's memory of its own problem-solving behavior.
More details on this can be found in [8] and Appendix C.

2.2 A Framework for Explanation

In the previous section we categorized the explanation of problem-solving activity
into three distinct types: trace-based explanation. how data matches local goals:
knowledge justification, how knowledge itself can be justified: and strategic ex-
planation. how control strategy can be justified. These three types correspond
to structures that need to be examined when constructing explanations. Next we
elaborate the description of these types and give some examples. The exam-
ples were created for expository purposes and are not meant to represent actual
explanations generated by particular systems.

Trace.hased explananon relates actual problem solving steps to problem states
or to data describing the problem. Appropriate fragments of the system's run.
time behavior must be examined. For example. consider the fo!lowing medical
icenario.

User: Why do you say the patient has cholestasis?

System: Because the patient has high blood bilirubin, jaundice, and X-rays sug-
gest an obstruction in the biliary duct.

Or, the following economic scenario,

User: Why do you conclude that a tax cut is appropriate here'?

System: Because a tax cut's preconditions are high inflation and trade deficits,
and current conditions include those factors.

8

These explanations exemplify how problem-specific data matched pieces of the
knowledge base and how certain conclusions were drawn. It might be possible
to conclude cholestasis from different possible combinations of data. Users
want to know which data combination was present in this particular problem.
This requires keeping a trace of problem-solving behavior, examining it. and
constructing an explanation from the trace.

Users not satisfied with this explanation level might ask.

Why does high blood bilirubin indicate cholestasis? Must it occur
in conjunction with jaundice?

Or.

Why is a tax cut a good idea for shrinking trade deficits?

Answers do not involve the particular situation at hand. The system is being
asked to explain portions of its knowledge base, which is knowledgejustifihcanrn.
Knowledge justifications explain knowledge base elements. Such explanations
will often be based on how the knowledge was derived. At least four ways
exist to obtain problem-solving knowledge, each with its corresponding type of
explanation.

By being told directly-When knowledge can only be justified by appeal to
authority (for example, `Text book, p. 85.").

By generalizing from examples-When. for instance, "68% of the time, when
a tax =ut was tried, the trade deficit went down." or "the last time a patient
had these symptoms it turned out to be AIDS."

By explanatory inference--When, for instance, a system contains the rule that
(given certain symptoms) a certain infectious organism should be hypoth-
esized. This can be justified by the knowledge that. if the disease were

9

present. it would explain the symptoms. Further justification might in-
clude discussing the medical history of recognizing the symptom group
as a distinct disease and identifying the infecting organism. The explana-
tory inference that this organism is the cause of symptoms (and therefore
explains them) may not actually be encoded in the system-that is, the
system may be unable to make the explanatory inference but still be abie
to solve problems. However to justify the Inowledge. the system will need
access to the inferential history.

By derivation from deeper domain understanding- When. for instance. "Tax
cuts generally encourage savings. stimulate investment, and increase pro-
duction (which decreases prices, increases exports. makes domestic goods
attractive, and thus reduces trade deficits)." If the knowledge base con-
tains knowledge directly relating tax cuts to shrinking trade deficits, such a
chain uf reasoning is not required to conclude that a tax cut is appropriate.
Nevertheless. the system should keep this knowledge available so that it
can be used appropriately for explanation.

Some of our work (61 has concentrated on the fourth category. that is. reasoning
from deep models. In particular. to derive fragments of diagnostic knowledge.
we have developed an approach that uses an agent's understanding of how a
device works. Thus a diagnostic knowledge system, by tracing how diagnostic
knowledge was derived fiom min understanding of the structure and function of
the device involved, can justify its knowledge.

Consider the following ',ntrractions with a medical system,

User: Why didn't you consider portal hypertension in this case?

System: Because I had ruled out circulatory diseases, portal hypertension is a
special case of circulatory diseases, and my strategy is not to consider
special cases when I have ruled out the general case.

Or an economic planning consultant,

10

Table 2.1: An Explanation Framework

Type of Source Comments
Explanation
Trace-based Problem solver Problem solvers can explain their reasoning if
explanation (expert system) they have access to a trace of the process.

Strategic Generic Task Problem solvers can explain their strategy if th.ey
explanation are properly connected to their generic task.

Knowledge Functional Problem solvers can justify their knowledge if
justification Representation they are properly connected to deep models.

User: Why aren't you suggesting increased tariffs as a way of decreasing trade
deficits?

System: Because that plan involves political'costs. My strategy is to consider
politically easier plans first.

Pan of what is explained in these examples is the knowledge system's control
strategy, which is straregic explanarion. Strategic explanations can account for
certain "why not?" as well as "why" questions. What is needed is an ability to
abstract and match portions of the control strategy to the situation. Typically,
an actually useful explanation will involve combined trace-based and strategic
explanations.

Table 2.1 outlines this explanation framework. Our theory of problem-solving
types (which is also a theory of control structure types) applies to strategic
explanations.

11

2.3 Explanation Based on the Problem-Level Task

The three types of explanation described above are all based on- the problem
solver itself-its knowledge, strategy, and actions. But, there is more to a knowl-
edge system than these, there is the problem-level task the system performs. This
is the central idea behind our generic-task work at Ohio State as well as Clancey's
heuristic classification (9]-knowledge systems are not merely domain-specific
problem solvers, they have a domain independent character as diagnosis prob-
lem solvers, designers, classifiers. etc. Users of knowledge systems understand
this and expect a program's actions and conclusions to be consistent with its
task. Thus their questions of the system will express puzzlement about how the
system's knowledge. strategy. behavior, and conclusions relate to the problem-
solving task. The system's responses to user questions ought to recognize this.
When users ask questions of a system that claims to do diagnosis, they will
be seeking assurance that the system's actions and conclusions satisfy the goals
of diagnosis. The system should be able to respond appropriately. This idea
was pursued in depth in Michael C. Tanner's Ph.D, dissertation. 'Explaining
Knowledge Systems: Justifying Diagnostic Conclusions". which is summarized
in Appendix A of this report.

2.4 Explanation Based on Functional and Structural Mod-
els

Sometimes a user will be interested to know what causal processes underwrite
a conclusion, whether or not explicit causal reasoning was part of the reasoning
leading to the conclusion. Thus the reasonableness of a plan typically depends on
assumptions about the causal consequences of plan actions, and the reasonable-
ness of a diagnostic conclusion typically depends on whether there are plausible
causal chains connecting the proposed malfunction or disease to the observed
symptoms. But, since it is usually not feasible to prestore all possible causal
chains in advance of particular new cases, some representation (and associated
processes) must be supposed which is capable of generating such a causal story
as needed for new circumstances. This issue was pursued by Anne Keuneke in

12

her Ph.D. work, and a summary of her dissertation entitled "Machine Under-
standing of Devices: Causal Explanation of Diagnostic Conclusions" is included
as Appendix B to this report.

2.5 Summary

We began by saying that virtually everybody working on knowledge systems
recognizes the importance of explanation, but there are many confusions, the
two main ones being:

1. Between scientific explanation (where the knowledge system explains the
world) and self-explanation (where the knowledge system explains its own
actions). The main difference between these two is over what events or
actions are being explained. Ln the end. these may turn out not to be very
different (the knowledge system is part of the world), but for now the
distinction is worth making.

2. Between the content of explanations and the presentation of explanations.
That is. too often fancy human interfaces and natural language systems
are mistaken for good explanation facilities and the problem of finding the
right content of the explanation is ignored or trivialized.

Out of concern for how knowledge systems generate the content of explanations
we distinguished five kinds of explanation:

1. Trace.based explanation relates actual problem solving to a problem state
or data describing the problem.

2. Knowledge justijicarion explains portions of the knowledge base, often
based on how the knowledge was derived.

3. Strategic explanation relates the system's actions to its control strategy.

13

4. Problem-level explanation relates the system's actions and conclusions to
its problem-solving task.

5. Model-based explanation generates plausible causal sequences that under-
write a system's conclusions.

Appendices A through C describe some of our work on generating explanations
of knowledge-system decisions and conclusions. Appendix A is an extended
summary of Michael Tanner's Ph.D. dissertation on the justification of diagnos-
tic conclusions. Appendix B is an extended summary of Anne Keuneke's Ph.D.
dissertation on composing causal sequences to explain diagnostic conclusions.
Appendix C is a reprint of an article by Chandrasekaran. et. al.. on explaining
control strategies which appeared in IEEE Expert. Additional papers and tech-
nical reports on explanation generation can be located by consulting the final
appendix listing publications.

14

Chapter 3

Foundations for Explainable
Knowledge Systems

3.1 The Generic Task Approach

Much of our work on making systems explainable has centered on the idea that
there are generic information processing tasks in terms of which knowledge sys-
tems can be analyzed and designed. A generic task is a type of reasoning, func-
tionally specified by its input and output, and characterized by an organization
of knowledge and strategy for control of problem-solving especially appropriate
for achieving the specified output, Our work has aimed to identify the individual
generic tasks, to analyze them properly, and to clarify their relationships to more
complex forms of reasoning such as diagnosis and planning.

An explication of the main points of the generic task approach is given in Ap-
pendix D which is a reprint of "Generic Tasks as Building Blocks for Knowledge-
based Systems: the Diagnosis and Routine Design Examples" which appeared
in Knowledge Engineering Review in 1989.

15

3.2 Functional Representation of Devices

Functional and structural models can supply the knowledge to support explana-
tions that compiled or purpose-tuned knowledge cannot provide. For example
the knowledge representing an understanding of how some device works can
help to explain diagnostic conclusions that are arrived at without the direct use
of this knowledge. For some time we have been concerned with how to rep-
resent an agent's understanding of how something works, and with how to use
such a representation in support of explanation and problem solving. We have
developed a language which is meant to represent this sort of understanding The
basic idea is that an agent's "deep knowledge" of how a device works can be
represented in a way that shows how an intended fitncdon is accomplished as
a result of the behaviors of its components. leading to a series of states of the
device. Originally designed to model the understanding of how a mechanical
device works, the Functional Representation Language has more recently been
used to represent how aspects of a plan can be understood: plans may be viewed
as abstract devices. An explanation of the Functional Representation Language
may be found in [191 and an important use of this language in generating expla-
nations is described in Anne Keuneke's dissertation, summarized in Appendix
B. Reports on other work on the Functional Representation Language. and its
uses for generating explanations, can be found'by consulting the final appendix
to this report.

16

Chapter 4

Analysis of Various
Knowledge-based Reasoning
Tasks

4.1 Classification

Classification appears to be a ubiquitous information-processing task underly-
ing much of human perceptual and cognitive processing. It has been addressed
by three distinct research paradigms: pattern recognition, knowledge-based rea-
soning, and connectionism. "From Numbers to Symbols to Knowledge Struc-
tures: Artificial Intelligence Perspectives on the Classification Task" by B. Chan-
drasekaran and Ashok Goel traces the evolution of mechanisms for classification
that occurs as the computational complexity of the problem increases from numer-
ical parameter setting schemes, through schemes using intermediate abstractions.
then relations between symbols, and finally to complex symbolic structures that
explicitly incorporate domain knowledge. This paper appeared in [EEE Trans-
actions on Systems, Man and Cybernetics for May/June 1988, and a copy is
included as Appendix E to this report.

17

Classification, especially hierarchical classification has served our group as an
important guiding example of a generic task since B. Chandrasekaran first for-
mulated the generic task idea sometime around 1981 ,4] . Within the time
period of this project we began to clearly distinguish classification roblem solv-
ing from the related task of "routine recognition" (i.e. concept matching or
hypothesis scoring). Also an analysis of the computational complexity of classi-
ficatory reasoning was performed, several versions of CSRL, our tool for building
Oassification systems were implemented, the role of classification in diagnosis
was clarified, and many classification systems were build for various domains.
Progress on these aspect of classification was documented in various publica-
tions: see the final appendix for more details. Most of these publications are
available as LAIR technical reports.

4.2 Abduction

Various facets of abductive reasoning have been investigated during the course
of the project, especially those related to the problem of assembling compos-
ite explanatory hypotheses. As the project began a second-generation abductive
assembly mechanism had already been constructed in conjunction with the Red
project. Subsequently this mechanism was further analyzed and documented, and
"-A Mechanism for Forming Composite Explanatory Hypotheses" by J. Joseph-
son, B. Chandrasekaran, 3. Smith, and M. Tanner is included as Appendix F.

A third-generation abductive assembly mechanism was implemented as a domain-
independent abductive assembly engine, called Peirce [17]. Its domain indepen-
dence was demonstrated by using it in three different systems (under sponsorship
fiom projects for medical AI) As Peirce was being built and tested a family of pa-
per designs of parallel abductive assembly mechanisms was worked out [12, 10].
Together this family of paper systems can be thought of as a fourth-generation
abductive assembly mechanism. The problem-solving mechanism implemented
by Michael Tanner for his dissertation work took advantage of new insights into
how incompatible hypotheses can be effectively handled, and can be thought
of as a fifth generation mechanism for the task. The architecture proposed for
perception, described in Appendix K, makes use of the 6th generation of the

18

- . . - "_. . , . . . , . . ,

abductive-assembly mechanism. This latest mechanism has been implemented
under industrial sponsorship as part of the Integrated Generic Task Toolset, and
is now being debugged and tested in anticipation of using it both for speech
recognition and for building diagnostic systems in medical and engineering do-
mains.'

A connectionist architecture for abductive assembly was also designed and ana-
lyzed. but noý !splemented (I fl.

On the face of it the problem of determining the best composite hypothesis for
explaining a set of data is combinatorially explosive, yet humans seems some-
times to be able to do it quite rapidly, for example in diagnosis and story under-
standing. So we analyzed the computational complexity of abductive assembly
with the objective of determining those conditions under which the problem is
tractable (solvable in polynomial time). What we found [31 is that determnin-
ing the plausibility and explanatory coverage of hypotheses must be tractable.
that there cannot be many incompatibility relationships or cancellation effects
between individual hypotheses. and that certain conditions apply to the manner
in which the plausibilities of hypotheses are compared. The general conclusion
is that under broad classes of realistically occurring circumstances optimal ab-
duction is impossible-no tractable algorithm exists that can be guaranteed in
general to find best explanations. Thus something must be given up. and a more
naturalistic or satisficing conception of abduction seems to be called for.

4.3 Design

The beginnings of our work on design problem solving predates this particular
project: David C. Brown's Ph.D. thesis under B. Chandrasekaran, completed in
1984, provided both a set of critical concepts with which to analyze the task, and
the DSPL shell for encoding design systems. DSPL systems accomplish routine
design tasks by a strategy of plan selection and refinement. Progress during this
period can be described as extending the analysis beyond routine design, and
extending the mechanisms beyond plan selection and refinement.

19

•, i%' ,K
q(

A book was published entitled Design Problem Solving: Knowledge Structures
and Control Strategies by David C. Brown and B. Chandrasekaran. A draft
of Chapter 2 of the book entitled "Design: An Information Processing Level
Analysis" is included as Appendix G.

* " We investigated the use of the Functional Representation Language to represent
prestored design cases, and in particular to capture, for each case, knowledge of
how a device~s functions arise from its structures and the behaviors of its compo-
nent subdevices. This is needed to support intelligent adaption of old designs to
new circumstances. Overall the approach appears to be very promising. and the
Functional Representation Language appears to provide the means of encoding
important parts of the knowledge for case-based reasoning in automated design.
Interested parties are referred to the papers numbered 45 and 58 in the final
"appendix.

Another line of investigation concerned how to overcome the "rigidity" of DSPL's
plan selection and refinement control strategy. The idea is that a flexible design
problem solver should be able to integrate different subtasks by using appropriate
different methods as applicable, and depending on the knowledge available. For
example knowledge might be available in the form of a decomposition of a
particular desig problem into a set of smialler subproblems, the solutions of
which can be composed to tolve the larger problem (or knowledge may be
available that can be transformed to this form). Alternatively, at a given point
in the design process. knowledge might be available of alternative plans for
designing some particular type of component. or knowledge might be available
of a similar case which almost completely serves the current needs. If a similar
case is recalled, useful knowledge might occur in the form of an ability -to
detect the crucial ways in which the old case fails to satisfy the current needs,
and/or in forms that will support the selective adaption of the case to the new
circumstances. These investigations have led to DSPL +.,. a new design shell to
embody more flexible control and to capture the forms of knowledge that support
it; DSPL .+ is under development with support from Boeing.

20

Chapter 5

Development of system-buiIding
tools

For each generic task the organization of knowledge and control of problem-
solving suggest a knowledge representation language, or generic tool. Each
generic tool is a "shell" for building a problem-solving system for the corre-
sponding generic task. The generic tools provide to the expert system designer
an advantage over rules, frames, logic, and semantic nets, similar to the advan-
tage that higher-level programming languages provide over assembly languages
for the computer programmer.

The "generic task toolset" has been an active project, in one form or another, at
Ohio State LAIR for many years. The period of time covered by this project
saw the following new implementations (some sponsored by this project and
some by others): a new implementation of CSRL (for hierarchical classifica-
tion) in [Inerlisp/LOOPS, separating the classification problem-solving from the
hypothesis matching problem solving (which got its own shell called HYPER,
HYPothesis matchER); a new implementation of DSPL (for routine design) in
Interlisp/LOOPS: an implementation of WWHI (What Would Happen If, for a
form of compiled predictive inference): a new implementation of the functional
representation language FUNC (for representiag devices) and its compiler frr

21

automatically generating diagnostic hierarchies; implementations of CSRL and
DSPL in KEE; an implementation of PEIRCE (for abductive assembly) in In-
terlisp/LOOPS; an implementation of the "toolbed" in Common Lisp and CLOS
for integrating the separate tools within a common framework: an imiplementation
of RA (Recognition Agent, a successor to HYPER) on the toolbed foundation in
Common Lisp and CLOS: a full-featured CSRL on the toolbed; and a PEIRCE
on the toolbed realizing most of the sixth-generation abductive assembly archi-
tecture.

Most of these tools received heavy student use as well as use on a number of
research projects in medical and process control domains. Experience with using
the earlier versions was folded into improving the designs of later versions.

An agreement was signed with Battelle Columbus Laboratories for commercial
development of the toolset. As of this writing Battelle is marketing a Common
Lisp version of CSRL. and a DSPL is under development.

-In October 1986 our laboratory hosted and co-sponsored (with AAAI and DARPA)
a workshop on High-Level Tools for Knowledge-Based Systems. Many good dis-
cussions were held, and it would be nice to believe that knowledge-based systems
technology was signiticantly advanced by the cross-fertilization of the various
projects seeking to go beyond rules and frames to higher-order structures.

Appendix H is a brief description of the generic task toolset.

22

Chapter 6

Applications of the Theory to
Various Domains

Close associations between the LAIR and various other laboratories and re-
searchers at Ohio State has provided rich opportunities both for transfer of tech-
nology to various application domains, and as a source for realistic problems to
use as an empirical basis for advancing the theory. Collaborators at Ohio State on
application domains have included the Laboratory for Krowledge-Based Medical
Systems. the Applied Al in Engineering Group. individuals in the departments of
Chemical Engineering. Nuclear Engineering. Pathology, Industrial and Systems
Engineering, Speech and Hearing Science, Linguistics, and Electrical Engineer-
ing. Industrial collaborators on applications have included McDonnell Douglas
and Boeing. By way of technology transfer to Battelle Columbus Laboratories in
the form of our AI tools and by way of temporary employment for AI students,
our theories and methods have found their way to additional applications done
by Battelle.

Appendix I describes an application of the generic task approach to decision
support for operators of nuclear power plants.

23

Chapter 7

Foundations of AI

7.1 Beyond Generic Tasks

Recently we have been investigating how task-specific architectures can be con-
structed from more general problem-solving architectures like Soar (from CMU).
with advantages for generality and flexibility. A preliminary step has been taken,
which is reported in [89-JJ-GTSOARI (see the final appendix to this report).

7.2 Connectionism

During the course of the project, thinking in Al was challenged by the emergence
of connectionism as an alternative research paradigm. Our lab was not immune
from the controversy, and in fact a good deal of thinking and discussion went
into deciding just what to take from connectionism and what to leave behind.
This intellectual ferment culminated in a series of papers, references to them can
be found in the final appendix.

24

7.3 Analysis of competing Al paradigms

Al as a discipline is in a paradigmatic mess. There is no widespread agreement
on the essential nature of intelligence, or on the best theoretical framework for
advancing the study of it. While almost all workers in Al would agree to the
central importance of information-processing activities operating on representa-
tions. connectionists have proposed analog processes and representations while
the more traditional view is that the important processes and representations are
discrete. Moreover. much information processing. analog and discrete. cannot\
reasonably be called "intelligent". Thus information processing may be a neces-
sary condition for intelligence, but is not sufficient for it. and we are left with
the question of just what kind of information processing is intelligence'.

This question is discussed in B. Chandrasekaran's "What kind of Information
Processing is Intelligence? A Perspective on A1 Paradigms and a Proposal"
due to appear in Source Book on the Foundations of Al edited by Partridge and
Wilks. A copy is included as Appendix J to this report. Three very different
styles of theory-making in AX are contrasted: architectural. !heories. logical-
characterization theories, and functional theories.

7.4 Model of Perception

Going back at least to Plato in ancient Greece there is a long tradition of belief
that perception is an active process, opposed to a more usual conception of the
process as completely passive. Some in this tradition, most notably Immanuel
Kant in the 18th century and C.S. Peirce spanning the 19th and 20th. have
held that perception involves some form of inference - presumably unconscious
inference. Peirce in particular proposed that the relevant form of inference is
abduction, a form of plausible inference distinct from both deduction and in-
duction. Abductions go from data describing something to hypotheses which
explain or account for that data. Abduction is thus akin to scientific explanation
as described in section 2.1.

25

During the course of the project progress was made on computational models
of abduction, especially "abductive assembly" or the generation and critical ac-
ceptance of composite explanatory hypotheses. This progress was described in
section 4.2. Iri addition the idea that perception uses abduction ledi to a model
of perception which is described in "A Layered Abduction Model of Perception:
Integrating Bottom-up and Top-down Processing in a Multi-Sense Agent" by
John Josephson, which is included as Appendix K to this report. This model
attracted collaborators at Ohio State in various scientific disciplines related to
speech recognition and understanding, and is the basis for a multi-disciplinary
project which has initial support by NSF and DARPA under Lheir joint initiative
on image understanding and speech recognition.

7.5 Uncertainty Handling

The recent debate in Al about uncertainty handling has conflated several con-
ceptually distinct issues, including: theories of objective probability, norma-
tive decision theories, psychological theories of human reasoning. and effective
knowledge system design. The dubious belief that "uncertaint: handling" is a
fundamental "natural kind" of intelligent activity has led to attempts to devise
formalisms which are useful for all problems. In contrast we have argued that the
form and significance of uncertainty is particular to the problem-solving context
in which it arises, and that different strategies of uncertainty handling are appro-
priate to the different contexts. This is discussed in "Uncertainty Handling in
Expert Systems: Uniform vs. Task-Specific Formalisms" by B. Chandrasekaran
and Michael C. Tanner which appeared in Uncertainty in Artificial Intelligence
edited by L. Kanal and J. Lemmer, Elsevier Science Publishers, 1986.

26

Bibliography

[1] Aristotle. Posterior analytics. In R. McKeon, editor, The Basic Works of
Aristotle. pages 108-186. Random House, New York, NY. 1941.

(2] B. G. Buchanan and E. A. Feigenbaum. Dendral and Meta-Dendral: Their
applications dimension. In B. L. Webber and N. J. Nilsson. editors. Readinqs
in Artificial Intelligence. pages 313-322. Tioga. Palo Alto, CA, 1981.

(3] T. Bylander. D. Allemang, NI. C. Tanner, and J. R. Josephson. Some results
concerning the computational complexity of abduction. To appear in the
proceedings of the Conference on Principles of Knowledge Representation
and Reasoning. January 1989.

(4] B. Chandrasekaran. Towards a taxonomy of problem-solving types. A!
Magazine, Winter/Spting:9-17. 1983.

(5] B. Chandrasekaran. Generic tasks in knowledge-based reasoning: High-
level building blocks for expert system design. IEEE Expert, l(3):23-30,
Fall 1986.

(6] B. Chandrasekaran. 3. Josephson, and A. Keuneke. Functional representa-
tions as a basis for generating explanations. In Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics, pages 726-
731, Atlanta. GA. October 1986.

[7] B. Chandrasekaran and S. Mittal. On deep versus compiled approaches to
diagnostic problem-solving. international Journal of Man-Machine Studies.
19(5):425-436, November 1983.

(8] B. Chandrasekaran, M. C. Tanner, and 3. R. Josephson. Explaining control
strategies in problem solving. IEEE Expert, 4(l):9-24, Spring 1989.

27

[9] W. J. Clancey. Heuristic classification. Artificial Intelligence, 27(3):289-
350, December 1985.

(10] Ashok God, John R. Josephson, and P. Sadayappan. Concurrepicy in abduc-
tive reasoning. In Proceedings of the Knowledge.Based Systems Workshop.
pages 86-92, April 1987.

(11] Ashok Goel, J. Ramanujan, and P. Sadayappan. Towards a 'neural' archi-
tecture for abductive reasoning. In Proceedings of the Second International
Conference on Neural Networks, volume 1, pages 681-688. 1988.

[12] Ashok Goel. P. Sadayappan, and John R. Josephson. Concurrent synthesis
of composite explanatory hypotheses. In Proceedings of the Seventeenth
International Conference on Parallel Processing, pages 156-160, august
1988.

(13] P. B. Gove. editor. Webster's Third New International Dictionary. Merriam-
Webster, Springfield, MA. 1981.

(14] C. G. Hempel. Aspects of Scientific Explanation. The Free Press. New
York. 1965.

(151 J. R. Josephson. B. Chandrasekaran. 3. W. Smith, Jr.. and M. C. Tanner. A
mechanism for forming composite explanatory hypotheses. IEEE Transac-
tions on Systems. Man, and Cybernetics, SMC- 1713):445-454. May/June
1987.

(16] H. E. Pople. The formation of composite hypotheses in diagnosic problem
solving. In Proceedings of the 5th 1JCAI, pages 1030-1037, Cambridge,
MA, August 22-25, 1977.

(17] W. F. III Punch, M. C. Tanner, and J. R. Josephson. Design considerations
for peirce, a high-level language for hypothesis assembly. In Kamal N.
Kama, Kamran Parsayc, and Barry 0. Silverimn, editors. Proceedings of
Expert Systems in Government Symposium, pages 279-28 1. IEEE Computer
Society Press, October 1986.

[18] R. C. Schank. Explanation Patterns: Understanding Mechanically and
Creatively. Lawrence Erlbaum Assoc., Hillsdale, NJ, 1986.

[19] V. Sembugamoorthy and B. Chandrasekaran. Functional representation of
devices and compilation of diagnostic problem solving systems. In J. L.

28

Kolodner and C. K. Riesbeck, editors, Experience, Memory and Reasoning,
pages 47-73. Erlbaum, Hillsdale, NJ, 1986.

(20] M. R. Wick, W. B. Thompson, and J. R. Slagle. Knowledge-based expla-
nation. TR 88-24, Computer Science Dept., Univ. of Minn.. Minneapolis,
MN, March 1988.

29/30

Appendix A

Explaining Knowledge Systems:
Justifying Diagnostic
Conclusions

31/32

Explaining Knowledge System's:
Justifying Diagnostic Conclusions*

Michael C. Tanner

July 28, 1989

Abstract

Problem-goiving systems should be able to give explanations that relate their
actions and conclusions to the logical structure of the task the system performs.
That is, the system and its users share an understanding of what the task is.
This ,hared understanding. or shared model, of the task represents the logical
structure of the task. i.e.. the features that characterize correct answers and correct
problem solving. Explanations can then relate the goal.subgoal structure of the
problem solver to this shared unddrstanding. In this paper I develop this idea in
the context of diagnosis. I present a model of diagnosis and derive from it the
questions that a diagnostic system can be asked-the questions that arise tolely
because the system does diaenosis. I give an architecture for a system that can
do diagnosis. show how parts of this iystem can be identitied with parts of the
diagostic task, and trom this mapping of architecture to task derive answers to
the diagnostic questions. I illustrate these ideas by describing the explanation
component of RiD. There are many aspects to the problem of explanation,
including the problem of how to present explanations to users. But central to
any explanation is its content, This paper is about the content of explanations
and how the content can be derived from the structure and memory of problem
solvers by reference to the logical structure of their problem-solving task.

1 Types of Explanation and Explaining Systems

In Anrical Intelligence, and particularly in knowledge systems. there has been con-
siderable interest in explanation. A number of systems have been built that explain.
either as their primary purpose or as a secondary feature. Most authors writing on
knowledge systems consider explanation to be an essential part of such systems, and
devote some energy to describing the explanatory capabilities of their particular pro-
gram. However, they often conflate user modeling and user interface issues with

"This work has been supported by the Defense Advanced Researmh Projects Agency under RADC
contract F30602-85-C-001. and the NMH Heart. Lung and Blood institute, pant number I ROI HL38776.
01.

33

the more central issue of using a system's knowledge to form the content of expla-
nations. There is even some natural confusion between the explanations given by
programs that explain their own decisions and those given by programs that have the
problem-solving goal of explaining events outside themselves.

We have sorted out and described these issues in more detail in other papers (9,
,36]. For present purposes the interesting type of explanation is that generated by a
problem solver about its own behavior and knowledge. We can break this down into
the tbllowing four types:

Trace.based explanation-Explaining why certain decisions were or were not made.
This explanation relates portions of the data in a particular case to the knowl.
edge for making specific decisions or choices.

Knowledge justifcation-E-xplaiing the knowledge base elements. For example,
we can justify a system's compiled knowledge by linking it to deep knowledge
from which it was derived. (For a discussion of issues related to 'deep" and
"compiled' knowledge see Chandrasekaran and MIttal (8].)

Strategic explanatton-Explaining the problem solver's control behavior and problem-
solving strategy.

Task-based explanation-Explaining how the system's actions and conclusions re-
late to the goals of the task the system performs.

Typically. trace-based and strategic explanations involve a problem solver's runtime
behavior and so (in general) they cannot be precompiled without running into com-
binatorial problems. In principle, explanation structures for knowledge justificanon
can be attached to the knowledge fragments at the time we put the knowledge base
together. These three types correspond to structures that must be examined when
constructing explanations. The fourth. type of explanation. task-based explanation,
will be the focus of this paper. This type of explanation relates to the problem
solver's run-time behavior, but the problem solver does not need task knowledge to
solve problems. In the remainder of this section I will elaborate the description of
these types and give some examples.

In our lab we have been working on a functional representation for deep models
of devices to produce knowledge justifications. relating the domain knowledge to
problem-solving knowledge (32]. 1 will not discuss this here; see Chandrasekaran,
et al. (7], for more information. The theory of generic problem-solving types is
especially suited to building systems that explain their control strategy (strategic
explanation) (6]. More details on explanation in systems built using this generic-task
approach can be found in Chandrasekaran, et al. E9].

1.1 Trace-Based Explanation

Trace-based explanation relates actual problem solving to a problem state or data
describing the problem. This involves examining appropriate fragments of the sys-

34

tem's nrntime behavior. These explanations tell how problem-specific data matched
pieces of the knowledge base and how certain conclusions were drawn. This often
requires keeping a trace of problem-solving behavior, examining it, and constructing
an explanation from the trace. Trace-based explanation is the mosi common kind of
explanation given by knowledge systems. Virtually all systems do this in one form
or another because describing what the system did, and its reasons for doing it, is
a basic pan of explanation. Probably the most widely known of these systems are
S•DLU and MYCIN.

Terry Winograd's SHRDLU (391 was the first system to be explicitly concerned
with both problem solving and explanation of problem solving. S-nDLU could solve
problems in a blocks world, and explain why, when, and how it took each action.
SHMDLU solves problems by setting up a goal-subgoal structure where each goal is
an action for the system to take. It can answer "why." "when," and "how" questions
only about these actions. Sl-nDLL's answers refer back to the goal-subgoal structure.

MYco; is a rule-based consultation system implemented as a backward-chainling
rule system [2]. That is, the system sets up the goal of establishing a rule's con-
sequent, the "then" part of the rule, which results in setting up the subgoals of
establishing the antecedent. the "ir' part. While solving problems. MYCD; asks users,
for more information when one of the goals cannot be satisfied by information that
MYcN has available. Users, instead of providing answers, can ask "why" or "how.*"
The explanation technique in MYCD; is explicitly based on the assumption that some
sort of trace of the program's actions is an effective explanation [14]. Since MYCDN is
based on rules that are chained in a goal-subgoal fashion, this t-ace-type explai.ation
is based on the rules and the goal-subgoal structure. "Why" corresponds to ascent to
the supergoal and is answered by giving the rule that uses the reqclested information
in its premise. "How" corresponds to descent to the subgoals and is answered by
giving the rule that concludes about the information. This is identical to SHRDLt
in presenting goals and subgoals, with the refinement of using rules to express the
goal-subgoal structure.

There have been numerous other knowledge systems with explanation facilities.
Some have been built with rules, like MYCD4, and give explanations that ate es-
sentially identical to MYCN's explanations. Many systems that are based on other
methods still explain by means of a trace. ABEL, for example, reasons using a causal
network---but it explains by translating pieces of the net into English, that is, by
tracing its actual reasoning (26]. PROSPECroR (16] is implemented as a Bayesian
inference network, but its explanations are the same as MYCIN's with the rules rep-
resented as nodes and links in the net. BLA- (37] is a program with explanations
based on a study of "natural explanation" [17]. The goal of this study was to analyze
the syntactic organization of explanations and develop a grammar that describes jus.
tificatory argument. BLAH constructs explanations according to this grammar. This
results in expla•ations that may be easier to understand, because of their form, but
the content of the explanations is a trace of BLAR's reasoning--backward-chained
production rules (i.e., MYhCL-like). Most other knowledge systems with explanation
facilities can be seen to explain by giving a trace of the reasoning, i.e., trace-based

35

explanation.

1.2 Knowledge Justification

Users may ask a system to explain portions of its knowledge base, i.e., knowledee
justificadton. Knowledge justifications explain knowledge base elements. Such ex-
planations will often be based on how the knowledge was derived. There are sev-
eral ways to obtain problem-solving knowledge. each with its corresponding type
of explanation. These include: being told. generalization, explanatory inference,
and derivation from deeper domain understanding. The justification of knowledge
in knowledge systems has received far less attention than trace-based explanations.
For the most part such justifications have been "canned" text included with the rules
in the knowledge base at the time the system was built. There is one interesting
exception. XPLA14., In addition, the functional representation under development at
OSU's LAIR may provide a way to get interesting justifications of knowledge.

A knowledge system has task-specific goals and problem-solving knowledge that
we can view as compdied from more general domain knowledge. If the system
remembers a trace of the compilation, it can justify system rules in terms of the deeper
knowledge. XPLN is a program that makes use of this idea to justify knowledge in
a knowledge system [351. XPLAC is able to use deep knowledge ("domain model")
and a representation of problem-solving control strategies ("domain principles") to
compile a knowledge system (the "performance system"). ("Compile" means to
convert general knowledge into use-specific knowledge.) Oy keeping a record of this
compilation. XPLAN can justif, a rule in the performance system by retfrring back
to the domain model.

Sembugamoorthy and Chandrasekaman introduced the functional representation as
a way of understanding devices and showed how it could be used to compile problem
solvers of various kinds (32]. They do not specifically address explanation, although
later work described by Chandrasekaran, et al. [7M, does. In principle, this is similar
to XPLAL4-problem-solving knowledge, e.g., diagnostic knowledge. can be justified
by tracing its derivation from an understanding of the structure and function of the
device.

As I described earlier, there are several ways of deriving knowledge besides deriv-
ing it from a deep model, including being told directly, generalizing from examples.
and explanatory inference. Many learning programs derive knowledge in these ways
but I do not know of any attempt to have such programs use the derivations to jus-
tify their knowledge. Many programs have "canned" justifications, i.e., text strings
installed at the time the system is built. For example, GUIDON included justifica-
tion text with each of MYCLN's rules for use as part of a tutoring system. and Davis
suggested capturing such information in general as part of building any knowledge
system [10, 141.

36

1.3 Strategic Explanation

The third kind of explanation is explaining the knowledge system's control strategy.
i.e., strategic explanation. To do this a system needs an ability to abstract and match
portions of its control strategy to a given situation. Typically, the actual explanation
involves combined trace-bused and strategic explanations. Like knowledge justifica-
tions. strategic explanations have received little attention in Al. Only two bodies of
research have addressed this type of explanation: NEO.MYCiN, and associated systems.
and generic-task theory.

Clancey noted that knowledge systems typically perform tasks best described at a
higher level than a rule base's goal-subgoal level C 11]. But MYCDN had explicit rep-
resentation of rules only, and not of the problem-solving strategy implicitly encoded
in rules by system designers: therefore, it could not answer "why" questions that
needed to be interpreted strategically. However, if system behavior is represented
at the task level, it can produce explanations at the task level. NEOMYCIN solves
the same diagnosis problem as MYcrv, but explicitly represents the diagnostic task.
It contains diagnostic operators including "establish hypothesis space" and "explore
and refine" that represent the diagnostic strategy and in terms of which it can ex-
plain its problem-solving activity [13]. NEOMYctC implements strategy by encoding
it in metarules (i.e.. rules that tell what order to invoke the problem-solving rules).
It can explain why a particular decision was made at a particular time by referring
back to the metarule that invoked the rule in questiorr. So, by using the same kind
of explanation facility as MYCI,. namely, displaying the rules used during problem
solving. NEO.Ycr4 can give strategic explanations that describe its higher level goals
by using trace-based explanation methods.

Chandrasekaran has developed a theory of problem-solving types called generic
tasks [6]. A goal of generic-tasic theory is to reduce the gap between the implemen-
tation level and the intrinsic task level. A concept central to generic tasks is that: (1)
input-output behavior (i.e., the function of the task), (2) kinds of knowledge needed
to perform the task, and (3) kinds of inference appropriate for the task, are all spec-
ified together. Chandrasekaran [6] and Bylander and Chandrasekaran (4] describe
the advantages of this approach for system design and knowledge acquisition. For
explanation the important contribution of generic tasks is that each problem solving
type has a set of appropriate control strategy goals. These goals can be used to
explain why particular actions awe taken at particular times.

1.4 Task-Based Explanation

The three types of explanation described above are all based on the problem solver
itself-its knowledge, strategy, and actions. But, there is more to a knowledge system
than these, there is the problem-level task the system performs. This is the central
idea behind our generic-task work at Ohio State [6]-knowledge systems are not
merely domain-specific problem solvers, they have a domain independent character
as diagnosis problem solvers, designers, classifiers, etc. Users of knowledge systems

37

understand this and expect a program's actions and conclusions to be consistent with
its task. Thus their questions of the system will express puzzlement about how the
system's knowledge. strategy, behavior, and conclusions relate to the problem-solving
task. The system's responses to user questions ought to recognize this. When users
ask questions of a system that claims to do diagnosis. they will be seeking assurance
that the system's actions and conclusions satisfy the goals of diagnosis. The system
should be able to respond appropriately. My main focus in the remainder of this
paper will be on task-based explanation.

As far as I know, no one is doing task-level explanations. The closest to it is
some work being done by Wick on knowledge-based justification [38]. In knowledge-
based justification the reasoning used to solve the problem and the reasoning used
to justify it are completely separate. So, for any given problem. the problem solver
works until it gets a solution, then the justifier goes to work to convince the user that
the solution is correct. There is no necessary relationship between this justificatory
argument and the actual reasoning that produced the solution. In Wick's system the
explanation is presented using standard rhetorical techniques, This could easily be
problem-level explanation if these techniques were augmented to include the goals
of the problem-solving task.

2 Diagnosis

Knowledge systems are problem solvers, but they are not general problem solvers.
That is. a knowledge system is capable of sotng problems of a particular kind. This
is a key intuition behind our generic-task work at Ohio State as well as Clancey's
heuristic classificationt 121--that knowledge systems are no(merely problem solvers
with domain-specific knowledge but that they have a domain-independent character
as diagnosis problem solvers, designers, data-base reasoners. classifiers. etc. Further-
more, users of knowledge systems understand this and bring to their interactions with
a system an expectation that the progamn's actions and conclusions will be consistent
with the task. Thus their questions of the system will express puzzlement about how
the system's knowledge, strategy, behavior, and conclusions relate to the problem-
solving task. The system's responses to user questions ought to recognize this. What
is needed is a shared model of the problem-solving task that expresses the legitimate
concerns of the user and that can be used to both interpret the user's questions and
provide sensible answers. This shared model is based on the task not the user, i.e., it
is not user specific. It is also a model of the problem, not a method for solving the
problem.

2.1 A Shared Model or Diagnosis

As an illustration of the problems of not having a shared model, consider the way
MYcLN answers WHY questions.

MYCIN: Is the patient's illness with ORGANISM-1 a hospital-acquired infection?

38

User: WHY?

MYCIN: This will aid in determining the category of ORGANISM-I. (based on [3 1.
p. 347])

Obviously "WHY?" is ambiguous so MYcDN offers this interpretation of the question:

WHY is it important to determine whether or not the infection with
ORGANISM.l was acquired while the patieut was hospitalized?

But note that the actual interpretation, based on the answer given, is:

What goals of MYCDN will be served by knowing the answer to this
question?

However, I claim that the user is not asking a question about MYCD;'s goals but
about the goals of MYCIN's problem-solving task of diagnosis. More particularly.
the user wants to know how the requested information will help achieve the goals
of diagnosis. e.g.. does this information bear on rating the plausibility of disease
hypotheses or on deciding what can be explained by disease hypotheses?

In Al. diagnosis is typically described as an abduction problem [15, 23.27. 29. 30].
That is. the task is to find a disease, or set of diseases, that best explains the symptoms.
More specifically, a diagnostic conclusion should explain the symptoms. it should
be plausible. and it should be significantly better than the alternative explanations.
According to this abductive model of diagnosis, a diagnostic conclusion is supported.
perhaps implicitly, by the following argument:

- There is a principal complaint. i.e.. a focus set of symptoms that sets the
diagnostic problem.

- There are a number of diagnostic hypotheses that might explain the principal
complaint.

- Some of the diagnostic hypotheses can be ruled out. This can be due to:

* Some diagnostic hypotheses are not pertinent since they cannot explain
the principal complaint.

* Some diagnostic hypotheses are implausible independent of what they
might explain.

- The diagnostic conclusion is the best of the plausible hypotheses that are ca-
pable of explaining the principal complaint.

Note that this includes the general case in which diagnostic conclusions contain more
than one hypothesis. This argument form represents the logical structure of the
diagnostic task and is derived from the abductive nature of diagnosis. In particular.
it follows from the meaning of "best explanation."

39

One of the underlying goals of diagnosis is to enable the selection of a treatment.
To do this it is necessary to find out what is true about the patient, i.e., what is
causing the principal complaint. The argument form above represents an attempt to
ensure that the diagnostic conclusion is the true cause. But suppose the diagnostic
conclusion turns out to be wrong. What happened to the true answer? That is. why
did the true, or correct, answer not turn out to be the best explanation? This can
only happen if sociiething is wrong with one or more pans of the diagnosis. Based
on the diagnosis model, this means that there is something wrong with the principal
complaint, or there is something wrong with the list of diagnostic hypotheses, or
thera was an error in the rule-out process, or an error in rating or choosing the best
hypothesis. Thus. the diagnostic conclusion can only be wrong for one or more of
the following reasons:

1, There is something wrong with the principal complaint.

(a) The principal complaint is not really present or does not need to be ex.
plained.

(b) The principal complaint is incomplete, there are other things that should
be explained by the diagnostic conclusion.

2. The true answer was not on the list of diagnostic hypotheses thought to have the
potential of explaining the principal complaint, thus it never was considered.

3. There is an error in the rule out.

(a) The true answer was ruled out. This might happen because:

i. It was mistakenly thought to be implausible.
ii. It was mistakenly thought not to explain the data.

(b) The wrong answer (the one given) was not ruled out. This might happen
because:

i. It was mistakenly thought to be plausible.
ii. It was mistakenly thought to explain the data.

4. There is an error in rating the plausible explanations.

(a) The wrong answer is rated too high.

(b) The true answer is rated too low.

The source of these errors might be found in either missing or faulty knowledge as
weU as in various problems with the data itself.

Since a question from the user expresses puzzlement about meeting the goals
of diagnosis, it can be interpreted as attempting to ensure that the conclusion is
correct. Thus, corresponding to each source of potential error there is a class of
questions. This analysis tells us that if we build a knowledge system and claim that
it does diagnosis, we can expect it to be asked certain questions. It could be asked

40

the following classes of questions, challenging potential weaknesses in the system's
reasoning:

I. Is the principal complaint really present or abnormal? This group includes,
"*'How sure are you that finding 1i is present?" and. "Was flna.ing fA derived by
a method that often shows false positives?"

2. Does the principal complaint contain all the impoitant data? For example,
"Should the diagnosis also explain finding fe?" and "Did you check for the
presence of finding A?"

3. Was a broad enough set of explanatory hypotheses considered? This includes
such questions as. "Did you consider hypothesis hi?'" and, "What hypotheses
did you consider?"

4. Has some hypothesis been incorrectly ruled out? This includes, "Why was
hypothesis h, ruled out?" and. "Why doesn't the diagnosis include hypothesis

5. Could some hypothesis explain a finding that the system thought could not'?
For example, "Why doesn't hypothesis hi explain finding jj?" and. "What are
the possible explanations for finding fj?"

6. Was some hypothesis not ruled out that should have been? For example. "Why
is hypothesis hi considered plausible even though it is rarely present in cases
where finding j is found?" and. "Why not rule out hypothesis hi on the basis
of the absence of finding fj ?'"

7. Is it possible that the hypotheses in the diagnostic conclusion do not really
explain the findings? For example. "What is the connection between hypothesis
hi and finding fj?" and "Isn't finding fj far too extreme to be completely
explained by hypothesis h1 ?"

8. Might the hypotheses in the diagnostic conclusion be rated too high? Included
here are such questions as, "How does the data support hypothesis h4" and,
"Isn't hypothesis hi inconsistent with finding ,j?"

9. Has some hypothesis been underrated? This group includes, "Isn't hypothesis
hi often found in cases where hypothesis h, is present?" and, "What makes
you think the data does not support hi mome strongly?"'

Furthermore, these questions express the only reasonable concerns that arise solely
because it is a diagnosis system. Other appropriate questions, not about diagnosis as
such, might include requests for definition of terms, exam-like questions that check
the system's knowledge, and questions about implications for treatment. We are not

IThroughout this section. and the following two sections, "implausible" is used to nman "ruled ouL"
"plausible" means "not ruled ou*," and "rating" means the final rsadn of non-ruled-out hypotheses.

41

suggesting ,that all questions will be in exactly one of these classes, some questions
may refer to many of these concerns.

Consider an example of liver disease diagnosis given by Harvey and Bordley [191.
In this c4se the physician organizes the diagnosis around hepatome&Wy (i.e., enlarged
liver) giving 5 types of causes of hepatomegaly: venous congestion of the liver,
obstruction of the common duct, infection of the liver, diffuse hepatomegaly without
infection, and neoplasm (i.e.. tumor) of the liver. He then proceeds to describe the
evidence for and against each category. Venous congestion of the liver is ruled out
because none of its important symptoms ame present. Obstruction of the common
duct is ruled out because it would not explain certain of the important findings and
many e.xcpected symptoms are not present. Various liver infections are ruled out
due to inability to explain certain important findings, though one of the infections
seems fairly likely. Diffuse hepatomegaly without infection is considered implausible
because, by itself, it is not sufficient to explain some important findings. Neoplasm
is plausible and would adequately explain all the important findings. Finally he
concludes:

The read choice here seems to lie between aii infection of the liver and
neoplasm of the liver. It seems to me that the course of the illness is
compatible with a massive hepatoma [neoplasm of the liver] and that
the hepatomegaly, coupled with the biochemical findings, including the
moderate degree of jaundice. are best explained by this diagnosis. [19,
p. 3021

In terms of the shared model of diagnosis:

- The principal complaint is hepatomegaly.

- The diagnostic hypotheses that might explain the principal complaint are: ve.
nous congestion of the liver, obstruction of the common duct, infection of the
liver, diffuse hepatomegaly without infection, and neoplasm of the liver.

- Venous congestion of the liver, obstruction of the common duct, and diffuse
hepatomegaly without infection are ruled out.

* Obstruction of the common duct and diffuse hepatomegaly without infec-
tion do not actually explain the principal, complaint

* Venous congestion of the liver is implausible.

- The diagnostic conclusion is neoplasm of the liver since it is the best of the
plausible explanations that are left (infection of the liver, neoplasm of the liver).

Interestingly, in this case Bordley's diagnosis is wrong. Autopsy revealed that
the patient actually had cancer of the pancreas.2 Based on the above analysis, the

2To be fair, de autopsy also found aumors in die liver, but psacreatc camcer was considered do primary
illness.

42

physician could have missed the diagnosis only for one or more of the following

reasons:

1. Hepatomegaly may not actually be present.

2. There may be other important findings that should count as part of the principal
complaint.

3. There might be causes of hepatomegaly that axe not known to the physician or
were overlookedby him.

4. Maybe venous congestion is more plausible than he thinks it is.

5. Obstruction and diffuse hepatomegaly might explain findings that the physician
thinks they cannot explain.

6. Neoplasm might actually be implausible.

7., Neoplasm might not actually explain the principal complaint.

8. Perhaps neoplasm should be rated lower than it is.

9. Perhaps infection should be rated higher than it is.

Continuing'the example, if the physician were asked. "What makes venous con.
gestion implausible?" he might answer.

This patient exhibited no evidence of circulatory congestion or obstruc-
tion of the hepatic veins or vena cava (19. p. 3011

thus trying to convince the questioner that venous congestion was correctly ruled out.
If asked. "Why not consider some toxic hepatic injury?" the physician could reply,

(It would not] seem to compete with a large hepatoma in explaining the
massive hepatomegaly, the hypoglycemia, and the manifestations sug.
gestive of infection. (19, p. 302]

thus trying to convince the questioner that the differential is broad enough. If we
asked the physician, "How do you account for the s"apy elevateL amylase?" h

only possible reply would be,

Oops.

because the amylase is a significant finding in the case that Is not explained by the
diagnostic conclusion. The physician missed pancreatic cancer because one of the
significant findings in the case, elevated amylase, was. not included in the principal
complaint (see 2 above).

43
;', , . , ".1

2.21 Similarity of Other Approaches to Diagnosis
There has been a considerable amount of work on diagnosis In medicine and In AL.
In this section I will describe several approaches to diagnosis and show that they
all contain. at least implicitly. the shared model of diagnosis pregented in the last
section.

Medicine has a long history of conceptual and theoretical study of diagnosis.
'Me most common way that diagnosis is taught and described is called differential
diagnosis (I$]. Stedman's Medical Dictionary defines differential diagnosis as:

The determination of which of two or more diseases with similar symp-
tomns is the one from which the patient is suffering. (20, p. 3891]

As presented in medical textbooks differential diagnosis is almost identical to the
shared model of diagnosis. Based on the data available about the patient-from the
patient's presenting complaint, history, physical examination, and laboratory tests-
the physician identifties the Weevant problem, *area. i.e., the set of symptoins ihii
appoars to be the key to the patient,'s lillnees. Then he considers diseases that might
cause those symptoms. This set 6f diseases is. called the differcnitial. Next he exam- '

ines the differential attempting to decide which.disea~se can be ruled out'on the basis
of the evidence gathered so, far., or on evidence that might be gathered. and to de,:4e,
which of the diseases is most likely, In the end, the diagnwis ip the disease, or set'
of diseases. that the physician cohsiders- to be most* likl~ey of hose'that are not ruled
out. So the princi~pal complaint is the relevant'pto~ern area.. If wt, equate "fcauses"
with -explains- then the diagnostic hypotheses are thle diseases in the differential.
Some of them ame ruled out becausev, jn the given case. they do not actually expl'3'1
the symptomns. Soma are ruled out because they, predict certain findings that are not
present or tho. pattern of .findings is not consistent wit# the presence ~d ~ di-sease.
?Fi&ly. the best hypothes~es that are left are chosen as tho diagnosis.

One of the important tasks of MYCLN 'is identifying infecting organisms, I'll.
MYCt!N doe not explicitly represeent the problemn in abduction',terms, nor have its
authors ever de~cllbed it in those-terms,. However. MYcŽI4 did have an ixxtplicit mrodel
,of diagnosis as wrag made clear by Clancey's re-examinatiori bfMYCIh1'i rules for the
:putprKse of building a tutotlng~systemt. This led tor die development ofNO(NW4C1~ (131,
whichf performs MYC. I's diagnalis task with a more. explicit representation of the
problem-solving strategy. NEOMYCC4 begins with a "chief comnplaint.'* which is used
to -Stnerate somei hypothieses, based on the diseases known to c'ause it. The process
of establishing these hy~potheses generates additional data that may in turn suggest
new hypofthses. Eventually :the hypotheses are fully refined and scored. no new,
'hypotheses'are suggerred. and the progrm terminates because thete is nothing~more
to do. The suggested hypotheses are those that cause pertinent findings. 'The domain
rules score hypotheses based on s~tveral factors includinga what they explain and the
presence or ab,"nce of manifestations nqrMally associated with the disease. In the
end MYCLN/NE.OMYC0; produces an ordered list of organisms that might be caus-
n$ -toe Infection and that have,#~ score above a certaia threshold. So'~th, ptincipal

44

complaint is the "chief complaint" together with other findings that may turn up and
need explanations. The diagnostic hypotheses are given in a hierarchical space of
hypotheses. Some hypotheses are ruled out because they do not explain anything
(implicitly by the initial selection process, equating "causes" with "explains"). Other
hypotheses are ruled out by the evaluation process since hypotheses with a value
below a plausibility threshold ane removed from further consideration. A set of the
highest rated organisms, i.e., the best of the remaining hypotheses, axe presented in
order of their values as the diagnosis.

At the opposite extreme from MYCLN with its implicit model of diagnosis is
Reiter's explicit theory of diagnosis from "first principles" [30]. In Reiter's theory
diagnosis requires a set of components and a description, in any deductive logic, of
the normal behavior of the device being diagnosed. The diagnostic problem is set by
an observation that conflicts with expected behavior. The problem is, "to determine
those system components which, when assumed to be functioning abnormally, will
explain the discrepancy between the observed and correct system behavior." (30. p.
58] A diagnostic conclusion is a minimal set of abnormally functioning components
that is logically consistent with the observation. Thus tne principal complaint is an
observation that is inconsistent with the expected behavior. The set of diagnostic
hypotheses is the power set of the set of all propositions, ABNORMAL(e). for all
components c. A number of these hypotheses can be ruled out since they are not
consistent with the observation. Thus. all rule outs are on explanatory grounds since
Reiter equates -explains" with "is consistent with." Reiter considers the problem to
be one of generating all diagnoses. so the final step of choosing the best diagnosis
isknot done.

' /.T ,'an1 N NiS' is A knowledge system that performs diagnosis in internal medicine (24]
and explicitly represents the diagnosis problem in abductive terms by attempting to
model differential diagnosis. Its disease representation includes with each disease a

' ',¢tm manifestations known to occur in association with the disease. It also associates
two num:ersswith the,1ink betweei each disease and each of its manifestations that

A qualitativily vip'esent evoking strength, how strongly to believe the manifestation
is caused by the" 'disease, and frequency, how often patients with the disease have

""' the., maniftstation. Also eich manifestation has an import assigned, that is, how
necessary It is that the diagnosis explain the manifestation. In addition, there are links
between disea•es and between manifestations that express causal and predisposing
relationships. "ll dsse evoked by the observed manifestations are rated based on
the evoling strengths, frequency. impon, and their relations to other diseases that have
,beep cq*luded or ruled out. Diseases that score below a threshold are discarded.

" .- "," If the top-tanked dlýase has competitors LNTEL',IsT selects a questioning strategy
designed to eliminate them and tJ•o ,isease hypotheses axe rescored. (Two diseases are
". competitotr-'taken together they explain no more observed manifestations than either
does, individually.) Ii the,. top-rated disease has no competitors then it is concluded,
" i.e., it is part of the diagnostic conclusion, and all manifestations it explains are

removO4 four consideration aid the hypotheses rescored. This process repeats until
all manifestaUds with high import am, explained. So the principal complaint is the

\. 4

J , • : . .5

(,S. . ,, , , , '• , • •n ' I I ' : 1I r r• ,"

set of manifestations with high import. The diagnostic hyp4ý.es awe th;))pwer set
of known diseases. All diagnostic hypotheses except tN. conclusiOm al ruled out,
though the rule out combines expltnatory ability with other reasons. Since everything
else is ruled out, the diagnostic conclusion does not need to be chosen from the best
of the remainder. However, since at each step only the top-ranked hypotheses 0 be
concluded, it can be said that it is the best way of-explaining some ft heiuolained
manifestations.

Reggia's generalized set covering model (OSC) (29] is an explicitly abductive
diagnosis system, like INTrRNIST, that contains some formal aspects. In OSC a di-
agnostic problem has a set of diseases, a set of manifestations, a relation that maps
diseases to the manifestations they can cause, and a set of observed manifestations.
An explanation is defined to be a minimal set of diseases that, taken together. can
cause all the observed manifestations. The diagnostic problem is to find all explana-.
tions for the observed manifestations. In addition, OSC has a qualitative probability
associated with each "disease can cause manifestation" relation that can be used to
rank the diagnoses. And, since some diseases always cause certain manifestations,
this information can be used to categorically reject some diagnostic hypotheses. Thus.
in terms of the shared model, the principal complaint is the set of observed mani-
tfstahions. The diagnostic hypotheses am the power set of the set of diseases. Some
hypotheses can be ruled out, either because they do not explain any observed manifes-
tations or because manifestations they expect to find are not present (i.e.. independent
of what they can explain). GSC can rank-order the remaining hypotheses based on
a qualitative version of Bayes' Rule. however, it does not pick the best since Reggia
considers the problem to be generating all explanations.

There have been many more diagnostic systems in Al than can be described here.
I have tried to select a representative sample for the purpose of describing various
views of diagnosis. MYCL is representative of all rule-based diagnosis programs.
Reiter represents a large area of research on diagnosis from "first principles" and an
important non-medical view of diagnosis. L:NT'NIST and GSC are well-known and
influential medical systems. In addition, these descriptions leave out many important
aspects of the systems. For example, MYCIN contains a therapy-selection component:
LNT•EMIsT', and much of the "first principles" work, is concerned with "sequential
diagnosis," Le., using a tentative diagnosis to guide the selection of tests that will
narrow the diagnosis. Finally, the space of diagnostic hypotheses in some cases
may seem incredibly large (e.g., for LN'rEMNST, which contains about 500 diseases,
them are 2900 diagnostic hypothesest), but this does not imply that the space is
searched exhaustively. These systems use many techniques to reduce the search:
only certain hypotheses ame suggested by the data (MYCtNHEOMYCN, INTEPrIST,
* SC), hierarchical search (MYcIN/NEoMiYciN), sequential explanation of pats of the
data (NTERNIST), etc. But my purpose was not to describe these systems completely,
or even to describe how they work, but to elucidate their models of diagnosis as a
task.

From this brief survey it appears that the shared model of diagnosis presented
in the last section is a common view of the diagnosis task. The only significant

46

difference is that some approaches (Reiter and OSC) do not select the diagnosis.
Instead they find all possible diagnoses and stop. However, if the goal of diagnosis
is to find out what Is true in order to decide what to do about it, selecting the diagnosis
is very important. Ther may be situations in which It is difficult, or impossible to
choose, or when conlfdence in the choice is low, but making the choice seems to be
a fundamental goal of the task.

The last point, that the shared model of diagnosis given here is a common view
of the diagnostic task, deserves some elaboration. I described several diagnostic
systems, each with its own approach to diagnosis, and showed that they all include
the shared model of diagnosis. I do not mean to imply by this that all approaches
to diagnosis will share this view. In fact, there is one common competing view-
diagnosis as description, i.e.. the goal of diagnosis is to describe the patient's state.
not to find a cause for the symptoms. This view is embodied, broadly, in the LAER
system MDX2 [34]. 1 only intend to present a model of diagnosis. argue that it is a
common one. and show the value of the model in developing explanation. The model
represents the logical structure of the task and can be taken to define the task. If users
and systems do not agree on a model of diagnosis. it will be difficult tbr diagnostic
systems to explain their actions and conclusions. But, if users and systems agree to
a model, then it can be used to develop explanation for diagnosis in the manner I
describe. The details will change if the model changes, but the method, and the idea,
of using a shared model to develop explanations remains.

3 A Generic-Task Architecture for Diagnosis

The shared model of diagnosis presented in Section 2 is independent of how diagnosis
is actually done. That is, the model expresses those concerns that are appropriate to
the diagnosis task regardless of the method used by any particular knowledge system
in performing diagnosis. In other words, there is no necessary relationship between
the concerns expressed by the shnred model of diagnosis and the process by which a
particular diagnostic system solves problems. But users of diagnosis systems have a
right to expect those concerns to be satisfied by the diagnosis however it is done. As
a result, users will ask questions that relate to the shared model. Thus, the model does
suggest characteristics that a diagnosis system should have in order to be explainable.
It should be able to develop a differential, decide what each diagnostic hypothesis
can explain, rule out hypotheses on various grounds, and choose the best hypothesis.

This suggests a simple procedure for diagnosis. This system would be equipped
with a set of hypotheses and would attempt to explain all the data in each case. It
would do this by first ruling out those hypotheses that it could, then it would evaluate
the remainder and choose the best. Of course, such a system probably would not
work very well in practice. Much of the data does not need to be explained, e.g.. a
patient's age and sex. The process of ruling out and rating hypotheses may suggest
new data and some of this new data may need to be explained, i.e., the diagnostic
process is not necessarily a simple, linear one. Additionally, the number of diagnostic

"47

hypotheses in even simple situations might be huge. A more workable strategy would
be to consider parts of the hypotheses individually and have some way of putting the
pans together into diagnostic hypotheses.

3.1 An Architecture for Diagnosis

The architecture given here is essentially based on generic tasks (6]; however, generic-
task theory does not include everything needed in diagnosis so some extra elements
are necessary. In summary. the architecture uses the Generic Tasks hierarchical
classification [5], to generate plausible hypotheses, and abductive assembly [23],
to put together a diagnostic conclusion. The hypotheses produced by the classifier
are assumed to be partial diagnostic hypotheses in the sense that in typical cases the
diagnostic conclusion developed by the assembler will contain more than one of them.
This has been called the multiple-fault problem in Al, but since it is the typical case.
the shared model of diagnosis and the architecture given here deal with it as typical,
with the single-fault problem being a special case. Other generic tasks involved
include hypotlesis marching (22] for recognizing signs of hypotheses in the data and
knowledge-directed data abstraction and infirence [25] for rtrieving data on each
case. In addition we assume the existence of a module for determining the causal
consequences of hypotheses, i.e., what they can explain. Each of these components is
best thought of as an independent problem.solving agent. The architecture specifies
the functional roles of each agent relative to the others and to the diagnosis task. I
will describe each of the modules in detail in connection with the example system
described in Section 5. But the two main components, the classifier and the assembler.
will be bnefly described here.

The use of the term "hypothesis" might occasionally be confusing. A diagnostc
hypothesis, or partial hypothesis, is a hypothesis about a condition that may or may
not be true of the underlying system (i.e., the system being diagnosed). Thus, when a
hypothesis is concluded, the diagnosis system believes that the hypothesized condition
is true of the underlying system. And when a hypothesis explains, or can expt•a!n, the
principal complaint it means that the hypothesized condition, if present, could cause
the principal complaint. For example, in the medical case discussed in Section 2
the disease hypotheses are hypotheses about the patient's condition. The hypothesis
"neoplasm" is the hypothesis that the patient has a neoplasm. And when the physician
concludes "neoplasm" he believes that the patient actually had a neoplasm. When he
says that the hepatomegaly is bet explained by neoplasm he means that he believes
neoplasm is causing hepatomegaly.

The hypotheses are organized into a hierarchical classification structure such that
more general hypotheses are near the top of the hierarchy and more specific ones near
the bottom. This hypothesis space is explored top down using the establish-refine
strategy-if one hypothesis is established, i.e., considered plausible, then it is refined
by attempting to establish the hypotheses immediately below it. Additionally. if a
hypothesis is ruled out, all hypotheses below it in the hierarchy can be considered
ruled out as well. Thus entire portions of the hypothesis space may be eliminated

48

without exploring them. Eventually there will be no more hypotheses to refine,
either because all plausible hypotheses are terminal in the hierarchy or because no
hypoth~ses are plausible enough to refine. The hypotheses produced for consideration
.by the abductivq assembler are those plausible hypotheses along this "explored front"
of the hierarchy.

The abductive assembler puts together a composite diagnostic hypothesis out of
the individual partial hypotheses generated by the hierarchical classification compo-
nent. It does this by first examining the data to find the most important finding to be
explained. It then polls the hypotheses to find those that offer to explain the finding
and selects the most plausible hypothesis as the best explanation of the finding. If a
choice cannot be made, it focuses a different finding to explain. If a choice is made,
it then reduces the data to be explained by all the data the chosen hypothesis offers
to explain and chooses a new finding to explain from what remains. The assembler
repeats this process until all the data that needs to be explained is explained or all
the data that remains to be explained cannot be explained (nothing offers to explain
it or the assembler emnnot choose between the hypotheses that offer to explain it).

Problem solving begins with the classifier, which uses hypothesis matchers for
each hypothesis. The hypothesis matchers use the dat.a base to access the case data.
The clas.sifier runs until no more hypotheses can be rufined. The assembler uses the
data base to determine the overall principal complaint and then uses the plausible
hypotheses produced by the classifier to assemble the best explanation it can find for
the principal complaint. In the process the assembler uses the consequence finder
to determine which hypotheses explain a partictlar finding and what findings are
explained by the composite as it is put together. The assembler returns the best
explanation as the diagnostic conclusion.

3.2 Relationship Between the A-chitecture and the Model of the
Task.

The overall principal complaint is determined by the knowledge-directed data abstrac-
tion and inference component. i.e.. by the data base. It does this using its speciM
knowledge about data in the domain. In addition, the assembler focuses on \'% find-
ing at a time and has a way of choosing the most significant finding arour4 which to
organize a differential. This process is equivalent to choosing a principal complaint.
Note that the data base cannot do this since i, is not really a property of data that it
can be used to make a good differential. The best way to make a differential depends
mostly on the assembly strategy, so it is appropriate that it be done by the assembler.
The assembly process can be viewed as choosing a principal complaint, explaining it
and possibly other data as well, choosing another principal complaint from the data
that remains, etc. Thus, the overall principal complaint, i.e., that part of the data that
needs to be explained, is determined by the data base, and parts of the data can be
recognized as local principal complaints by the assembler's choice of most significadil
finding for solving part of the problem.

49

The set of hypotheses that might potentially be used to explain the data is de-
rermined by the hypotheses in the classification hierarchy. That is, the builder of
the system selected those hypotheses known to be usefAI for explaining data in the
problem solver's domain (e.g., diseases of internal medicine for INT.RNIST (241]).
Additionally, in eachi case the consequence finder is used to decide whether or not a
paricular hypothesis can in fact explain some paztcular data. Finally, the true dif-
ferential is the power set of the hypotheses in the clas.ification hierarchy, since the
diagnostic conclusion can contain many hypotheses. But the strategy of considezing
the hypotheses individually by the classifier and possibly ruling out some of them
can reduce the number of composite hypotheses considerably. Then the strategy of
assembling the composite one hypothesis at a time makes it unnecessary to explic.
itly consider even this differential. However. this strategy may result in overlooking
possible conclusions that ae as good as the one produced by the assembler since
it produces a best explanation, not all best explanations.' So part of the differen.
tial is determined by the system bui/der while building the hierarchical classification
component. Part of the differential is determined by the consequence finder during'
problem solving by producing a list of hypothesis capable of explaining the finding
the assembler is working on at each step. The differential is kept to a manageable size
by the problem-solving s-ategy of classification to reduce the number of individual
hypotheses and sequential assembly to reduce the number of composite hypotheses
considered.

As already mentioned. the consequence finder is used to decide what an indiyidual
hypothesis can explain when the assembler is developing the differential. It is also
used by the assembler to decide what assembled composite hypotheses can explain.
Some points about explanatory interactions should he mentioned here. Consider
just pairwise interactions for now. There ame three possible explanatory interactions
between two hypotheses:

I. The two hypotheses togeter may explain exactly what they explain separately.
This would be the normal case, particularly when they are independent, i.e..
not causally or otherwise related, and do not offer to explain any of the same
findings.

2. They may jointly explain more than they do individually. An example of this is
when they both offer to explain the same finding. both an capable of explaining
a higher than normal value, the net effect being that jointly they can explain a
greater increase than either can sepaately.

$If the assmbler is able to build a complete explanation. it will have the property that: (a) each
individual hypothesis in it is a best explanauon for some AlndlagX and (b) removin any single hypothesis
will make the explanation incomplete. In thee terms there an• no beenr explanadom, though there may
be many that are a good. If additional criteria aim considered, such as preferring smaller numbers of
individual hypotheses in the composite, then there may be composits that ate better on these grounds
than the assembler's answer (e.g., composites that ame as good as the assembler's best explanation but
have fewer panu). This is a difficult issue. Sylander, et al. (31 have considemd several crisria for "best
explanation," their various difficulties and advantages.

50

3. Or they may jointly explain less than they do separately. An example of this
is when they both offer to explain the same finding, one tending to explain
a higher than normal value and the other a lower than normal value, the net
effect being that jointly they cannot explain any deviation.

The last of these would make things difficult for the assembler since, if it were
possible in the domain, there would be no guarantee of explanatory progress when
hypotheses am added to the composite. If such things were common the assembly
mechanism would not be appropriate. But if they are uncommon then the assembler
generally would make progress. If hypotheses always explain jointly exactly what

jthey explain separately then the job of finding out what a composite can explain is
easy. But if there are interactions. detenzdining the explanatory power of a composite
becomes more difficult. This becomes especially so if it is necessary to consider

I interactions involving three, four. or more hypotheses. I am not offering a theory of
'how to do this in general, nor is there a general theory available anywhere else. In
the absence of effective. general solutions, ad hoc means must be used.

The. hierarchical classification component takes care of ruling out those hypotheses
that are implausible independent of what they may be capable of explaining. This is
done partly by the hypothesis matchers, which may explicitly rule out hypotheses. and
"partly by the classification strategy itself, which causes hypotheses below an explicitly
ruled out hypothesis to be implicitly ruled out. Other hypotheses are implicitly ruled
out on explanatory grounds by ihe assembler because they do not explain any of the
sivnificant findings examined 'during problem solving. That is. a hypothesis will not
be considered if everything it could explain can also be explained by other hypotheses
that ,re best explanations of more significant findings.

The assembler chooses the .best hypothesis for each finding by ranking the hy-
potheses by plausibility and chdosing the highest-ranked hypothesis. The composite
hypothesis it forms is explicitly compared only to subsets of itself, the smallest subset
that is complete is considered the'best. Other composites are only implicitly consid-
".ered by the assembly process--there might be other composites equally good in the
sense that they are complete explanations that contain no complete explanations as
proper subsets. However, the composite found by the assembler is better in the sense
that each of the significant findings is explained by the best available hypothesis
whenever possible.

Summarizing, the concerns raised by the shared model of diagnosis are addressed
by the architecture given here as follows:

Recognizing the Principal Complaint: Overall the principal complaint is recog-
nized by the data base, and at each step of its processing the assembler is
choosing a principal complaint when It chooses the most significant finding.

Developing the Differential: This is done partly by the system builder in designing
the classification hierarchy and partly by the assembler using the consequence
finder at each step to explain the most significant unexplained finding.

51

Deciding What Can Be Explained: This is done by the consequence finder for
both individual hypotheses and composites.

Ruling Out: This is done mostly by the hierarchical.classification component on
plausibility grounds. partly by the assembler on explanatory •grounds.

Choosing the Best: This is done by the assembler at each step based on plausibil-
ity values set by the hypothesis matchers, and done overall implicitly by the
assembler's strategy.

It should be emphasized that the architecture given hem is not the only architecture
possible for diagnosis. It is also not the only possible architecture that is responsive
to the concerns expressed in the shared model of diagnosis. Nor is it the only possible
generic-task architecture. However, it is an architecture that has emerged after a fairly
long period of generic task research into diagnostic problem solving. In addition it
seems to be particularly appropriate to the shared model of diagnosis.

52

4 Explaining Diagnosis

In the last two sections I have presented a model of the diagnosis task and an
architecture for performing diagnosis that is particularly appropriate for the task.
The model makes evident a number of concerns that might be raised as questions by
users of diagnosis systems. In giving an architecture for diagnosis, I also described
how a system with that architecture meets each of the major concerns in the shared
model of diagnosis. I did not, however, describe how such a system actually answers
the diagnosis questions. That is what this section is about.

4.1 Outline of the Approach

One possible approach for developing explanation for a diagnosis system is suggested
by the shared model of diagnosis. It is possible to derive from the model a list
of question types that a diagnosis system must be able to answer (see Section 2).
Furthermore. given a diagnostic architecture that identifies which parts of the system
are responsible for each diagnostic goal (Section 3). we can identify the parts of a
diagnostic system that will be responsible for answering each question. However. it
is not possible to derive user-level questions from the model because the model is
very general while user questions are very specific. So. to get a usable explanation
facility, we need to find out what people actually want to ask. This is the approach
used here:

I. Derive the diagnostic question types from the shared model of diagnosis.

2. Survey people to find out what questions they ask.

3. Generalize these questions slightly.

4. Classify the questions into the diagnostic question types. those that do not go
in any category are not diagnostic questions

5. Decide how each question should be answered based on the architecture and
the model.

In this section I will describe this process, beginning with a representative sample of
questions that were actually asked of a diagnosis system, and ending with a description
of how the answers to the questions can be found in specific parts of a system that
was built using the diagnostic arhitectute given in Section 3.

4.2 Questions Related to the Model of Diagnosis

The questions given here all pertain to a particular medical diagposis system called
RED, a red-blood-ceD antibody identfication progr=a. Briefly described, RED's input,
the data to be explained, consists of a set of "reactions" that are presumed to be caused
by antibodies In the patient's blood. RED's output is a set of antibodies that seem

53

most likely to be causing the reactions (its "best explanation") and a rating of its
confidences in the antibodies (its "final classification"): RED's architecture is roughly
like that described in Section 3 with a classification hierarchy of antibody hypotheses.
a data base capable of making various useful inferences about the data. an abductive
assembler, and a mechanism for determining what is explained: More details on
RED's domain, and a version of the program. will be presented in the next section.

4.2.1 The Questions That Were Asked of RED

The questions given here were derived informally from several sources. In this
section I will describe a representative sample of these questions and give answers
to them. The answers are based on knowledge that RED has, either explicitly or
implicitly. RED does not actually produce these answers, nor is it necessarily trivial
to modify RED to do so. Note that in the following I use. e.g.. "S" to refer to the
antigen known as S and to the antibody to the S antigen. When the meaning might
be unclear I use "'S antigen" and "S antibody" respectively.

People often want to know about the ratings, or confidence values, of the hy.
potheses. Questions such as,

Why did N get an initial confidence value of I?

which would be answered.

There are reactions that N could explain but N is a rare antibody..

The hypothesis matcher simply describes the features of the case that matched and
how they matched the expectations of the antibody. Another question about plausi-
bilities is.

Why did Fya get ruled out?

which would be answered,

Fya was rnled out because a cell with strong expression of the antigen.
506A, fafled to react.

This is the general principle that an antibody will react where it gets its best chance.
If there is no reaction them, the antibody must not be ptesent.

Another body of questions has to do with the diagnostic conclusion, or best
explanation. People want to know why hypotheses are in it and why others are not.
For example,

Why is S included in the answer?

which would be answered.

Because S is the best way to explain the reaction in Coombs on cell
623A.

54

This answer prompts questions like,

Why is S the best explanation for the reaction in Coombs on cell 623A?

which is answered.

S is the most plausible of the alternative explanations for the reaction.

In other words, the system has asserted that S is in the best explanation because it is
the best explanation for that reaction. the question mks why. The response is that it
is the most plausible way of explaining the reaction.

People ask many questions that cannot be answered by RED for a variety of
reasons. These include.

Have you ever seen a case like this before?

where they want to know that similar cases have happened before. with similar
solutions. Since RED has no memory of its past cases. and such memory is not
part of the diagnostic architecture given here, it cannot answer this question. More
importantly. this question is one that could be asked of any problem solver and is not
specific to diagnosis. People also ask questions that ure completely outside RED's
domain. e.g..

Why did you choose this unit of blood?

RED's output might be used to decide which unit of blood to choose. but RED does not
choose blood, it merely. identifies antibodies. People ask many more questions than
I have described in this section. The representative sample given here wi-l serve to
illustrate the question development process and the method of relating the questions
to the diagnostic architecture and model.

4.2.2 Generalization of the Questions

So far the questions have been given as specific questions about specific entities in
RE. In this section I present generalized versions of the questions. The aim is to
derive questions that apply to any diagnosis system.

The question, "Why did Fya get ruled out?" easily generalizes to.

Why was h ruled out?

where h represents any diagnostic hypothesis. Another question about the initial
rating of the hypothesis, "Why did N get a confidence value of l?" generalizes to,

Why does 4 have rating p?

where P is a rating value assigned to hypothesis h by the system. In other words.
Why does the system consider h to be plausible to a certain degree? The answer
should be a description of the remasons for assigning rating value P to hypothesis h.

55

In general a hypothesis gets a certain trting because the data in the case match the
expectations for the hypothesis to a certain degree. This question is as•ing about
those expectations and how they ame met.

The questions about why hypotheses are in the best explanation can be generalized
a3:

Why is h in the best explanation?

This includes. "Why is S included in the answer?"
The question. "Why is S the best explanation for the reaction in Coombs on cell

623A?" can be generalized to:

Why is h the best way to explain f?

Where f is a finding and h is the hypotheses the assembler chose to explain it. So
the question means. -Why was h chosen to explain f?"

4.-7. Mapping the Questions to the Diagnosis Model

Recall that the shared model of diagnosis gives rise to several types of questions. In
this section I wiU relate the questions given in the previous section to those question
categories suggested by the model of diagnosis. (See Section 2.1 for the list of
diagnosis question classes.)

The question. 'Why was h ruled out?" relates directly to the question class:

Has some hypothesis been incorrectly ruled out?

And the question. "Why is h in the best explanation?" belongs here also since one
reason why h is in the best explanation is that h is not ruled out. i.e.. h is available
to explain the data (perhaps it should not be).

The question, "Why is h in the best explanation?" is in the question class:

Is it possible that the hypotheses in the diagnostic conclusion do not
really explain the findings?

since part of the reason why h is in the best explanation is that it offers to explain
one or more of the important findings. This might be an error.

If a hypothesis is in the diagostic conclusion, the reasons why it has the rating
it has can be used to determino whether or not it is overrated. So the question, "Why
does h have rating p?" goes in the question class:

Might the hypotheses in the diagnostic conclusion be rated too high?

The question. "Why is i in the best explanation?" also belongs here because one of
the mas why h is in the diagnos tic conclusion is that it is the best e.xplanation N
something, possibly due to its rating. Another question that belongs in this class Li+
"Why is h the best way to explain f?" since one eason why h is the best explanativo
for f may be that h is incorrectly rated higher than any of the alternative wn::.3 of
explaining f.

ITe question, "Why does h have razing p?" is also related to the question class:

56

Has some hypothesis been undermted?

because. if h is not in thA dia0ostic conclusion and not ruled out. the reasons why
it has the rating it has can be used to deterntioe whether or not it is underrfed.

Note that some questions ame in more than one of the question classes defined by
the diagnostic model The mason is that their answers have several parts. each pan
rlating to one of the diagnostic concerns.

4.3 Questions Mapped to the Diagnosis Engine

In the last section [mapped the questions that have to do with diagnosis to the classes
of questions derived from the model of diagnosis. In this section 1 wW! use that
mapping to relate those questions to the diagnosis architecture given in Section 3 to
show which pans of the diagnostic problem solver wxe capable of providing answers.
or pans of answets, to each question.,

1. Why was h ruled out?

There am 9,&o wa-,. . rule out a hypothesis, each with its own explanation:

(a) If & was tuled out directly, the decision was made by h's hypothesis
mtd,.ýex w.. the classification hierarchy, so the answer in his case comes
from we nypothesis matcher.

(b) Otherwise h was ruled out implicitly by the classification sutraegy because
an ancestor of h/ in the classification hierarchy was ruled out. In this case
the answer comes from the classifier and the ancestor's matcher.

2. Why is h in the best explanation?

The assembler picked & as best for some particular finding and will know
which finding it was best for and why it was best. So the answer comes from
the part of the assembler that chooses hypotheses to explain findings.

3. Why does h have rating i,?

Hypotheses am rated by the hypothesis matchers, so h's matcher is responsible
for answering this question.

4. Why is h the best way to explain /?

This is answered by the pan of the assembler *hat chose h to explain 1. Thai
is, the assembler focused on f, and decided, according to its criteria, that h
was the best of the altemative ways of explaining 1. Thus, this "chooser" is

responsible for answering the question in this cae.

In this section I began with questions that a person might want to ask of a partic-
ular diagnosis system, proceeded to generalize these into questions about diagnosis
systems in general, and grouped those into the question classes identified in Sec-
tion 2. Given thau :ie quesdow wea. identified with diagnosis concerns, and that

57

• . , ,

the diognesis concerns were identified with pans of a system architecture. it was
then possible to identify the parts of the system architecture where the informauon
needed to answer the questions is encoded. In other words, given a model and an
architecture for the task it is possible to identify the questions the problems solver
should be able to answer and say how to answer them.

5 Example Implementation-RED

RED is a medical diagnosis system that operates in the domain of hospital blood
banks. The blood bank is a medical laboratory responsible for providing safe blood
for transfusion. One of the major activities required to do this is red-ceU antibody
identification. which is the activity RID performs.

5.1 Problem Domain

!n the blood-bank context, there is a patient who needs blood, the blood bank has
an inventory of blood and must select a unit to give the patient. Blood ceUs have
chemical structures on their surfaces called antigens that, when a donor's cells are
transfused into a patient, can he recognized as foreign by the patient's immune system.
When this happens the immune system produces antibodies that circulate in the blood
serum and react with the donor's blood cells. The medical consequences of such
transfusion reactions may range from fever and anemia to life-threatening coagulation
disorders and kidney failure. Therefore. the blood bank must take case to ensure that
the patient does not have antibodies to the donor's blood.

The drst step in the testing process is determining the ABO group. Then. the
patient's serum is screened for antibodies by testing it with two cells 4 that have all
of the clinically significant red-cell antigens. The test involves mixing the patient's
serum (where the antibodies would be if there were any) with the screening cells to
check for reactions. If reactions occur, then the patient does have atypical antibodies.
which now must be identified.

The red-cellU antibodies are identified by using a red-cell panel This is a selection
of ceils that are typed for as many of the common antigens as practical. This infor-
mation is recorded in a table called an "antigram." An example of an antigram is
shown in Figure !. In the figure the cells ate named along the left side (164. etc.) and
the antigems aleog the top (C. D, etc.). In the bod) of the table 0 indicates absence
of an atig•m in .itdicates pnence. For example, ceU 209A has C but not D. The
patient's serum is mixed with each of these cells, under several test conditions, and
the reactions am noted on the ceat panel. Remember that the antibodies, if any, ame
in the "rum, so a reacdon on the test panel is caused by an antibody in the patient's
serura. Figure 2 shows peut of a ten panel from RED. In the figure the various test

"41'!" in dw bloodt-buk domain typically refers to a unall sample of cells from th# samn donor. So
the two scmenig cells rhferd to hum an not just two cells but two proups of cUlls. esch f0ons a swsle
dwno.

58

- C D E CW V K k Kpa
164 0 0 0 + + 0 0 0 + 0
195 0 00 O--+ -0 0 + + +

-186A 0 0 0 + • 0 -0 0 + 0
204A • 0 0 + .4, 0 0 + + 0
303A 0 0 + + , 0 0 0 + 0

$06A + + 0 0 + + 0 0 + 0
537A 7 + 0 0 • 0 -0 + + 0
479 0 + 0 + + 0 + 0 + 0
M23-A, + *+ + 0 0 0 0 -+- 0

Figure 1: Part of an Andgram Panel from RED

623Ant : 479 537A 506A 303A 209A
Aumin IS 0 0 0 0 0 0-Albumin 37 o" 0 0 0 0 0
Coombs ' 3+ 0 3+ 0 3+. 3.
Enzyme IS 0 0 0 0 0 0Enzyme37 o 0 o 1 0 0 +

Figure 2: Part of a Test Panel from RED

conditions, or phases, are listed along the left side (Albumin IS, .- w 1tite r,,we.-
of the cells axe given across the top (623A. etc.). The panel =a=
reactions graded from 0 for no reaction to 4. for the strongest-m••-z
623A has a 3+ reaction in the Coombs phase. By examining the =- . wr-m-•
on the test panel, and correlating it with the antigen infob== ,Vu :L7err l-
grai, the blood-bank technologist can identify the antibodier a r e V.
The technologist is looking for such features a the relative sLc of macd o"• ad
whether cells with a particular antigen consistently react or fi a nt -*. CThi.k'f
overview is based mostly on the paper by Smith, et al., (331•• I-

The antibody dentiftation problem is complex and ver3 ifiM 11 pe lb o
solve. It is not realy diagnostic, and most phycians do not za fis.v.sct a-t
makes it intensdna& and relevant hem, is Its asductive natum. 73 *mmsw, vt t
diagnosis presented in Section 2 is actually a model of ab&acs 0pui zL.ja
abduction problem with the additional aissumption that in di4e tM Se: e m y
hypotheses aze assumed to represent diseases, or malfwnd.ms. AMt= b ia U i
section I present an implementation of explanation in ED., whL.ck •,A~raa•
problem, the results should be applicable to any diagnosis sy.m.

59

5.2 System Architecture and Implementation Details

Several versions of RED have been built, though only one (locally known as RED2)
has been described in detail in published papers (23, 33]. The version I will describe
here is very similar to RED2. Rather than deal with version numbers, though. I
will simply call it RED. The system architecture of RED is very similar to the
diagnosis architecture described previously. Two major differences are that there is
no consequence finder as a separate module, and the overall principal complaint is
given as pan of the input to the system.

Data Base The data base contains information on a specific can including the
patient's known antibodies and antigens. and the test panel with its associated anti.
grSm. RED is designed to explain the data in the test panel, i.e., the overall principal
complaint is the set of positive reactions in the test panel.

Classifier The hierarchical classification component of RED is not really a hierarchy.
having only one important level, and serves mainly to evaluate the hypotheses. It is
probably best to think of this component as a set of antibody specialists. i.e.. agents
or modules, each of which performs two tasks:

L. Creates a "profile" of reactions it can consistently explain. Thus performing
the job of the consequence tinder.

2. Runs a hypothesis matcher to rate, or rule'out. the hypothesis.

To create a profile the hypothesis builds a subset of the test panel that contains
only the cells that are positive for the corresponding antigen. For example, the C
specialist's profile would contain only cells 209A, 506A, and 537A based on the
antig-am in Figure i. Then it adjusts the reactions to make them consistent with the
behavior of the antibody. In the case represented by the test panel in Figwue 2 and the
antigram in Figure 1, C is strong on cell 537A and weak on cells 209A and 506A.
So the reactions that C can explain will be weaker on 209A and 506A than on 537A.
Additionally, there cannot be much variability in the reactions among the weak cells
(or amonS the strong cells), so the reactions that C can explain on 209A will be much
reduced from the reactions actually observed there since 506A did not react at all.
After all the adjustments are made to the profile it will look like Figure 3. Compare
this with th reamtions observed on these cells in Figure 2.

Hypotduls Matcher After determining what it could potentially explain, each anti-
body specialist calls a hypothesis matcher to rate its plausibility. In fact, all specialists
call the same hypothesis matcher, since the logic is the same for each antibody. (RMD2
used a more sophisticated set of matchers.) Plausibility is rated on an integer scale
from -3 (lowest rating) to +3 (highest rating). The first thing the matcher does is
attempt to rule out. If there are no cells with the antigen, or if the profile contains
only zeros, or if a strong cell failed to react, or if any cell totally failed to react,

60

_537A 506A 209A
Albmin IS 0 0 0
"Albmin 37 0 0 0
Coombs 2+ '0 +/.

-Enzyme, S 0 0 0
En~zyme 37 I1 0 -

Fipre 3: Profle for C

then the antibody should be ruled out. The matcher also checks to see if there is his.
tory evidence to use in rating the hypothesis. Patients known to possess the antigen
cannot have the antibody', whereas patients known to possess the antibody probably
still have it. These two factors are combined with the known overall prevalence of
the antibody to produce the plausibility rating of the hypothesis. Any hypothesis
rated .2 or -3 is considered ruled out and will not be made available to the abdustive
usembler.

Assembler The final component of RED is the abductive assembler. In overview
the process is:

I . Attempi to asemble a complete explanation by making only the "easy" deci-
sions. i.e.. choose a hypothesis if there is a clear reason to include it.

2. Attempt to explain the remaining data by making "hard" decisions. i.e.. choose
a hypothesis if there is any reason to include it.

3. If the result is not a complete explanation. make a judgment about whether or
not a complete explanation might be possible.

The assembly procedure, steps I and 2 above, is: for each unexplained finding, until

a complete explanation is found,

1. Collect the hypotheses that ate capable of explaining the finding.

2. Choose the "best" hypothesis.

3. Add the chosen hypotes to the composite hypothesis being built.

4. Reduce the unexplained findings by the findings that the new hypothesis ex.
plains.

The definition of "best" depends on whether it is making "easy" or "hard" decisions.

IPeopl.e an fon anutibodies to their own antieu,. known as amowtibodia. RED is explicitly concerned
only with antibodies to oo-self antigw i.e. alloamsbodies

61

Category Hypotheses ____________

"Best Explanation S. K
¢Zw'1rmed S__
Likely Present K

Likely Absent Kpja Jsa, Lua Lebd P1

Ruled Out D.C. c. E. e. Cw, M, N. s, Fya, Fyb, jka. Jkb. k.
_Kpb, jsb. Lub

Unresolved Lea
Undetected f. I

Figure 4: RED's Final Report

The Final Report After the assembler finishes, RED produces a "'final report- as
shown in Figure 4. In this report the antibodies are all put into categories that
represent the degree to which RED believes that they are present. The categories are
given on the left and the antibodies on the right, with lines connecting each antibody
to its category. For example. Leb is considered Likely Absent. The first category
listed is the best explanation, the rest are degrees of confidence based on whether or
not the antibody is in the best explanation and how high its rating is. The categories
are defined as follows:

Confirmed: The hypothesis is essential.

Likely Present: The hypothesis is in the best explanation. plausible. but not essen-
tial.

Likely Absent: The hypothesis is not in the best explanation and not highly rated.

Ruled Out: The hypothesis is ruled out by the hypothesis matcher and tests were
performed that would have shown evidence for the hypothesis if it were true.

Unresolved: The hypothesis is in the best explanation but it is not essential and not
plausible, or it is not in the best explanation but it is highly rated. TIs category
is intended to catch hypotheses with some conflict In their results, either the
assembler was forced to use them even though they are not very good or they
looked pretty good but the assembler did not use them.

Undetected: The hypothesis explains nothing but was not ruled out or it was not
tested. This category catches conflicts as well, but of a different sort. These
are hypotheses that either offer to explain nothing even though there is other
evidence to make them plausible or the tests to turn them up were not done,

62

In RED's domain only certainty, i.e., Ruled Out and Confirmed, counts. So. in the
result shown in Figure 4, more testing is needed, though it could be focused on those
antibodies that were not ruled out or confirmed.

.. 3 Details of Explanation Features

The final report described above, as displayed by RED. is an active object. Selecting
any of the objects displayed there brings up a menu containing the item "Ex.plain".
If Explain is selected, RED displays a menu of questions that it can answer. The
questions are those that are appropriate to the object selected. For example. the
only question appropriate to the category Likely Present is. "What is the definition
of Likely Present?". whereas for a hypothesis there are many questions (e.g.. see
Figure 5). In this section I will describe how RED answers these questions.

As RED runs, it records what it does with each hypothesis along the way. So
at the end RED has recorded for each hypothesis information about whether or not
it is in the best explanation. whether it is essential, whether it was ever in the best
explanation, and so forth. For the most pan. this information is needed to solve
problems. but it is also used to answer questions about the hypotheses.

RED's explanation component has a list of questions appropriate to hypotheses.
another list appropriate to ask of the overall diagnosis system, and a third List for the
final report categories. The hypothesis questions are further annotated according to
whether they are appropriate for any hypothesis, or only those hypotheses in the best
explanation, or only those hypotheses not in the best explanation. These questions
axe all stored in template form, When something is selected in the final report. the
explainer makes a question menu by choosing question templates from the appropriate
list and filling them in. It also associates with each question a procedure for answering
it, so when a question is selected from the question menu, the right procedure can be
invoked. For example, selecting K in the final report (Figure 4) causes the explainer
to select question templates for a hypothesis not in the best explanation. These are
translated into the questions shown in Figure 5. which ame displayed as the question
menu.

5.4 Explanation Examples
In this section I will assume RED has finished working through one problem and
displayed the final report in Figure 4. The relevant data for this problem is shown
in Figures I and 2. 1 will give examples of questions RED can answer about the
problem, and work through the process of answering these questions in detail.

Suppose the user selects K in the final report and asks for an explanation. RED
would display a menu. through the process described earlier, containing the questions
shown in Figure 5. These questions are the questions that can be asked of any
hypothesis together with the questions that can be asked of a hypothesis in the best
explanation (except for the questions whose answers am obvious from the final report

63

What does K explain?
Why does K have plausibility 3?

Why does K offer to explain a particular finding?
Wthy doesn't K offer to explain a particular finding?

Why is K considered Likely Present?
What is K needed to explain?
What arm the alternatives to K?
Why does K explain a particular finding?
Why is K in the best explanation?

Figure 5: Questions Instantiated for a Hypothesis

itself). Suppose the user selects. "Why is K in the best explanation?" The explainer
answers the question based on the template:

h is in the best explanation because it is (clearly the best/the best) way
to explain:

f
since reason.

The phrase "clearly the best" is used if it was chosen by EasyDecisions and -the
best" is used if it was chosen by HardDecisions. The finding listed is the finding
the assembler had focused on at the time K was chosen. Reason is a text string F

that describes the reason K was chosen. So the explainer checks to find which
decision maker chose K, what finding it was chosen for, and the reason it was
chosen. The assembler-records this information for each hypothesis. For K it will.,
find the foMlowing:

chosen by: Easy
chosen for. (537A Enzyme37 +/-
mason: StandOut

Then to translate the keywotd "Easy" into English text the explainer looks bn the
table for the keywords the assembler uses to describe the procedures that choose
hypotheses and A :nds:

Easy: clearly the bes
Hard: the best

To translate "StandOut" into text it looks on another table of keywords used to
describe the reasons for choosing hypotheses and finds:

64

Essential: there is no way to completely explain the finding with.
out it

Only: it is the only hypothesis offering to explain the finding

StandOut: it is both plausible on its own and much more plau.
sible than its nearest competitor

MostPlans: it is mote plausible than any of its competitors

Suggested: it is suggested by hypotheses in the best explanation
while none of its competitors are

From this the explainer gets all it needs to answer the question:

K is in the best explanation because it is clearly the best way to explain:

(537A Enzyme37 +I-)

since it is both plausible on its own and much morm plausi.le. thpn its
nearest competitor

SThe point here is not RED's ability to produce natural language text. it is not very

godd at it. Rather. my aim'is to show that RW records the kind of infornation
;. about its problem solving needed to answer the diagnosis questions. A good natural

;.. • language generator could proceed from -,he keywor6t (4.1.. Easy and StandOut• iad

other'knowledge about the domain and context to produce much, nicer, more flexible
"-nd appropriate. text., But the content of the answer is i, the information recorded

by the ass.mbler during problem solving.
Suppose a user wants to know. "Wy does K have plau~ibLifty 3?" The answ, er

to i question is based on the template:

h is considered SummaiyKG because the data PresenceKG the pres-
ence of I~and h is a PrevalenceVal antibody. The data PresenceKG
the presence of h because then ame RuleOuXKG to rule out and the pa-
ti.nt HtstoryKO the andbody. There are RuleOutKG to nle out because
",. ProfletptyVal and ProfileZeroVal and SgnificandVonReacdtonVal and

"' NonReacdngCellVaL. The patient HistoryKG the antibody be•an•se Po. "
"sesM nt4g,enVat and Posses&aboadVaL.

The xKG items are the values of knowledge groups interpreted in English. A knowl-
• ,. ", edpge grV is a small set of knowledge for making an abstraction of data that is

"si": .can, for deciding the plausibility of a hypothesis. The hypothesis matcher in

, RED is implemented in terms of knowledge groups called Summary. Presence. and
RuleOut. Similarly, the yVal Items are the values of data base queries in the knowl-
edge groups interpreted in English. If a knowledge group or data base query is not
run, because the specialist could decide without It, the relevant clause is not included
i\n the explaration. When K's hypothesis matcher ran, RaD recorded the values of all
the knowledge groups, and with each knowledge group it recorded the input values
to the gop. Looking up this information for K, the explainer fnds:

65

SummaryKG: 3
PresenceKG: 2
PrevalenceVal: 3
RuieOutKO: .2
HistoryKG: 0
ProtileEmptyVal: F
ProdleZeroVal: F
SignificantNonReactionVal: F
NonReactingCeUlVal: F
P:, ;sessAa er-4,'a: U
Pus.-.'AAnti~od "AA: U

Each of these valw, •.' -m-iilated into a phrase in a manner similar to the way
dest'Kbed ..a'ii, ..vi ;, vetnnt, -Why is K in the best explanatior?" '%.z exa"ple.
lon"l -g V Po',.essAAibody' Ia, the explainer finds:

f- - p-..Aaet is knjv.%! to possess the antibody

F: we p2tient is k.rwn mr, , to possess the antibody

" it is ,'nknown %twether ,he patient possesses the anti-
body

All c i these ,Wlues uz put toget, .,r aii the template to give the followLg ans',.r for
K:

K is %considered vti . V..-.r;ause the data supports the presence oV
K .and K is a common antibody. The data supports the presence of K
because there are strong reasons not to rule out and the patient h:.s no
"recorded history of the antibody. There are strong masons not to Sue
out because there am cells with the antigen and them am. reactions on at
least some of these cells and no cell with strong expression of thý antigen
failed to react and all cells reacted. The patient has no recorded history
"of the antibody because it is unknown whether the patient possesses the
antigen and it is unknown whether the patient possesses the antibody.

This answer is long and convoluted, but it demonstrates that the explainer can extract
the information needed for the content of the explanation. How to present it. the
"exact form and amount of information to present, is a separate issue that I am not
addressing here. This particular technique. having tables to translate values of all data
base quenes and knowledge goups into English phrases, only works in this version
of RZD because all the hypothesis matchers an the same. If they were all different
this would Set unwieldy very soon. The explainer should have some understanding
of the domain and problem solving that is independent of RED itself so that it could
properly interpret these values without an explicit translation being given.

There are many other questions RED can answer but these are a sample of the
interesting ones. The detailed descriptions here should provide enough information to
see how the rest am answered. All the questions are described in my disseation [36]
with a sketch of how RED derives the answe.

66

5-5 Implications fot Designing (Generic Task Tools 'with Explana-,
tion Capabilities

Adding explanation to RED required determuivig the questions it needed ;(answer,
based on the shared model of Oiiagnosis. a6d where in the problem solver the an.
swers would come from, based on the tiiagnosti; architecture. Only the hierarchical
classification and hypothesis matching components' oe RED were "imple-hented'.using
a generic-task tool--CSRL [S]--iic rest of the; system is Imolemented directly in
LOOPS and Lisp. However. all the-parts of the system are generic tasks for which
tools exist or are in various stages of. development: ,PtEacE for abductive assem-
bly (28]. IDABLE for the data base (34], HYPR fOr hypothesis matching (221. and'
CSRL for hierarchical classification. The explanation component for RED has some
implications for how these tools can include the right primitives for explanation.

There ame three lessons for generic-task toon building. First. generic-task systems
should be able to record the decisions they make and the ýacts pertinent to explaining:
each decision. Second. each generic task should, have its own explainer, which uses
its own terms. e.g.. classifiers will explain in terms of classilicauion goals. matchers
in terms of match goals. etc. And third. in building prbblem.solving systems from
generic-task components. we must relate the generic-task explanation terms with ,
the problem-level terms so that explanaw.ons derived from the generic-task problem
solvers can be sensibly presented it the problem lavel. Additionally, there still re.
mains the job of getting domain terms into the explanations. I do not have a principled
way of doing this. I suspect it is mostly, a user modeling and user interface issue.
which is not to say that it is simple to solve. but the problems arm more likely to be
problems about communicating with people than trey are problems about knowledge
organization and use for effective problem solving.

6 Extensions
A shared model of problem-solving tasks ought to have application to other tasks
besides diagnosis and for other purposes than explanation. In this section I consider
two of these extensions.

6.1 Application to Design
"The main argnenu for a shared model of problem-solving tasks are independent of
the actual task itself. That is, knowledge systems are intended to solve problems of
a particular kind. to perform a particular taský users understand this and expect that
a system's actions and conclusions will be consistent with the goals of the task. So
for each problem-solving task for which kIowledge systems ame built it should be.
possible to identify the shated model of the task and use it to guide the design of
systems and help in the justification of their methods and conclusions.

67

The shared model of diagnosis given in Section 2 is approximately a lo•ical
detinition of the diagnostic problem-solving task. It specifies the relationship between
the input and the output that must hold for the task to be satisfactorily accomplished.
Them are other factors that are legitimately a part of diagnosis but are not so strongly
part of it that they can be considered definitional. Consider that diagnosis is often
performed not only to find out what is wrong but to decide what tb do about it. That
is, the symptoms represent an undesirable condition that one would like to repair.
One strategy is to find out what is causing the symptoms and attempt to eliminate
that. Thus, diagnosis is used to find the causes. So perhaps the shared model should
include the pragmatic requirement that the conclusion, and the hypotheses from which
it is selected, be something that can be treated, at least in principle. But sometimes
nothing can be done and still diagnosis is appropriate and must meet the other criteria
of the shared model. So along with the logical definition, or specification, of the
problem-solving task a shared model may include pragmatic concerns that are not
necessary to the task but are often part of it. In diagnosis these concerns seem to be
of secondary importance. But that may not be the case in other tasks where pragmatic
issues may be more important.

In order to develop a siared model for a task, the task must be very well un-
derstood. Diagnosis was a natural task to approach first because of OSU LAIR's
long history of work on medical diagnosis and because of the considerable amount
of published work on the topic in Al and in medicine. Another such task is design.
There has been some interest in design within Al, and of course considerable interest
in other fields, including engineering. We also have some experience with design in
the LAIR [1].

In design. say. mechanical design. the goal is to design a device that wiLl perform
certain functions. subject to various constraints (or specifications) such as size, cost.
materials. etc. Some constraints are absolute ("it cannot be more than a foot long")
and some are not ("make it as small as possible"). But the implication for all the
them is that the problem solver will attempt to meet all the constraints, and for those
it fails to meet it will have good reasons. One important consideration in design is
that the result be better than alternative designs, i.e., some sense that the design is
the best that can be done. In addition, there are background assmptioni that the
device will be built and used. Sometimes this is explicit in the specifications and
sometimes it is not. Of course, design might be done as a pure intellectual exercise
so this is a pragmatic consideration. So, for a design system, users have a right to
know that: (1) the designed device will achieve the desired functions. (2) the design
meets as many of the specifications as possible, (3) there ame good reasons for failing
to meet the rest of the specifications. (4) there we no better designs, (5) various
implicit, pragmatic, concerns are met. As with diagnosis, a design program could be
implemented that did not do any of these things explicitly, but such a system may
have trouble explaining its behavior or justifying its conclusions. If the program is
built so that each of the design concerns can be identified with a part of the system.
then it will be possible for the system to explain itself base-d on its own Imowledge
and a trace of its behavior. With some further work to expand on the model it could

68

be used to guide building a design program that can answer the questions it will
get because it is a designer. The process would be analogous to that described in
Sections 3 and 4 for diagnosis.

6.2 Learning

Suppose a diagnosis system. such as RED, is embedded in a larger system that has
access to the -right" answer. If RED's answer is wrong then the shared model of
diagnosis can be used to find out how it came up with the wrong answer and where
new knowledge, or a change to existing knowledge, is needed. It will not help decide
what the new knowledge is or how to change existing knowledge. but it can point out
where the error occurred. If the containing system (i.e.. the learner) had access to a
source of knowledge (say, a human expert) it can ask what to do to fix its knowledge
base. For example, the following trace may occur (my commentary is in brackets):

RED: The antibodies present are: K and Lea.

Learner: The right answer is K and S. fto RED) Why isn't S in the best explanation?

(The Learner has two options here-4ind out why S isn't in or find out why Lea

is. Informed by knowledge of the assembly algorithm the learner first pursues
S. since if S were put in then Lea might have been removed by the parsimony
critic.]

RED: S is not in the best explanation because it was not the best explanation for any
finding it offers to explain since it was rated too low by its hypothesis matcher.

Learner: Why is S considered only somewhat plausible?

[Here, again, the Learner has two alternative lines of inquiry-find out why
S was rated lowv or find out if S should be offering to explain some different
findings. The reasons why S offers to explain the findings it does and not
others may be complicated and getting all this may be time consuming. So the
Learner pursues the raling.]

RED: Because the patient has no history of the S antibody and. even though there
e reactoions aU the cells with S antigen. S is a rare antibody.

Learner. (to a human expert) S is razed low because

Expert: Do you know that S reactions are enhanced by enzyme?
(The Learner simply passes the reasons along to a human expert who offers
some possible now knowledge that RED apparently did not use in evaluating
S.]

Learner: (to RED) Do you know ... ?

69

R DI.N.O.
) •.t tMis point. since the knowledgt provided by the expert was not in RED. it
S ,be added. RED should r-evdu.te S, hen check to see if the change is

, .'•h to get S into the best explanation and whether the nqw best explaniaton
w 40 '30 right.

I do not \uigine that doing all of this would be easy. But it is clear how the
explanation from RED, together with the shared model of diagnosis. can be used to
guide the search for the source of ermr, The Qt'AwDs project in the LAIR is. in part.
using ideas related to this for learning in medical diagnosis [211.

A system such as the one described above might even be able to start with no
domain knowledge at all. only knowledge about the diagnostic task. When given case
data it would begin asking questions of the expert based on the diagnosis model:

What data needs to be explained?

Is there any other data I should know about?

What hypotheses are likely to be relevant?
For each hypothesis:

How can the hypothesis be ruled out?
What should keep me from ruling it out?
Should it be ruled out in this case? Why?
What data is relevant to rating the hypothesis?
How should it be rated in thus case'? Why?
What can the hypothesis explain in general and in this case?

The system could then run. i.e., attempt a diagnosis. If it gets a wrong answer
it could begin a dialog like the one above to find the source of error and ask for
new knowledge. Such a system will be deficient in its knowledge organization and
representation. but even so it should be interesting and may even be a way to show
precisely how good representations (or their lack) affects the quality of problem
solving.

7 Conclusion

The central idea of this paper is the shared model of a problem-solving task and its
.use in designing and explaining knowledge systems. It is called a "shared model"
because it represents how both the knowledge system and the user understand the
task. To Wlustrate this I presented a model of one particular problem-solving task-
diagnosis. The model expresses a set of concerns that must be met by any diagnostic
problem solver (i.e., the model defines the task: any problem solver that does not
achieve all the goals of the model is inadequate as a diagnoser). Then I presented an

70

architecture for diagnosis in which each of the modules was identified with specific
diagnostic concerns from the shared model of diagnosis. That is, the model tells
what the concerns of diagnosis are and the architecture describes a problem solver
that meets those concerns and, further, tells which parts of the problem solver meet
which specific concerns. Additionally. a set of question classes can be derived from
the model such that corresponding to each concern expressed by the model is a class of
questions designed to assure the questioner that the concern is met. The next step was
to derive the actual questions that a diagnostic system should answer. I began with
questions that a person might want to ask of a particular diagnosis system. proceeded
to generalize these into questions about diagnosis systems in general, then grouped
those into the question classes derived from the shared model of diagnosis. Given
that the questions were identified with diagnostic concems. and that the diagnostic
concerns were identified with parts of a system architecture. it was then possible to
identify the parts of the system architecture where the information needed to answer
the questions could be found. In other words, given a model and an architecture
for the task it is possible to identify the questions the problem solver should be
able to answer and describe how to answer them. Finally. I described a knowledge
system called RED implemented using generic tasks, that makes use of these ideas
to implement explanation.

One of the explicit assumptions I have made throughout this paper is that an
explanation is based on inspecting the problem solver's structure and memory. But.
in some cases these "introspective" explanations cannot be given. In particular this is
true whenever. () the problem solver cannot be mapped to the model of diagnosis:
or (2) the internal workings of the problem solver, or its memory for its actions.
is not accessible: or (3) the problem solver's methods are not comprehensible or
convincing. In all case the shared model of the task is si helpful in designing
explanations and judging their adequacy. In fact. in the flrs cuse, the model says that
the explanations must 4be based on something ot,,w-,t anbejobinem solver itself.

Acknowledgments

This paper is based on the author's dissertation (36]. Thanks am due to my advisor.
B. Chandrasekaan. and the rest of my reading committee: John Josephson, Terry
Patten, and Jack Smith. The support given, in innumerable ways, by ray wife DiAnne
has been most valuable.

References

[1] D. C. Brown and B. Chandrasekama. Design Problem Solving: Knowledge
structures and control strategies. Pitman, London, 1989.

71

(2] B. 0. Buchanan anw E, H. Shortliffe. editors. Rule-Based Erpert Systems: The
MYCIN erperiments of the Stanford Heuristic Programming Project. Addison-
Wesley. Reading, MA. 1984.

(31 T. Bylander, D. Allemang, M. C. Tanner, and 3. R. Josephson. Some results
concerning the computational complexity of abduction. In Proceedings of' the
First International Conference on Principles of Knowledge Representation and'
Reasoning. pages 44-54, Toronto. Ontario, Canada. May 15-18 1989.

(4] T. Bylander and B. Chandrasekaran. Generic tasks for knowledge-based reason-
ing: The "right" level of abstraction for knowledge acquisition. International
Journal of Man-Machine Studies. 26(2):231-243, 1987.

(5] T. Bylander and S. Mittal. CSRL: A language for classificatory problem solvuig
and uncertainty handling. AI Maga:ine, 7(3):66-77, August 1986.

(6] B. Chandrasekaran. Generic tasks in knowledge-based reasoning: High-level
building blocks for expert system design. IEEE Arpert. 1(3):23-30. Fall 1986.

[7] B. Chandrasekaran, J. Josephson. and A. Keuneke. Functional representations
as a basis for generating explanations. In Proceedings of'the IEEE Internatornal
Conference on Systems. Man. and Cybernetics. pages 726-73 1. Atlanta. GA.
October 1986.

(8] B, Chandrasekaran and S. Mitral. On deep versus compiled approaches to
'diagnostic problem-solving. Internanonal Journal of Man.Machine Studies.
19(5 :425-436. November 1983.

(9] B. Chandrasekaman, M. C. Tanner. and J. R. Josephson. Explaining control
strategies in problem solving. IEEE £rpert, 4(l):9-24, Spring 1989.

[101 W. i. Clancey. Tutoring rules for quiding a case method dialogue. In D. Sleeman
and 3. S. Brown, editors. Intelligent Tutoring Systems. pages 201-225. Academic
Press. London. 1982.

[11] W. 3. Clancey. The epistemology of a rule-based expert system-a framework
for explanation. Artificial Intelligence. 20(3):215-251. May 1983.

(12] W. J. Clancey. Heuristic classification. Artificial Intelligence. 27(3):289-350.
December 1985.

[13] W. 3. Clancey and R. Letsinger. NEOMYCU'J: Reconfiguring a rule-based expert
system for application to teaching. In W. 1. Clancey and E. H. Shortliffe. editors.
Readings in Medical Artificial Intelligence. pages 361-381. Addison-Wesley.
Reading. MA, 1984.

(14] R. Davis. Teiresias: Applications of meta-level knowledge. In R. Davis and
D. B. Lenat, editors, Knowledge-Based Systems in Artificial Intelligence, pages
227-490. McGraw-Hill, New York. NY. 1982.

72

[15] J. deKleer and B. C. Williams. Diagnosing multiple faults. Arificial Intelligence.
32(0):97-130, April 1987.

(16] R. Duda. J. Gashnig, and P. Ham. Model design in the PROSPECTOR consultant
system for mineral exploration. In B. L Webber and N. 1. Nilsson, editors,
Readings in Artificial Intelligence, pages 334-348. Tioga, Palo Alto, CA, 1981.

[17] J. A. Goguen, J. L. Weiner. and C. Linde. Reasoning and natural explanation.
International Journal of Man-Machine Studies, 19(6):521-554. December 1983.

[18] A. .1 Harvey and J. Bordley IM. Differential Diagnosis, the Interpretation of
Clinical Evidence. W. B. Saunders, Philadelphia, 1972.

(19] A. N. Han'ey and 1. Bordley IMI. Illustrative case II in liver diseases. In
Differential Diagnosis. the Interpretation of Clinical Evidence. pages 299-302.
W, B. Saunders, Philadelphia. 1972.

[20] W. R. Hensyl and 1. 0. Oldham, editors. Stedman's Medical Dictionarv.
Williams and Wilkins, Baltimore. MD. 24th edition, 1982.

[21] D. E. Hirsch. S. R. Simon. T. Bylander. M. A. Weintraub, and P. Szolovits. Using
causal reasoning in gait analysis. Technical report, The Ohio State Umversity.
Department of Computer and Information Science, Laboratory for Artificial
Intelligence, Columbus, OH. 1988.

(22] T. R. Johnson, I. W. Smith. Jr.. and T. Bylander. HYPER-hypothesis matching
using compiled knowledge. In Proceedings of the Spring Symposium Series:
Artificial Intelligence in Medicine, pages 45-46, Stanford Univ.. March 22-24
1988. American Association for Artificial Intelligence.

[23] .J. R. Josephson. B. Chandrasekaran. J. W. Smith. Jr.. and M. C. Tanner. A
mechanism for forming composite explanatory hypotheses. IEEE Transactions
on Systems. Man. and Cybernetics. SMC.17(3):445-454, May/June 1987.

[24] R. A. Miller, H. E. Pople, Jr., and 1. D. Myers. INTERNIST- 1, an experimental
computer.based diagnostic consultant for general internal medicine. In W. J.
Clancey and E. H. Shortlffe, editors, Readings In MedicalArtificial Intelligence.
chapter 8, pages 190-209. Addison-Wesley, Reading, MA. 1984.

[25] S. MituL, B. Chandrasekann. and 1. Sticklen. PATREC: A knowledge-directed
data base for a diagnostic expert system. IEEE Computer Special Issue,
17(9):S L-38, September 1984.

[26] R. S. Patil. P. Szolovits, and W. B. Schwartz. Causal understanding of patient
illness in medical diagnosis. In W. J. Clancey and F_ H. Shortliffe, editors.
Readings in Medical Artificial Intelligence, pages 339-360. Addison-Wesley.
Reading, MA, 1984.

73

(27] H. E. Pople. The formation of composite hypotheses in diagnosic problem
solving. In Proceedings of the 5th IJCAI, pages 1030-1037. Cambridge. MA.
August 22-25, 1977.

[28] Wo F. Punch III. M. C. Tanner. and J. R. Josephson. Design considerations
for PEIRCE, a high-level language for hypothesis assemblyt In Procedings of
the Expert Systems in Government Symposium. pages 279-281, McLean. VA.
October 22-24 1986.

[29] 3. Reggia. Diagnostic expert systems based on a set covering model. Interna-
tional Journal of Man-Machine Stu4es, 19(5):437-4W60 November 1983.

[30] R. Reiter. A theory of diagnosis from first principles. Artificial lntelli.gence.
32t10,:57-95, April 1987.

(31] A. C. Scott. W. J. Clancey. R. Davis. and E. H. Shortliffe. Methods for gener.
ating explanations. In B. 0. Buchanan and E. H. Shortliffe. editors. Rule-Based
Frpert Systems. chapter 18, pages 338-362. Addison-Wesley, Reading. MA.
1984.

(32] V. Sembugamoorthy and B. Chandrasekaran. Functional representation of de-
vices and compilation of diagnostic problem solving systems. In J. L. Kolodner
and C. K. Riesbeck. editors. Experience. Memory and Reasoning. pages 47-73,
Erlbaum. Hillsdale, NJ, 1986.

(33] J. W. Smith. Jr.. J. R. Svizbely. C. A. Evans. PR Strohm, J. R. Josephson. and
M. Tanner. Red: A red-cell antibody identification expert module. Journal of
Medical Systems. 9(3):121-138. 1985.

(34] J. Sticklen. MDX2, An Integrated Medical Diagnostic System. PhD thesis. The
Ohio State University, Columbus, OH. 1987.

(35] W. R. Swartout. XPLAIN: A system for creating and explaining expert consult.
ing programs. Artificial Intelligence, 21(3):285-325, September 1983.

(36] M. C. Tanner. Explaining Knowledge Systems: Justifying Diagnostic Conclu.
sions. PhD thesis, Dept. of Computer and Information Science, Ohio State
University, Columbus, OHK Match 1989.

.[37] 3. L Weiner. BL-M. a system which explains its reasoning. Artifial Intelli.
gence, 11(1/2): 19-48, November 1980.

[38] M. Rt. Wick, W. B. Thompson, and 1. R. Slagle. Knowledge-based explanation.
.TR 88.$24, Computer Science Dept., Univ. of Minn.. Minaeapols, MNC, March
1988.

[391 T. Winograd. Understandng Natural Language. Academic Press, New York.
NY. 1972.

74

Appendix B

Machine Understanding of
Devices: Causal Explanation of
Diagnostic Conclusions

75/76

Machine Understanding of Devices:
Causal Explanation of Diagnostic Conclusions*

Anne M. Keuneke

July 30, 1989

Abstract

This research inveqtigates how diagnostic conclusions made by a diagnostic problem-iolving iy.tem
can be explained by showing how the hypothesized malfunction caunally gives rise to the observations.

In particular. it shows how this explanation can be constructed from a "deep- mo-del of the system being
diagnosed. i.e.. a model that explicitly represents the underlying structure of the system and the runctions
and behaviors of its components.

In the past. researchers have investigated how diagnosis itself can be performed from deep models, but
using these representations for individual diagnostic problems can be computationally expensive. Compiled
knowledge help3 in efficiency in problem solving. However. the -compiled knowledge may be incomplete
and there may be a doubt about the correctness of the diagnostic conclusion. If a causal .tory a.a be put
together computationally effectively, using the diagno.ed answer as a focus, one gets the computa.ional
benests of comptled knowledge to obmm the diagnostic answer. as well as the use of the jeep n,.stei for
causal validation and elaboration of the answer.

The goal of this research is to determine how, and to what degree, causal explanations of malfunctions
can be derived from an understanding of how a device is expected to work. Efforts simultaneously
concentrate on the following: (1) what it means to provide a causal stoty of device function and malfunction.
and (2) in order to produce these stories, what knowledge is needed to model devices and how should it be
organized and indexed in a way that contributes toward a general solution to the representation of device.

The representation developed in this work builds upon an earier model introduced by Sembugamoorthy
and Chandrasekaran called the Functional Representation. Representational enhancements include the spec-
ification of a taxonomy of function types (achieving a state, maintaining a state, preventing an undesirable
state, and controlling variations in state), and explicit representation of state and behavioral abstractions
(such as oscillation and feedback). The explanation generation process then uses the organization and prim-
itives of the urepesentation to simulate malfunctioning devices and produce causal chains, consisting of
malfunctioning components and observations, leading from diagnostic hypotheses to observed symptoms.

"This work has been supporwd by the Defense Advanced Research Projects Agency under RADC contruat F3060285-C.0010.

77

Chapter 1

Introduction

The primary goal of diagnosis is to determine what malfunction is causing the observed symptoms. This task
can be done with compiled knowledge [1]. i.e.. knowledge that directly relates observations to malfuncton
hypotheses. Once a diagnostic answer is obtained, it may remain unclear as to how the hypothesis, or
hypotheses. actually explain the symptoms. An expanded causal story, from malfunction hypothesis to
observations, could provide this connection and add to one's comprehension. but this knowledge is often
not accessible in compiled form. In fact. such storage would be combinatorially explosive: there are simply
too many possible causal paths. Human reasoners are capable of generating these causal stories using a
basic understanding of how the malfunctioning device works. i.e.. knowledge of how the structure of the
device relates to its funcuons and behaviors. Representations providing this knowledge h.Ne been zailed
deep models [I].

Deep models nave been used to perform diagnosis itself [2. 11. 18]. but for ;,ompie. ai,.eb *" orking
directly with deep models involves dealing with large amounts of causal information. unnecessarily increasing
the complexity of the diagnostic task. Typically. the knowledge available through causal models is condensed
and used in producing compiled systems for greater expertise and optimum performance for diagnosis. Then.
if the causal story can be put together computationally effectively, using the hypothesized diagnostic answer
as a focus, we get the advantages of both worlds: the computational benefits of compiled knowledge to
obtain the diagnostic answer, as well as the use of the deep model for a causal validation of the answer.

This research proposes a method for generating causal justifications of diagnostic conclusions, based on
a functional representation of devices, which illustrates how an expert's understanding of the functioning of
a complex device is related to its structure and behavior. The object of the work is to determine ho 21Ad
to what degree, causal explanations of malfunctions can be derived from an understanding of how a ,-Wic.
is expected to work. Efforts have simultaneously concentrated on the following:

- What is required to provide a causal story of device function and malfunction?

- In order to produce these stories, what knowledge is needed to model devices and how shoul. •. be
organized so that it contributes toward a general solution to the representation of de ,ce?

In the global sense, i.e.. the theoretical contribution to Artifcial Intelligence, this rese.vh is intended to
make progress towards full machine understanding of devices. The usefulness of causal models currently

78

available in Al systems is often stymied due to the lack of extensibility. Such representations often suffer from
the "scaling up" problem when faced with different types of devices or when representing complex systems.
In this work, I demonstrate the potential of a functional model, based on ea-lier work of Sembugamoorthy
and Chandrasekaran [14], by showing how such an organization, together with the additional enhancements
proposed in this research, provide a model which allows for expansion to serve the needs of various problem-
solving tasks and also for the representation of certain complexities of device understanding. First, I give a
brief description of the representation proposed in [14].

1.1 The Functional Representation

1.1.1 Overview

The functional rep•esentation combines the following information about a device:

Structure: specifies the components of a device and the relations between them.

Function: specifies what is the result or goal of an activity of a device or component.

Behavior: specifies how, given a stimulus, the function is accomplished.

General Knowledge: pointers to general knowledge of the domain that show how key states occur. This
is the "bottoming out" knowledge for when it is not desired to expand a casual transition to further
behavioral or component detail. More specifically, this is the body of knowledge (such as the laws
of physics and the underlying equations or empirical or statistical knowledge) that may be invoked to
explain or justify a causal transition.

Assumptios:. assumnpons under which a behavior is accomplished. These are expectations about cer-•m
behavioral states that are commonly made when certain causal transitions occur, e.g., liquid will flow
through a pipe provided either the source has a higher elevation than the output, or the flowraze is
great enough to force it through.

This information is combined with the perspective that an agent's understanding of how a device works
is represented in a way that shows how an intended function is accomplished as a series of behavioral states
of the device. The device itself is represented in various levels. The topmost level describes the functioning
of tie device by Identifying which components and more detailed behaviors are responsible for bringing
about the varous state transitions. If a transition is achieved using a function of a component, the next level
describes the functioning of this component in terms of the roles of its subcomponents, and so on. Ultimately,
either by tracing through more detailed behaviors or by expanding the behaviors of functional components,
all the functions of a device can be related to its structure and the functionality of the components within
this suuctue.

Th7 B3u." Fxample
In the following I use the household buzzer, the example used In [14], to explicate the primitives of the
functional representation. Although with later enhancements to their representation I change the model of
this particular device somewhat, in this section I describe their work and thus illustrate with their primitives

79

to represent the functioning of the buzzer. What is important here is the organization and basic language of
primitives� these are not changed. simply expanded.

1.1.2 Structure

Figure 1.1 provides a physical and functional sense of the structure of the buzzer. For visual clarity and later
reference, the physical structure is shown in the form of a schematic diagram. The device-function browser
illustraes the functional components and the functions associated with them. When devices are simple there
is often no difference in functional or physical structural component specifications. For a discussion of the
distinctions between functional and physical structure specifications see (7].

1.1.3 Function

Devices are functional objects. In a functional representation, the structure of the device is built using
functional components. Thus every component is associated with a function or functions, as seen in the
fitgu. In understanding a function, the information required includes: what is the goal, how can this goal
be achieved, and when would the achievement of this action be desired, i.e., what is its starting state.
These "definitional' primitives, Le., those which identify a certain functionality, are characterized through
the primitive terms: ToMake, By and If.

The functional specification of a buzzer is illustrated by describing its function, to buzz, using these
primitives.

FUNCTION: Buzz
To.Make: (Buzzing Buzzer)
If: tPressed lanualSwitch)e
By: behavior1

Provided: assumptionl

In this description, (Buzzing Buzzer) and (Pressed ManualSwitch) are partial state descriptions. The
is meant to indicate repetition of state. The By clause is a pointer to a behavior that accomplishes this
functionality. Notice that the entire behavioral specification is not stored here. This same function could be
achieved in a number of ways, the identification of behaviorl indicates how this functonality is achieved
within this specific component. This separatio Is important when an agent needs to replace a malfunctioning
component by a functionally equivalent but a behaviorally different one. The Provided clause specifies the

ssumptions under which this specific behavior is accomplished. It is, of coume, impossible to give all
state descriptions that will hold when any behavior is being realized, but, ceteris paribus, there are certain
preconditions and expected states that are commonly known to be of interest Assumptioa Iindicates that
initially t7 and t8 are electrically connected (see stucture diagram).

1.1.4 Behavior

Behavior is represented by a sequence of partial states with the specification of how each state transition
occurred. The behavioral specification of a device describes the manner in which a function is accomplished
using three conceptually important notations. A state transition can be accomplished by the following:

80

. .. .i .iii
space I-

* Coi

i lf

t7 space Z'

I clap per

sj 1 U11

batteryswitch

Clappermechanical
acoustic

Buzzer ManualSwitchconnect

Batterjg

Coil

Figure I: Structural Repres=Mc ons of a BuzZe

81

Behaviori

(pressed switch)

Sehavior2
Sy/: behavior2 C (pressed switch)

(alternating connected V7 B) y: bhav io r3

Using Function (e mteconnect•t7 78)

mrec•anical
of Clapper

Using Function
(repeated hit clapper) voltage of

Using Function battery

acoustic
of clapper ('voaltage-applied tS 6G)

(buzzing clapper)
By: behavtor4.

(buzzing buzzer) (Jeletcnectd :7 :8) }

Figure 1.2: Behaviorl and Behavior2 for function Buzz

U lNFunctiofa: speciames that this state tUniston is accomplished through the use of a function of some

component of this device

AsPern speciies general knowledge which can explain the transition

By: indicates that this transition is explained in greater detail by the specified sub-behavior.

The behavior for behaviorl of the bu= function is described by a chain of events brought about by the
specified actions as seen in figure 1.2.

The figure is meant to represent the temporal sequence (from top to bottom) of states that occur as a result

of actions taken. "Behaviorl" indicates that the Buzzer, on the occasion of the switch being continuously
"Pressed", goes to a state where the electrical connections in the clapper alternately close and open, which
results in the state where the clapper is repeawdly hit. which results in the Buzzer being in the state of

82

"Euz*ng". Each transition is further explained, either in terms of further details in the state transition, or
in terms of the functions of the comporents. For example, the transition from the clapper being alternately
e-ntidcally connected and disconnected, to its being in thm "rmpeatcd-hit" st•te, is explained by relating it to
the "mechanicar" function of the clapper and inspecting the behavior for this function.

The specification of how the state transitions occur thrcugh the use of the UsingFunction, By and As
Per constructs provides -te !eprecentation with the capability to express both a hierarchy of detail and a
-,ornponent hierarchy. The By construct allows the ieprnsentatlon to provide more detail regarding how
the state transition occurred. By trawing behaviors for the Using Function construct, it is apparent which
subcomponents are used to perform the function. Both hiernrchies can thus be expanded by delving deeper
into a function's behavior. When one has reached •he boi.im lvel of detail and component specication
desired, transitions are explained using .A Pu,.

A Partial Coverage

The above description is far from a complete coverage of the buzzer's rvpr'sentation. For more detail see
(14]. This partial description has coveted the basic conceptual points of intrrest, i.e., the organizational
scheme and primitives specified by the representation of Sembugamoorthy and Chandrasekaran.

1.2 Research Me ,odology

The approach taken in this research centers on the hypothesis that causal explanation of malfunction can be
dei;.ved from device representations organized around expected functionalities. A solution to this erInadion
derv t votnw s conributions toward both a general solution for device represeniation and a mcn•odokgy
for the generation of causal malfunction sequences.

1.2.1 Representation of How a Device Works

First, a model must be developed which incorporates the understanding needed for explaining how a device
works. This involves the determination and representation of needed primitives, and the organization of this
knowledge for accessibility. In this research, the functional representation just described was used ss a foun.
dation. This representation alone, however, did not sufficiently model various aspects of complex devices.
Insight about additional desirable knowledge was obtained from two sources. Fhst, by modeling a number
of simple and complex devies, including a chemical pwuessing plant, the need for explicit representation
of conaucts such as expected side effects, cyclic behaviois and feedback mechanisms was empirically ob-
served. Second, by focusing on the task of explanation, the need for more contextual distinctions, specifying
why actions were taken or Aunctions used, was determineda In addition, the necessity to model behavior from
different perspectives wa noted.

In the following, I show how the functional representation is enhanced to accommodate thesn needs by
the addition of explicit knowledge constructs to the functional and behavioral specifications of device.

83

1.2.2 Explanation of How a Device Fails to Work

Provided with the knowledge of expected fumctions and the behaviors which realize these functions, together
with a knowledge structure which makes explicit the interactions between various components, the explana-
tion system can derive a causal sequence of ma•fructioning components. In the final sections, I distinguish
between types of consequences of malfunctioning units, and discuss the capabilities of the adapted func-
tional representation to provide the necessary iiowedge. to trw these consequences. For the malfunction
explanation which can be derived directly frou the functional tvesentation, I describe the reasoning used
to generate the causal chain. In adinn discis what additiona! knowledge can be accessed for an even
richer explanation.

84

Chapter 2

Enhancing the Function-an.
Representation

The cechnique used in this thesis to generate causal explanation of diagnostic conclusions centeis on the
hypotiesis that camsal explanation of malfunctions can be derived from a representation organized around
the expecmd futctiwalities of a device. The functional representation described iidlir pro-Ided an or-
.garxtional kemnl' !or representing knowledge of expected functio•aXy, but to represent and expl,.a the
nrechksns of viraplex devicer, this core alone is not suf.ien. Ths chariter enhances th. f. ional
•-e tY * sapplyig adftona ctions about fm:o bef, and md.us.

2 1 Taxonomy of Function Types: Distinctions of Purpose
In the following I identify four distinct function types. Each function type indiates different procedures
for simulation, different functional capabilities, different expectations, and thus different knowledge specifi-
cations for representation and explanation. I discuss the knowledge which distinguishes each type, provide
explicit specifications, and describe the information processing distinctions each new type provides. Goal
types include:

1. ToMakl: achieves a specific partial state

2. ToMalatain: achieves an .,ustaim a 0 .i d state

3. ToPrevent: keeps a system .:It of an undesirable state

4. ToCoatrI: gives a system power to regulate changes of state via a known relationship.

85

2.1.1 ToMake

Semantics

The function type of ToMake is the basic functional type. The idea here is that a component's function is
either to achieve a specific state of the device, as in the use of a bolt on a door ToMaket (door locked), or
to achieve a value or state of some substance parameter that the device manipulates, i.e., the function of a
condenser is ToNtake: (substance liquid). In general, the objective of a ToMake function is the achievement
of a specific partial state.

Specifkation

The primitives of this functional type are the basic definitional primitives:

FUNCTIfON:
ToMake: (desired state)
If: (action/state for initiation of the function's behavior)
By: (identification of behavior which achieves the function)

Provided: (' assumptions under which the behavioral states are valid)

2.1.2 ToMaintain
In contrast, consider the functionality of devices meant ToMaintain certain states. ToMake functions
achieve stwes which specify a parameter value aid ae wae or false at a given time. e.g.. to achieve (liquid
temperature 40 Q). ToMaiNtain functions achieve states which indicate that a process is actively sustaining
the parxiewr at that v;luL over a period of time, e.g., maimained liquid tempera=m 40C,.

Semacks

In general, maintenance implies three important features: there exists continuous monitoring, there exists
a range within which a variable is expected to be maintained, and there exists potential for the adjustment
needed to keep the variable value within that range - all thime combine to form one functional unit in order
to achieve and sustain the desired state. Behaviors for maintenance are not simple linear causaL sequences
which reach an end state; rather, they involve continuous cyclic action to keep the system in some desired

Specifcation
The representation for maintenance functions which specifies the knowledge just discussed is as follows:

FUNCTION:
ToMaintain: (substance/component variable)
Ran•e: (desitr4 interval or value)
M.- (uiniial state)
By.ConnuousMonltor: (behavior to monitor ar-d trigger)

86

Provided: (assumptions)
Until: (triggering situation)
By.AdJustment: (behavior to adjust }

Provided: (assumptions for By.Adjusutent)
NoefBhavior(s): (behavior for what would happen if not maintained)

Using the specifications given, a house heating system can be represented is as follows:

FUNCTION:
ToMaintain: (air temperature)
Range: (70-73o)
If. (Thermostat On)
By.CotinuousMonltor: ThermostatBehavior

Provided: (Thermostat.Sensor activates within.RangeSetting)
Until: (temperature air Lessmhan.Range)
By.Adjustment: FurnaceBehavior

Provided: (Range NOT(OreaterThan) FurnaceCapacity)
NotBehavior(s): ColdHouseBehavior

This information indicates that the function of the heating system is to maintain the temperature of the air
to between 70 - 730. ThermostatBehavior points to a behavioral sequence which shows how the themiostat
is used to monitor the temperatur until it is less than the range value, at which time it triggers the ftunce.
Once the furnace is activated, it heats the surmxudings to each the desired temperain . This behavior
is accessed through FurnaceBehavior. Because this function is a mainenance function and the monitor
mecha~ism is continuous this behavioral sequence will be repeamed.

NotBehaviors

Access to knowledge of how the function is achieved is provided through the functional By specifications.
For the purposes of explanation, it is also useful to specify why the goal is desired in the overall system. For
maintenance functions, knowledge of these aspects (how and why), are represented in varying contextual
levels. Specifically, although the detailed behavior for how the component achieves its function can be
viewed at a level relative to the component, the behavior to illustnate why it is used is not helpful unless
viewed from a higher pempective of the overall system. 1 For maintenance functions, knowledge of why
the function Is used typically indicates what would result to the system if this function were not used. Thi
knowledge i specified using the NotBehavior primitive.

The NotBe*v1Or may have multiple behaviors identified or it may have none, depending on the problem-
solving task for which the device representation is used. Since substances are maintained within a range, one
may want to specify what significant events occur at either end of the interval if the system malfunctions.,
for example, what happens when the temvaerature continues to be hotter then 73*or when the temperatum
continues to be lower than 680.

SA subsmte i maunained at a value for a room in saom hew conrx. Representing dde knowld follows de cravpt
discussed by gulpme (91 (and in M71), the iafeAtio houd be mouculr to C6 un i"el4 but it a taw a&Moy is known and Wc.dcd
ten tshe Iformaton should be usd.

87

Informatio Processing: Distinctions and Uses

The primary distinction between ToMake and ToMaintaln functions is that of intended temporal persistence
-of state. Devices designed to achieve maintenance require components prod mechanisms whose effects
-produce both the achievement and persistence of the state. Pr9blem-solving tasks, such as simulation,
diagnosis, prediction, design, and repair, must address issues involved in providing this continuity of behavior,
and also the consequences of continuous behaviors, when considering devices with maintenance functions.

"For the task of device explanation, the explicit representation of aspects of sustaining a state, i.e.,.
monitoring, range values, and adjustment, allows the explainer to define and distinguish the integral role that
each aspect plays toward keeplng the device in the desired state. For example, individual components may
be working but the device is not providing the appropriate effects because the interrelationships between the
components were not properly set. By identifying a function as maintenake and providing specifications
for the characteristics which define it, one has the potential to focus on the higher level issues involved in
maintaining the state.

For instance, suppose a home heating system is not maintaining the desired temperature of 700. Responses .
to the question of, "Why Is. the temperature 75o?" could include any. or all, of the following::.

- The thermostat was set at 756 (established Range). The system is behaving as expected given ths
setting.

The monitor's mechanism (in By.ContinuousMonitor), which is meant to monitor the temperature
and trigger the furnace, tusns on the furmace at a temperature value (defined Until) other than that set
by the thermostat (defined Range).

- The switch oc the fubma (a component used in By.Adfmewm.) gets stuck and does not respond
immediately to the signal from the triggering device. Thus the tempers=e ;4justment is higher than
the range desired.

- The heating system maintains a temperature of 700 by heating the room to a temperature of 75 oand
allowinS the hotter air to mix with the .older of mth hus adjusting to a temperaumof 70 0
(mechanism in By.AdJustment).

Additional malfunction explanation is also available through the NotBehavior clause. This clause gives
the explainer the potential to explain symptoms due to the malfunction in a higher behavioral context,, e.g.,
effects In the environment.

2.1.3 ToPrevent

The third fnction type is To~rent. ToPrevent is similar to ToMaintain in that global goals app•ar the
same. For prevent fuctions, the function's behavior explicitly prevents an undesiranie state, -as opposed to
maintenance behaviors which continiously provide a desired state. The primary differences are that of intent
and continuity of use in a given system. ToPrevent functions provide shorwterm fail-safe. machanisms, not
operations pitbano foc the naomal, and continuous mmatenance of a system.

88

Fnactioa Disicin::To:r~vaA vs TbMshtal-NOT

For an examplo to better distinguish the types, consider the following, The dikes in Holland mantuain
the state of keeping Holland dry. Once a hole developed in this wall, thee was a threat. The famed boy
prevented Holland from flooding aid disaster by putting his finger bi the hoke. The boy achieved thefunctlon
ToPre Vent: (flood). The wall was failing to achieve a function ToMalattln: (NOT flood).

One might argue that for the wAlls, a functional specification of ToMaintain: (NorY flood) is equivalent
to ToPrevent: (flood). Occasionally these func4opal specifications may be logically eqxivalent, but nor
always, In the above situation, one would not expect to see individuals along the wail daily ToMaintain a
safe environment. Specifically, the boy prevented a flood, he had no intention to remain at the wall'in order
to achieve the continuous action necessary for ToMaintain: (NOT flood). Thus ToPrevent V> ToMaintain.
NOT. On the other hand, consider the lights in a building. Their aznction is ToMaintaln: (illumination). or
ToMaintain: (NOT dak). Their function is not T0Prevent: (dak). Thus, ToMaintain-NOT • ToPrevent.
'The constructs are not equivalent'or reducible.

"-To illustrate the specification of the ToPrevent function type, I represent the function of a rupture disk in a
chemical processing plant. A-'rpture disk is a metal disk, with an appropriate tensile strength, attached to
the reaction vessel. Its function is ToPrevent the reaction vessel from blowing up. That is, if the pressure is
too high in the vessel the disk will blow, thus releasing steam and reducing pressure. When the disk blows,
the release of pressure prevents the entire vessel from destruction.

FUNCTION:
ToPreirent: (reactionvessel blowup)
Threshold: (tensilestrength value)
IfU (rupturedisk present)
' When: (pressure reactionvessel atdiskithreshold)

By: behavior blowout
Provided: assumptions for blowout

NotBehavior(s):, behavior Not~lowup

The primitive When indicates the situation which triggers the use of the device; When the prevent function
is triggered, the behaviors blowout and Not~lowup are obiervek. Behavior blowout shows the chain of
events in tMrms of the disk itselt For instance, it shows hew stmuctulstress degradation in the disk leads
to a state of (disk mptumes). Note that such infonnatmon does not provide knowledge of what was prevented,
i.e., it does not show dth behavior which illustrates the purpse of the device ht the overall system. The
NotBehavior NotBlowup is used to specify the view from the system: (disk ruptures) --# (esape steam) -.
"(reduce steam) -- (reduce pressure) - (NOT (reactionvessel bowup)).

Information Proessing Distinctions

I, evention devices are not used during normal functioning of a device (e.g., fire extinguishers). As opposed
to mainteanoce funcions, their use is not qbserved in, the normal causa& flow (f events. Simulation of a

89

device Involves ToPrevent functions only when the contingency arises. The use of these functions requires
the processing capabilities to "watch" for the triggering situation. 3

In addition, devices with ToPrevent functions have different design considerations. Devices used for
prevention are often not designed for continuous or repeated use. In fact, behaviors used typically require
the use of something (or someone) which is expendable (or at least not repeatedly available). Identification
of such commodities is useful for repair, replacement, or reuse of the function, in addition to simulation.
For example, once the rupture disk blows, the chemical plant will not continue normal processing until the
disk is replaced.

2.1.4 ToControl

The last functional type is ToControl. In the ToMake. ToNtaintain. and ToPrevent function types, the
expected goal was the achievement of some state (either a predicate or a process state). Control indicates
power to regulate. To control something, or someone, means that there exists a direct multivalued relationship
between the device's action and the resultant effects.

Specification

To illustrate, consider the (inexact) specification of the function of a faucet.

FUNCTION:
ToContro: (water flowrate)
Reladtoship: flow is proportional to handwheel position via function f(x)
Op•mt: rotatien x (offM -. rot3tion x) (maxLtum on)
If: (present water valve)
By: behavior adjustwatnr

Provided: assumptions for adjustwater
Notlkhavior. Handwheel.Stuck

The behavior adjust.water is illustrated in figure 2.1. The functional primitives provide knowledge that the
faucet is used ToContrel the flowrate of water. The Relationship primitive states the expected control
relationship. For the faucet, it gives the proportionality between the rotation of the handwheel (turned
handwheel rotation x), and the expected amount of flow (flowrate water valve yD). The Options primitive
indicates the available range of values for the control mechanism. Depending on how far the handwheel is
tre the function specifies the expected amount of water according to the RelatondShp. If there is no
water at the valve, or if the ban4wheel is not adjusble, or if the handwheel is not muinng the stem to move
the valve as It should, then the valve can not contrl the flow, NotBehaviors specify what happens if fth
valve is stuck, or other conditiors which indicate the loss of control capabilities.

normaton Procsng Disinctoas

The knowledge specific to control functions is the capability to provide multiple outputs and the ability to
manipulate components in order to provide the exact output desired. Simulation of control functions requires

90

(tured hantiwnotl rotation x)

As Per:

II

S COnInOCted(handwhea ! stag)

B Y: Mlov ewa$tl r

(distancel(washer valveasat) y)

By: AllawFlow

(flowrate water valve y')

FIgure 2.1: Behavior adjustwater

the capability to adjust the behavior (specify state parameters) in a way to illustrate how the given state
causes the end resulL Specifically, the parameters inside the behavior change due to the input setting (within
options) of the device and the given relationship. The design of devices which expect to control must also
take this relationship into consderAtion.

Lplanation of malfunctions in control functions includes not only checking the gneral behavior that
leads from initial state to final state, but also considering malfunctions of aspects of control For a devce
to have the function of controlling, there are two necessary requiremems. The first is that there exists the
capability to make adjustuents. For instance, a faucet no longer controls water flow if the valve becomes
stuck, the handwheel is no longer adjustable, or if there is no water to regulate. These situations =
represented in NotBehaviors. The second requirement Wr control is that the proposed adjustments must
cause the specific expectex results, Le., the relationship riust remain valid. If there is a hole in a valve of
the faucet. or the handwbeel is not turning the stem to move the valve as it should, the expected flow will
not be achieved: the desigpnd relationship between the hanwheel, and dlowrate is not valid.

Fuocdona Distinctions

A water faucet Is an excellent example for Ult-tratirg the differences between ToControl and ToMake or
ToMaintain fuctions. Consider the faucets which bounce baclac if one does not hold onto the handle. Here
the device achieves a state (as in ToMake). but it also has the ability to produce a multitude of states if
desired (as in ToControl). The control functional specification provides the knowledge of these potential
states through the Relationship prinitive. This type of faucet shows how control does not necessarily
indicate maintenance. Specifically, even though the faucet provides ccntooL extra mechanisms would be
needed if it is desired to keep the handle, and thus dowrate, at a speci•c value. alternatively, having the
ability to maintain does not imply that the device has the capability to regulate or control. There also exiit

91

faucets which only maintain a single flownate with no control capabilities.

2.1.5 Problems: Proliferation and Completeness

In the previous sections, I proposed a taxonomy of function types. As with any delineation to establish a set
of primitives, this collection is subject to problems concerning proliferation and completeness. Although in
these sections I showed distinctions between the functional types to illustrate variations in the constructs, I
make no claims as to the completeness of this set and concede that any specification of a set of "primitives"
for knowledge representation can be questioned as to whether it can be reduced. However, I believe that
this set represents core aspects of functional understanding and justify their specification on the grounds of
utility for explicit representation for inference making during problem solving.

2.2 Additional Functional Distinctions

In the next two sections, I present functional taxonomies orthogonal to that of function type. Each section
presents a new distinction and primitive to provide insight on when a device is, or is not, achieving its
functions.

2.2.1 Passive and Active Functions

Activ, functions indicate the capability or involvement of the component itself to cause movement, action,
or force. In such situations, the function's detailed behavior describes how the component or parts contribute
to the a3ciom.

Sometimes devices acieve their functionality by simply being present because the sructture of the de-vice
has a nrecess propery a1Met allows it to perforn some duty. I call this t)pe of function a paiive fwnw-tin.
For example, the functions of the reaction vessel in a chemical processing plant are to maintain a "closed"
system and to provide a contained environment in which the reaction can occur. The vessel does not actually
do anything. It achieves these functions by simply being present and not allowing leaks. TIhis is accomplished
through Its structural integrity, i.e., by having the attribute that it can withstand a certain amount of pressure.
Other examples of passive functions am w"lls, windows, door stops, paper weights, chairs, etc.

Spedicatlon

The mpresentwonal differences between active and passive functions involve (1) variation in the context
level of the behavior speclcatlon and (2) an added primitive to indicate important traits.

A behavioral qecification of "how the device works" for passive components can only be explained
by consdering the expected use of the device in the greater context. Pasive functions often need outside
initiatom or actions to motivate their use. A hammer can be used to do things because of certain aspects of Its
sucture, the hardness of its head and the force provided through use of the handle. Hem the hammer does
not actively participate, it is not producing action, instead some outside action is needed to take advantage
of its function. Behaviors for functions which are passive do not Indicm internal behavior of the device,
but instead refer to actions of the Initiator or user

92

Specification of the atributes of importance, Le., those which allow the component to provide the
necessary results, allows for the identification of other "hammer-like" devices which can perform the function.
Pusive functions requie an extra primitive PasstveProperlies to provide this specification of important
charcteristics of structure.

The specification of the function conduit for a pipe, used to transport liquid, could be represented as a
ToMake function as follows:

FUNCTION: conduit
ToMake: (location liquid x)
IM: (location liquid y)
PasslveProporldes: tubular, nondissolvable by liquid
By: flowbehavior

Provided: (OR (sufficient force flowXlower location x location y))

Depending on the topology of the overall device and the availability of knowledge about the substance which
is being transported, the flowbehavior can vary in complexity. It could be trivial, i.e., simply (location liquid
y) -, (location liquid x), or it could use knowledge of the pipe angle and liquid viscosity to be precise
regarding flow rates.

Information Processing Distinctions

Passive functions are not a new functional type; theme is not a new kind of goal, but insveal a different
explanation of behavior through which the device ahlieves its goal It achieves a deired function by being
at the right place at the right time with'the right chamteristics. Simulation of passive functions requires
the capabilities, not to simulate the functional component's behavior, but rather to simulte the substance or
component changed as a result of using the function.

When considering replacement of passive functional components, one looks for components with the
same desirable traits. The specification of these traits is also useful for explaining why a device is not
achieving its dusied function. If the function is accomplished due to a certain trait, and the device is flawed
with respect to this trait, the function may not be achievable.

2.2.2 Primary and Secondary Functions
Often devices are intended and usigned for a particular primary goal but include additional functionalities
for various reuons (such as safety, economy, aesthetics). In the analysis of device functionality, one observes
that some fumctions have a secondary natur. These ae functions which are present in support of another
main functo. T7hree types of secondayness;= duelinhted_

- Subfun•cons:
- functions a device possess simply am a means to establish preconditions for a primary function.
For example, the only reason an aircraft has the function "takeoff" is so that it can achieve the function
"to fly,".

3Jt ma W ba eO w ttq •,•wxfon• i a behavico could be considered to be •@Wn$ up prcacdlltion for the fumdtom that follow
or tht xi m coulI m epatr.wd by havina eli fuactions have pecompied "ued.by" primitives lobally. The idea hen is

93

- functions a device possesses to support a provided clause (assumptions) on behaviors for a primary
function. A car can be used for transportation provided the driver can see the road. The functionality
of windshield-wpers allows for this behavior in inclement weather, the functionality of lights provides
sisgt at night.

- Auxiliary functions:
With respect to the desired use of the given device, these are extraneous functions. Consider antiques.
An antique chair could be used for sitting, or simply for the beauty of the room, or for both. Auxiliary
functions could be primary functions depending on the device designer's or user's purposes.

- Other design considerations:
Design considerations are goals which arise out of the situation or context in which the device is used.
Generally these focus around additional constraints on how the designer wants the main function to
be achieved, i.e., economy, aesthetics, ecology. These could also arise as safe-guards to compensate
for undesirable side effects of behaviors. For example a lawnmower's protective shield or the wheels
on the legs of a chair have functionalities. With respect to the main goal of the lawnmower or chair
these components ae irrelevant. Explanation of why the functionalities are needed involves "external"
considerations. The devices have these functionalities because when using the device, the user also
has the desire to protect himself or move about easily.

Specification

An example of a secondary function in a chemical processing plant is the senddgnal function of the
sensoralanM Sysm. ItS funMnn-al esrdptn is as follows:

FTNCTION: send.signal
ToMake: (present alarmasgoad ProgrammableController)
Ift (temperature sensor above.threshold)
By: signalbehavior

Provided: 0
SubFunctinof:h PressureMaintenance
External Consideratioa: safety (to identify location where overheated)

J uat lom m Processing

The end.uipl function is identified a. a SubFmnctlomOf PessmueMaintenanee. Use of send.signal is
not see in a uac of the maln causal chan or detailed levels of the behavior for the plant. However
the aten Ace unction has a Provided clause indicating that the function send.signal must be
wodring. The Idea is that the ptenure can be maintained as long as problem arens can be identified in time
in order to compensate. The send.signal function must achieve tiis goal. The SubFunctiou/ specification
hientifias the function whose Provided clause must be accomplished, and thus assists in the proper simulation

dhM give= d60i=es have unstiod coompoena which m 'peckased. We wam thi d roupins of compoantn funodoul|ty n an aid for
exportadon of fmcdon wid die knowlwdp to tnarehma opoowma. By using sua tnoo for compoomM within a device oew can
Wdmsfy ft malu& purpose of di device *ad also cqAmp de deop of e,,mpona modtakily dosired.

94

of the plant In addition, it is used for determining a more complete malfunction chain, i.e, a malfunction
here results in problems for the PressureMaintenance function.

The send.signal function is also identified as an external consideration. Here it is identified as a safety
precautioa. With the External Consideration stipulation, explanation of malfunctions has available the
knowledge that the overall system would still work without this device pneent, but not as safely.

In general, specification of secondary functions is necessary to represent understanding of why the func-
tion is present in the device and for determining equivalency when considering replacement of components. 4

2.2.3 Summary of Functional Enhancements

The functional specification has now been enhanced to provide the following: four distinct functional types,
ToMake, ToMaintain. ToPrevent, and ToControl with their related primitives. In addition. the primitive.
PasslvePropertes, is present to indicate passive functionalities, and the SubFunctlonOf and External.
Consideration primitives provide knowledge of secondary functions. With these additions the explanation
capabilities to describe what is the function, how it is achieved, and why the functio is desired become
more complete.

2.3 Representing Behavior: Knowledge of How and Why

The behavioral representation in the functional representation consisted of a causal sequence of partial states.
linked together with the identification of how state trawitions in behaviors were expected to occur using
the notions of UsingFunction, By behavior, and AsPer knowledge. The understanding and explanation of
behavior could be enhanced through following information: why was the action performed. to what extent
does the action have to be completed for accomplishment of the goal within this device, and what side effect
behaviom me important to the proper functioning of the device.

The following subsections describe the additional primitives to represent this information. However,
since the original behavioral specification provided in the functional representation addressed only linear
behaviors, I would fast like to illustrate the representation of behaviors which require multiple causal chains.
Section 2.4.1 discusses the representation of cyclic behaviors.

2.3.1 Behavioral Representation: Linear Causal Links

Representing Paratelism in Behavior

Often a desired state can be a conjunction of partial states. These states may not be causally related, thus the
behavior to achieve the conjunction requires multiple causal paths, one for each conjunct. For example, the
state of (prepared aircraft) may be equivalent to (AND (loaded passengers) (loaded baggageXloaded fuel)).
A behavior Prepare.Craft which represents how (prepared aircraft) is achieved is 0i)utrated in figure 2.2.
Accomplishment of all of these states indicates that the aircraft is prepared. The simt "or interprets multiple
links as an AND clause and performs each. Because the partial states are not causally related, the order of
perf6nmance is insignificant*, the actions can be performed in paralleL

6ecuuan knowledge of saiilury functons does not provide informia s on how the devce in quetion work, a primitive for
"specUfing this knowledge is "o provid heMrs. Such a speciioaaioc is mumsa"e for taks such plauning or dalPg whers the
muliple usae of t"e device could aid •in the doweaamtion of wvhick device to choom.

95

(location aircraft terminal)

Using Function: Using Function: Using Function:
load.passenge/s load.baggage load.fuel
of Stewardess of Groundcrew of raroundcrew

(loaded passengers) (loaded baggage) (loaded fuel)

.As Fer:As Per:' partial / _. AS Per:

partal sate p~artial
sure state

(prepared aircraft)

Flgw 2.2: Behvior Pzpam.-Qa

96

(location aircraft terminal)

By: P repare. Craft

(prepared aircraft)

Using Function:

taxi of Aircraft

(ready.takeoff aircraft)

Figure 2.3: Behavior PreFlight

Equivalence of State

The knowledge tha 'the state (prepared airaft) is equivalent to (A.14'D (loaded passengers)xloaded bag,
pgel. oadad fwl)) is identified by the specificado of AsPu kaomedge of p s= Eq dva1
which a= not conjunctions can be represented in a similar asbion. ie..L AsPer: identity.

2.3.2 Identifying Behavior Fragments With Roles

The behavioral specification to illustrate how a fimction was achieved was represented in the functional
representation through causal chains where the links were annotated with knowledge of how the state tran-
sition occ•rred. Knowledge of why that state transition was used within the behavior was implicit. The
assumption was that a behavior is used to achieve the next state in the causal chain. However, actions are
often performed in behaviors for reasons not explicit in the immediate behavioral specification.

For instance, consider preparing an aircraft for takeoff. Part of the behavior showing the departure of
an agrua is shown in figure 2.3. Th Prepare.Craft behavior was shown in figure = Descriptions of
behaviors showing how these actions were achieved do not indicate why they were desired. Individuals can
generally explain the actions, they know that when travelers arrive at their destination, they will want their
luglpge. The baggage is loaded so that when they arrive it can be unloaded and used.

ln general there are four reasons why one might take a certain action within a behavior.

1. to get to the next state in the desired behavior

2. to set up for future actions

3. to thwart events which cause undesir-ble behavior or hinder desirable behavior

97

4. for external considerations

Knowledge specification for each of these is considered in the following; appending this knowledge to the
representation of behavior links is shown in section 2.3.5.

Normal Causality

For functional behaviors, actions are taken to achieve the desired goal. Usually the sequence of states simply
delineates the causal chain of events which eventually leads to the desired result. Each action is performed
to set up for the next state, which allows for the next action, etc. This causal chain represents how the end
result is obtained. It implicitly provides knowledge of why each action was performed; the assumed reason
for actions in beha%.iors is to cause the following state, which establishes a causal chain that ultimately results
in the desired end state.

No primitives were added to identify the purpose for such behavior links. Unless specified otherwise in
the behavior link. an action is taken simply to achieve the next state in a causal chain.

Precondition

Sometimes actions are performed to set up preconditions for future behaviors. One cannot unload the luggage
from a plane if it was never .oaded. Even though the action of loading is seen early in the overall behavior,
it is performed to allow the much later action of retrieving the desired baggage. To represent and identify
the purpose for this type of action, a link has a Rationale clause. The link specification *of UsingFunction:
load.baggage in the behavior Prepare.Craft specifies a Rationale that indicates the action was taken so ths
it can be unloaded upon airival, Le., it points to the behavior where the baggage is unloaded.'

Couoedes

Often behaviors have contingencies. A certain action is desired unless problems arise, then an alternative
action is performed. For example, most automatic garage door openers are equipped with a safety device
such that if the door comes in contact with an object before it is totally closed, it will reopen or stop. This
prevents damage to cars or items not totally inside or outside. The behavior for the garage door could be
represented as in figure 2.4.

Representation for the explanation of why this type of behavior was used includes the use of two
primitives. Firstly, them is an additional Condition clause so that the contingent behavior can be identified
and indicate when the action is used. Because the specified actions ale meant to prevent some state, the
Rationale clause gives more specific detail about the reason this action was taken, i.e., it points to behaviors
which occur if the contingency behavior is not taken or is not effective.

Design Considerations

Many behaviors can result in the same final action. Often. however, there are certain constraints which
govern the choice of actions used to achieve a function. A particular state transition may be necessary for
the achievement of a function, or it may be present 'o satisfy additional constraints such as optimization. If
one is tracing through a behavior to determine if a desired result will occur, it is useful to know when an
action is absolutely necessary, or when it is present to maximize safety, economy, etc.

98

(pressea button)

By: Electronics tgnal

(a€tivata motor)

If: (MMnseolid)
By: SensorrStop : LcwerOaor',

(stopped motor)

By: PowerCutOff

(stopped garage.dccr)

Figu=e 2.4: Behavior W'ith Contingency

For example. a Ainction of the LiqiFed System of a chemicai processing plant is to s'pply die
liquid tretanL A behavior for suplying th liquid could be to open a valve and simply allow the reac-ant
to flow into the rewtion vessel. Instead, the liquid flows past a flow controller and past a temperature
controller The explicit functions of these controllers are to maintain the flowrate and temperature. Their
use heme is for efficiency masons; they produce optimum macrtnt conditions for the reaction. The absence
of these functions would still permit the liquid to flow to the reaction vessel, and thus the achievement
of the LiquidFeed System's fumction. The system would have lost oprimaliry but not functionality. The
representation of why a desil consideration is present. wnd its signiicance for achievement of the behavior
in which it is present, is achieved through the link primitive DesignConte.

Z-3.3 Thresholds

.Sometimes components may be only partially working 2nd still be functionally sufficient. The achievement
of a tuk or function can vary in the degree of behavioral completeness depending on the specific context.
Some behaviors have BehaviorThresholds wherein the completion of a goal is determined. The threshold
stipulation indicates the degree to which any transition must reach completion in order for it to accomplish
its p= toward the achievement of the final goal.

Fir example, consider a pump which was designed to produce a pressure of 15 p.s.i.. and can now only
provide tO p.s.i. If the behavior in which it was used does not require greater than 10 p.s.i.. then for practical
purrpc.ses, this "malfunctioning" component =an still be considered functioning.

"Mhe threshold is relative to the change desired. for the particular substance, in the particular device.

99

Sanmountt 4aC O*IQw.tnfrQnolCi

ly S•ua*yC•Aant

(~resenc reac'.arns rxvesseg)

S8y 4ea~amtCwnta•

(occurrm reac-aon rxvaet

PrOd uc~teuIMCO.teactants

(amount oeat rxv~ssa increased) (present acid rvesset)

IV:
C.amnsattOxdatan.se U"Pqfuncuan eztralwan'4/ Ct ?esansteSys

(cor.OittonI rxvesseI suffci"t). \

(amount ac¢c *xternalconta=.er r'c.eawec)

Figure 2.5: "rop Level Behavior o.*xidaon of a C'emntical Processing Plant

with the particular behavior. Thus the information is represented on the link which represents this specific
use. Through the use of the primitive BehaviorThresholds on the links, one can specify the degree of
completeness necessary and thus determine if the given behavior can accomplished the necessary action to
allow the rest of the behavior to continue and be successful in achieving the goal.

2.3.4 Side Effeits
A structuring of the device representation around function has provided explicit Inowledge of expected
functionalities of components. With this model, one can make the distinction between what is the expected
function and what are side effects of using the specific behavior for achieving that function. In deep models
focusing on physical components, the distinction between which behaviors are due to expected functionalities
and which are side effect, or potential behaviors is not apparent.

Side effects are an important part of explanation of how a device works. In a chemical processing
plant, many of the system's functions ate present in order to deal with side effects of the reaction. A
major consideration in the plant is that the reaction is exothernic. Thus we see the side effect causal chain
described in figures 2.5 and 2.6.

100

(AoSunt Meet Izv4$S&* incroasodi

AsMPt I OftermadmtICSIes & t: a.te.MgatLia

Itefatuee rveslol abI*oze."stoU (ealunt vapor rtvOSSel Increo4$e4

adCeeltaedvet

Cml IeS~st1 CIo tmlqJ~vstm

(ltoesereat, are azvose i t.ltnrosno I €

(a"aunt pIealelur raiVjeo" Increased) (llaulnlt pressure twesl lXcrtllla)

Vae47
104642O6 #tOa: PPpalltLFi !

(gressure raVOssal at.tbaeshold) Slate (pressure ruvesSoI at.thfeosaaI3l

Asoer: Pf
partial. Iete
01ýState State

(Coadtllono fa. aol sufttrcliit)

Figm 1.6: Side Effect of Exothermnic Reaction

The behaviors of imporm= side eects can be expliciy represented using the behavior primitives and
,musaA chains alieady mentltoed. The distinction that this behavior is a side effect is represented through
the link primitive SideEITect nd is notemd on the side effect behavior name by die suffi e.

2.3.3 Summary of Behavioral Enhancements

A summary of this section on behavioral enhancements is provided through a listing of the link primitives.
Each link in a behavior causal chain must have a LUnkType specified, the remaining primitives are specided
depending on why the link is present in the behavior.

LinkType: one of these types must be specified:

- UsingFunction: k function) of (device)

- By: (behavior)

- AsPer. (general knowledge)

Condition: states the contingency condition under which the behavioral sequence will occur

Rationale: a specification of Rationale indicates one of the following:

- Wben used with a contingency, i.e., if there is a condition specified for this link, Rationale
points to th6 behavior that occurs if the contingency behavior (the rest of behavioral sequence
after this link) is not accomplished.

101

- If no condition is specified but there is a specification of Rational., then this link's action was
used In the behavior as a precondition. Rationale points to the behavior for which this link was
needed to provide proper conditions.

DesignContext: to Identify external considerations for which the action of this link was used, e.g., safety,
economy

BehaviorThresholds: to determine the degree of completeness required of this action in order to be within
limits for achievement of the behavior

SideEffect: indicates whether the link begins a side effect sequence

The use of these primitives for causal explanation is discussed in the last sections.

2.4 Levels of Understanding: Multiple Viewpoints

SThe background and area of expertise of an individual plays an integral role in his interpretation of the
world. For the task of explaining the mechanisms of a device, the vocabulary, explanatory power and depth
of understanding of a mechanic will differ from that of a technician, which will differ from that of an
engineer.

One major source of variance in the knowledge of different individuals arises from one's ability to
abstract This entails the skill and capability to switch between contexts and conceptual levels. In the
following sections, I propose a representation which allows access to multiple perspectives for states and
behavios.

2.4.1 Representatim of State: State Abstraction

The representation of behavior in the functional representation is based on the use of ztate transitions. This
thesis does not address the specification of a language of state in general, but I would like to address
the various levels of complexity which a representation of state must consider. For example, consider the
differences between what it means to "be in" the following: a state of confusion, a state of poverty, a state
of oscillation, a state of the liquid in the glass having a temperature of 240 Centigrade. ,9this section deals
with one form of complexity of state I term "state abstraction".s

Proem States

Suppose there exists a solid/llquid mixture in which action is being taken to keep the solid from the bottom
of the container. One might witness the following causal loop:

by stirting)
(solid falls) (solid rises)

(
by gravity

HMwh of dtiacton is taken hom (81. Mw author would lik- to give Dow AMkma speciat thanks for his effof.

102

Here an observer coudd follow the loop any number of times, but somewhere one takes a conceptual jump
and identifies the dynamic process (solid fall, solid rise, solid fall, solid rise...) as a state at a different
behavioral level, i.e., Identification of the process state (solid suspended). In doing so, he is identifying
a new phenomenon; he is packaging a process and seeing it from a higher conceptual viewpoint. These
types of conceptual transitions are commonplace in behavior - especially in cyclic or repeated behaviors.
Nevertheless, past methods of behavior abstraction do not explicitly address the representation of such
phenomenon.

Past Efforts: Behavior Abstraction

Most efforts in the past dealing with abstraction of behavior have adopted the view of abstraction in terms
of availability of detail. Two examples, both dealing with detail but in slightly different ways, can be seen
in the works of Riejr and Grinberg (12], and Sembugamoorthy and Chandrasekaran [14].

The "mechanisms abitraction" of Rieger and Grinberg accomplishes behavior abstraction by suppression
of detail. The idea is to simply remove any state information in the description of the device which is not
deemed relevant to the existing situation. For example, consider the following:

state A causes state B
state B causes state C

Using a "defocusing" rule, the system derives,

state A causes state C

Thus information which is not dixectly pertinent, in this case knowledge of sm B. becomes implicit within
some causal relationship.

In the work of Sembugainocnhy •md Chaekarui the behavior-l xereusem provides ,apability
for a hierarchy of detail. Depending upon the level of detail one desires, this model provides access to
consecutive levels of a behavior hierarchy through use of the By construct. 6

Although the results of these techniques vary, the view of abstraction Is the same. Given any two states
there are potentially an Infinite number of states between, so one must always take a stance as to which
levels are important. The idea is that details at a low level, which are not relevant to the model's uses,
can be suppressed. The representations discussed interpret behavior abstraction as this loss of detail. With
this alone, understanding remains limited by the availability of only one viewpoint of behavior. Often an
understanding of how something works also requires making transitions between varying conceptual levels.
Behavioral representations need to offer the necessay primitives to provide such capabilities. In this section
I Idenif*y a difnoent type of behavior abstaction from the detail supprestion seen above and call it "state
abstractiwow.

Abstraction of State. States as Packag Behaviors

To be concrete, I will use the example of de Kleer and Brown [4] and Sembugamoorthy and. Chan-
drasekaran [141 of the household buzzer. See figure 1.1. The output we expect from a buzzer is to hear

I In ABEL (10], PMll also allow. ftr eaul Ink abs•rtioan orde to "eliminw lasinmnned, sae ftm cuW caw of mng."
Pl umes a "lIMk Mas hehy" Wn ahev e. mm same of detadl auppem

103

a buzzing sound. If one follows the causal chain of its behavior, the following is seen: When the manual
switch is pressed, Ti and T2 become electrically connected. This allows a voltage to be applied to the coil.
Since the coil is magnetic, spacel is now magnetized. Specifically, this makes the clapper area magnetized
which pulls the clapper up. Now the closed circuit is broken; T7 and T8 are rio longer electrically connected.
This causes the magnetic field to be broken and a spring allows the clapper to fall. With this, the circuit is
closed again, so the sequence repeats.

This causal chain is, of course, an important pan in the explanation of how the buzzer works. Nonetheless,
the sequence fails to indicate what is making the buzzer buzz. It is not when the clapper is up, nor when
it is down that makes the sound. It is the oscillating motion, the repeated action of the sequence up and
down, that causes the effect desired. The clapper is in a dynamic state of oscillatory motion. This causes a
buzz. There are actually two conceptual moves here. First, to look at the repeatedness of states as a package
which produces a synergistic uniform action (oscillation), and secondly to identify that this action, in a new
context, is identified with a desired state - the buzzer is buzzing.

In a simple (no cycle) causal chain, it is often sufficient to understand the device in terms of constituent
states resulting in a final state. But for a circular causal chain, it is necessary to recognize that the loop can
collectively amount to a distinct device state. State abstraction is proposed as a representational primitive in
the sense that it is not built simply from" lower level, more detailed states, but it also provides the capability
to interpret the cyclic behavior as a dynamic behavioral unit. One needs this capability to identify and
explain such concepts, to understand behavior at varying levels of abstraction, and to make the transitio-as
between these levels.

hiefica o Cyclic Behaviors

The necessity for using state abstraction especially appeas when one tries to represent complex devices, most
notably when representing devices in which the behavior has some kind of loop. Through an examination
of the literamue on devices with loops, I discuss what kinds of loops are mteresting to understand, and what
soits of questions about them can be answered.

de KMeer [5S discusses a method for determining the steady output of devices such as a homeostatic
control. In such a device, deviations from the steady output are detected, and this information is fed back
to some control system, which alters the output in the direction to correct it. This is an example of an
information feedback loop, in which information about some system variable is processed, and the result is
used to affect that same variable. Conceptually them ame three main kinds of outcomes that can result from
such loops. The behavior of the system can tend toward a constant, as happens in a homeostatic control.
Alternatively, the system can oscillate among states, as in a drinking bird toy. Finally, the system may be
self supporting, so that the magnitudes of the system variables increase without bound. This happens at a
concert hall when the sound system suftes from 'feedback' problems, or during inflationary times. 7

Weld [19] has examined loops in which a process is repeated until some condition is satisfied. An
example of such a system is a frog in a well, who is able to jump three feet up, but then slides back two
feet He jumps until he gm out of the welL This is an example of a simple process loop, in which the
behavior of the system is understood primarily as the repetition of some process. In addition to the loops
with which Weld deals, there are also process loops in which the termination condition is not important, but
rather some feature of the system is maintained by the loop process itself. An example of this is stirring

1mg misht rogiz dws behavios as ou ly &m. "i0a of osaWaiam stAe (dAmped, humair, wd rnm-way.

104

milk in a saucepan to keep the temperature uniform (to prevent the milk from burning). The termination of
the loop is not important (we don't care how many times we have to stir the milk while heating it, or where
the spoon is in its trajectory when we take the milk off the heat), but rather the continuity of the process is
the driving force (we might care how fast we are stirring).

For certain process loops, Weld can determine the values of all state variables in a system when the
termination condition is reached, without having to simulate each step of the process separately. de Kleer
is able to predict the behavior of some information feedback loops. The purpose here is not to determine
the final behavior, but to determine what is needed to understand such systems. In all of these loops, it is
important to abstract the fact that a loop is occurring in order to understand the system. Weld converts his
loops into functions he can analyze to find the final state of a system. de Kleer uses the first derivative to
capture the looping nature of homeostatic systems. Mere suppression of detail does not give these methods
their power. These methods work because some particulas are known about the loops themselves and the
higher level goals the specific loop is trying to achieve, as in homeostasis. Associated with each specific
type of loop are some particular reasoning patterns. Once we identify distinctive types of loops, we can
index them to access the appropriate inferences for the loop type.

Representing State Abstraction and Cyclic Behaviors

Because cyclic behaviors ar. so pervasive in real devices, most device representation systems are equipped
to represent the causal chains which participate in such cycles. For instance, both in Rieger and in Sem.
bugamoorthy we see circular links. Both of these approaches are based upon state/transition diagrams and
admit the possibility of abstractions. It is not the purpose here to work out the technicalities of an underlying
detailed causal representation, but to illustrate the utility of including abstraction of state into the abstractions
supported by such a representation.

In order to represent an abstracted state, clearly two things are needed.

- A detailed description or "package" (say, as an elaborated state/txansition diagram from Rieger or
Sembugamoorthy) of the behavior of the system in that state. In the sense that we understand this as
a package, we are identifing a new construct.

- A symbol for the abstract state, which can participate in more state/transition diagrams. That is, the
symbol will identify the use of the construct in some higher level context. 8

With this much one can separate the representation of the repeated motion of the buzzer's clapper from
the role the buzzer's sound might play in a more inclusive system. In addition to this information about
the particular abstract state, the state can be appended with information about the type of loop (or, more
generally, package of behavior) which results in this state. So for instance, one could mark it as being the sort
of loop Weld deals with to indicate that such an analysis could be used. The knowledge base for the system
has information about each of these loops, such as characteristics of the general process and scripts (13] (or
script-like objects) describing the behavior. Each type of loop comes equipped with a package of pertinent
inferences of which to index. Essentially, recognition of the type of loop thus cormrspoads to a "mental
move" in terms of inferencing capabilities.

IFor example, the stat (solid suspende)* is anorawsd with an u'risk. Stais Wdmd as such have an AbstractionOf primitive
to point co the cyclic behavi ot "patlap" that the scw eprsau.

105

The abstraction thus provides the device model with the ability to support transitions between conceptual
levels. It identifies a phenomenon with some package of behavior (both to a specific detailed description
and to a general mechanism) and thus allows access to information which may be relevant for processing
needs.

2.4.2 Feedback: Behavioral Abstraction

Understanding of behaviors can also vary in perspectives and levels of abstraction. For example, consider
feedback. A chemical processing plant makes use of many feedback controllers to stabilize the flow or
temperature of liquids and gases [16]. Explaining the output of one of these controllers, one might state
that the temperature is oscillating closely around a given point. A representation of such a state, that of
"oscillation, is possible via state abstraction, as described previously. But consider an explanation of the more
inclusive feedback behavior that resulted in the oscillation. A state transition diagram can represent the
causal chain of states, which illustrates a form of feedback controlO, but the representations do not explicitly
identify or note that feedback is occurring. An agent who understands the device has both the knowledge
of what actions are being achieved together with the realization that these actions constitute an example of
feedback. Specifically, they have the knowledge that feedback is being performed along with the information
and inference potential that this abstraction indicates.

Representation of a Feedback Controller

I will illustrate the representation and use of behavior abstractions through the specification of a feedback
controller used in a chemical processing plant to keep the temperature of the reactants consistent. The
"ftidon is the type ToMaintain.

FUNCTION:
ToMaintain: (liquid temperature)
Range: (30-320C)
Ift (present liquid HeatExchanger.inlet)
By Feedback6

ContinuousMonitor: (Feedback6 monitor)
Until: (difference (temp setpoint) established)
ContinuousAdJustment: (Feedback6 adjust)

NotBehavior(s): PoorQuality, TooHot
ternalConsideradtou economy, product quality, safety (to provide optimum

conditions for the reaction)

Behavior Feedback6 points to the specific state transition diagram for this particular feedback device. The
behaviors ame shown in figure 2.7.

Riepramuadm of syam which we fdbeck ha" been demoaauwd in othw work (3, 61.

106

F~eedback6

(present iiQcui HreatExcmanger..niet2

Gy: P*edb~ac~x6.nmonrtor

(oCife~rence (terno -point) eszao: isned) APr oainusa

ly: F64eahackC1 ad1:1 ju1iiist

(AND (tomp; liquid procar.adjuSted)(preservc liquid HeatExChanger Irnlet))

Feedack6 montor(present Iliquid IHeatExchanger.lniet)

conouit of Pipe

(present liquid hernmocoupie)

UslngFunction producaiignai
of Thermocouple

(present t~ernp.info Controller)

Us~ng~unction: comoare
of Controller

(cifferoncs (termp, setpoint) es-taoiishea)
Fevdback6 adjust

(ci fference (temnp sotpoint) established)

UsinPurftlan: producesignal
I of Controller

(present signal Transducer propor~diffoerence)

usingfunction: adjustflow
I of V44ve

(present steamn Heatsidhariger-Outlet proporv'alvepositior¶)

s y: waraso

(AND (temnp liquid procor.adiusted)(Pres~ent liquid Heat~xcliamcer.1rnletf)

Fig=z 2.7: Feedback Behiaviom for Tempera=iz Maintenance

107

Behavioral Abstraction: InstanceOf

Because Feedback6 is an instance of a more general behavioral form, its specification points to the higher
level abstraction. It is through this information that a transition can be made to the more abstract behavior and
the inferences which are applicable in that context can be accessed. Specifically, Feedback6 is represented
as follows:

Behavior Object
Name: feedback6
Pointer. (points to behavioral causal chain)
InstanceOf: Automatic Process Controller, Homeostasis, Feedback

Representing Behavior Abstraction Packages

The representation of Feedback6 includes a pointer to the transition diagram which indicates how the goal of
maintenance is achieved, together with the identification of the general mechanisms from which this behavior
was designed. Each mechanism indicates a distinct behavior type and thus points to the detailed descriptions
or packages which provide inference mechanisms and knowledge pertinent to the type. I will illustrate the
additional knowledge these packages provide by describing some of the knowledge accessible concerning
automatic process controllers.

Automatic process controllers awe devices which have the objective of maintaining a controlled variable
at set point in spite of disturbances [15]. That is. the objective is to control some outlet variable in
order to maintain a desired value. e

The top level behavior, iustrated in figure 2.8, indicates the dam bsc operations that must be present
for every control system, Le., measurement, decision, and control. The tr operations provide knowledge
of necessary components by inspecting the next level of detail, as shown for measurement and decision in
figure 2.9.

Information Processing Use

Access to behavior abstractions and general mechanisms is clearly useful in the tasks or redesign, repair or
prediction. Hem I will focus on the enhancements it provides for explanation.

In addition to the explanation capabilities provided by the knowledge of ToMaintal. functions and the
explicit causal behavior specified in the Feedback6 loop, one can also answer questions by using knowledge
that the loop is a homeostatic feedback loop which is automatically controlled. For example, if the temper.
atum sensor is visibly damaged, and the temperature in the reaction vessel is too high, an operator might
wonder how a sensor could cause a change in the temperature. The system could access the information
about homeostatic control mechanisms to generate the answer, "'The sensor is used in an automated control
system. The value reported by the sensor is transmitted to the controller and used to compute the difference

1 'Notice dtAt even though the device•s main goal is to maintain. It is called a coniroller. This is because one of the central operations
involves controlling in order to achieve the goal of muintenaace. The componew In this controllng operation is cled a controller. I
will call do overall sysitm the control syuem and use thm tam coaeoilw only when referrng to this compoomt

108

(present suos' ance Sonsor;

(present variaoweanfo Controller)

By: ContrOi-UecWsjn

(present signal FtnalControl Element)

Ily: Controacdaia

(variable adutdProprort nal .to.signal)

Figurwe 2,,8: Behavior for Control Systems

Behaviio,: Contral~measure Behavior: Control. decision

(present substance Sensor) (present varia~le.infa C:omtro~ller)

Measure at sonsw cf ontmilor

(subsnc vaiable sensed) (ciffeorne(epin vari~ible ;nmfe) establishied)

Usluiq NMca: pvoduc"Sinal
of Yrawiminer Usingf-unctiam: producmignii

(preI n aiable.info Controller) (presenit sinlFnalControl Element)

Figur.j 2.9: Behsviors for measurement and decision

109

between the actual temperature and the setpoint. The action taken to adjust the temperature is dependent on
this difference. An error in either the setpoint or the incoming information with respect to the temperature
will make the decision inappropriate. Without a working temperature sensor, the actual temperature will
deviate from the setpoint."

For another example, consider the following scenario. Suppose the controller has sent a signal which is
outside the range of the actuator, in this case say a valve. The actuator tries to turn the valve too far and
the valve gets stuck. The resultant behavior is that the input temperature does not approach the setpoint.
Below are explanations derivable first from the Feedback6 behavior and functional knowledge (ToMaintain
and ToControl), followed by the extra information available from knowledge supplied by identification of
the abstraction of automatic proccss controller.

Level 1: The Maintenance function in which the actuator is used specifies a Range value which indicates
that the gicen signal is out of range. This implies that the function of the actuator cannot be achieved.
Use of the actuator is followed by the Control function of the valve. With the actuator out of range,
the control function of the valve will not be operational because the control Relationship is not valid
for the value being specified to the valve. Thus the valve cannot produce the appropriate flow. This
will result in an incorrect flow of steam which will result in an inappropriate amount of heat transfer.
Feedback6 cannot be achieved and a malfunction of the temperature controller results.

Level 2: All control systems have three basic operations: measurement, decision and control action. The
actuator is used in the control operation. If this device malfunctions, the controlled variable (tem-
perature) will not be proportionally adjusted as per the decision made by the controller. Because the
system is using homeostatic control, a malfunction here means that the variable will not reach the
proper limit to miam the temperature at the desired value.

The spicadoe of ab•st schema is useful for explanation. For researcers innrested in building
models of devices solely to predict behavior at a given level, these abst-actions will not be helpful. What
is being captured here is not the capability to sequentially follow variables to predict an outcome, but the
ability to tell a higher level story. The view is that prediction is not driven solely by constraints due to
structure and low level processes, but can be enriched and focused by knowledge of abstract processes and
the inferences which they dictate.

110

Chapter 3

Composing Explanation: Relating
Malfunction Hypotheses to Observed
Symptoms

In this chapter I discuss the potential of the functional representation as a source of knowledge to be used
in problem solving, particularly in the generation of malfhmction causal chains which relate malfunction
hypotheses to observed symptoms. First. I specify what general assistance a problem solver can expect
from the representation, i.e., I describe the kinds of reasoning for which the representation is intrinsically
po ate. I then focus on the problem of the generation of malfunction causal chains which can be used

for the justification of diagnostic conclusions.

3.1 General Applicability of a Functional Model
The functional representation provides a package which shows the relationship between structure, function,
and the behavior to achieve function. The basic, task-independent, intrinsic capabilities that knowledge of
this relationship provides can be described as follows:

Simulation: Given changes in the structure of a device, what can be determined about changes in function-
ality? This illustrates the "forward" simulation power the representation provides. For example, if a
given functional unit is malfunctioning, by tracing the use of its function(s) and considering the effects
regarding the achievement of subsequent functions, the overall effect can be determined.

Identification of Structural Cause: Given changes in function (malfunction or reduced effects), what
changes in structure could be hypothesized to account for them? That is, given that expected results
of a functional component are not present or are affected in some way, one can trace "backwards"
(through the steps in the behavior of the function) to see what structural causes could be implicated.

Identification of Functional Components: Given a specific component, what functional purpose does it
provide? A packaging via functional units allows the specification of component purpose which

111

provides an index for identification of use.

The structure of the functional representation, organized around functional packages, provides the focus
through which these capabilities can be accomplished. Since, at some level, most problem-solving tasks
dealing with devices are concerned with either the achievement of function, or consequences of the failure
to achieve function, this description and reasoning power proves useful. The use of the representation in
diagnosis seems especially appropriate since diagnosis centers around determining the change in structure
that resulted in some malfunction, one of the explicit potentials of the model.

3.1.1 Causal Explanation: The Problem Statement

The problem addressed in this thesis is the following: Given a set of observations and a diagnostic hypothesis,
attempt to construct an explanation in the form of a causal story which starts with a diagnostic hypothesis
and ends with one or more of the observations to be explained. In this chapter, I examine how the functional
representation can be used for this purpose - considering both its capabilities and limitations. Technical
definitions of a few terms may be useful.
Observations: observable states, including a subset which are malfunctions of the device subsystems or
components. The following distinctions about observations are useful:

- Symptoms: abnormal states which are indicative of malfunctions and trigger the diagnostic process,
e.g., specification of a drop from normal pressure.

- Malfunctions: observations which are malfunctions, e.g., specification of a faulty pressure regulator.
Mafiumcton observations ane generally also s)ynpwms.

- Observable states which provide informadon about the device but do not directly correspond to abnor-
malities, e.g.. specification of temperatue or pressure readings. Typically in a complex system. a large
number of observations am used in the diagnostic process which provide focus for the problem-solving
but do not necessarily indicate problems (e.g., sensor readings).

Diagnostic Hypotheses: the set of malfunctioning components or missing (but expected) relationships
between components. Each in the latter should sooner or later, manifest itself as the malfunction of a
subsystem within which the components lie.
Causal Explanatiom Normally one expects a diagnosis to causally "explain" the symptoms, even though
in general the diagnosis actually should explain all the observations. The explanation provided here takes any
given set of observations to be explained and tries to propose a causal path from the diagnostic hypothesis
to these observaions.

The Explanatory Result

The explanation sought can be formally stated as follows:

diagnostic hypothesis -* &I... --* mi... -- +N

where each am is either (1) an internal state which is causally relevant in producing an observation, but is
itself not a malfunction, (2) a component or subsystem malfunction, or (3) an observation at the device-level.
The explanation system developed in this work produces explanation chains where the members are limited
to the last two, i.e., malfunctions or observations.

112

Jssues to be Addressed

Issues which need to be addressed for the generation of this causal chain include the following:

- generating the causal links from malfunction -. malfunction

- generating the causal links from malfunction -, symptom1

- composing the causal story when there is more than one malfunction in the diagnostic hypotheses,
especially those which interact

In the following, I provide and explain an algorithm to generato the causal explanation. I will address these
Issues as they arise during the explanation of the algorithm.

3.2 Generating the Malfunction Causal Chain

3.2.1 The Primary Control Mechanism

In the same way the functional representation provides an organization to allow simulation of how expected
functionalities are achieved, it can also serve as a backbone to trace the effects of not achieving certain
functions - thus identifying potential malfunctions.

The organization of the functional representation gives both forward and backward reasoning capability,
i.e., It can trace from the hypothesized malfunction to the observed malfunctions and symptoms (forward),
or it can trace from observed malfunctios to the hypothesized malfunction (backward). Because both the
ohbsevim and the diag tic hypoeeses have been yimsfled once diagnosis is complete. the functions
representation could potentially be used to pevform either form of control. In this thesis. I provride an
alWoithm which demonsraes the frwad dsuat potential.

3.2.2 The Algorithm

If device A Is malfunctioning, then devices which use device A (say devices B and C) have a high probability
of malfunctioning as well. Similarly, devices which ae B and C may malfunction, etc. The malfunction
causal chain Is achieved through the following algorithm which has been condensed to illustrate main points.

1. Set Observations to the symptoms and malfunctions to be explained. Set MalfunctionList to the
hypothesized malfunction set provided by the diagnosis. Initialize MalfunctionObject to an individual
malfunction in this set (diagnosed hypotheses and their relationship to observations are considered
individually).

2. Find all funmcton. which made use of the function which is malfunctioning (MalfunctionObject), call
this set PossibleMalfunctios.

3. For each element in PossibleMalfunctions (call the specific function PossMal) consider the effect of
MalfunctionObject on the function.

I For the sak of clarity, mn&c a malunction might also be an observatdav to be explained, I will use the term symptom to indicate
obeervtalta regarding stsam ifomdo, i.. either staes which denow specific. alwromalide or simply ohseeved stats which have
been nqueatd to be explaied.

113

- If no effect on PossMal then remove from PossibleMalfunctions - MalfanctionObject is not
causing future problems. Consider the next element in PossibleMalfunctions.

- else maintain (Malfunction - Malfunction) explanation chain; MalfunctionObject is now known
to cause a malfunction to PossMal. Note that this step will ultmately place any potential mal-
functions in a malfunction chain, including those which are in the set of Observations. Continue.

4. Check the states in the behavior of the affected PossibleMalfunction. Would noncompletion of these
states explain any symptom(s) in Observations?

- if yes, append to ExplainedSymptoms and print the chain which led to this symptom. Complete
the malfunction explanation chain by continuing.

5. Set MalfunctionObject to PossMal.

6. Repeat process from step 2 until all symptoms are in ExplainedSymptoms or the top level behavior of
the device has been reached.

7. The Process from step 1 is repeated until all elements MalfunctionList have been considered.

Step 2 Is easily accomplished through the component hierarchy of the functional representation and
knowledge of SubFunctions. Step 3 and 4 are more intricate and involve both knowledge of functional type
and the achievement of behaviors, as illustrated in the following sections.

3.3 Tracing the Algorithm: A Malfunctioning Chemical Processing
Plant

I will illustrate the steps of the algorithm by providing the system's explanation of a malfunctioning Coolant
"System in a chemical processing plant. First, I provide a brief, partial description of the representation of
the chemical processing plant.

3.3.1 Representation of a Chemical Processing Plant
References to figures 3.1 - 3.3 will assist the reader in following the causal explanation chains given in
this chapter. Figure 3.1 is a schematic diagram of the chemical processing plant that has been functionally
represented. The hierarchy in figure 3.2 shows a partial representation of the functional components with their
intended functions (functions are specified under component names). The top level function, produce.acd, 3
is achieved by behavior oxidanon shown in figure 3.3.

3.3.2 The Explanation Problem

Algorithm: Step I

The Coolant System (identified at the right of figure 3.2) is used to provide coolant water to a Condenser
so that it can be used to transfer heat from the vapor in the Condenser. Suppose the coolant water has been

h acid pmoducaad is a w". Iamphdic a.

114

* 0 E)

AOASMNANL

COGUNO WAThL..A

SU7PPLY ~.

?flTROM..Z4~ - CONCENSAT
WITHDRAWAL

VAPOR 4O LQI

DISK - OGAS ANALYSIS
- ___________ SISTE31

UIQUIID.. -~

X----

-' ~ ~ 6TROGE4

- LIQUID NITROGEN

ACM SY CXIZAIION OF PA**YLSNG

Fig=u 3. 1: Schematic of Chemnical Pvocusing Plant

115

uldF..Uflvitem

pfeslamewta

Travistttva cotaoolao

*Sr~cllft toa

46012ftU Ale o MY Stec

a.IUE13U1 cerngongfjw

deftsarnl Iterealsl t

frig=3.2: ~n~t~ng CMPanfi I nelah

11~~sl ~uue6ya

kamount acia oelow.thresnowo)

By SuppIyReactants

(present reactants rxvessel)

"j By ReactanContact

(occurred reaction rwvessel)

AsPer
*xtermic, reacUfio.se AsPer

produCtirepiAc*.reactantS

(amount heat rxvessel increased) (present acid rxvessel)

By:I
omptnsateOxidation.se UsingFunction extraction

N / Of T'ransferSys

(condition rxvessel sufficient)
O

(present product external.container)

Figure 3.3: Behavior oxidation for Function produceacid of a Chemical Processing Plan,

117

completely cut off. A diagnostic system has concluded that a malfunction of the function provlde.coolant
of the Coolant System explains the symptoms of NOT (present product external.contalner) and NOT (tern-
perature rmvessel at.threshold). Specifically, MalfunctionObject is {provide.coolant of Coolant System} and
the Observations to be explained are {NOT (present product extemnaLcontainer), NOT (temperature rxvessel
aLthz.shold)

Algorithm: Step 2

The system inspects the functions and behaviors of the chemical processing plant to determine where the
function provide.coolant is used. The search returns the set

{(function HeatRemoval condense)}

which indicates that the function provide.coolant is used once, in the behavior Heat
Removal of function condense. This is the set of PossibleMalfunctions.

Algorithm: Stepr3

To determine the effects of the malfunction of provide.coolant on the function condense, one must consider
the possible consequences of malfutctioning components. In general, the malfunction of a component in a
device can cause one or more of the following three consequences:

NOT Function: expected results of the function are not present. Given that the function is not producing
the expected results within behaviors, what states in those behaviors will not occur, nd will lack
of this functionality came the maLhmcwm of htim•om h& which the ,- o cpoin was
used?

Parameter Out-of-Range: expected results of the function are affected, but behavior is sU achieved to a
limited degree. Sometimes components may be considered malfunctioning yet can still achieve the
behavior (or value of some substance parameter) needed for future use.

New Behaviors: the malfunction results in behaviors and states which were not those intended for normal
functioning.

The type of coaequence indicates the effects of the malfunction within behaviors where they are used,
and thus potential malfunctions and symptoms. In this device, the Condenser uses the provide.coolant
function of the Coolant System to provide coolant so that it can be used for the transfer of heat from the
vapor, see figure 3.4. If there is not enough coolant or if the temperature of the coolant is not low enough to
allow the vapor to reach dewpoint, the desired amount of condensate will not be produced by the Condenser.
The identification of the necessary amoun of coolant required in order to achieve the desired function of
condense is specified by the BehavWlo reshold lnk primitive within the link specification which dictates
the use of the function provide.cooiant.

LinkType: UslngFunction: provide.cooaiant of CoolantSystem

Condition: NIL

Rationale: NIL

118

(Presen~t vapor condenser)

I Usin•Function: provide.,ociant
of coclantSysterm

(surro-urded vapor coolant)

UsingFunction: heat.transfer
of Cooiant•ystem

(temperature vapor decreased)

AsPer: h*attransfer/condensation
at dewpoint

(condensed vapor condenser)

AsPer: idenity

(preserntlicuid condenser)

Figure 3.4: Behavior RemoveHeat of Function Condense

119

DeslgnContext NIL

BehaviorThresholds: (GREATERP (flowrate coolant condenser) x)

SideEffect: NIL

In the case that has been diagnosed, the coolant water has been completely cut off- the flowrate is not
greater than the necessary amount. Provide.coolant is "NOT functioning" - the function is not providing
expected results. The value of NIL for the link primitives Condition, Rationale and DesignContext indicate
that the action was taken for "normal causality", the default reason, as discussed in section 2.3.2. This means
the action described by the link was used in order to achieve the next state and ultimately the desired end
state (present liquid condenser). The Condenser will consequently malfknction because the necessary states
are not being achieved. In this situation, the MalfuictonE 0lanationCiain will become provide.coolant -.
condense.

Alternatively, the Coolant System could be malfunctioning but still cooling just enough so that a sat-
isfactory amount of condensate is produced - "Parameter Out-of-Range". Here the BehaviorThreshold
is achieved, the Condenser would not be considered malfunctioning and thus not viewed as the cause of
further problems in the device. This knowledge is used to prune the search of potential causal chains. The
explanation system would print the explanation chain thus far, in this case it would be trivial. It would then
consider the next element in PossibleMalfunctions to start a new causal chain.

The function provide.coolant was needed to provide
a certain threshold value. It did so in this case
within the behavior RemoveHeat of condense.
3ffe=3s were obse--d only in ,.'e folUOww ;:

NOT provide.coola- causes NZL
i.e., no further problems in this causal path.

Algorithm: Step 4

Given the situation that provide.coolant is causing the condense function to malfunction, the explanation
system now considets whether this malfunction explains any of the symptoms. The assumption is that, if the
action defined by the link was taken to achieve "normal causality", the remainder of the behavioral causal
chain is no longer valid and the states which follow the use of the malfunctioning component in the behavior
will no longer be achieved. The explanation system compares the symptoms, in the set Observations. with
the states established after the use of the function provide.coolant in the behavior RemoveHeat. This includes
states accessed through the behavioral hierarchies which provide the detail on how the higher level states
occurmd. At this point no symptoms are explained.

Notice that this technique for identifying symptoms limits an explanation system using the functionally
represented device to only explaining symptoms of the form NOT(expect stame).

Algorithm: Steps 5 and 6

Given that no symptoms have been explained, MalfunctionObject is now set to the function condense and
the proces is repeated. Step 2 searches to determine where the function condense is used. This time the

120

search returns the set

{(fimcdon KnockBack retrieveliquid)
(function RemoveHeat cool)
(subfunction KnockBack retrieveliquid MfixtureLevelCtri)
(subfuaction KnockBack retneveliquid LiquidLeveiCtrl) }

which indicates that the function condense is used in the functions retrieveliquid and cool, and also that
retrieveliquid is a SubFunctionOf the functions MixtureLevelCtrl and LiquidLevelCtr.

Recall that subfunctions are functions which may not be found in a trace of the main behavioral causal
chain of a device's function but are specified because they provide preconditions or Provideds for primary
functions. 'Thus a malfunction in retrievellquid directly indicates malfunctions in MixtureLevelCtri and
LiquidLevelCtrl.

Simulation Focus Due to Link Specifications

Thus far the algorithm has used concepts of BehaviorThreshold, "normal causality", and SubFuncdionOf
to determine consequences of a malfunction. Identification of why actions are taken within a behavior
is also used to focus the trace for firt•er malfunctioning components and symptoms. i.e., to consider
effects of malfunctions (algorithm: step 3). The roles of linksi.e., normal causality, design considerations,
contingencies, preconditions, and side effects, were discussed in section 2.3. Given that these alternate
pathways are available for simulation and the generation of the malfunction causal chain, rather than an
indepth trace of every step of the algorithm foe this paticular prv•lem. the following section provides
the fnal outputs (eLabodawd causal chains froM diagnosed mahiMCfn, to observations) produced by the
explanation system for this problem.

3.3.3 Final Output: The Causal Explanation

The system produces the following three casual stories.

Causal Story 1: Generation of Causal Connections

As shown in figure 3.5, the behavior SupplyReactants uses the functions retrleveliqudd and LlquidConcCtrl.
-The link specification for the retrieveliquid function indicates that this action in this behavior is used as a
design consideration in order to recycle the liquid reactants, i.e., it has the link primitive:
DesilpConteut: (constraint economy (conserve reactlanlquld)).
If this economic measum Is not necessary, then loss of the function will not cause problems in that behavior.$
Given that the design constraint is pertinent, the system prints the following:

The sym•tom NOT (pr:esent product external.container) is
is explained by the following chain:

IOT p:ovide.coolant causes
malfunction in condense which causes

3SLmia, to Bd oThr* , t& knwle wav to ps die usch spam of powuu ca"al links

121

(admount aca =*l ow UrresnaIC)

Us'uJFr adon it iCn.lCtrqu

'.. \iq"] 'eu;Furx~n an so i

M~~~n ensate t rS.alrer

(Wreswt liquid riv" W utficEt•1 MsingFuncionr *ca=natuppliisd

01 Liquid FeedSy %tm

(Present Iiqud r~ 'volsae Sutficlont)

Figure 3.5: Behavior for SupplyReactants

malfunction in retrieveliquid which causes
malfunction in LiquidConcCtrl which causes
problems in behavior SupplyReacta.nts
w.hich is used in behavi=c oxida-'i- a- indicares
ma.Lfunctioz of- th-e top. levelIad=e--t
NOT (present product ezternal. --- aine-)

The following symptoms are not e.plai.ed:
NOT (temperature rzcvessel at.the.-sh.Id)

The idea here is that if the required amount of reactants is not available, the product is not produced as desired
and thus can not be retrieved. The explanation system generates this chain by using the following information:
Provide.coolant caused a mauf-nction in condense because it did not achieve the BehaviorThreshold needed
within condense's behavior. A malfunction in condense caused a malfunction in retrteveliquid because its
achievement was required (normal causality) to attain the desired behavior for retrieveliquid. Retrieveliquid
caused a malfunction in liquldConcCtrl because it was needed to provide the preconditions (SubFunctionO0f)
for LiquidConcCtrl and it preceded the use of LiquidConcCtrl in the behavior SupplyReactants, figure 3.5.
Although retrleveliquid and LlquidConcCtrl were only present for econormic reasons, they were considered
necessary and thus their failure effected the behavior Supplygeactants. SupplyReactants was used in the
behavior Oxidation, figure 3.3, to achieve the state (present reactants r£vessel). This state was necessary for
the completion of the behavior and thus non-achievement here denotes non-achievement of further states in
the behavior, particularly NOT (present product extemal.container).

122

Causal Story 2: The Use of Side Effect luspection

The system continues and finds a causal connection for the second symptom, NOT (temperature rxvessel
at.hzeshold).

The symptom NOT (temperature rxvessel at.threshold)
is explained by the following chain:

NOT provide.coolant causes
malfunction in condense which causes
problems in behavior removeheat
of function cool

Since cool is not a top level function of the chemical processing plant, the trace continues until all conse-
quences are determined.

The symptom NOT (temperature rxvessel at.threshold)
is explained by the following chain:

NOT provide.coolant causes
malfunction in condense which causes
malfunction in cool which causes
problems in behavior compensate.oxidation.se
a notable side effect behavior used in
oxidation and indicates
NOT (temperature rxvessel at.threshold)

The following symptoms are not explained
(present product external.container)

Notice that this explanation identifies that the symptom was observed in a side effect behavior (compensation
for effects of the reaction) rather than a behavior of the main functionality (production of acid).

The statement of which symptoms are not explained indicates those that were not explained in the specific
causal chain. A final statement is made when the system has inspected all pertinent causal chain&

Causal Story 3: Using Subfunctlon Connections for Causal Focus

The final causal path is achieved via causal connections obtained specifically through the knowledge of
subfunctions. The function exraction has a provided clause which specifies that the solid acid slurry must
have the proper consistency so that flow through the extraction tube is possible. The function SolidConcCtrl
is present in this device for the sole purpose of producing these conditions for extracdon.

Figure 3.6 shows how So~ldConcCtrI is achieved. Its purpose is to keep the solid suspended and the
concentration in the reaction vessel at the proper consistency. In the CondensateWlthdrawalSystem, the
retrieveliquid function uses the Condenser to retrieve the condensate from the vapor produced. The Mix.
tureLevelCtrl function then uses a feedback controller to maintain the flow and thus the desired amount of

123

(Concentration solid (NOT satisfactory))

Using Function: bubblosuspension Usingrunction: susatfnsio-

of AirFPedSystem of MixingSyslem

(suspend solid) (suspend solid)l

Using Function: retrieveliiuid
of ConlensateWithdrawalSys

(present liquid flowcontroller)

Using Function: MixtureLevelCtrI
of CondensateWithdrawalSys

(liquid.level rxvessel satisfactory)

Figure 3.6: Behavior for SolidConcCtrl

liquid in the rehon vessel - which ensures that the acd slurry has the proper consistency. If the liquid is
not me• bleb. then obviously the condensate flow cannot be conitolled and consistency of the acid in the
vessel is not mamtairaod The explnaton system provides this explanatry story as folows:

One function affected by provide.ccolant is SolidConcC-. I
which is a necessary subfunotion of extraction

The symptom NOT (preseit product e'ternal.container)
is explained by the following chain:

NOT provide.coolant causes
alfur.ctl -n in condense which causes

malfunction in retrieveliquid which causes
malfunction in Mi.xtureLevelCtrl which causes
malfunction in SolidConcCtrl which causes
malfunction in extraction which causes
malfunction in produce.acid which causes
NOT (present product e-ternal.conzainer)

All symptcms have been ez:plained.

124

3.3.4 Implementation, Enhancements, and Potentials

The explanations given thus far were generated by an explanation system using the functional representation
for causal focus. In the current implementation of the explanation system, anly a portion of the functional
representation's explanatory potentials have been exercised. Some of the enhancements described in Chapter
2, particularly the use of function types and state and behavior abstraction, were not used in this version.
In the next sections I address how these additions to the functional representation could be used to further
enhance the explanation capabilities.

3.4 Additional Potential Uses of the Functional Representation

Thus far the explanatory system considered only the non-achievement of a function's behavior to identify
potential malfutctions. However, the determination of achievement of a function (or identification of mal-
function) can involve more than tracing the function's behavioral causal sequence. The specification of
a particulur function type provides knowledge of functional expectations and can thus indicate inferences
relatig to that functional form. Specifically, each distinct type of function provides knowledge of what it
means to achieve, and thus not achieve, that type of function.

3.4.1 Using Knowledge of Function Type to Determine Malfunctions

Consider a function of type ToControl. The concept of control, and thus the function specification, indicates
that two importam conditions must be valid: (1) there exists the power to control, and (2) the control
relationship. which specifies how the cbutrolled event changes as a function of the controlling event, is in
fact present. Specifically, a water faucet might work in that it allows water to flow, but the device does not
have control without the above two traits. The determination of whether a component which is a ToContrcl
function will malfunction should address these aspects.

Power to Regulate

Specification of ToControl functions provides knowledge of what is being controlled and how. As described
in section 2.1.4, the faucet control function fails if the controller has no power, i.e., if the valve becomes
stuck, the handwheel is no longer adjustable, or there is no water to regulate. Such malfunctions might still
allow water to flow, but not at the desired amount. Effects of malfunction due to loss of this control aspect
am observed through NotBehavlors.

For example, a feedback mechanism is used in the chemical processing plant to maintain the flow of
the liquid reactants into the vessel. It the signal, which specifies how much the flow should be adjusted,
is out of range, then the valve sometimes gets stuck and later adjustment signals are ignored. Rather than
the flow being maintained at the set threshold, it remains constant. Using the simulation capabilities of the
functional representation, this constant flow can be Mred to the actuator (in this case, the faucet handwheel)
in the controlamount function of ControlLiquldFlow. A forward causal trace of the feedback mechanism
used to perform controlamowu shows that the controller is sending the proper information to the actuator
for adjustment, but the actuator is not responding by producing the proper flow. At this point, the control
aspects of the ToControl function can be used to complete explanation of this malfunction. Specifically,
the faucet is not properly controlling because it no longer has the power to regulate. The NotBehavior,

125

HandwheeLstuck, indicates that a constant flow (relative to the position of the handwheel) Is now expected
no matter what signals are sent to adjust the flow.

Relationship Validity

The second aspect of control is that a relationship exists between the controller and controllee. Control
functions will malfunction if this relationship is no longer valid. The proper functioning of a faucet does
not mean simply that water is flowing, but that It is flowing at the proper rate given the handwheel position.
Specifically, for a ToControl device, it is not simply a matter of producing any output, but the output must
be directly related to the input (via the Relations•p) or the component Is malfunctioning.

3.5 Intrinsic Limitations of the Functional Representation for Expla-
nation

The intrinsic limitations of the functional representation for explanation arise from its intrinsic limitations for
simulation. The representation uses prepackaged behaviors which are organized around the expected functions
of a device. Simulations of malfunctioning devices are thus limited to statements of what expectations are
"not" occurring. For example, in the current implementation of the explanation system, the only observations
that can be directly explained by the functional representation are malfunctions which are determined due to
NOT achieving the behavior which accomplishes the function, and states which are in expected behaviors
but are NOT achieved.

This limitation effects. the capabilities for explanation in two significant ways. First. the functional
representation is not capable of generating causal stories of malfunctions which interact unless the device
representation has this interaction explicitly represented. Similar problems regrding the interactions of
malfunctions arise in diagnosis [17]. Secondly, "new" behaviors, i.e., behaviors which are not those intended
for normal functioning but which arise due to a change in device structure, could potentially lead to symptoms
which-cannot be explained using the functional representation.

3.5.1 Malfunctions Causing New Behaviors: Matching Symptoms
Consider a device which has a malfunctioning amplifier. The functional representation uan be used to
conclude that the device will NOT amplify, but it cannot be used to determine that the device is now, in fact,
oscillating. Typically, there are three modalities by which the effects of new be.ltnvivots can be determined.

1. The use of other forms of simulation, Le., from structure to behavior, can be used to generate behaviors
(e.g., spatial, topological, temporal). Hem the reasoner must make sine that the structural description
has enough knowledge, in principle, to produce the required result. Current qualitative simulation
techniques are limited to identifying behaviors at the same level of abstraction as components. The
capability to make transitions in abstraction levels, for example, form "current" and "voltage" to
"oscillation", is an open-ended issue.

2. Salient malfunction behaviors can be explicitly modeled as a part of the device representation. In
medicine, especially diagnosis, examples of this ane prevalent Here the physician wants a mechanistic
model of some phenomenon - but the phenomenon of interest is a disease. Thus his "working" model

126

is a ftnctional model of the body based on malfunctions (disease) of the body rather than the expected
functions of a healthy body. These are the causal chains in which the physician is interested and has
compiled. The next section illustrates how the specification of functional types provides access to
precompiled malfunction informatioa through the functional representation.

3. The use of generic classes of behavior, as In general4 background knowledge (e.g., knowledge of
liquid flow) can be used to determine behavior.4 The idea is that reasoners have knowledge of general
situations from which they can infer expectations for specific situations.

An explanation system could use the enhanced functional representation to identify observations obtained
through precompiled malfunction chains or generic classes of behavior, as discussed in the following sections.

3.5.2 The Functional Representation, Precompiled Malfunction Behaviors, and Not-
Behaviors

The specification of functional types ToMaintain, ToPrevent, and ToControA imply that they are used in a
more inclusive behavior. Explanations of why they are used are often given in terms of what behaviors occur
in the absence of the function. The functional representation allows access to such precompiled malfunction
behaviors, and symptoms described therein, through the NotBehavior primitive in functional specifications.
Such knowledge provides the functional representation with the ability to explain not only what functions
and expected states will not be achieved, but also certain well-known symptoms of malfnctions.

Consider the rupture disk described in section 2.1.3. The rupture disk is used ToPrevent the chemical
processing plant from blowing up due to excessive pressure.

FUNCTION: redtin.presswe of RuptumeDisk
ToPreveni (meactionvessel blowup)
Threshold: (tensilestrength value)
Pesslve~operties: solid, impermeable until pressure=tensilestrength
If: (nipturedlsk present)

When: (pressure reactionvessel at.threshold)
By: behavior blowout
Provided: assumptions for RuptureDisk behavior

NotBeaMvior(s): behavior NotBlowup

The By primitive for ToPrevent functions points to the behavior sequence which represents the behavior
of the component itsela i.e., how the rupture disk reacts. The NotBehavior specifies context behavior to
illustrate the purpose of the device within the overall system. This behavior for the rupture disk, NotBlowup,
is shown in figure 3.7. Such knowledge allows explanation systems to inspect behaviorts of functions used
specifically to prevent certain states, and also important side effects due to these actions.

This knowledge could be used, not only to explain how certain states observed in the NotBehavlor were
caused, but also to explain further malfunctions. For example, the causal chain explaining how use of the
rupture disk might cause the symptom NOT (present product extemal.container) can be generated since the

_Much tdo sa idA w Schank's MOPS (13].

127

(ru;uturea disk)

(escapel steam)

(reduce steam)

S...
(reduce pres ure) reduce l1quid.level)

(NOT (reactionveslsl blowup)) (increase viscosity acid.slurry)

Figure 3.7: Behavior XotBlowup

eytraction function has a provided clause which specifies a certain consistency for the acid.slurry and the
side effect behavior shows that a ruptured disk causes an increase in the concentration.

For another example, if the ToMaintain function SolidConcCtrt (figure 3.6) malfunctions because it is
not maintaining the stare of (solid suspended), the behavior in figure 3.8 is expected. The behavior indicates
probims both for tba AirFeedSyjV='s functions and in the e.rracron function of the Trans&=Syszem:
knowledge which could. in a system which utilizes more knowledge of state, further expand the causal
maUfunction ur-,

3.5.3 The Functional Representation, Generic Classes of Behavior, and Abstractions

The third method to determine "new" behaviors was to use knowledge of generic classes of behavior. For
instance, one expects the same consequences from a leaky faucet in the kitchen, as a leaky faucet in the
bathroom, as a leaky faucet on a park's drinking fountain. In fact, one has a concept of "leak" in general
Access to these knowledge constructs could assist in making common causal connections, such as a leak in
a device could cause a puddle underneath the device. Specifically, a state of (faucet leaks) can be causally
connected to (floor wet),

The functional representation does not explicitly represent the knowledge of all concepts used within
states; however, the use of state and behavior abstractions, as discussed in section 2.4, does provide a means
to represent some of these abstractioas and access to the inference mechanisms which axe commonly used
concerning these concepts. For example, the provided clause of the function conduit of a pipe may specify
that the function's behavior works Provided: NOT (pipe plugged). Upon malfunction, this state could
trigger an inspection of what it means to be plugged, along with knowledge of what happens when things
are plugged, i.e., things back up. etc., md this knowledge could be potentially linked to symptoms.

Similarly, suppose the coolant water in the chemical processing plant is cut off and a symptom is described
as "the product extrac;ted is too thicW'. General knowledge of what makes a slurry too thick can provide

128

(NOT (suspenasa s•£id•)

(sinks solid)

(present solid rxvessel.aottom)

(blocked AirSupply) (NOT (presint solid *xtlraction.pipe)t

Figure 3.8: Behavior solid.sinks

information to help the system complete its causal trace. That is, general knowledge indicates that a liquid
may be "too tlick" either because there is too much solid or not enough liquid. The explanation system
could then make a connection to the causal chain already produced using the functional representation, i.e..
the chain linking the absence of coolant water to a reduction of liquid in the reaction vessel.

3.6 Summary

The functional representation is effective for the generation of causal explanations of diagnostic conclusions
because of its organization and focusing potential. Using the functional representation. the number of
causal sequences which might directly e.xlain symptoms is pruned to the behaviors of functions which
will potentially malfunction. In addition, the representation can be used to direct an explanatory system
to relevant constructs. The examples shown in this chapter illustrate the most direct uses of the functional
representation, its primitives and organization, for the task of malfunction causal explanation. Use of the
representation as a backbone for functional focus, with additional access to natural language systems and
qualitative reasoners, can further enhance explanation potential. See [7] for a discussion of these potentials.

The integration and use of the knowledge of deep models in compiled problem-solving systems has
become increasingly prevalent. The intent of this research was to continue efforts in the development of a
device, and domain-independent representation capable of modeling the core aspects of device understanding.
The extended goal is a cognitive model of device understanding. Although this work was directed by the task
of explanation, the representation is designed to provide the basic primitives and organization useful for a
variety of problem-solving tasks. It is the hope that the research has made a positive step toward explicating
some of the core aspects of device understanding in a way that provides contributions both toward a more
complete model of device understanding and as an illustration of its potential uses for problem-solving
systems.

129

Bibliography

[I] B. Chandrasekaran and S. Miutal On deep versus compiled approaches to diagnostic problem solving.
International Journal of Man Machine Studies, 19:425-436, 1983.

[2] R. Davis, H. Shrobe, W. Hamscher, K. Wieckert, M. Shirley, and S. Polit. Diagnosis based on description

of structure and function. In Proc. National Conf. on A[, pages 137-142. AAAI, 1982.

(3] 3. de Kler. How circuits work. Artificial Intelligence, 24:205-280, 1984.

[4] J. de Kleer and 3. S. Brown. Assumptions and ambiguities in mechanistic mental models. In D. Gentner
and A. S. Stevens, editors, Mental Models chapter 8. pages 155-190. Lawrence Erlbaum Assoc.,
Hillsdale, New Jersey, 1983.

(S] J. de Kleer and 3. S. Brown. The origin, form and logic of qualitative physical laws. In Proceedings
of IXJCA-8, pages 97-108. UICA, 1983.

[6] A. Goel and B. Chamdrsekaran. Understanding device feedback. Technical rpot, The Ohio State
1University, March 1988.

(7] A. Keuneke. Machine Understanding of Devices: Causal Explanation of Diagnostic Conclusions. PhD
thesis, The Ohio State University, Columbus, Ohio, 1989.

[8] A. Keuneke and D. Allemang. Understanding devices: Representing dynamic states. Technical report,
The Ohio State University, 1988.

[9] B. Kuipers. de Kleer and Brown's "Mental Models": A critique. Technical Report 17, Tufts University,
November 1981.

[10] R. Patl. Design of a program for expert diagnosis of acid base and electrolyte disturbances. Thesis
Proposal, 1979.

(11] R. S. Patl. Causal Representation of Patient llnbs for Electrolyte and Acid-Base Diagnosis. PhD
thesis, MrI Lab for Computer Science, Cambridge, Massachusetts, 1981. TR-267.

[12] C. Rieger and M. Ozinberg. The declarative representation and procedural simulation of causalityin
physical mechanisms. In Proceedings of the Fifth International Joint Conference on Artificial Intelli.
gence, pages 250-255, 1977.

130

(13] R. C. Schank and R. Abelson. Scripts, Plans, Goals and Understanding. Lawrence Erlbaum Assoc.,
Hillsdale, New Jersey, 1977.

[14] V. Sembugamoorthy and B. Chandrasekaran. Functional iepresentation of devices and compilation
of diagnosac problem solving systems. In 3. L Kolodner and C. K. Eiesbeck, editors, Evperience,
Memory, and Reasoning, pages 47-73. Lawrence Eribaum Assoc., Hillsdale, New Jersey, 1986.

(15] C. A. Smith and A. B. Corripio. Principles and Practice of Automatic Process Control. John Wiley
and Sons, Inc., New Yodr, 1985.

[16] G. Stephanopoulos. Chemical Processing Control: An Introduction to Theory and Practice. Prentice-
Hall, Inc., Englewood ClifU, New Jersey, 1984.

(17] 3. Sticklen, B. Chandrasekaran, and J. Josephson. Control issues in ciassificatory diagnosis. In Pro-
ceedings of IJCAI-9, pages 300-306. UCAI, August 1985.

[18] S. M. Weiss, C. A. Kulikowski, S. Amarel, and A. Safir. A model-based method for computer-aided
medical decision-making. Artificial Intelligence, 11:145-172, 1978.

[19] D. Weld. The use of aggregration in causal simulation. Artificial Intelligence, 30:1-34, 1986.

131/132

Appendix C

Explaining Control Strategies in
Problem Solving

133/134

Explaining Control Strategies in Problem Solving*

B. Chandrasekaran Michael C. Tanner John R. Josephson

June 14. 1988

Laboratory for Artificial Intelligence Research
The Ohio State University

Abstract

Explaining the reasoning of knowledge-based systems involves issues of
presentation, user modeling, dialog structure. and the system's self under-
standing. We concentrate on the last of these, how a system can understand
its own problem-solving knowledge and strategy. since this provides the con-
tent of any explanation. Most curnt approaches to knowledge-based system
construction require expressing knowledge and control at such a low level of
abstraction that it is difficult to express explanations at a level appropriate to
the problem. We propose the generic task methodology as a way of building
knowledge-based systems which contain the basic explanation constructs at
the appropriate level of abstraction. We give an example of explanation from
a prototype system built using generic task methods.

I Aspects of Explanation

In Al. as well as in many other fields, there is a growing body of research on the
topic of explanation. This work falls mainly into two classes:

1. One major class of explanation involves explaining the world. There are two
aspects to this:

(a) Several problem-solving systems have been built whose task can be
abstractly characterized as explaining a set of data. Medical diagnosis.
for example, can often be viewed as the generation of hypotheses to

"Resach suppomod by Defense Adva•xad Research Proijts Agemsy, RADC CoatrAct F30602-
S5-C-COWdr the SUSglcompting Program.

135

I ASPECTS OF-EXPLANATION

explain symptoms as is done by INTERNIST (II and RED (2]. Also.
DENDRAL hypothesizes molecular structures to explain spectroscopic
data (3].

(b) In both philosophy of science and cognitive science there is a con-
cern about what kinds of descriptions are thought of as explanations
of phenomena. Philosophers of science have proposed logical recon-
structions of how theories can be considered explanations of observed
phenomena [4.5]. From the cognitive viewpoint Schank has recently
written about the issue of what kinds of explanation people deem ac-
ceptable in their everyday lives and developed a computational theory
of how such explanations can be generated [6].

2. In another body of work the aim is to give programs the ability to explain
their decisions. This is especially relevant to work on knowledge-based sys-
tems. The goal here is to use the system's knowledge to help a user un-
derstand how it reached its conclusions, help in debugging the knowledge
base and problem-solving behavior, and perhaps to convince a user that the
system's conclusions are reasonable.

These kinds of explanation are all relevant to Al. However. in this paper we are
mainly interested in the second-explaining decisions.

The problem of explanation generation in knowledge-based systems can be
broken down into three top-level functions:

Generating the Basic Content of Explanation Given a user query about some
aspect of decision-making by the system. an information structure that con-
tains the elements that make up an explanation needs to be generated. An
essential element in the construction of such an explanation is how knowl-
edge of the problem-solving task comes into play in explanation. The content
of an explanation can be put together in two ways:

By "Intripecting" That is, by examining a record of its own problem solv-
ing activity and picking the appropriate traces that contain information
for user query, or by retrieving portions of the knowledge base that
were used in making the decision and thus can be used to support it.
We need to know how a problem solver can comprehend its own prob-
lem solving activity.

By "Concocting" That is. by producing a justification which does not re-
late to how the decision was actually made, but independently makes
the decision plausible. Such a post facto construction of a justification

136

I ASPECTS OFEXPLANAT7ON

or explanation is necessary when the problem solver has no access to
a record of its own problem solving activity, or when the information
contained in it is unnecessary or may be deemed incomprehensible to
the user. The explanation may be a convincing argument that the an-
swer is correct without actually referring to the process of deriving it.
just as a mathematical proof persuades without representing the process
the mathematician went through in deriving the theorem. Generating
explanations of this sort is an. interesting problem solving process in its
own right as discussed by Wick. Thompson and Slagle (7].

Responsiveness: Shaping Explanations to Match User's Knowledge Not all the
information in the explanation structure generated in the content process
above will need to be communicated to the user. The user's goals, state of
knowledge, and the structure of the dialog are used tofilter, shape, and orga-
nii:e the output of the above process so that the the explanation is responsive
to the user's needs. This function often requires some form of user modeling.

Human-Computer Interface The two processes above produce all the informa-
tion n6eded conceptually and logically for the needed explanation. However.
presentation issues remain: how an appropriate human-computer interface
displays and presents the information to a user in an effective way. What
explanations are best presented in natural language, what in graphical form
(such as "pie charts") are issues that would need to be faced for this function.

No matter how good the theories for responsiveness and Interface functions, if
the content of the explanation is inadequate or inappropriate, then correspondingly
poor explanations will be presented well. Thus generating the correct content of
the explanation is the problem of first priority in explanation generation. Accord-
ingly, in our work. we have concentrated on one aspect of this problem. viz.. basing
the content of explanation on introspection of the system's own problem solving
behavior. This can be divided further into three types:

Type 1: Explaining why certain decisioub were aid& & were aut uLaai. PordionUS

of the data in a particular case are related to the knowledge for making spe-
cific decisions or choices.

Type 2: Explaining the elements of the knowledge base itself. For example. a sys-
tem's compiled knowledge can be justified by linking it to deep knowledge
from which it was derived, (For a discussion of issues related to "deep" and
"compiled" knowledge see Chandrasekaran and Mittal[8].)

137

2 TiREE EOOD IDEAS IN KNOWEDE SYSTEMS EXPLANATION

Type 3: Explaining the problem-solving strategy and the control behavior of the
problem solver.

It should be noted that typically types I and 3 above involve the run-time behavior
of a problem solver (and thus cannot in general be precompiled without running
into combinatorial problems), while explanation structures for type 2 above can in
principle be attached to the knowledge fragments at the time the knowledge base
is put together.

These aspects of explanation are outlined in figure 1 with boxes around the
areas which are the main interests in this paper. In our lab we have been work-
ing on the use of a functional representation for deep models of the domain (9] in
producing type 2 explanations, relating the domain knowledge to problem-solving
knowledge. We will only touch on this briefly here, see Chandrasekaran, Joseph-
son, and Keuneke (101 for a more detailed discussion. The main focus of this paper
we will be on how our theory of generic types of problem solving [11] is especially
suited to building systems which can explain their control strategy (type 3 above).
Systems built using this generic task approach are composed of knowledge-level
agents with well-defined problem-solving roles. Thus. they are also capable of
producing type I explanations, how data match knowledge, based on the mem-
ory of each agent for its own problem-solving history. We have implemented a
knowledge-based planning assistant to test these ideas on explanation.

2 Three Good Ideas in Knowledge Systems Explanation

The history of explanation in knowledge-based systems can be summarized by
three good ideas corresponding to the types of explanation given in the previous
section. The first was due to Davis, Shortliffe, and the others who worked on the
original MYCIN system [121. The essential idea is that a trace of problem-solving
activity at the level of the implementation--for MYCIN this would be the rule
architecture-c-an be used to give explanations about what a system did. MYCIN's
explanation facility examined its behavior at the level of its rule architecture. This
facility could answer questions from the user about how and why certain conclu-
sions were reached. MYCIN's explanations were entirely expressed in terms of
rules and goals. The question "WHY?." was interpreted as. "Which rule needs this
datum, and what is the consequent in the rule?" Thus, MYCIN produced type I
explanations by giving a rule trace. For certain purposes. such as debugging, this
is entirely appropriate.

With his XPLAIN system [13]. Swartout iatroduced the second good idea. A
knowledge-based system has task-specific goals and problem-solving knowledge

138

2TR GOOD IDEAS IN KNO EDGE SYST•ES EXPL4NATION

- P..x lanation

Explaining Explaining
the World ecisions

Asa/ \ a

Problem- Counts Generating Shaping to Human-
Solving as an Basic Match User's Computer

Task Explanation Content Knowledge Interface

Philosophy COgntive nrsetg
of Science Science o Concocting

[Explainig Jusifying Explaining
Decisions the KB Strategy

(Type))(Typee3

Figure 1: Aspects of Explanation

139

2 ThR OOOD iDEAS KICNORWZEDOE SYSTEMS EXPLANATION

which can be thought of as compiled from more general domain knowledge. If a
trace of the compilation is remembered then rules in the system can be justified in
terms of the deeper knowledge. XPLAIN is able to use deep knowledge, called
the "domain model," and a representation of problem-solving control strategies,
called "domain principles." to compile a knowledge-based system. Thus, the con-
trol strategy can be examined for analyzing the system behavior and the deep model
can be used to justify the system's rules. In terms of the explanation types given in
section 1, Nhis is type 2 explanation.

Clancey noted that a knowledge-based system typically performs a task at a
higher level of abstraction than the goal-subgoal level of a rule base [14]. But
MYCIN had explicit representation only of the rules, and not of the problem-
solving strategies that may be implicitly encoded in the rule formalism by the
system designer. Thus, it could not answer "WHY?." questions that needed to be
interpreted strategically. However. as Clancey points out, if a system's behav-
ior is represented- at the task level, it can produce evplanations at the task level.
This is the third important idea on explanation. NEOMYCIN solves the same di-
agnosis problem as MYCIN but represents the diagnostic task explicitly. It con-
tains such diagnostic operators as "establish hypothesis space" and "explore and
refine" which represent the diagnostic strategy and in terms of which it can explain
its problem-solving activity. Thus, NEOMYCIN can give strategic explanations
which describe its higher level goals, i.e., type 3 explanation.

Vi'tually all knowledge-based systems which produce explanations use one or
more of these ideas. t Many problem solvers have been built using EMYCIN (15]
so their explanation is necessarily similar to MYCIN's trace of run-time behavior.
But many systems which are not built with EMYCIN, or not even with rules, still
explain using a trace. For example, ABEL (16] reasons using a causal network
but it explains by translating pieces of the net into English, i.e., tracing its actual
reasoning. ABEL also contains several levels of detail in its causal net and so it
can justify its reasoning at one level by reference to deeper levels, thus providing
type 2 explanation. Another approach to justifying knowledge is found in the In-
tegrated Diagnostic Model [171. It contains deep and surface models of a domain
and is capable of justifying the surface knowledge by reference to the deep knowl-
edge. Unlike XPLAIN, ia MDM the connections between the levels are made by
the system builder. For strategic explanations consider SOPHI [(181. One of the
important goals of SOPHIE was ti explain problem-solving strategies. However,
lacking'a task-level modcl of proklem solving as found in generic tvsk theory [11]
and in NEOMYCIN, this is accomplished by hand-encoding the strategic explana-

'The main exception is numercal based systems, e.g., Bayesian decision systems. in which ex-
pLanation comes horn a sensidivity analysis of the fomnula. which produce the answer.

140

3 A FRAME WORK FOR EXPLANATION

MYCIN: Explanation of decisions at the level of system knowledge.

NEOMYCIN: Explanation of problem-solving strategy at tie :ask level.

XPLAIN: Justification of knowledge by reference to a deeper level.

Figure 2: The Origin of Three Important Ideas

tions.
Our own work fits directly into the spirit of these three ideas, summarized in

figure 2. though we differ in some ways. We want our systems to explain them-
selves at the architecture level in a way that is appropriate to the problem-solving
task that they are performing and we think it is necessary to have a deep model
of the domain which can be accessed by the system for justifying its knowledge.
In this paper we set up a framework for explanation which we hope will clarify
these points of similarity and difference and provide a common ground for discus-
sion of the topic of explanation. In addition, wie propose an approach to building
knowledge-based systems in which explanations can be naturally derived.

3 A Framework for Explanation

3.1 Types of Explanations

In section I we said that explanation of problem-solving activity can be categorized
into three distinct rypes. viz., Type 1. how the data matches the local goals: Type 2,
how the knowledge itself can be justifiedi and Type 3, how the control strategy can
be justified. These three types correspond to the structures that need to be examined
to construct the explanation. In this section we .elaborate the description of these
types and give some examples.2

Type I &xplanation relates the actual problem-solving behavior to a problem
state or data describing the problem. This involves examining appropriate frag-
ments of the rntume behavior of the system. For example, in a medical diagnosis
system,

User: Why do you say the patient has cholestasis?

2The exanples in this section an created for expository purposes only and are no meaw to rep-
resent actual explaationas.

141

3 A FRAMEWORK FOR EXPLANATION

Systom: Because the patient has high bit~od bilirubin, jaundice, and X-rays sug-
gest an obstructioa in the biliuy duct.

Or, in an .oonomic planning consultant.

User: Why do you conclude that a tax cut is appropriate here?

System: Because its preconditions are high inflation and trade deficits, and current
conditions include these factors.

These explanations are of how, for this particular instance of the problem, problem
specific data matched pieces of the knowledge base and certain conclusions were
drawn. It is important to note that, e.g.. it may be possible to conclude cholesta-
sis from a number of different possible combinations of data. The user wants to
know which data combination was present in this particular problem. This requires
keeping a trace of the problem-solving behavior, examining it, and constructing the
explanation from the trace.

The user may not be satisfied with this level of explanation. He may ask.

"Why does high blood bilirubin indicate cholestasis? Must it occur in
conjunction with jaundice?"

OrL

"Why is a tax cut a good idea for shrinking trade deficits?"

The answer to this does not involve the particular situation at hand. The system is
being asked to explain portions of the knowledge base itself. We call this Type 2
Explanation.

Type 2 explanations are concerned with explaining elements of the knowledge
base. These explanations will often be based on how the knowledge was derived.
There are at least four ways of obtaining knowledge for problem solving, each with
its corresponding types of explanaion.

1. By directly being told: The knowledge can only be justified by appeal to
authority, e.g., "Text book. p. 85."

2. By generalizing from examples: "68% of the time when a tax cut was tried,
the trade deficit went down." "the last time a patient had these symptoms it
turned out to be AIDS," etc.

3. By explanatory inference: For example. suppose a system contains the rule
that, given certain symptoms, a certain infectious organism should be hy-
pothesized. This can be justified by the knowledge that if the disease were

142

3 A FRAMAWORK FOR EXPLANVA77ON

present it would explain the symptoms. Further justification might include a
discusion of the medical science history of recognizing the group of symp-
toms as a distinct disease and identifying the infecting organism. Note that
the explanatory inference (that this organism is the cause of, hence explains,
the symptoms) may be compiled out of the problem-solving knowledge; that
is. the system may be tnable to actually make the explanatory inference and
still be able to solve problems. However. it will need access to the inferential
history in order to justify the knowledge.

4. By derivation from a deeper understanding of the domain: "'Dax cuts gener-
ally encourage savings, stimulate investment, and increase production, which
decreases prices, makes goods made here attractive, increases exports, and
thus reduces trade deficits." Notice that this form of reasoning is not needed
for concluding a tax cut is appropriate if the knowledge base contains the
pieces of knowledge that relate tax cuts to shrinking trade deficits. It is nev-
ertheless useful to keep such knowledge available so that it can be appropri-
ately used for explanation.

Some of our work, reported briefly in this paper and in more detail elsewhere (10],
has been concentrated in the fourth category above, viz., reasoning from deep mod-
els. In particular, we have developed an approach in which an agent's understand-
ing of how a device works can be used to derive fragments of diagnostic knowledge,
Thus a diagnostic knowledge-based system can justify a decision by tracing how a
piece of diagnostic knowledge was derived from an understanding of the structure
and function of the device involved.

Consider the following interactions with a medical system.

User: Why didn't you consider portal hypertension in this case?

System: Because I had ruled out circulatory diseases, portal hypertension is a spe-
cial case of circulatory diseases, and my strategy is not to consider special
cases when I have ruled out the general case.

Or an economic planning consultant.

User: Why aren't you suggesting increased tariffs as a way of decreasing trade
deficits?

System: Because that plan involves political costs. My strategy is to consider
politically easier plans first.

143

3 A FRAMEWORK FOR EX.'LANATION

In these explanations part of what is being explained is the control strategy of the
knowledge-based system, Type 3 E£planation.

This form of explanation can account for "why not?" as weU as "why" ques-
tions of certain types. What is needed is an ability to abstract the control strategy,
and match portions of it to the situation. The actual explanation typically involves
a combination of explanations of Type I and Type 3. E.g., the italicized portions
of the explanations above are of Type 3. and the rest are of Type 1.

Note that in both Swartout's XPLAIN and in Clancey's work on explanations
in rule-based systems, a goal-subgoal tree is an essential element in the generatiou
of strategic explanations. Our theory of types of problem solving will be shown in
Section 3.2 to enrich the explanatory vocabulary by identifying the types of goals
and subgoals.

We have described three types of explanation:

Type 1: Trace of run-time, data-dependent, problem-solving behavior.

Type 2: Justifying a piece of knowledge by deriving it from a domain model.

Type 3: Understanding the control strategy used by the program in a particular
situation.

In figure 3 we outline this framework of explanation. Our theory of problem-
solving types (which is also a theory of control structure types) is applicable to
Type 3. In the next two sections we outline this theory and show how it helps in
explanation.

3.2 Types of Problem Solving and Explanation

In this paper we can only briefly outline our theory of problem-solving types, called
generic tasks (these ideas are presented in greater detail by Chandrasekaran [IlI).
A central idea of generic tasks is that the function of the task (i.e., the input-output
behavior), the kind of knowledge needed to perform it and the kinds of inferences
that are appropriat for it are all specified together. To understand how this contrasts
with the traditional rule-based paradigm, consider as an example the RI system
(191. RI itself can be thought of as performing a limited type of design problem
solving which can be implemented as a linear sequence of subtasks. That is, at the
level of the task, the required knowledge is one of how to decompose the design
task into subtasks. and the underlying control strategy is one of linear execution of
subtasks. RI is implemented using the rule language OPSS, and uses a "forward-
chaining" inference mechanism. The explicitness of the above description of the
knowledge and inference of R1's task is missing at the level of the OPS5 code which

144

3 A FRAMEWORK FOR EXPLANATION

Type or
Explanation Source , Comments
'eroOlem-•olvmg Problem Solver
Behavior (i.e.. Expert System) "

Strategy.
Control Decisions Generic Task Problem solvers can explain their

strategy if they contain the proper
connections to their generic task

Functional
Justification of Representation
Problem-Solving (or some source
Knowledge of deep knowledge) Problem solvers can justify their

I problem solving knowledge if

"I they are properly connected to
9 the relevant deep models of the

domain.

Figure 3: A Framework for Explanation

implements RI. Similarly, at the level of EMYCIN, which is the implementation
level language for MYCIN. one sees rules and backward-chaining, whereas the
real task MYCIN performs is best understood as "heuristic classification" (201. The
generic task methodology is based on reducing the gap between the implementation
level and the intrinsic task level. The advantages of this approach for system design
and knowledge-acquisition are described in Chandrasekaran [11], and Bylander
and Chandrasekaran (21]. The main topic of this paper is the leverage that this
paethodology gives for explanation of control strategies.

In our work on knowledge-based reasoning in medical and mechanical systems,
we have identified several such generic tasks. Her we briefly summarize two of
them

Hierarchical Classification. Classify a description of a situation as one or more
elements in a classificadon hierarchy. The classificatory knowledge is distributed
among concepts in this hierarchy. Each conceptual specialist contains knowledge
that helps it determine whether the concept it stands for can be established or re-
jected. Problem solving is top down. Each specialist, when called, tries to match
its description against the situation description. If it succeeds, it calls its succes.
sors, which repeat the process. Otherwise, it rejects and all its successors are also
automatically rejected. This control strategy is called Eitablish-Refine and results

145

3 A FRAMEWORK FOR EXPLANATION

in a specific classification. (This account is a simplified one. The reader is referred
to Bylander and Mittal[221 for details and elaborations.)

Design by Plan Selection and Refinement. Design an object satisfying certain
specifications. Specialists corresponding to components are organized in a hierar-
chy mirroring the object structure. Each specialist has plans which can be used to
make commitments for some parameters of the component. Control is top down in
general. The following is done recursively until a complete design is worked out:
A specialist is called, the specialist chooses a plan, based on some specification.
which instantiates some parts of the design and calls further specialists to fill in
other parts of the design. Failures are passed up the specialist hierarchy until ap-
propriate changes are made by higher level specialists so specialists that failed may
succeed on a second try. This problem-solving type is discussed in more detail in
Section 4.1.

State Abstraction. Given a change in some state of a system. provide an ac-
count of the changes that can be expected in the functions of the system. Knowl-
edge is distributed in conceptual specialists corresponding to systems and subsys-
tems. These specialists are connected in a way that mirrors the way the system
is put together. Control is basically bottom-up, following the ýrchitecture of the
system/subsystem relationship. The changes in states are followed through, the
functions at the desired level of abstraction are obtained. This is useful for reason-
ing about consequences of actions on complex systems.

Knowledge-Directed Information Passing. Given attributes of some datum, it
is desired to obtain attributes of some other conceptually related datum. The data
is organized as a frame hierarchy where each frame is a specialist in knowledge-
directed information passing for a concept. A specialist, when asked for the value
of an attribute, first checks to see if the actual value is known, if not it then uses in-
heritance relationships to determine whether the value can be obtained by inference
from the values of appropriate attributes of its parent of children, and if that fails
it then uses any demons that may be attached to the sloc to query other concepts in
other pans of the hierarchy for values of their attributes. If none of this succeeds
and if it is appropriate, a default value is produced. This is useful for inferring a
medical datum which is unavailable but needed in diagnosis, from another which
is available (23].

3.3 Role of ProblemMSolving Types in Type 3 Explanation

A typology of problem solving, such as the one outlined in the previous section,
with its associated goal types, is very useful in explaining the control strategy of
the problem solver. Let us take some examples.

146

3 A FRAMEWORK FOR EX.LANATON

Hierarchical Classification

User: Why did you wish to know if the patient had been exposed to anesthetics?

System: Because I was trying to establish hepatitis.

User: Why?

System: Because I had already established that the patient had liver disease. Now
I am trying to subclassify the case, and hepatitis is one-of the subcategories.
If I can reject hepatitis, I can reject all its subclasses.

Design by Plan Selection and Refinement

User: Why did you choose the standard table top plan?

System: Because I am trying to complete the specification for the table. A part of
refining the table specification requires designing the table top. The table top
specialist selected the standard table top plan because all the requirements
were normal.

User: What will you do if the standard table top plan fails?

System: The table top specialist will select the alternate table top plan.

User: What if it fails?

System: The table specialist will redesign the table by weakening the constraints
on the table top.

State Abstraction

User: Why do you wish to know the engine speed?

System: Because I am trying to decide the change infunction of the cooling system
when the thermostatic valve is stuck closed. Engine speed is a datum I need
for this.

User: Why are you considering the cooling system.

System: Because the thermostatic valve is a component of the cooling system.

147

3 A FRAAEWOP.K FOR EXPLANATION

Knowledge-Dirted Information Passing

User: Was the patient exposed to anesthetics?

System: Did he have any surgery?

User: Why do you ask?

System: I do not have a direct record of anesthetic exposure. I could not inherit a
value for this attribute since there is no direct record of any drug being given.
I was also unable to infer no exposure by ruling out all types of anesthetic.
But if the patient had surgery, then anesthetic can be reasonably inferred.

In these examples. the italicized terms represent the problem-solving goal that
is being pursued. For example, establish and reject are a few of the goals of the
Establish-Refine control strategy associated with the problem-solving type hierar-
chical classification (see section 3.2). We believe that terms such as these enrich
one's understanding of the behavior of the system. In addition, these examples,
while based on the appropriate fragments of control knowledge. nevertheless com-
bined the control terms with the state of the problem solving. Thus the actual
generation of the explanation requires a mixture of Types I and 3 in the list of
explanatory types.

So far in our research we have identified six generic types of problem-solving
behavior underlying knowledge-based problem solving. Hierarchical classifica-
tion. a kind of design, state abstraction, and knowledge-directed information pass-
ing, described in section 3.2, are examples. Each type of problem solving uses
knowledge in a certain form and has an associated family of control strategies.
These two features, kinds of knowledge and control strategies, constitute an archi-
tecture for a particular problem-solving type. A high level programming language
can be designed corresponding to each architecture. A set of such languages would
be used in building knowledge-based problem-solving programs. Note the simi-
larity of tnis idea to the way the programming language EMYCIN is related to the
rule architecture of MYCIN. Elsewhere [I1] we have described in such a family of
high level languages for constructing knowledge-based systems.

When a system is built using a generic task programming language. the trace
of its problem-solving behavior at the architecture level is automatically couched
in terms of the strategic goals of its control strategy (e.g., establish, reject, select,
and redesign in the above examples). The control strategy itself is explicitly repre-
sented in the language so it will naturally be included in a trace. Thus, the generic
task approach allows us to achieve explanation of problem-solving strategy by us-
ing a trace of the problem solver. In the next section we describe a system built
using a generic task language and give examples of its explanations.

i48

4 IPLEb0NTATION EX4MLPLE

4 Implementation Example

4.1 Mission Planning and Class 3 Design

We have chosen the "routine planning" task for Offensive Counter Air (OCA) mis-
sions dealt with by the KNOBS system (24] as a task for which to build a prototype.
Our prototype is called the Mission Planning Assistant (MPA). We emphasize that
MPA is incomplete as a mission planner but it has served its purpose as a vehicle
for exploring these ideas.

KNOBS plans by template instantiation-a process of filling in the slots of a
frame with acceptable values. The order in which the slots are considered is defined
in advance by the plan template. and is determined by the expert's domain planning
knowledge. Slot values are. accepted or rejected based upon constraint satisfaction.
KNOBS associates a generator with each slot to enumerate potential values.

A problem with KNOBS, recognized by its.designers, was that it did not ex-
plicitly represent much problem-solving expertise for planning. Thus the KNOBS
mechanism does not allow for explaining the planning control strategy. We ap-
proach this problem from the generic task viewpoint which, by tailoring the control
strategy to the problem-solving task, provides the structures necessary for explain.
ing strategies.

We treat the OCA mission as an abstract device to be designed. The planning
of the mission involves a process similar to the process a designer undergoes when
faced with a complex device to design. An overview of the design process will
illuminate this analogy. For a more comprehensive description see Brown and
Chandrasekaran[2].

Design as a problem-solving activity potentially involves creativity, many dif-
ferent problem-solving techniques, and many kinds of knowledge. Goals are often
poorly specified. and may change during the course of the activity. However. a
spectrum of design classes can be identified, varying from completely open-ended
activity to the most routine, depending on what sort of knowledge is available. We
identify one of the most routine forms of design as "Class 3 Design." In this class
of activity complete knowledge is assumed to be available both of the components
which need to be designed, and of potentially useful design plans for each com-
ponent. This does not imply that the design process itself is simple, nor that the
components so designed must be simple. It appears that a significant portion of
everyday activity of practicing designers falls into this class. Class 3 design is a
hierarchical planning task since devices typically decompose into components and
subcomponents, and thus the design tasks decompose. Each level in the hierarchy
makes some design commitments, and the design is further refined in the lower

149

4 IMPLEMEVTATION EXAMPLE

Design i Design

list",is

iSp alisti. Spcalist

Figure 4: Organization of a DSPL Problem Solver

levels. In order to explore this class of design problems, the Design Structures and
Plans Language (DSPL) was developed (25].

A design problem solver in DSPL (see figures 4 and 5) consists of a hierarchy
of specialists. each. responsible for a particular portion of the design. Specialists
higher up in the hierarchy deal with the more general aspects of the device being
designed. while specialists lower in the hierarchy design more specific sub-portions
of the device. The organization of the specialists, and the specific content of each.
is intended to capture the designer's expertise in the problem domain.

Each specialist in the design hierarchy contains the design knowledge neces-
sary to accomplish a portion of the design. There are several types of knowledge
represented in each specialist. but for simplicity only three are described here. First,
explicit design plans in each specialist encode sequences of possible actions to suc-
cessfuilly complete the specialist's task. Second. specialists have design plan spon-
sors associated with each plan to determine the appropriateness of the plan in the
run-time context. And third, each specialist has a design plan selector to exam-
ine the rmn-time judgments of the sponsors and determine which of the specialist's
plans is most appropriate to the current problem context.

Control in a DSPL system proceeds from the top-most specialist in the design

150

isS4 IMPLMINATIONF£.AA1MPL.

Sponsor plan

Sponsor, -Plan

Figure 5: Inside a DSPL Specialist

hierarchy to the lowest. Each specialist selects a plan appropriate to the require-
ments of the problem. This plan is executed by performing the design actions it
specifies. This may include computing and assigning specific values to attributes
of the device, checking constraints, or invoking sub-specialists to complete another
portion of the design. (We have called this process "'design by plan selection and

-- ~refiement.") ...

Mission planning is a class 3 design task. The problem can be decomposed into
the design of subcomponents of the mission plan. In the domain of mechanical de-
vice design, the design of a device is decomposed into the design of sub-assemblies
and their components, etc., where each sub-assembly or component can be de-
signed in a fairly independent fashion. In the mission planning domain, the OCA
is decomposed into various parts of missions where each part can be planned rel-
atively independently of the others. Using DSPL as a mechanism for representing
the necessary knowledge, the MPA system closely mirrors these ideas.

The DSPL control structure provides the framework for a comprehensive ex-
planation facility. In addition to the necessary ability to examine particular at-
tributes of a mission plan, the control structure provides the ability to examine the
problem-solving strategies of the system.

4.2 Explanation in the Mission Planning Assistant

Our implementation of explanation in MPA is based on the organizing principle
that the agent which makes a decision Is responsible for justifying it. MPA is built
in DSPL so the agents which contribute to the final plan include: specialists, plans.

i 151

4 LMPLEMENTATIONEXAMPLE

selectors, and sponsors. In the present implementation there are some 200 of these
agents, though not all of them contribute to any particular plan. All of these agents
have well-defined roles so explanation of any one agent's problem-solving deci-
sions can be given in terms of the goals of the agent which uses it, and the funcrion
of the agents it uses.

The final answer produced by the VPA is a list of attribute-value pairs as in
KNOBS. That is. a list of the form:

Target - Berlin
Aircraft Type = F-111
Number of Aircraft = 6

We have decided to concentrate on questions of the form, "How was it decided?"
which can be asked of the value of any attribute. For example, selecting F-Ill in
the above list would initiate a dialog on the question of how MPA decided to use
F-ll as the value of Aircraft Type. Questions of this form directly ask about
the problem solving which led to final decisions. While the answers do not ex-
haust the kinds of things a problem solver can say about its actions, we believe that
this represents an important basic type of explanation, important for debugging the
knowledge base as well as for knowing whether the system's recommendations can
be mtted.

As an example we consider a single agent type, namely, plan sponsors, and the
explanations they can produce. Explanations from agents of the other types are
produced similarly.

Sponsors operate in the context of a DSPL specialist. A specialist's job is to
design a component of the device, in order to do this it has available several altema-
tive courses of action, called plans. Each plan is appropriate under some conditions
and not others. So associated with each plan is a sponsor which matches character-
istics of the plan to information about the problem at hand, and produces a measure
of how useful the plan will be on a scale of: Ruled-Out, Unsuitable, Suitable, and
Perfe•ct The specialist then chooses a plan based on what the sponsors return. The
code for a sponsor in MPA is given in figure 6. This is a sponsor for a plan which
uses A-l0s (an aircraft type) on the mission. It first sets some local variables by
looking them up in the data base (using KB-FETCH, a data base access function
which simply returns the value of an attribute). The TABLE construct is a group
of rules which all depend on predicates of the same values. For example, the table
setting the variable conditions contains three rules which depend on the values re-
turned by the functions night and weather. The first rule requires night to return F

152

4 IMPLEM1ENTATION EXAMPLE

(SPONSOR A-10
(SETQ target (KB-FETCH TARGET))
(SETQ timeOverTarget (KB-FETCH TIMEOVERTARGET))
(SETQ threat

(TABLE (airborne) (AAA) (SAM)
(IF T ? ? THEN UNSUITABLE)
(IF ? T ? THEN UNSUITABLE)
(IF ? ? T THEN UNSUITABLE)
(IF ? ? THEN PERFECT)))

(SETQ conditions
(TABLE (night) (weather)

(IF F FULL THEN UNSUITABLE)
(IF F PARTIAL THEN SUITABLE)
(IF F GOOD THEN PERFECT)))

REPLY
(TABLE conditions threat

(IF UNSUITABLE ? THEN RULE-OUT)
(IF ? UNSUITABLE THEN RULE-OUT)
(IF SUITABLE ? THEN SUITABLE)
(IF THEN PERFECT)))

Figure 6: DSPL code for a Design Plan Sponsor

and weather to return FULL.3 If that is the case, conditions will be UNSUITABLE.
The symbol '?' in the tables represents a predicate which is always true. The table
is finished when one rule matches. The code following REPLY is the main function
of the sponsor. i.e., rating the suitability of a plan.

An explanation produced for this sponsor is given in figure 7, This explanation
could be produced because sponsors are problem-solving agents of a known type
that follow a known form in their implementation. Values for the local variables
are given. those fetched from the d"aa base are not justified while those determined
by tables are given justification. The final REPLY is used to determine the actual
decision made by the sporsor. This explanation describes how the data matched
problem-solving knowledge at run-time (type I explanation). MPA does not have
an explicit representation of its control strategy: however, explanation of strategy

'M1w wader ttu#M dtin FULL and P.ARTAL us strange values for weather but thesn terms comne
from the dam"n. How FULL means -W cloud coyv". PARTIZAL mam "partial cloud cover."

153

4 LMPLEMEYTATION EXAMPLE

The context of selecting an aircraft to consider for the mission deter-
mined that:

"* target is BrandenburgSAM

"* timeOverTarget is 1300

"* threat is UNSUITABLE because:

- SAM is TRUE

"* conditions are PERFECT because:

- weather is GOOD

The value of plan A-10 is RULE-OUT because:

• threat is UNSUITABLE.

Figure 7: Ef.plmantion for a Design Plan Sponsor

is possible. The italicized phrase at the beginning of the explanation comes from
the agent. a specialist. which uses the sponsor to do its job. The user of MPA can
follow up by getting an explanation from that specialist which would spell c.ut the
sponsor's context in more detail by giving the problem-solving strategy MPA was
pursuing at the point where the sponsor was invoked. Thus, the explanation for the
calling agent gives a problem-specific explanation of the control strategy in service
of which the agent was called (type 3 explanation).

4.3 Understanding a Mission Plan

In section 3.1 we describe type 2 explanation, explaining elements of the knowl-
edge base. In the mission planning domain, consider the question, "Why was an
F-Ill used?" In the previous section this question would be interpreted as, "Why
was an F- IIL used instead of any other aircraft?" An alternate interpretation could
be. "Why was an F--Ill used in the mission plan?", Le.. inquiring about the role
played by the F-111 in the mission plan. A good response here might be. "Mhe
F-Ill is an aircraft. Aircraft are used in OCA's because they can fly and deliver
the ordnance. These functions are used to get to the target and destroy it." In other
words, the question asks for, and the response gives, an explanation of a part of the
plan knowledge base, i.e., type 2 explanation. This type of explanation requires
a different understanding of the domain than the planner has available in its plan-

154

4 IMPLEMENTA770N EXAJ.LE

aing knowledge. What is needed is a representation of how the plan works. For this
we use the functional representation of devices as given by Sembugamoorthy and
Chandrasekaran(9]. A device is any structure (concrete or abstract) which serves a
purpose. Thus, a plan can be viewed as an abstract device in that it has components
which act together in order to achieve a desired goal.

A part of the functional representation of the abstract device OCAMission
which describes the main function of an OCA--to destroy a target-is shown be-
low.

FUNCTION: DestroyTarget:
TOMAKE Destroyed (Target)
IF Functional (Target)
PROVIDED Operational (Flight)
BY OCAPIan

This description indicates that the plan, OCAMission. has a function called De-
stroyTarget. This function is appropriate If a target is operational (functional).
When this function is used, the target will be destroyed by a behavior called OCA-
Plan. This behavior should succeed in accomplishing the goal of target destruction
provided the dlight is operational throughout the behavior.

S- The behaviors of a device describe the manner in which its functions are ac-
complished by using the functions of components, generic knowledge, and sub-
behaviors. For example, the behavior for OCAPlan is described by a chain of
events as given in figure 8. This structure is meant to represent the temporal se-
quence (from top to bottom) of states which occur as a result of actions taken.
The diagram thus indicates that the OCAPIan.s behavior begins when a Target is
in a Functional state. Then the function PrepareFlight of the component AirBase
makes the Flight Prepared. Upon achieving this state, the function OffensiveAir of
the component Flight is used to Destroy the Target. And so on.

The functional representation can be used to give type 2 explanations. Here we
give an example of the kind of answers which can theoretically be given using this
representation. Explanation responses are built from the functional primitives. In
the context of the top level device, OCAMission, the following interaction might
occur,

User: What does the function DestroyTarget do?

System: The function DestroyTarget ensures that the target is destroyed. It can be
used if the target is functional and provided OCAPIan satisfies the constraint
that the Ffight remain Operational.

155

LM1

4 AVILEMEfNTATIO0N EXAMPLE

Functional(Targc:)

Us~ag Fuwutk. PrcpareFlight
Of Airbase

Preparedt~klight.)

Using Function- OffensiveAir
Of Flight

Destroyed(Target)

Using Function FollowPlanHoaie
Of Rlight

Location(Flight HonieBase)

Figure 8: A Behavior in MNWA

156

5 RE'CAPJT TATION AND CONCLUSION

(See the description of DestroyTarget earlier in this section.) For more details and
actual examples the read r is referd to Chandrasekaran. Josephson. and Keun-

-- ~eke[Z10].,

S Recapitulatlon and Conclusion

In section 2 we churacterized previous work on explanation as producing three
ood ideas. These no:

I. Meaningful explanation can be given at the architecture level.

2. Justifcation of'knowledge requires access to deep models.

,3. Some kinds of explanation require explicit representations of problem-solv.
ing stratgies.

In section 3.1 we described three types of explanation:

Type 1: Explaining how data matches the knowledge.

Type.2: Explaining the knowledge itself.

Type 3: Explaining the problem-solving strategy.

In order to generate explaWation of types 1 and 3 at the appropriate level of ab-
stractwn, the problem-solving process needs to be represented at what we have
called the generic task level. Most current approaches to knowledge-based system
construction use knowledge-representation languages and control primitives at too
low a level of abstraction (the rule/frame/logical formula level). This makes both
system design and explanation difficult. since the system designer hAs to transform
the problem into a low level implementation language and explanation requires
translating back to the problem level. We have identified a set of higher level
building blocks in terms of which systems can be conceptualized. designed, and
implemented. The basic explanation constructs arm then available closer to the
conceptual level of the user than they would be if thery had to be extracted from
the implemensation language level. This point of view has led us to propose a new
approach to the design of knowledge-based systems, namely, generic tasks. With
each generic task we have developed a high level programming language which
contains the task's problem-solving control strategy (e.g., DSPL (251 and CSRL
(22]). When a system built using these ianguages gives a trace (type I explana-
tion) it also describes its strategy (type 3 explanation) because it uses terms which
denote task-specific goals and methods.

157.

$ RECAPITULATION AND CONCUSION

The MPA prototype system has demonstrated the viability of the generic task
approach to explanation in knowledge-based systems. However, it is limited both
in the scope of its problem-solving knowledge and in its ability to generate com-
plete explanations. In spite of its limitations we believe MPA has fulfilled our orig-
inal goal of showing how explanation can naturally be derived from deep models
and an understanding of the problem-solving task.

The compilation approach proposed by Swartout is orthogonal to the approach
we give here and very much compatible with it. The genetic task idea can be
thought of as providing a vocabulary of problem-solving goals. When these goals
are embodied in programming languages for building knowledge-based systems.
they are easily available for use in explanation. A compiler such as the one in
XPLAIN could have the generic tasks built into it so that the resulting system would
have the explanatory capabilities we describe.

In comparison with Clancey's work there are interesting points of contact and
difference. We both emphasize the importance of a higher level vocabulary of goals
for proper generation of explanation. Our work provides part of this vocabulary in
a manner that can be naturally integrated with an approach to building knowledge-
based systems using higher level building blocks.

SIn this paper we have not discussed the kind of explanatory problem that still
remains even after the explanation at the more abstract task-level such as the one
provided by the generic task approach. There is still a gap between the latter level
and the level of the actual problem solving task. For example, consider a diagnosis
system developed in our lab called RED [261. This system is built out of four of
the generic tasks (see section 3.2)--concept matching. classification, knowledge-
directed information passing, and abductive assembly-which jointly perform a
task similar to heuristic classification (20], though at a higher level it is actually
doing diagnosis. The ideas set forth in this paper could be applied to RED and'it
would then be capable of generating explanations at the generic task level. While
this is a significant improvement over the explanations given by MYCIN it is still
not at the level of diagnosis. There is a need to explain how the system's actions
and decisions meet the goals of diagnosis. We have recently been working on
explanation of tk,:q sort, explaining how the system's conclusion relates to the
goals of the problem-solving task (27]. This will result in type 3 explanation of a
different sort than is described in this paper.

Acknowledgments

We gratefully acknowledge the assistance of Mitre Corporation for providing the
KNOBS source code and taking the time to help us understand KNOBS. People

158

REFERECES

who contributed to the MPA project include Dean Allemang, Matt DeJongh, Ron
Hartung, and Dave Herman. In addition, the functional representation of the mis-
sion plan. on which section 4.3 is based, was done by Anne Keuneke.

References

(1[H. E. Pople. "The formation of composite hypotheses in diagnosic problem
solving," in Proceedings of she 5th International Joint Conference on Arifi-
cial Intelligence, (Cambridge, MA), pp. 1030-1037. August 22-23 1977.

(21 3. R. Josephson. B. Chandrasekaran, 1. R. Smith, and M. C. Tanner, "A mech-
anism for forming composite explanatory hypotheses." IEEE Transactions on
Systems, Man, and Cybernetics, vol. SMC-17, pp. 445-454, May/June 1987.

(31 B. G. Buchanan and E. A. Feigenbaum, "Dendral and Meta-Dendral: Their
applications dimension." in Readings in Artificial Intelligence, (B. L. Webber
and N. J. Nilsson. eds.). pp. 313-322, Palo Alto, CA: Tioga. 1981,

(41 Aristotle, "Posterior analytics." in The Basic Works ofAristotle, (R. McKeon,
ed:), pp. 108-186, New York., NY: Random House, 1941.

(5 C. G. Hempel. Aspects of Scientific Evplanation. New York, NY: Free Press,

1965.

[61 R. Schank. Explanatdon Patterns. Hillsdale, NJ: Erlbaum, 1986.

(7] M. R. Wick, W. B. Thompson. and L. R. Slagle, "Knowledge-based explana-
tion," TR 88-24, Computer Science Dept., Univ. of Minnesota. Minneapolis.
MN, March 1988.

(8] B. Chandrasekaran and S. Mittal, "On deep versus compiled approaches to
diagnostic problem-solving," InternationalJournal ofMan-Macidne Studies,
vol. 19, pp. 425-436, November 1983.

(9] V. Sembugamoorthy and B. Chandrasekaran, "Functional representation of
devices and compilation of diagnostic problem solving systems," in Expe-
rience, Memory and Reasoning. (L. L Kolodner and C. K. Riesbeck. eds.),
pp. 47-73, Hilsdale, NJ: Erlbaum. 1986.

4 ..G B. Chandras ra . Josephson, and A. Keuneke, "Functional representa-
tions as a basis for generating explanations," in Proceedings of the IEEE In-
ternational Conference on Systems, Man, and Cybernetics, (Atlanta, GA),
pp. 726-731, October 1986.

159

REFERENCES

[11] B. Chandrasekaran. 'Generic tasks in knowledge-based reasoning: High-lev-
el building blocks for expert system design." IEEE Expert, vol. 1. pp. 23-30,
Fall 1986.

(121 R. Davis, "Teiresias: Applications of mea-level knowledge," in Knowledge-
Based Systems In Artificial Intelligence, (R. Davis and D. B. Lenat, eds.),
pp. 227-490. New York, NY: McGraw-Hill. 1982.

(133 W. R. Swartout, "XPLAIN: a system for creating and explaining expert con-
suiting programs." Artificial Intelligence, vol. 21, pp. 285-325, September
1983.

(141 W. 3. Clancey. "The epistemology of a rule-based expert system-a frame-
work for explanation," Artificial Intelligence, vol. 20, pp. 215-251. May
1983.

[15] W. van Melle, E. H. Shortliffe, and B. G. Buchanan, "EMYCIN: A knowledge
engineer's tool for constructing rule-based expert systems." in Rule-Based
Expert Systems, (B. G. Buchanan and E. H. Shortliffe, eds.), pp. 302-313.
Reading, MA: Addison-Wesley. 1984.

[16] R. S. Patil. P. Szolovits. and W. B. Schwartz, "Causal understanding of pa-
tient illness in medical diagnosis," in Readings In Medical Artificial Intelli-
gence, (W. 3. Clancey and E. H. Shortliffe, eds.), pp. 339-360, Reading, MA:
Addison-Wesley, 1984.

[17] P. K. Fink. 1. C. Lusth, and 3. W. Duran, "A general expert system design
for diagnostic problem solving." IEEE Transactions on Pautern Analysis and
Machine Intelligence, vol. PAMI-7, pp. 553-560, September 1985.

[181 3. S. Brown. R. R. Burton, and 3. de Kleer, "Pedagogical, natural language
and knowledge engineering techniques in SOPHIE 1, U and MI," in Intelligent
Tutoring Systems. (D. Sleeman and J. S. Brown, eds.)t pp. 227-282, London:
Academic Pres, 1982.

(191 J. McDermott, "RI: A rule-based configurer of computer systems," Artificial
Intelligence, vol. 19, pp. 39-88, September 1982.

(201 W. I. Clancey, "Heuristic classification." Artificial Intelligence, vol. 27,
pp. 289-350, December 1985.

160

II!

REFERENCES

(211 T. Bylander and B. Chandrmsekaran, "Generic tasks for knowledge-based rea-
soning: The "right" level of abstraction for knowledge acquisition." Interna-
dtonal Journal ofMan-Machine Studies, vol. 26, pp. 23 ý-243, 1987.

[221T. Bylander and S. Mittal. "CSRL: A language for classificatory problem
solving and uncertainty handling." Al Magazine. voL 7, pp. 66-77. Auagust
1986.

(231 S. Mital, B. Chandrasekaran, and L. Sticklen. "PATREC: A knowledge-
directed data base for a diagnostic expert system." IEEE Computer Special
Issue, vol. 17, pp. 51-58, September 1984.

[24] C. Engelman. J. K. Millen. and E. A. Scarl, "KNOBS: An integrated ai inter.
active planning architecture," DSR 83-162. The Mitre Corporation, Bedford,
MA, 1983.

(251 D. C. Brown and B. Chandrasekaran, "Knowledge and control for a mechan-
ical design expert system," IEEE Computer. vol. 19, pp. 92-100, July 1986.

(261 J. W. Smith, I. R. Svirbely, C. .,. Evans, P. Strohm, J. R. Josephson. and
M. Tanner, "Red: A red-cell antiLtdy identification expert module," Journal
of Medical Systems. vol. 9, pp. 121-138, June 1985.

[271 M. C. Tanner and J. R. Josephson, "Abductive justification," Technical
Report, Laborator, for Artificial Intelligence Research. Ohio State Univ..
Columbus, OH. March 1988.

161/162

Appendix D

Generic Tasks As Building
Blocks for Knowledge-Based
Systems: Diagnosis and Design

163/164

Generic Tasks As Building Blocks for Knowledge-Based Systems:
The Diagnosis and Routine Design Examples1

8. Chandrasekaran

Laboratory for Artificial Intellgence Research
Department of Computer and Informagon Science

The Ohio State University
Columbus, OH 43210

June 28, 1988

1To appear in Knowledge Engineering Review.

165

List of Figures
Figure 1: A Generic Task Architecture for Diagnosis With Compiled Knowledge 9
Figure 2: Fragment of Fuel System classification tree. In this case, the 10

hierarchy is largely of classes
Figure 3: Skeleton specialist for BadFuel. The code specifies the location of 11

Bad Fuel in the hierarchy,
Figure 4: "Relevant" knowledge group of BadFuel. The ASK arguments are 12

questions to the user, but
Figure 5: "Summary" knowledge group of BadFuel. 13
Figure 6: Establish procedure of BadFuel. If it has been evaluated not to be 14

relevant, that sets the
Figure 7: Example refine procedure. This specifies the control behavior for 14

exploring the successors of
Figure 8: An air-cylinder 20
Figure 9: Specialist hierarchy for designing air cylinder. Design hierarchies 21

may follow a
Figure 10: Specialist "Head". The code specifies the location of the design 22

specialist in the hierarchy,
Figure 11: Plan "HeadDPI". The design plan specifies the specialist that uses 22

it, what criteria should be
Figure 12: Step "AirCavityiD". 23
Figure 13: Step "AirCavitylD" continued. 24

166

Abstract

The level of abstraction of much of the work In knowledge-based systems (the rule, frame, logic
level) is too low to provide a rich enough vocabulary for knowledge and control. I provide an overview of
a framework called the Generic Task approach that proposes that knowledge systems should be built out
of building blocks, each of which Is appropriate for a basic type of problem solving. Each generic task
uses forms of knowledge and control strategies that are characteristic to It. and are In general
conceptually closer to domain knowledge. This facilitates knowledge acquisition and can produce a more
perspicuous explanation of problem solving. The relationship of the constructs at the generic task level to
the rule-frame level Is analogous to that between high level programming languages and assembly
languages in computer science. I describe a set of genedc tasks that have been found particularly useful
In the constructing diagnostic, design and planning systems. In particular, I describe two tools, CSRL and
DSPL, that are useful for building classification-based diagnostic systems and skeletal planning systems
respectively. I describe a high level toolbox that Is under construction called the Geneee Task toolbox.

1 Need for Task-Specific Tools
The current generation of knowledge-based system (KBS) latý;ages - i-ose 4.;At 3r• based on

rules, frames, or logic - do not distinguish between different types ,-. k i •wlo'le-bs7ad re•,',,r'.Ing. For
example, one would expect that the task of designing a car would require ,;rV" ,ar, dlffermai eeasoning
strategies than the task of diagnosing a malfunction In a car. However, th,). methodologlit a.•.;iy the
same strategy (fire the rules whose conditions match, run resolution engine on all propos tl. rs e",.) to
both design and diagnosis, as well as any other task. Because of thif. ;t has t-.T r argued ttut these
methodologies, although useful, are rather low level with respect tW modeling •ie vd•- 4,*-level
behavior. In essence, these systems resemble an assembly languag6 uor wr4ting WTý. Ah1k tl• are
obviously useful, clearly approaches that more directly address the nigi'.. liovel !siues t, knoA-.dge-
based reasoning are needed for the next generation of Al system developm'. it.

One example of a higher level approach is the generic task (GT) [9, 10, 12]. The aim hero is to
identify "building blocks" of reasoning strategies such that each of the types Is both generic and witdely
useful as components of complex reasoning tasks. We have Identified a number of such gre;eic
strategies, which together capture the functionality of a large portion of current expert systems. Each
generic task2 is characterized by:

1. The kinds of Information It takes as Input for the task and the Information produced as a

result of performing the task. This defines the functionality of the task.

2. A way to represent and organize the knowledge that is needed to perform the generic task.

This Includes a vocabulary of knowledge types, I.e., knowledge constructs that the

representation "aguage should have.

3. The process (algorithm, control, problem solving) that the task uses. This provides a

vocabu•lay for Inference and control for the task

The GT framework proposes that, as each task and Its associated structure is Identified, languages

2E'ch OT is a -fatuegy frm w th vlimwoi of the prmbklm which It Is heoing to solve. It Is a t•uk from the vWW of fe
functonaliyd~a•dIstobeachlevedbythwGT. It hinls sIn sethsaGT inboth asgyfotatkandata* Intse. The

dislincon Is In fact much more gsawsl: e.g., diognasi Is a astrisW in making patdefs feel bete (I.*., one way to orgnlze
eeustic acilons is to be them on causes, find which is, in fact diagroams), bW it lea tas which many wpe sysltm am

designed tosole

167

be developed that encode both the problem solving strategy and knowledge that is appropriate for solving
problems of that type. These languages facilitate KBS development by giving the knowledge engineer
access to tools which work closer to the level of the problem, not the level of the Implementation language
such as rules or frames. However, for nontrivial problems it may be necessary to decompose it into
subproblems such that each matches the functionality of some GT. For example, we will show how
certain kinds of diagnostic problems can be decomposed into a number of GT's. This way of building
complex KBS's also means that knowledge engineering environments should provide a toolset rather
than a single tool.

This style of supporting higher level generic computational activites 'with appropriate constructs is
well-known in computer science In general; high-level programming languages are attempts to provide
the programmer with constructs for a variety of common functions. it is items 2 and 3 above, viz.,
knowledge and Inference, that make the above specification different from the standard high-level
language constructs in computer science and makq it particularly appropriate for knowledge-based
problem solving.

_ 2 Some Generic Tasks and Their Specifications
While the approach has relevance to Al In general, as a practical matter, our work has concentrated

on Information-processing strategies useful for building systems for knowledge-rich problem solving, or
so-called expert systems. Such systems emphasize the role of large amounts of domain knowledge
compiled for specific problem solving tasks that characterize routine human expert behavior. Without
Intending any kind of completeness, we list here some of the tasks that we have found to be very useful In
building practical knowledge-based systems. As we will see, a variety of diagnostic and routine design

*• and planning problems come under this category. The doscription of the tasks In this section is
necessarily cryptic and somewhat oversimplified, and Is provided mainly for a quick overview and
comparison. Hierarchical classification, hypothesis matching, and plan selection and refinement are
described In some detail In later sections of the paper, and dbductive assembly described in somewhat
less detail. Please see the citations for details on the rest of the generic tasks.

Each description is organized by the function of the task, the tool in our GT toolset for the task, the
knowledge and inference types that the tool supports, and other relevant annotations. In each case, the
GT tool commits Itself to one way of achieving the functionality. Also, In each case the control behavior is
the default behavior, and should be thought of as describing a family of control types.

2.a Hierarchical Classification
Task specification

Input: given a situation description of In terms of features. Output: classify it, as specifically as
possible, In a classification hierarchy. (Multiple classifications, where different classes characterize
different parts of the situation description, are also possible.)

GTtool

CSRL [61 (Conceptual Structurms Representation Language).

How CSRL works:

Forms of Knowledge

Classification hierarchy, access to knowledge that produce information about how well the data
match the classificatory conceps (see Hypothesis Matching, below)

Infrletce and Control

168

(Simplified) Establish nodes, if successful refine the concept by considering children, if

unsuccessful, reject node, and prune subtree.

Exanmpe use

Medical diagnosis can often be viewed as partly a classification problem (22]. Problems may be
classified into types which may then suggest methods of solutions. The diagnostic portion of MYCIN
[351 (see Clancey [18]) and PROSPECTOR [19] can be viewed as classification problem solving.

2.b Hypothesis Matching
Task specification

Input- given a concept (a hypothesis) and set of data (features) that describe the problem state,

Output: decide how well the concept matches the situation. The task is a form of recognition [26].

GT Tool

HYPER (HYPothesis matchER) [24]

How HYPER works:

Forms of Knowledge

An hierarchy of evidence abstractions, lowest level at the level of data and the highest level at the
level of the concept. Each node abstracts from Its children into a higher level feature. In the particular
version considered In our work, the abstractions are qualitative degrees of confidence. (See detailed
dascription of HYPER, Section 3.c.3.)

Inference and Contrl

At each level a degree cf confidence in the presence of the feature is computed from the features
that constitute evidence for it, and this is performed recursively until a degree of confidence for the
con=pt is computed. The basic theory Is that recognition of a complex concept is performed by
hierarchically computing intermediate abstractions from raw data.

Example use

Samuel's signature tables perform this kind of abstraction. Many forms of recognition can be
performed by means of this strategy. For example, the concept may be a disease and the data may be
patient data relevant to the disease, and we wish to know what the likelihood of the disease is. Bylander
et al [81 discuss a class of strategies called structured matching (of which the HYPER strategy is a
particular example) and show how ubiquitious It is in knowledge-based reasoning.

2.c Knowledge-DIrected Information Passing
Task specfictaon

Input: Given attributes of some data entitles, Output: determine the attributes of other data of
interest, but not directly known, but can be inferred from the available data.

GTtool

IDABLE (Intelligent DAta Base LanguagE).

How IDABLE works:

69

Forms of Knowledge

Data concepts organized as a frame hierarchy of types and subtypes of data objects in the domain.
Data attributes are slots with default values, default methods of computation of values, or explicit
procedural attachments which specify how to compute data attribute from related data.

Inference and Control

Data queries result in the default value being chosen If no information Is available, or the
knowledge-intensive procedures to be Invoked for inference. The inference procedures themselves can
be Inherited from parent concepts as needed.

Exanple use

A diagnostic system may use a knowledge-directod database of this type for converting from
sensor or chart values Into data of direct relevance to diagnosis. Clancey's data absraction component of
heuristic classification [18] can be achieved by this functionality.

2.d Synthesis by Plan Selection and Refinement
Task specification

Designing an object (device, program, plan) by hierarchical planning. Input: given specifications of
the object to be designed Output generate design of an object (device, program, plan) meeting the
specifications.

GT tool

DSPL (3, 41 (Design Specialists and Plans Language).

How DSPL works:

Forms of Knowledge

Hierachical structure of the object to be designed known in advance (making it routine design). For
each node in the hierarchy, precompiled design plans are known for making design choices. Failure
handling knowledge available, and some parts of the plans are =onstraint satisfaction knowledge, ie.,
knowlodge of constraints to be met by the design parameters.

/nference and Control

Top down control is typicadly used. Design plans are chosen, choices made at that level of
abstraction, and design refined by calling on plans for the children (i.e., components). Plan failures are
passed up until failure handling knowledge is available to fix the design or choose alternate plan.

ExarW* system

The task performed by the epert system MOLGEN [20] and R1 [29] can be viewed In this way. A
variant of this task has also been called skeletal planning in the literature.

2.e Abductive Hypothesis Assembly
Task spedifIcation

Input Given a situation description and a set of hypotheses each explaining some aspects of the
situation and each with some plausibility value Output: Construct a composite hypothesis that Is the best
explanaton of the situation, I.e., explains all the data parsimoniously and as well as possible.

170

GT tool

PEIRCE (named after C. B. Peirce, who first described the *orm of Inferencp known o. abduction)
[341.

How PEIRCE works:

Forms of Knowledge ,

Causal or other relationships between hypotheses (such a 4witpatibillty, special case of),
relative signifli•cce of data describing the situation.

Inference and Control

Assembly and orticism alternate. At each stage during assembly the problem solving Is driven an
attempt to explain the moat significant datum remaining unexplained. The best hypothesis that offem to
explain It is added to the composite hypothesis. During criticism, explanatorily superfluous parts are
removed. This loops until all the data are explained or no hypotheses are left.

Examrple use

This task Is a subtask In diagnostic reasoning as well as In theory formation In science. Portions of
INTERNIST [30] and DENDRAL [5] systems perform this task.

2V Some Implications of GT's
The following general points about GT's are worth noting at this point.

1. As mentioned, a number of well-known expert systems can be thought of as decomposable

Into subtasks, each of which corresponds to one of the above tasks. R1 performs a

simplified type of plan selection and refinement Mycin performs classification and data

abstraction (one of the capabilities of our knowledge-directed information passing) In the

diagnostic part, and plan selection (in the therapy part). Additional examples can be given.

Note, however, that in all these Instances, we are only pointing out that these systems

pedorm these tasks, but not necessarily in the manner that we propose that the tasks be

performed. Our claim will be that once we understand te knowiedge requirements and the

inference stragel"es for each Of the tasks, we can use methods that are more natural for the

tasks.

2. We have mentioned diagnosis a number of times in the above description as a problem that

uses one or more of the above generic tasks, e9g., classification and hypothesis assembly.

Note that, correspondingly, we do not have a generic task called diagnosis in the above list.

The reason for this is that, while diagnosis is "generic" in the sense that the problem occurs

In a number of domains and there are simillaritles In the methods that are domain-

independent. it is still a "ompound" task in the sense that a number of distinct types of

171

knowledge and inferences are used in the process of doing diagnosis. Thus the above list

of tasks can be used as natural building blocks for putting together a diagnostic problem

solver. (We shall soon describe how this can be done.) This illustrates an additional

constraint in our sense of generic task. The task needs to have a coherence and simplicity

to It In that It ought to be characterizable by a simple type of knowledge and a family of

inference types. This is what makes them "building blocks."

3. Functional modularity Is an important consequence of this point of view. As we have shown

in a number of papers [7, 9, 10, 12. 151 this functional modularty makes system building

and debugging easier, and the task-specific knowledge and control constructs help In

knowledge acquisition and explanation.

4. The above list is not meant to be a complete list of generic tasks useful In knowledge-based

problem solving. In fact, quite a large part of Al - from weak, methods to qualitative

simulation to scripts and plans - can be thought of as attempts to Identify interesting

problems, the kind of knowledge requi'ed for It and the kinds of inferences useful to perform

them. Thus, In qualitative reasoning, the generic problem considered is one where given

the structure of a system, the task Is to derive the system's behavior In a qualitative way.

The research program then Identifies the knowledge and Inference for the task. In tile

appropriate context, each of them can be thought of as possible generic tasks. Our goal in

the development of the generic task theory and the tool set has been to produce a

methodology and a technology that helps In the analysis, design, construction and

debugging of practical knowledge systems and thus we concentrated on the generic tasks

that we felt would be most useful at this stage In the development of the technology.

Research Is underway In our Laboratory on other such generic tasks, which would cover

phenomena In deep models such as structure to behavior roasoning and functional

reasoning.

In the next sections I will describe how certain kinds of diagnostic and design problems can be built
in the GT framework.

3 Diagnostic Reasoning

172

3.a information Processing In Diagnosis
Abstractly, diagnosis is the problem of finding a cause or set of causes that "best explain" a set of

observations of a system, some of them indicating behavioral abnormality. In most nontrivial cases) the
process is a form of abducttve reasoning, i.e., the diagnostic conclusion Is not deductively provable, but Is
the hypothesis that makes best sense taking all the Information into account.

We can identify a class of systems that we call compiled knowledge systems for diagnosis. These
systems have knowledge thak Is needed for diagnosis precompiled. This knowledge, at a minimum,
would include:

"* knowledge of possible causes In terms of which the diagnostic answer will need to be given.

"* knowledge that helps map from observations to possible causes, I.e., evaluate how likely a

given caus or subset of causes might be given the set of observations.

Many of the well-known diagnostic expert systems, e.g., Mycin [35J, Internist [301, MDX [391, set-
covering and Bayesian diagnostic systems have this knowledge compiled In the knowledge base. Where
these systems differ Is in the form this knowledge takes, in the way the actual inference processes work,
and also in the control of reasoning. Such compiled knowledge systems concentrate their problem
solving behavior only on the specific diagnostic problem at hand, rather than in activities that produce the
needed knowledge. These systems ought to be contrasted with dlagnostc systems which do not have
the needed diagnostic knowledge In a readily usable form (or the diagnostic knowledge is Incomplete),
but must acquire them by other kinds of problem solving, e.g., by deriving It from structural models of the
device under diagnosis, or from analysis of past diagnostic cases involving the device. See (131 for a
discussion of the general issues surrounding the use of deep models and (381 for a discussion of how
such model-based reasoning and compiled reasoning can be interlaced. The diagnostic architecture that
I will be discussing in the following pages is a compiled knowledge architecture.

Diagnosis can be computationally complex: even with compiled knowledge, all subsets of
hypotheses may In pdrnple need to be evaluated and compared. This is mainly due to two reasons: one,
hypotheses may interact, I.e., two hypotheses together may account for more or less observations than
the union of the sets of observations that they explain individually; and, two different subsets may explain
the same sets of data and principles of parsimony will need to be brought in to choose the better
explanation. All diagnostic systems, be they formal, such as set-covering and Bayesian approaches, or
"heuristic", such as Mycin, either squarely face this problem and end up with computatlonally intractable
algorithms, or make more or less realistic assumptions about the domain that help them cut down the
exhaustive search through the space of hypotheses combinations. (For example, its domain is such that
Mycin can Implicitly make assumptions of no Interaction between diagnostic hypotheses.)

The OT architecture that we will propose shortly broadly decomposes the problem Into a
c/assfatoty on*, which generates highly plausible diagnostic hypotheses, which are then used by an
abduct/ye assembly component to produce the best composite hypothesis for the problem. The overall
deurnyposition above brings significant computational advantages, since the assembly process now only
weeds to work with a much smaller number of initial hypotheses, with the option to seek out less plausible
hypotheses as needed for explanatory completeness. This, In conjunction with the computational
efficlerides that the proposed architectures for classification and abductive assembly individually possess,
makes the above architecture computationally attractive whenever knowledge is available in appropriate
forms: e.g., hierarchies for clu,,lification and explicit knowledge about causal and logical interactions
among diagnostic hypothee f, the abductive assembly component

3.b A GT Architecture for Dlagnosic
The architecture has four components: hlerwchlcai classification, hypothesis matchers, abducive

assembly, and knowledgo-drced data abstraction and Inference. The hierarchical classifier navigates
the space of malufunctions organized as one or more hierarchies. The hierarchical organizaton permits a

173

quick determination of the plausible hypotheses with minimal search through the space of all posslbile
hypotheses. The result of the classification process is a small set of highly plausible hypotheses.

The classifier Itself needs a mechanism to evaluate the degree of plausibility of each of the
hypotheses. The knowledge necessary to evaluate the plausibility of a classificatory hypothesis can be
localized to each hypothebis in the context of the hierarchy. This can be done by a hypothesis matching
component which evaluates any given hypothesis in the classification hierarchy by matching the data with
expectations for the concept and which outputs a qualitative degree of confidence In the hypothesis (and
the observations the hypothesis can explain). Thus the classifier, in conjunction with the hypothesis
matchers for each of the concepts, can output plausible diagnostic hypotheses with the data It can explain
attached to each of the hypotheses.

The output of the classifier goes to an abductive hypothesis assembly component, which puts
together a subset of these hypotheses as a composite hypothesis that best explains the data. This
process must consider the interactionh that occur among the causes that correspond to the hypotheses in
order to ensure internal coherence among combinations of hypotheses. The knowledge concerning
hypothesis Interactions can be explicitly represented for each hypothesis, thus being consulted only if that
hypothesis Is Included in the composite hypothesis. This process must also assemble a diagnosis which
meets various criteria of parsimony, completeness and plausibility. In the more complex uses of this
architecture, the classification hierarchy may be asked to refine originally less plausible hypotheses If the
explanatory power of the best composite hypothesis so far assembled is insufficient to cover all the
observations that need explanation.

In many diagnostic problems the level of abstraction of the data which are available may be
different from that required for the concept matcher, or additional Inferences from available data may be
needed to generate data that the diagnostic concept matcher can recognize as relevant. A necessary
addition to this architecture is a database which uses domain knowledge to make the inferences and
abstractions. In the proposed architecture, the hypothesis matcher can communicate with a system for
data retrieva abstracdorunference, whose task is a form of knowledge-drected Information passing
component which can convert data at to low a level of abstraction into diagnostically significant data.

The Important point is that each of the modules above is generic:

"* Each is a strategy independent of diagnosis and can be used in a number of other high level

tasks. The abductive assembler, e.g., can just easily accept input from a plan recognizer so

that It assembles a best explanation of various sightings In a battle situation. The data

abstractor can be just easily used by a therapy planner, and so on.

"* Each strategy, as we shal see, uses characteristic knowledge and Inference, maing It

possible to focus the problem solving effort In a manner appropriate for the task.

The functlonallty of Clancey's heidadd ciassification, consisting of the subtasks of data abstraction,
heuristic matching, and refinemen can be achieved by three modules in our architecture: the hypothesis-
matcher performs the heuristic matching task, the database component performs, among others, the data
abstraction task, and the classifier performs the refinement task. The architecture has the additional
capability of handling multiple malfunctions because of the abductive assembly component.

In sum the task of diagnosis can often be handled by the building blocks in the architecture
diagramed in Figure 1. Thus, if the appropriate knowledge Is available, a compiled knowledge diagnostic
system can be built using the CSRL, HYPER, PEIRCE and IDABLE tools.

Gomez and Chandrasekaran [22] pointed out the Importance of classification for diagnosis and
Mittal [311 described the architecture of MDX, which included all the components except abductive
assembly. Josephson et al (271 added abductive assembly as part of a general architecture for abduction.

174

Hinerarchia R' qm to efnelo

versionto be dscribe thasisPRebde ni)frcasfcainadhptei acig n

toolsmle dbl atd PJorwe

Sympo Figum o : AuoAtn Robtic rand AdvacedComputin for themi Natioa Spaced Prgrm, Mrch91,187

Deb~gho alth omonns f h danoti rciecur anbebil n17nerae

3.c.1 Classificatory Hierarchies
Hierarchical classification (HC) is a particular method of performing the classification task. HC

requires the availability of a classification hierarchy that organizes the classificatory hypotheses. Medical
diagnosis, e.g., uses disease hierarchies, and in many engineering domains, malfunction hierarchies are
quite common.

SIn Section 2, we gave a characterization of hierarchical classification. Figure 2 illustrates a
fragment of a tree from a hierarchical classification system for the diagnosis of Fuel System malfunctions
in a car engirn.

Fuel System Problem

Bad Fuel Plroblems Fuel MiXruz Problems

LowlOctane WatWrin Fuel Dirtin Fuel

Figure 2: Fragment of Fuel System classification tree. In this case, the hierarchy is largely of classes

and subclasses of "causes." In other cases, the subclasses may be sub fnctions, or physical parts.

Note that as the hierarchy is traversed from the top down, the categories (or in this particular case,
hypotheses about the failure of the fuel system) become more specific. Thus the children of the
hypothesis Bad Fuel Problems can be broken into more specific hypotheses of Low Octane, Water in
Fuel and Dirt in Fuel.

Each node in the hierarchy is responsible for calculating the "degree of fit" or confidence value of
the hypotheses that the node represents. For example, the Bad Fuel Problems node is responsible for
determining if there is a bad fuel problem and the degree of confidence It has In that decision. Each node
can be thought of as a "specialist" In determining if the hypothesis It represents is present. To create
each specialist, knowledge must be provided to make this confidence value decision. The general idea is
that each specialist specifies a list of features that are Important in determining whether the hypothesis it
represents Is present and a list of patterns that map combinations of features to confidence values. In the
Fuel System Problems specialist, such features might Include gas mileage problems, poor performance,
difficulty In starting the engine etc. One pattem might be that if all the futures are present. then the Fuel
System Problems hypothesis is likely.

3.c.2 The Controt Strategy of Hierarchical Classification
Given that the knowledge of the system is organized as a set of specialists in a hierarchy, how can

the hierarchy be efficiently traversed? This process Is primarily accomplished through a type of
hypothesis refinement called establish-refine. Simply put, a specialist that establishes its hypothesis (has
a high confidence value) refines itself by activating its more detailed sub-specialists. A hypothesis that is
ruled out or rejected Its hypothesis (has a low confidence value) is not refined, thus effectively pruning the
subtree below it. The reason for this becomes obvious when one thinks again of how the specialists are
organized. The subhypotheses of Fuel System Problems, for example, are simply more detailod
hypotheses. If there is no evidence for Fuel System Problems (it Is ruled out), then there is no point in
examining more detailed hypothesis about failures of the fuel system.

176

The process W tstablsh-reflne continues until no more refinements can take place. This can occur
either by reaching b"e tip level hypotheses of the hierarchy or by ruling out micd-hierarchy hypotheses.

3.c.3 CSRL, a Lanquage Tool for Hierarchical Classification Systems
CSRL (Concaptual Structure Representation Language) [61 Is a language for writing hierarchical

classification expert systems. The current version of CSRL is really a mixture of the shells of both
hierarchical classification and hypothesis matching. A new version of the hypothesis matcher shell is
available as HYPER. In this section, we will describe the older form of CSRL

CSRL allows a knowledge engineer to do three things:

1. Create a hierarchy of malfunction hypotheses in a particular domain.

2. Encode the pattern matching knowledge for each hypothesis into a specialist.

3. Control the process of establgsh-refine problem solving.

Encoding the Hierarchy of Malfunctions

In CSRL, a hierarchical classification system is implemented by individually deflnlrig a specialist for'
each malfunction hypothesis. The super- and sub-specialists of a specialist are declared within the
definition. Figure 3 is a skeleton of a specialist definition for the Bad Fuel node from Figure 2. The
declare section specifies its relationships to other specialists. The other sections of the specialist will be
examined later.

(SPECIALIST BadFuel
(DECLARE (SUPERSPECIALIST FuelSystem)

(SUBSPECIALIST LowOctane WaterInFuel
DirtInFuel))

(KGS ...)
(MESSAGES ...))

Figure 3: Skeleton specialist for BadFuel. The code specifies the location of BadFuel In the hierarchy,

points to the knowledge groups that contain Information about how to establish or reject the concept, and
contains messages that specdy onboI behavor.

Designing a clasifieaon hierarchy Is an important part of building a CSRL expert system, but the
exact structure of the final system Is a pragmatic decision rather than a search for the perfect hierarchy.
The main criterion for evaluating a classification hierarchy Is whether enough evidence is normally
available to make confident decisions. To decompose a specialist Into its subspeciallsts, the simplest
method Is to ask the domain expert what subhypotheses should be considered next. The subhypotheses
should be subtypes of the specialist's hypothesis, and will usually differ from one another based on a
single attribute (e.g., location, cause).

For the diagnosis problem the criteria for forming classification hierarchies are discussed, with
examples from the medical domain, by M7], and In the engineering domain by (321. The hierarchy may mix
function-subfurnction and part-subpart views depending upon the way diagnostic reasoning actually works
in the domain. Multiple hierarchies of the same domain, each from a different perspective, are also useful
for some domains: the MDX-2 system of Sticklen [39] uses such multiple hierarchies.

177

Encoding Pattern-Match Knowledge

The knowledge groups In the kgs section contain knowledge that matches the features of a
-specialist against the case data. Each knowledge group Is used to determine a confidence value for
some subset of features used by the specialist. As such, a knowledge group becomes an abstraction of
evidence, representing an evidential abstraction of a particular set of features Important to establishing
the specialist A knowledge group Is Implemented as a cluster of production rules that maps the values of
a list of expressions (boolean and arithmetic operations on data, values of other knowledge groups) to
some conclusion on a discrete, symbolic scale.

As an example, FIgure 4 Is the relevant knowledge group of the BaFuel specialist mentioned
above. It determines whether the symptoms of the automobile are consistent with bad fuel problems.
The expressions in the MATCH part queries the user (who acts as the database for this case) concerning
whether the car is slow to respond, starts hard, has knocking or pinging sounds, or has the problem when
accelerating. ASKYNU? is a LISP function which asks the user for a Y. N, or U (unknown) answer from
the user, and translates the answer into T, F, or U, the value of CSRL's three-valued logic (Note that any
LISP function may be used here). The results of the MATCH expressions are then compared to a
condition list in the WITH part of the knowledge group. For example, the first pattern 'T ? ?m In the figure
tests whether the first match expression (ASKYNU? "Is the car slow to respond') is true (the ? means
doesn't matter). If so, then -3 becomes the value of the knowledge group4. Otherwise, subsequent
patterns "? T ?r or "? ? T" are evaluated. The value of the knowledge group will be I if no rule matches.
This knowledge group encodes the following matching knowledge:

If the car is slow to respoarx or If the ca starts hard, then BadFuel Is not relevant In this case. Otherwise,
if there are knocking or pinging sounds and if the problem occurs while accelerating, then BadFuel Is highly
relevant. In all other.€ases, BadFuel Is only mildly relevant.

(RELEVANT TABLE
(MATCH

(ASKYNU? 1Is the car slow to respond')
(ASKYNU? *Does the car start hard")
(AND (ASKYNU? "Do you hear knocking or

pinging sounds')
(ASKYNU? 'Does the problem occur while

accelerating'))
WITH (IF T ? ?

THEN -3
ELSEIF ? T ?
THEN -3
ELSEIF ? ? T
THEN 3
ELSE 1)))

Figure 4: "Relevant" knawedge group of BadFuel. The ASK arguments are questions to the user, but

they can also be quedes to the detabase. The argument of WITH specify truth tables In the
knowledge group.

Figure 5 Is the summary knowledge group of BadFuel. Its MATCH expressions are the values of
the relevant and gas knowledge group (the latter queries the user about the temporal relationship
between the onset of the problem and when gas was last bought). In this case, if the value of the

41n fItn .me, the wvul asignad wre on e d•ard soale from -3 to 3, .3 raimm" ruledoW w4 3 reesendng cn*frd

178

relevant knowledge group Is 3 and the value of the gas knowledge group Is greater then or equal to 0,
then the value of the summary knowledge group (and consequently the confidence value of BadFuel) is
3, Indicating that a bad fuel problem Is very likely.

(SUMMARY TABLE
(MATCH RELEVANT gas

WITH (IF 3 (GE 0)
THEN 3
ELSEIF I (GE 0)
THEN 2
ELSEIF ? (LT O)
THEN -3)))

FIgure 5: "Summary" knowledge group of BadFuel.

This method of evidence combination allows the calculation of the confidence value to be
hierarchically organized. That Is, the results of any number of knowledge groups can be further abstracted
by a knowledge group that can combine their values Into a single confidence value.

As mentioned earlier the above pattern matching knowledge and problem solving structure is a
genedc task that we have Identified as hypothesis matching, and a separate shell called HYPER is
available to capture just this functionality.

The mapping from data to confidence in a concept is a form of probabilistic mapping. The symbolic
degrees of confidence are qualitative measures of subjective likelihood. However, the way data combine
to produce a confidence fur a higher level feature is not modeled by any normative calculus, be it
Beyesian or one based on f•uzzy sets, but dredtly obtained from the domain expertise localized to that
particular context. There are important Issues of how this view of handling uncertainty differs from the
more traditional formal methods for which we refer the reader to (11, 61.

Encoding of Estabfish-Refine Strategy

The MESSAGES section of a specialist contains a list of message procedures which specify how
the specialist will respond to different messages from its superapecialist. ESTABLISH and REFINE are
the predeflned massages In OSRL though others may be created by the user. The establish message
procedure of a spedcalst determines the confidence value (i.e., the degree of fit) of the speciallst's
hyp.flhesis. FIgure 6 illustrates the estabish message procedure of the BadFuel specialist, relevant and
summary are names of knowledge groups of BadFuel (see previous section). SELF Is a keyword which
ref" to the name of the specialist This procedure first tests the value of the relevant knowledge group.
(ift iis knowledge grrmup has not already been evaluated, it is automalically evaluated at this point.) If It is
-ad_ r than or equal to 0, then BadFuel's confidence value is set to the value of the summary knowledge

-~_.-p, else it Is Met to the value of the relevant knowledge group. A value of +2 or +3 indicates that the
ulo,,•st Is established. In this cse, the procedure corresponds to the following strategy.

First perform a prellminary* check to make oire that BadFuel is a relevant hypothesis to hold. If it is not
(the relevant knowledge group is less than 0), then set SadFuel's confidene value to the degree of
relevance. Otheise, perform more complicated reasoning (the summamy knowledge group combines the
values of other knowledge groups) to determine BadFuel's confidence value.

The refine messaga procedure determines what subspeciallsts should be Invoked and the
messages they are sent Figure 7 shows a refine procedure which Is a simplified version of the one that
BadFuel uses. SUBSPECIALISTS is a keyword which refers to the subspecialists of the current
specialist The procedure calls each subapedalOst with an ESTABLISH message. If the subspecallst
establihes ItseO (+? tests If the confidence value Is +2 or +3). then it is sent a REFINE message.

179

(ESTABLISH (IF (GE relevant 0)
THEN (SETCONFIDENCE self summary)

else (SETCONFIDENCE self relevant)))

FIgure 6: Establish procedure of BadFuel. flit has been evaluated not to be relevant, that sets the

confidence value to be negatiWe. I It is relevant then more complex matching is invoked to set the
confidence value.

(REFINE (FOR specialist IN subspeclallsts
DO (CALL specialist WITH ESTABLISH)

(IF (+? specast)
THEN (CALL specialist

WITH REFINE))))

Figure 7: Example refine procedure. This specifies the control behavior for exploring the successors of

a classificatory hypothesis that has been established.

3.0A The Computational Advantages of Hierarchical ClassificatIon
The major advantage of a hierarchical classification system Is the organization of both the hierarchy

of malfunctions and the knowledge groups within a specialist. This organization allows an efficient
examination of the knowledge of the system based on need.

Consider again the hierarchy of Figure 2. The problem solving begins by evaluation of the specialist
Fuel System Problems. If that specialist establishes, then the two sub-specialists Bad Fuel Problems and
Fuel Mixture Problems are Invoked. If however, the Bad Fuel Specialist does not establish, then nr.,ne of
its sub-specialists will be Invoked. Thus, If a specialist rules out (I.e does not establish), then none oi the
knowledge of the sub-specialists need be run.

The same Is true of the knowledge groups In the specialest. Only that knowledge necessary to
confirm or deny the knowledge group Is run. It a row of the knowledge group matches, then none of the
subsequent rows are evaluated. Again, this results In running only the knowledge necessary for the
problem at hand.

Compare this with other hierarchical approaches to diagnosis. The fault tree Is a sequence of
causally related events that leads to an observable symptom In the system. Given an Initial malfunction,
all possible causal results of the event are traced out, terminating with the symptoms that would be
observed by a human diagnostician. When applied to an entire system, the result Is a network of events
that represent all the causal relationships of the system's constituent parts. While useful in design tasks,
applIcatio of fault trees to diagnosis has a number of problems.

1. The combinatorial fan-out from an Initial event can be very large. This makes the job of

creating and traversing the network difficult. Compare this with the abstraction of

hypotheses In hierarchical classification systems. Each node In the hierarchy represents a.

malfunction hypothesis that Is listed In more detail through Its sub-specialists. If many

sub-specialists occur in the hierarchical decomposition of the domain, more levels of

180

abstraction can be introduced to limit the fan-out. Such abstraction does not exist In fault

tree representations.

2. Fault trees make no attempt to limit the number of nodes of the network that must be

evaluated. Given a significant event, all possibilities are examined. However, hierarchical

classifiers make use of the abstraction of malfunction hypotheses to limit the number of

nodes that must be examined based on the data of the case.

The issues of control and communication in hierarchical classification can be more complex than
our description in this paper. Gornez and Chandrasekaran (221 describe the use of blackboards In
exchanging Information between different poarons of the hierarchy. Sticklen, et al (381 describe the more
complex control Issues that need to be faced In some sjaflons, and StIcklen (391 describes the use of
multiple hierarchies in classification.

3.d Hypothesis Assembly In Diagnosis
In typical diagnosis problems, the available data cannot always be explained by one malfunction

hypothesis, but may require several hypotheses which must be combined in order to account for the
observations. As the space of hypotheses grow in size, the problem of finding the best combination of
hypotheses which apply to a particular situation becomes exponentially more difficult. Hierarchical
classification can trim down the space of applicable hypotheses tremendously, yet it may still be
necessary to find a subset of the hierarchy's plausible candidates which gives the simplest and best
diagnosis.

For example, suppose that the Auto-Mech hierarchy were extended to classify malfunctions for
other car subsystems, including the braking mechanism. When classifying a case which has data such
as "The car won't start when cold,* "The engine runs roughly," "The brakes are hard to push,* and *The
car doesn't stop quickly," several diagnostic hypotheses may be found to be applicable, such as 'water in
fuel' and 'loss of brake fluid', among others. In this case, the classification hierarchy has trimmed the set
of all fuel and brake system diagnostic hypotheses down to a handful of highly relevant ones. However,
the classification mechanism as such is Incapable of determining whether this subset of relevant
hypotheses accounts for all of the data. Furthermore, some of these hypotheses may be inconsistent or
superfluous with respect to each other. Therefore, it is necessay to invoke a process of hypothesis
assembly to complete the diagnosis by assembling a parsimonious subset of these hypotheses which
gives the best explanation. In this case, the final subset of hypotheses could be 'water in fuel' and 'loss of
brake fluid', since both are highly plausible, between the two of them they account for all the data, and
neither is Inconsistent or superfluous with regard to the other.

To carry this example further, it is possible that the hypothesis assembler may uncover relevant
relationships which are only Impliciy represented in the classification hierarchy. For example, in some
models of car the vacuum generated by airflow through the engine Is diverted to assist the braking
mechanism. Thus a punctured vacuum hose reduces the airflow through the carburetor, causing the
engine to run roughly, and disabling the assistance to the brakes. When running the Auto-Alech
hierarchy on the previous case, for an appropriate model of car, the following hypotheses may be found
to be relevant: 'engine vacuum hose punctured' and 'brake vacuum assist inoperatonal'. Both of these
hypotheses need to be present In the classification, hierarchy, because the first refines the 'engine
problem' hypothesis, whereas the second refines tho 'brake system problem' hypothesis. In this case,
however, it is clear that the second problem is causally related to the first. Therefore, when the
hypothesis assembler Is putting together the best explanation for hypothesis assembler Is putting together
the best explanation for the data, It will uncover that 'engine vacuum hose punctured' accounts for all the
data that Wbake bacuum assist Inoperational' accounts for, and propose 'engine vacuum hose punctured'
as a one-hypothesis set which best explains the data.

181

Combining the process of hierarchical classification and hypothesis assembly In this way results in
an efficient process for diagnosis. Classification without assembly cannot evaluate the final diagnosis In
the case of multiple failures. Assembly without classificalton Is an intractable problem in the general
case. The issue of complesity in hypothesis assembly Is particularly noticeable in the medical domain,
where physiological and anatomical subsystems interact in highly complex ways, When both generic
tasks are combined, however, their interaction reduces the complexity of the diagnostic problem while
maintaining the ability to find the best explanation when there is one.

Josephson, et al [271 Is a good source of how the abductive assembly process works. Punch et al
[341 describe the tool PEIRCE, which Is Intended to build abductive assembly systems.

3.e Applications of the Abductive Architecture
A number of diagnostic systems have been built using the hierarchical classification approach

provided by the CSRL tool. This section enumerates some the these applications and their domains.

It should be noted that of the following systems, Auto-Mech is strictly a pedagogical system, the
Nuclear Power and Chemical Engineering systems are initial explorations for yet to be developed
systems and Red, WELDEX and ROMAD are being developed to be used in real world situations.

Auto-Mech [40]

Auto-Mech is an expert system which diagnoses fuel problems in automobile engines. The
purpose of the fuel system is to deliver a mixture of fuel and air to the air cylinders of the engine. It can
be divided into major subsystems (fuel delivery, air intake, carbuertor, vacuum manifold) which
correspond to initial hypotheses about fuel system faults.

Auto-Mech consists of 34 CSRL specialists in a hierarchy. which varies from four to six levels deep.
Before running, Auto-Mech collects some initial data from the user. This includes the major symptom that
the user notices (such as stalling) and the situation when this occurs (e.g., accelerating and cold engine
temperature). Art/ additional questions are asked while Auto-Mech's specialists are running. The
diagnosis continues until the user Is satisfied that the diagnosis is complete.

A major part of Auto-Mech's development was determining the assumptions that would be made
about the design of the automobile engine and the data that the program would use. Different automobile
engine designs have a significant effect on the hypotheses that are considered. A carbureted engine, for
example, will have a different set of problems than a fuel injected engine (the former can have a broken
carburetor). The data was assumed to come from commonly available resources. The variety of
computer analysis information that is available to mechanics today was not considered In order to simplify
building Auto-Mch.

Red [371

Red Is an expert system whose domain is red blood cell antibody Identification. An everyday
problem that a blood bank contends with Is the selection of units of blood for transfusion during major
surgery. The pdmary difficulty Is that antibodies in the patient's blood may attack the transfused blood,
rendering the new blood useless as well as presenting additional danger to the patient. Thus identifying
the patient's antibodies and selecting blood which will not react with them is a critical task for nearly all
red blood transfusions.

The Red expert system is composed of three major subsystems, one of which Is implemented In
CSRL The non-CSRL subsystems are a data base which maintains and answers questions about
reaction records (reactions of the patient's blood In selected blood samples under a variety of conditions),
and a overview system, which assembles a composite hypothesis of the antibodies that would best
explain the reaction record. (This assembly is itself a generic task called "abductive assembly" and a tool
called PEIRCE can be used to build the assembly system.) CSRL Is used to implem--ent specialists

182

corresponding to the common blood antibodies and to each antibody subtype (different ways that the
antibody can react).

The major function of the specialists Is to rule out antibodies and their subtypes whenever possible,
thus simplifying the job of the overview subsystem, and to assign confidence values, informing overview
of which anttboclies appear to be more plausible. The specialists query the data base for Information
about the lab test results and other patent Information, and also tell the data base to perform certain
operations on reaction records.

Complex Mechanical Systems

CSRL. has been used In creating expert systems that do diagnosis of faults both in the domain of
Nuclear Power Plants arid in the domain of ,',hemlcal Eng'neerlng.

The Nucksar Power Industry must be very careful In the maintenance of running power plants since
mistakes can prove costly not only in terms of p.wer plant damage but also in terms of radiation leakage
and broad environmental damage. Nuclear Power Plants are therefore heavily monitored in many areas,
so heavily in fact that it is difficult (if nrot impossible) for the operator to maintain an uaderstandI'q o' just
what exactly is going on. The Nuclear Power Plant expert system (231 is designed tc t•ae in large
amounts of data and classify them into ono of approximately 25 different failures. One advantage of the
CSRL approach is that the operator can be informed of a high level view of the problem if no specific
failure can be discovered.

The problems of the Chemical Engineering Plant are slmilaw, but it does have a number of
differences. While safety is also of concern, there is also the problem of product quality in a Chemical
Engineering Plant If 4 malfunction occurs that produces an unusable product, the operation must be
brought quickly back Into line or large amounts of material will be wasted. The Chemica! Engineering
expert system (36] does diagnosis of a typical reactor producing a solid product ae a result of the reaction
of liquid product and oxygen. It consists of approximately 30 specialists that represent hypotheses about
failures of the various physical parts of the plant. In addition to data that monitors the state of the reactor,
these specialists also use data about product quality to "uke the confidence value decision.

Other Real World Uses of CSRL

CCRL Is being used to develop two commercial systems by the Knowledge Based Systems group
at the Battelle Columbus Institute. WELDEX and ROMPAD are diagnostic systems for, respectively,
detecting welding defects and evaluating machinery. A bdef description of WEILDEX follows.

WELJ.X identifies possible defects In a weld from radiographic data of the weld. Industry
strafdads and r"ulations require careful inspection of the entire weld and a very high level of quality
control. Thus for Industries which rely on welding technology, such as the gas pipeline industry,
radiograph inspectic n Is a tedious, time-onsuming, and expensive part of their operations.

This problo.,i can be decomposed Into two tasks: visual processing of the radiograph to extract
relevant featurer of the weld, and mapping these visual features to "he welding defects which give rise to
them. WELDFJ(Is intended to perform the second task. The current prototype consists of 25 CSRL
specialists t•,it are organized around different regiono of the weld, taking advantage of the fact that each
class of defects tends to occur in a particular region. The k-howledge groups in these specialists
concentrate on optical contrast, shape, size and location of the radiograph features. A customer version
of WELDEX is currently being develc"ped. Future work is anticipated on developing a visual processing
system whose output would be processed by WELDEX, thus au•.orating both parts of the radiograph
inspection problem.

183

4 Routine Design and DSPL5

4.a Subprocesses in Design
Design is in general complex and, fromn the viewpoint of Al, a relatively poorly understood activity.

For our purposes here, it is useful to think of design problem solving as having two sets of parts: those
that "generate," i.e., propose designs or parts of designs and those that "test," i.e., analyze, critique and
evaluate designs. Evaluating a design may involve problem solving behavior such as qualitative
simulation (e.g., to see if the projection from the wheel will rub against' the body during rotation) or
quantitative analyses (e.g., finite element methods to evaluate stress in a design component to see if the
maximum stress is below the specifications), but these processes are not specific to design as a problem
solving activity. On the other hand, the processes that participate In the "generate" portion are specific to
design. In [161 we have Identified some of these generic processes:

* design problem decomposition;

* design plan instwtiation and expansion,

* retrieval and modification of similar designs and,

e global satisfaction of constraint equations.

Among the above four processes, the first two are especially important for the discussion In this
paper. In design by decomposition pre-stored domain knowledge Is available which proposes possible
decompositions of the design problem into specific subproblems, each hopefully of lesser complexity. In
design by pV.,:ý z-)ýcion, instanftitin and refinement, similarly a prestored design plan is available
setting out a , .o , % - ame of herm irrvolving making some design comritments and others possibly
involving calnr,,: other design plans, for solving the design problem at hand. The combination
decomposton and design plan instantlation and refinernut c•.n lead to quite complex problem solving.
In design from past cases, both the decomposition ano design pian tee Implicitly available for a previous
design caso, but they typically call for further criticism and modification.

4.b Classes of Design
The framework suggests that design by decomposition (i.e., breaklig problems into subproblems),

by plan selection, and by plan synthesis (as a last resort) are the core processes In knowledge-based
design. This suggests an Informal ciasalfication of design problems based on the difficulty of these
subtasks or processes.

4.b.1 Claim I Melign
This is cpen-endod "creavWe" design. Goals are Ill-specified, and there is no storehouso of

effective decompositions, not to speaol of design plans for subproblems. Even when decomposition
knowledge Is available, most of the effort Is in searching for potentially useful problem decompositions.
For each potential subptablem, further work has to be done in evaluating if a design plan can be
constructed. This design problem is not routine. The average design.:r in industry will rarely, if ever, do
Class I design: such design :sads to an invention or new products.

5Paf of this section ta.en from a number of joint papers by the author with D. C. Brown.

844

4.b.2 Class 2 Design
Class 2 design Is characterized by powerful problem decompositions already available, but design

plans for some of the component problems in need of de novo construction or substantial modification.
Design of a new automobile, e.g., does not involve new discoveries about decomposition: the structure of
the automobile has been fixed for quite a long time. On the other hand, several of the components In it
constantly undergo major technological changes, and routine methods of design for some of them may no
longer be applicable.

Complexity of failure analysis will also take a problem away from routine design. Even if design
plans are available, if the problem solver has to engage in very complex problem solving procedures in
order to decide how to backtrack, the advantage of routine design Is reduced. In short, whenever
substantial modifications of design plans for components are called for, or when synthesis in the design
plan space is especially complicated, we have a Class 2 problem.

4.b.3 Class 3 Design
This is relatively routine design: effective problem decompositions are known, compiled design

plans for the component problems are known, and actions to take on failure of design solutions are also
explicitly known. There is very little complex auxiliary problem solving neaded. In spite of all this
simplicity, the design task Itself is not trivial: complex backtracking can still take place. The design task is
still too complex for simple algorlthric solutions or table look up.

Class 3 pr,ý.,oks are routine design problems, but sill requiring knowledge-based problem solving.
The ensuing ;o -f V tus paper deal with an approach to building knowledge-based systems for
routino design problemt t. ts type. The processes described here can work in conjunction with auxiliary
problem solvers of variour, types, but we do riot di•suss such additional problem solvers here. The
examples used all assume that thre information 11o be provided by thie auxiliary design processes, e.g.,
design criticism, verification, and subproblem constraint genergion, are all available in a compiled
manner.

4.b.4 A Class 3 Product
In a large number of Industrie-i, products are iallore• 'io. i'ý 1, ulaion site while retaining the same

structure and general properties. For example, n . u-ci , rd• r in•tended for accurate and reliable
backward and forward movement of some comp onent will i •ea to ue redesigned for every new customer
in order to take into account the particular s.ace tto which it must fit or the Intended operating
temperatures mn pressures. This 'A a design tatk, b it a relatively unrewarding one, as the designer
knows at each uoge of the design whý.t '),a optio; A are and in which order to select them. Note that that
doean't mean that the designer knows t., complete equence of steps In time (i.e., the trace) in advance,
as the designer has to be in the problem ,,olving sit• don before each decision can be made. There are
just too many combinations of requlremervsi and desik .n situations to allow an algorithm to be written to do
the job. This class of problems, while s-nple, is not by any means trivial: in fact, a typical class 3
problem Involves more complex problem t.,ilving behavior at the design level than say is implicit in RI
[291.

DSPL Is a language designed by D. C. Brown [31 which captures the pr• •n dsompositiori
knowledge in the form of a design hierarchy of design specialists and the planning kno.uvledge of each
specialist is in the form of design plfns. The specialists also have a certain amount of compiled failure
handing knowledge, i.e., knowledge to help them recover when any of the chosan plans fall to
accomplish their rmission.

The approach taken is to consider design knowledge to be in the form of active cooperating design
specialists. These specialists are organized in a hierarchy that reflects the human designeres conceptual
organizagon of the design activity. Specialists use their own local design knowledge, but can also use the
specialists directly below them in the hierarchy. This use Is controlled by plans embedded in every
specialist. Each 5pecialist is responsible for some portion of the design, while It plans represent
alternative methods for dselgnlng that portion. Communication between specialists Is In the form of
messages that flow up and down the hierarchy between the specialists and between their local agents

185

(I.e., local design knowledge)6. Messages flowing up may indicate failure or success.

The domain chosen was that of designing an Air Cylinder that was used by a local company in
many pieces of equipment but which needed to be designed again each time due to changing
requirements, such as the air pressure and the length of the stroke. A system called AIR-CYL has been
written that does the design given a set of requirements.

Tho rest of this section will describe DSPL using the example of AIR-CYL (4].

4.c DSPL : The besign Specialists and Plans Language

Figure 8: An air-cylinder

The air cylinder (AC) has about 15 parts, almost all of which are manufactured by the company
according to their own designs, as their requirements are such that the components cannot be
purchased. The AC Is redesigned and changed slightly for applications with markedly different
requirements. This characteristic makes it routine design in type. In operation, compressed air forces a
piston back Into a tube against a spring. Movement is limited by a bumper. The spring returns the piston,
and the attached "load," to its original position when the air pressure drops.

The corresponding design specialist hierarchy is given in Figure 9. The expert system for design of
aircylinders Is organized as a hierarchy of such specialists.

DSPL provides a way of writing declarations of Specialists, Plans, Tasks, Steps, Constraints,
Failure Handlers, Redesignors, Sponsors and Selectors, allowing the uwer to specify the knowledge
contained in them. In the following sectior, we wvll address each of these declarations In turn.

$We use Ow. lmn "agmnr to domo any chtu* d knowledge Ma poifarms sete wkh welIde(ined f•uon iona to R. The
Urm "specileli refers to Utheat agents whidi carrespondl to the moese In Owe part-subpart hlecatchy of the oIboc under deelojn.
Each upedi• oonalft of fawlw agenlr Wch take eave of th suasks d the xpecWWAiaLa In OSPL.. twe• agenis come In a
mac- od d frntm t"em.

"186

Air Cylinder

Spring Head Rest

Cap Piston and Rod

Piston Rod

Figure 9: Specialist hierarchy for designing air cylinder. Design hierarchies may follow a

functfon-sub function or a part-subpart or a combinaion thereof as princples for organizing the hierarchy.

To build a Design Expert System (DES), the user declares in DSPL all the agents (i.e., active
design knowledge) required, and then allows the underlying system to link them together after some
checking. Once formed the DES can be invoked by requesting a design from the top-most specialist.
The design then proceeds according to the specialist's plans. After a successful termination the design
data-base contains the completed design. If falure occurs reasons are given. The DSPL system
provides the underlying problem-solving control.

4.c.5 Design Agents
Specialists

A Specialist is a design agent that will attempt to design a section of the component. The
speci•ists chosen, their responsibilities, and their hierarchical organization will reflect the mechanical
designeres underlying conceptual structure of the problem domain. Exactly what each specialist's
responsibilities are depends on where in the hierarchy it Is placed. Higher specialists have more general
responsibilities. The top-most specialist Is responsible for the whole design. A specialist lower down In
the hierarchy will be making detailed decisions. Each specialist has the ability to make design decisions
about the part, parts or function in which It specializes. Those decisions are made in the context of
previous design decisions made by other specialists. A specialist can do its pIece of design by itself, or
can utilize the services of other specialists below it in the hierarchy. We refer to this cooperative design
activity of the specialists as Design Refinement.

Evory specialist aiso has some local design knowledge expressed In the form of constraints. These
will be used to decide on the suitability of ir'comlng requiremennts and data, and on the ultimate sL',:ess of
the specialist itself (i.e., the constraints capture those major things that must be true of the specialist's
design before It can be considered to be successfully completed). Other constraints, embedcded In the
specialists plans, arm used to check the correctness of intermediate design decisions. Still more
constraints are present in the design data-base as general consistency checks. A typical specialist is
shown In Figure 10.

The Selectors will be used to select from amongst the specialists plans. If no selcor is specified a

187

(SPECIALIST
(NAME Head)
(USED-BY AirCylinder)
(USES None)
(DESIGN-PLANS HeadDP1)
(DESIGN-PLAN-SELECTOR Headdpselector)
(ROUGH-DESIGN-PLANS HeadRDP1)
(INITIAL-CONSTRAINTS None)
(FINAL-CONSTRAINTS None)

FIgure 10: Speciaist "Head'" The code specifies the location of the design specialist in the hierarchy,

names the design plans that are used by it and the constrai& that Its parameters may need to satisfy.

default selector will be used which selects plans in declaration order. Note that In this declaration, as with

others, the order of the individual parts of the declaration may vary according to the user's wishes.

Plans

Each specialist has a collection of plans that may be selected depending on the situation, and it will
follow the plan in order to achieve that part of the design for which it is responsible. A Plan consists of a
sequence of calls to Specialists or Tasks (see below), possibly with interspersed constraints. It
represents one method for designing the section of the component represented by the specialist. The
specialists below will refine the design independently, tasks produce further values themselves,
constraints will check on the integrity of the decisions made, while the whole plan gives the specific
sequence in which the agents may be invoked. Typically as one goes down in the hierarchy, the plans
tend to become fewer in number and more straightforward. An example of this is shown Figure 11.

(PLAN
(NAME HEADDP1)
(TYPE Design)
(USED-BY Head)
(SPONSOR HeadDP128ý
(BODY HeadTubeSeat)

MountingHoles
Bearings
SealAndWiper
AirCavfty
AirInlet

(CHECK-CONSTRAINT Air)
TieRodHoles

(REPORT-ON Head)

FIgure 11: Pian "HeadOPl". The design plan specifies the specalist that uses it, what ctiteda should be

Wet for It to be chosen, and the plan steps.

The type of a PLAN can be "Design" or 'RoughDesign" depending on which phase of tile design

the kmwledge applies to. 7he SPONSOR's job Is to give an opinion to a sel6ctor about how suitable this

188

plan Is given the current state of the design. The BODY contains the details of the plan, and consists of
an ordered list of plan items. In this example the plan consists entirely of tasks, with the exception of a
constraint test and the last item which is a function provided by DSPL to print out the attributes and
values of some part of the design.

Steps, Tasks, and Constraints
We consider a Step to be a design agent that can make one design decision given the current state

of the design and taking into account any constraints. For example, one step would decide on the
materis. for some subcomponent, while another would decide on its thickness.

(STEP
(NAME *-JrCavitylD)
(USED-BY AirCavity)
(ATTRIBUTE-NAME HeadAirCavitylD)
(REDESIGNER AirCavityIDRedesigner)
(FAILURE-SUGGESTIONS

(SUGGEST (DECREASE RodDlameter))
(SUGGEST (DECREASE HeadBearingThickness))
(SUGGEST (CHANGE HeadMaterial

TO DECREASE MinThickness))

)
(COMMENT *Fnd air cavity internal dlazm)

(BODY
(KNOWN
BearingThickness

(KB-FETCH 'Head 'HeadBearingThlckness)
RodDiameter

(KB-FETCH 'Rod 'RodDiameter)
HeadMaterlal

(KB-FETCH 'Head 'HeadMatedal)
MiniThickness

(KB-FETCH HeadMaterial 'MinThickness)
)
{Continued in next figure)

Figure 12: Step "AirCavitylDO.

A typical STEP In AIR-CYL Is given In Figures 12 and 13. The STEP Is broken down Into two
figures for convenience in display, and should be treated as one figure. A brief explanation of the role of
the knowledge In the STEP is as follows. The sample STEP is USED-BY the AirCavity task. The
ATTRIBUTE-NAME is the attribute for which this step Is to design a value; that Is, the Internal Diameter of
the Air Cavity In the Hoad of the Air Cylinder. If a failure occurs the REDESIGNER will attempt to recover
•from it by altering the value just selected for this step's attribute. The declaration REDESIGN NOT-
POSSIBLE Is also allowed. If the step Itself fails the FAILURE-SUGGESTIONS get passed up to the
controlling task In a failure message. The suggestions refer to attributes that might be the cause of the
failure. Each item in the suggestion list is evaluated at failure time. This allows conditional suggestions
such as (IF (. x y) THEN (SUGGEST ..)). Howeier, if the suggestion Includes an expression, as in
(DECREASE xyz BY (+ pqr o.50)), then tho SUGGEST function will arrange for the value to be computed.
The actions DECREASE, INCREASE or CHANGE refer to atbibutC'z, such as RodDiameter. In the
current system all attribute names. must be unique.

The BODY of the step Is divided In KNOWN and DECISION sections. The koywirds KNOWNS
and DECISIONS will work just as well, and, in general, singular or plural keywords may be used as

189

(Continued from previous figurea
(DECISIONS
MaxRodRadlus (VALUE+ (HALF RodDlameter))
MaxBeardngThlckness

(VALUE+ BeadrngThickness)
AlrCavityRadius

(÷ MinThickness
(+ MaxRodRadlus

MaxBeadngThickness))
AirCavityID (DOUBLE AIrCavityRadius)
REPLY (TEST-CONSTRAINT ACID)
REPLY (KB-STORE

'Head 'HeadAlrCavityID AirCavitylD))

Figure 13: Step *AWrCavitylD" continued.

required. The KNOWN section obtains the values from the design data-base by doing KB-FETCH. The
KB-FETCH uses the component and attribute names. The single quote (I.e.,)is used to Indicate that the
name given is to be used directly without evaluation, as opposed to the use of a variable (e.g.,
HeadMaterial) that should be evaluated prior to use (eg., HeadMaterial) that should be evaluated prior to
use (e.g., giving the value "Aluminum').

The DECISIONS sections contains the design knowledge. It consists of variable-actlon pairs,
where the action is evaluated and its value assigned to the variable. That variable may then be used in
subsequent actions In the step. The variables set in the KNOWNS section may also be used. Arithmetic
expressions use prefix operaors. The function VALUE+ returns the value plus the positive tolerance of
the value, and consequently provides the largest magnitude for that value. There are many other
functions available.

There are two distinguished variable names. One is PEPLY, the other COMMENT. A commernt
will act as a dummy assignment and will expect a string as the action. This is just a way of inserting a
comment into the body of the step. A REPLY variable Is used when there Is no value produced by the
action but a message showing success or failure is produced instead. The TEST-CONSTRAINT and the
KB-STORE are two examples. The value calculated by the stop Is put into the design data-base with a
KB-STORE. It can produce a failure messa.ae If a constraint in the design database falls. Any failure will
stop the execution of the body and ,vi cause the DECISION section to fall.

A task is a design aWet which Is expressed as a sequence of steps, possibly with interspersod
constraints. it Is responsible for handling te design of one logically, structuraily, or functionally coherent
section of the component; for example a seat for a seat, or a hole for a bolt.

A Constraint is an agent that will test for a particular relationship between two or more attributes at
some particular stage of the design. Constraints can occur at almost any place In the hierarchy. For
example, a constraint might check that a hole for a bolt is not too small to be machinable given the
material being used.

4.c.6 Other Features
The •rin purpose of this exposition Is not to give a complete description of DSPLý but to give a feel

for the task-specific nature ot the tool. A few other essential fe•tures of the language will now be briefly
dascribed.

F,*um HaMWng wn Redosigit capability is an important requirement for anything other than

190

relatively simple design problems. DSPL does not have failure analysis capabilities, but It can accept
explicit knowledge about how to handle different kinds of failures during design. All design agents detect
their own failure, are able to determine what went wrong (at least superficially), attempt to see if they can
fix it locally, do so If they can, and report failure only if all attempts fail. Agents which have some control
over other agents can use those agents in their attempt to correct the detected problem.

Each kind of agent can have different kinds of reasons for failing. For example, a step finds that a
decision violates some constraint, a task discovers that a step's failure can't be mended locally, a plan
.can fail if it Is discovered that it's not applicable to the situation to which It is being applied, while a
specIailst can fail if all of its plans fall.

For every kind of failure a message giving details is generated and passed back to the calling
agent. The message Includes, wherever possible, suggestions about what might be done to alleviate the
problem. As there are usually many kinds of problems that can occur, an agent will first look at the
message to decide what went on below. This is done by the Failure Handler associated with the agent.
Much of the failure analysis is provided by the system, but for some cases, for example for constraint
failures, the user (that Is the person using the plan language to write a design system) has to supply some
details. For some conditions immediate failure can be specified, for others an attempt to redesign might
be made.

Knowledge about how to recover from failure can be coded as a redesigner. There appears to be a
difference between the 'most reasonable choice' knowledge encoded In the step and the 'most
reasonable adjustment' knowledge encoded In the redesigner. The language provides a number of
constructs for representing failure handling knowledge of the above types.

Sponsors and ,etectors: A sponsor Is associated with a plan and It Is responsible for estimating the
suitability of a plan for a particular design situation. A selector takes the output of the sponsor and will
decide whether or not to use the plan if it has been recommended as suitable. The sponsor is expected
to provide a suitablity value for the plan, and if it cannot, a *use of plan language* failure will occur.

The selectortakes as Input the names of the plans being considered and their sultabilities for use in
the design situation as decided by their sponsors. It will pick a plan for the specJalist to execute.

4.c.7 Use and Extensions of DSPL
This section has discussed the idea of languages in which to express problem-solving knowledge,

and has presented the language DSPL for a class of design problem-solvIng. DSPL embodies an
underlying theory of routine design problem-solving. Examples of Specialist, Plan, Task, Step,
Constraint, Redesigner, Failure Handlar, Sponsor, and Selector knowledge were given. Most of these
exampl were taken from AIR-CYL. an export system to design an Air Cylinder.

DSPL has been used for the construction of MPA, a system for routine logistics planning (11], arid
In the construction of a design system in the domain of chemica engineering (321.

More work needs to be done to test the applicability of this language to other design problems and
other domains. Extew•lons to the theory ma~st be made In order to handle design activity which Is not of
the type where both problem-solving and knowledge are known In advance. We feel that the
"Identification of some of the types of design knowledge and the~r uw Is a substantial contribution towards
understanding routine deign activity.

5 The Generic Task Toolset

191

5.a Important Properties of the Toolset
So far, we have outlined the generic task theory and also described two such generic task tools:

CSRL and DSPL Tools corresponding to other generic tasks are also In existence in varying degrees of
completeness. These tools are currently available for the Interlisp/Loops environment in the Xerox 1100
series of Usp machines. CSRL and DSPL are also available in versions that are compatible with the KEE
development system of Intellcorp. CSRL is also available in Commonllsp 7. Currently, a project Is under
way at our Laboratory for the entire toolset to be made available in Commonllsp.

The integrated generic task toolset is extensible in the sense that more generic tools can be added
as they are invented and additional problem solvers can be invoked as needed. The tools are intended to
ensure the following advantages of the generic tasks, as described in [81.

Multiformity. The more traditional architectures for the construction of knowledge based

systems emphasize the advantages of uniformity of representation and inference. However,

in spite of the advantage of simplicity, we argued earlier that uniformity results In a level of

abstraction problem. A uniform representation cannot capture important distinctions between

different kinds of problems. A uniform inference engine does not provide different control

structures for different kinds of problems.

The generic task approach provides multiforrnity. Each generic task provides a different way

to organize and use knowledge. The knowledge engineer can choose which generic task is

the best for performing a particular function, or can use different generic tasks for performing

the same function. Different problems can use different generic tasks and different

combinations of generic tasks.

", Modu/artfy. A knowledge-based system can be designed by making a functional

decomposition of its intended problem solving into several cooperating generic tasks, as

Illustrated In our discussion on diagnosis. Each generic task provides a way to decompose a

particular function into Its conceptual parts, e.g., the categories for hierarchical classification,

and allows domain knowledge of other forms to be Inserted into a generic task, e.g.,

evidence combination knowledgo In hierarchical classification [391. Each generic task

localizes the knowledge that is used to satisfy local goals.

"* Knowledge AcquisiioiL Each generic task is associated with Its own knowledge acquisition

strategy for building an efficient problem solver [71. For example In hierarchical classification,

the knowledge engineer needs to find out what specific categories should be contained in the

'csM In avakCie aa , vippotr pWodu from Ba&BN hhmoral Lab**wift, AMw Iclaiumc Grmp, In Oownbw, Ohio,

kiohx~g vW.vsior in Co1P.

192

classificatlon hierarchy and what general categories provide the most leverage for the

establish-refine strategy.

"* Explanation. This approach directly helps in providing explanations of problem solving in

expert systems in two important ways: how the data match local goals and how the control

strategy operates (15]. Also, the control strategy of each generic task Is specific enough for

generating explanations of why the problem solver chose to evaluate or not to evaluate a.

piece of knowledge. This is because of the higher level of abstraction in which control is

specified for generic tasks.

" Exploting Interacton between Knowledge and Inference. Rather than trying to separate

knowledge from its use, each generic task specifically integrates a particular way of

representing knowledge with a particular way of using knowledge. This allows the attention

of the knowledge engineer to be focused on representing and organizing knowledge for

performing problem soMng.

"* Tractability. Under reasonable assumptions, each generic task generally provides tractable

problem solving [1, 21]. (One major exception is abductive assembly, which can become

intractable under certain conditions, making it hard then for humans and machines to perform

the task.) The main reasons why they are tractable are that a problem can be decomposed

into small, efficient units, and knowledge can be organized to take care of combinatorial

interactions in advance.

It should be noted that these advantages are attained at the cost of generality. Each generic task
Is purposely constrained to perform a limited type of problem solving and requires the availability of
appropriate domain knowledge.

5.b Integrating and Combining Gr' In an Application
It is h~ard at this overview level to give enough details of how the tools are to be combined to put

together complex applications. There are both significant theoretical Issues of integration as well as
"practical issues of technology and implementation In this regard. The diagnosis example is a good
example to discuss the practical Issue oW how the tools in the toolset can be combined for an application.

We need to make the following distinctions that will be helpful here. Each tool such as CSRL can
be regarded a a "shell" of a particular p.s. type. When the tool Is Im-toked srd krr)wledge and Inference
encoded using the knowledge primitives and message types, we have a pa ,n ,dVr1 and different
problem solvers built with the same shell can (and will typically) exist rn an , Each of the
problem solvers is a specialist In tm different senses: It speciaizes in a parnuiar body of knowledge
and In a type of problem solving, e.g., the automech (domain/concept) hierarchical classifier (type of
problem solvirvj) built out of CSRL, or the aadFuel (domaln/concept) hypothesis matcher (type of problem
solving) built out of HYPER, or the AIRCYL (domain/concept) hierarchical designer (type of problem
solving). A given problem solver will typically need to access other problem solvers for Information to

193

continue its problem solving, e.g., the BadFuel matcher will need to know if various specific data items are
present and for this it will need to access the data Inference problem solver built from the tool IDABLE.

When the KBS is being built using the tools in the toolset, the knowledge engineer controls and
directs the interaction among problem solvers by shaping and directing the messages appropriately.
Without getting Into details, the idea is simple: Each problem solver is characterized'by (i) the kind of
questions It can accept: e.g., the Badfuel matcher can accept messages that concern confidence values
about the Badfuel concept and (1i) the kind of questions that it can ask, e.g., Badfuel concept can ask the
database problem solver for values of specific data attributes. In the current version of the toolset these
decisions have to be explicitly made by the knowledge engineer, I.e., which problem solver has to send
what types of queries to what other problem solvers has to be specified at the time the system Is being
builL The toolset itself Is built on top of a substratum that is object- and message-oriented so that building
additional generic tools within the franmework Is a straightforward thing to do. See [26] for details ori how
the toolset is built up in this way.

For a complex applcation which Involves portions which match the problem solving behaviors of
the tools In the toolset, but which also has portions which require other methods of reasoning and
representlon not included within the current toolset, escaping to the object level or even the ULsp level (as
In current Implementations) to program Al or numerical techniques may be necessary and the toolset

•Implementation supports this.

6 Concluding Remarks
In the late 70's, when we embarked on this line of research - characterized by an attempt to

identify generic tasks and the forms knowledge and controi required to perform them -- the dominant
paradigms In knowledge-based systems were rule and frame type architectures. While our work on
use-specific architectures was evolving, dissatisfaction kt the limited vocabulary of tasks that these
architectures were offering was growing at other research centers. Clancey [17] in particular noted the
need for specifying the information processing Involved by using a vocabulary of higher level tasks. Task-
level architectures have been gathering momentum lately: McDermott and his coworkers (281 have built
SALT, a shell for a class of design problems, where critiquing proposed designs by checking for
constraint-vIolations is applicable. Clancey [181 has proposed a shell called Heracles which incorporates
the heuristic clasification strategy for diagrsls. Bennett [21 presents COAST, a shell for the design of
configuration problem solving systems. All these approaches share the basic thesis of our own work, viz.,
the need for task-specific analyses and architecture support for the task. However, there are some
differences in assumptions and methodology in some cases that needs further discussion.

The following conceptual distinctions are useful:

* "Building blocks" out of which more complex problem solvers can be composed, such as the

tasks in the theory presented in the paper.

* Explicit high level strategies which we want a system to follow, where the strategies are

expressed in terms of some set of tasks. Clancey's Heuristic Classification is an example of

this. McDermott's and Marcus' Salt system uses a strategy called "propose and refine"

which is also of this type.

* Compound tasks, such as the form of diagnosis described in earlier In the paper. An

architecture for this compound task will bring with It its constituent generic tasks and also

help In integrating the problem solving from the viewpoint of the overall task. In our

194

Laboratory, we are at work on building such diagnostic-level problem solving architectures for

diagnosis of process engineering systems.

Tasks which do not necessarily correspond to those human experts do well, but nevertheless

can be captured as appropriate combinations of knowledge and inference and a clear

function can be associated with them, e.g., constraint satisfaction schemes. Bonnet's Coast

system is an example of this.

Once we identify task-level architectures as the issue for highest leverage, then a number of
immediate questions arise: what is the criterion by which a task is deemed to be not only generic but is
appropriate for modularzation as an architecture? How about an architecture for the generic task of
"investment decisions"? Diagnosis? Diagnosis of process control systems? Is uncertainty management
a task for which it will be useful to have an architecture? Are we going to proliferate a chaos of
architectures without any real hope of reuse? What are the possible relationship between these
architectures? Which of these architectures can be built out of other architectures? I do not propose to
answer all these questions here, but they seem to be the appropriate kinds of questions to ask when one
moves away from the comfort of universal architectures and begins to work with different architectures for
different problems.

At this stage in the development of these ideas, empirical investigation of different proposals from
the viewpoint of usefulness, tractability and composability is the best strategy. From a practical viewpoint,
any architecture that has a useful function and for which one can Identify knowledge primitives and an
inference method ought to be considered a valid candidate for experimentation. As the tools evolve, one
may find that some of the architectures are further decomposable Into equally useful, but more primitive,
architectures; or that some of them do not i.ap'esent particularly useful functionalities, and so on.

The generic tasks that are represented In our toolbox were specifically chosen to be useful as
technology for building diagnosis, planning and design systems with compiled expertise. For capturing
intelligent problem solving In general, we will undoubtedly require many more such elementary strategies
and ways of integrating them. For example, the problem solving activities in qualitative reasoning and
device understancding, e.g., qualitative simulation, consolidation, and functional representation All these
tasks have well-defined information processing functions, specific knowledge representation primitives
and Inference methods. Thus candidates for generic Information processing modules in our sense are
indeed many.

What does all this mean for an architecture of Intelligence?

I am led to a view of intelligence as an Interacting collection of funcionai units, each of which
solves an Information processing problem by using knowledge In a certain form and corresponding
inference methods that are appropriate. Each of these units defines an information processing faculty. I
discuss elsewhere [143 the view that these functional units share a computational property: they provide
the agent with the means of transforming essentially Intractable problems Into versions which can be
solved efficiently by using knowledge and Inference In certain forms. For example, Goel et al [211 show
how classification problem solving solves applicable cases of diagnosis with low complexity, while
diagnosis in general Is of high complexity. Knowledge is Indeed power, but how It acquires its power Is a
far subtler story than the first generation knowledge based systems made it appear.

This view generates Its own research agenda: As a theory, the generic tasks Idea has quite a bit of
work ahead of it in terms of a coherent story about how the tasks come together, are Integrated and how
more complex tasks such as planning come about from more elementary ones. How complex Inference
methods develop from simpler ones and how learning shapes these functional modules are Issues to be
investigatoed

195

The relationship of task-specific architectures such as the GT ideas in this paper to, on one hand,
more general architectures, such as SOAR [331, and on the other to "weak methods" is an intriguing one.
My view is that from, the perspective of modeling cognitive behavior, a GT-level analysis provides two
closely related ideas which give additional content to phenomena at the SOAR architecture level. On the
one hand, the GT theory provides a vocabulary of goals that a SOAR-like system may have. On the other
hand, this vocabulary of goals also provides a means of indexing and organ'-,: ng knowledge in Long Term
Memory such that when SOAR is pursuing a problem solving goal, appropnate chunks of knowledge and
control behavior are placed in Short Term Memory for SOAR to behave like a GT problem solver. In this
sense a SOAR-like architecture, based as it is on goal achievement and universal subgoaling, provides
an attractive substratum on which to implement future GT systems. In turri, the SOAR-level architecture
can give graceful behavior under conditions that do not match the highly compiled nature of GT-type
problem solving.

196

Acknowledgements
I am Indebted to my colleagues with whom I have written a number of papers over the years on the

generic task approach. In the preparation of this paper I have used excerpts from such papers. In
particular the papors by the author and W. Punch, the author and D. C. Brown, the author, T. C. Bylander
and John Josephson have been used. I acknowledge the assistance of Richard Fox and Vlbhu Mittal in
the preparation of this version of the paper. Matt Dejongh helped with some sections of. this paper. The
comments of John Fox, the editor of Knowledge Engineering Review, have helped improve the paper
substantially. I also gratefully acknowledge the support of the Defense Advanced Research Projects
Agency, RADC Contract F30602-85-C-0010, and the Air Force Office of Scientific Research, grant
87-0090.

References

(1] Dean Allemang, Michael C. Tanner, Tom Bylander, and John R. Josepshson.
On the Computational Complexfty of Hypothesis Assembly.
January, 1987
Proceedings of IJCAI-87, Milan, Italy, August, 1987.

[2] James Bennett.
COAST: A Task-Specific Tool for Reasoning About Configurations.
In Proc. AAAI Workshop on High-Level tools. AAAI, Shawnee Park, Ohio, 1986.

[3] Brown, D. C.
Expert Systems for Design Problem-Solving using Design Refinement with Plan Selection and

Redesign.
PhD thesis, The Ohio State University, August. 19834.

(4] Brown, David C. and Chandrasekaran, B.
Knowledge and Control for a Mechanical Design Expert System.
IEEE Conputer19:92-101, July, 1986.

[51 Buchanan, B., Sutherland, G. and Feigenbaum, E.A.
Heuristic DENDRAL. A Program for Generating Explanatory Hypotheses.
Organic Chemistry, 1969.

[6] Bylander, T., and S. Mittal.
CSRL: A Language for Classificatory Problem Solving and Uncertainty Handling.
Al Magazine 7(3):66-77, 1986.

[7] Bylander, T., Smith J. and SvIrbely, J.
Qualitative Representation of Behavior in the Medical Domain.
In Proceedings of The Fifth Conference on Medical Informatics, pages 7-11. Conference on

Medical Informatics, Washington, D.C., October 26-30, 1986.

[81 Tom Bylander and Todd R. Johnson.
Structured Matching.
1987
OSU CIS LAIR Technical Report.

[9] Chandrasekaran, B.
Towards a Taxonomy of Problem Solving Types.
Al Magazine :9-17, Winter/Spring, 1983.

[10] Chandrasekaran, B.
Generic Tasks in Knowledge-Based Reasoning: High Level Building Blocks for Expert System

Design.
IEEE Expert 1 (3):23-30, 1986.

197

(11] Chandrasekaran, B., and Tanner, M.
Uncertainty Handling In Expert Systems: Uniform vs. Task-Specific Formalisms.
Uncertainty in Artificial Intelligence.
North Holland Publishing Company, 1986, pages 35-46.
Kanal, LN. and Lemmer, J. (Editors).

[12] B. Chandrasekaran.
Towards a Functional Architecture for Intelligence Based on Generic Information Processing

Tasks.
In Proceedings of the Tenth International Joint Conference on Artificial Intelligence, pages

1183-1192. Milan, Italy, August. 1987.

[13] Chandrasekaran, B., Smith, J., Sticklen, J.
Deep Models and Their Relation to Diagnosis.
Technical Report,, 1987.
Invited paper, Toyota Foundation Symposium on Artificial Intelligence in Medicine, Tokyo, Japan,

August 1986, available as technical report from Laboratory of Al Research, Ohio State
University.

[14] Chandrasekaran, B.
What Kind of Information Processing Is Intelligence? A Perspective On Al Paradigms and A

Proposal.
This paper will appear in Source Book on the Foundations of Al, Partridge and WIlks, Editors,

Cambridge University Press.
1987

[15] Chandrasekaran, B., M. C. Tanner and J. R. Josephson.
Explanation: the Role of Control Strategies and Deep Models.
Expert Systems: The User Interface.
Ablex Publishing Corporation, Norwood, New Jersey 07648, 1988, pages 219-247.
Editor, James Hendler.

[161 Chandrasekaran, B.
Design: An Information Processing Level Analysis.
Technical Report, The Ohio State University, Columbus, Ohio 43210,1988.

[17] Clancey, W.J,
NEOMYCIN: Reconfiguring a Rule-Based Expert System for Application to Teaching.
In Proc. Seventh International Joint Conference on Artificial Intelligence, pages 829-836. IJCAI,

Vancouver, 1981.

[18] Clancey, W. J.
Heuristic Classification.
Artificial Intelligence 27(3):289-350, 1985.

119] Duda, R.O., Gaschnig, J.G., and Hart, P.E.
Model Design in the Prospector Consultant System for Mineral Exploration.
Expert System in the Microelectronic Age.
Edinburgh University Press, 1980, pages 153-167.
Editor, Michie, D.

[20] Friedland, P.
Knowledge-based Experiment Design In Molecular Genetics.
PhD thesis, Stanford University, Computer Sciance Department, 1979.

[21] Goel, A., N. Soundararajan, and B. Chandrasekaran.
Complexity in Classificatory Reasoning.
In Proc. National Conference on Artificial Intelligence, pages 421.425. Seattle, Washington, July

13-18, 1987.

198

[22] Gomez, F. and B. Chandrasekaran.
Knowledge Organization and Distribution for Medical Diagnosis.
IEEE Transactions on Systems, Man, and Cybernetics SMC-11(1):34-42, January, 1981.

[231 Hasheml, S., Hajek, B.K., Miller, D.W., Chandrasekaran, B, and Josephson, J.R.
Expert Systems Application to Plant Diagnosis and Sensor Data Validation.
In Proceedings of the Sixth Power Plant Dynamics Control and Testing Symposium. Knoxville,

Tennessee, April, 1986.

[24] Johnson, T.
HYPER: The Hypothesis Matcher Tool.
In Proceedings of Expert Systems Workshop, pages 122-126. Defense Advanced Research

Projects Agency, Pacific Grove, CA, April 16-18, 1986.

[251 Johnson, K., StIcklen, J., and Smith, J.W.
IDABLE - Application of an Intelligent Data Base to Medical Systems.
In Proceedings of the AAAI Spring Artificial Intellgence In Medicine Symposium. pages 43-44.

American Association for Artificial Intelligence, Stanford University, March 22-24, 1988.

[261 Josephson, J.R., Smetters, D., Welch, A.K., Fox, R., Flores, G, and Lyndes, 0.
Generic Task Toolset DRACO Release -Beta Test Including RA.
Technical Report, The Ohio State University, Computer & Information Science Department,

Laboratory for Artificial Intelligo-ice Research, February, 1988.

[27] Josephson, J. R., Chandrasekaran, B., Smith, J. W., and Tanner, M. C.
A Mechanism for Forming Composite Explanatory Hypotheses.
IEEE rrans. on Systems, Man and Cybernetics :pp.445-454, 1987.

[28] Marcus, Sandra, and John McDermott.
SALTA Knowledge Acquisition Tool for Propose-and-Revise Systems.
Technical Report, Department of Computer Science, Carnegie-Mellon Uriversity, Pittsburgh, PA,

1987.

[291 J. McDermott.
A1: A Rule-based Configurer of Computer Systems.
Artificial Intelligence 19(1):39-88, 1982.

[30] Miller, R.A., Pople, H.E., and Meyers, J.D.
Internist-I, An Experimental Computer-based Diagnostic Consultant for General Internal

Medicine.
Readings In Medical Artifical Intelligence.
Addison-Wesley Publishing, 1984, pages 190-209.

[31] Mittal, S.
Design of A Distributed Medical Diagnosis and Data Base System
PhD thesis, The Ohio State University, 1980.

[321 Myers, D.R., Davis, J.F., and Herman, D.
A Task Oriented Approach to Knowledge-Based Systems for Process Engineering Design.
Computers and Chemical Engineering, Special Issue on Al In Chemical Engineenng Research

and Development:, August, 1988.

[33] Laird, J.E., Newell, A., Rosenbloom, P.S.
SOAR: An Architecture for General Intelligence.
Artificial Intelligence 33:1-64, 1987.

[34] Punch, W. F., Tanner, M. C., Josephson, J. J.
Design Considerations for PEIRCE, A High-Level Language for Hypothesis Assembly.
Expert Systems in Government Synmposium :279-281, October, 1986.

199

(35] Shortliffe, E.H.
Computer-based Medical Consultations: MYCIN.
Elsevler/North-Holland Inc., 1976.

[36] Shum, S.K., Davis, J.F., Punch Ill, W.F., and Chandrasekaran, B.
An Expert System Approach for Malfunction Diagnosis in Chemical Plants.
Computers and Chemical Engineering 12(1):27-36, 1988.

(37] J. W. Smith, M.D., J. R. Svirbely, C. A. Evans, P. Straum, J. R. Josephson and M. C. Tanner.
RED: A Red-Cell Antibody Identification Expert Module.
Journal of Medical Systems 9(3):121-138, 1985.

(38] Sticklen, J., Chandrasekaran, B. and Josephson, J.
Control Issues In Classificatory Diagnosis.
In Proceedings of The 9th International Joint Conference on Artificial Intelligence. International

Joint Conference on Artificial Intelligence, University of California, Los Angeles, CA, August
18-24, 1985.

(391 Jon Sticklen.
MDX2: An Integrated Medical Diagnostic System.
June, 1987
Phd. Dissertation, Department of Computer and Information Science, The Ohio State University,

Columbus, Ohio 43210.

[40] Tanner, M. and Bylander, T.
Application of the CSRL Language to the Design of Expert Diagnosis Systems: The Auto-Mech

Experience.
Artificial Intelligence in Maintenance.
Noyes Publications, Park Ridge, N.J., 1985.

200

Appendix E

Artificial Intelligence
Perspectives on the
Classification Task

201/202

aM TRANSAC7ONS ON SYSTUM MAN. AND Cy'aadnC& VOL 18. N0. 3. •MAV/JUN .%$

From Numbers to Syn mbols to Knowledge
Structures: Artificial Intelligence

Perspectives on the
Classification Task

B. CHANDRASEKARAN, FEnOW umi, AND ASHOIk GOEL

Abwt -We ecasMir t imy lewdem lismmias praeoq ik a(1U. THE CLASSIFCATION TASK
dilla . a lw i (m the p p of the kw%4Wled

pem eaeindw an asweaMg pWad i pm .tdid Classification, sometimes called categorizaion in the
hinllgSWAX4 pyhq qWed g o bo kmsuhdo h u clasirdu tY cognitive science literature, as an information processing
pobem schiq. We iru, tke ,cioa of th em for d""Wes task can be functionally specified by the information it

m us the c n *o a(tim ieo from takes as input, and the information it gives as output. In
abmNcim mw4 " t~twom bgbs qsb sw flu*, to c its general form, the input to the classification task is a
symbolic sauctrus that epicity Incorpomto &ualn knowledg. nw collection of data about some specific entity (e.g.. an
pap can be ew a twl2s d a rt.bu'dlng duab the ap. object. a state. a case, or a situation), and the output is the
pacde ot f thret different sinumcmmualti" to the •aw geatuL general category (or categories) pertaining to the entity.

We note that this characterization of the classification task
L LintoDUCTION as a map from specific entities to general categories makes

C LASSIFICATION is a veny general information no commitments to the mechanism by which the mapping
processing task in which speci4 entities are mapped is to be accomplished. Classification has been an active

onto general categories. As the amount of data about the research issue in the knowledge-based reasoning, pattern
entity to be classified and the number of classificatory recognition, and connectionist paradigms, though the
categories increase. typically so does the computational paradigms differ in the mechanisms by which the task is
complexity of the task. In this paper, we review the plassi e Performed.
fication task from the perspectives of the knowledge-based
reasoning, pattern rewotion, and connectionist pa. A. Clanification and Knowledge-Based Systems
digms in artificial intelligence (AI). payin; special atten- The area of knowledge-based reasoning. though of rela-
tion to knowledge-based clasificatory problem solving. tively recent origin, is already a well established paradigm
We trace the evolution of the mechanisms for classification in AL The essential idea of the field is to capture in
as the complexity of the problem increases, from numerical computer programs, explicitly and in symbolic form, the
parameter setting schemes, through those va"ng intr- knowledge and problem solving methods of human experts
mediate abstractions and then relations between symbols, for selected domains and tasks. In fact. because of the
and finally to complex symbolic structures that explicitly central role of explicit domain knowledge of human ex-
incorporate domain knowledgt;. The paper can be viewed perts, the field is often called expert systems. This is not an
as a bridge-buildin- ac.... ty, de,,ribing the ppria.hs of appropriate place to discuss the general issues of knowl-
three different resear communities to the same general edge representation and problem solving in the area of
task. It can also be viewed as an attempt. by using the knowledge-based systems, many of which remain open and
classification task as a concrete example. to give an intui- active research issues. There are many expert tasks that
tive account of how the information processing activity have been successfully emulated by these systems: there
underlying thought necessarily evolved into complex sym- are an even larger number of things that human experts do
bolic processes in order to handle increasing complexity of that are beyond the current state of technology for con-
problems and requirements of flexibility. struction of knowledge-based systems. Nevertheless, when

we examine the intrinsic natutm of the tasks that knowl-
Manuscript received April TO, 1986; revised January 30, 1988. This edge-based systems perform, a surprising fact emerges:

work supported in part by the Defecu Advanced Project aeeanh many of them solve variants of problems which are intrin-
Agency contracmt RADC 130602-85-CO010, and in paut by the Air Focm
Office o(Scientific Research. grant 87-0090. sically classificatory in nature. We are not suggesting here

The aarh•om are with the L.aboatoy for Artificial Inteigence p. that the authors of these programs recognized them as-meach Department ot Computa and Ianomatiom Science Ohio Stare %lassification problems and used methods appropriate toUniversty, Columbus, OH 43210-1I277.UEEne LoS Numbur O8W0776. the classification task, but that independent of how they

0018-9472/88/0500-0415S01.00 01988 IEEE

203

IEEE ThANSACTIONS ON SYSTEU.S. MAN. AND CYRENETICS. VOL. 18. So. 3. S(A, JUNE 1998

were solved the problems have an intrinsically classifica- edge as numerical weights of connections between units in

tory character. Let us consider some examples. a network. A variety of neural models. from linear

eTbe MYCIN system [36], in its diagnostic phase, has threshold networks (151, [31], (32]. to nonlinear analogue
Task ofClassfyst [],ing paint dataontos pansinectious architectures [21], have been developed. These models typi-

the task of classfying patient data onto an infectious cally deal with motor or perceptual phenomena; neural
agent hierarchy, i.e., the diagnostic task is identifica- networks that capture a range of complex, higher-level
tion of an infectious agent category, as specific as cognitive processes have yet to be proposed. Although our
possible, that pertains to the patient data. remarks are intended to be more generally applicable, in

* The PROSPECTOR system (14] classifies a geological this paper we will confine our discussion only to linear
description as corresponding to one or more mineral threshold. digital networks in the conaectionist mold in
formation classes, which the emphasis is on the memory and learning aspects

* The SACON system (3] classifies structural analysis of reasoning.
problems into categories for each of which a particular The earlier conntictionist networks. e.g.. the perceptron
family of analytical methods is appropriate. model, were once viewed as devices for practical visual

* The MDX system [6], [81. (20] explicitly views a Sig- pattern recognition, and since the problem of pattern
nfficant portion of the diagnostic task as classifying a recognition itself was viewed as that of classification. per-
complex symbolic description (the patient data) as ancompex n'aoli decrition(th paien da) a an ceptrons were really classificatory devices. The important

element, as specific as possible. in. a disease classifica-
tion hierarchy, role of classification is evident even in the more recent

connectionist architectures. in which "hidden- units sep-
.We do not mean to imply that all problems are classifi- arate the input and the output units. Let us consider. as an

cation problems. or that they can be usefully converted example. the NETtalk system [34,. a connectionist scheme
into such problems. RI (27] and AIR-CYL [54. e.g.. per- for the task of word pronunciation. It uses a numerical
form different versions of the object synthesis problem, relaxation technique for problem solving, and a method
i.e.. simple versions of the design problem. Dendral (4], for back propagation of corrective feedback during learn-
Internist [30] and RED (22] are different systems all per- ing. The important point for our purposes. however, is that
forming various versions of abductive assembly of com- NETtalk performs its task by clasifying character sub-
posite explanatory hypotheses. Chandrasekaran [71, (9], strings of the input words onto phonemes.
(101 has provided taxonomies of such generic tasks, and
has identified classification as one of them. Recently, III. THE UBIQUiTY OF CLASSIFICATION

Clancey [12] has made a similar assessment of how several There are two things that are important to note from the
knowledge-based systems perform cLasificatory problem above discussion: firstly, classification appears to be a
solving. rather ubiquitous information processing task, and sec-

B Classification and Pattem nRecognition Models ondly, classification has been an important. research issue
in the various paradigms in Al. This suggests that classifi-

The area of pattern recognition, now nearly 30 years old, cation is not an artifact of any one point of view, but
represents another paradigm in Al. The classification task rather a "natural kind" of information processing task of

has been intimately associated with pattern recognition roatdera l" cognitive uran Indeed, classification

models from the very beginning of the field. In fact, in the significance. nee

early days of Al, the problem of recognition was for- appears to be a powerful human strategy for organizing
fknowledge for comprehension and action. The humanmuhlate as a problem of classification, in pardthiclr one f t~dn to • input enite is so strong that we

statistical classification of pattern vectors onto one of a often classify without necessarily being onis ously aware

finite number of categories, each category characterized by ofte assify wihuaeesarily b eing by mere

some kind of probability distribution. Indeed. what started of it, and fel we have acmplished something by merely

out as a practically useful formulation became so domi- naming entities as categories, even if we cannot do much

nant that ther was a need for a paper such as that by about it. The use of classification as a strategy for knowl-

Kanal and Chandrasekaran [231 pointing out that classib edge ornization can be found in virtually every area of

cation is only one of the formulations for the more general human intellectual activity. Ian biology, e.g. taxonomic

recognition problem. Even when newer techniques such as classiication has long been an important methodology for

syntactic techniques came into the field, the problht was organization of knowledge, and recently, mathematical
still Often formulated as a e caai tion problemn, this time techniques has been pressed into service for providing
into graommtieal categoriesa better classiication in this field [371. Some of the more

recent controversies regarding evolutionary biology, e.g.,

C. Classiflcatioe and Connecdoeu Networki the traditional gradual evolutionary vs. the punctuated
equilibrium theories, also revolve around implications of

Neural modeing, which predates the early perceptron various theories of biological classification. The periodic
models and appears to be undergoing a revival in its table of chemical elements is, another common classifica-
modem connectionist version, is still another paradigm in tion structure in which first groups of elements afd then
AL The essential ida in this area is to rpresent knowl, te pcri'tic elements are identified.

204.

CIIANDA•rKAM"A ND G= A&TLPCL4,L n[XIUUQ1ON PSUPECrIES ON nrI CL4SSIMCON TAU

A. ThMe Computational Power of Classification simple version of political decisionmaking. JESSE firnt
A simple computational explanation can be given for classifies the state variables describiniý a given situationtA simpo ne ofpctassionalexplnation be gn f onto situation assessment categories, and then uses thesethe im portance of classifica tion as va r inform ation pro- c t g r e o i d x a p o r a e p l c e o ci n f o

cesmng strategy. We can think of a generml task of an categories to index appropriat policies for action from a
intelligent agent as performing actions on the world for store of polic options.
achieving certain goals, where the right action for accom-
plishing a specific goal typically is a function of the B. Clahiftcatowy Ciategories
relevant states of the world. In the medical domain, for Classificatory categories represent the equivalence classes
example, we may view the general problem facing the of entities that are input to the classification task. Much of
physician as that of finding an appropriate therapeutic human thinking is organized around classification, both in
action for a given set of symptoms that describes the state terms of acquiring new classificatory categories, and using
of a patient and is a subset of the set of all possible existing categories to perform classifications, since classifi-
symptoms. One way of mapping states of the world to cation provides a substantial computational advantage in
actions on it might be to use a deciion table that relates solving problems. In knowledge-based systems, the classifi-
various subsets of state variables to the action variable. catory categories typically are labeled symbolically, and
However, if there are x state viriables t, ss 2... , s,, each often correspona to concepts in the task domain. In con-
of which may take on one of q values, then both the time nectionist networks on the other hand, no labels are associ-
and space complexitics of mapping the states onto actions ated with the categories, and the categories do not neces-
by table look-up are O(n. qn) [17]. Thus, the table look-up sarily correspond directly with the domain concepts. The
approach to making decisions about actions on the world process of creating useful classificatory categories by con-
would be useful only for very small problems. In fact. the cept learning is generally a much harder process than using
cardinality of the relevant states of the world generally is an existing classification structure. Thus, in medicine, dis-
very large, eýg.. in the medical donrain, the total number of covery of a disease. Le., creation of a new category, is a
possible states of a patient is the Cartesian product of the relatively major event while diagnosis is much more routine.
distinct values for each of the state variables (symptoms. How these classificatory categories are created is an issue
values from laboratory test, other manifestations etc-)- in research on learning and deep cognitive models (351. In
Thus, for complex al world problems such as medical this paper we will deal only with the process of assigning
problem solving the decision table is bound to be too large an entity to an existing category in a classification struc.
for construction., storage. looking up, and modification. ture.

The general problem.of finding the right action may be
solved more efficiently, however, if action knowledge can IV. Nuu CAL APPROACH-s TO CLASSIFICATION
be indexed, not by the states of the world, but by equiv-
alence classes of states of the world. A physician's ther- So far we have discussed what is classification and why
apeutic knowledge. &•., may be indexed not directly by the is it useful, but not how classification is accomplished. i.e..
detailed values of the patient state variables, but by dis- we have presented the forms of input and output informa-
eases, each of which can be thought of as defining an tion for the classification task, and have provided an
equivalence class of patient state variables. We are propos- explanation for the usefulness of classification as a strategy.
ing a functional decomposition. into two stages, of the but have not presented any mechanism for performing the
overall task of mapping from states of the world to actions task. In the remainder of this paper we will review various
on it: first, mapping the states onto their equivalence knowledge-based, pattern recognition. and connectionist
classes for indt'ring the right actions. This decomposition approaches to classification. In this section we will discuss
often remults in substantial reductions in the computational numerical parameter setting approaches to classification.
complexity of the problem, since the number of equiv- In the next section we will show how the use of inter-
alence classes is typically much smaller than the number of mediate abstractions reduces the computational complex-
states. The classification task corresponds to the first com- ity of performing the classification task. and discuss why
ponent in this decomposition. in which specific entities symbols may be used to capture these abstractions. In
such as states of the world are mapped onto general Section VI we will discuss the use of syntactic and struc-
categories that represent their equivalence classes. Medical tural relations between symbols for classification, and in
problem solving thus may be organized first as classifying Section VII we will provide a detailed account of how
patient symptoms onto disease categories, i.e., diagnosis as complex symbolic structures that explicitly incorporate
classification, and then indexing the therapeutic actions by domain knowledge may be used for classification.
the disease categories. It may not, of course, always be
possible to decompose the general problem of finding the
right action in such a manner;, however, whenever possible, Most early pattern recognition models used the statisti-
it is computationally advantageous to do so. The decom- cal approach to classification [131 in which the object of
ýosition of mapping states of the world to actions on it is unknown classification is represented as a multidimen-
illustrated by the JESSE system [181, which supports a sional pattern vector. Each dimension of the vector repre-

205

I'E rP.x.,'A TIONý, ON SISTLMSI MAN. ,%ND CY.BERNSTIC•S. 'L. IS, NO. '. MAY JLNE "'QXS

sents an attribute of the entity. and typically is represented value of some predicate such as the predicate stating that
us a numerical variable, even though ordinals are some- the object, ox, of unknown classification belongs to some
times used. The choice of the attributes of the entity is known category, Cy. The numerical weights associated
such that they have the potential to distinguish between with the connections in the network act as parameters of
the categories, where each category is characterized by the network, and collectively represent the discriminant
some kind of probability distribution. In the task domain function for classification of the input object onto differ-
of medical diagnosis. e.g.. if it is desired to distinguish ent categories. Thie output of the network is computed by a
between diseases D, and D... and the system designer has linear combination of the evidence that flows into the
reason to believe that symptoms sl. s,... *. s carry useful output unit via the connections. The perceptron architec-
information for this discrimination, then often careful sta- ture can be trained to "leaan" the discriminant function by
tistical data gathering is possible such that a discriminant appropriately adjuiting the weights of the connections in
function of the variables si.s,.--. s, is a very accurate the network. Feedback on whether the network has
classifier. When the number of dimensions is small, it is reache.d the correct classificatory conclusion is provided by
possible to design statistical classification systems that the trainer du-ing the learning sessions. It has been shown
outperform human performance, since human reasoning that if the input objects are linearly separable then the
with the same number of variables may be less efficient in weights of the connections will converge to the discrimi-
information extraction. Despite the enormous intrinsic in- nait function that can correctly distinguish between the
teres" in the mathematical problem of designing classifica- objects in finite time.
tion ai.orithms in the discriminant function framework. When the number of categories and the number of
Kanal and Chandrasekaran [., have pointed out that the points scanned on the objects to he classified are small
real computational power often comes from a careful then the perceptron can be powerful classifier, at least for
..hoice of the attributes based on a good knowledge of the linearly separable objects. However. when these numbers
domain. rather than from the specific design of the sep- get larger then the perceptron suffers from problems simi-
aration algorithm. lar to those in the statistical approaches to classification.

What happens when the dimensionality of the pattern As the number of categories increase, the number of poiats
vector becomes very large, or the number of categories needed to be scanned by the input units for learning the
becomes large? When the number of categories increases, discriminant function increases, which results in a rapid
then in order to make more and more distinctions. gener- increase in the number of input units. The time complexity
ally the number of measurements on the entity of interest, of learning the right weights for correct classification grows
i.e.. the dimnensionality of the pattern vector, also needs to even more rapidly, and correspondingly, the correct classi-
grow rapidly. The computational complexity of the al- fication rate drops rapidly for a fixed number of input
gorithm to make the discrimination grows even more units. The sensitivity problem worsens, i.e., even slight
rapidly thar, the increasihi, number of dimensions, and errors in the weights of the connections may result in large
correspondingly, the average performance, i.e.. the'correct changes in the output. The opacity problem. i.e.. recogniz-
classification -ate, deteriorates quite rapidly. Sensitivity ing specifically which weight is playing precisely what role
problems become quite severe. i e.. the required precision in the classification process, hard in the perceptron model
of the variables in the classification algorithm becomes in any case, becomes even harder. Minsky and Papert [28]
impractically high. Opacity problems result, i.e.. it be- discuss the computational properties of the perceptron
comes increasingly hard to make any kind of statement architecture, and point out some of the problems with it.
about what attributes are playing what role in the recogrn-
tion process. Szolovits and Pauker [401, discuss these and V. U OF I ABSTRACTIONS
some of the other problems with probabilistic approachesto classification. IN CLASSIFICATION

The above discussion shows that while numerical

B. The Perceptron Model parameter setting schemes may lead to powerful classifiers
for small problems, the complexity of the separation al-Roughly in parallel with the development of statistical gorithnt becomes impractically high as the number of

approaches to classification in the pattern recognition classificatory categories increases. The problem here is not
paradigm came the development of the early connectionist so much in the specific choice of one discriminant function
models of classificationg specifically, the perceptron model, over another, but in the fact that these approaches seek to
The per"eptron architecture [31], consists of a set of input directly map the input entity onto classificatory categories.
units and an output unit, each unit being a two-state, Indeed, similar complexity problems arise for all ap-
linear threshold digital device. Each unit in the input layer proaches that perform classification by directly mapping
is connected directly to the output unit, with some numeri. specific entities onto general categories. Let us consider, as
cal weight associated with each such connection. The in- another example of such direct classification, the method
puts to the Perceptron are points in an orthographic pro- of discrimination tree traversal for medical diagnosis.j%,ction of the object to be classified, where each input unit Again. let 'he inp," 1'e characterized by n state variables.
scans some points in the projection. The output is the truth sit s.... S ' each of which can take on one of q values.

206

C.i D SEiLAl•'k AND GOI;L AATIFiCIAL ,.T.Z.LLENC, PEWCTIVEi ON MhE CLASSMCM1lN TAMZ

The state variables are organized in a tree in which the top intermediate abstractions in classification. For the pur-
node corresponds to some state variable si and has q poses of our discussion. Samuel's method can be described
branches coming out of it, one for each of the q possible as follows.
values that s, may take. The branches lead to q different 1) Identify groups of attributes such that on the basis of
nodes, each of which corresponds to some si and has q domain knowledge there is reason to believe that they
branches coming out of it. This organization is repeated contribute to an intermediate abstraction that can be
until. all the state variables have been represented on the uc desired classification, which in
tree. Each of the q1' branches coming out of the q"L this case is a measure of the goodness of the board.
nodes at the nth level leads to one of a finite number of The number of attributes in each group is kept small.
disease categories. D1. D.., D.,. The time and space and the attributes,' in a group may have some depen-
complexities for classification by discrimination tree dencies and interactions in order to capture which
traversal are given by 0(n) and O(q"). respectively [17]. plnoial termstions includer to re whi-Clealyforcomlex.rea wold robemswhee te nni- polynomial terms were included in the more tradi-
Clearly. for complex. real world problems, where the nura- tional evaluation functions. The abstractions typi-
ber of classificatory categories typically is large, the pro- cally correspond to the concepts in the task domain.
position of directly mapping input entities onto classifica-tory ategoies s quie futle. g,, in chss "defensibility of king" and "materialtory categories is quite futile., advantage" may be such intermediate concepts, each

What. then. can be done when the number of classifica- ofvwhich"can be stimted matl subset o ard

tory categories is large? Let us consider, as an example, the attribuesawhie te fin al si bout oh boad

problem of automatic reading of texts in some language ness of a board configuration may be made in terms

that consists of a large number of words. Intuitively, one of these intermediate abstractions.
would think that first recognizing characters (or perhaps 2) Find a method of classifying the desirability of these
substrings of characters) in the words, and then recogruz- intermediate concepts into a small number of cate-
ing word themselves would be computationally more at- goies from the values of the attributes in each group.
tractive. The words (or perhaps word- phrases) may be later The exact method for this classification is not espe-
used in understanding complete sentences in the language. dailly important here, though Samuel proposed a
In this approach, instead of performing classification by a specific mechanism for it. The essence of his mecha-
direct mapping from the input entity onto the categories, nism is a mapping from a multidimensional vector,
intermediate abstractions are first constructed, the entity each component of which can only take on one of a
of unknown classification mapped onto these abstractions. small number of distinct values, to a symbolic ab-
which are then used as inputs to a higher-level classifica- straction, which can also take on one of a small
tion process. What we are suggesting here is a conceptual number of distinct values. This mapping may be
decomposition of the classification process onto hierarchi- performed by a simple table look-up for example.
cally organized intermediate abstractions. Such a concep- 3) The outputs of the classifiers for each group can
tual decomposition makes the classification process more themselves be thought of as qualitative attributes at
efficient. as we will see a little later. the next level of abstraction. These attributes can be

then grouped and abstracted into higher level con-
A. Signature Tables ceptcs. and the process repeated as many times as

In order to make the notion of conceptual decomposi- necessary. with only a small number of attributes in a
inn order tomake thessi tion pofccepsitual hiecompoi-y group at any level, until the top-level concept is a

tion of the classification process into hierarchically classification* of the "goodness" of the board.
organized intermediate abstractions more .,plicit. let us
consider evaluation functions in game playing, e.g.. playing Let n denote the total number of attributes at the lowest
chess. as another example of classification. These functions level of abstraction. Let us assume that the number of
usually yield a number which is a measure of the "good- attributes in each group at any level in the hierarchy of
ness" of the board. For most purposes. effective use of this abstractions is less than some small constant upper bound
information can be made if the goodness is classified into nu (an assumption allowed in the signature table method).
one of a small number of :ategories. One of the first forms and further. that the groups of attributes at any level are
proposed for the evaluation functions was a linear poly- disjoint. Then both the time and space complexities are
nomial of attributes of the board, where both the attributes 0(n) (17]. Even if a few attributes at some level are used in
and their weights were chosen in consultation with domain more than one group of attributes, which sometimes is the
experts. Later, in order to take into account interactions case. and in which case the time complexity would be
between the variables in the evaluation function, higher somewhat worse than linear in n, clearly, the
order polynomials were proposed. This of course resulted use of intermediate abstractions in classification yields
in a fairly rapid increase in the complexity of the function: substantial computational savings. Again, we are not
if rth order interactions between the attributes were to be suggesting that such conceptual decomposition of the clas-
included, and the number of attributes is n, then the sification process into hierarchically orgonized inter-
number of terms was of the order of n'. Samuel's signature mediate abstractions is always possible. but rt.aL whenever
tables (331 provided a solution which exemplifies the use of possible, it is computationally advantageous to do so.

207

"iS•E T•AN.NhCTTIOS ON SYMTF.MS. MAN. AND CYBERNICTICS. %OL 18. 1.O .. . TNE !Q'9.

B. Hiden Units in Connectionist Networks the precision of numbers, with the concomitant problems

the computational power of using intermediate abstrac. of complexity. sensitivity, and opacity, for the simplicity.

tions is evident from the fact that a major difference flexibility, and perspicuity of symbols. Often numbers are

(perhaps the major difference) between modern con- too precise for the task at hand. and robust symbolic

nectionist networks and the perceptron model, is that the hierarchical abstractions of the appropriate kind can cap-
formertpronide mehorkaniss fr pecapturing inemede ithateab ture almost all of the relevant information. These ad-
_tformer provide mechanisms for capturing intermediate ab- vantages of representing abstractions by symbols havw"
stractions. In the perceptron model. since the input units been demonstrated most recently by Lehnert [25]. She has
were connected directly to the output unit, there was no constructed a connectionistically inspired system. called
representational mechanism to capture intermediate ab- PRO, for the task of word pronunciation. the same task
stractions. and classification was performed by directly that is performed by the entirely connectionist MBRtalk
mapping input objects onto categories. Modem con- system. The maui difference between the two approaches
nectionist networks. on the other hand, contain hidden lies in that the PRO system uses symbols for capturing
units between the input and the output units. thus provid- intermediate abstractions in the classification of character

ing a mechanism for representing intermediate abstrac- substrinas of words. While PRO appears to perform at

tions as patterns of activity over the hidden units. The st as well t M tle it is timper.osmal

notion that the real role of the hidden units is to somehow least as well the MBRtalk system. it is simpler. smaller.

capture thee abstractions becomes clear from the follow- more robust, and more perspicuous. We are not suggesting
pu these msh e.u that intermediate abstractions are entirely neutral to the

-- ing obser.ation: in most connctionist schemes. such a underlying architecture of implementation and repre-
,ne one for learning the past tenses of English language senting abstractions symbolically is necessarily right for all
%ords [p2. the number of hidden units in the network is tasks. Chandrasekaran et al. [11] provide an analysis of the
critical to it. performance. When the number of hidden
units is too small then the problem is overconstrained and interaction between the abstractions needed for problem

there is not enough structure to capture all the needed solving and the architecture for their implementation, and
btheretins as a renoultof whiuc h th aperuorneal cof the eede suggest that connectionist schemes may be well suited for-- abstractions. as a result of which the performance of the

n simple forms of pattern matching and data retrieval, and7=network deteriorates markedly-, and when the number of for low-level parameter learning. However, for capturing

hidden units is too large then the problem is undercon- for level paramte lrning. Hever or uring
strained and generalizations to the abstractions are not higher level cognitive processes the advantages of using

possible. again resulting in a marked deteroriation in the symbols for representing abstractions are just too irn-

network performance. One method of handling these sensi- portait.

tivity problems is to make the number of hidden units a
parameter of the architecture, and then experiment with VI. UsE OF RL.ATIONS BmrwuN SYMBoLs
the value of this parameter until the number of hidden FOR CLASSIFICATION
units in the network is just right. After about a decade of work on statistical classification

The real computational power of modem connectionist in the pattern recognition paradigm. during which work on
networks is thus based on the use of intermediate abstrac- classification in the perceptron and the symbolic para-
tions. which is an intportant reason for the resurgence of digms was going on roughly in parallel. Narasimhan [29]
the connectionist paradigm in Al more than a decade after proposed a syntactic approach to pattern classification.
Minsky and Papert had showed the inadequacies of the The idea was to describe categories of patterns not in
perceptron model. Classification in connectionist architec- terms of probabilty distributions in multidimensional
tures is accomplished by first m.pping the input entity spaces. nor in terrs of intermediate abstractions that can
onto classificatory abstractions, and then mapping these be captured symbolicaly, in terms of temiat relations between
abstractions onto output categories. Moreover. as in symbols, much as grammatical categories are described in
Samuel's work on signature tables for game playing pro- linguistic analysis Ile idea of syntactic pattern recogni-
grams. in modern connectionist networks the intermediate gusi nlss h daofsnatcptenrcgiabstraci o ntionss canbeorganizedhietwrcshical. Inderediatrtion is really a special case of the more general notion of
abstractions can be organized hierarchically. Indeed, for structural relations for describing classificatory categories.
large scale connectionist networks, where the number of Thus, even when the idea of syntax is not appropriate-it
classificatory categories and intermediate abstractions may is doubtful that the notion of a picture grammar really is

important method for dealing with the complexity of learn-objects as it appe

ing classificatoiy categories and intermediate abstractions from a purely formal perspective-the notion of structural

(2]. relations for characterizing categories may still be applica-
ble. We note that the ability to describe a category in

C Symbols and Absiracsions terms of relations is a move towards descriptions as the
basis for category characterization.

While the intermediate abstfactions are represented as The major iresearch directions in pattern recognition for
patterns of activity over the hidden units in connectionist capturing structural relations generally were formal, i.e.,
networks, there is a simpler way of' .aptuting these ab- they used some or the other mathematical system within
stractions: by means of discrete 3 ,e4.LThe reprerenta- which theorems about relationships between categories
tion of abstrctions by symbols entails a trade off between may be provablu regarding the classification performance.

208

CHANOA•SELIXM AND OOEL. AATIFICIAL IN'rgIGENCE pa'.cnvEsL ON THE CL,.SSIFICAI'iON TASK

In fact. this was the major reason for the original emphasis
on syntactic methods, since there was a well developed
theory of formal grammars already available. This empha-
sis on formalisms led to two constraints: firstly. often an
attempt was made to force the available formalisms to fit
the pattern recognition problem, generally with unsatisfac-
tory results; and secondly, because human classification
performance was more heuristic in nature, restricted for-
malisms could capture the quality of human performance
only fleetingly. * "au d"

It is interesting tc note that in connectionist scher.... Fig . . Fragmcnt of diagnosdcclacssirication hierarchv.
also classification is based on structural relations between
intermediate abstractions. even though the abstractions are to the input case of unknown classification. A fragment of
represented by patterns of activity over hidden units in- the classification hierarchy for medical diagnosis might be
stead of being captured symbolically. The structural reia- as shown in Fig. 1. Each category in the diagnostic classifi-
tions themselves are represented by connections of various cation hierarchy is a diagnostic concept of potential rele-
types between the hidden units. Thus. in the NETtalk vance to the case at hand. More general concepts (e.g..
system. the connectionist scheme for the task of word LIVER) are higher in the hierarchy. while more particular
pronunciation, classification of the input words is based on ones (e.g.. HEPATITIS) are lower in the structure.
the structural relations between the nonsymbolic classifica- The total diagnostic knowledge is distributed over the
tory abstractions [34]. conceptual categories in the hierarchy. Each concept has

With the introduction of syntactic/structural relations -how-to" knowledge for simple evidential reasoning in the
between intermediate abstractions the progression of ap- form of several clusters of diagnostic rules: confirmatory
proaches to classification becomes rules, exclusionary rules, and perhaps some recommenda-

n s- abstractions (symbols) - relations. tion rules. These production rules are of the form:
-numbers- s(pattern) - (evidence). e.g., "If the value of SGOT is

Now, if one is to use relations between symbolic attributes high then add n units of evidence in favor of cholestasis."
as the basis of category characterization, then why restrict where n is some small integer. The number of rules in any
oneself to syntactic relations? Why not bring the full one cluster is kept small, and the evidence for confirma-
power, to the extent possible or necessary, of the semantics tion and exclusion is suitably weighted and combined to
of the classificatory categories? Asking this question pre- arrive at a conclusion to establish or reject the relevance of
pares the way for the next step in the progression of the category to the case. or perhaps to suspend the de.
approaches to classification. cisionmaking if there is not sufficient data to make a

decision at the present time. The recommendation rules are
VII. KNOWLEDGE-BASEDl APPROACHES optimization devices whose discussion is not necessary for

TO CLASSIFICATION our current purpose. What is important here is that when a
concept in the classification hierarchy is properly invoked.it is clear that each Ak paradigm emphasizes differento

issues and poses them in a different language. e.g.. the a small. body of knowledge relevant for decisionmaking
pattern recognition paradigm raises issues such as those of comes into play.

discriminant functions, probability distributions, and error The control problem in hierarchical classification can be
rpas tated as "which conceptual category should be consideredapat what point in the problem solving?" In general, we
as those of weights of connections. hidden units, and would like to use domain knowledge to achieve computa-
parameter learning. Similarly. the knowledge-based rea- tional efficiency by considering only a subset of all cate-
soning paradigm focuses on the issues of how to represent gorics. Similarly. we would like to consider cateories that
knowledge in symbolic form. how to organize and access gre.Smlry ewudlk ocnie aeoista
this knowledge. how to use this knowledge for solving are more promising ahead of others. The control regime
problms, anowdg how to ontrol this problede solving pr natural to hierarchical classification is top-down and canproblems, and how to control the problem solving process, be characterized as establish-refine. Starting from the root
The knowledge-based approaches to the classification task node. each concept first uses its knowledge to establish or
attempý to answer these questions for classificatory prob- reject itself for relevance to the entity to be classified. If it
lem solving. In this section. we wial desribe hierarcdica! succeeds in establishing itself, then it attempts refinement
classification (61, (201 as an example of knowledge-based by sending messages to its subconcepts who repeat theapproaches to classification, using the task domain of establish-refine process. If. on the other hand. the concept
medical diagnosis for illustration, rejects itself, then all its subconcepts are automatically
A. Hierarchical Classification ruled out leading to a pruning of the hierarchy. The idea is

to establish a conceptual category, as specific as possible.
In hierarchical classification, domain knowledge is that is relevant to the input entity. Let us consider the case

organized as a hierarchical collection of categories, each of of a patient suffering from hepatitis as an example. Given
which has knowledge that helps it determine its relevance data about this pa.tient, first INTERNIST would establish

209

IEEE TRANSACTIONS ON SYM'•MS, MAN. AND CYBERNETICS. %,OL. 18. '40. 3. tA• H:NE • •A8

that there is in fact a disease. and send messages to LIVER classification requires that concepts in the task do-

and HEART for refinement as shown in Fig. 1. Then main be available at several different levels of ab-

LIVER would establish that the disease is a liver disease, straction. While there a,'t many real world domains
and send messages to HEPATITIS anrd JAUNDICE for that do satisfy this condition. not every domain need
refinement, while HEART would reject the hypothesis that have this characteristic. There are other systems
the patient is suffering from a heart disease. Next, that perform classification, but without using the
HEPATITIS would establish the disease as hepatitis while hierarchical point of view [1]. However, it may be
JAUNDICE would rule out the hypothesis that the disease better to use hierarchical classification whenever pos-
is jaundice. Thus each concept makes decisions about its sible for reasons of computational efficiency. Let m
relevance to the patient data in the context of the decisions be the number of categories at the leaf nodes of the
made by its superconcepts. Sticklen et at. [38] discuss the classificatidn hierarchy. Since the desired classifica-
control issues in classificatory diagnosis in detail. tion generally is one of these m categories. the

The problem solving in this approach to classification is tire cc.nplexity of northierarchical classification is
distributed. The conceptual structures in the hierarchy are 0(m. t). where t is the time complexity of finding the
not a static collection of knowledge: instead, they are relevance of a single category w the entity of un-
active problem-solving agents. Each of them has knowl- known classification. If the number of state variables
edge only about establishing or rejecting the relevance of a is n. and single category classification is performed
conceptual category. and communicates with others by using the signature table approach discussed earlier.
passing messages. The entire ensemble of these semi- then t is O(n). In case of hierarchical classification.
autonomous problem solving agents cooperates to perform in the best c"e when all but one branch at each node
the classification task. God er al. [19] have shown how the in the hierarchy are ruled out. the time complexity is
concurrency inherent in hierarchical classification can be 0(log(m).t): and in the worst case. when every
exploited on a distributed memory, message passing archi- branch at each node is traversed, the time complexity
tecture. is 0(n.t). Got] et al. [17] provide details of the

We note that hard probability numbers are nowhere complexity calculations for classificatory reasoning.
used in diagnosis by hierarchical classification; what each It is clear, however, that even in the worst case, the
problem solving agent computes are qualittive belief mea- complexity of hierarchical classification is no worse
sures: "definitely present," "likely present," "definitely than the complexity of nonhierarchical classification.
absent." Moreover, the computation of the qualitative and the choice between them really depends on
values is localized rather than based on some global prob- whether it is possible to construct a classification
ability calculus; each agent computes the qualitative mea- hierarchy in the task domain of interest.
sure for its concept using only its own knowledge but in 2) The entity to be classified may have several leaf node
the context of its superconcepts. Medical diagnosis ap- categories simultaneously relevant to it, rather than
pears to be an instance of the class of problems in which just one leaf node category. In medical diagnosis.
numerical approaches, such as statistical pattern recogni- e.g., a patient may have both "cirrhosis" and "portal
tion. would have significant computational problems. In hypertension" (which in the domain of liver diseases
addition, it would pose considerable difficulty in acquiring might be two of the leaf nodes in the classification
knowledge in terms of probability distributions, at least for hierarchy), and in addition, the two diseases may be
problems of large degree of cour-.•.;xty, while knowledge causally related. Such a situation is not uncommon in
in the form required by hierarchical classification is often other domains as well e.g., in character recognition,
directly available from domain experts. the pattern to be classified may consist of be two

At our research laboratory ve have used the hierarchical characters touching ep -h other rather than one single
classification methodology to construct MDX [61, [8], (20], character. The hierarchical classification framewoik
a medical diagnostic system [or a class of liver diseases in clearly can deal with such situations.
internal medicine. T'r number of state variables, such as 3) The classification hierarchy may be a tangled
symptoms. signs, and laboratory values, describing a typi- hierarchy, Le., some concepts in the hierarchy may
cal casc that MDX can handle is in the hundreds, and the have more than one superconcept. Such a hierarchy
number of distinct conceptual categories in its diagnostic may be untangled in the hierarchical classification
hierarchy is also dose to hundred. MDX is a complex framework by storing a copy of the concept in each
system that has been tested on a number of real world tangled branch. This introduces redundancy in the
cases with a high match between its conclusions and that storage of domain knowledge by the classification
of human specialists. Recently, a more sophisticated ver- agent.
sion of the MDX system, called MDX2 [391, has been 4) In general, multiple classification hierarchies may
constructed in our laboratory. exist in the task domain, e.g., in medical diagnosis

Several concerns ought to be noted before using the there may be one classification hierarchy for infec-
hierarchical classification methodology to build know[- tious diseases, and another for ivtx diseases. In ad.
edge used classificatory problem solvers. dition, the same category may exist in more than one

1) Not all classification problems are nece ssaiily solved classification hierarchy, e.g.. viral hepatitis is a con-
as hierarchika classification problems. Hierarchical ceptual category in the imoatious disease hierarchy as

2.10

CHANDSAS,.AAAN AND O43EL: '%A I MML.WCENCE PMSMSCnV ON r"• CL•ssirFcAc"ON rTAU

well as in the liver disease hierarchy. This involves Each stage in this progression gave added power in con-
coordination among the classifications reached by trolling computational complexity by matching the struc-
the different classification modules. The MDX2 sys- ture of the classifier to that of the task. At the knowledge
tern contains several classification hierarchies, and level, the computational power comes from task-specific
provides a mechanism for handling such interactions control regimes controlling access to appropriate chunks of
between them. domain knowledge. We motivated the discussion by using

5) The problem task may require not only classification classificatory diagnosis as an example in various places.
of entities onto categories, but other problem solving but the ideas are applicable more generally.
types as well. e.g-. the diagnostic task often is rune-c This paper can be.viewed as a bridge-building activity
tionally decomposable into the generic tasks of between three research paradigms in Al: knowledge-based
knowledge-directed data abstraction, and abductive reasoning, pattern recognition. and connectionism. Classi-
assembly of explanatory hypotheses in addition to fication has been a major concern in pattern recognition.
that of classification (9], (10]. This involves coordinat- and an important task performed by many knowledge-
ing the actions of various problem-solving modules based systems as well as by most connactionist networks.
performing-different generic tasks and cooperatively Thus, the classification task provides a good place to
solving the diagnostic problem. The MDX system (81 understand some of the distinctions between the three
contained modules for hierarchical classification and research paradigms. For well-constrained classification
knowledge-directed data abstraction and provided problems with relatively small number of categories. the
mechanisms for communication between them. The numerical functions and measures used in pattern recogni-
MDX2 system (391 contains modules for knowledge- tion models and connectionist networks typically can pro-
directed data abstraction and abductive assembly of vide powerful classifiers which often outperform human
explanatory hypotheses in addition to several experts by extracting the last trace of information that
hierarchical classification models, and provides discrete symbolic processes can only approximate. On the
mechanisms for handling interactions between them. other hand for complex problems involving many variables

6) The conceptual structure mechanism used in hierar. and categories; the symbolic knowledge-based approach
chical classification is only one of the several possible trades off the optimality of the best functions in pattern
methods for determining the relevance of a specific recognition and in connectionism for computational trac-
category to the entity of unknown classification. In tability and better matching with human knowledge in the
the DART system (161, e.g., the decision about the task domain. Our own research lies in the knowledge-based
match of the category to the input data is done by reasoning paradigm. Our approach has been to identify
using theorem-proving techniques. Alternatively, the generic tasks other than that of classification, but with the
classification category agents may make their deci- similar characteristic of being a building block for intelli-
sions based on a causal knowledge of the domain gence. Chandrasekaran (7], (91. (101 provides an accoui ' of
(35]. The MDX2 systems uses such causal knowledge the repertoire of generic tasks that we have identifie so
to derive the conceptual structure needed for cate- far.
gory classification. In simple cases, it may be possible Many of the points made in this paper transcend we
to use statistical pattern recognition methods for this particular task of classification. In that sense. this pape-
purpose. Connectionist networks may be especially can be thought of as an attempt to show the need for tht
appropriate for the pattern matching operations re- emergence of symbolic structures for complex information
quired in simple evidential reasoning (111. The point processing transformations on representations. Cybernetics
is that how the hypotheses are evaluated is somewhat showed the power and usefulness of feedback and stability
independent of the flow of control for the classifica- in understanding many control and communication prob-
tory task as such. even though for complex problems. lems. However. classical control theory is expressed in
a rich knowledge structure will be called for to make terms of numerical measures and functions. Learning and
the decision about how well a specific category control in this framework involves parameter modification
matches the data for the case in hand. and signal propagation. The space over which parametricchanges and numerical signals can provide control ts quite

VIII. CONCLUSION limited. Symbolic models of the world provide greater
We have noted that classification appears to be an leverage for change and control and still keep computa-

We hve ote tht cassiicaionapparstional costs under control. Thus in biological information
ubiquitous information processing task underlying human tion seems to hav ormation
thought processes. The reason for this is the significant processing, symbolization seems to have occurred verycomputational advantages that arise front indexring stored early in evolution; Lettvin et at. (26] provide an account of
acmputational kwdgentover eqthate arise from inexi stared how the early visual processing of the frog is symbolic.

the word rather than over the states of the world them Once symbols were available as the language in which

selves. We have taken the reader through a progression of to perform information processing. thought eventually

approaches to classification: evolved into more and more complex symbol structures.
Thus the discussion in this paper can be viewed as an

numbers - abstractions (symbols) intuitive account of the emergence and power of symbolic
relations -, knowledge structures. structures for complex information processing activities.

211

IEEE TRANSACTION'S ON SYSTEMS. MAN, ..\I) CYONETIC-. ' I)L. - "%) .". MiANI I %1 "'-

ACKNOWLEDGMENT t25] W. Lohiern. "Cae-b'ued prohlem ,&:,nlg n:th -A large knou'cdge
base of learmed caes.b" in Proc. Sixth \'Va. .q rtltat /nt ll.,
1987. pp. 301-306.

We are thankful to Dean Allenang for his comments on (26] 1. Lettvin. H. Maturana. H.. W. S. McCulluch. and W. Pitts. "What
an earlier version of this paper. the frog's eye tells the frog's brain." Proc. IRE. 1959. vol. 4?. pp.

1940-1951.

(271 •. McDermott. "II: A rule.bas•d configurer of computer systcms."

]R MNCES Artilfcial Intell.. vol. 19. no. 1. pp. 39-88, 1982.
(281 M. Minsky and S. Paperm. Perceptrons. Expanded Edition.

Cambridge. MA: MIT Press. 1988.
(1] J. S. Aikins. "Protoiypical knowledge for expert systems." Ar tpifial (291 R. Narasimhan. 'Labeling schemata and syntactic description of

Iniell., vol. 20, no. 2. pp. 163-210. 1983. pictures." hIform, and Contr.. vol. 7. pp. 151-179. 1964.
(2] D. H. Ballard. - Modular learinWg in neural networks." in Proc. (30] H. W. Pople. "Heuristic methods. for imposing structure on ill-

Sixth Vat. Conf. .4rnficial Intell.. 1987, pp. 279-284. structured problems." in .4rrtfit•l Iitelligence in Vh'duwe.
(3] J. Bennet and R. Engelmore. "SACON: A knowledge-based con- P. Szolovits. E.•. Boulder. CO: WVstview Press. 198., pp.

sultant for structural analysis," in Proc. Sixth Int. Joint Conf. 119-190.
.4rtificul Intell.. 1979. pp. 47-49. (31] F. Rosenblatt., Principles of N.eurt'iauntws. New York: Spar.

(4] B. G. Buchanan and E2 A. Feigenbaum. "Dendral and meta.-den- tan Books. 1962.
dral: Their appbcations dimension." Artificial Intell.. voL 11. nos. (32] D. . Rumcihart and J. L. McCielland. "On learning the pwt
1-2. pp. 5-24. 1978. tenses of English verbs." in Parallel Dtsgrthuted Prmes7.m.r. I'lol. I.

(5] D. C, Brown and B. Chandrasekarin -Knowledge and control for Rurnmlhart. McClelland and the POP Research Oroup: Ed.,
a mechanical dftn expert systgm." IEEK Coa4a.. vol. 19. no. 7. Cambridge. MA: MIT Press. 1996.
pp. Q:-100. 1986. 133] A. L. Samuel. "Some studies in mahine learning using the .amc of

[6] B. Chandraskaran. S. Mittal. F. Gomem, and 1. W. Smith. "An chequers II: Recent progress." IB Vl J. ,d Res. DL'el.. voi. 11. no r.
approach to med:.:al diagnosis based on conceptual structures." in pp. 60t1-is17. 19.'.
Proc. Sixth Pnt. i•uint Conf. Artificial Intell.. 1979. pp. 134-142. '34] T. J Scjno%.xki and C. R. Ro.,cnr'rr. "NETtalk: A parallc! nc,-

j7] B. Chandrasekaran. -Towards a taxonomy of problem.solving work that learns to read aloud." E;c. Enij. and Comp S,;; Dep:..
types." .41 Maraine. vol. 4, no. 1. pp. 9-17. 1983, John Hopkin, UnLt.. Baltimore. MD. tech. ;cp.. 1Q1)6.

18] B. Chandrasekaran and S. Mittal. "Conceptual representation of :35] V. Semhuaarnoorth. and B. Chandra,,ckaran. "Functional rcpr'-
medical knowledge for diagnosis by computer: MDX and related scntation of devie, and compilation of diagnostic prohlem ,.,kin:.
ý.stems." in A&4ances in Compwers. M. Yovits. Ed. New York: s'.stemb." in E'Perisence. Vfn.er.. Rca.mnny. 1. Kolodner and
Academic Press. 1983. pp. 217-293. C'. Reisbeck. Ed,,. Hillsdale. N.J.: Lawrence Earlbaum. i'i86.

[9] B. Chandrasekaram "Generic tasks in knowledge.based reasoning: pp. 47-73.
High-level building blocks for expert system design." IEEE Expert (36] E. H. Shortlifle. Computer-Based Aledk'al Consulutuons: Af YCI'.
Maganne. vol. 1. no, 3. pp. 23-30. 1986. New York: Elsevier/North.Holland. 1976.

(101 ._ Toward a functional architecture for intelligence based on [37] R. Rt. Sokal and P. H. A. Sneath. Principles of Numerical Taxon-
generic information processing tasks." in Pror. renth Joint Conf. oMy. San Francisco: Freeman. 1963.
Artificial Ineell.. 1987. pp. 1183-1192. [38] J, Sticklen. B. Cbamdrasekaran. and J. R. Josephson. "Control

(11] B. Ch.adrasekara. A. Gol., and D. Allemang. "Connectionism issues in classificatory diagnosis." in Proc. Ninth Int. Joint Conf.
and information processing abstractions: The message still counts on Artificial itcll.. 1985, pp. 300-306.
more than the medium," to appear in Al Magagint, 1988. [39] 1. Sticklen, "MDX2: An integrated medical diagnostic system,"

112] W. 1. C•ncey. "Heuristic d" AnQidal Intel., voL 27. Ph.D. Dissertatiou. Dept. Comput. Inform. SL., Ohio State Univ.,
no. 3. pp. 239--350. 1985. 1987.

[13] R. 0. Duda and P. E. Hart. Pattern Clarniflcation and Scent (40] P. Solovits and S. G. Pauker. "Categorical and probabilistic rea-
Analvais. New York: John Wiley. 1973. soning in medical dian " Arnficial Intel/.. vol. 11. no. 1.2. pp.

114] R.O . Duda. P. F_ Hart. P. Barret. J. Gaching. K. Konollge, and 115-144. Aug, 1978.
R. Rebob. "Development of the prospector consultation system for
mineral exploration." SRI International Menlo Park. CA. technical
report. 1979. .BCsadsern M6-SM*79-F'86) reveived

(15] J. A. Feldman and D. H. Ballard. "Conanctionist models and their his bachelor of engineering degree with honors in
properties." Comtiave S€.. voL 6. pp. 205-254. 1982. 1%3 from Madras University. India. and his

(16] M. IL Genesereth. 'Diagnoas using hierarchical design models." in Ph.D. in 1967 from the University of Pennsyl-
Prot. Seco•id Nat. Coal. Arflcal Intell.. 1982, pp. 278-283. vania. Philadelphia.

(17] A. Goel. N. Sotndararoja. and B. Chandrausetaran, "Complexity He was a research scientist with the Pfilco-
in cltassifleatory easoning." in Proc. Ank Nat. Coxf. Arificial Ford Corporation. Bluebell. PA. working on
Intel!.. 1987. pp. 421-42,. speech. and character.recognition machines from

(18] A. Goel. BI Chandrsan. aid D. Sylvan. "J-SS. An informs- ' 1967 to 1969. He has been az Ohio State Univer-
tion processing model of political decision makngW in Proc. hirkd sity. Columbus. OH. since 1%9. He is currently

1perf 5yvng. in Gar. CoaI.. 1987. pp. 78-87. a professor of computer and information science
[19] A. Goel. J. PL Josephson. and P. Sadayappan, "Concurrericy in and he directs the artificial intelligence group.

abductive reasouingl" in Proc. DARPA Knowlodge-based SYst. Dr. Chandraseklara's research activities are currently in knowledge.
Workshop. 1987. pp. 86-92. based reasoning. He is associate editor for artificial intelligence of the

(20] F. Gomez and B. Chandraisearan. "Knowledge organization and IEEE TaNSACTIoNs ON SYsrtsi, MAN. AND CYBERNETICS and chairs
distribution fer medical diagnosis." IEEE TmM. Syt. Man the society's Technia Committee o arficral intelgence.
Cybem. vol. It. no. 1. pp. 34-42, lan. 1981.

(21] 3. 1. Hopfield and D. W. Tank. "Neural computation of decisions
in optimization problem" Bfological Cybw.. vol 52. pp. 141-152.
1985. " Ashok Goal sudied physics as an undergraduate

(22] 1. IL. losephsoo. B. Chandraisektarani L W. Smith. and M. C. . in Inda. He obtained his Masters in physics in
Tanner. "A mechanism for forming composite explanatory hy- 1980 and his Masters in computer and informa-
potheses," IEEE Traw. Syst. Man Cybem., vol. 17, no. 3. pp. tion science in 1982-both from the Ohio State
445-454. May/lime 1987. Udivuity.

(23] L Kana ad . Cisa sekaran. "Ro tion, achi recogn". ," He is presently a doctoral candidate in com-
tion. and statistical approach." in Medhodologl of Pauremn bcog ' puter mad informtation science and a research
nMlUM. New York Academic Press. 1969. pp. 317-332. 1 associate with the Laboratory for Artificial Intel-

(24] L KaW and 3. Chandriaselkran "On linguistic. statistical, and - - ligence at the Ohio State University. His current
mixed patterns for patte recognitioct" in Frontin of Pattein research interests include knowledge.based rma-
Raiontim. New York: Acdemic Press, 1972. pp. 163-192. sortig. naive physic, and neural networks.

212
• .. . 4-..

Appendix F

A Mechanism for Forming
Composite Explanatory
Hypotheses

213/214

A Mechanism for Forming
Composite Explanatory Hypotheses

John R. Josephson, B. Chandrasekaran.
Jack W. Smith Jr., and Michael C. Tanner

Laboratory for Al Research (LAIR)
Department of Computer and Information Science, and

Laboratory for Knowledge Based Medical Systems
Department of Pathology
The Ohio State University

Columbus, Ohio 43210

Contact: John R. Josephson
Ohio State University
LAIR, CIS Dept.
228 CAE Bldg.
Columbus, Ohio 43210-1277

Phone: 614-292-0208
Netmail: Josephson@tut.cis.ohio-state.edu

A revised version of the article appearing in IEEE Transactions on Systems, Man, and Cybernetics,

Special Issue on Causal and Strategic Aspects of Dlagnostic Reasoning, May/June, 1987, pp. 445-454.

215

A Mechanism for Forming
"Composite Explanatory Hypothesesa

John R. Josephson, B. Chandrasekaran,
Jack W. Smith Jr., and Michael C. Tanner

Abstract

We describe a general problem solving mechanism that is especially suited for performing a particular

form of abductive inference, or best explanation finding. A problem solver embodying this mechanism

synthesizes coMposite hypotheses by combining simple hypotheses to satisfy explanatory goals. These

simple hypotheses are formed by instantiating prestored explanatory "concepts". In this way the problem

solver is able to arrive at complex, integrated conclusions which are not pre-stored. We present a

computationally-feasible, task-specific problem-solving mechanism for a particular information processing

task which is nevertheless of very great generality. The task is that of synthesizing coherent composite

explanatory hypotheses based upon a prestored, and possibly vast collection of hypothesis-generating

concepts. This is seemingly a common task of intelligence, and potentially a major component of

diagnostic reasoning, especially where single-fault assumptions are inappropriate. This work contributes

to showing how it is computatlonally possible to come to "know" based upon the evidence of the case.

in this paper we describe the mechanism both functionally and structurally; that is, the why and what of

the main computations are described, together with algorithms that show how each of these computations

can be accomplished. The mechanism Integrates a classification machine, used for selecting plausible

hypotheses, with a specialized means-ends machine, used for assembling a best explanation from the

plausible hypotheses thus selected and for pointedly Investigating alternative explanations. There are

also two other specialized mechanisms for the subsidiary functions of: recognizing the applicability of a

hypothesis to the situation, and of Interpreting the situation-specific raw data to satisfy the informational

needs of the other components. The result of combining these distinct computational mechanisms Is an

integrated knowledge-based problem solver, functionally suited to its abstract information processing

task.

aThe present paper is an expanded and revised version of "Abduction by
Classification and Assembly" which was presented at The Philosophy of Science
Association Biennial Meeting for 1986 and appears in PSA 1986, Volume One.

216

Although the mechanism we describe here is abstracted from the architecture of the Red-2 system,

several other diagnostic Al systems embody it too, In varying degrees.

1. Introduction

I.i. Methodology
Artificial Intelligence is the study of complex information-processing problems ihat often have their roots in

some aspect of biological information processing. The goal of the subject is to identify interesting and
solvable Information processing problems, and solve them.'

Vision Is an Information processing task, and Ilk* any other, it needs understanding at two levels, The
first, which I call the computational theory of an Information processing task, Is concerned with what is
being computed and why; and the second level, that at which particular algorithms are designed, with how
the computation is to be craried out.2

- David Marr

Cognitive problem solving too can be understood in terms of recognizable information processing tasks

subject to the same two-level understanding that is suggested for vision. The computational theory of a

cognitive task is an understanding of what is being computed (input/output), and why (what its

significance is); that is, an understanding of the function or goal of the computation. The second level Is

an understanding of how the computation can be carried out by particular algorithms or mechanisms. In

this paper we describe one such task, a form of abductive inference. We show how it can be

accomplished under appropriate circumstances by way of certain subtasks. We describe the major

subtasks both functionally, and in terms of mechanisms whereby they can be efficiently accomplished.

The work reported here takes place in the context of a theory of generic tasks in knowledge-based

problem solving 3. The theory proposes that complex reasoning processes can be analyzed in terms of a

small set of basic types of reasoning (the generic tasks) each of which corresponds to an information

processing strategy especially suited for achieving a particular knowledge-level functionality. Thus for

example hierarchically organized symbolic pattern matching is a particularly apt strategy for concept

matching, that is, for matching a prestored concept to a situation to determine whether the concept

applies to the situation. Generic tasks may be thought of as "types of problem solving4", or as "primitive

abilities" providing "building blocks of intelligence".

In our laboratory at Ohio State we have developed a software tool for each of the tasks that we have

identified so far, and an integrated toolset is presently under development. The generic tasks include:

hierarchical classifications, 8 plan selection and refinement 7' 8, 9 (for routine design and planning),

217

concept matchings' 3 knowledge-directed indirect inference1° (for intelligent data abstraction and

retrieval), prediction by abstracting state changes"1, and assembly and criticism of compos;"

explanatory hypotheses'?-.

1.2. Scope

The, mechanism described in this paper is that of a composite problem solver which arrives at

abductive conclusions by using hierarchical classification, concept matching, knowledge-directed indirect

inference, and assembly and criticism of composite explanatory hypotheses. A classification machine,

used as a source of plausible hypotheses, is united with a specialized means-ends machine, which is

used for assembling an overall best explanation from the plausible hypotheses, and also for criticizing the

hypothesis by pointedly investigating the space of alternative hypothesis assemblies. There are also two

other specialized mechanisms for the subsidiary functions of: recognizing the applicability of an

explanatory concept to the situation, and for interpreting the situation-specific raw data to satisfy the

information needs of the other components. The result of putting together these distinct computational

mechanisms is an integrated knowledge-based problem solver, functionally suited to the abstract

information processing task of forming composite best explanations, based on prestored explanatory

concepts.

The present paper will develop the idea of abductive inference, and describe the mechanism and its

rationale in some detail. The emphasis will be on the assembly and criticism of composite hypotheses,

and on classification as a mechanism for accessing explanatory concepts.

1.3. Red

Red is a knowledge-based medical expert system for use in blood banks as a red-cell antibody

identification consultant'i3 14, Is The system has now been through two working versions, and a third is

under construction at the time of this writing. The present paper presents an abstract description of the

problem solving mechanism of Red-2, the second distinct version of the system. Thus Red-2 serves as a

working proof of the realizability of most of the abstract design. An evaluation of Red-2's performance

has been made' 6 , and shows that the system almost always produces clinically acceptable answers,

even in complex cases.

218

2. Abduction

Abduction or inference to the Best Explanation is a form of inference that follows a pattern

something like this:
D Is a collection of data (facts, observations, givens),
H explains D (would, if true, explain D),
No other hypothesis explains D as well as H does.

Therefore, H is probably true.

The strength of an abductive conclusion will In general depend on several factors, including:
"* how good H is by itself, independently of considering the alternatives,

"* how decisively H surpasses the alternatives,

"* how thorough the search was for alternative explanations, and

* pragmatic considerations, including
"* the costs of being wrong and the benefits of being right,

"* how strong the need is to come to a conclusion at all, especially considering the
possibility of seeking further evidence before deciding.

Abductions, as we have just characterized them, go from data describing something to an explanatory

hypothesis that best accounts for that data.

Notice that calling an inference "abduction" carries with it the idea of its goal: a best explanation.

Contrast this with characterizing an inference as "deduction", which carries instead the idea of a

constraint that is satisfied: that the inference is guaranteed to be truth-preserving. Since there is no

intrinsic incompatibility between explanatory goals and trutht-preservation constraints, it is conceivable for

there to be deductive abductions. In fact, if all of the alternative ways of explaining something are

exhaustively enumerated, and all but one of the explanations are decisively eliminated, the overall pattern

of inference is deductively valid.
'There is no great mystery in this matter', he said, taking the cup of tea which I had poured out for him;

'the facts appear to admit of only one interpretatlon.'47 - Sherlock Holmes

Even when they are not deductively valid, abductions, besides being intuitively appealing, can be seen

to carry logical force. When we have come up with all of the "plausible" explanations we can find for

some body of data, and have found compelling, if not decisive, evidence against all but one, then we

have good reasons for accepting that one best explanation. Reasons against the other alternatives have

been transformed into reasons for accepting the one. Whether we suspend judgment, or go ahead and

accept the indicated explanation with some particular degree of confidence, should properly depend on

the factors we have enumerated above.

219

C. S. Peirce used the term "abduction" for a form of inference close to what we describe here1 s.

Gilbert Harman and others have written of "inference to the best explanation" for essentially the same

pattern'9, 2 0. 2 1 ; and Lycan calls it "the explanatory Inference"22. Sometimes a distinction has been made

between an initial process of coming up with explanatorily useful hypothesis alternatives, and a

subsequent process of critical acceptance where a decision Is made as to which explanation is best.

Often the term *abduction* has been reserved for the initial, hypothesis-originating stage'8 . We use the

term here for the whole process of inferring from the data to the best explanation.

John McCarthy has proposed an inference form called "circumscription" to express the logical leap of

assuming that all the objects I know about with property P, are in fact all of the objects that exist which

have property P.2 The leap of assuming (in effect) that all of the plausible explanations we can find, are

in fact all ot the plausible explanations, can be seen as an application of circumscription. Since

circumscription is obviously not a logical axiom (sometimes a circumscription is a reasonable step to take,

and sometimes not) it must be that some factors of the situation determine whether a step which has the

form of a circumscription is reasonable or intelligent. We have identified above a number of the factors

relevant to a presumption that we have covered for all plausible explanations.

Arguably abduction is itself an epistemologically fundamental form of reasoning, not reducible to

deduction, probabilistic induction, or any combination of them.' 9s 24,

Whether or not abductions can be justified on logical grounds, they appear ubitiquous in the un-

selfconscious reasonings, interpretations, and perceivings of ordinary life, and in tho more critically self

aware reasonings upon which scientific theories are based2s. It is a common view that diagnostic

reasoning in general Is abducton26- 2 7 28. The idea is that the task of a diagnostic reasoner Is to come

up with a best explanation for the symptoms, findings for the case which show abnormal values. The

explanatory hypotheses appropriate for diagnosis are malfunction hypotheses - typically disease

hypotheses for physicians, and broken-part hypotheses for mechanical systems.

The characteristic reasoning processes of fictional detectives has been characterized as abduction28.

It has been alleged that there are at least 217 abductions to be found in the Sherlock Holmes canon3°.

The following example is offered in the spirit of showing that abductive reasoning is quite ordinary and

commonsensical.

220

Joe: Why are you pulling into the filling station?

Tidmarsh: Because the gas tank is nearly empty.

Joe: What makes you think so?

Tidmarsh: Because the gas gauge indicates nearly empty. Also I have no reason to think that
the gauge is broken, and it has been a long time since I filled up the tank.

Under the circumstances, the nearly empty tank is the best available explanation for the gauge indication.

Tidmarsh's other remarks can be understood as being directed to ruling out a possible competing

explanation (broken gauge) and supporting the plausibility of the preferred explanation.

3. Organizing Concepts, Assembling Hypotheses

In some problem situations abduction can be accomplished by a relatively simple matching

mechanism, with no partcular concern taken for focusing the control of which explanatory concept to

consider, or for controlling the assembly of composite explanations. For example, if there are only a small

number of potentially applicable explanatory concepts, and if time and other computational resources are

sufficientiy abundant, then each hypothesis can be considered explicitly. Of course it is a pretty limited

intelligence that can afford to try out each of its ideas explicitly on each situation. The classification

mechanism we describe here can be seen as meeting the need for organizing the prestored explanatory

concepts, and for controlling access to them. It provides a good mechanism for the job whenever

knowledge is available of the right sort to make it go.

If the number of potentially applicable hypotheses is at all large, and if more than one can be correct at

the same time, then the combinatorics of the situation will not permit us to have one pre-established

pattern for each possible conclusion. One main alternative is to actively construct the abductive

conclusion as a combination of sub-hypotheses. Up to 2" different combined conclusions are made

available by assembling from a space of n possible hypotheses. Thus a very large space of possible

conclusions can result from a relatively small space of primitive categories. For example the Red-2

system has 54 most-detailed hypothesis categories, giving rise to 264 or more than 1016 potential

conclusions. (Many of these, however, would not be internally consistent, and so would never be

produced by the system. Eliminating inconsistent conclusions still leaves more than 1012 possible

conclusions.) The mechanism we describe here is capable of efficiently picking out the best combination,

even from so large a space.

However access to plausibly applicable concepts is controlled, if knowledge is available so that an

221

accurate confidence evaluation can be made for each concept In isolation from all of the others, then a

composite abductive conclusion can be simply formed as the conjunction of all those concepts that match

above some threshold of confidence. Yet this sort of decisive recognition knowledge is rarely available.

At the time that knowledge is compiled for a concept, knowledge for decisive confirmation (so called

"pathognomonic evidence") may be unavailable, so that the very strongest that can be determined based

on direct evidence is that it is "very likely" that the concept applies to the situation. Psychiatric diagnoses

probably tend to be of this sort. More significantly, at run time there will often be too little actual data

about the situation to rule-in and rule-out decisively based on local match, even if there are potential items

that would be decisive if they were available. When the data Is too weak to resolve the situation besed

only on local matching, taking account of the interactions between hypotheses can significantly contribute

to getting more conclusion out of the data. An important non-local way to achieve a high degree of

confidence is to explicitly rule out alternative ways of explaining things, so that some of the data have only

one possible explanation. When this can be done a small hypothesis will stand out as a best explanation

for a portion of the data, and thus be a good candidate for inclusion as part of the composite best

explanation for the case. In this way a small abduction over a portion of the data Is performed in support

of the larger abduction necessary for solving the whole problem. Besides the role of explanatory

alternatives, hypotheses may interact in a number of other ways bearing on acceptance, some of which

we will discuss later on. In general our explanatory concepts rarely have the kind of Independence

required for completely separate evaluation to be a viable method, and some form of active control over

the formation of composites will be necessary.

4. The Mechanism

The overall function of an abduction machine can be described as that of producing a "best

explanation" for a.given set of data. An important side effect should be that information is made available

about where there are alternative ways of explaining things, so that this Information can be used for

"critically assessing that proposed best explanation, deciding where and how far to trust It

We present here a functional description of a particular abstract abduction machine, which we may as

well call "the Red Inference engine" in honor of the system from which It is abstracted. We include

enough detail about the major algorithms to make It clear how they work.

222

4.1. Task and Subtasks

Suppose that we Intend to build a knowledge-based system to capture expertise at a certain abductive

task. That is, our system is to take, as Input, data of a certain type; and produce, as output, best

explanations for a well-defined subset of the input data. Suppose that we are given a large number of

potentially applicable hypothesis "concepts" or "frames" to base the system on; and that more than one

concept can correctly apply at the same time.

Notice that this is precisely the diagnostic situation a physician must face, where the pre-enumerated

hypotheses correspond to known and named diseases, and where multiple diseases are common,

especially among the very sick people seen at major hospitals, and among those with unobvious

ailments. Notice too that this is the situation confronted by the operator of a chemical processing or

nuclear power plant, where a single original malfunction can quickly cascade into a multiple malfunction

situation. Notice also that this is (an aspect of) the situation faced by any intelligent knowledge-using

agent facing a complex, changing world, armed primarily with "concepts" of what is possible, and having

the goal of trying to "understand" some part of its experience by forming a "good" composite hypothesis.

Suppose further that interactions of various sorts between the pre-enumerated hypotheses can occur,

making it unsatisfactory to just match each separately to the case and accept all those above a certain

threshold of confidence.

One way to organize a system for this sort of task, and indeed the organization described here, is to

set up separate problem-solving structures for the distinct subtasks of:
* coming up with a relatively small number of "plausible" hypotheses from the much larger

number of prestored patterns,

* building a "best" composite hypothesis using these plausible hypotheses as available parts,
Including testing and improving the "goodness" of the composite.

We will see that this decomposition provides a good way of controlling the potentially explosive

combinatonics of the problem.

4.2. Removing Irrelevant and Unlikely Hypotheses

By setting one problem solver to filter the primitive hypotheses, letting through only those plausible for

the case, we potentially make a great computational contribution to the problem of finding the best

composite. By making only moderate cuts in the number, say n, of hypothesis parts to consider, we can

make quite deep cuts In the 2n composites that can be generated from them. For example if we assume

223

that 63 prestored hypothesis patterns get cut down to 8 which are plausible for the case at hand, we have

cut the number of potentially generable composites from 2 6s, which is the number of grains of rice on the

last square of the chessboard in the classical story, or more than 9 quintillion; down to 28 = 256.

The INTERNIST system3 ' (for diagnosis in internal medicine) can be viewed as doing this scrt of

hypothesis screening when it considers only the subset of prestored diseases that are "evoked" by the

present findings. In this way it screens out those hypothesis which are completely irrelevant for

explaining the findings. It cuts the number down even further when it scores the evoked diseases for

confidence and only continues to consider those above a certain threshold. This can be seen as a kind of

screening out of hypotheses for low likc-ihood of being correct, likelihood being measured primarily by

quality of match to the case data.

The DENDRAL system32 (for elucidating molecular structure from mass spectrogram and other data)

explicitly performs such a screening subtask. During the initial "planning" phase it uses the data provided

to it to generate a "BADLIST" of molecular substructures that must not appear in the hypothesized

composite structures. This BADLIST is used to constrain the search space during the subsequent

enumeration of all possible molecular structures consistent with the constraints. That is, (in the present

terms) DENDRAL first rules out certain hypotheses for bad match to the case data, and then generates all

possible composite hypotheses consistent with not including the ruled-out ones (and other constraints).

We note that DENDRAL devotes a separate problem solver, with its own knowledge structures, to the

initial screening task.

In the generalized set covering model of diagnosis and abduction 33 , 34 a disease is associated with a

certain set of findings that it potentially covers (Le. that it can explain if they are present). The diagnostic

task is then viewed as that of generating all possible minimum coverings for a given set of findings, by

sets associated.with diseases (In order to use this as a basis for further question asking). In expert

systems built using this model, a match score is computed for each relevant disease each time new

findings are entered for consideration, and match scores are used, when appropriate, as the basis for

categorically rejecting disease hypotheses from further consideration.

In the Red inference engine a separate problem-solving structure is devoted to the hypothesis

selection subtask. It runs first, as soon as the case is started up, and produces a set of hypotheses, each

hypothesis being the result of matching a prestored concept to the case. The hypothesis produced are all

224

explicitly relevant for explaining features of the case, and many potential hypothesis do not appear,

having been categorically ruled out. Each hypothesis arrives with a symbolic likelihood, the result

primarily of case-specific quality of match, but also of case-independent knowledge about frequencies of

occurrence. The Red engine is distinguished from INTERNIST and the set-covering systems in that it

devotes a separate problem solver explicitly to the hypothesis selection subtask. The advantage of a

separate problem solver is that it can be designed specifically for the generiQ hypothesis selection task.

4.3. Synthesizing a "Best" Composite

Synthesizing a "best" composite can turn out to be computationally expensive. If there are N plausible

hypotheses, then there is a space of 2 N composites that can be made from them. If each needs to be

generated separately in order to determine which is best, then things can get rapidly out of hand. Clearly

it is normally preferable to adopt strategies that allow us to avoid generating all of the combinations.

Sometimes the problem might be completely dominated by the difficulty of coming up with even one

good composite explanation. It can be shown that the problem of coming up with just one consistent

composite hypothesis that explains everything, under conditions where many of the hypotheses are

incompatible with eich other, is NP complete.b

The authors of DENDRAL saw its job as that of generating all possible composites that were allowable

based upon the previously established constraints on submolecules, and the known case-independent

chemical constraints on molecular structure. In contrast INTERNIST terminates (after cycles of

questioning, which we ignore for these purposes) when it comes up with its single best composite. The

set-covering model generates all possible composites of minimal cardinality, but avoids having to

enumerate them explicitly by factoring the combinations down Into disjoint sets of generators.

The Red engine first generates a single, tentative "best' composite, and then improves it by criticism

and suitable adjustment. In order for the the criticism to be accomplished, certain other composite

hypotheses are generated, but only a relatively small number of them. Again, the Red engine devotes a

distinct problem solver to a distinct task, in this case that of forming a best composite. The initial

composite hypothesis is formed to be one which explains all of the data (or that part that needs to be

b~y reduction to 3-SATISRABILUTY3

225

explained), which is maximally plausible, or nearly so, and Internally consistent.2

There are often more than simply computational feasibility considerations involved in a decision to

generate just the one best composite instead of generating all composites subject to some constraints.

For purposes of action an intelligent agent will typically need a single best estimate as to the nature of the

situation, even if it is only a guess, and does not need an enumeration of all possible things it could be.

By rapidly coming to a best estimate of the situation, the agent arrives quickly at a state where it is

prepared to take action. If it had to enumerate a large number of alternatives, this would not only take

longer in the generation of them, it would take longer to flgu•.e out what to do next. It is difficult to figure

out what to do if proposed actions must try to cover for all of the possibilities.

This is not to deny the possibility of situations where careful and intelligent reasoning requires the

generation of all of the plausible composites (i.e. those with a significant chance of being true), so that

they can all be examined and compared. This might especially be called for where the cost of making

mistake is very high, as in medicine, or where there is plenty of time to think over the alternatives. Of

course generating all of the plausible composites will be computationally infeasible if there are a lot of

plausible fragmehts to choose from and the situation calls for many-part solutions. Moreover, besides

being a computationally expensive strategy, generating all of the aiterrnatives will not typically be

necessary, as we will often be able to compare composites implicitly, by comparing alternative ways of

putting them together. For example in comparing little hypotheses h1 and h2, we are implicitly (partially)

comparing all composites containing h1 with those containing h2.

4.4. Criticism: Testing and Improving the Composite

In general it is important to have some idea of how good a composite Is, so that an agent can decide

whether to act boldly or be cautious; for example deciding to gather more evidence before taking action.

Moreover, some critical assessment is necessary, because, as we said, the appropriate confidence of an

abductive conclusion depends In part upon how well it stacks up to the competition. This applies to the

evaluation of composite hypotheses no less than it applies to simple ones.

For each of the composite hypotheses it constnicts, DENDRAL generates a prediction of how the mass

eNote that the findivg to be explatiel me in gera a poper s of all ot t findings oft case, We miglh ty to exlain the
patllonts symptom, biA we won't try to explain his age.

226

spectrogram should appear. Those hypotheses whose predictions mismatch sufficiently are excluded,

and the rest are ranked based upon quality of this match. Again DENDRAL devotes a special knowledge-

based problem solver to the task, though it Is tuned to predIctions based upon molecular fragmentation,

and is not domain-Independent In character.

INTERNIST and the set-covering model appear not to do anything that corresponds to this sort of

criticism. Indeed INTERNIST commits itself irrevocably to each hypothesis in the growing composite

before it goes on to decide on the next, and has nothing corresponding to the Red engine's tentative

initial assembly. The set covering model builds in the critical criterion of simplicity in the form of a

guarantee that the problem solver will produce composites with the minimum cardinallty sufficient to

account for all of the findings.

4.5. Major Modules

The two major modules of the Red Inference engine are:
"* a classification machine for selecting plausible hypotheses,

"* a specialized means-ends machine for assembling a subset of the plausible hypotheses into
a "best" composite explanation. The hypothesis assembler is under the control of an
overview critic (described here algorithmically) which uses the assembler, first to produce a
tentative initial composite, then repeatedly to explore the space of alternative composites,
and then finally to build a finished "best explanation" after the pointed investigation of
alternative explanations. This overview critic also does some processing to guarantee that
the composite it finally produces is parsimonious, i.e., has no explanatorily superfluous parts.

It is important to note that the second of these modules is usable separately from the first one, and so,

for example, some structural model of a device could be exploited in some fashion to generate

malfunction hypotheses.3s 637,3 What the assembler/critic needs is a source of hypotheses, each

hypothesis offering to explain some portion of the data, and each evaluated to determine a degree of

plausibility. The assembler/critc will also need to have access to various sorts of Information about how

the hypotheses Interact.

4.6. The Classification Machine

Taking the MDX 39 , 40 system as it's point of departure, the classifier Is implemented as a taxonomic

hierarchy of hypothesis specialists. Each specialist in the hierarchy specializes in a single "concept".

When invoked it will match that concept to the details of the case, either ruling it out of further

consideration, or else producing a hypothesis that has an associated symbolic likelihood, and offers to

explain certain of the findings of the case.

227

The hierarchy organizes the specialists from most general at the top, to most specific at the tip nodes.

The hypothesis selection activity proceeds in a top-down, more-general-to-more-refined manner, taking

advantage of the search pruning effect that comes from ruling out whole subtrees of hypotheses by ruling

out at high levels of generality. This top-down, prune-or-pursue control regime, associated with MDX-like

diagnostic systems has been called "ectablIsh-refine". It can in principle proceed In parallel, matching of

two sub-concepts being typically independent of each other. By efficiently pruning the search for

plausible hypotheses, establish-refine is a significant contributor to taming the combinatorics of the

problem space. It makes it efficient and practical to search a very large space of stored concepts for just

those that plausibly apply to the case.

4.7. Plausible Hypotheses

Each concept that is considered and cannot be ruled out is matched against the data of the case to

produce a description of which parts of the data it can explain (or contribute to explaining), and how

plausible it is under the circumstances. Concept matching for plausibility has been discussed

elsewhere.S, 3 Each plausible hypothesis delivered by the classifier thus comes with:
"* a description, particularized to the case, of which findings it offers to explain,

", a symbolic plausibility value representing a symbolic prima faice estimate of likelihood for the
hypothesis.

Each plausible hypothesis has its own consistent jittle story to tell, and to conttibute t.o the larger story

representing the abductive conclusion.

4.8. Hypothesis Interactions

Hypothesis interactions are considered to be of two generaW types, each with Its own kind of

significance for the problem-solving:
* explanatory interactlui, e.g., due to overlapping in what the hypotheses can account for,

and

* substantive Interacttn&, of mutual support and incompatibility, e.g., resulting from causal or
logical relations.

For example, two disease hypotheses might offer to explain the same findings without being especially

compatible or incompatible causally, logically, or definitlonally. On the other hand hypotheses might be

mutually exclusive (e.g. because they represent distinct sub-types of the same disease), or mutually

supportive (e.g. because they are causally associated). The INTERNIST system did not make a clear

distinction between hypotheses which are competitors because they are both capable of explaining the

same findings in the case (thus not both needed), and those that are competitors because they are

228

mutually exclusive.4 1 INTERNIST was really only concerned with the former type. In general the

elements *f a diagnostic differential need to be exhaustive of the possibilities, so that at least one must be

correct, but they need not be mutually exclusive. If they are exhaustive then evidence against one of

them is transformed into evidence in favor of the others.

The following types of hypothesis Int.eraction can be accommodated and treated appropriately by the

mechanism we are describing. Appropriate handling for the first four of them has been implemented and

tested:
"* A and B are mutually compatible, and represent explanatory alternatives where their

explanatory capabilities overlap.

"* Hypothesis A is a subhypothesis of B (i.e., a more detailed refinement).

"* A and 8 are mutually incompat~ble.

"* A and B cooperate additively where they overlap in what they can account for.

"* Using A as part of an explanation suggests using B also.

"* A, if it is accepted, raises explanatory questions of its own that can be resolved by appeal to
B.

An example of this last type occurs when we hypothesize the presence of a certain pathophysiological

state to explain certain symptoms, and then hypothesize some more remote cause to account for the

pathophysiological state. The tummy ache is explained by the presence of the ulcers, and the ulcers are

in turn explained by the anxiety neurosis.

4.9. The Hypothesis Assembler

A mechanism for hypotheses assembly is used which is reminiscent of the means-ends regime of

GPS, The General Problem Solver.42 Its overall goal is to explain all of the finding that need to be

explained. It detects differences between the goal state (everything explained) and the present state (the

working hypothesis does not explain everything), and focuses on a salient difference (a most significant

unexplained finding). it uses this unexplained finding to select a hypothesis part to integrate into the

growing woridng composite.

We begin by desc ribing a basic hypothesis assembler, capable only of treating one type of hypothesis

interaction. Then we will describe how it can be enhanced to treat the other types of interaction

appropriately.

229

4.9.1. The Basic Assembler

The basic assembler treats only hypotheses that are mutually compatible, and that represent

explanatory alternatives where their explanatory capabilities overlap. A set of findings Is given, the goal is

to assemble an explanation for them, and to do so in a manner that respects the plausibilities of the

candidate parts. It works by using the plausibilities to guide the means-ends search.

Procedure:
"* Set the initial composite to the empty set.

"* Loop until there is nothing left to explain, or nothing left that can be explained.
"* Focus attention on an unexplained finding (Initially the whole set Is unexplained). If

domain knowledge Is available to point out the most significant unexplained finding,
then well and good; but if not. then the choice can be made at random.

" Pick the most plausible hypothesis that explains that finding. If no plausible
explanation for it can be found, then note the finding as unexplainable and loop again,
else continue. If two or more explanations tie for maximal plausibility, choose one at
random.

*include the newly chosen hypothesis into the set of hypotheses that constitutes the
growing composite hypothesis. That is, set the new composite to the union of the old
composite and the set whose member is the chosen hypothesis.

Compute what the composite can now explain, and determine the unexplained
remainder.

"* End loop.

"* Return the value of the composite.

The basic assembler produces a composite hypothesis which is as complete as possible. Since it uses

the most plausible explanatory hypothesis at each choice point, the composite hypothesis is maximally

plausible as well, or nearly so.d

It is easy and computationally Inexpensive to rid the composite of explanatorily superfluous parts.0 This

can be done after the composite Is built, or else parsimony can be enforced as the assembly proceeds.

We thus arrive at a composite hypothesis which is as complete as possible, maxinaily plausible (or

nearly), and parsimon/ous.

8The conditions under which this process produces an optimally plausible composite have been Investigated, and will possmbly
form the subject of a future paper. Yet in general this mechanism will deliver the "correct answer* if one stands out on the basis of
the evidence, and will fail only if the evidence of the case is weak or errnoeous, or if knowledge in the system is wrong or missing.
Thus guarantees of maximal plausibility foi the composite are not really very significant Intelligent agents do not need to be
espocially good at making forced choices between nearly equal aiternatIves.

*Check through the parts In order of least plausible to moad plausible; for each part comp.e the explanatory capabilities with the
part removed; and check to see if there is any loss.

230

Note that this interpretation of Occham's Razor has clear epistemic virtues. Logically the composite

hypothesis is a conjunction of little hypotheses; so, if we remove one of the conjuncts the resulting

hypothesis Is distinctly more likely to be true, since it makes fewer commitments. Superfluous hypothesis

parts make factual commitments, expose themselves to falsity, with no compensating gain In explanatory

power. Thus the sense of parsimony we propose here Is such that the more parsimonious hypothesis Is

more /Ikely to be true.

Since the assembly process added monotonically to a growing hypothesis, with Incrementally growing

explanatory power, and with no backtracking, the process Is computatlonally very Inexpensive, at least if it

is Inexpensive to compute explanatory power. In general the greatest computational expense will be In

checking through the available hypotheses to determine which one Is the most plausible way to explain

the finding of attention. But the classifier will collaborate to reduce the alternatives to a relatively small

number, and one pass through the set will suffice. Thus the whole process of assernbly is

computational/y very efficient.43

4.9.2. Extensions and Elaborations to the Basic Assembler

Extensions can be made to the basic assembler to handle the other types of hypothesis interaction we

have mentioned.

If hypotheses in the space come with subtype relationships, as they normally would with a hierarchical

classifier, the assembler can preferentially pursue the goal of explanatory completeness and secondarily

pursue the goal of refining the constituent hypotheses down to the level of most detail.

A more difficult problem Is in devising a strategy for when some of the hypotheses in the space are

mutually incompatible.! What was done In Red-2 Is to maintain the consistency of the growing hypothesis

as the assembly proceeds. If a finding is encountered whose only available maximally plausible

explainers are incompatible with something already present in the growing hypothesis, then one of these

newly encountered hypotheses Is included in the growing hypothesis, removing from the composite any

parts inconsistent with the new one.9 The basic idea is that the finding must be explained, even if that

(We assume, the ability to detect that hypotheses are imompatible.

91f we remove parts from the growing hypothesis we Introduce the danger of an infinite loop, but fortunately this can be dealt with
fairly readily. We suitably raise the standards for reintroducing a hypothesis for the second time in precisely the same situation in
which it was first introducod. The second time around we require that there be no not loss of explanatory power for the whole
assembly resulting from reintroducing the hypothesis and removing Its contraries from the aseu1bly. There are a variety of
acceptable measures of explanatory power that will serve he•re to guarart"e progress.

231

forces a serous revision of the growing hypothesis. This seems to be a rather weak way of handling

incompatibles, and the authors feel that significant improvements are possible.

If hypotheses can cooperate additively where they overlap in what they can explain, all we need to do

is to suitably incorporate this knowledge into the methods for computing what a composite hypothesis can

explain.

In order to handle the kind of hypothesis interaction where one hypothesis suggests the use of another,

as for example it there Is available knowledge of a statistical association, we can give extra plausibility

credit to the suggested hypothesis if the hypothesis making the suggestion is already paRt of the growing

composite. The availability of a way to grow the hypothesis preferentially along lines of statistical

association provides a rudimentary ability for it to grow along causal lines as well.

A more interesting ability to grow along causal lines results if we permit one hypothesis, if it is accepted

into the growing hypothesis, to raise explanatory needs of its own. For example, a newy added

hypothesis can be posted as a kind of higher-level finding which needs to be explained in its turn by the

growing assembly. Thus at the same time that the newly added hypothesis succeeds in explaining some

of the findings, it introduces a "loose end". This provides a way in which the growing hypothesis can

move from hypotheses close to the findings of the case, and towards more and more remote causes of

those findings.

4.10. The Overview Critic

Procedure:
o The assembler is Invoked to produce a tentative best explanation.

* Explanatorily superfluous parts are removed.

* The assembler is invoked repeatedly as necessary to assess which of the hypotheses in the
composite are Indispensable. A hypothesis is judged Indispensable if removing it from a
composite which is a complete explanation leaves behind a composite which cannot then be
assembled to completion without reintroducing the removed one. It follows that a hypothesis
is indispensable If and only if something that it explains has no otherplausible explanation. It
Is Important to distinguish between hypothesis parts which are non-superfluous relative to
some particular composite, that is they cannot be removed without explanatory loss, and
indispensables without which no complete explanation can be found in the whole hypothesis
space.

* The non-indispensable parts of the composite are then removed, and the assembler is
invoked again to rebuild from the core of Indispensables back to a complete explanation.
This rebuilding process might again introduce explanatorily superfluous parts that will need to
be cleaned out, but it cannot introduce any more indispensables. Since an indispensable
explains something that has no other plausible explanation, every Indispensable is already

232

present in any complete explanation.

Any newly Introduced explanatorily superfluous parts are removed.

At the end of this process the composite hypothesis explains as much as possible, Is maximally

plausible (or nearly so), is parsimonious, and has been built up by going from a core of hypotheses which

are most certain.

At this stage the bes? explanation has been inferred, or at least A best explanation has been inferred,

there being no a priori guarantee that a best explanation Is unique. Under some circumstances the

reasoning process will have virtually proved the correctness of its conclusion. If each part of the

composite is indespensible (In the sense above), then the system has proved that it has produced the

correct explanation, assuming that the data is correct and the knowledge base Is complete. That Is, the

system will have proved that it has come up with the only complete and parsimonious explanation

available to it. When parts of the conclusion are not indispensible, the system will have discovered that

alternative explanations are possible, so appropriate cautions may be taken in using the abductive

conclusion.

5. Extensions and Elaborations of the Mechanism

The degree of intimacy, and the nature of the relationships, between the classifier, various critics, and

the means-ends assembler, is an unresolved research issue which we are actively exploring. In Red-2,

the classifier runs first, producing a set of plausible hypotheses, and then Is followed by the critic, which

uses the assembler to produce the best explanation. In the future we anticipate a version where the

classifier and an assembler/critic run concurrently, with the latter using Its perspective on the progress of

the problem solving to help guide the search for plausible hypotheses. Red-2's assembler/critic built up

composite hypotheses using only tip node hypotheses delivered to it by the classifier. We anticipate that

in the next version composites will first be assembled at higher levels of generality, and then refined into

more detailed hypotheses using nodes lower in the hierarchy. More distantly we envision a version where

lots of little hypothesis assemblers and critics are distributed over a problem solving structure that makes

local abductions, producing little assembled best explanations. By solving subproblems the little

abducers will serve the needs of larger abducers, and make it possible to assemble hypotheses from

parts which are themselves assemblies.

233

6. Summary

We have described how best explanations can be inferred by a mechanism which tames the

combinatorics of very large spaces of explanatory hypotheses. Structured conclusions can be arrived at

whose parts are connected by relationships of type-subtype, statistical association, and explainer-

explained. An instance of this machine exists, exercising some of the capabilities we attribute to the

abstract machine, and arriving at correct answers in complicated situations. '

Although the mechanism is an abstraction of the architecture of the Red-2 system, DENDRAL,

INTERNIST, and systems based on the Set-Covering model of abduction realize it too, in varying

degrees. In this light the present offering should be seen, not so much as contributing new mechanisms,

but as showing how existing systems can be analyzed; and how, once we understand the tasks, efficient

mechanisms can be devised specifically to achieve them.

More grandly we may say that a computational description has been given to the functional architecture

of a possible mind, or rather, of a certain dimension or slice of a possible mind. The kind of synthesis of

explanatory hypotheses we describe here is a genertc task of higher inte//lgence. It must be

accomplished somehow by any intelligent, knowledge-using agent that comes to "know" by calling upon

"concepts", attaching them to situations or objects, and using the resulting little hypotheses as materials,

to form composite "best explanations". The task is general, but specific. There are a limited number of

functional architectures that could accomplish it, especially when account must be taken of the constraints

imposed by limited knowledge, limited time, and limited computational resources. There are even fewer

architectures that are especially suited to the task, and we have just described one of them.

7. Acknowledgments

This work has been supported In various stages by NSF Grant MCS-8305032, NIH Grant R01 LM

04298 from the National Ubrary of Medicine, and DARPA/RADC contract F30602-85-C-0010. Dr. Jack

W. Smith, Jr. Is supported by NLM Career Development Award K04 LM00083. Thanks are due to Tom

Bylander for showing that the task of producing a consistent composite Is NP complete, and for his helpful

comments on a previous draft. Also to Bill Punch and Dean Allemang for their discussions and

encouragement of the approach to abduction, to Jon Sticklen for arguing with the Ideas until they were

better justified, to the members of the recent graduate seminar at Ohio State on diagnostic reasoning for

their helpful comments, and to two anonymous reviewers of a previous draft of the paper who, by their

234

failure to understand what was being presented, pointed the way to an improved explication of the ideas.

235

References

1. Marr, David, Artificial Intelligence: A Personal View, The MIT Press, 1981, Also appears in
Artificial Intelligence 9(1):47-48, 1977.

2. Marr, David, Representing and Computing Visual Information, The MIT Press, 1979.

3. B. Chandrasekaran and J. Josephson, "Explanation, Problem Solving, and New Generation
Tools: A Progress Report", Proceedings of the Expert Systems Workshop, April 1986, pp.
122-126.

4. B. Chandrasekaran, "Towards a Taxonomy of Problem-Solving Types", Al Magazine,Vol.
Winter/Spring, 1983, pp. 9-17.

5. T. Bylander and S. Mittal, "CSRL: A Language for Classificatory Problem Solving and Uncertainty
Handling", Al Magazine,Vol. 7, No. 3, August 1986, pp. 66-77.

6. F. Gomez and S. Chandrasekaran, Knowledge Organization and Distribution for Medical
Diagnosis, Addison-Wesley Publishing Company, 1984, pp. 320-338, Also appears in IEEE
Transactions on Systems, Man and Cybernetics, SMC-1 1(1):34-42, January, 1981

7. David C. Brown, "Expert Systems for Design Problem-Solving Using Design Refinement with Plan
Selection and Redesign". Ph.D. Dissertation, The Ohio State University

8. D. C. Brown and B. Chandrasekaran, "Plan Selection in Design Problem-Solving", Proceedings of
AIS885 Conference, The Society for Al and the Simulation of Behavior (AISB), Warwick, Englang,
April1985.

9. D. Herman, J. Josephson, and R. Hartung, "Use of DSPL for the Design of a Mission Planning
Assistant", Expert Systems in Government SymposiumOctober 1986, pp. 273-278.

10. S. Mittal, B. Chandrasekaran and J. Sticklen, "PATREC: A Knowledge-Directed Data Base for a
Diagnostic Expert System", IEEE Computer Special Issue, VoL 17, September 1984, pp. 51-58.

11. Ronnie Sarkar, "State Abstraction Problem Solving". OSU LAIR Technical Report

12. W. F. Punch III, M. C. Tanner and J. R. Josephson, "Design Considerations for PIERCE, a High-
Level Language for Hypothesis Assembly", Expert Systems in Government
Symposium,October 1986, pp. 279-281.

13. Josephson, J. R.; Chandrasekaran, B.; Omith, J.W., "Assembling the Best Explanation",
Proceedings of the IEEE Workshop on Principles of Knowledge-Based Systems, IEEE Computer
Society, Denver, Colorado, December 3-4 1984, pp. 186-190, A revised version by the same title
Is now available as a technical report.

14. J. R. Josephson, M. C. Tanner, J. W. Smith, M.D., J. Svlrbely and P. Straum, "Red: Integrating
Generic Tasks to Identify Red-Cell Antibodies", Proceedings of The Expert Systems in
Government Symposiumr Kamal N. Karnaed., IEEE Computer Society Press, 1988, pp. 524-531.

15. Smith, Jack W.; Svlrbely, John R.; Evans, Charles A.; Strohm, Pat; Josephson, John R.; Tanner,
Mike, "RED: A Red-Cell Antibody Identification Expert Module", Journal of Medical Systems,Vol.
9, No. 3, 1985, pp. 121-138.

16. Smith, J., Josephson, J., Tanner,M., Svirbely J., Strohm, P., "Problem Solving in Red Cell
Antibody Identification: Red's Performance on 20 Cases", Tech. report, Laboratory for Artificial
Intelligence Research, Department of Computer and Information Science, The Ohio State
University, 1986.

17. Doyle, Sir Arthur Conan, The Sign of the Four, Clarkson N. Potter, Inc., 1960.

18. Peirce, C.S., Abduction and Induction, Dover, 1955, pp. 150ff., ch. 11.

19. Gilbert Harman, "The Inference to the Best Explanation", Philosophical RevlewVol. LXXIV,

236

January 1965, pp. 88-95.

20. Ennis, R., "Enumerative Induction and Best Explanation", The Journal of PhilosophyVol. LXV,
No. 18, September 1968, pp. 523-529.

21. John R. Josephson, Explanation and Induction, PhD dissertation, The Ohio State University,
1982.

22. William G. Lycan, "Epistemic Value", SyntheseVol. 64, 1985, pp. 137-164.

23. John McCarthy, "Circumscription A Form of Non-Monotonic Reasoning", Artificial
IntelligenceVol. 13, 1980, pp. 27-39.

24. John R. Josephson, Explanation and Induction, PhD dissertation, The Ohio State University,
1982.

25. John R. Josephson, Explanation and Induction, PhD dissertation, The Ohio State University,
1982, pages 77ff

26. Eugene Charniak and Drew McDermott, Introduction to Artificial Intelligence, Addison Wesley,
1985.

27. Pople, H., "On the Mechanization of Abductive Logic", Proceedings of the Third International Joint
Conference on Artificial Intelligence, 1973, pp. 147-152.

28. Reggia, J., "Abductive Inference", Proceedings of The Expert Systems in Government
Symposium, Kamal N. Karna,ed., IEEE Computer Society Press, 1985, pp. 484-489.

29. Thomas A. Sebeok and Jean Umiker-Sebeok, "You Know My Method": A Juxtaposition of Charles
S. Peirce and Sherlock Holmes, Indiana University Press, Bloomington, 1983, ch. 2.

30. Marcello Truzzi, Sherlock Holmes: Applied Social Psychologist, Indiana University Press,
Bloomington, 1983, ch. 2.

31. Miller, R.A., Pople, J.E. Jr. and Myers, J.D., "INTERNIST - I, An Experimental Computer-Based
Diagnostic Consultant for General Internal Medicine", New England Journal of Mediclne,Vol. 307,
1982, pp. 468-476.

32. Buchanan, B. G., Sutherland, G. L. and Feigenbaum, E. A., Heuristic DENDRAL: a program for
generating explanatory hypotheses in organic chemistry, Edinburgh University Press, Edinburgh,
1969.

33. Reggla, J., "Diagnostic Expert Systems Based on a Set Covering Model", International Journal of
Man-Machine Studies, Vol. 19, November 1983, pp. 437-460.

34. James A. Reggla, Barry T. Perricone, Dana S. Nau, and Yun Peng, "Answer Justification in
Diagnostic Expert Systems-Part 1: Abductive Inference and Its Justification", IEEE Transactions
on Blomedical EngineerlngVol. BME-32, No. 4, April 1985, pp. 263-267.

35. M. Garey and 0. Johnson, Computers and Intractability, W. H. Freeman and Company, New York,
1979.

36. Johan do Kleer, "Reasoning About Multiple Faults", Al Magazlne,Vol. 7, No. 3, August 1986, pp.
132-139.

37. V. Sembugamoorthy and B. Chandrasekaran, "Functional Representation of Devices and
Compilation of Diagnostic Problem-Solving Systems", Experience, Memory, and
Reasoning, 1986, pp. 47-73.

38. Genesereth, M.R., "The use of design descriptions in automated diagnosis", Artificial
Intelligence, Vol. 24, December 1984, pp. 411-436, PA

39. B. Chandrasekaran, F. Gomez, S. Mittal, and J. W. Smith, "An Approach to Medical Diagnosis
Based on Conceptual Structures", Proceedings of the Sixth International Joint Conference on

237

Artficial Intelligence, 1979, pp. 134-142.

40. B. Chandrasekaran and S. Mittal, "Conceptual Representation of Medical Knowledge for
Diagnosis by Computer: MDX and Related Systems", in Advances in Computers, M. Yovits, ed.,
Academic Press, Vol. 22, 1983, pp. 217-293.

41. Pople, H., "The Formation of Composite Hypotheses in Dlagnostc Problem Solving: An Exercise
in Synthetic Reasoning", Proceedings of the Fifth Intemational Joint Conference on Ardficial
Intelligence, lJCAI 77, 1977, pp. 1030-1037.

42. Newell,A. and Simon,H.A., GPS. A Program That Simulates Humal? Thought, McGraw-Hill, New
York, 1963, pp. 279-293.

43. D. Allemang, M. C. Tanner, T. Bylander and J. R. Josephson, "On the Computational Complexity
of Hypothesis Assembly", Proc. Tenth International Joint Conference on Artificial Intelligence,
Milan, August 1987, to appear

238

Appendix G

Design: An Information
Processing-Level Analysis

239/240

The Ohio State University
Department of Computer and Information Science

Laboratory for Artificial Intelligence Research

Technical Report
August 1987/Revised January 1988

Design: An Information Processing-Level Analysis

B. Chandrasekaran
Laboratory for Artificial Intelligence Research

Department of Computer and Information Science
The Ohio State University

Columbus, OH 43210

Note: This is a draft version of Chapter 2 of the book Design Problem Solving: Knowledge Structures
and Control Strategies by D. C. Brown and B. Chandrasekaran (forthcoming).

ABSTRACT

Design problem solving is analyzed as an information-processing task: the task and its information
requirements are analyzed. This analysis suggests possible decompositions of the task Into a number of
subtasks, depending upon what kinds of knowledge are in fact available in a domain. This decomposition
can be carded on several levels until we reach an understanding of how vadous generic problem solving
capabilities can come together to help solve the design problem. This analysis suggests possible
problem solving architectures for design. A number of Al approaches to design are discussed In this
perspective and it is shown how each of then can be understood as solving a particular version of the
design problem, using one of the architectures that arises from the analysis in such a way that the
architecture matches the knowledge available in the domain.

241

w " , l w l u ,''Ir • i :•'lI II'Ii I.. lqo ,,._- -

Table of Contents
2. Design: An Informctlon Processing-Level Analysis 1

2.1. A Framework for Design Problem-Solving 1
2.1.1. What Is the Design Problem? 1

2.2. What Kind of Space In Which To Search? 2
2.3. Information processing Analysis of Design 3

2.3.1. Processes That Propose Design Choices 3
2.3.2. Auxiliary Processes 7

2.4. Implications of Above Analysis 8
2.5. Classes of Design 9

2.5.1. Class 1 Design 9
2.5.2. Class 2 Design 9
2.5.3. Class 3 Design 9
2.5.4. A Class 3 Product 10
2.5.5. Class 3 Complexity 10

242

2. Design: An Information Processing-Level Analysis

2.1. A Framework for Design Problem-Solving

2.1.1. What is the Design Problem?
In this chapter we look at design as an information processing task: i.e., specify what kinds of input and

output characterize the task abstractly. This can then form the basis for investigating what kinds of
knowledge and inference processes can help solve what parts of the task., We will avoid talking in terms
of particular methods of representation of knowledge, say, rules or frames, but concentrate instead on
what needs to be represented, and what types of inferences are needed. Once the nature of the
subtasks in design becomes clear, then the question of how to implement them can be undertaken. The
reader night remember that one of our criticisms of the expert system area has been that implementation
level phenomena have been allowed to interfere with an analysis of task-level phenomena. We would like
to keep them clearly sapara.

Design is a very complex activity and covers a wide variety of phenomena: from planning a day's
errands to theory construction in science to composing a fugue are design activities. In order to give
some focus and use some shared intuitions, let us restrict the scope in this discussion to the design of
artifacts that satisfy some goals.

A designer is charged with specifying how to make an artifact which satisfies or delivers some goals.
For each design task, the availability of a (possibly large and generally only implicitly specified) set of
primitive components can be assumed. The domain also specifies a repertoire of primitive relations or
connections possible between components. An electronics engineer, e.g., may assume the availability of
transistors, capacitors, etc., of various types when he Is designing a waveform generator, and examples
of primitive relations In that domain are serial and parallel connections between components. Similarly,
an architect might assume the availability of building materials. If the architect has to design an unusual
brick as part of his architectural specification, at least he can assume the availability of clay, and so on.
Of course design can also be recursive: if a certain component that was assumed to be available is in fact
not available, the design of that can be undertaken at the next round, and the domain for the component
may be rather different than the original domain, as In the example of building and brick design. If the
component design is not successful, the original design may be discarded and the task undertaken again.

The design task can then be specified as follows:
* Complete specification of a set of 'primitive' components and their relations so as to meet a

set of constraints.
Some of the constraints will refer to the functions or goals of the artifact, some may pertain to the
parameters of the artifact (e.g., 'total weight to be less than I ton'), yet others may provide constraints on
the design process itself, and finally constraints may apply to the process of assembling the artifact
(manufacturing constraints). Often the goals may not be stated explicitly or in sufficient detail at the start
of the design process. In hard design problems, the world of primitive objects may be very open-e.'ided.
In spite all such caveats, the above working definition Is a good starting point for our discussion.

This definition also captures the domain-independent character of design as a generic activity at some
level of abstraction. Planning, programming and mechanical design all share the above definition to a
significant degree. Note that the knowledge needed and many of the detailed mechanisms will of course
be domain-specific. For example, mechanical design may call for significant amounts of spatial
reasoning, while the electrical domain may only involve topological reasoning. But the nature of the
design problem as a whole has many commonalities at the level of the above definition, and as we shall
see, at the level of many of the subprocesses.

This definition is not meant to imply the existence of one method for all design. The main message of
our work is that design actually consists of a large number of distinct processes that work together, each
contributing some Information needed during the design process. In fact the apparent difference in the

243

design process in different domains and different designers can be explained by the dominance of some
of these subprocesses over the others due to differences In the knowledge available.

The above definition gives a clue to why the design problem can be hard for Al and often also for
people. In realistic domains the size of the set of primitive objects is quite large and Implicit. The design
problem is formally a search problem In a very large space for objects that satisfy multiple constraints.
Only a vanishingly small number of objects In this space constitute even "satisficing", not to speak of
optimal, solutions. What Is needed to make design practical are powerful strategies that radically shrink
the search space.

2.2. What Kind of Space In Which To Search?
The idea of search In a state space goes back to the early days of Al, and Newell (Newell, 1980] has

formalized the Problem Space Hypothesis essentially stating that all goal-directed behavior takes place In
some problem space.

Before search can take place, the problem space needs to be defined. But design problem solving
does not have a unique problem space. Different kinds of problem spaces can be visualized, each
appropriate for some kinds of domain knowledge and not others. For search In a problem space to be
operationally definable, problem states, operators which transform one problem state Into a set of
successors, and some ordering knowledge that helps to choose botween alternatives need to be
available. For search to be practical, generation of successors and choice among alternatives should not
themselves be complex problem solving activities. The last condition means that domain knowledge
should be directly available which can be applied to generate successors and choose among them.

Let us consider the ransfomation approach to design [Barstow, 1984;Balzer, 1981] as a concrete
illustration of these issues. We can consider the set of specifications to be the Initial state, and a fully
designed artifact to be the end state. Operators transform parts of the specifications into alternative
design commitments that will realize them. So an intermediate state will consist of design commitments
which realize some of the specifications along with remaining specifications. The process of design can
be thought of as searching for a series of design commntmeort that results In a goal state.

While this Is formally satisfactory, knowledge may not be available In all domains for successor
generation and alternative selection. In the programming domain to which this idea has been applied,
there seem to be several examples where knowledge of this form is in fact available. However, this
problem space is not of general applicability. (No single problem space is.) In some domains, the
constraints as stated may not be factorizable In this way, and there may be significant interactions
between the designs that are chosen to meet parts of the constraints. There is also no guarantee that the
design process can always correspond to incremental choices. Large subsystems may be designed first
and then only design within subsystems may proceed. Thus the actual design process in that domain
may not correspond to navigation In this transformation problem space. Knowledge may be directly
available which cuts a swath across the space, so that several constraints together are realized by a
precompiled design that Is recognized as applicable (design plans). Finally, in many domains, the
problem is reformulated by a decomposition so that a number of disjoint local spaces, each corresponding
to a subproblem are created. (We will discuss decomposition and design plans shortly in greater detail.)

The point of the discussion is this. Which problem space Is used depends on Vie forms In which
domain knowledge for representation and control are available. Using an Inappropriate problem space
will result in artificial heuristic functions being used which do not capture the real structure of domain
knowledge.

We propose that in design problem solving a variety of types of knowledge can be identified, each of
which helps solve a portion of the design problem in a computatlonally efficient way. Expertise consists of
an accumulation of a repertoire of such knowledge. However, unlike the current view in the expert
systems area, this expertise is not viewed as collections of pieces of knowledge, to be used by a uniform
inference technique. Instead, knowledge comes in various generdc forms, each structured In

244

characteristic ways and using inference methods that are appropriate to it. Each type of knowledge can
produce some information that may be needed or useful during design, or can generate a part of the
design solution. Conversely, each type of knowledge requires Information of certain types to be available
before It can be useful.

Thus the picture that we would like to give of design problem solving Is as a cooperative activity
between multiple types of problem solvers, each solving a subproblem using knowledge and Inference of
specific types, and communicating with other computational modules or problem solvers for Information
that is needed for it to perform its task, or to deliver Information that they need for their tasks. Thus an
analysis of design as problem solving consists of Identifying these suliprocesses, their information
processing responsibilities, and the knowledge and inference needed to deliver these functions. We call
this kind of analysis an Information processing analysis of design. This is the task of the next section.

2.3. Information processing Analysis of Design
The style of analysis will be to Identify subtasks In design, and characterize what kinds of information or

solution they are responsible for providing. Some of these subtasks can be performed in a number of
different ways: an Al solution is only one way. For example, during design, it will be necessary to find if a
certain design requirement is met A traditional computational algorithm may be able to do that In some
cases, e.g., finding out if stress in a member is less than a certain amount may be done by invoking a
finite element analysis algorithm. Sometimes this Information may require an Al-type solution, involving
an exploration of some space in a qualitative way, e.g., by doing a qualitative simulation of the artifact. In
what follows we will only describe Issues associated with Al-type solutions for these subtasks, but the
larger possibility needs to be kept in mind in the actual design of knowledge-based systems for design.

During the discussion we will try to . relate the framework to a number of previous and current
approaches to design. But the literature on design is vast. Even within Al, work on design has
proliferated over the last decade. We do not intend to be exhaustive In our coverage. Our intent is to
point to some of the other work as a way to illuminate the discussion.

We will describe a number of subprocesses or subtasks in design and describe the role they play in
design. The design process can be usefully separated Into those processes that play a role in the
"generate" part and those that help in the "test" part. We subdivide our discussion into two groups of
processes: those that are responsible for proposing or making design commitments of some sort, and
those that serve an "auxiliary" role, i.e., generate information needed for the proposers, and help test the
proposed design.

2.3.1. Processes That Propose Design Choices
(1): Decomposition. This a very common subpart of the design activity. We will use this process as

an example of information processing analysis, and describe it in terms of all the features that such an
analysis calls for: types of knowledge, information needed, and the inference processes that operate on
this form of knowledge.

Knowledge of the form D -> (D1, D2, .. Dn}, where D is a given design problem, and Di's are "smaller"
subproblems (i.e., associated with smaller search spaces than D) is often available in many domains. In
many domains, there may be a number of alternate decompositions available, and so choices (and
possible backtracking) will need to be made in the space of possible decompositions. Repeated
applications of the decomposition knowledge produce design hierarchies. in well-trodden domains,
effective decompositions are known and little search at that level needs to be conducted as part of routine
design activity. For example, In automobile design, the overall decomposition has remained largely
invariant over several decades.

Dependable decomposition knowledge Is extremely effective in controlling search since the total search
space is now significantly smaller. This power arises from the fact that decompositions represent a
previously compiled solution to a part of the design problem, and thus at run-time the design problem
solver can avoid this search.

245

Information Needed: The decomposition prooess needs two kilivs of additUodal infonwin for It to be
effective.

"* How the goals or constraints on D get transiated into e stralnts oil the sb ims Dl,,.
On.

"* How to glue tho designs for D1, 02,.. On into a design for V.

Information of the above types may be given as part of the decomposition knowledge or can be
obtained by accessing another processor which can produce that information. We will shortly refer to a
method called constraint posting that has been proposed for generating'ionstrai,',s on subproblems.
How to glue the designs for subproblems may require additional problem solving, such as simulating D1
and D2, e.g., and finding out exactly where and how the cluing can occm, The Critter system
[Kelly, 1984], e.g., provides such a simulation facility applicable under certailn assumptions that helps

both in generating constraints for the subproblems and in gluing tOe solutions together.

Inference Process: There are two sets of inference processes, one dealing with which sets of
decompositions to choose, and the other concerned with the order in which the subproblems within a
given decomposition ought to be attacked. (Remember that a decomposition merely converts a design
problem Into a set of presumably "smaller" problems, which still need to be solved for the decomposition
to be successful.)

For the first problem, in the general case, the decomposition will produce an AND/OR node, i.e., will
produce decompositions some of which are alternatives and others all of which need to be solved.
Finding the appropriate decomposition may involve searching in a space represented as an AND/OR
graph. But as a rule such searches are expensive. Routine design problems should not require
extensive searches in the decomposition space. To avoid the search problem but to use domain
knowledge about decomposition, human-machine Interaction between human experts and machine
processing can be arranged so that the machine proposed alternative decompositions, and the human
chooses the most plausible ones. Precisely this sort of shared labor is used in the VEXED system
[Mitchell, etal, 19851 during its problem decomposition phase.

The problem of the order in which to attack the problems In the decomposition list when combined with
the problem of searching in the decomposition space can make the total search very complex, since the
investigation of the subproblems in a given decomposition will be In general non-reusable if that
decomposition turns out not to be successful. This explains the extreme difficulty of the design problem in
the general case. However, in most cases of routine design, the decomposition knowledge leads to a
design hierarchy as mentioned. The default control process for investigating within a given design
hierarchy is then top-down. While the control is top down, the actual sequence in which design problems
are solved may occur in any combination of top-down and bottom up manner. For example, In designing
an electronic device, a component at the tip level of the design hierarchy may be the most limiting
component and many other components and subsystems can only be designed after that is chosen. The
actual design process in this case will appear to have a strong bottom up flavor. Control first shifts to the
bottom-level component, and the constraints that this component design places on the design of other
components are passed up.

A related Issue is one of whether the control should be depth-first or breadth first. Again, this is very
much a function of the domain. The specification language for control behavior in this process should be
expressive enough for a variety of control possibilities along these lines.

Decomposition is an ubiquitous strategy in Al work In design. McDermott's NASL system
(D.V.McDermctt. 19783 uses this extensively. Freeman and Newell [FreemanandNewell, 1971] discuss

various decomposition criteria, Including functional and structural. The transformational design work of
Barstow and Mostow uses decomposition in a degenerate form: the constraint set Is such that subsets of
it correspond to different design problems, and so can be separately expanded.

(2): Design Plans. Another pervasive form of design knowledge, again that represents precompiled
partial design solutions, is a design plan. A design plan specifies a sequence of design actions to take for

246

producing a piece of abstract or concrete design. In abstract design, choices are made which need to be
further "expanded" into concrete details at the level of primitive objects. These design plans are indexed
in a number of ways, two of them being Indexing by design goals (for achieving <goal>, use <plan>), or
by components (for designing <part>, use <plan>), Since plans may have steps that point to other plans,
design plans can subsume decomposition knowledge. From tie viewpoint of complexity reduction, the
central contribution plans make is as an encoding of previous successful exploration of a problem space
by abstracting from the experience of an Individual expert or a design community in solving particular
design problems.

Each goal or a component may have a small number of alternate plans attached to them, with perhaps
some additional knowledge that helps in choosing among them. A number of control issues arise about
abandoning a plan and backing up appropriately, or modifying a plan when a failure Is encountered.

The inference process that Is applicable can be characterized as instantdate and expand. That Is, the
plan's steps specify some of the design parameters, and also specify calls to other design plans.
Choosing an abstract plan and making commitments that are specific to the problem at hand is the
Instantiation process, and calling other plans for specifying details to portions is the expansion part.

A number of additional pieces of information may be needed or generated as this expansion process is
undertaken. Information about dependencies between parts of the plan may need to be produced at
runtime (e.g., discovering that certain parameters of a piston would need to be chosen before that of the
rod), and some optimizations may be discovered at run time (e.g., the same base that was used to attach
component A can also be used to attach component B). For example, Noah [Sacerdoti, 1977] can be
understood As a system that instantiates and expands design plans. In Noah, corresponding to each goal
of tho artiract under design, there Is a stored procedure which can be interpreted as a design plan. These
plans can call other proceoures/plans until a hierarchy is procedures Is created. Noah concentrates its
problehr ,solving on recognizing ordering relations and redundancies between the components of the plan.

The idea of design plans has been used successfully In the domain of programming or algorithm
design (Rich, etal, 1979J, [JohnsonandSoloway]. The notion that plans constitute a very basic knowledge
structure has been with us from the 1960's when this Idea was discussed extensively by Miller, Galanter
and PrIbram (Miller, etal, 19601. Schank and Abelson [SchankandAbelson, 1977] have also discussed
the use of plans as a basic unit of knowledge. The Molgen work of Friedland [Friedland, 1979] uses
design plans as a basic construct. More recently Midtal's PRIDE system [Mittal, etal, 1986] has used them
for design knowledge representation.

(3): Design by Critiquing and ModifyInG Almost Correct Designs. A variation on the design plan
idea is that the designer has a storehouse of actual successful designs indexed by the goals and
constraints that they were designed to satisfy. Sussman [Sussman, 1973] has proposed that a design
strategy is to choose an already-completed design that satisfies constraints closest to the ones that apply
to the current problem, and modify this design for the current constraints. This process needs Information
of the following kinds.

"• Matching: How to choose the design that is "closest" to the current problem? Some notion
of prioritizing over goals or differences in the sense of means-ends analysis may be needed,
If this Information cannot be generated by a compiled matching structure. In some cases,
some analogical reasoning capabilities may be appropriate by which to recognize "similar"
problems.

"* Crftlquing. Why does the retrieved design fall to be a solution to the current problem? This
analysis is at the heart of learning from failure, and sophisticated problem solving may be
needed to analyze the failure. This capability of critiquing a design is of more general
applicability than for this particular design process.

"* Modifying. How to modify the design so as to meet with the current goals? In many cases,
this Information may be available in a compile form, but In general, this also requires
sophisticated problem solving.

247

The processes of critiquing and modifying have more general applicability than as parts of this
particular design process. We discuss criticism as one of the auxiliary processes later in this section.
Design modification, however, is a useful process in tho "generate" part of design, so we discuss some of
the Issues related to it here.

Modification as a subprocess takes as input information about failure of a candidate design and
changes the design. Depending upon the sophistication about failure analysis and other forms of
knowledge available, a number of problem solving processes are applicable:

o A form of means-ends reasoning, where the differences are "reduced" in order of most to
least significant.

* A kind of hill-climbing method of design modification, where parameters are changed,
direction of Improvement noted, and additional changes are made in the direction of maximal
increment In some measure of overall performance. This form can even constitute the only
method of design in some domains: assign arbitraty values to the parameters, and change
them in a hill-climbing fashion until a maximum is reached, and deliver that as the design.
This Is especially applicable where the design problem Is viewed as a parameter choice
problem for a predetermined structure. The system called DOMINIC [Howe, etal] engages in
this form of design problem solving.

* Dependencies can be explicitly kept track of, in such a way that when a failure occurs, the
dependency structure directly points to where a change ought to be made.
Dependency-directed backtracking was proposed by Stallman and Sussman [1977] as one
approach to this problem. Mittal (MittalandAraya, 19861 proposes a variation on dependency
tracking for modification of designs on failure.

* What to do under different kinds of failures may be available as explicit domain knowledge in
routine design problems. This information can be attached to the design plans. The work to
be described in later chapters uses this highly compiled form.

Sussman (19731 has investigated the retrieval and use of previous designs In circuit design. Schank
(1983] has been an advocate of case-based reasoning for a variety of problems.

(4): Design by Constraint Processes. For some design problems a process of simultaneous
constraint satisfaction by constraint propagation can be employed. In order for this to work
computatlonally effectively, it Is best if the structure of the artifact Is known and design consists of
selecting parameters for the components. Constraints can be propagated In such a way that the
component parameters are chosen to Incrementally converge on a set that satlsfi': ., all the constraints.
Macworth 11977] provides a good discussion of several techniques for this. This Is at Instance of what Is
called, in optimization theories, relaxaion procedures'. Human problem solvers aren't particularly good
at this form of Information processing without pencil and paper. The incremental convergence process
can be treated as a form of problem space exploration, so we are including it in this discussion.

Constraint sartifaction processes can be viewed as applying design modification repeatedly and
incrementally. Thus many of comments we made earlier regarding design modification are applicable. In
particular, some of the constraint propagation techniques can be viewed as versions of hlll-clirring
methods in search. And varistinns such as dependency-directed changes to parameters can be adopted
during each modification cycle. More -ompiex processes such as constraint-posting can be used where
additional constraints are generated as a result of choices made for earlier parameter choices. These
constraints are used for remaining parameter choices.

Configuration problems are an Interesting and well-known class of problems (made famous by the R1
system [J.McDermott, 19821) in design. Some ver•sions of them can be decomposed into subproblems

tUrftountately, this we ef the twm reliaWi kftsem wth ano~thr ua of d it in d , v1L., r'Wexkq fte consaints so that a
had dfeign probiem may be monvwaed ino a mk *y ea.w. one.

248

whose solutions can be neatly giued back together. In fact, RI's problem solving Is done as a linear
series of subtasks. However, in the general case, these problems often have no clear decomposition Into
subproblems, because of extensive Interactions between various parts of the design. On the other hond,
many configuration problems have the tractable feature that most of the components of the device are
already fixed, and only their connections and a few additional components to mediate the connections
need to be chosen. This makes Iterative techniques applicable by making it likely that one can converge
on the solution. Constraint satisfaction methods are often applicable to configuration problems. Marcus,
McDermott and Wang [19851 discuss a strategy called propose and revise, where commitments are made
for some parts of the design, which generates additional constraints, and if later parts in the design
problem cannot be solved, earlier commitments are revised. Frayman and Mittal (1987] discuss the
configuration task abstractly.

Caution! Formally all design can be thought of as constraint satisfaltlon, and one might be tempted to
propose global constraint satisfacuon as a universal solution for design. The problem Is that these
methods still can constitute a fairly expensive way to search the space. For example, propose and revise
can end up searching the entire space In difficult problem spaces and hill-climbing methods can get stuck
at local optima. Hence these methods am not a universally applicable for practical design. Other
methods of complexity reduction such as problem decomposition are still very important in the general
case. They can create subproblems with sufficiently small problem spaces in which constraint
satisfaction methods can work without excessive search.

Human problem solvers need computational assistance In executing constraint satisfaction
approaches: the methods are computationally Intensive and place quite a burden on short term memory.
As long as attempts are not made to use them as universal design methods, they can be effective
computational techniques for portions of the design problem.

2.3.2. Auxiliary Processes
So far the subprocesses in design that we have considered:

* decomposition, design plan instantiation and expansion, modification of an almost correct
design, constraint satisfaction,

contribute to design by proposing some design commitments. Along the way, we have referred to some
other processes which serve the former by providing information that they need. Let us discuss them
briefly here.

(1): Goal/Constraint Generation for Subproblems. Givený a decomposition D --> {D1, D2, .. 0n), one
will need to know how the goals/constraints of Dare translated Into goals/constraints for the subprograms.
In many domains, this information is part of the decomposition knowledge. But if it is nut avalluble,
additional problem solving is called for. The literature on constraint-posting that we refeoi, t1 oualier
proposes methods applicable in some cases.

Vexed [Steinberg] provides an exampIG oW constraint ganerailon for subproblems given a ir•rtcular
problem deoopson. In tils domrin tie subproblents N"ave a serial connection relation. For w, m,•,
D may be implemented by two modules D1 and D2 connected in series. A constraint puoiWjWllj1n
scheme (called CRITTER [Kelly, 19841) takes the Input to D and produces the constraints on U1 's output/
W2's input. Design of D1 and D2 can then proceed.

(2): Recompositlon. We alluded to this In ouv discusslon on decomposition: how to glua tho kdjiilns
of the subproblems back into a solution for the original problem. Integrating them may reluJire shtiuating
the subdesigns and find how they Interact. Or other methods of problem solving may he called for.
Scientific theory building involves assembling portions of theories Into larger coherent theories, ond needs
powerful Interaction analyses. RED (Josephson, etal, 19871 proposes an especially powerful steotogy for
composing explanatory theories.

(3): Design Verification: This is part of the "test" component of the design activity: whether a
candidate design delivers the functions and meets with any other relevant constraints. In most cases, it
can be done by straightforward ccmpiled computational methods, e.g., "add weights of components and

249

check that it Is less than x," or Invoking possibly complex mathematical formulae, such as a finite element
analysis, that does not Involve problem solving. In some cases, additional problem solving may be called
for for verification. For Instance, qualitative simulation of a piece of machinery to decide if any of its parts
will be in the path of another part may be needed for verifying a proposed design.

(4): Design Criticism. At any stage In design, any failure calls for analyzing the candidate design for
reasons for failure. This form of criticism played a major role in the method of design by retrieving an
almost correct design. In most routine design, fairly straightforward methods will suffice for criticism, but
In general this calls for potentially complex problem solving. Design modification uses the results of
criticism.

2.4. Implications of Above Analysis
The analysis of the design process In terms of subprocesses with well-defined information processing

responsibilities helped us in Identifying types of knowledge and inference needed. This in turn directly
suggests a functional architecture for design with these subprocesses as building blocks. It also suggests
a principled way in which to define the human-machine interaction In design. Firstly, whenever
knowledge and control can be explicitly stated for one of the modules or building blocks, t'hat module can
be built directly, by using a knowledge and control representation that is appropriate to that task.
Secondly, if knowledge for a module is not explicitly available, the human can be part of the loop for
providing Information that that module would have been responsible for. For example, failure analysis
and common sense reasoning involving space and time are difficult problem solving tasks. These tasks
may be needed for the performance of design modification and desigi verification, respectively. The
human/machine division of responsibility may be done in such a way that the machine turns to the user
for the performance of these tasks. As these tasks are better understood, they can be incrementally
brought into the machine side of the human/machine division of labor.

Another kind of human machine interaction is possible is possible in this framework. Note that each
subprocess is characterized both by specific types of knowledge and by inference and related control
problems. We mentioned, e.g., that search In the space of problem decompositions can become quite
complex. One way in which a module can interact with a domain expert Is by proposing available
knowledge and letting the human make the control choices by using knowledge that has not been made
explicit in the problem solving theory. As a practical matter, this can be an effective way of using the
module as a knowledge source, even without a complete theory of problem solving using that knowledge.
The VEXED system that we have mentioned in fact works in this mode: it proposes possible
decompositions, and the user Is asked to choose the one he or she would like to pursue. Similarly, when
a design system's choice of design plans fails, it may turn to the user for choosing alternative plans.

Let us elaborate on the functional architecture for design that results from this analysis. Because each
subprocess uses characteristic types of knowledge and inference, a "mini-shell" can be associated with it
and knowledge and Inference can be directly encoded using that shell. Since each of the tasks has a
clear information processing responsibility, the modules can communicate with each other in terms of the
Information that defines the input and outputs of these modules. Thus the modularity that results is a
task-level modularity.

In the rest of this book, we provide the details of the functional architecture for one type of design, a
form of routine design that we have termed Class 3 Design. This way of analyzing design and identifying
architectures out which design problem solvers can be built is what Is novel about the point of view of the
book. We will soon proceed to a description of our informal classification of design problems, but before
that we need to take note of some other suggestions that have been made for design problem solving
and relate them to our analysis.

250

2.5. Classes of Design
The above analysis of design subprocasses can be used to provide an Informal classification of design

problems. Many of the processes in the "test" part of design, such as design verification by qualitative
simulation, can be arbitrarily complex, but they are not particularly specific to design. The design process
simply calls upon these other problem solving skills. On the other hand, many of the processes in the
"generate" portion are quite specific to design as a problem solving process, so our classification is based
largely on the subprocesses in the "generate" part of design.

Each of the processes
*decomposition, design plan instantlation and expansion, modification of similar designs,

constraint satisfaction,
performs some aspect of design, using information either directly available or supplied by auxiliary
problem solving or other computational processes. Each of them comes with a set of control problems
that can be more or less complex, and needs knowledge in certain forms.

The framework suggests that design by decomposition, I.e., breaking problems into subproblems, by
plan synthesis where necessary, and by plan selection where possible, are the core processes in
knowledge-based design, i.e., it gives importance to the first two processes in the above list as the major
engines of complexity reduction in design. The classification is largely based on the difficulty of these
subtasks or processes, in particular on the completeness of knowledge, the ready availability of the
needed auxiliary information and the difficulty of the control issues.

2.5.1. Class 1 Design
This is open-ended "creative" design. Goals are ill-specified, and there is no storehouse of effective

decompositions, not to speak of design plans for subproblems. Even when decomposition knowledge is
available, most of the effort is in searching for potentially useful problem decompositions. For each
potential subproblem, further work has to be done in evaluating if a design plan can be constructed.
Since the design problem is not routine, considerable problem solving for many of the auxiliary processes
will need to-be performed.

The average designer in industry will rarely, if ever, do Class 1 design, as we consider this to lead to a
major invention or completely new products. It will often lead to the formation of a new company, division,
or major marketing effort. This then is extremely innovative behavior, and we suspect that very little
design activity is in this class.

2.5.2. Class 2 Design
Class 2 design is characterized by powerful problem decompositions already available, but design

plans for some of the component problems in need of do nova construction or substantial modification.
Design of a now automobile, e.g., does not Involve new discoveries about decomposition: the structure of
the automobile has been fixed for quite a long time. On the other hand, several of the components In it
constantly undergo major technological changes, and routine methods of design for some of them may no
longer be applicable.

Complexity of failure analysis will also take a problem away from routine design. Even if design plans
are available, if the problem solver has to engage in very complex problem solving procedures in order to
decide how to backtrack, the advantage of routine design is reduced. In short, whenever substantial
modifications of design plans for components are called for, or when synthesis in the design plan space is
especially complicated, we have a Class 2 problem.

2.5.3. Class 3 Design
This Is relatively routine design: effective problem decompositions are known, compiled design plans

for the component problems are known, and actions to take on failure of design solutions are also
explicily known. There is very little complex auxiliary problem solving needed. In spite of all this
simplicity, the design task Itself is not trivial: complex backtracking can still take place. The design task is

251

still too complex for simple algorithmic solutions or table look up.

Class 3 problems are routine design problems, but still requiring knowledge-based problem solving.
The ensuing chapters of this book deal with an approach to building knowledge-based systems for routine
design problems of this type. The processes described here can work in conjunction with auxiliary
problem solvers of various types, but the theory for them is not developed further in this book. The
examples used all assume that the information to be provided by the auxiliary design processes, e.g.,
design cnticism, verification, and subproblem constraint generation, are all available in a compiled
manner.

2.5.4. A Class 3 Product
In a large number of industries, products are tailored to the installation site while retaining the same

structure and general properties. For example, an Air-cylinder intended for accurate and reliable
backward and forward movement of some component will need to be redesigned for every new customer
in order to take into account the particular space into which It must fit or the intended operating
temperatures and pressures. This is a design tawk, but a relatively unrewarding one, as the designer
knows at each stage of the design what the options are and in which order to select them. Note that that
doesn't mean that the designer knows the complete sequence of steps in time (i.e., the trace) in advance,
as the designer has to be in the problem-solving situatinn before each decision can be made. There are
just too many combinations of requirements and design tituabions to allow an algorithm to be written to do
the job.

As this tends to be unrewarding work for humans and as this type of non-trivIal problem appears to be
possible to do by computer there is strong economic justification for us to attack this problem.

2.5.5. Class 3 Complexity
The complexity of the class 3 design task is due not only to the variety of combinations of

requirements, but also to the numerous components and sub-components, each of which must be
specified to satisfy the initial requirements, their immediate consequences, the consequences of other
design decisions, and the constraints of various kinds that a component of this kind will have.

While class 3 design can be complex overall, at each stage the design alternatives are not as open-
ended as they might be for class 2 or 1, thus requiring no planning during the design. In addition, all of
the design goals and requirements are fully specified, subcomponents and functions already known, and
knowledge sources already identified. For other classes of design this need not be the case.
Consequently, class 3 design is an excellent place to start in an attempt to fully understand the complete
spectrum of design activity.

Note that we are not merely Interested In producing an expert system that produces a trace which Is
the same as or similar to a designer's, nor are we solely Interested In arriving at the same design --
although both are amongst our goals. We are concerned with producing an expert system that embodies
a theory of class 3 design and demonstrates the theory's viability.

Imprecision of the ClassIficatlon. The classification that we have described is a useful way to get a
bearing on the complexity of the design task, but it is not meant to be formal or rigorous. Neither is the
term routine dessgn. The approach described In this book Is Intended to provide a starting point for
capturing some of the central phenomena In routine design, but It Is not Intended to be a complete
account of routine design.

References

R. Balzer, "Transformation implementation: an example," IEEE Transactions Software Engineering,
SE-7, pp. 3-14, 1981.

D. Barstow, "A perspective on automatic programming," Al Magazine, 5,5, 1984.

252

F. Frayman and S. Mittal, "Cossack: A constraint-based expert system for configuration tasks," 11 Int.
Conf. on Appl. of Al to Engg., Boston, MA, 1987.

P. Freeman ana A. Newell, "A model for functional reasoning in design," in Proceedings of the 2nd
International Joint Conference on Artifidal Intelligence, pp. 621-640, 1971.

P. E. Friedland, "Knowledge-based experiment design in molecular genetics," Rep. No. 79-771,
Computer Science Dept, Stanford University, 1979. (DoctoraJ dissertation.)

Adele E. Howe, Paul R. Cohen, John R. Dixon and Melvin K. Simmons, "Dominic: A domain-
independent program for mechanical engineering design," Artficial Intelligence in Engineering, Vol. 1, No.
1, pp. 23-28, 1986.

Johnson, W. L. and Soloway, E., "Automatic Bug Detection," Byte Magazine, April, 1985.

J. Josephson, B. Chandrasekaran, J. Smith and M. Tanner, "A mechanism for forming composite
explanatory hypotheses," IEEE Transactions on Systems, Man and Cybernetics, Special Issue on Causal
and Strategic Aspects of Diagnostic Reasoning, May/June, pps. 445-454, 1987.

Van E. Kelly, "The CRITTER system-automating critiquing of digital circuit designs," Proceedings of

the 21st Design Automation Conference," IEEE, June, 1984.

A. K. Mackworth, "Consistency in networks of relations," Artificial Intelligence, 8,1, 1977.

S. Marcus, J. McDermott and T. Wang, "Knowledge acquisition for constructive systems," IJCAI-85,
pp. 637-639.

D. V. McDermott, "Circuit design as problem solving," in Al and Pattern Recognition In CAD, North-
Holland, (Ed.), J-C. Latombe, pp. 227-245, 1978.

J. McDermott, "R1: a rule-based configurer of computer systems," in Artificial Intelligence, Vol. 19, No.

1, September, pp. 39-88, 1982.

G. A. Miller, E. Galanter and K. H. Pribram, Plans and the structure of behavior, New York: Holt, 1960.

T.M. Mitchell, LI. Steinberg, and J, S. Shulman, "A knowledge-based approach to design," Technical
report, LCSR-TR-65, Department of Computer Science, Rutgers University, January, 1985.

S. Mittal and A. Araya, "A knowledge-based framework for design," Proceedings of AAAI-86.

S. Mittal, C. Dym and M. MorladLa "Pride: an expert system for the design of paper handling systems,"
IEEE Cornouter, 19,7, July, pp. 102-114,1986.

A. Newell, "Reasoning, problem solving and decision processes: The problem space as a fundamental
category," In R. Nickerson, edL, Attention & Performance VIII, Erlbaum, Hillsdale, NJ, 1980.

Charles Rich, H. Shrobe and R. C. Waters, "Overview of the programmer's apprentice," IJCAI-1979.

E. D. Sacerdotl, "A structure for plans and behavior," New York: American Elsevier, 1977.

R. Schank, Dynamic memory: A theory of learning In computers and people, Cambridge University
Press, 1983.

R. C. Schank and R. P. Abelson, Scripts, plans, goals, and understanding, Hillsdale, N.J.:Lawrence
Erlbaum, 1977.

Richard M. Stallman, and Gerald J. Sussman, "Forward reasoning and dependency-directed

253

backtracking In a system for computer-aided circuit analysis," Artificial Inteli/gence, Vol. 9, No. 2, 1977.

G. Sussman, "A computational model of skill acquisition," Ph.D thesis, MIT Math Dept, 1973.

254

Appendix H

The Generic Task Toolset

255/256

87-TB-TOOLSET

The Ohio State University
Department of Computer and Information Science

Laboratory for Artificial Intelligence Research

Technical Report
March 1987

THE GENERIC TASK TOOLSET

T. Bylander, B. Chandrasekaran and J. Josephson
Laboratory for Artificial Intelligence Research

Department of Computer and Information Science
The Ohio State University

Columbus, OH 43210

Appears in Proc. Second International Conference on Human-Computer Interaction.
Honolulu, Hawaii, August, 1987.

257

The Generic Task Toolset'

Tom Bylander. B. Chandrasekaran, and John R. Josephson
Laboratory for Artificial Intelligence Research, Department of Computer and Information
Science. The Ohio State University. Columbus, Ohio, USA

Abstract
Bylander, T., Chandrasekaran, B., and Josephson, J. R., 1987. The generic task toolset.

Proc. Second Int'l Conf. on Human-Computer interaction.

Expert system methodologies that emphasize uniformity of representation and the separa-
tion of knowledge from the inference engine inherently cannot capture distinctions between
different types of problem solving. These methodologies provide no role for higher-level con-
trol structures in which knowledge and its use are more closely intertwined, and lack suf-
ficient constraints on the amount of resources available for problem solving. The goal of our
research is to study generic types of problem solving that are limited in their expressiveness
and computational power, ioc ;..Al provide the basis for explicitly encoding expertise and for
much of everyday problem solving by people. This paper briefly describes our research on
generic tasks and the Luvelopment of a toolset for building expert systems using the generic
tasks that we have fouLd v--dful for diagnosis and design.

I. Introduction

Our research in knowledge-based reasoning is characterized by an emphasis on understand-

ing the relationship between problem solving and knowledge in tasks that require expertise.

We believe that experts take advantage of several kinds of reasoning in their problem solv-

ing, rather than relying on a single inference engine or theorem prover. We also hope that
the kinds of reasoning we discover also underlie everyday problem solving by humans. An

increasing amount of Al research is being devoted to discovering and studying these kinds of

reasoning (Chandrasekaran, 1983, Clancey, 1985). If this research is successful, this could al-

low for the development of system-building tools that can explicitly represent how an expert

uses his knowledge to solve problems.

In this paper, after we describe some of our motivations, we outline our generic task ap-

proach, the kinds of reasoning we have studied, and the tools that we have developed. Due

to space limitations, we will not be able to present extended examples. The interested
reader should turn to the literature cited in the references.

Research supported by Air Force Office of Scientific Research grant 82-02.55. National Scieice
Foundation grant MCS .8305032, and Defense Advanced Research Projects Agency, RADC Contract
F30602-85-C-0010. Toolset developntent is also supported by grants of equipnient front Xerox
Corporation, IBM, and Texas Inetruments.

258

2. Motlvations Lumderlying Generic Tasks

The first generation of knowledge-based systems, exemplified by MIYC[N (Shorrliffe. 1976)

and RI (McDermott. 1982), is characterized by its reliance on production rules. In thi.i

methodology, knowledge is thought of as a large collection of facts about a domain (the
rules), and reasoning proceeds by applying a domain- and problem-independent inference pro-

cedure to those facts (the "inference engine"). Production rules were claimed to have a

number of desirable properties (Davis and King, 1977) that need to be carefully qutestioned.

Uniformity. A uniform representation and inference engine has the advantage of

simplicity. There is little overhead in understanding how the' basic mechanism operates.

However, uniformity results in a level of aostraction problem. A uniform representation can-

not capture important distinctions between different kinds of problems. A uniform inference

engine does not provide different control structures for different kinds of problems. For ex-

ample, diagnosis and design are different with respect to the representational distinctions and

control structures that they generally call for. Diagnosis generally involves matching obser-

vations to malfunctions, setting up a differential, and ruling out competing malfunctions,

while design involves synthesizing a structural description, determining the parameters of

components and subsystems, and ensuring that design choices satisfy specificarions.
. Modularity. Although each rule of an expert system may represent a primitive fact or

action of a domain, the rules are rarely independent from one another. in order to perform

complex problem solving, the rules need to interact with each other, which c'reates a control

problem, i.e., ensuring that the rules interact properly. The need for higher-level control

structures for groups of rules has led to programming techniques that create these structures

implicitly within the rules. For example, RI, which is implemented in the OPS5 production

rule language (Forgy, 1981), performs a sequence of "design subtasks." each of which is im-

plemented as a set of production rules. The programming technique was to encode a con-

dition in each rule that tests the "current context" (the subtask to be performed) and to

have rules that switched from one context to another. Thus rules in RI are not independ-

ent actions, but are carefully crafted to interact appropriately with other rules. MYCIN is

another example in which implicit structuring took place. Each disease that is represented

by MYCIN has an associated set of rules that map data to levels of confidence in the dis-

ease. Each rule implicitly depends on other rules to take into account other evidence that

affects confidence in the disease and to ensure that backward chaining will search the

hypothesis space. Further examples of the use of special programming techniques in rule-

based systems are discussed in Buchanan and Shortliffe (Buchanan and Shortliffe. 1984).

Modifiability and Consistency. In view of the above problems. it is difficult to see how

rules can be considered easy to modify and easy to check for consistency The implicit

structure of the rules needs to be understood before undertaking any modification or consis-

tency checking on the rules. The uniformity increases the difficulty of the problem by

making it hard to determine what type of problem solving is being used.

Separation of the Knowledge Base from the Inference Engine. The general assumption of

the first generation of knowledge-based systems was that knowledge has an independent exist-

259

ence apart from it.s use .- that knowledge is collected for a given domain. depotsited in :•
knowledge base, and Ohen used by a -k nowledge.free" inference engine to ,solve problems.

However, in actual knowledge-based systeras. the interactions between the rules and the in-

ference engine could not be ignored.

Resources for Problem Solving. Production rule architectures are equivalent to Turing

Machine,. This means that any problem that can be solved by a computer problem can be

also be solved by some production rule program. Although this generality is useful in terms

of its flexibility for programming, production rule architectures, per .se, do not distinguish

tractable or resource-limited problem solving from intractable or even uncomputable problem

solving. Additional constraints are needed to etplain how problem solving can be efficient.

3. The Generic Task Approach

Our research has been attempting to resolve these problems by identifying generic tylpes

of problem solving, which we call "generic tasks" "handrasekaran, 1986). Each generic task

is a basic combination of a knowledge structure ,*.,d an inference strategy that are suited for

solving a limited type of problem. The idea is to model expert reasoning with several

problem solvers, where each problem solver performs a generic task, and all the problem sol-

vers cooperate to solve the problems presented to them. Each generic task is characterized

by information about the following:

o The type of problem it solves (in terms of the type of irput and t&-h type of

output). What function does the generic task perform?

* The representation of knowledge. How should knowledge - v arr s -uc-

tured to accomplish the function of the generic task? In. p•. :i~La. I =I f,

types of concepts and the relationships between concepts tkL. az, ir va ,ed -- t

generic task?

* The inferenre strategy. What inference strategy can *-qprd me. --e -,H-E*,, -,

accomplish the function of the generic task?

For example, in the generic task of hierarchical classificzi.m, ttw prouau ' i: to to

what categories or hypotheses apply to the situation giv-r, a. .Iesript Un of ie IZa.I=

The representation is to organize the hypotheses as a classk i -,.ier. -h, IArh ncao-

the hierarchy can be thought of a high-level module for orgaz.zizr Li ca I_-, m•nwtleege

Consistency checking can be done separately for each node. The %er'ar-.1- 1 .3 .' r•nr.difiew

by adding new nodes or changing relationships between fia t V.- " riferenme strategy

(establish-reaine) is to consider a hypothesis only if its paaen haz been de-te1mine wo be

relevant. This is a simple, but powerful strategy for considering c-Ay tla0se Lpotheselr .hat

are relevant to a situation. A significant portion of expe•t- systerm, such as 'AYC!NJ and

PROSPECTOR (Duda et al., 1980) can be viewed ao hberarthic.ai 4-•assificaticu. "p.iher

generic tasks that we have identified so far are:

* Object synthesis by plan selection and refinemeni (BEkwn a;ý Chandrasekzran,

1986). Design an object using hierarchical planning. Design plaa-" • e associat-A

with subsystems and components of the object. A design plan migln-•* •.4iute &'i;

parameters of a subsystem, call for the design of any components, check con-

260

straints. and handle constraint failures. The tasks performed by- the pxport iys-

tems .v[OLGEN (Friedland, 1979) and RI can be analyzed in this way.

"* Knowledge-directed information passing (.[ittal et al., 1984). Determine the at-

tribute of some datum based on the attributes of conceptually-related data. FI)or

example. a measurement might be abstracted to be low. normal. or hLgh. or one

datum might be inferred from another. such as inferring exposure to anesthetics

from an episode of major surgery. This generic task is often used in support of

other generic tasks such as hierarchical classification or routine design.

"* Hypothesis matching (Chandrasekaran et al., 1982, Bylander and Johnson, 1987).

Match a hypothesis to a situation using a hierarchical representation of evidence

abstractions. Different groups of data relevant to a hypothesis are individually

evaluated, and then these evaluations are combined into a single judgment on the

hypothesis. Samuel's checker-playing program (Samuel, 1967) and the Al RHEUM

(Lindberg et al., 1980) expert system perform this task.

"* Abductive assembly (Josephson et al., 1987). Construct composite hypotheses in

order to account for some set of data. An "assembler" selects the "bf,.t" (e.g.,

most plausible) hypotheses that account for the most salient data. par'irnonizes

composite hypotheses, and critiques them. The INTERNIST (.Miller tt al.. 1982)

and DENDRAL (Buchanan et al., 1969) systems largely perform this task.

"o State abstraction (Chandrasekaran, 1983). Characterize the state of a system

based on state changes in its subsystems. Very few expert systems crurrently spe-

cialize in this task.

4. Analyzing Problem Solving in Terms of Generic Tasks

To illustrate how the generic tasks can be used to analyze problem solving, we show how

a form of abduction can be performed using generic tasks. We are using the term
"abduction" to refer to a form of non-deductive inference that follows a pattern something

like this (Josephson et al., 1987):

D is a collection of data (facts, observations. givens),
Hypothesis H is likely or plausible under the circumstances,
H accounts for D (would, if true, account fur D).
No other hypothesis accounts for D as well as It does.

Therefore, H is the "best" hypothesis.

That is, abductiokis go from data describing something. to an hypothesis that best accounts

for that data. This form of reasoning is a commonly occurring reasoning problem. e.g.. diag-

nosis, therapy, perception, and theory formation. The functional decomposition described

here was used by the RED expert system for red-cell antibody identification (Smith et al.,

1985).

A large class of abductive problems can be characterized as a search for the composite

hypothesis (e.g., set of diseases, set of characteristics) that best explains a set of obser-

vations. Four generic tasks, which interact with each other and with a explanatory facility,

261

can be used to realize an abductive problem iolver. They are hierarchical ,l:sicion.

hypothesi6 matching. knowledge-directed infurmation passing. and abductive asembly. Their

roles are:

"* Hierarchical Classification - The categories in the classification hierarchy are the

hypotheses for the abduction problem. This generic task is used to organize the

hypothesis space, filter out the less plausible hypotheses, and explore the more

plausible hypotheses.

"* Hypothesis matching - For each hypothesis in the classification hierarchy. this

generic task is used to organize evidence comb.ination knowledge. which is used for

estimating the plausibility of the hypothesis.

"* Knowledge-directed data passing - This generic task is for organizing the obser-

vations and to remember which observations need to be explained by some

hypothesis. For example in medical diagnosis, symptoms such as pain and bleed-

ing need to be accounted for, while the age and the sex of the patient do not.

This generic task is used by the hypothesis matchers as well as the following

generic task.

"* Abductive assembly - This generic task is for generating composite hypotheses. It

uses an explanatory facility to determine what data a hypothesis or composite

hypothesis can account for. Hierarchical classification is used to generate

hypotheses for this generic task, and knowledge-directed data passing is used to

store the observations to be accounted for.

5. Conceptualization and Design of the Generic Task Toolset

Each of the generic tasks can be used as a programming technique within a more general

programming language like LISP, PROLOG. or OPS5. However, this does not prevent an

knowledge engineer from going outside the boundaries of a generic task. These bounds are

important to specify and enforce because they ensure that the advantages of generic tasks

will be maintained. One natural way to do this is to implement a software tool for each

generic task to be used in a general programming environment. Such tools also provide an

empirical means for testing the clarity of these ideas and the usefulness of the approach in

actual systems.

Consequently, for each generic task, we have developed a tool that can encode the

problem solving and knowledge that is appropriate for the generic task. Below is a list of

the tools that correspond to the generic tasks that we have studied:

CSRL (Conceptual Structures Representation Language) is the tool for hierarchical

classification (Bylander and Mittal, 1986).

"* DSPL (Design Specialists and Plans Language) is the tool for object synthesis

using plan selection and refinement (Brown, 1985).

"* IDABLE (Intelligent DAta Base LanguagE) is the tool for knowledge-directed in-

formation passing (Sticklen, 1983).

"* HYPER (HYPothesis matchER) is the tool for hypothesis matching (Johnson.

1986).

262

* PEIRCE (named after the philosopher C. S, Peirce) is the tool for abducni'e as.

sembly of hypotheses (Punch et al., 1986).

* WWHI (What Will Happen If) is the tool for state abstraction.

At present each tool has been separately implemented with no attempt at keeping their

implementations consistent with each other or facilitating integration of different generic task

problem solvers. Part of our current resear.h is to devwop a generic task toolset. which in-

tegrates all the tools in a consistent fashion, which t'acilitates th,: constriuction of knowledge.

based systems that use several generic ýiwk,3, and which is im.plemented in C'ornmon Lisp.

[The tools are intended to ensure the following advanta~es of the generic tasks:

" Multiformity. Each generic t 'sk p-ov,'des a ditfereut way to organize and use

knowledge. The knowled.'-e oiginetr can choose which generic task is the best for

performing a particular ',onction, or can use different generic tasks for performing

the same function. Differen'? problems can use different generic tasks and different

combinations of generic tasks.

* Modularity. A knowledge-based system can be designed by making a functional

decomposition of its intended problem solving into several cooperating generic

tasks, as illustrated in Section 4. Each generic task provides a way to decompose

a particular function into its conceptual parts, e.g., the categories for hierarchical

classification, and allows domain knowledge of other forms to be inserted into a

generic task, e.g., evidence combination knowledge in hierarchical classification
S~(Sticklen -,: al., 1987).

* Knowledge Acquisition. . Each generic task is associated with its own knowledge

acquisition strategy for building an efficient problem solver (Bylander and

Chandrasekaran, 1987). For example in hierarchical classification, the knowledge

engineer needs to find out what specific categories should be contained in the clas-

sification hierarchy and what general categories provide the most leverage for the

establish-refine strategy.

o Explanation. This approach directly helps in providing explanations of problem

solving in expert systems in two important ways: how the data match local goals

and how the control strategy operates (Chandrasekaran et al., 1987). Each

generic task localizes the knowledge that is used to satisfy local goals. Also, the

control strategy of each generic task is specific enough for generating explanations

of why the problem solver chose to evaluate or not to evaluate a piece of

knowledge.

* Exploiting Interaction between Knowledge and Inference. Rather than trying to

3eparate knowledge from its use, each generic task specifically integrates a par-

ticular way of representing knowledge with a particular way of using knowledge.

This allows the attention of the knowledge engineer to be focused on representing

and organizing knowledge.for performing problem solving.

* Troctability. Under reasonable assumptions, each generic task generally provides

tractable problem solving (Allernang et al., 1987, Goel et al., 1987). One major

263

exception is ,.bdiuctive assembly, which can become intractable if there are -uf-

ficient incurnpatibility relationships or subtractive interactions between hypotheses.

The main reasons why they are tractable are because a problem can be decom-

posed into small, efficient units, and knowledge can be organized to take care of

combinatorial interactions in advance.

It should be noted that these advantages are attained at the cost of generality. Each

generic rask is purposely constrained to perform a limited type of problem 4olving and re-

quires the availability of appropriate domain knowledge. The taxonomy of generic tasks Ls

far from complete, so a general programming facility will still be needed,

There is also the problem of having to cope with a separate tool for each generic task.

A major goal of the toolset is to lessen this burden by providing a consistent interface to all

the tools. A similar problem is that the knowledge engineer needs to understand when each

generic task is appropriate to use. Thus, the knowledge engineer needs to be trained in per-

forming analyses in these terms.

6. References
Allemang, D., Tanner. M. C., Bylander, T., and Josephson, J. R. (1987). On the Computa.

tional Complexity of Hypothesis Assembly (Tech. Rep.). Columbus, Ohio Lab. for Al
Research, CIS Dept., The Ohio State Univ.,

Brown, D. C. (1985). Capturing Mechanical Design Knowledge. Proc. 198.5 ASME Inter-
national Computer in Engineering Conference. Boston.

Brown, D. C., and Chandrasekaran, B. (1986). Knowledge and Control for a Mechanical
Design Expert System. Computer, 19(7), 92-100.

Buchanan, B. G., Sutherland, G. L., and Feigenbaum, E. A. (1969). Heuristic DENDRAL:
A Program for Generating Explanatory Hypotheses in Organic Chemistry. In Meltzer, B.,
and Michie, D. (Eds.), Machine Intelligence 4. Edinburgh: Edinburgh University Press.

Buchanan, B. G., and Shortliffe, E. H. (Eds.). ([984). Rule-Based Ezpert Systems: The
MYCIN experiments of the Stanford Heuristic Programming Project. Reading, MA:
Addison-Wesley.

Bylander, T., and Chandrasekaran, B. (1987). Generic Tasks for Knowledge-Based Reason-
ing: The "Right" Level of Abstraction for Knowledge Acquisition. International Journal of
Man.Machine Studies, , pp. in press.

Bylander, T., and Johnson, T. R. (1987). Structured Matching (Tech. Rep.). Columbus,
Ohio: Lab. for Al Research, CIS Dept., The Ohio State Univ.,

Bylander, T., and Mittal, S. (1986). CSRL: A Language for Classificatory Problem Solving
and Uncertainty Handling. Al Magazine, 7(2), 66-77.

Chandrasekaran, B. (1983). Towards a Taxonomy of Problem Solving Types. .41 Magazine,
4(t), 9-17.

Chandrasekaran, B. (1986). Generic Tasks in Knowledge-Based Reasoning: High-Level
Building Blocks for Expert System Design. IEEE Expert, 1(3), 2&30.

Chandrasekaran, B., Mittal, S. and Smith. J. W. (1982). Reasoning with Uncertain
Knowledge: The MDX Approach. Proc. Congress of American Medical Informatics
Association. San Francisco: AMIA.

Chandrasekaran, B., Tanner, M. C., and Josephson, J. R. (1987). Explanation: The Role of
Control Strategies and Deep Models. In Hendler, J. (Ed.), Expert Systems: The User
Interface. Norwood, New Jersey: Ablex.

The fault is not the strategy of abductive assembly, but because certain kinds of abduction
problems axe inherently intractable for any computational process.

264

CLancey, W. J. (L985). Heuristic Classification. .4rtificial Inte•ligene,., 27(3). 2.9-.5o
Davis. R.. and King. J. (1977). An Overview of Production Systems. In Elcock. E. W..

and Michie, D. (Eds.), Machine Intelligence 8. New York: John Wiley & Sons.
Duda, R. 0., Gaschnig, J. G., and Hart, P. E. (1980). Model Design in the Prospector

Consultant System for Mineral Exploration. In Michie. I). (Ed.)..Eep,'rt .Sy.defris in the
Microelectronic Age. Edinburgh University Press.

Forgy. C. L. (1981). OPS5 Users Manual (Tech. Rep. CaM-C.81-135) Carnegie-Mellon
Univ.,

Friedland. P. (1979). Knowledge.based Experiment Design in Molecular Genetics. Doctoral
dissertation. Computer Science Department, Stanford Univ..

Goel, A.. Soundararajan, N., and Chandrasekaran, B. (1987), Complexity in (7'assificatory
Reasoning (Tech. Rep.). Columbus. Ohio: Lab. for Al Research. CIS Dept.. The Ohio
State Univ..

Johnson, T. R.. and Josephson, J. R. (1986). HYPER: The Hypothesis Matcher Tool (Tech
Rep.). Columbus, Ohio: Lab. for Al Research, CIS Dept., The Ohio State Univ..

Josephson, J. R., Chandrasekaran, B., Smith. J. W., and Tanner, M. C. (1987). A
Mechanism for Forming Composite Explanatory Hypotheses. IEEE Trans. on Systems.
Man and Cybernetics, , pp. in press.

Lindberg, D. A. B., Sharp, G. C, Kingsland, L. C., Weiss, S. M., Hayes. S. P.. Ueno.
Y. and Hazelwood, S. E. (1980). Computer-Based Rheumatology Consultant. Proc.
Third World Conference on Medical Informatics. Tokyo.

McDermott, J. (1982). RI: A Rule-based Configurer of Computer Systems. Artificial
Intelligence, 19(1), 39-88.

Miller, R. A., Pople, H. E., and Myers, J. D. (1982). INTERNIST-I, An Experimental
Computer-Based Diagnostic Consultant for General Internal Medicine. New England Jour-
nal of Medicine, 307(8), 468-476.

Mittal, S., Chandrasekaran, B., and Sticklen, J. (1984). Patrec: A Knowledge-Directed
Database for a Diagnostic Expert System. Computer, 17(9), 51-58.

Punch, W. F., Tanner, M. C., and Josephson, J. R. (1986). Design Considerations for
PEIRCE, a High Level Language for Hypothesis Assembly. Proc. Expert Systems In
Government Symposium. McLean, Virginia.

Samuel, A. (1967). Some Studies in Machine Learning Using the Game of Checkers. IBM
Journal of Research and Development, 11(6), 601-617.

Shortliffe, E. H. (1976). Computer-Based Medical Consultations: MYCIN. New York: El-
sevier.

Smith, J. W., Svirbely, J. R., Evans, C. A., Strohm, P., Josephson, J. R., and Tanner.
M. C. (1985). RED: A Red-Cell Antibody Identification Expert Module. Journal of
Medical Systems, 9(3), 121-138.

Sticklen, J. (1983). Draft Version Manual for IDABLE (Tech. Rep.). Columbus, Ohio:
Lab. for Al Research, CIS Dept., The Ohio State Univ.,

Sticklen, J., Smith, J. W., Chandrasekaran, B., and Josephson, J. R. (1987). Modularity of
Domain Knowledge. Int'l Journal of Ezpert Systems: Research and Applications, , pp. in
press.

265/266

Appendix I

An Integrated Operator Advisor
System

267/268

Accepted for publication to Nuclear Technology, January 1990

An Integrated Operator Advisor System for Plant Monitoring,
Procedure Management and Diagnosis-

R.]'-atL;,ogar;, D.W. Miller, B.K. HaJe",, J.S. L;4a~enko

Th,. Nuclear r.ngineering Program
•epar.-werý" of 1.e.h:k,nical Engineering

1he (T!iv 9tate University
,1H. 43210

269/270

Table of Contents

0.0 Special Symbols

1. 0 Introduction

1.1 Organization of the paper

2.0 Characteristics of Nuclear power Plant Operation

2.1 Event Oriented Procedures

2.2 Symptom Oriented Procedures

2.3 Integrated Procedures

3.0 Generic Tasks and Artificial Intelligence Tools

3.1 The Generic Task of Monitoring

3.2 The Generic Task of Data Abstraction

3.3 The Genric Task of Plan Generation, Execution and

Modification

3.4 The Generic Task of Diagrmes

4.0 The Architecture of the Operator Advisor System

4.1 The Intelligent Database

4. *1.1 Organization of the Database

4.1.2 Data Analysis Methods

4.1.3 Data Infenczmi Methods

4.1.4 Queries to Database Classes

4.2 The Plant Status Monitoring System

4.2.1 Knowledge Representation of Safety Functions

44.2.2 Knowledge Representation of Abnormal Events

4.2.3 Plant Data Monitoring

271

4.3 The Dynamic Procedure Mmlagment SYSt~m

4.*3.1 Developwnt of Safety Function HierarchY for a BW

4.3.2 Basis of Conflict Resolution andl Procedure

4.3.3 Conflict Resolution

4.3.4 Plan Exeacution and Modification

4.3.5~ Knowl2edge Representation In DPMS

4.*4 Diagnostic and Sansor Validation System

4.4.*1 Knowledge Representation in WVS

4.4.2 Functioning of M~V

5.0 Validation and Verification,

6.0 Slummary and Conclusions

6. 1 Swummary

6.2 Real-Tim Systemi C1racteristics

6.2 Future Work

272

Fig. 1. Overall Architecture of the Integrated Operator Advisor.

Fig. 2. Overall Data Classification (AllData).

Fig. 3. Classification of the Continuous Data (SensorData).

Fig. 4. Classification of Systems and Ccaponents (CccponntStates).

Fig. 5. Classification of Bistable Data (Alarms)

Fig. 6. Representation of the Sensor TotalReactorE•Flowl.

Fig. 7. RPArevantation of the Systeu WCLSYstemAl.

Fig. 8. Representation of the Alarm RFaPTrip•lazm.

Fig. 9. Safety Function Hierarchy.

Fig. 10. List of Abnormal Events.

Fig. 11. Integrated Hierarchy of Safety Fuctions and Abormal Events.

Fig. 12. Knowledge Representation of LossOfEftr Specialist in DVS.

Fig. 13. Hierarchy of Malfunction Hypotheses used in DVS.

Fig. 14. Confidence Values for Malfunction Hypotheses With Questionable

Sensor Data.

Fig. 15. Knowledge Group for Feecwter Recirc Line A Failed Opw.

Fig. 16. Confidence Value for Malfunction Hypotheses After Questionable

Sensor Data Has Been Chnged by vs.

Fig. 17. Knowledge Representation of the SPECIALIST FWWpTrip in DPMS.

Fig. 18. Knowledge Representatlon of the PLAN for EumpTrlp Abnormal Event

in DPM.

Fig. 19. Knwledge Representation of the PROO NI-27 in DRM.

Fig. 20. Knowledge Representation of the PLAN for InventoryControl Threat

to Safety in DR4S.

Fig. 21. Knowledge Representation of the PLAN for RPVControl Threat to

273

Fig. 21. Knowledge Representation of the A1AN for' RPVControl Threat to

Safety\ In: ,rzm.

Fig. 22. Knowlecge Ropresentation of PROCEDURE PEI-B13 In DPMS.

Fig. 23. Knowledge A g~sentation of PROCEDURE PEI-B13-3.0. in DRýS.

Fig. 24. Diagnostic 1P.urarchy belo JWiumTrip in DVS.

271,

List of Tables

Table 1. Safey Fmctyitios for A BMR.

275

Special Symbols

[-- The name within the square brackets is a variable. This variable can be

the name of a sensor, parameter, system, compnmiot, alarm, state of

parameter (i.e. high, low, normal, very high, very low), state of parameter

tr (.e. steady, izucr.snrC, decreasing, rapidly ireasing, rapidly

decroasing), state of systen (i.e. available, rumning, scrammed, operational

mode etc.), state ot sensor (valid, available), state of alarms (ON, OFF),

state of switches (ON, OFF).

276

1.0 Introdtlon

Mmi~toritng done by the- reactor operator ini a nuclear po~ar plant, to

main normal operation without threatening the safety of the plant is a

cotplex knowledge based task. The coMulexity of fron the cciplexity of the

S system and the amount of data required to make decisions. Scmral comuter

based operator aids [17, 18, 19, 21] have been dev•oped to provide the data

in a more interpreted form to the operator. 7hese aids help the operator

only at this level. A more useful operator aid can be of the kind that would

look at a large amount of data in a short time, do the data interpretation

and in case of failure be able to advise the operator on what abnormal state

exists and %hat actions need to be taken. This kind of operator aid requires

the capability to make decisions based on the available data and an

understanding of the reactor operation. It is in the development of such

aids that the evolving techuiology of artificial Intelligence can contribute.

Several fault diagnostic operator aids (22, 231 of the latter kind have

also been developed to assist operators in different areas of malfunction

detection. Comprehewive plant diagnostic models have been developed to

detect global plant malfuncticas. The system developed by Combustion

Engineering [24] is capable of diagnosing malfunctions at two levels, a

functional level and a root cause level. The system developed by Berg et al.

[25] is designed to detect faults well before traditional alarm systems are

triggered. Another comprehensive system has been done by the group headed by

Naito [26]. This system is designed to diagnose any plant failure and offer

(by CRT display) a corrective operational guide for operators in a B.

There also are several gzoups working in the area of procedure tracking

277 ME

during otf•-rmal conditions. At least two systems have been developed to

perform Emergency Operating Procedure (EOP) tracking. One of the

approaches, used by Petrick et. al [2_7], involves a "data-driven" system

that monitors the plant status and triggers the EPs for a 3-6.

The Reactor &-irgency Action Level Monitor (REALM) expert system is

designed to provide assistance in the Identifiction of an emergency

condition and to determine the severity of the accident [28]. amergencies

are grauped into one of four stwaard classes by use of tergency Action

Levels (EALs). The four clases of emergencies are: Unuwual Event, Alert,

Site Area Emergency, and General Emegency.

1.1 Current Research at T Ohio State University

The objective of the current research in the Nuclear Enineering

Program at The Ohio State University is to develop an Operator Advisor to

assist the human operator in effectively matni plant safety. The

Operator Advisor being developed is an integrated system having both

diagnstic and procedure managemnt cnmo;ents. The diag tic component is

designed to detect faults before the traitional alarim are triggered. The

procedure mangmnt conent is designed to maintain plant safety,

prcviding a defense in depth, by initiating the safety maintemae procedure

at the anticipation of threats.

The Al based softwmre, for the Operator Advisor currently under

developmet is based on the framewrk called Geeric Tasks C10,14] proposed

by B. Candrasir of The Ohio State University Laboratory for Artificial

Intelligence Research (LAIR). The approach proposes that imcledge based

ystemn should be built ot of bilding bloc3k, each of which is appropiate

for a basic type of problem solving. Each generic task provides a higher

278

a"•• ' • " I - : P••••• ••• 'P t il " •. . ' f PM•" - r * .•= "_"_- : • •

level ewiror•ment which permits increased attention to kniledge

representation, problem solving structure and strategy, and specific doain

charcteristic [_g,10,L4]. This facilitates knowledge acquisition and

organization and makes the system more unerstandable to the domain expierts.

The Operator Advisor consisting of four distinct modules, according to

tasks done by a plant operator, has been built. The system consists of (1)

an intelligent datas to do the task of data interpretation and analysis,

(2) a monitoring system to mnitor the plant data to detect threats to

safety aid abz~rmAwl functionixu, (3) a procedure mwagem.nt wstest to

provide actions to be taken to maintain safety and cmntrol the abriowi.

functioning, and (4) a diagnostic and data val.dation systen to prwvide

further diagnosis to discover the causes of the abnormal plant operatior.

and threats to plant safety.

The know.ledge used in the system is based on a BoIling Wltp-r Reactor

Powr Plant. Specifically, the knowledge for data interpretation,

monitoiing, diagnosis and procedure management Is taken frc the.Op' rat•Ing

Manuals of the Perry Nuclear Power Plant.

The Operator Advisor is designed to operate as a real tim. system and

has the following characteristics expected of a real time system (15]

. Ninotonicity: incoming sensor data, as well as facts that are

deduced do not remain static during the entire run of the pr'nr..

S Asynchronous Events: A real-time system must be capable of being

interrupted to accept data frcm unscheduled or asyrncrxxm events. Te

events can vary in importance and the system must be capable of

processing input according to the Importance, even if processing of

less important input must be interrupted or rescheduled. T system

279

should be able to change its focus of attention, according to the

importance of the event.

interface to External Data: System must be capable of gathering data

from a set of sensors. The Interface also should be capable of

extracting features from the data and doing data abstraction.

Temporal Reasoninig: System needs to reason about past, present and

future events. The system should use time as a resource to do

historical analysis of data.

The Operator Advisor system that is being developed has facilities to

deal with all these charactoristics.

1. 2 Organiation of the Paper

The next section describes the characteristics of muclear power plant

operation and the existing approaches to safet7 maintenance these provide

the basis for development of the Operator Advisor. This is followed by a

description of the Generic Task Methodology for developing expert system

tools and expert systems. After this the architecture and the four modules

of the integrated system are described. This is followmd by a section giving

an outline of how the system should be verified and validated. Presented in

the conclusion are: the advantages of such a system, ho this system deals

with the characteristics of a real time system, and the future work

required.

2.0 Ma•-rter'istics of Nuclear •Pmer Plant Operation

In any complex system restoration of normal operation and mainteeance

of safety are the two required goals when system operation becomes abormal.

Hcmeyver, in general the actions required to achieve these two goals need not

coincide. Tim spent to analyze and diagnose a malfunction state to restore

280

operation may degrade the plant co-i~tIcns to such an extent that safety Is

compromised. The balance between these two goals may differ fron system to

system, depending an the understanding of and the knowledge about the

functioning of the system and the consequences of threats to safety from the

abnormal functilonn of the system. In a nuclear powr plant the

consequences of the threats to safety are far more important than restoring

operation in a short time.

The following characteristlce of nuclear plant operation provide the

basis for the Operator Advisor:

1. Plant operation Implies a threat to safety of the environment.

2. Safety cannot be ccMprcmised.

3. Safe operation of a nuclear power plant means maintaining the

integrity of the core and containment building to prevent release

*of radiation.

4. The plant can be said to be In a safe state If certain conditions

are true, both in the situation of full capacity (or normal

operation) or in a situation of abnormal operation (in terms of

loss of power, coolant, etc.). The conditions necessary to

maintain the plant in a safe state are referred to as safety

functions.

5. Safety fution mainterAnce in nuclear plant operatIon is based on the

idea of barrier protection, starting from the inner to the outer

barrier i .e. starting from fuel rod to reactor pressure vessel to the

containment building.

6. The barrier concept provides a hierarchical relationship betwee- v'x

safety functions, i.e. if a safety function cannot be maintaji,-d

281

because of a procedure not being successful, the safety of the plant

can still be maintained by maintaining another safety function, which

ensures protection at the next level of the barriers.

7. There can be different kinds of safe states depending on which

safety functions are being maintained and which are Peing

threatened. The threat to plant safety varies according to the

safety functions being threatened.

8. Norml fut•nrtAin• of the plant Implies safe operation

9. The plant can be maintained in a safe state iUxependent of normal

operation, because of the existence of independent safety systems.

10. The complete safety of the plant can be maintained by maintainirg

all the safety functions.

11. Threats to safety maintenance can be identified easily by either a

set of parameters that identify the status of safety functions

being out of range or by certain alarm conditions. This

identification does not require root cause diagnois and can be

done in a short time.

12. The diagnosis of the cause of an abnormal state can be complex and time

coinsuing. The time taken for diagnosis can result in a threat to the

safety of the plant.

13. Once threats to safety functio are identified, the safety systems

designed to nsintain the theatened safety functions are Initiated

autmatically or manually.

14. Two kinds of abnormal states can be defined in the operation of a

nuclear power plant: (1) states directly identifiable as threats

to safety in terms of entry conditions to any safety function

282

procedure being true, and (2) states already identified as

anticipated Incidents (such as abnormal events or causes of

alarms) with knom entry conditions. The latter kind of abormial

states may not be threatening the safety directly.

15. Both abnormal state categories have procedures defined to control the

state. Control in the case of threats to safety mans returning the

plant to a state, in which the threat is no longer true. Control in the

cas of abnormal events meas mitigating the " of the

abnormal state to restore operation or to avoid the progress of the

consequences that can lead to be a threat to one or more safety

functions.

16. * -vm if the procedure to mitigate the consequences of the

abnormal event is not successful, the threat to the safety of the

plant can still be avoided by recognizing whlich safety function

will be threatened by the progress of the consequences of the

event and then initiating the procedure to control the threat to

that safety function or safety functions.

2.1 Event Oriented PLmceres

An event oriented approach was used prior to the TIC accident to

respond to abnormal occurences. In this approach, a list of anticipated

abnormal events is maintained and procedures to mitigate the c eque of

these events are defined. The anticipated events are characterized by a set

of specific entry condItions. The procedures for these events also are

specific, in the sense that they are related to the specific entry

conditions. The procedures are designed to halt the progress of the

coneqnes of the fault. This does not necessarily mean that successful

283

execution of the procedure blings the plant to a state of normal operation

but It does bring the plant to a safe state, from which the plant can

eventually be brought to normal operation.

The following weaknesses of this approach were Identified by the task

force investigating the Three Mile Island accident [30]:.

1) Too much responsibility w placed on the operator's ability to

quickly and properly diagnoe the abormlity, and then to respond

using the appropriate event oriented procedure,

2) The event oriented procedures may lead to incorrect event

diagnosis based on predefined event entry conditions,

3) Ehasis was placed on maintainLIg the plant availability v4*1ile

critical safety functions were often ignored,

4) Response procedures may lead to a conflict in objectives if multiple

events are diagnosed, and

5) It is not possible to a priori define all abnormal events or

combinations of events.

2.2 Symptom Oriented cr Safety Functions Oriented Procedues

This apmrac% evolved to overcom the weaknesses of the event oriented

appxoach. The symptom oriented procedures, or Emergency Procedure Guidelii•.

(EPGs), demand action bawd on symptoms rather than events. The symptomc

associated with these procedures are simple iinications in the plant, such

as MPV water level low, Dwwell pressure high, or ramctor pressure high.

Even if multiple events occur, following the actions defined for each

symptom will assure an operating path that best protects tie p1wat. Trh

idea of having a small group indications as the entry conditions for thease

procedures eliminated the responsibility of the operator for reaching a

284

correct fault diagnosis.

This approach is very effective as far as safety of the plant is

concerned, but may have an adverse effect on the operation as a heavy cost

may be involved in returning the plant to normal operation fro a degraded

level caused by following the EPG.

A rLiult of the TM accident was a coprehensive restructuring of the

methods for respondlng to abnmal ocmerces [(301. Today, nuclear power

plant staffs use a combination of ymptanm oriented procedures and event

oriented procedures, referred to as integrated procedures.

2.3 The Integrated Procedures

This approach uses the event oriented procedu•-es to respond to abnormal

anticipated transients. To respond to unanticipated transients, vendor

(Westinghouse, General Electric, Combustion Eineering end Babcock a

Wilcox) specific symptom oriented procedures have been developed. Some

details of the General Electric Emergency Operating Procedures [31] (EOPs)

and their integrated use with the Off Normal instructions (ONKs) and Alarm

Response Instruction (ARIs) are given in this section.

The EOPs used in GE BRs, consist of four basic guidelines and six

contingency procedures to assure plant safety C29]. These have been

customized by each plant to meet their specific configurations. The four

basic guidelines for the Perry Nuclear Power Plant (PNPF), designated Plant

frgency Instructions (PE1s), are:

1) Reactor Pressure Vessel Uontrol,

2) Primary C ti t Control,

3) Secaxidary Containment Control, and

4) Radioactivity Release Control.

285

The Reactor Presure Vessel (RPV) Control Guideline Is designed to

maintain adequate core cooling and to cool the reactor to a cold shutdon

condition. The Primary Containment Control eideline is used to maintain

contalmct Integrity and to protect equipment in the primary containment.

Similarly, the Sec Z4A Containnt Control GUideline Is used to maintain

the integrity of the secozx•ary containmnt "and to prevent the release of

radiozictivity to the seccAiary containment. The Radioactivity Release

Control Guideline is used to limit radio±ctivi relese to the envirornt.

Finally, the contingency procedvr pxrvIde zov de'tailed instructlonw for

conditions that are =re degraded than tb - 1-.oviding entry into t1" basic

guidelines.

The above guidelines are further subdivided into the following

procedures that control specific parameters of the plante

RPV Control Guideline
1) Reactor Level Control
2) Reactor P r Control
3' Reactor Pressure Control

Primary Contairnmt Control Guideline
1) Suppression Pool Temperature Control
2) Suppression Pool Level Control
3) Drywll Temperature Cmntrol
4) Containment Temperature Control
5) Drywall Pressure Control

Secontlary Containment Control Guideline
1) Seconkwy Cointainment Temperature Control
2) Secondary Containment Pressure Control
3) Sec ary ta t Level Cn,',ol

Radi tivity Release Control Guideline
1) iatation Release Control

Each procedure is entered at the beginning %*=A-ver any entry condition

occurs, irrespective of v*ether that procedure has been entered before or is

cun-ently being executed. The procedure is exited =nly when an exit

286

condition is satisfied, or when it is determined that an emergency no longer

exists.

Ile Integrated approach is considered to have the advantage of enabling

the operator to respond to every plant transient. The event oriented

procedures, the ARIs and ONIs, allow rapid recovery of plant operations from

specific anticipated plant transients that donit necessarily result in plant

shutdown or threats to safety. The EL "'s eble tN, operator to control the

effects of any unanticipated plant transient or ultile melfunctiots by

monitoring simple parameters of the plant. In this apigroach plant safety

Is maintained by the EOPs, and thus they receive top priority during

execution conflict. That is, regardless of the event, once an EOP entzry

condition occurs, that procedure is followed.

Corcoran et al. [12] and Meijer (13] used this approach to develop a

critical functions maintenance expert system. Neuschaefer et al. [241 have

combined this approach ,with a model based diagnosis system to develop a

Generic Diagnootic System.

In our work, the integrated apprcaQ for procedure mnagem.nt is

further integrated with a diagnostic system based on hierarchicoal

classification (DVS) and a Plant Status tonitoring System (P)MS). This is a

further e-hanc~nt to the existing integrated approach as a diagnostic

o~mponent is allowed to detertnme the cause of the abnormal event r- y•h the

threat to the safety function has occurred. The ccluslao of the diagnosis

is used to deterine what action are needed to correct the cause. These

actions are taken without disturbing the procedure beirg executed to

maintaia a safety function. This allows the EPC to dominate the aztians

taken by the operator. The effects of the actions taken, as a result of thU

287

di±ag is may at a 'later time lead to exit condittions of the executing EOP.

Another enhacement that the diagnostic caqgent provides is the detection

of malfunction states before the traditional alarms.

3.0 Generic Tasks and Artificial Intelligence Tools

The cmicept of generic tasks is a geeraliation of the idea that lead

to writing codes in high level languages, rather than in'the assembly

language (9, 10, 14]. Engineerirg design and analysis codes in use for a

long time also follow this idua. A special purpoe code like CE,

(Contin•us System Modellin Program), where the tk is the solutio of

differential equations, is generic in the same wy as an Al tool for

diagnosis, such as CSRL (Conceptual Structures Representation Language).

CSMP can be used for solving differential equations in any domain such

-s cntmsi, hetat transfer, electrical systems, etc. The user of CSMF has

only to provide iaut in terms of the equations he wants to solv.W, mi is

rK1~t ~alyuk.~ hotw exa:t"ly the equations ar-,t s.olved in term of th,,M'

loeer ., A augi e. CS, however, can show the details of the solution

procm ss in terms of the mathematics of the equation, i.e., a linear

..4-Jatzon is being solved with substitution of parameter. This is the level

of abstraction at wi•ch the engineer operates. He is not concerned with the

FOMURAN code written to implement the solution process. If the enginLer has

t- write the code in Dt=W , then he may lose track of the solution process

and becme imnvoed with, Lk. wrAmIYq, issues. The solution algorithm

w,,ld appear anORTRAN code raWer than understandable steps used for

solution of linear differential equatiox.

Other generic task codes existing in en&ineering are SPEAKEZ (a

language that allom very high level inrxt for mathematical operations such

288

as solutions of polynomials), and ACSL (Advanced Continuos Sizmulation

Language, purpose of this Is simlUiar to that of CS1P), etc.

The generic tasks required for an operator advisory system can be

Identified by considering an aoprator's activities in the plant. The most

ccmmn activity of the operator Is to mcnitor plant data .to determine the

state of the plant and to detect any abnormal occurance. If the state is

abrnoral and can be indeoed to a defined abnormal event, then the operator

must initiate the procedure for that event. If the state cannot be mpped to

an abnormal event, then the operator must identify whether plant safety is

threatened. The safety threat is then mnitored while further diagnosis is

performed.

The threat to plant safety is identified by threats to safet'

functios. This is the task of plant status motoring. This task identifies

threats to safety, the predefined abnormal states, and abnoral futctioning

in general, i.e., any plant data being out of specified ranges.

After the event or the threat to safety has bwen identified the next

task is to execute and monitor the success of the required procedure. During

this process, it may be discovered that the procedure is not achieving the

desired effects. In this situation, an alternative step or method =ut be

determined to assure that safety barriers are being maintained. This is the

task of plan execution.

Another activity that goes on in plant operation is that of diagnosing

the lower level fault for the identified malfunction state. This is the task

of diagnosis.

These tasks have been implevented in term of available hiigh level

tools. The task of plant status viitoring to identify malfunction states

289

(threat•Q t:) swafety functions and abnormal events and a general abnormal

state) is imaatu inthe languag LOOPS. The task of diagnsis to

identify low level faults is implemented as a diagstic expert system in

CSRL T2.]. he task of creating a plan to restore operation and safety is

don usJiM the tool called MW'S (Dynamic Procedure Mmiagemnt Sytem),

developed specifically for this task _4].

A common activity required in all the tasks described is that of data

interpretation and analysis. This is Implemented through an intelligent

database.

3.i Tle Generic Task of Data Interpretation and Analysis

This a general task required in all other tasks. The data used for

detecting aborm2. states, for performing diagnosis, and for evaluating the

success of the plans, are very different from the rawi data available frcm

process sensors. The task of conveiting the data to the higher level of

abstraction required in the other tasks Is done through an intelligemt

database developed in LOOPS.

3.2 The Generic Task of Mlnitor•Lng

This is a task distinct from the task of dianosis done for

idewtification of causes of alnormal states. Monitoring of plant data. goes

on even when the plant is operating nozrmally. The objective of monitoring is

the detection of abnormal data that can lead to identification of any of the

two kinds (threats to safety and abnormal events) of malfunctim states. The

monitoring took also initiates the procedures defined to control the

progres of the malfunction state. The decision to carry out diagnosis to

identify the loi level cause of the malfunction state also As made in the

monitoring task depending on the nature of the malfunction (i.e. is there

290

enough time to do diagnosis or wcu~d diagsis be helpful in a more

efficient rwtoration of operation). In n=cle power plant operation,

safety is the priority and the procedures are also safety related. Hme

immediately after the identIfication of a malfunction the prncedure for the

identified malfunction has to be initiated. Then depending on the identified

state, further diagnosis may or may not .be requIred. This dacision will

depend cn how quickly the identified state will threaten safety.

In general more than, oe event or threats to safety £LNctions cear be

identified by the monitoring system. The first decision in the task of plan

execution is that of selecting the best set of plans to be foll22wd.

Following the plan set selection, the next task Is to initiate the execution

of this set of plans. The former task of plan selection Is considered a sub

task of plan execution and Is referred to as Conflict Resolution. This

decision is required vhnever a new plan is asked to be executed, to decide

which plans to remove frm the executirg set or ie4ther or not to include

the identifed plan in the executing set.

Before the task of plan execution, the task of plan geveration has to

be coWletad. TIT plan generation task is done thraoh DWS (4]. DPMS was

developed by using the tecbniques mployed in DSPL (Design Specialist and

Plannin Langauage). DSPL [§8] wa developed for the task of design and

planning tasks. MW is more specific to plan representatiti. am execution

of rulsar power plant operating and safety maIntainatnce proc.durcw.

Design as a task is most easily visuaiized by considering a team oW

desigxwrwh se work is ko•wrdzxated by t1w design supemvisor C81. The deign

supervisor vAn given initial design re-quiremants and constraints aigns

291

specific design subproblems to the engineers In accordance with their

isidividual specialities. Throug the design process, the supervisor makes

decislcns on suproblem assign.ments, ensures that the design esuroblems are

carred out in the proper order, and calls for redesign if sukp•oblem

solutions are rnt consistent. The supervisor might generate a plan for

achiing the design objective, considerinz what is available and what are

The task of pln generation for any obJective incliudin the design

objective requires the following types of knmiledae:

1) lnowledge for deccposing the. merall plan pxoblen into wire

manageable plans,

2) Kncwlad•e for orderino the •u-',crtion of these sub plam in a

desired sequeave-,

3) Knowledge for testing the success of each sub plan, and

4) Knowledge to invo.ke backup plans to ensure success of the plan

goal, if the original plan has not been successful.

DSPL provides agents to represent all these types of kmnwledge.

Li nmclear power plant operation, the objective of the plans is to

restore operation while mainrtaininq safety. But in all situations

mmintaining plant safetr is the priority. The restoratUon of operation

cannot be at Uie cost of safety. Mw following characteristic of plans for

nuclear power plant opeation make tia dcifferent frou plans for cimpleting

design tas :

1) Predefined prooedurw •re available to bring the plant fra

initial (abnwAl) states to safe (gcal) states.

2) The envir.oment on wich the plaiis oper-ate is dynamic and the

292

effects of tie plan cannot al••y• be predicted. T e'necutability

of the plans has to be determined in r,= time, based an the

existing and changixg environment.

3) The plans P.•* ically change the environment and it is not always

possible to undo the effects of a partially executed plan, as

would be possible in a conceptual plan.

4) The predefined plans must be modified, to at least maintain the

plant safety, in a situation Were they are not successful, i.e.

if the plan and even its backup actions are not executable or

successful.

The fIrst characteristic allows the construction of initial plans from

existing procedures, thus making the initial planning task easier. The

fourth characteristic provides a uniforn failure handling mechanism by

maintaining safety, and also helps in making the task easier. The second

and third characteristics make the task more ccplex, as a continual

evaluation of the partially emecuted plans is required. It is because of

these characteristics that plan modification depends on how much of the

standard plan has been executed and what parts of it have been successful.

DPRS was created using the techniques used in DSPL to meet the more

&pecific requirements in plan representation (in terms of language used in

nuclear procedures), execution (the need to evaluate the success of the sub

plans at runti before proceeding further), and failure handling (through

safety maintenance). The plan execution requires continuous mmnitoring for

success aaluation, which izceases the complexity of the task as the

envizument an which the plans operate is changed and in this case it is not

always pssible to undo the effects of the executed plan steps.

293

3.4 The Comeic Task of Diagnosis

The diagnostic task starts only when it is 1An that an abnormal state

exists in terms of observed data and process symptoms, and there is a need

to determine the lor level cause.

The diagnotic task in nuclear por plant operation starts with

generation of a small rnuber of highly plausible hypothetses which account

for the observed data [(2]. This task is identified as Me in which

appropriate process symptms are used to establish or reject hypotheses

about malf-ntions. The diagrotic process begins with the consideration of

a very general malfunction hypotheses about broad segments of the plant. If

the process symptoms suggest that a malfunction hypothesis is valid, then

the process continues with more refined hypotheses about more detailed

sub•ystems of that particular plant segment. In general; the task, referred

to as CLASSIFICATION, is to match a set of symptoms with a specific

malfunction hypothesis in a predetermined hierarchical structure of possible

hypotheses.

The overall diagnostic task can be viewed as a hierarchy of individual

problem solvers, each of wich is assigned the duty of establishing or

rejecting the relevancV of a particu.lar m•aIfunction hypothesis. Each problem

solver cmtains only the knoledge necessary for the relevancy of a

hypothesis.

The classificatory task can then be performd by a top down strategy in

Wi~ch problem solverv high in the hierarchy establish their more general

malfunction hypothesis first. If a malfunctioz hypothesis is established,

them the problem solver Posses control an to its sibling problem solvers and

the process reats itself.

;F94

The classification Paradigm using a hierarchical knowledge structure is

provided In a high level language called CSRL (Conceptual Structures

Representation LanguaCe) developed by The Ohio State University Laboratory

for Artificial Intelligence Research (LAIR). The language provides a basic

structure for hierarchically organizing classificatory concepts, i.e.

malfunction hypotheses for organizing kncwledge in the problem solvers.

4.0 The Architectuze of the Opeator AIs System

The four generic taskdescribed ab form the four modbules of the

integrated Operator Advisor system [14]. The four modules are:

1) An Intelligent database

2) A Plant Status Monitoring System (PSMS)

3) A Dynamic Procedure Management System (DM.M)

4) A Diagostic and Data Validation System (DVS)

Fig. I show the overall architecture of this system. The first two

modules of GEPAC Plus and BUFFER are external to the Operator Advisor. GEPAC

Plus represents the plant computer which collects the plant data. The data

processed by the plant oquter will be put in the BUFFER. The database will

receive the plant data from the BUPE.

The database receives tle plant data and contains the inferencing

knwledge a human operator would use to aiwer high level questions about

data or states of sytems or cc ents. In Its p the database

simulates; the data abstraction activity performad by the human operator.

Just as the cotrol roao provides the environent from which the operator

gets the data information, the datas provides the envir••ment from which

the other expert systems get the data information.

PSWS (Section 4.2) perform the task of plant data monitoring to:

295

I. Identify threats to any safety function,

2. Identify abnormal events that are Identified easily by direct

conditions (pre-determined entry condition sets or system alarms),

3. Identify the need for further diagnosis,

4. Direct system control either to the diagnostic or to the procedure

mazaesmnt sub-systems, and

5. Make further decision based on the conclusicns of the diagnostic

system.

The MDS (Section 4.3) is initiated by PSMS immediately after one or

more abnormal events or safety function threats are identified. This system

is intended to guide the operator through the procedure defined to mitigate

the effects of an abnrmal event or to maintain safe operation w safety

functions are threatened. The system continuously monitors the success of

the procedure, by looking at the updated database, showinm the effects of

the executed steps. When the defined procedures are not successful, this

system provides alternatives to recover from the failed plans or subplans.

The Diagnostic and Data Validation system (Section 4.4) also is

initiated by PSMS. This initiation depends on the type of situation. Two

types of situations are considered: 1) PSMS is not able to identify an

abnormal event or the thmat co safety function, but has detected an

abr~unl situation. Th abnormal situation is detected by looking at the

deviations frm nozmality. In this situation DVS is initiated at the top

node of general fault. 2) PSM has identified a specific abnormal event. In

this sltuatim DV5 cnuw be initiated immediately from that specific event,

that may be. a, 1cwtt1r ruZ' In the DVS hierarchy. Once DVS Is initiated it

attempts to find the root cause of the event and commuicates its

296

conclusions to PS for further operator action.

In the following four sections a comprehensive description of each of

the four modules of the Operator Advisor is given.

4.1 Te Intelligent Databae

An intelligent database [3] to store plant data and the knowledge to

interpret and analyze the data has been implenmnted. The data and the

knowledge available in the database are used to anwr high level queries

that the operator encounters during diagn••is and procedure monitoring. The

database in its content and use is equivalent to the sensors that the

operator uses in the plant and the knowledge the operator has gained through

experience or fro training. An operator's kncwledge cn be of the

following kinds:

1. The criteria to decide what val us to use when more than oae sensowr

is measuring the value,

2. The a4ng of certain system and ccontnt states in tern of

plant conditions, for example, vhat conditions show that the SRV

is open besides the direct indication of SRV being open,

3. The data ranges which define the value being normal, high, low,

etc, and

4. Temporal information that is available to decide hw long soe

data have been within a certain range.

A facility to update the database as the data changes will be provided

to ensure that the Operator Advisor is operating an the current data.

4 * 1.1 O•niatin of the Database

The Lasis of the database organization is rentered umrund objects which

represent data types that share the same analysis and inferencing techniques

297

for producing intermediate data abstractions. This organization Provides a

means of organizing the techniques in an efficient way that enables similar.

data types to use a set of relevant techniques.

The database organization starts with a topst class (AllData)

consisting of all data used in the other expert systems. The techniques

useful at this level of data are very general and are independent of the

nature of the data. Some of the general queries relevant for all data are

Are all [type of alarms] con,off] ?

How many Coonents] in [state] ?

How many sensors are showing a [noxral] value ?

The methods used for answring such queries essentially operate on

groups of coponents, systems or sensors of the same kind.

The general class AllData is further subdivided into three classes

(Fig. 2) depending-on the specific techniques necessary to process the data

belonging to the sub classes. These sub classes are:

1. Continuous or Analog (SensorData),

2. States of Componimt or Systems (Ccm~poentStates), and

3. Alarms, cponents and systems having two states (Alarms)

The sub class SensorData is specialized into actual process plant

parameters. Figure 3 shows some of plant parameters implemented as

subclasses of SensorData. The sub class CcnponentStates is further

specialized into plant systems and sub systes. Figure 4 show scm of the

subclasses of CcoponetStates. The class alarms is specializr '. into actual

alarms used in the plant (Fig. 5).

Each class contains the information, features, and methds needed in

analyzing and making inferences. The methds associated with these classes

298

can also be classified into the following two generic types

1. Data Analysis Methods

2. Data Inferencng Methods

These types are gearic in the sense that they are indepe•• ent of the

expert system task and depend only on the process plant features like

sensors, alarm and the ranges and limits of operation. These methods carry

out various aritmetic or qualitative operations to get the answer to the

high level query.

4.1 . 2 Data Analysis Mthods

The data analysis methods operate on raw data to produce intermediate

abstractions. Some of the data analysis methods are:

1) Normality Analysis: This determines that a sensor

measprement is high, low, normal, very high, or very

low.

2) Trend Analysis: These determine that an individual

sensor reading is steady, increasing, decreasing,

increasing rapidly, or decreasing rapidly.

3) Redulndancy Checking: The abstraction of a single value

from multiple common sensors using either maxim= value,

minimum value or average value (based on -ii process

requirement or state of the plant) of the sensor values.

4) Historical Analysis: This determines the changes in values of

sensor values or system states with respect to an external

measure, i.e. another system reading or system state.

4.1.3 Data Infaezmciz Metds

Data based inferencing allows inforuation which is not directly

299

available, to be generated using other data. This information can be

abstractions about the functionality of systems, components or process

variables. An inferencing of this type uses either available sensor

information, diagnostic information, or both to determine unko data.

4.1.4 Queries to the Database Clses

COntiraos or Analog Data

Some of the high level questions that can be asked about data belonging

to this class are of the followicM kind:

* Is the (process-variable] [high, low, normal, very high, very low]

* Is the (process-variable trend] [steady, decreasing, increasing,

increasing rapidly, decreasing rapidly] ?

* What is the duration of [process-variable value] being [greater,

less] than [process-variable value] ?

* Is the durtion of the [process variable value] [greater, less]

than [time liwit] ?

Fig. 6 -an instance of this class representing the sensor

TotalReactor•Flcw. The slots contain the information necessary to make the

analysis and inferencing. only the slots PresentValue, PreviousValue aryl

Time will be updated by an external interface. The other slots requiring an

update will be upated using the values in these three slots and the relevant

methds. or example the method for evaluating the trend will be used for

updating the Trend slot. In a system were an external preprocessor can

decide whether the value is high, low, normal etc., then that decision will

be used directly otherwise it will be decided by the database method for

Normality analysis.

300

Cmpo~ent or System States

The high level questions here are in terms of the possible states in

which a system or cmpornent can exist. Typical questions might be:

"* Is the [component] in (state] ?

"* Is the [system) in [state] ?

The knowledge to answer such questions may involve further inferencing

if the answer is not directly available from a sesor. The camponent, system

and state are the variables in these questions. A Copnet and System can

be any canponent or system defined in the database. A State can be any

specific state defined for the specific component or system. Some of the

states of the systems or components cmi be opened, closed, running,

available, scrammed etc. Fig. 7. shw an instance of this class. The slots

here contain the possible states of the LPCI systom and the information

required to do the inferencing and analysis. Methods are defined for

evaluating each state.

Alarms or System having two states

This class is similar to the previous class but is simpler as the

systems here can have only two possible states and the information about the

states is available directly, without any further inferencing. Typical

questicns here can be :

* Is the [alarm] [off, on] ?

* Is the elight indicator] [on, off] ?

* Is the [valve] [open, close]?

An instance of this class is shown in Fig. 8. This represents the alarm

RFWP (Reactor Feedwater Booster Pump) Trip Alarm. Here the only possible

states are OFF and ON and these are directly available without any

301

infere-' cing.

Ihe database access is through a query language very similar to natural

language. The queries in the other systems are put in this language. The

language has a defined grammar which is used by a parser to interpret the

queries.

The database is capable of ansmring questions that use the sensor

values av-ilable in the database, and can also put a question to the

operator if the database discovers that sufficient infozmation is not

available to answr a question.

4.2 The Plant Status Monitoring System

The Plant Status Monitoring System (PSS) is the controlling system

that integrates the DR'S and DV modules using the intelligent database. The

system operates in a mode giving priority to the safety of the plant. This

system requires the knowledge to detect threats to safety and the abnormal

events.

4.2.1 Knoledge Representation of Safety Functions

The safety functicns are organized in a hierarchy (Fig. 9) for

efficient identification and to provide a basis for maintaining safety in a

situation when there are no defined procedures or the defined procedures are

not successful. Each safety function node in the hierarchy contains the

entry conditins that indicate the threat to safety function.7e following

relationship exists between the parent and the child rxdes in the safety

functions hierarchy:

1. A higher level safety function provides coverge of its children

safety functions as far as safety is oonoerned. This is achieved

by representing the procedure knowledge in such a way that the

302

procedure for a parent safety function includes the procedures for

its children safety functions.

2. if a safety function can not be maintained then its parent

function has to be maintained to ensure safety.

Further details of the basis of development of this hierarchv a-re

described in section 4.3.1.

4.2.2 Knowledge R r.setMation of the Abnmal Events

The abnormal events here consist of all predefined events, abnormal

states of all system and components required for normal operation, and all

the alarms and light indicators tvailable in the plant. All these events are

stored in a list. The list of events presently available in the system is

skv in Fig. 10. Each event in the list contains the entry conditioDns that

establish the existerce of the event. The first event in this list (Fig. 10)

is a general fault state. The entry conditions or symptoni of the general

fault states are the deviations from normality of the important plant

parameters. If these deviations exist then it can be said that the plant

operation is not norml. This event is essentially the topmost node of the

diagnostic system (DVS, described in section 4.4), trnat indicates Coolant

System Fault.

4.2.3 Plant Data Mmittrizg

PSMS monitors the plant data continuously according to the follouing

cycle

1) Scan the plant data for the entry corndtions to threats

to any safety functions.

2) Scan the plant data for any deviations fran abnormality.

3) Scan the plant data for the entry conditions to all the

303

anticipated abnormal events.

In the first step the system does a top down breadth first scan of the

safety function hierarchy. Once the entry conditions of a threat to a safety/

function are true, that safety function is established. At this point PSr

sends a message to tht procedure managmnt system (D)). to initiate the

relevant procedure. The children of the established safety function are not

scanned, as it is more important to imdiately remove the threat to the

parent safety functics, than the children safety functions, and the

initiated procedure, for the parent function, will subsequently be able to

maintain the children safety functions . After establishing the safety

fu=ntion the mcnitoring moves to the sibling node of the established safety

function.

The second step of monitoring the data for deviations from normality

consists of looking at the first event in the list of abnormal events. The

entry conditiors here are just the deviations from normality. If there are

deviations from normality then this malfunction state (i.e. a malfunction

state of unknown abnormal functioning) is established. After this PSMS may

initiate diagnosis or proceed to look at the rest of the abnormal events in

the list (Fig. 10). This decision is based on how much are the deviations

from abnormality. If the deviations are major then an abnormal event will be

established and hence the system will be asked to proceed to look at the

abnormal events. If only minor deviations are present then the system will

be asked to proceed with diagnosis through DVS (Section 4.4).

The third step of establishing the existence of any abnormal events is

done by looking at the entry conditions of the abnormal events in the list.

The event is established if all its entry conditions are true. Once an event

304

NOVA

is established PSM sends a message to DPM to initiate the corctlvK,

procedure. After triggering the procedure, PSMS may also trigger "Wz

established event in DVS to find the root cause of the identified event.

This decision is depenent on the severity of the event (in terms of threat

to plant safety) and the severity of the events remainiig to be checked.

After DRMS begins execution and if chdrig the execution of the

procedure MVS diagnoses the cause of the malfuncticn state, then PSMS,

initiates another component of D.S, that contains the plans for the

diagnostic causes. This component also will display the actions to be taken.

This activity is done without abandoning the execution of the procedure

(primary procedure) which may be trying either to restore plant operation or

to maintain plant safety. If the actions taken for the cause diagnosed by

DVS, are successful, then their consequences may lead to an earlier

completion of the primary procedure.

If during the diagnosis DVS finds that a malfyc~tlon state was

established because of invalid sensor data, then it communicates this

information to PSM, which then sends a message to DFMS to suspend the

procedure for that malfunction state. In such a situation it might also be

required to reverse the actions taken, or start another procedure if another

malfunction state can be established. The reversing of the procedure can be

done by including the reversing actions in the DPM kmwledge base. This,

1wver is not done in the present version. The requiremt of starting

another procedure also is not possible in the present version of DfVS, as DVS

can only conclude that the malfunction state established because of invalid

sensor data shm~ld not have been established. Tt cannot tell which other

malfunction state should have been established.

305

After each cycle of monitoring for detew-ti= of threats to safety,

deviations from abnormality and the abnormal events, if the systems

determines that plant operation is normal then the next cycle begins. If

however, the system determines that there is no threat to safety and no

abnorial events are true but still the plant conditions Urdicate that the

plant state iS not normal, in that, conditions are only partially

identifying any threat or abnrmal event, or there are deviatiwis from

normality, then PSMS will initiate DVS at the top node of the gemral fault

state.

4.3 Te Dynamlc Procedure Management System

This system is triggered by PSM after PSMS has identified an abnormal

event or a threat to the maintenance of a safety function. As stated in

section 3.3.2 the goal of this system is to help in the execution of the

required procedure by displaying the procedure steps and then verifying the

success of the actions taken. The twa subtasks in this system are Conflict

Resolution and Plan Execution and Monitoring. Both these tasks are based on

the Safety Function Hierarchy.

4.3.1 Developeent of a Safety Function Hierarchy for a BSR

The developient of a safety function hierarchy for a BR uses the

design philosophy of barrier protection and defense-in-dapth. The list of

safety functions used in DRMS, for a S-6, is show in Table 1.

There are eleven safety functions identified that insure the safe

operation of the plant and preserve the public safety. These eleven

functions are divided into three safety levels:

1) Prevontion of Radioactivity Release
2) Event Control and Reactor Safety
3) Event Prevention and Maintenance of Operations

306

The blerarchy of the safety functions shown in Fig. 9 was developed

[i,5], for a General Electric BWR-6. The lowest level on the hierarchy

refers to the event prevention and assurance of proper plant operations.

The middle section corresponds to the event containment, and reactor vessel

and core safety level. Finally, the highest level corresponds to the

prevention of radiation release to the public.

This hierarchy enables the Operator Advisor to estimate the threat of

radiation release to the public based on what safety function is being

threatened. The overall goal of the hierarchy Is to prevent radiation

release to the environment. This is achieved by maintaining the top node of

the tree. Under normal operations it is considered that there is no threat

of radiation release. Once an event occurs that Is threatening a node in

the hierarchy, then it can be said there exists a potential threat to the

top safety function. The degree in which this primary safety function is

threatened increases from right to left in the hierarchy.

The lowest level, or event prevention level, emphasizes avoiding

situations which would interrupt the generating capabilities of the prer

plant and the safety systems of the plant. The maintenance of all

components in both the safety systems and power generation systems usually

guarantees the capability of normal (100% capacity) operations. Some of the

safety systems in the plant include: the High Pressure Core Spray (H1CS),

Low Pressure Core Spray (LCS), Low Pressure Core Injection (LPCI), Standby

Liquid Control System (SLtS) and all modes of the Residual Heat Remval

(RM) System. A1though these systems are not used during normal operating

conditions, it is required by the Technical Specifications (TS) to keep each

system available. The prevention level also assures the availability of

307

systems to shut doam the plant, to remove heat from the core and to flood

the reactor during accident situations.

The power generation systems of the plant are defined as those systems

used under normal plant operations. These systems include: the circalatinr

water system, condenser system, feedater system, pressure regulating system

and reactor recirculating system. The operator restores the normad

operations of these system through the execution of the procedural steps

associated with each node. The manteance of normal operations also can be

described as event mitigation. At this level, mitigation deals with

curtailing the damage of other equipment and/or systems as a result of the

initiating railure. Corrective actions are taken to maintain the highest

operating capacity of the plant.

The role of the secord level (or event containment level) is to contain

the effects of events that are threatening the reactor preisure vessel or

either of the containment barriers. The two critical functions associated

with the second level are RPVContro! and ContainmentControl. The

ContainentControl function includes maintaining parameters in both the

primary and secondary containment structures.

The third level is of prevention of radiation release. If safety is

threatened at this level then all resources are directed tcowrds removing

this threat.

4.3.2 Te Bmis of Cniflict Resolution and Prooedur Modification

This systcm is hased an the integrated event and symptom oriented

appmach. The integrated approach however has been enhanced in this system

by defining the relationship betwen the event and safety function

procedures. Two kinds of relationships are used to select the best plan

308

(Conflict Resolution) in situations where several plans are asked to be

executed, and to provide procedure modification to maintain safety in

situations where the procedure along with Its backup actions is not

successful. First is the relationship between the safetyofunctions (Fig. 9)

and the second is the relationship betwen the event procedures and the

safety function procedures (_1,4]. This is defined by indexing the abnormal

event to a safety function that would eventually be threatened if the

effects of the event are not mitigated properly or the event procedure is

not successful. This relationship Is shown in the presently available

augmented hierarchy (Fig. 11). This hierarchy will be expanded in the future

to capture the relationship among all the event and safety function

procedures.

4.3.3 Conflict Resolution

This is the first task in the total task of plan execution. In general,

PSM may Identify more than one threat and more than one abnormal event. The

task here is to select the optimal set of plans to be pursued that will best

protect the plant in terms of the time taken to reach a safe state. The

knowledge used for this selection is the relationship among the safety

function and events proc es (Fig. 11). If in this hi4rarchy, both the

parent node and any of its children node are established by PSM, then

because of the way the plans are written from the perspective of safety, it

is sufficient to pursue the plan for the parent node.

Conflict Resolution is the task which interupts the plan execution and

updates the set of plans to be followed. When DPMS receives a message of an

established malfunction state from PSM, the controller in Conflict

Resolution first checks if the plan for its parent state is active. If It

309

is, then the plan for the established malfunction is not Included in the set

of plans to be followed, otherwise it is included. After this check, the

controller checks if the plans for any children states are in the set of

optimal plans. If they are, then these are removed fron the set a"d the

optimal set is redefined and the controller tells the plan execution task to

continue execution with the new set of plans.

The controller also controls the optimal set of procedures to be

exwcuted in two other situations. 1) In situaticz when a message from PSMS

is received that a plan was initiated because of invalid sensors the

controller removes such plans from the set of optimal plans to be pursued.

2) In situations when a message from PSMS ir received indicating the

diagnostic cause of a malfunction state, as determined by DVS, the

controller gives instructions to another component of DPM to display the

set of actions to be taken. In this case the optimal set of plans to pursued

is not changed.

It is the task of Conflict Resolution that allows the system to charge

its focus of attention to take care of: a higher threat immediately, to

remove unnecessary plans, and to display corrective actions for root causes.

All these three actions provide more efficient execution by avoiding

repitition of steps.

4. 3.4 Plan EcutiAon ad Modification

The task here is to guide the operator through the steps of the

identified plan and to continuously monitor the success of the executed

steps. The objective is to recover from the abnormal situation by

maintaining plant operation and safety, with the priority being on safety.

That is, maintain safety even if normal operation is not possible.

310

Procedures defined for controlling malfunction states have a primary

success path available for each anticipated situation, along with

alternative success paths. The primary success path and its alternatives may

be either for restoring normal operation, or for mitigating the consequences

of the malfunction state, depending on the kind of state It is and its

relation to safety. If the procedure fails (the primary success path and the

alternatives fail) then eventually so safety function will be threatened.

The threatened safety function is indexed to the procedure. In this

situation the expert system will resort to maintaining safety by initiating

the procedure for the indexed safety function, as the system is designed to

be safety function maintenance dominant in all situations. This transition

to maintenance of safety functions does anticipatory control by alerting the

human operator to begin controlling the threat earlier than if he would wait

for the entry conditions of threat to safety functions to occur.

The modification of the unsuccessful procedures for controlling the

consequences of events or for removing the threats to safety can take place

through the following three means :

1. To increase the efficiency of operation, the steps or a sets of

steps of the procedures have also been indexed to safety

functions. The basis for this indexing is that a step or a set of

steps in a procedure are directed at maintalrAng safety at some

level by restoring some safety function. The 4afety functlon in

some cases will be lower in the hierarchy than the safety function

being restored by the overall procedure. This breakup of the

procedure can provide better operation by recovering safety at a

lower level, requiring lesser effort to restore normal operation

311

after the threat to safety is removed.

2. If an event oriented procedure is not successful, including its

backup actions, then the procedure for the safety function that

will eventually be threatened will be initiated.

3. If a safety function procedure is not successful then the

procedure will be modified by executing the procedure for its

parent safety function in the hierarchy.

4.3.5 M• x l:ledge Rp•iatatic In in '

The procedures in the operating manuals are represented through three

constructs (4], SPECIALIST, PLAN and PROCEURE, in the knowledge base of

this system.

The SPECIALIST is the agent, which initiates the PLAN and provides the

final means of failure recovery if failure cannot be recovered at the PLAN

or PROCEDURE level. The SPECIALIST is structured as:

(SPECIALIST (ME)

(SUPR-.SPECIALIST

(SAFETY-GOAL

(SUB-SPECIALIST

(CATEGORY

In the NAM slot Js given the name of the malfunction state (threat to

safety function or abnomal event). The information in the SUPE-SPECIALIST

and SUB-SPECIALIST slovz gives the relationship of the SPECIALIST to other

SPECIALISTS. These two slots contain name of the other SPECIALISTS. Te

SAFETY-GOAL slot specifies the safety goal that will be threatened if the

SPECIALIST is not success ful. The CATEGORY slot is used to specify the type

312

of malfunction i.e. whether a threat to safety or an abnormal event. In the

PLANS slot the name of the PLAN, to be used to control the malfunction state

given in the NAME slot, is given.

The next construct for expressirV the procedure is PLAN. The PLAN is

structured as:

(PLAN (NAME

(SAFETY-GOAL

(PRERIEQSITE

(CRITEIA

(USED-BY

(BODY

The PROCEDURE is just a sub PLAN axd hence has a stuctruce similar to

the PLAN structure containing the same kind of information. The PROCEDURE is

structured as:

(PROCEDUE (NAME

(SAFiET-GOAL

(EXECUTION-TYPE

(ACHUEVE-GOAL

(PRUERqISITE

(USZDBY

(BODY

Mw NAME slot contains the name given to the PLAN or PROCEURE in the

amuals. In the SAFETY-GOAL slot is stored the safety function that would

eventually be threatened if the PROCEDURE or PLAN is not successful. This

information is used to maintain safety, in case the PLAN fails.

313

The MMC=TION-TYPE gives the relationship among the elements of the

BODY. Four types are defined SEQUENTIAL, BACKUP, MANYOF, and MONITOR. The

most comon type is SEQUENTIAL, that is execute the element of BODY

sequentially. The BACKUP type Implys that the elements of the BODY are

alternatives to each other. Each is intended to achieve the same purpose.

MANYOF type implys that as many as possible of the elements of BODY should

be executed to achieve the best results. MONITOR type means that failure of

any elements requires going back and starting frem the first element again.

The wole plan is not considered successful unless all elements succeed. A

fifth type PARALLEL is also possible. The meaning of this is that the

elements of BODY should be executed in parallel. This type is not

implemented as parallel processes are required for implementing it.

The PREREQUISITE slot prescribes the conditions that should be true

before starting the procedure. A common prerequisite wouud be the

availablity of the plant systems or components used in the procedure.

The CRITERIA in PLAN and ACHIEVE-GOAL in the PROCEDUE serves the same

purpose. They tell wtat condtions should be true to say that the PLAN or

PROCURE has been successful.

USED-BY is used to specify which PLANS are using the PROCEDURE. This

information is used to exclude failed or executed procedures.

The elemets of the BOY are the names of the sub plans (PROCEURES)

and actiui steps that me up the whole PLAN or PROCEURE. The following

kinds of actions are defined in the system:

1. Actions to be done an syste or components, or actions to be done

using systems or canponents,

2. Conditional actions on or using systems or components,

314

3. Actions to verify the effects of actions taken, and

4. Actions to monitor the effects of actions for some time.

The first two types of actions modify the environment after they are

executed. The second two types of action are Just for evaluating the effects

of the actions and do not modify the environmnt.

Modification takes place when a step, procedure or plan fails, and is

acccoplished thrc4 the safety gas. The modification is first tried

within the PLAN or P!CEDU1M. I.e. the safety goals of procedures and steps

are tried so that the rest of the body can be pursued. If this is not

possible then the control goes to the SPEIALIST for the failed goal or

event PLAN.

4.4 Diag tic and Senor Validation System

When activated by PS1M, DV= will look for malfunctions by matching

expectations in a malfunction hierarchy. If a malfunction node establishes,

DVS will attempt to refine the diagnosis to find the root cause at the

lost available canponent level.

If a data point is found to be questionable, then the hierarchy will be

run again with a different value for the questionable datapoint, this

different value will be decided according to values in an expectation

pattern stored in the meafuiccion hypothesis in which the questionable data

was detected. It will iterate in this manner until a conclusion is reached

and all data are found to be correct. At this point, it will provide *

either with confirmation that a proper procedure is being run, or that the

malfunction state was established with invalid sensors, and that the

procedure should be abandoned.

This system is implemented using the the Conceptual Structures

315

Representation Language (CSRL). CSRL is a high level language from the

Generic Task Tool Kit C_7,9], that invokes an ESTABLISH-REFIE [7) control

strategy to search the hierarchy of possible malfunction states.

4.4.1 Knoiledge RepresenitatIci In DVS

The malfunction hypothesis In CSRL are represented using the constructs

SPECIALIST, Knowledge Groups (KGs) and messages. The SPECIALIST contains the

knowldege to establish the malfunction in terms of KGs. 7e KMs have the

knowledge to establish sub hypotheses of the malfunction hypothesis and

assign confidence to the sub hypotheses. The knowledge for assigning the

confidence to the malfunction hypothesis and what to do next based on the

confidence in malfunction hypothesis and its sub hypotheses is given in the

construct messages. Figure 12 sho the Specialist LossOfFUtr used in DMS.

A partial picture of the malfunction hierarchy [2] used in this system

is sho in Fig. 13. In this hierarchy of malfunctions, the malfunctions on

the right are more general diagnostic classes, and the nodes an the right

correspond to more specific cases (type-subtype ar--- --- t of the

malfunctions). The set of tip nodes in this hierarchy can be thought of as

the diagnostic conclusions relevant to the system.

The data validation routine relies on the pre-cinpiled knowledge that

identifies a discrepancy in the relationship betwmen parameter readings. For

example, if a pump sensor is indicating normal operation, then the discharge

pressure and the downstream flow sensor should also Indicate that flow is

pres;ent. A sensor is suspected to be erroneous when at least two (and

omtime more) sensors are in conflict with its value. The system identifies

the specialist in the hierarchy that has used the erroneous data reading by

assigning a "*" in its confidence value. The suspected data values are

316

replaced by the values that are more consistent with other data readings.

The new data valu are produced through the use of validation methods.

These methods -xwxtain reduntant knledge that can be used to obtain the new

values. The dianostic system then re-evaluates the previous diagnostic

conclusion using the new data value.

CSRL tests malfunction hypotheses in the malfunction hierarchy by first

examining the most general nodes, located at the left of the tree, and then

moving through the tree at the next lower level from the bottom up.

Therefore, It is important to contruct the tree with the nodes you want to

have considered first at the bottom at each level.

4.4.2 Functioninu of DVS [2]

As an example _2,.14] of how this system will operate, consider the case

of a decreasing water level in the reactor pressure vessel. The specific

malfunction Is caused by a feedwater recirculation valve inadvertently

opening with a concurrent failure of the feedwater level controller calling

for no change in feedwater flow rate. To demonstrate how the sensor

validation function operates, we also will assume the flow sensor in the

recirculation line fails.

A coolant system fault is detected because of the low-ring reactor

water level. LOCA does not establish because the required ewectations,

such as increasing drywell pressure (among others), are not present.

Hower, the cor•ition of Reactor Inventory Change does etablish. This can

be seen in Fig. 14 Miere a number 3 indicates high confidence (for

established hypothesis), and a -3 indicates low confidence (rejection of

hypothesis). Knowig the malfunction, we can surmise how each additioal

node is either established or rejected.

317

When the given malfunction establishes, it does so with a 3. The *

irndicates a possible sensor malfunction. By examining the Knowledge Group

for this malfunction in Fig. 15, it can be seen that either the flow rate

sensor or the hot surge tank level sensor can cause the *. Secamse the

table is reviewed from the top dcon, the value for the flow rate is changed

in the database, and the hierarchy is run again.

For this case, the result Is the sae , but without the questionable

sensor indication, as sham by the confidence values for the hypotheses in

Fig. 16.

5.0 Verification and Validation

'The verification and validation of expert systems is different from

that of conventional software (16, 33]. This is because in expezrt systems

the search for a solution is much more unbounded than in a conventional

system . The search in an expert system is controlled by the knowledge

available in the system and the correct functioning is highly dependent on

the knowledge it is using. The first task in verfication and validation has

to be of verifying that correct and consistent knwuledge has been

represented in the expert system [16, 33].

The verification of expert systems consists of testing %hether the

software is working as desigd and according to the knowledge represented.

This activity requires testing of the knwledge and software. Sane estimate

of the correctrAss and consistency of the knowledge can however, be mad

prior to the test runs.

In the Operator Advisor verification is required for (1) the inference

knowledge represented in the database, (2) the entry conditions represented

in the safety functions and abnormal events. (3) the procedures represented

318

completely and correctly according to requirements of the grammar defined

for procedure representation and (4) consistent knowledge for establishing

malfunction hypotheses. Consistency between parent and child malfunction

hypothese in the malfunction hierarchy is essential. Additionally, in the

Operator Advisor consistency among the sub systems also is required.

After the consistency of the knowledge represented in the system is

verified then the system has to be tested for correct furctioning of the

software. This is a function of the specifications used for developing the

system.

The Operator Advisor was developed from a gmeeral set of specifications

which stated the broad tasks an operator performs vile monitoring the plant

during normal steady state conitions and the tasks the operator performs

when responding to the deviations from these conditions. The knowledge base

and the database have been filled using expert experience and plant data by

taking a plant system approach.

The second factor of Verification and Validation, which is validation

of the expert system consists of investigating W4wther the system actually

helps the operator. It is possible that a system functioning as designed may

not help the operator. The detailed testing of of this factor can be done

only after the system incorporates a large quantity of knoledge and is

installed in a real enviroment. This will require actual operator

interaction, %ihch is yet to take place and which is embedded In future

plans. This is a two step process:

(1) Interfacing the Operator Advisor with the plant specific simulator (to

accept data directly and respond in real time), and

(2) Implementing a user (human operator) interface to provide the

319

information to the operator.

The Operator Advisor has already been tested with a sall set of plans

for correct functioning according to the knowledge representation. A typical

scenario is rnw described and how the Operator Advisor respond to it

refering to the hardcopy output from the system. The hardcopy of the output

is showing only the more relevant responses of the Operator Advisor. The

details of monitoring and sme of the actIres encoumtered in the procedures

are not samoa in this output. Figs. 17, 18, 19, 20, 21, 22, and 23 show som

of the SPCIALISTS, PLANs and PRCEUREs used in the scenario, described in

the following aragraps.

PS starts the mnitoring by looking at the entry conditions of the

safety functions, and from this it has concluded that no safety function is

threatered, as no entry coitions were true. Next it has looked at the

abnormal events includlng the general malfunction state. From this

monitoring PSMS again has not found any deviations fron normality and has

not established any abnormal events, hence in this cycle it has concluded

that no diagsis is required.

The second cycle then begins and, in this cycle the system does not

established threat to any safety function. In monitoring the abnormal events

hwver, PSM has established the abnormal event FeedwaterPumpTrip, as all

its entry corditiom have been found to be true. P4SM has sent a message to

DPt' to initiate the procedure for FeedterPumTrip. This is done by

triggering the SPECIALIST FeedterPumpTripAE-Planner (Fig. 17). After

triggering the SPECIALIST WS has sent back the acknwledging message to

PSMS. The triggered SPECIALIST then iniates the PLAN for FeecfaterPumTprip

(Fig. 18). This plan has only am procedure ONI-27 (Fig. 19). ER4S then

320

verifies that the procedure is required as Its Achieve Goal is nmt true. It

then confirmed that the procedure can be started as Its Prerequisites are

available. After this the required actions are displayed and verified for

success.

During the execution of the procedure (ONT-27) for FeedwaterPumpTrip

(Fig. 19), howver, PS has initiated the diagnosis for the

FeedterPumpTrip node in the DVS hierarchy (Fig. 13). The hierarchy below

FeecfterPumpTrip is shcwn in Fig. 24. DVS has diagnosed the cause of

FeedterPumpTrip as Low NPSH. This conclusion is communicated to DPM.

After receiving this conclusion DPM displays the instructions (TAKE CARE

OF LOW NMS{) and continues with the procedure for FeedterPumpTrip.

During further execution of the procedure for Feed Water Pump Trip,

PSMS has established the threat to the higher safety function of

Inventor'Control. This message is comxunicated to DRMS. MS has

acknowledges the message and shifts its operation to maintenance of

InventoryControl (Fig. 20). The system has not been able to execute the

procedure for InventoryControl successfully as the actions taken have not

yielded the required results. DRM has started failure recovery by shifting

the operation to maintenance of the higher level safety function of

RPVControl (Fig. 21).

SDPtM initiates tha PLAN for RPVControl and starts the execution. This

plan contains the procedure PEI-B13 (Fig. 22). Fig. 23 sham mieo of the sub

procedures PEI-B13-3.0.1 of PEI-B13 The further output sham the actions and

success nnitoring of the RPVControl procedure. The procedure is eventually

successful and the system has been able to maintain safety at the level of

RPV Control.

321

The scenario described above is typical of tests of the systen for

specific plans. Before initiating the validation stage a large number of

plans must be tested. The system is howver, for the scenario described,

behaving as expected for the plans used in the scenario.

6.0 Sumary and Conclusicas

6.1 Sumar

The final product of the reseazrch described in this paper is a

framxmk for an Integrated Operator Advisor. The framework can be

functional only after it incorporates a large amount knowledge. After the

required knowledge is incorporated then it is expected that the Operator

Advisor will be able to aid the operator in the following:

(1) Identifying malfunction states,

(2) Providing the procedure for the malfunction state,

(3) Monitoring the success of the procedure,

(4) Providing safety maintenance in situations when the prescribed

procedure fails or there is no procedure available,

(5) Providing the cause of the malfunction state by diagnosis,

(6) Giving instructions for rectifying the cause,

(7) Changing the focus of attention if a higher threat occurs while

pursuing a procedure,

(8) Detecting malfuncticm states through DVS, before the traditional

alarm, and

(9) Anticipating the threat to safety and initiating the required safety

maintenance procedure.

6.2 Real-Tim System Chracteristics

The Operator Advisor has the characteristics [15] summarized in the

322

introduction of real-time systems and has facilities to harkile them

efficiently.

* Nonmonotonicity of data: The change in plant coniitons and data is

taken care of by continuosly monitoring the data and the success

of the actions taken.

Interface to the External EnIvronment and Data Abstraction: The

intelligent database Is capable of taking data from a set of

sensors and performing feature extraction and data abstraction.

These activites are done at runtime whenever required.

Asynchronous Event and change in Focus of Attention: The

controller in the conflict resolution task is specifically

designed to interrupt ongoing tasks. The controller allow change

of focus of attention in the following situations:

1) If during the execution of a procedure, a higher threat

is recognized by PSMS, then DPMS will accept this

wessage and make a decision based on the threat's

relation to the executing procedure. If the threat is

higher, DWM. will change Its focus of attention and the

procedure for the higher threat will be initiated.

2) In the situation when DVS discovers the cause of a

malfunction state, then DPtM accepts this message and

stops the execution of the active procedure for some

time to give instruction to correct the cause. After

giving these instructions DPMS continues with the

earlier active procedure and checks for it success from

the present conditions, wh'ich might have changed due to

323

actions taken for the cause.

3) The system is also capable of changing its focus

depending on the situation at runtime, e.g. if a plan is

failing then the plan for its safety goal will be

initiated, by trying to maintain safety.

Temporal Reasoning: The database uses time as resource to answer

historical questions about data, such as For how long has the

Feed water flow been greater than the steam flow ?. The EECUTION-

TYPE monitor also uses time to evaluate the success of the

PROCEDURE. The future actions on procedure failure are taken based

on the future consequences of uncontrolled event.

High performance: The system is complete and robust from the

perspective of safety, as it can lead the plant to a safe state in

all situations, by maintaining safety at a greater depth.

6.3 Future Work

Several enhancements and improvements of the System are possible that

can make it more robust. Following are some of issues for future work

(1) Addition of more knowledge in the four modules.

(2) Replacing the database with a ccomercial database. The commercial

database would provide better update and management facilities.

(3) Additions In the DVS systemi to go down to specific sensor validation,

presently it does only a query validation.

(4) Additions in DR.S to have the facility to reverse the actions of the

procedure rnt required. This can be done by providing reversing

procedures whenever possible and can be achieved by additional

knowledge for certain procedures and may not require modifications or

324

additions in the software.

(5) Automate the decision to start diagnosis of a malfunction state or

continue with moritoring. This would require some addition to the

software but can be done only after the knowledge to make this decision

is available.

(6) Implement the system on a multitasking machine to facilitate several

parallel processes. The parallel processes that are required in the

system are: (1) background process to ask for database update (2) Plant

data monitoring process (3) Procedure monitorinr pmes (4) Diagnosis

process (5) Parallel processes to implement the parallel actions

requirements in procedure (6) Process to monitor the procedure for

rectifying the cause (discovered by DVS) of malfunction states.

(7) Install the system on a simulator for testing the software and

1anow-ledge base [322].

(8) Add better graphic displays and human interface facilities.

The testing in a full function simulator is a key step in the

validation of the Operator Advisor. The planned testing program will involve

plant operator evaluation over an extended period of time with a variety of

test scenarios. The comparative response of plant operators with and without

the Operator Advisor will provide insight into the value of the Operator

Advisor to the plant operators.

Prior to installation, the plant operational staff will be encouraged

to provide input in design of the Operator Advisor especially those facets

effecting human interface. During and after the evaluation by the staff it

is expected they will continue to provide valuable input to improving the

overall conceptual approach as well as further design enhancements.

325

Acknwedre

The authors would like to acknowledge the contribut ions of B.

Ctwidrasekaran, D. D. Sharma, N. Yamada, W. F. Punch and S. Hashemi.

The research presented in this paper has been partially supported by

two grants from- the National Science Fodaticn and a grant from the

Departwnt of Ewrgy. Specifically the initial coceptualization and the

initial development of the overall diagnosis and data validation sub

systems, and the procedure management prototype was supported by NSF grant

No. CBT 8400840. The integration of the two prototypes through the

intelligent database and the plant status monitoring sub system plus initial

verification and validation has been supported by DOE grant No. DE-ACO2-

86NE37965. Finally, the conceptual aspects of temporal reasoning and real-

time systems has been partially supported by a second NSF grant No. ECS

8612254.

The authors would like to express their appreciation to the staff of

the Perry Nuclear Power Plant Nuclear Training Department for their

extensive assistance in obtaining plant data and for working with us to run

plant transients on the Perry Plant simulator. This collaboration has

provided a reference plant for the research described in this paper and

without it, the progress made would not have been possible.

The collaboration of GE Nuclear Energy, Electronic and Computer

Services, also is ackohwledged and appreciated. GE's collaboration is

making it possible to assure that our expert system will properly interface

with the plant computer systems.

326

Finally, t1e authors wish to acknowledge the suport provided by The

Ohio State University. Specifically the Laboratory for Artificial

Intelligence Research, the Nuclear Engineering Program, and the Department

of Mechanical Enineering.

327/328

Table I Safety Functions for A BWR

I Safety Furntion Level Purpose

Prevent Radiation Release I Protect Public Fron
Radiation

Containment Pressure Cntrol
2 Barrier Damne

Containment Temperature Cntrol

IDrymi~l Prewnsure Control
I Prevent Damage to

2 Dryell Barrier and
Eqjuipment

DryMll Temperature Control

Suppression Pool Level Control
Maintain

2 Availability of
Emergency Heat Sink

Suppression Pool Temperature
Control

Reactor Inventory Control 2 Maintain Coolant
Around Core

Reactor Pressure Control 2 Maintain Reactor
Vessel Pressure

Heat Sink Control 2 Assure Proper Heat
Removal from Core

Coolant

Maintain Operation
Maintain Vital Systems 3 of System needed

to Support
Operations

329

'4A a

L- --

330

330

Window Image

'4.'

CL 0

331

Window Image

..... " "" I -"'f "I •,IfW I" -i !iJ II

*114

£ 1

"4j

' "3

"44

332

Window lmage

/IJII iji II I I tl jt! ttti.! •J

0'0

* i

333

333

Window Image

40

334,

iI

|: i Il' .6

334

wiflomw Image

3t3

., 5

qý0 01m aI

A.. L .1.4
;.j a CPC C.

* 335

Window Imago

'4j

M u 0 u.-

'c -uV - .f

- . ob0r-. Ca

MV5 0 - -- C.

Q60 C6 L8
6 .P C4 630a c4

- M I

b.336

Window Image

CL 0

*6V

4)

CL*

'n 4)N

M L.z I
00 QCL. 0- C

'10 -200U

337~

Window Image

'1 .i. ! .

.I f

S~338

Window Inmage

C•4

339

Window Image

"I t . IJrt

.,iii • Ii•zi.''.tf III

!
AKA

0

'I
.o

340
r1

49

-6 1
L~ 0

0% -. m. a. a

!~~co op * *ug

law 'm4 1. s),) WO~j:~~~ 0.. CO C*UO c.

... * . 0 N - LW

A~. C6 co 4
44C 441tW

41 Ext

VI 60 C.r~c

wf at w 0 a

'U11- c -Eý a4
40 a .B.z I

CL * -1 40 -4 ac w IW =U *4
t

f410~e5 ~ - u4

0341

A o do 0-4

~u. .- ~ 0 iW341

S~Window Image

, i

h ~ j 11111

w ~ 4d

4d4

z 4*2

o o -0 wec ai C43
QC @w-jtmmowx uw a u

31 012 A aa -aaP
40 qiL 49 U

C4t

343

A

---- 344

* -9S.. . ..••• " q* :I •1'•• ' '''' •I ••= • •' ", ,* 1 ; :

II

,- , , , *9t

"'., I YZ

. 9

345

1.1* 41

0.
Q Q I

CO)

346

A'AV A

w ~ 0

-a g

Z~ , W

C) 51I

347

A eAA

V wo

cc4~ Me

Wow ITw -

c,

- rg

ou r ze
;

Z >~ a ;Wa

348

SA

4) .- SQ)

'SI

A)

A~*~-b

> > I
jo C

II1

349

C I

E-

A w

I•x'b1

350

i~z,• •'0
IW > [,,,II "4.,

(PROCEDURE (NAME PEI.B 13)
(SAFETY-GOAL RPVControiSG.Planner)
(ACHIE yE-GOAL (AND (CanMaintaln RPVLeveIDB > 185 Inches for > 10 mlns)

(CanMaintain RPVLeveIDB < 215 inches for > 10 mlzna)
(IsTheN u merical ValueOf ReactorPressO138 < 950 pSlg)
(IsTheN urerlcaiValueOf ReactorPowerD B < 4 percent)))

(PREREQUISITE NONE)
(EXEC UTION-TYPE Sequential)
(USED-BY RPVControISG. Plan)
(BODY PEI-B13-3.O.1 ONI-C71

F19. 22. Kwl2edge Rep semtaticx, Of PEZ913J=

351

(PROCEDURE (NAME PEI-B13-3.0.1)
(SAFETY-GOAL InventoryControlSG-Planner)
(ACHIEVE-GOAL NONE)
(* * No ACHIEVE-GOAL is specified due to the fact that the conditions are check in

the

procedure PEI-B13)
(PREREQUISITE NONE)
(EXECUTION-TYPE Sequential)
(USED-BY PEI-BI3)
(BODY (Check if the reactor scram has initiated)

PEI-B 13-3.1.1-MONITORA
(IF (ASKOPERATOR (AreAll RPSChannelScramStatusDR Scrammed))

(0 "These are the conditions that characterize a reactor scrai
(AND (AreAll ControlRodPosDB < = 2)

(AreAll ScramValveDB Opened)
(IsTheNumericalValueOf ReactorPowerDB < 4 percent)
they are check in the method for Reactor Scrammed))

THEN
(SET ReactorModeSwitch I to Shutdown)
ELSE
(Arm and Depress RPS Manual Scram C11 A-D pushbuttons)
(SET ReactorModeSwitchl to Shutdown))

PEI-B13-3.0.3 PEI-B13-3.1.1-MONITORB (* This is the begining of the PEI
RPVControl

steps 3.0.1 and 3.0.2 on page 4)))

will be removed from
RPVControt)))

Fig. 23. Knowledge Reý,saýtati of P£OCUM PEI-B13-3.0.1 in

352

Window Image

*,-

~1. A

35

. L n nm• nn, = .= •" -.. . " ' ! '• : lp F n'-Ii u•Pl " nn'p i • • !! "! I •_, , ,

Hardcopy of output from PSMS and DVS

PSMS New Monitoring Cycle beginning with Safety Function
Monitoring

PSMS No condition threatens any safety goal, looking at general
conditions of deviations from normality

PSMS No general deviations exist, proceeding to look at other

events

PSMS No condition indicates any abnormal event

PSMS There is no need to do any diagnosis

PSMS New Monitoring Cycle beginning with Safety Function
Monitoring

PSMS No condition threatens any safety goal, looking at general
conditions of deviations from normality

PSMS No general deviations exist, proceeding to look at other
events

PSMS********

PSMS The FeedwaterPumpTrip abnormal event is established

Message is being sent to DPMS to trigger Plan for
FeedwaterPumpTripAE

PSMS Following is the message from DPMS

FeedwaterPumpTripAE-Planner triggered by DPMS

354

Hardcopy of output from PSMS and DVS

PSMS Do you, want to do further diagnosis for cause of
FeedwaterPumpTrip (answer y or No no N n) ?
Y

Diagnosis for cause of Feed WaterPumpTripAE initiated

PSMS The cause of Feed WaterPumpTripAE is LowNPSH

Message is being sent to DPMS to trigger Plan for LowNPSH

PSMS Following is the message from DPMS

LowNPSH lower fault plan triggered by DPMS

PSMS The diagnosis has completed it's evaluation,

PSMS New Monitoring Cycle beginning with Safety Function

Monitoring
PSMS ************

PSMS The InventoryControlSG safety goal is established

Message is being sent to DPMS to trigger Plan for
InventoryControlSG

PSMS Following is the message from DPMS

InventoryControISG.Planner triggered by DPMS

355

Hardcopy of output from DPMS

> > DPMS is ready to receive messages from PSMS

> > DPMS ***** * Message received from PSMS for Threat to
Safety or Abnormal Event ******

> > DPMS FeedwaterPunpTripAE.Planner is initiated and is in
action now
> > ** Generating operation guidance "i

> > Prerequisites of FeedwaterPumpTripAE-Plan being checked
> > Prerequisites of FeedwaterPumpTripAE-Plan are available
> > Achieve goal of FeedwaterPumpTripAE-Plan being checked now
> > FeedwaterPumpTripA.E-Plan is in action after the prerequisite and achieve
goal checks
> > Prerequisites of ONI-N27 being checked
> > Prerequisites of ONI-N27 are available
> > Achieve goal of ONI-N27 being checked now
> > ONI-N27 is in action after the prerequisite and achieve goal checks
> > Prerequisites of ONI-N27-3.0 being checked
> > Prerequisites of ONI-N27-3.0 are available
> > Achieve goal of ONI-N27-3.0 being checked now
> > ONION27-3.0 is in action after the prerequisite and achieve goal checks'
RECOMMENDED OPERATION IS
RUNBACK RecircFlowContValvePosAl
Did you Succeed the operation? -- >
Y
Is the value of reactor recirculation FCV.A position (B33.K695A)
< 22 percent open ? -->
Y
RECOMMENDED OPERATION IS
RUNBACK RecircFlowContValvePosB1
Did you Succeed the operation? ->
Y
Is the value of Reactor recirculatio FCV-B Position (B33-K695B) < 22 percent open

> >DPMS * Message received directly from DVS for the
cause of Abnormal Event FeedWaterPumpTrip
> > DPMS LowNPSH is initiated and is in action now

*** TAKE CARE OF LOW NPSH
Y
> > ONI-N27-3.1.1 is in action after the prerequisite and achieve goal checks

356

Hardcopy of output from DPMS

> > ** Generating operation guidance **

> > Prerequisites of RPVControISG-Plan being checked
> > Prerequisites of RPVControlSG-Plan are available
> > Achieve goal of RPVControISG-Plan being checked now
> > RPVControlSG-Plan is in action after the prerequisite and achieve goal checks
> > PEI-B13-3.0.1 is in action after. the prerequisite and achieve goal checks
RECOMMENDED OPERATION IS
Check if the reactor scram has initiated
Did you Succeed the operation? -- >
y
> > Prerequisites of PEI-B13-3.1.1-MONITORA being checked
Are all control rod positions < = 2 ? -->
y
RECOMMENDED OPERATION IS
SET ReactorModeSwitchl to Shutdown
Did you Succeed the operation? -- >
Y
> > RPVPowerControl is not required as its achieve goal is already true
> > RPVLevelControl is in action after the prerequisite and achieve goal checks
> > PEI-B13-3.3.1 is in action after the prerequisite and achieve goal checks
RECOMMENDED OPERATION IS
MANUALLY-ISOLATE MSIVOutboardVlvDB
Did you Succeed the operation? -- >
y
Are all of the main steam line outboard isolation valves Isolated ? -- >
Y
> > PEI-B13-3.3.2-MONITOR is in action after the prerequisite and achieve goal
checks
RECOMMENDED OPERATION IS
MAINTAIN RCIC Turbine speed below the RCIC Turbine Speed Limit but above
2000 RPM
Did you Succeed the operation? - >
Y
> > RPVLevelControl has succeeded
> > RPVPressureControl is not required as its achieve goal is already true
> > DPMS RPVControlSG.Plan has succeeded
> > DPMS RPVControlSG-Planner has succeeded
Is the value of RPV wide range level instruments > 178 inches ?
0.->

> > DPMS InventoryControISG-Planner has succeeded
> > DPMS No more active plans to be pursued in NPPGoals

357

Hardcopy of output from DPMS

*** Reactor power should be maintained BELOW a maximum of 100 percent by
adjusting the recirculation flow
RECOMMENDED OPERATION IS
ADJUST recirculation flow
Did you Succeed the operation? -- >
Y
Is the value of TOTAL REACTOR FW FLOW (C34-NO02A&2B) f
TotalReactorSteamFlowDB ? ->
Y
> > ONI-N27-3.1.1 has succeeded
> > ONI-N27-3.0 has succeeded
> > Prerequisites of ONI-N27-4.0 being checked
> > Prerequisites of ONI-N27-4.0 are available
> > Achieve goal of ONI-N27-4.0 being checked now

> > DPMS ********* Message received from PSMS for Threat to
Safety or Abnnw,0 Event ******
> > DPMS Inven oiqControISG.Planrýr is initiated and is in
action now
> > ** Gene:&ting o-ration guidance **
> > Prereq' i.s oflnventoryControlSG-Plan being checked
> > Prerequisites oflnventoryControISG-Plan are available
> > Achieve goal of InventoryControlSG-Plan being checked now
> I;, InventoryControlSGoPlan is in action after the prerequisite and achieve goal

• The reactor water level has decreased BELOW the scram setpoint--- entering
!-B 13 RPVControl

> > PEI-B13 is in action after the prerequisite and achieve goal checks
> > PEI-B13-3.0.1 is in action after the prerequisite and achieve goal checks
RECOMMENDED OPERATION IS
Check if the reactor scram has initiated
Did you Succeed the operation? -- >
N
> > DPMS InventoryControlProcedure has not succeeded
> > DPMS InventoryControlSG-Planner has not succeeded,
recovery action started
> > DPMS It is expected that RPVControlSG-Planner will be
threatened
> > DPMS RPVContro1SG-Planner is initiated and is in action
now

358

Hardcopy of output from DPMS

*** Reactor power should be maintained BELOW a maximum of 100 percent by
adjusting the recirculation flow
RECOMM]ENDED OPERATION IS
ADJUST recirculation flow
Did you Succeed the operation? - >
Y
Is the value of TOTAL REACTOR FW FLOW (C34-NO02A&2B) =
TotalReactorSteamFlowDB ?->
Y
>> ONI-N2743.1.1 has succeeded
>> ONI-N'7-3.0 has succeeded
>> PrerequLsites of ONI-N27-4.0 being checked
> > Prerequisites of ONI-N27-4.0 ire available
> > Achieve goal of ONI-N27-4.0 being checked now

> > DPMS * Message received from PSMS for Threat to
Safety or Abnormal Event ******
> > DPMS InventoryControlSG-Planner is initiated and is in
action now
> > ** Generating operation guidance
> > Prerequisites of InventoryControlSG-Plan being checked
> > Prerequisites ofIuventoryControISG-Plan are available
> > Achieve goal of TnventoryControlSG-Plan being checked now
> > InventoryControlSG-Plan is in action after the prerequisite and achieve goal
checks
*** The reactor water level has decreased BELOW the scram setpoint --- entering
PEI-E13 RPVControl
> > PEI-B13 is in action after the prerequisite and achieve goal checks
> > PEI-B 13-3.0.1 is in action after the prerequisite .nd achieve goal checks
RECOALMENDED OPERATION IS
Check if the reactor scram has initiated
Did you Succeed the operation? ->
N
> > DPMS InventoryControlProcedure has not succeeded
> > DPMS InventoryControlSG-Planner has not succeeded,
recovery action started
> > DPMS It is expected that RPVControlSG-Planner will be
threatened
> > DPMS RPVControlSG-Planner is initiated and is in action
now

359

References

1. Shaxma, D.D., "A Knowledge Base Pramework for Procedure Synthesis

and its Application to the Emergency Response in a Nuclear Plant"

(Ph.D. Dissertation, The ihio State Universi3ty, 1986)

2. Hashemi, S.,"Expert System Application to Nuclear Power Plant

Malfunction Diagnosis and Sensor Validation". (Ph.D. Dissertation,

The Ohio State University, 1988)

3. Blatnagar, R, Gandikota M.S., Davis J.F., Hajek, B.K., Miller

D.W., and Stasenko J.E., "An Intelligent Database for Process

Plant Exert Systems". Presented at The Instrument Sociejy of

America International Conference and Exhibit, Houston, TX, Oct.

1988.

4. Yamada, N, CMandrasekaran B. and Bhatnagar R., "A Knowledge Based

System for Dynamic Procedure Management Based on G•eric Task

Methodology" (Lnpblished Technical Rano.rtThe Ohio State

University, 1987)

5. Stasenko,J.E, "The Implementation of Domain Knowledge into a

Computer Based Advisory System for Nuclear Power Plant Operators".

(M.S._Thesis, The Ohio State University 1988).

6. Hashemi, S., Hajek, B. K., Miller, D. W., Chandrasekaran, Bo,

Punch III, W. F., "An Expert System for Sensor Data Validation and

M'lfumcticn Detection." presented and published In the

Proceedinas of the ANS Conference on Artificial Intelligence and

other Innovative Ccwuter A0_1cations in the Nuclear Industry,

Sr,•,bd_, Utah, 1987.

7. Bylander, T. and Mittal, S., "CSRL: A Language for Classificatory

360

Problem Solving and Un•certainty laling,1," Al..lXne

7(2):66-77, 1986.

8. Brown, D. C., and C1Wud'askafl, B., "Knsowledge and Control for

Mechanical Design Zgpert System," IEEE Comr 19(7):92-100,

1986.

9. a, B., "Towards a Functional Architecture for

Intelligence Based n Generic Iormation Processing Tasks,"

presented and published In the P cdiras of the Tenth
SInten~ational Joint Conference on Artificial Intellgnce, Milan,

Italy, August, 1987.

10. Chandrasekaran, B., "Generic Tasks in Knowledge-Based Reasoning: High

Level Buildcing Blocks for Expert System Design," IEEE Exert, Fall,

1986, pp. 23 - 30.

11. Sharma, D. D., Miller, V. W., and Chandraseka'an, B., "Design of

an Artificial Intelligence System for Safety Function

.Maintenance," Transactions of the Aerican Nuclear Sc••. ey, Vol.

50, pp. 294 - 297, 1985.

, 12. Corcoran, W. R., hnuch, J.F., Cross, M.T., and Guinn, W.N., "The

Critical Safety F cticn and Plant operation," Nuclear

Technol , Vol. 55, pp. 690 - 712, 1981.

13. MeiJer, C.H., "Critical Aunction Expert System for Nuclear Powr

Plants", Presented and Published in the -fo a WrbgsVp

an Al Alicatiaons to Nuclear Po'er, Sponsored by EP1R, May 1984.

S.4. jeajek B.K., Miller D.W., Bhatnagar R., Stasenko J.E., Punch W.F.,

and Yama N., "A Gdric Task Approach to a Real TIme Nuclear

FPar Plant Fm•lt Diagnoeis amd Adisory System". Presented at the

361

It M II ci 1 e Ilenc for Inustcrial

m. Wfey T.J, Uc P.A., Sch.tdt J.L, Kao S.M., and Read J.Y,, "Real-

Ti,,(mledge Saad Systems", Al =-ai em}(1: 27-45.

16. Grouimbater , E.H., Dnell, M.L., and Archer, M.A., " oolaches

to Verification and Validation of Ep~ert S-stems for Nuclear P

Plants",EPRt NP-5236, July, 1987.

17. Bullock, J.B., "Seminar on the Applications of On-Line Computers

to Nuclear Reactors", Nuclear Safe Vol. 10 Mar-Apr, 1969.

18. Long, A.B., "Computerized Operator Aids", Nuclear Safety, Vol 25,

July-August, 1984.

19. Lewis, J.R., "Safety Systems Starus Mnitorinr", Nuclear Safety,

Vol. 26, pp. 459-467, July-August, 1985.

20. Naser, 3., R. Colley, J. Gaiser, T. Broolnire and S. Engle, "A

B'el Insert Shuffle Planner Expert System", presented and

published in The Proceeding of Exe tSys ia ioermi

Power Plants, ETRI.. -oston, HA. 1987.

21. RTAD Real Time Anal•sis and ..Dinly, Nuclear Eucation and

Tzaning Services, I=. U"npubllshed Training Manual, Columbus,

22. Lloyd, S.A., D.K. Sharm, and O.K. Brede, "A Generator Expert

Monitoring System (GEM))", presented and published in The

Pof Exe•ert StM_ Al•_icatims in Power Plants, EDRI,

Boston, MA. 1987.

23. Stefanini, A. and M. Gallanti "Expert System Applications in Poar

Genweation and Distributian: A Suvey r. othe Onoing Projects at

362

CISE", presented and published in The Proceeg-r of Exert Syeste

Awplications in Pc*wr Plants, EPRI, Boston, Ma. 1987.

24. Neuschaefer, C.H., P.W. Rzaaa, E. Filshtein, et.al,., 'Aplicati

of C-E's Generic Diagnostic System to Power Plant Diagcvtics",

presetited and published in The Procedifl of ert Stxs

A&Wlications in Power Plants, WI, Boston, Ma. 1967o

25. Berg, 0., Rolf-Einar Grini, M. Ybkobaya.h, "Ear•ly Fault Detectloa

and Diagnocis for Nuclear Paer Plants", presented and publislwd

in The Proceeding of Experwt Systems 6jlications in Power Plant&\,

EPRI, Boston, Ma. 1987.

26. Naito, N., A. Sakuma, K. Shigeno, "A Real-Time Etpert system for

Nuclear Power Plant Failure Diagnosis and Operational Guide",

Nuclear Technology, Vol. 71, Dec. 1987.

27. Petrick, W., K. Ng, C. Stuart and D. Cain, "A Production System

for Computerized mergenp Procedures Tracking", presented and

published In 7b#-, Prcei~fEp tAlct si

Power Plants, EPRI, Boston, Ma. 1987.

28. Touchtor, R.A., A. Guter and D. Cain, "REALM: An Expert System

for Clzs.-f'ing Emer cies", presented and published in The
Sof Ex•ert Systems Aplications in Pc r Plants, EPRI,

Boston, .ao 1987.

29. U.S., Nuc•ler Fve .atory Coission, Functio and Operations of

Nu leaw, Powe '~r Pla. Cre, Oak Ridge, tern see, USNRC Technical

R-pt, VJPM/CR-2587, ORNL/V4-8237, April, 1982, pp. 11-28.

30. UI.S., 1 . r Regulatry Ccomission, TI-2 Lessons Learned Task

Fure FPiua Reort, W~uington, D.C., USN1O Techical Report, NUR33-

363

III ir q °• J=F ,I ,:

OR38§, 00obe2', 1979.

31.. Gawre el.ectric, Cangxiy, Opertor Trainirv Services,

tIM roAL urmt~mntas, Tecbnical YRepor , Jaruamy 1981.

32. Miller D.W., B.tC. Hajeic, R. Bhatrkq gandiJ.E. Staseiko, 11 Ista~llation

and Evaluation of a Oczputer-Based Operator Advisor for Muclear Pomr

Plant Op2erators", DOE Rsearch &M~t tp2WIea, Nuclear E4geirgeir

MGM Hechudcal Eineerlza 2gwrm~mit, The Ohio State Un~iversity?,

1988.

33. Xirk D.B and A.E. H4.rray, "Verification of Exr Svtei o ul

Pomr Plant A~plIcmt~ons"',._EI NP 5978, Augwt 1988.

364

Appendix J

What Kind of Information
Processing Is Intelligence?

365/366

87-BC-PARADI

The Ohio State University
Department of Computer and Information Science

Laboratory for Artificial Intelligence Research

Technical Report
July 1987

WHAT KIND OF INFORMATION PROCESSING IS INTELLIGENCE?
A PERSPECTIVE ON Al PARADIGMS AND A PROPOSAL

B. Chandrasekaran
Laboratory for Artificial Intelligence Research

Department of Computer and Information Science
The Ohio State University

Columbus, OH 43210

Note: Section 3 is a minipaper on Connectionism, and can be read separately.

This paper is an extended version of talks that I have given at the AAAI
Workshop on Foundations of Artificial Intelligence, Las Cruces, New Mexico, in.
February, 1986, and at the Workshops on Theoretical Issues in Conceptual Infor-
mation Processing, Philadelphia, Pennsylvania, in August, 1986, and Washington
D.C., June 1987. This paper will appear in Source Book on the Foundationa of Al,
Partridge and Wilks, Editors, Cambridge University Press.

367

Table of Contents

1. Al as a Science of Intelligence
L.1. Intelligence as Information Processing on Representations

2. Al Theories from the 40's to the 60's 3
2.1. Pre- and Quasi-Representational Theories

2.2. Early Al Work Based on Symbolic Representation. 5

3. On the Nature of Representations: Connectionism vs The Symbolic Paradigm 5
3.1. The Roots of the Debate 6

3.2. Symbolic and Non-Symbolic Representations 7
3.3. Connectionism and Its Main Features 8

3.4. Is Connectionism Merely An Implementation Th -- ,7? 1)
3.5. Need for Compositionality to
3.6. Information Processing Level Abstractions L.

3.7. Learning to the Rescue?
3.8. The Domains for Connectionism and Symbi 1' .Ap',.raaions 13
:3.9, Transition to the Rest of the Paper 16

4. Current Styles of Theory-Making in Al 16
4.1. Architectural Theories 17
4.2. Theories of Intelligence Based on Abstract L~gica1 Chof:'ct..atir ijf kgents 20
4.3. Logic for Representation 22

4.4. Intelligence Has Other Functions Than Cortect~.ss 23
4.5. Generic Functional Theories of Intelligence 23

4.6. Generic Information Processing Strategies ii, Diagnostic Reasoning 25
4.7. Functional Theories: Heuristic Becomes Epistemic 27

5. A proposal on the Nature of Intelligent Information Processing 1,.

6. Concluding Remarks .:9

368

July 10, 1987

What Kind of Information Processing is Intelligence?
A Perspective on Al Paradigms and A Proposal

B. Chandrasekaran
Laboratory for Artificial Intelligence Research

Departmenc of Computer and Information Science
The Ohio State University

Columbus, Ohio 43210

1. Al as a Science of Intelligence

Theoretical and empirical work in artificial intelligence (Al) has now gone on for close to thirty
years, but few minds have been changed about most of the central philosophical issues surrounding
mind. People who asserted in the early days of At that machines cannot think still assert that
machines cannot think. People who believed that machines cannot be conscious or feel pain still
believe that machines cannot be conscious or feel pain. Even with respect to the idea that com-
putation over discrete symbol systems, the so-called "symbolic paradigm" (Smolensky, 1988), is a

pretty good basis for capturing intelligence -- by far the dominant paradigm in Al and the reason
Al is closely associated with computer science -- there are recurring doubts. In addition to the
people out there who have always felt we need holograms or chemistry for a proper account of in-
telligence, we now- have a connectionist school that rejects the symbolic paradigm for intelligence.
In spite of all this, work in AI has steadily attracted its share of philosophers and psychologists --
not to speak of people who see the commercial possibilities of mechanized intelligence -- who feel
that Al is exciting and important both in its overall view of intelligence as well as in some of its
concrete achievements.

Minds and !ntellhgevtaes. Let us make a useful distinction which might eliminate at leas.,~ some of
the arguments about AL: the distinction between "intelligence" and "mind." Many discussions on
the philosophical implications of Al-- e.g., the numerous articles of the 50's and 60's on minds and

machines-- equated the question, "Can machines be intelligent?" with "Are minds machines?".
There is a useful alternative to this equation of mind and intelligence, viz., that intelligence is a
tool of the mind. In fact there is a tradition in Hindu and Buddhist philosophies which embodies

precisely such a distinction: it views intelligence as an internal sense organ much as sight is an ex-
ternal sense organ. As a sense organ, it interprets the world and makes the information available to
the "watcher." My aim in making this distinction here is not to stake an ultimate position about

the irreducibility of mind to mechanism, but merely to remove from discussion some elements about
which Al as a technical discipline has nothing to say at this time. Even the most rabid mechanist

within Al will need to admit that while Al may have impressively useful things to say about cog-

nition and perception, it simply has nothing technical -- at this point -- to say about conscious-
ness, feelings, will, etc. Thus from a technical viewpoint, I want to take intelligence, not mind, as
the current subject matter of Al. If we have succeeded in taking vitalism out of our limbs and
cells, we hope similarly to take mysticism at least out of intelligence.

369

Paradigmatic confusion in .4A. In spite of what I regard as significant achievements of Al in
beginning to provide a computational language to talk about the nature of intelligence, the not so
well-kept secret is that Al is internally in a paradigmatic mess. There is really no broad agree-
ment on the essential nature or formal basis of intelligence and the proper theoretical framework for
it.

1.1. !ntelligence as [nformation Proeessing on Representations

However, let us first seek some unities. There is something that is shared almost untverially
among workers in Al: "Significant (all?) aspect. of cogtition and perception are best
understood/modeled as information processing activities on representations." The dominant tradition
within Al haz been the symbolic paradigm t . On the other hand, modern connectionists (and tlie
earlier perceptron theorists) offer largely analog processes implemented by weights of connections in a
network. Stronger versions of the symbolic paradigm have been proposed by Newell as the physical
symbol system hypothesis (Newell, 1980) and elaborated by Pylyshyn(1984) in his thesis that com-
putation is not simply a metaphorical language to talk about cognition, but that cognition is
literally computation over symbol ,ystems. It is important to emphasize that this thesis does not
imply a belief in the practical sufficiency of current von Neuman computers for the task, or a
restriction to serial computation. Often disagreements with the symbolic paradigm turn out to be
arguments for paralell computers of some type rather than arguments against computations on dis-
crete symbolic representations.

The above description of intelligence as information processing do,s not, however, characterize the
class of intelligent processes well enough within the class of all information processing transfor-
mations. Is there something that can be recognized as the essential nature of intelligence chat can
be used to characterize all its manifestations: human, alpha-centaurian and artificial? It is possible
that intelligence is merely a somewhat random collection of information processing transformations
acquired over eons of evolution, but in that case there can hardly be an interesti.rg science of it. It
is also possible that there need not be anything that particularly restricts attempts to make intel-

ligent machines, i.e., while there may well be characterizations of human intellectual processes, they
need not be taken to apply to other forms of intelligence. While in some sense this seems right --
human intellectual ýrocesses do not bound the possibilities for intelligence -- nevertheless I believe
that there is an internal conceptual coherence to the class of if,¢rmation processing activities
characterizing intelligence. The oft-stated dichotomy between the simulation of human cognition
versus making machines smart is a temporarily useful distinction, but its implication that we are
talking about two very different phenomena is, I believe, incorrect. In any case, a task of Al as a
science is to explain human intelligence. The underlying unity that we are seeking can be further
characterized by asking, "What is it that unites Einstein, the man on the street in a western cul-
ture, and a tribesman in a primitive culture, as information processing agents?"

In this paper, my aim is to give a broad brush treatment of the attempts to understand the na-
ture of intelligerce. By their very nature, such broad brush accounts tend to treat history a bit too

nm.atly. Another consequence of this is that an approach might be treated as belonging to a certain
class, while the authors of the approach in question might not share the implications of the clas-

sification. But a treatment in such broad terms is nevertheless necessary to make sense of a field
such as AI which is in some degree of conceptual confusion about its foundations.

LI lug 11i04;1,p/ with trlu toe~r t. ,eas'riho the .ouiuajiwtuett to ,outputation over discrete. siy bolic systems. since I

think that all re.preseotatlons ,te syahoIllc. otberwise they wouldnt he representations. There is remiy no satisfactory.

•genertslly ;ktrppd hrief term for this. F',or ;•wd Pylyihyn 1tOSS1 ,se the tertu "'elsica•-" ugodels. Denuett (L986) ,tses
the. '-r:z. "Highb •"hirch (-w Pue,, p tiunfsirs ' ,hud %,, ..n. C will stick with the tetrta "syastw lc" paradisiu.'" "syti'..lir

Pptn~wheo. -. aug4 *.syinbuili rosiumpiou#44iomus- to, refer rt. *'outputatioU over clizscrete sywbol sysetem.

370

My aim is not to give a quick tutorial on the history of Al, or even the various technical ideas in
Al. I am only concerned with what A[has had to say about the question, "What kind of infor-
mation processing is intelligence?" Also, this paper is really written for the Al researcher who al-
ready knows the various theories. What I plan to do is offer a view of how the field really works
as a discipline, and how some disagreements can be understood only by tracing them to the root of
the problem: disagreements about the nature of the science.

2. AI Theories from the 40's to the 60's

2.1. Pre- and Quasi-Representational Theories

Let us now trace the various streams in Al that attempted to come to grips with the nature of
intelligence. The period under survey can be characterixed as a transition from formalisms with an
essentially non-representational character through ideas which oscillated between brain-level vs
mind--level representations finally to a clear dominance of discrete symbolic representations within Al
and emphasis on higher cognitive phenomena.

The earliest of the modern attempts in this direction was the cybernetici stream, associated with
the work of Wiener (1048) who laid some of the foundations of modern feedback control2 . The
importance of cybernetics was that it suggested that teleoloqy could be consistent ,.uch mechansm.
The hallmark of intelligence was said to be adaptation, and since cybernetics seemed to provide an
answer to how this adaptation could be accounted for with feedback of information, and also ac-
count for teleology (e.g., "The purpose of the governor is to keep the steam engine speed constant"),
it was a great source of early excitement for people attempting to model biological information
processing. However, Cybernetics never really became the language of Al, because it did not have
the richness of ontology to talk about cognition and perception: while it had the notion of infor--
mation processing in some sense, i.e., it had goals and mechanisms to achieve them, it lacked the
notion of computation, not to mention representations.

Modeling the brain as automata (in the sense of automata theory) was another attempt to provide
a mathematical foundation for intelligence. For example, the finite automata model of nervenets
that McCulloch and Pitts (1943) proposed was among the first concrete postulations about the brain
as a computational mechanism. Automata models were computational, i.e.. they had states and
state transition functions, and the general theory dealt with what kinds of automata can do what
kinds of things. While this was a source of great excitement -- one should try to imagine being
present at the time when the computer, information theory and the automata theories were all being
born at about the same time, and the sense of exhilaration that must have resulted from the
thought that a formal language in which to talk about minds and brains was within reach! -- in
retrospect, automata theory didn't have enough of the right kind of primitive objects for talking
about the phenomena of cognition and perception. What AI needed was not theories about com-
putation but theories which were descriptions of particular computations, i.e., really programs that,
embody theories of cognition. Naturally enough, automata theory evolved into the formal foun-
dation for some aspects of computer science, but its role in Al per se tapered off.

I

Another strain, which was much more explicit in its commitment to seeking intelligence by

!FY',rtueti,' as a movement haui hroailr e'mverns than the issueo •urroundihg feelh•'it ,',,¢trol. s o bpplied by
W wewllr t,v lon, lter.mmling~l m., tl'.Itlj tl llill't i n~l sn "liulal|t.l atld ulatc•hirs. 111.•ortuationl .u1111 Anolall'|ta; f~t@he".VIt ;%JItl

ai-tr:mi i .ti .6 miiF,.imirst w-rp illl r..t4rt ,tf I', ,h*llptt. ujiioa of hrb usginus- ,..t1,iu hiooKnic:ib phuomezue ,u ulter rise
rlic"r ,I fokrtotslatii .h . dtlt t itI s l ia h rtly.

371

modeling its seat, the brain, looked at neurons and neural neto rks as ihe unit, 01 information
processing out of which thought and intelligence can be explained and produced. Neural net
simulation and the work on Perceptrons (Rosenblatt, 19§2) are two major examples of this class of
work. Its lineage can be traced to Hebb's work (Hqbb,)-9) on cell assemblies which had a strong
effect on psychological theorizing. Hebb proposed adyoanmic model of how neural structures could
,.iustain thought. how simple Learning mechanisms at 'tht. heural level could be the agents of higher
level learning at the level of thought. In retrospect, th,rt ,'e really two rather dis:inct k'ds of
aims that this line of work pursued. In one, an attýmt;t i•s made to account for the informiation
processing of neurons and collections of them. To the exte'ntr that it is generally granted that neural
structures form the implementation medium of human int(luý1;ence and thought, this seems like aI
eminently important line of investigation. [i fact, over the years, concrete identifications have been
made of particular functions computed by particular neural structeres in the braia, and these data
may eventually form the empirical basis of any theory of how brains and minds •.,,n be bridged
analytically.

In the other line of work in neural models - prefiguring the claims of latter day connectionism
-- the attempt is to explain intelligence directly in terms of neural computations. Since in Al ex-
planation of intelligence takes the form of constructing artifacts which are intelligent, this is a tall
order -- the burden of producing programs which .simulate neural-like mechanisms on one hand.
and at the same rime ,do what intelligent agents do: solve problems, perceive, explain the world.
speak in a naturitl language, etc. is a heavy one. There is a problem with the level of description
here -- the terms o)f neural computation seem far removed from the complex content of thought
-- and bridging it without hypothesizing levels of abstraction between neuronal information
processing and highly symbolic forms of thought is difficult. In ocher words, even if it is true that
the brain is made up completely of neural structures of certain types whose behavior is fully under-
stood, and if one is given a bucketful of such neural strcutures one would still be not very close to
constructing a natural language understanding program without theories of knowledge and syntax
and semantics. The general temptation in this area has been to sidestep the difficulties by assuming
that appropriate learning mechanisms at the neural level can result in sufficiently complex high level
intelligence, much as it presumably occurred in evolution, so that the designer of the artifact need,
not have theories of cognition or perception at levels higher than the neural level. But the dif-
ficulty of getting the necessary learning to take place in less than evolutionary time has generally
resulted in the neural network level not being a. serious contender for Al theory making and system
construction until a new generation of connectionist models began to admit representations of high
level abstractions directly. Because it raises not only the level of abstraction issues but also issues
about the nature of representations, I propose to discuss connectionism separately (Section 3).

A large body of work, mainly statistical in character, developed under the rubric of pattern recog-
nition (see a. text such aa (Duda, 1973)). It identified the problem of recognition with classification
and developed a number of statistical algorithms for classification. While it had a number of
representational elements (the object in question was represented as a vector in a multidimentional
space) and shared some of the concerns with the perceptron work (linear or nonlinear separability of
patterns in N-dimensional spaces), it developed into a mathematical discipline of its own without
making a significant impact on the overall concerns of Al. In (Chandrasekaran, .986a), I discuss
how more flexible representations are increasingly needed for even the classification problem as the
complexity of the problem increases.

A number of reasons can be cited for the failure of all this class of work, via., perceptrons, neural
nets, and statistical classification to hold center stage in Al. The loss of interest in perceptrons is
often attributed to the demonstration by Minsky and Papert (1969) of their inadequacies. I believe,
however, that their demonstration was in fact limited to single layer perceptrons, and was not the
real reason for their disappearance from the scene. The real reason, I believe, is that powerful

372

representational and representation manipulation tools were missing. The alternative of discrete
symboLic representations quickly filled this need, and provided an experimental medium of great
flexibililty.

2.2. Early Ar Work Based on Symbolic Representations

The final transition to discrete symbolic representations was rather quick. The mathematics of
computabilty also made some investigations along this line attractive and productive. The end of
the period saw not only a decisive shift towards representational approaches, but the particular kind
of representationalism that became the common currency was the symbolic paradigm.

Early work in this computationalist spirit took on two major forms:

1. Show mathematically that certain functions thought to be characteristic of intelligence
were computable, (e.g., induction machines of Solomonoff (1957), Gold's work on learning
of grammars (Gold, 1067)). From the viewpoint of .onstructhng artifacts that would
perform these functions these results would in fac" have been depressing if notions of
complexe.ty of c:omputatzon, which were later to be developed in computer science with
great elegance and precision. had been available at that time. The algorithms proposed
were typically computationally intractable. However. in reality, this family of results was
important to A[in making the idea of machine intelligence theoretically more plausible
by showing that the mental functions as defined by reasonable appeal to intuition were in
fact computable -- a certain amount mysticism that would otherwise surround terms
such as "induction" and "learning" was thus eliminated 3 .

2. Demonstrate the possibility of AI by building computer programs that solve problems re-
quiring intelligence. Game playing programs, the Analogy program of Evans, the scene
analysis program of Guzman and the Logic Theorist and the heuristic compiler of)ewell
and Simon, etc., etc., showed that the underlyin.g features of intelligence of which they
were meant to be demonstrations were in fact capable of artifactual embodiment. Of
course the intent of these programs was not merely that -- each of which was also an
exploration of a general theory of some sort, problem solving, scene analysis, analogi,-al
reasoning, etc.-- but not all of them led to more general theories about fundamental
issues in AL. But, whatever their original intent, all these early |trograms ended up
playing the roles of "realities in the field" to counteract the intellectual milieu of that
time'which resisted the notion of intelligence as mechanical.

In general, the net result of most (not all) of this work was socio-psychological: it made the idea of
AL plausible, and blunted tde first round objections, such as , "Ah, but machines cannot learn," and
"Ah, but machin•s cannot create." These early programs were also the means by which
psychologists and philosophers became aware of the new Lid on their block. The attention that AM
gained at that time has continued to this day.

3. On the Nature of Representations: Connectionism vs The Symbolic
Paradigm

Let me restate some of the terminology here. I hav, called the hypothesis that intelligence can be

it is titl ,,r,,u- iet ,•'li,•sn whiptlti.r ,,,or ,,mulit~rstmidllw ,.(ini Jlictiolt.•q. WKS ill far,'r Ke'ttliurely :44t,muce-1•.• fr~til r'[w vti~w-

373

•B1.

accounted for by algorithmic processes which interpret discrete symbol systems the Jymbohc parndilm
or iyjmbolic approachei. Let us call the alternative to this the non.dymbohc paradigm or approachei.
for lack of a better word. Connectionism is an example of this alternative, though not the only
one.

A source of confusion is that connectionist theorists often use algorithmic language for describing
parts of their systems' behavior, It is my belief (see Section 313) that such an algorithmic
specification is quite irelevant, and does not involve basic representational commitments. I want to
reserve the term "symbolic" approaches to those theories which make representational commitments

at the theoretical level for discrete symbol systems.

Since connectionism challenges some of the basic assumptions under which much Al work has gone
on for the past several decades, it is important to spend some time examining the nature of
representations, and tie differences between the symbolic paradigm and connectionism in this regard.
This section will be in the form of a detour. since the major part of this paper (from Sections 4
onward) will be on the theories of the past two decades in the symbolic paradigm.

3.1. The Roots of the Debate

The connectionism- symbolic computationalism debate in Al today is but the latest version of a
fairly clasic contention between two sets of intuitions each leading to a weltanschauunq gabout how
to study the phenomena of current interest. The debace can be traced at least u far back as Des-
cartes in modern times (and to Plato if one wants to go further back) and the mind-brain dualism
that goes by the name of Cartesianism. [n the Cartesian worldview, the phenomena of mind are

exemplified by language and thought. These phenomena may be implemented by the brain, but are
seen to have a constituent structure in their own terms and can be studied abstractly. Logic and
symbolic representations have often been advanced as the appropriate tools for studying these

phenomena.

Functionalism in philosophy, information processing theories in psychology, and the symbolic
paradigm in Al all 4hare these assumptions. While most of the intuitions that drive this point of
view arise from a study of cognitive phenomena, the thesis is often extended to include perception,

as e.g. in Bruner's thesis (Bruner, 1957) that perception is inference. In its modern versions this
viewpoint appeals to Turing's Hypothesis as providing a justification for limiting attention to sym-
bolic computational models. These models ought to suffice, the argument goes, since even con-
tinuous functions can be computed to arbitrary precision by a Turing machine.

The opposition to this view springs from anti-Ck-tesian intuitions. My reading of the
philosophical impulse behind anti-Cartesianism is that it is a reluctance to assign any kind of on-
tological independence to mind, a reluctance arising from the feeling that mind-talk is but an in-
vitation to all kinds of further mysticisms, such as soul-talk. Thus anti-Cartesians tend to be

irmuerialists with a vengeance, and are skeptical of the separation of the mental from the brain-level
pheniom-ena. Additionally, the brain is seen to be nothing like the symbolic processor needed to
support the symbolic paradigm, instead of what is seen as the sequential and combinational

perspective of the symbolic paradigm, some of the theories in this school embrace parallel, "holistic",
non-symbol-proces.6ing alternatives, while others do not even subscribe to any kind of information
processing or representational language in talking about mentad phenomena. Those who think infor-
rnamiou processing of some type is still needed nevertheless reject processing of labeled symbols, and

look to analog or continuou proceses as the natural medium for modeling the relevant phenomena.
In contrast to Cartesian theories, most of the concrete work in these schools deals with perceptual
(or even motor) phenomena, but the framework is meant to cover complex cognitive phenomena as
well. Eliminative materialsm in philosophy, Gibsonian theories in psychology, connectionism in

"•74

psychology and AL all these can be grouped as more or less sharing this perspective, even though
they differ among each other in a number of issues. For example, the Gibsonian direct perception
theory is anti-representational. Perception, in this view, is not inference nor a product of any kind
of information processing, but is a one-step mapping from stimuli to categories of perception, made
possible by the inherent properties of the perceptual architecture. All the needed distinctions are
already there directly in the architecture, and no processing over representations is needed. To put
it simply, the brain is all there is and it isn't a computer either.

Note that the proponents of the symbolic paradigm can be happy with the proposition that mental
phenomena are implemented by the brain, which may or may not itself have a compticationalist ac-
count. Hfowever, the anti-Cartesian cannot accept this duality. H-Ie is out to show the mind as
epiphenomenal.

I need to caution the reader that each of these positions that I have described above is really a
composite. Few people in either camp subscribe to all the features in my description of them. Most
of them may not even be aware of themselves as participating in such a clasaic debate. In par-
ticular, many connectionists may bristle at my inclusion of them on the side of the debate chat [
did, since their accounts are laced with taik of "connectionist inference" and algorithms for (he
units. The algorithmic accounts in my view are incidental. (I discuss this further in Section 3. L.I
But my account, painted with a broad brush as it is, is helpful to understand the rather diverse
collection of bedfellows that conneccioni~sm has attracted.

Connectionism is a recent and less radical member of this camp. Many connectionists do not have
a commitment to brain-level theory making. It is also explicitly representational, its only argument
being about the medium of representation.

I believe that there is in fact a. great deal of unanalyzed assumptional baggage in each of these
classes of theories. I will try to show that connectionism is a corrective to some of the basic as-
sumptions in the symbolic paradigm, but for moat of the central issues of intelligence, connectionism
is only marginally relevant.

As a preliminary to the discussion, I want to try to pin down, in the next subsection, some es-
sential distinctions ,-etween the symbolic and nonsymbolic approaches to information processing.

3.2. Symbolic and Non-Symbolic Representations

Consider the problem of multiplying two integers. We are all familiar with algorithms to perform
this tak. We also know how the traditional slide rule can be used to do this multiplication. The
multiplicands are represented by their logarithms on a linear scale, which axe then "added" by being
set next to each other, and the result is obtained by reading off the sum's anti-logarithm. While
both the algorithmic and slide rule solutions are representational, in no sense can either of them be
thought of as an "implementation" of the other. They make very differeut commitments about
what is represented. There are also striking differences between them in practical terms. As the
size of the multiplicands increases, the algorithmic solution suffers in the amount of time it takes to
complete the solution, while the slide-rule solution suffers in the amount of precision it can deliver.

Let us call the algorithmic and slide-rule solutions CI and C2. There is yet another solution C3,
which is the simulation of C2 by an algorithm. C3 can simulate C2 to any desired accuracy. But
C3 has radically different properties from C. in terms of the information that it represents. C3 is
closer to C2 representationally. Its symbol manipulation character is at a lower level of abstraction
altogether. Given a blackbox multiplier, ascription of Cl or C2 (among others) as what is really
going on makes for different theories 'about the process. Each theory makes different ontological
commitments. Further, while C2 is "analog" or continuous, the existence of C3 implies that the

375

essential characteristic of C2 is not coutinuity per se, but a radically different sense of representation
aid procesing than C1.

An adequate discussion of what makes a symbol in the sense used in computation over symbol
systeni ,equires a much larger space and time than I have at present (see (Pylyshyn, 1984) for a
thorough and illuminating discussion of this topic), but the following points seem useful. There is a
type-token distinction that seems relevant: symbols are types about which abstract rules of behavior
are known and can be brought into play. This leads to symbols being labels which are
"interpreted" during the process, while there are no such interpretations in the process of slide rule
multiplication (except for input and output). The symbol system can thus represent azbstract forms,

while C2 above performs its addition or multiplication not by instantiating an abstract form, but by
having, in some sense, all the additions &ad multiplications directly in its architecture.

While I keep using the word "process" to describe both C1 and C2, strictly speaking there is no
process in the sense of a temporally evolving behavior in C2. The architecture directly produces the
solution. This is the intuition behind the Gibsonian direct perception in contrast to Yhe Bruner al-
ternative of perception as inference4 : the process of inference implies a temporal sequentiality. Con-
nectionist theories have a temporal evolution, but at each cycle, the information process does not
have a step-by-step character like algorithms do. Thus the alternatives in the non-symbolic
paradigm are generally presented as "holistic."

The main point of this section is that there exists functions for which symbol and non-symbol
system accounts differ fundamentally in terms of representational commitments.

3.3. Connectionissm and Ats .Main Features

While connectionism as an Al theory comes in many different forms, they all seem share to the
idea that the FepreStntatsoR of information is in the form of weig•ta of connections between process-
ing units in a network, and information processing consists of (i) the units transforming their input
into some output, which is then (ii) modulated by the weights of connections as inputs .to other
units. Connectionist theories especially emphasise a form of leaming which is largely in the form of
continuous functions adjusting the weights in the network. In some connectionist theories the above
"pure" form is mixed with symbol manipulation processes. My description is based on the abstrac-
tion of connectionist architectures as described by Smolenasky (1988). Smolensky's description cap-
tures the essential aspects of the connectionist architecture.

A few additional comments on what constitutes the essential aspects of connectionism may be
useful, especially since connectionist theories come in so many forms. My description above is
couched in non-algorithmic terms. In fact many connectionist theorists describe the units in their
systems in terms of algorithms which map their inputs into discrete states. My view is that the
discrete state dewsription of the units' output as well as the algorithmic specification of the units'
behavior is not substantially relevant. Smolensky's statement that differential equations are the ap-
propriate language to use to describe the behavior of connectionist systems lends credence to my
summary of connectionist systems.

While my description is couched in the form of continuous functions, the arguments in the Section

4 Whether perceptiou. if it ii an itfte.tia-i process. aeeisstily hba to be contiiuoua with coquittve processes. i.e..
they all bave wese to one kuowledge base of atn Agent is '4 completely ,Ilfferenst issue (Fodor. L083). [am ment)ion-
Ing it here bechuse tLh perception a inference thesIs does uot necesasrily Meom out wonuilthic process for all the
phetocu'enu 4A iatsilgence.

376

'mM

:3.2 indicate that it is not in the property of continuity per se that the essential aspect of the ar-
chitecture lies, but in the fact that the cotinectionist medium has no internal labels which are inter-
preted and no abstract forms which are instantiated during processing. Thus connectionist models
•tand in the same relationship to tde symbolic models that C2 does to C1 in my discussion in Sec-
fison 3.2.

There are a number of properties of such connectionist networks chat are worthy of note and that
explain why connectionism is viewed as an alternative paradigm to the symbolic theories.

* Parallelism: While theories in the symbolic paradigm are not restricted to serial al-
gorithms, coniectionist models are intrinsically parallel, in most implementations massively
parallel.

* Distribucedness: Representation of information is dstributed over the network in a very
specialized sense. i.e.. the etate vector of the weights in the network is the representation.
The two properties uf parallelism and distribution have attracted adherents who feel that
human memory has a "holistic" character -- much like a hologram -- and con-
sequently have reacted negatively to discrete symbol processing theories, since these com-
pute the needed informnacion front parts and their relations. Dreyfus (1979), e.g., has
argued that human recognition does not proceed by combining evidence about constituent
features of the pattern, bit rather uses a holistic process. Thus Dreyfus looks to con-
nectionism as vindication of his long-standing criticism of Al. Connectionism is said to
perform "direct" recognition, while symbolic Al performs recognition by sequentially
computing intermediate representations.

* Softness of constraints (Smolensky, 1988): Because of the continuous space over which the
weights take values, the behavior of the network, while not necessarily unimodal, tends to
be more or less smooth over the input space.

The above characteristics are especially attractive to those who believe that Al must be based more
on brain-like architectures, even though within the connectionist camp there is a wide divergence
about the degree to which directly modeling the brain is considered appropriate. While some of the
theories explicitly attempt co produce neural-level computational structures, some others (.ee e.g,
(Smolensky, 1988)) propose a "subsymbolic level" intermediate between symbolic and neural level
theories, and yet others offer connectionism as a computational method that operates in the symbolic
level representation itself. The essential idea uniting them all is that the totality of connections
defines the information content, rather than representing information as a symbol structure.

3.4. Is Connectioniam Merely An Implementation Theory?

Two kinds of arguments have been made that connectionism can at best provide possible im-
plementations for algorithmic Al theories. The traditional one, viz., that symbolic computationalism
is adequate, takes a couple of forms. In one, continuous functions are thought to be the alternative,
and the fact that they can be approximated to an arbitrary degree of approximation is used to ar-
gue that one need only consider algorithmic solutions. In the other, connectionist architectures are
thought to be the implementation medium for symbolic theories, much as the computer hardware is
the implementation medium for software. In an Section 3.2, 1 have considered and rejected these
arguments. I showed that in principle the symbolic and non-symbolic solutions may be alternative
theories in the sense that they may make different representational commiamenta.

The other argument is based on a consideration of the properties of high level thought, in par-
ticular language and problem solving behavior. Connectionism by itself does not have the con-
structs, the argument runs, for capturing these properties, so at best it can only be a way to im-
piement the higher level functions. I will discuss this and related points in Section 3.8.

377

mn.. mn,, ••. .

Hav-ng granted that connectionism (actually, non-symbolic theories in general) can make a
theoretical difference, I now want to argue that the difference connectionism makes is relativeLy small
to the practice of most of Al. This is the task of the rest of Section 3.

8.5. Need for Compositionality

Proponents of connectionism sometimes claim that solutions in the symbolic paradigm are com-
posed from constituents, while connectionist solutions are holistic, i.e., they cannot be explained as
compo.-tions of parts. Composition, in this argument, is taken to be intrinsically an algorithmic
process.

Certainly, for some simple problems there exist connectionist solutions with this holistic character.
For example, there are connectionist solutions to character recognition which directly map from
pixels to characters and which cannot be explained as composing evidence about the features such as
closed curves, lines and their relations. Character recognition by template matching, though not a
connectionist solution, is another example whose information processing cannot be explained as fea-
ture composition. But as problems get more complex, the advantages of modularization and com-
position are as important for connectionist approaches as they are for house-bnilding or algorithmic
Al. A key point is that composition may be done connectionistically, i.e., it does not always re-
quire algorithmic methods.

To see this, let us consider word recognition, a problem area which has attracted significant con-
nectionist attention (McClelland, Rumelhart, and Hinton, 1986). Let us take the word "QUEEN"0

A "featureless" connectionist solution similar to the one for individual characters can be imagined,
but a more natural one would be one which in some sense composes the evidence about individual
characters into a recognition of the word. In fact, the connectionist solution in (McClelland, et al,
1986) has a natural interpretation in these terms. The fact that the word recognition is done by
composition does not mean either that each of the characters is explicitly recognized as part of the
procedure, or that the evidence is added together in a step by step, temporal sequence.

Why is such a compositional solution more natural? Reusability of parts, reduction in learning
complexity as well as greater robustness due to intermediate evidence are the major computational
advantages of modularization. If the reader doesn't see the power of modularization for word
recognition, he can consider sentence recognition and see that if one were to go directly from pixels
to sentences without in some sense going through words the number of recognizers and their com-
plexity would have to be very large even for sentences of bounded length.

To use another example, if one has a system that already recognizes "Monkey," "banana," and
"Eat(a, b)", then recognizing "Monkey eats banana," without composing the constituent recognizing
capabilities above would be very wasteful of resources and would require excessive learning times as
well. Composition is a powerful aid against complexity whether the underlying system is connec-
tionist or algorithmic. Of course, connectionism provides one style for composition and algorithmic
methods another, each with its own "signature" in terms of the details of performance.

These examples also raise questions about the claims of distributedness of connectionist represen-
tations. For complex tasks, information is in fact localized into portions of the network. Again, in
McClelland, et al's network for word recognition physically local subnets can be identified, each cor-
responding to one of the characters. Thus the the hopes of some proponents for almost holographic
distributednesa of representation are bound to be unrealistic.

IMy ,'1-.,riptioa ,,f we'.I !e,,rsltition is z,,.li.i ;dr.. r , tho ,.temple iiveu in J pctl.inu&'d. -t ;41 'ited Ahoye. The
w.,r-1 14Mfli phy .h 'uais* is378

378

3.6. !n/ormation Processing Level . bstractions

Marr (1982) originated the method of information pr,•cessing analysis as a way of separating the
essential elements of a theory from implementation level commitments. He proposed that the fol-
lowing methodology be adopted for this purpose. First, identify an information processing function
with a clear specification about what kind of information is available for the function as input and
what kind of information needs to be made available as output by the function. Then specify a
particular information processing (IP) theory for achieving this function by stating what kinds of
information the theory proposes need to be represented at various stages in the processing. Actual
algorithms can then be proposed to carry out the [P theory. These algorithms will make additional
representational comnmitments. For example, he specified that one of the functions of vision is to
take as input image intensities in a retinal image, and produce as output a 3-dimensional shape
description of the objects in the scene. His theory of how this function is achieved in the visual
system is that three distinct kinds of information need to be generated: from the image intensities, a
primal sketch of significant intensity changes -- a kind of edge description 4f the tcene -- is
generated, then a description of surfaces of the objects and their orientation, what he called a 2 1 2
-dimensional sketch is produced from the primal sketch, and finally a 3-d shape description is
generated.

Even though Mart talked the language of algorithms as the way to realize the [P theory, there is
in principle no reason why portions of the implementation cannot be done connectionistically.

Thus IP level abstractions constitute the top level content of much AM theory making. In the ex-
ample about recognition of the word "QUEEN" in Section 3.5, the [P level abstractions in terms of
which the theory of word recognition was couched were the evidences about the presence of in-
dividual characters. The difference between schemes in the symbolic and connectionist paradigms is
that these evidences are labeled symbols in the former, which permit abstract rules of compositions
to be invoked and instantiated, while in the latter they are represented more directly and affect the

processing without undergoing any interpretive process. Interpretation of a piece of a network as
evidence about a character is a design and explanatory stance, and is not part of the actual infor-
mation processing.

As connectionist structures evolve (or are built) to handle increasingly complex phenomena, they

will end up having to incorporate their own versions of modularity and composition. Already we
saw this in the only moderately complex word recognition example. When and if we finally have
connectionist implementations solving a variety of high level cognitive problems (say natural lan-
guage understanding or planning or diagnosis), the design of such systems will have an enormous
amount in common with the corresponding symbolic theories. This commonness will be at the level
of information processing abstractions that both classes of theories would need to embody. In fact,
the content contributions of many of the nominally symbolic theories in Al are really at the level of
the [P abstractions to which they make a commitment, and not to the fact that they were imple-
mented in a symbolic structure. Symbols have often merely stood in for abstractions that need to
be captured one way or another, and have often been used aa such. The hard work of theory
making in AI will always remain at the level of proposing the right [P level of abstractions, since
they provide the content of the representations. The decisions about which of the transformations
are best done by means of connectionist networks, and which using symbolic algorithms, can
properly follow once the [P level specification of the theory has been given.

Thus, connectionist (and symbolic) approaches are both realization* of a more abstract level of

379

description, viz., the information procesiing (IP) level,0

Rumelhart and McClelland (1986) comment that symbolic theories that are common in Al are
really explanatory approximations of a theory which is connectionist at a deeper level. To take the
"QUEEN" example again, saying that the word is recognized by combining evidences about in-
dividual characters in a certain way may appear to be giving an algorithmic account, but this
description is really neutral regarding whether the combination is to be done connectionistically or
algorithmically. It is not that connectionist structures are the reality and symbolic accounts provide
an explanation, it is that it is the IP abstractions contained in A[theories that contain a large
"portion of the explanatory power.

"I argued, in Section 3.2. that given a function, the approaches in the symbolic and non-symbolic
paradigms may make rather different representational commitments; in compositional terms, they
may be composing rather different subfunctions. In this section I am arguing, seemingly paradoxi-
cally, that for complex functions the two theories converge in their representational commitments. A
way to clarify this is to think of two stages in the decomposition: an architecture-independent and
an architecture-dependent one. The former is an IP theory that will be realized by particular ar-
chitectures for which additional decompositions will need to be made. Simple functions such a.E
multiplication are so close to the architecture level that we only saw the differences between the
representational commitments of the algorithmic and slide rule solutions. The word recognition
problem is sufficiently removed from the architectural level that we saw macrosimilarities between
computationalist and connectionist solutions. The final performance will of course have micro-
features that are characteristic of the architecture (such as the "softness of constraints" for coneec-
tionist architectures).

Where the aichitecture-independent theory stops and the architecture-dependent starts does not

have a clear line of demarcation. It is an empirical issue, partly related to the primitive functions
that can be computed in a particular architecture. The farther away a problem is from the
architectures' primitive functions, the more architecture-independent decomposition needs to be done
at design tinte. I believe that certain kinds of retrieval and matching operations, and parameter
learning 'by searching in local regions of space are especially appropriate primitive operations for
connectionist archit.ctures.

3.7. Learning to the Rescue?

What if connectionismi can provide learning mechanisms such that one starts without any such

abstractions represented, and the system learns to perform the task in a reasonable amount of time?
In that case, connectionism cnn sidestep pretty much all the representational problems and dismiss
them as the bane of the symbolic paradigm. The fundamental problem of complex learning is the
credit aostgament problem, i.e, the problem of deciding what part of the system is responsible for

either the correct or the incorrect performance in a case, so that the learner knows how to change
the structure of the system. Abstractly, the range of variation of the structure of a system can be
represented as a multi-dimensional space of parameters, and the process of learning as a search
process in that space for a region that corresponds to the right structure of the systems. The more
complex the system, the vaster the space in which to do the search. Thus learning the correct set
of parameters by search methods which do not have a powerful notion of credit assignment would
work in small search spaces, but would be computationally prohibitive for realistic problems. Does
connectionism have a solution to this problem?

- I ust al a itide rho- t,) O..ui Alll-usiasa .u-,ml Aih,,I :.,..i (;-1 who, twto, thast ;tit this I' -.1 .. h ti.,btrc,u rise ijg tin , j(U h..-

Stwr-U ti&s two -qlj#Vj44llV* t.ý -',ftII•Plex prvw)| s h4~t',Us, o a cllci3e r,8 their

-- : 3 8 o

[f one looks at particular connectionist schemes that have been proposed for some tasks such as
learning tense endings (Rumelhart and McClelland, 1986b), a significant part of the abstractions
needed are built into the architecture in the choice of inputs, feedback directions, allocation of sub.-
networks, and the semantics that underlie the choice of layers for the connectionist schemes. That
is, the inputs and the initial configuration incorporate a sufficiently large part of the abstractions
needed that what is left to be discovered by the learning algorithms, while nontrivial, is propor-
tionately small. The initial configuration decomposes the search space for learning in such a way
that the search problem is much smaller in size. In fact the space is. sufficiently small that statis-
tical associations can do the trick.

The recognition scheme for "QUEEN" again provides a good example for illustrating this point.
In the McClelland, et al, scheme that I cited earlier essentially the decisions about which subnet is
going to be largely responsible for "Q", which for "U." etc, as well as how the feedback is going to
be directed are all made by the experimenter before learning starts. The underlying IP theory is
that evidence about individual characters is going to be formed directly from the pixel level, but
recognition of "QU" will be done by combining information about the presence of "Q" and "U". as
well as their joint likelihood. The degree to which the evidence about them will be combined is
determined by the learning algorithm and the examples. In setting tip the initial configuration, the
designer is actually programming the architecture to reflect the above [P theory of recognizing the
word. An alternate theory for word recogaiticn, say one that is more holistic than the above theory
(i.e., one that lerns the entire word direvtly from the pixels) will have a different initial configura-
tion. (Of course, because of lack oi guidance from the architecture about localizing search during
learning, such a network will take a much longer time to learn the word. But that is the point:
the designer recognized this and set up the configuration so that learning can occur in a reasonable
time.) Thus while the connectionist scheme for word recognition still makes the useful performance
point about connectionist architectures for problems that have been assumed to require a symbolic
implementation, a significant part of the leverage still comes from the IP abstractions that the-
designer started out with, or have been made possible by an earlier learning phase working with
highly structured configurations.

Additionally, the system that results after learning h,s a natural interpretation in terms of the
abstractions that are needed to solve the problem; the learning process can be interpreted as having
successfully searched the space for those additional abstractions that are needed to solve the
problem. Thus, connectionism is one way to map from one set of abstractions to a more structured
set of abstractions. Most of the representational issues remain, whether or not one adopts connec-
tionism for such mappings.

Of course in human learning, while some of the abstractions needed are "programmed" in at
various times through explicit instruction, a large amount of learning takes place without any
"designer" intervention in setting up the learning structure as I described in the "QUEEN" example.
But there is no reason to believe that humans start with a structure- and abstraction-free initial
configuration. In fact, in order to account for the power of human learning, the initial configura-
tions that a child starts out with will need to contain complex and intricate representations suf-
ficient to support the learning process in a computationally efficient way.

3.8. The Domains for Connectionism and Symbolic Computationrs

For this discuusion, a distinction between "micro" and "macro" phenomena of intelligence is use-
ful. Rumelhart, McClelland, et al (1986) use the former term in the subtitle of their book to in-
dicate that the connectionist theories that they are concerned with deal with the fine details of
processes. A duration of 50-100 milliseconds has often been suggested as the size of the temporal
"grain" for processes at the micro level. Macro phenomena take place over seconds if not minutes

381

in the case of a human. These evolve over time in such a way that there is a clear temporal or-
dering of some of its major behavioral states. For example, take the problem solving behavior
represented by the GPS problem solver. The agent is seen to have a goal at a certain instant, to
set up a subgoal at another instant, and so on. Within this problem solving behavior, the selection
of an appropriate operator, which is typically modeled in GPS implementations as a retrieval algo-
rithm from a Table of Connection, could be a "micro" behavior. Many of the phenomena of Ian--
guage and reasoning have a large macro component. Thus this domain includes, but is not
restricted to, phenomena whose markings are left in consciousness as a. temporal evolution of beliefs.
hypotheses, goals, subgoals, etc.

Neither traditional symbolic computationalism nor radical connectionism has much use for this
distinction since all the phenomena of intelligence, micro and macro, are meant to come under their
particular purview. I would like to present the case for a divisior, of responsibility between connec-
tionism and symbolic computationalism in accounting for the phenomena of interest. Simply put.
the architectures in the connectionist mold offer some elementary functions which are rather different
from those assumed in the traditional symbolic paradigm. By the same token, the body of macro
phenomena seems to me to have a large symbolic and algorithmic content. A proper integration of
these two modes of information processing can be a source of powerful explanations of the total
range of the phenomena of intelligence.

I am assuming it as a given that much of high level thought has a symbolic content to it (See
(Pylyshyn, 1984) for arguments that make this conclusion inescapable). How much of language and
other aspects of thought require this can be matter of debate, but certainly logical reasoning should
provide at least one example of such behavior. I am aware that a number.of philosophical hurdles
stand in the way of asserting the symbolic content of conscious thought. if one is a radical be-
haviorist or a non-representationalist, I can see that no advantage accrues from granting that the
corpus of thought. including language and reasoning, has a symbolic structure. Saying that all that
passes between people when they converse is airpresaure exchanges on the eardrum has its charms,
but I will forego them in this discussion.

Asserting the symbolic content of macro phenomena is not the same as asserting that the internal
language and representation of the processor that generates them has to be in the same formal sys-
tem as that of its external behavior. The traditional symbolic paradigm has made this assumption
as a working hypothesis, which connectionism challenges. Even if this challenge is granted there is
still the problem of figuring out how to get the macro behavior out of the connectionist structure.

Fodor and Pylyshyn (1987) have argued that much of thought has the properties of productivity
and systemaicsty. Productivity refers to a potentially unbounded recusiive combination of thought
that is possible in human intelligence. Systematicity refers to the capability of combining thoughts
in ways that require abstract representation of underlying forms. Connectionism, according to Fodor
and Pylyshyn, may provide some of the architectural primitives for performing parts of what is
needed to achieve these characteristics, but cannot be an adequate account in its own terms. We
need computations over symbol systems, their capacity for abstract forms and algorithram, to realize
these properties.

In order to account for the highly symbolic content of conscious thought and to place connec-
tionism in a proper relation to it, Smolensky (1988) proposes that connectionism operates a lower
level than the symbolic, a level he calls ssbsymbolic. He also posits the existence of a conictouis
processor and an intuitive processor. The connectionist proposals are meant to apply directly to the
latter. The conscious processor may have algorithmic properties, according to Smolensky, but still a
very large part of the information processing activities that have been traditionally attributed to al-
gorithmic architectures really belong in the intuitive processor.

382

A complete connectionist acccunt in my view needs to account for how a sub- or nonsy'mbolic
structure integrates s.moothly with a higher level process that is heavily symbolic. There is the ad-
ditional problem that an integrated theory has to face. Thought could be epiphenomenal. However.
we know that the phenomena of consciousness have a causal interaction with the behavior of the
intuitive processor. What we consciously learn and discuss and think affects our unconscious be-
havior slowly but surely, and vice versa. What is conscious and willful today becomes unconsciolis
tomorrow. All this raises a more complex constraint for connectionism: it now needs to provide
some sort of continuity of representation and process so that this interaction can take place
smoothly.

Connectionist and symbolic computationalist phenomena, in my view, have different but overlap-
ping domains. The basic functions that the connectionist architecture delivers are of a very different
kind than have been assumed so far in Al, and thus computationalist theories need to take this into
account in their formulations. A number of investigators in Al who do theories at this higher level
correctly feel the attraction of connectionist style theories for some parts of their theory making. [
have acknowledged the power of the connectionist claims that for some information processing
phenomena, thern exist nonalgorithmic schemes which make fewer (and different) commitments in
terms of representational content. Where the impact of connectionism is being felt is in identifying
some of the component processes of overall algorithmic theories as places where a connectionist ac-
count seems to accord better with intuitions. As I said earlier, retrieval and matching operations
and low ievel parameter learning are places where I would think the higher level theories may
choose connectionist alternatives if the fine points of performance are of theoretical importance. But,
even here one should be careful about putting too much faith in connectionist mechanisms per se.
As I have said several times in this section, the power for even these operations is going to come
from appropriate encodings that get represented connectionistically. Thus, while memory retrieval
may have interesting connectionist components to it, the basic problem will still remain the prin-
ciples by which episodes are indexed and stored, except that now one might be open to these en-
codings being represented connectionisticaily. For example, I am in complete sympathy with the
suggestion by Rumelhart, Smolensky, McClelland and Hinton (1986) that a schema or a frame is
not explicitly represented as such, but is constructed as needed from more general connectionist
representations. This does not mean to me tha4 schema theory is only a macro approximation.
Schema, in the sense of being [P abstractions needed for certain macro phenomena, is a legitimate
conceptual construct, for encoding which connectionist architectures offer a particularly interesting
way.

With regard to general Al and connectionism's impact on it, I would like to say, as
H-1. L. Mencken is alleged to have said in a different context, "There is something to what you say,
but not much." Much of Al (except where microphenomena dominate and computationalist At is
simply too hard edged in its performance) will and should remain largely unaffected by connec-
tionism. I have given two reasons for this. One is that most of the work is in coming up with
the information processing theory of a phenomenon in the first place. The more complex the task is
the more common are the representational issues between connectionism and the symbolic paradigm.
The second reason is that none of the connectionist arguments or empirical results show that the
symbolic, algorithmic character of thought is either a mistaken hypothesis, purely epiphenomenal or
simply irrelevant.

My arguments for and against connectionist notions in this section are not really specific to con-
nectionist architectures that have been proposed. The arguments apply to alternatives in the non-
symbolic paradigm. e.g., all sorts of analog computers. Connectionist style architectures, especially
thos3e that deny modeling the brain level, often seem to have an air of arbitrariness about them,
since it is then not clear what the constraints are: why that rather than something else? But, in
fairness, these architectures ought to be viewed as exploratory, and in that sense they are contribut-
ing to our understanding of the capabilities and limitations of alternatives to the symbolic paiadigm.

383

It *eems to me that we need to find a modui vivendi between three significant insights about
mental architectures:

"* (i) A large part of the relevant content theory in Al has to do with the what of rr.ýniJal
representations. I have called them IP abstractions.

"* (ii) Whatever one's position on the nature of representations below conscious proces.es, it
is clear that processes at or close tc that level are intimately connected to language and
knowledge, and thus have a large discrete symbolic content.

" (iii) The connectionist ideas on representation suggest how nonsymbolic representations
and processes may provide the medium in which thought resides.

3.9. Transition to the Rest of the Paper

Connectionism has been important to my discussion not because its technical accomplishmn-at2 o'ave
thrown down a chalenge to symbolic approaches to A[, but because it replays :•a- ;.de cf a !,)ng-
running debate about the nature of the relationship between mind and br~ik. ii. spite Oha l~opes of
some of its supporters in philosophy, connectionism will not banish mind-talk, which is ý..entially
representa-tonal and symbolic.

I now want Lo pick up the main thread of this paper. I want to review Al theories of the last
two decades and see if a view of what makes intelligence a coherent computational phenomenon can
be constructed. In view of the arguments in this section, my discussion will deal with the macro
phenomena of ince.ligence.

In much of what follows, I will be talking within the symbolic puradigm for the reasons that I
have described in this section,

4. Current Styles of Theory-Making in AI

From the viewpoint of the paradigms of intelligence that characterize the current work in Al. at
the end of the first decade the computationalist paradigm emerged as the preferred one for much
theory making. I see the research in this p-?xadigm in the next two decades until the contemporary
period as belonging to one of three broad groups of stances towards what a computational account
o intelligence should look like. This characterization I am about to give is a personal one, and not
(yet) 9art of the field's own self-consciousvess; that is, it is really in the form of c. thesis of what
has be-n going on in the field from the perspective of a science of intelligence, and where people
have been looking for answers, and what sorts of (often uncons-ious) assumption3 about the nature
of intlligence are implicit in these theories. Another caveat is that these theories are not mutually
exclusive, (i.e., some important ideas ideas appear in more than one approach, but with a flavor
re'evant to the approach), but constitute different ways to talk about the stuff of intelligence, and
different answers to its nature. They aue:

* [. Architectural theories

* [1. Abstract logical characterization of an agent's knowledge, and inference mechanmr.-s
that operate on this representation

* III. Theories that emphasize yaneric fw'itional processes in intelligence. Each of these
;rocesses generat-is elfficient Inferences for a typ,; of information processing task, cnd gives
importance to organaxational issueJ as a MIreor so&rc of this efficiency.

384

In the next several sections, I consider each class of theories and examine their assumptions, about
the nature of intelligence.

4.1. Architectural Theories

Architectura! theories, of which the Production System theory (Newell, 1973) is the most
prominent, are a result of a search for a level of a machine at which intelliqence qua intelhqence
emerges. In this section I will argue that such theories fail to relate the architecture to intelligence
in such a way that one can see the essential role played by the architecture in the emergence of in-
telligence. Their Turing universality often muddles the issue. They tend to foster a search for
solutions �t the architecture level, when a more problem-specific solution would be more ap-
propriate. These architectural level solutions often have a "syntactic" feel to hem in comparison
with more content-driven solutions at the higher level.

In architectural theories the solution to the problem of intelligence is to provide a computational
architecture which is intrinsically seen as the source of intelligence. Below that level of abstraction
are presumed to lie matters of implementation out of non-intelligent pror..sses, whereas above that
level, i.e., the content of such architectures, are agent-specific particulars of the world, the domain.
etc., not of intrinsic interest to a theoretician of intelligence, because the architerture is supposed to
provide all the necessary elements of intelligence. Ir particular, it is very importan for these kinds
of theories that the architecture being proposed be a tn-tary architecture. By unitary. I mean one
level rather than multiple levels of architecture, each of which contributing some aspect of intel-
ligence.

Let me be concrete, so that it may be clearer what I mean to include in this classification.
T•nically, iatelligence as a whole or a large class of problems within intelligence is treated as solv-

............. :.nti.• •i information processing activity in some very general scheme: production

rulft logic.4 clauses, frames, semantic networks, or whatever. Then a basic clas of inference or in-
formation processing activity on these repreaotat••os is defined: forward or backward chaining in
production systems, truth maintenance (Doyle, 1979) or resolution processes for logical sentences.
various 'kinds of interpreters for frames or semantic networks, arhd so on. Then any particular

problem, say diagn ýis or design, is solved by attempting to p'ogram a solution using the underlying
architecture. For example, diagnosis would be treated as particular example of truth maintenance.
backward chaining, propagation of values in a network, or whatever the processes the underlying ar-
chitectuces directly support. Thus the diagn'istic problem is reduced to programming in a given ar-
chitectuxe. I will frequently use the production system architecture as an example to make our
points regarding architectural theories. The comments are meant to apply to all unitary architecture
theories.

In production systems, intelligence is viewed as a rule processor. What the production systems are
ac.uaflly implemented on -- say Lisp machines in Al or neural structures in natural intelligence --
are themselves unimportant from the viewpoint of intelligence, though they may be relevant from
considerations of engineering issues such as speed. S-milarly, in this perspective, what particular
production systems contain, e.g, rules about liver diseases or about Vax corfigurations, is per se not
a, subject matter of the science of intelligence. The inference mechanisms at the level of the -x-
chitecture -- the various chaining schemes and conflict; resolution -- are however the subject
matter of thin science, since those mechanisms are intrinsically and intimately related to the ar-
chitecture.

You can subatitute your favorite architectural theory of intelligince-- frame systems, Logic -tr-
chitectures, belief network.. etc. -- for the production system example above, and co.me up with a
similar analysis. The point is that the theories propose a unitary architectures as a privileged level

385

to capture intelligence. Whenever anyone says, "The mind is a you know that person is
proposing an architectural solution to AL. Now, among these architectures, some of them may have
miore psychological evidence than others, but the problems associated with seeking the seat of intel-
ligence at one level of the architecture.

It is true that each of these architectures has been used to build impressive systems that perform
somte task requiring intelligence. However, since these architectures ar 'e Turing -universal7, i.e,. any
aLlgorithmi can be implemented as a program for this architecture, it is 0ften hard to know if the
architecture per se is performing important work. ft may merely describe an appropriate implemnen-
tation. The architecture, it priori. does not distinguish tractable solutions from intractable ones. ft
does not identify good vs bad ways of organizing knowledge. Also, because it is a unitary architec-
ture, it necessarily omits as constructs of the architecture important, higher level information-
processing distinctions that are needed to give an adequate functional description of intelligence and
which may require archittctural .support of their own. A well-known proponent of rule-based ar-
chitectuA'et s3aid during a lecture, "Common sense is just millions and millions of rules." One might
well respond, "Yes, a ad War and Peace is just thousands and thousands of sentences."

The case of metarules in production systems can be used to illustrate this point. In knowledge-
based systemns work, the rule architecture was originally offered as as advantageous because it per-
mitted. a kinowledge -base rnf domain facts, and an inference engine which implemented the control of

riwa i,. o q Oe liacts in the knowledge base. It turned out that the control at the rule level was
iiiadequate rlpt.ýrforni a wide variety of tasks, so a supposedly domain--specific knowledge base in-
creasingly acqvTred rules whose role was to provide the requisite control behavior and focus in
problem solving. That is, it wus zeen Lhat cl~ere were phenomena essential to tntelligent ýehavt'or
that were above the rule level -, &,rrhitecttmre, bu.' were not mt'erely a collection of agent-ipectfic world
facts. At this pcr.t, the of metarule.v was f'nt.w'duced, where each metarule was a

doman -idepedent control rule that hoelpied -rk-'uti-e zh' knowledge base for a particular typr; uf
problem solving activity. Howevtr, while the ritetivrte v &i a way of using the rule architocturt, so1
:implemenit a control st'stegy in ru .ie ,rchite'' ris, ýh. e %ras no obvious reason why the underlying
lesson, viz., that we need to organise' the s:o :tr. 'I a td knowledge base so that the facts inf it werr
used in a certain way -jr certain tinds -)f *a'ks, was limited to the rule architecture. Rather the
need for control knowledge in addition to domain knowledge is a lesson. that can be applied to any
unitary architecture. The (-mtrol '.- '!omain knowledge distinction is a high level statement abosut
the content or role of knco- 4dge and not a syntactic statement about a particular architecture. If
the desired problem solving ,ehavior i1d come about as the result of the inetarule, the rule ar-
chitectuire was not, a priorý responsibst; instead, the credit should go to the particular control
knowledge represented by the mneta rule. Thuo the commitment to the unitary rule architecture at
first suppreised the higher leve, distinctions at the level of the control strategies implicit in the dif-
ferent metarules. While metarules h,-.d the germ, of the idea that intersting r-ntrol issues were being
given short shrift in rule-based approaches, it is interesting that uv'2ý Clavuce-j"i work (Clancey,

7 hr-is tirsa,'rutot Pis& :wu,,e e that turtt* -i whetiher -)r ntwi ittrsulletce -;in he atcongstod for hy ?'iinsc.
.'inpair able flauctiulls *umly.

aThe w'.cd -lomain" is a p.,tuabl', soorce -At eonfusiots. Its Al. rite t,*j,.a w~ *,,aue it) refe*r altuott -xdudievely t-i

whnc .it. ittiort raill sp~rittl subhject muater- or' a s'ollerriti .. (fatct& .~ilsnt a1 ruaiwsvorld - Stich 1W me-dicine. wherelii
Its nasusiy plasluvtphicil li 4101eelfils siboust tiniS. I have seen rFl,. teftis r,-tr it) aly ,geu.'cic facility ditch ;i vijual poerep.
ti'oui ..c -yen reasks Stich P4 casgisal sianguit~e tuierrgtxuding or .1isitsuoctts r..,wuunitl. In this papo(2tI %wl I"tv, ?114is tnnt
so it hias l.."'ie ýansiiawn in At. The ussuussphtios is thus, ts., ths..iry -.1 twelliicptavs :ste.', spu'eiicaiiy -If-m with asseulir.

fNsc'a per *0-. hilt 't will uae.- to 41,-4i with plseti-aasussd Usu*tptigl-t s .,hlobs A' dvt,.ai .-V iustilval Inilusutirt.g sasiter.
.rmsdulr.~s~

386

1084), the syntactic aspect of metarules, not their content, dominated ,he discussion in rule.--based
system discussions. Thus much of the discussion on metarules emphasized their syntactic properties.
i.e., were a contribution to rule programming. This concern wih converting higher level content
phenomena into syntactic solutions at the archicecture lvvel is what I mean by suppressing higher
level distinctions. Another example, with somewhat serious consequences in my view, is also from
the rule--based architecture example. One of the problems that arises Ln this architecture when the
knowledge base is very large is that a large number of rules "match" a given situation., with con--
fli•ting actions proposed by each of the rules. The proce.;sor has to choose one of the rules and

pursue the consequences in terms of the inferences that follow. A new problem called the -'conflict
resolution" problem was formulated, and a family of essentially lyntactic resolution strategies were
proposed, such as "Choose that rule which has more left hand side tertns matching, " :'... has more
goals on the right hand side", or "...has a higher certainty factor," etc. In truth, Z claim that
conflicts of this type are artifacts of the architecture, and there are higher level organizational
phenomena that actually constrain only a portion of the knowledge base to be active in the first

place. thus obviating the need for syntactic conflict resolution strategies.

While I have u.sed rule architectures as examples in my discussion above, the points made ire
more general, and apply to unitary architectures in general. Retrieval theories based on semnantic

networks tend to explain differential retrieval by positing that they are due to distances measured in
the number of links rather than the types of links and the knowledge embedded in the nodes and

links. These unitary architectures encourage theory making at tne wrong level of abstraction.

The end of this section is probably a good place to make a number of clarifications.

* The above arguments are not directed against the existence of appropriaite architectures
on which to implement intelligent information processing systems. In principle, it is even

possible to hold that all higher level phenomena of importance can be implemented on
the architecture at one particular level in such a way as to give some significant perfor-
mance or construction advantages. What is being argued is that jeekiny a ufi.ary ar-
chitecture as the sitrle answer to what makes intelligence is fraught with the problems

that I have described, and misstates the nature of intelligence. I doubt that there is one

level which can be identified with the emergence of intelligence. On the other hand, the
discussion about whether rule architectures or alternate architectures properly capture the
human information processor at one level of abstraction is not vacuous: it i. a relevant
and useful question. It is also important to state that researchers who have been inves-
tigating these archite~tural questions, e.g., Newell and Simon in the case of rule- ar-

chitectures, do not themselves necessarily reduce all higher level issues in intelligence to
syntactic aspects of their particular architectures. [t is an empirical fact, however, that
these architectures do foster a unidimensional view of intelligence, resulting in important

higher !evel questions beiug ignored or treated as mere programming issues at the ar-

chitecture level as in the example of metarules that I discussed.

* I mentioned frame architectures as another example of unitary architecture.. This is not
an argument against "frames" as a functionally usefuW construct for intelligence; in fact,

in ak Section 4.5, 1 will offer the frame theory as an example of the rig1,t kind of theory-
making in Al. In all of the discussions in this section, ray argument has been against a
style of theoty-making which converts such a theory i-,to a universal architecture.

* The &rguments in this section are not meant to be against the idea 4 architectures to
support intelligent computation. In Section 4.5 1 argue that iaternmýent information

processir, comes au a variety of functional types, each of which is supporzed by a local
"mini" architecture. Form follows function, in this as in man-, other designs, natural or
arifactual. Thus the s'aggestion is that instead of fixing on one fomi (even if true at

387

sone level), it is motit productive to identify functions and then look for forms to sup-
port them.

4. 2. Theories of Intelligence Based on Abstract L~ogical Characterization of Agents

In many circles iome version of logic is thought to be the proper language of characterizing all

computation. and by extension, intelligence. By logic is meant a variant of first order predicate
calculus or at least a ýystem where the notion of truth-based semantics is central and inference-
making is characterized ,v truth -preserving transformations.' The way logic has actually been used

in Al however combinvs a number of distinct roles that logic can play or can be claimed for it.
We can begin by notiwju two L.'oad roles for it:

I. logic for abstractl; charac.erizing and analyzing what an agent knows, vs

2. logic as a representation for knowledge, and logical deduction as the basic information

processing activity in intelligence.

First of all. there seems to be a general tendency, even among thooe who do not adopt the logic
paradigm for knowledge representation and inference, to concede to logic the status as the ap-
propriate language for the abstract characterization of an agent, i.e., for meta-Al analysis. While
this seems like one good possibility, this does not seem to me the only or even a compelling pos-

sibility. Standing outside an intelligent agent, one can take two distinct abstract stances toward it:
the agent as a performer of functions, or the agent as a knower of propositions. There are Al

proposals and work that correspond to both these viewpoints. In Marr's work on vision (see Section
.3.6), e.g., the agent is characterized functionally, i.e., by an information processing task that trans-

forms information of one kind into that of another kind. On the other hand, the tradition in
logic-based AI is one of attributing a body of knowledge to the agent. It is certainly not obvious
why the knowledge view should necessarily dominate even at the level of abstract characterization.
[will hold later in this paper that the functional view has superior capabilities for abstract

specification of au intelligent agent.

The idea of abstract characterization of an intelligent agent through logic was first detailed by
McCarthy ard Hayes (1969) where they proposed the now-famous eptstemic.-heuristic decomposition

of an actual intelligent agent. This diitinction has echoes of the Chomskian competence/performance
distinction in language. (See (Gomes and Chandrasekaran, 1981).) The agent as a knower is
characterized by the epistemic component. What kinds of knowledge are to go into the epistemic

component is not clear, but one would think that would depend on the theorist's view of what

kinds of knowledge charactersze intelligence. Thus it must represent a theory of the ontology of the
mental stuff. The heuristic part is that part of the agent which actually makes him an efficient

information processor, using the knowledge in the epistemic part to solve problems and do whatever
intelligent agents do. An analogy would .be that a calculator's epistemic part would be the axioms
of number Lheory, while its heuristic part would be the particular representations and algorithms.
This example also makes clear the relationship of the epistemic/ heuristic distinction to the
competence/performance distinction of Chomsky. McCarthy and Hayes proposed that the epistemic

part be represented by a logical calculus, and in fact discussed the kind of logic and the kinds of
predicates that would be needed for adequacy of representation as they conceived the epistemic part.
In this attempt to separate the what of intelligence with the how of implementation, the McCarthy-

wI .6 u t il this , ri~iaj is glu t ,ao r ' rare in lotilt:~ . I .uii rnill that there things jur 4V's iaprIae .t
wlwrh ..r,.n&m l l tea• v ihiov ,I rao t ri ;ilaah ul.t hi,,il ',,'.I. Within Al. asoanl|| notonic Ltuir c[lax s ltite r vit i,-
pvss'rviag re',4,turptreaar iu trius• mstat ioua. I hwtlijv,, rthat rhr hrtst .,4 guy anexng"Pt¶ks zwvertherkws retpilu va•,|I.

383

Hayes proposal follows a more general idea in computer science, but identifies the wuhat with the
propositional knowledge of the agent. This is not, however, neutral with respect to consequences.

Now it is interesting to note that the epistemic/heuristic diszinction as a means of separating the
essential content of an agent from the implementation details and "more" efficiency considerations is
independent of logic as a representation. As just mentioned, this kind of ,eparation is a strong
tradition in computer science, at least in proposals about software engineering. if not in practice.
All that the epistemiciheuristic distinction demands is that the essential characterization of an in-
formation processor be kept separate from the implementation details. Logical representation of the
epistemic part is only one alternative for doing this. As I mentioned, within Al. an alternative to
McCarthy and Hayes' suggestion is Marr's proposal that this distinction be carried out by separating
the information processing task (the input-output specification), the algorithm carrying out the task.
and the mechanism by which the algorithm is implemented.

Even more important is that there is no self-evident way of deciding, in a theory-neutral fashion,
exactly what is epistemic, and what is merely heuristic. One person might dismiss some aspect of
an intelligent agent as merely heuristic (e.g., search control knowledge which helps in efficiency),
while another person's theory might hold that that is precisely where the secret of intelligence lies.
and thus would make it part of the epistemic component. The epistemic, heuristic distinction does
not force one into an agreement about what entities ought to end up in which component. En fact,
in some logical theories in Al, some important control phenomena have been moving from the
heuristic component to the epistemic component, as a consensus builds in Al that a certain
phenomenon is really not simply heuristic, but part of the stuff of intelligence. A good example of
this is the development within the logic camp of families of default or nonmonotontc logics. It is
interesting to trace the history of default logics within the logic paradigm in Al.

Now, Minsky's paper on frames (Minsky, 1975) argued against the "atomic" stand about
knowledge that Logic-based Al theories took, and claimed that chunking of knowledge into "frames"
had a number of useful properties. In particular, if frames could stand for stereotypes of concepts,
it was possible to do a form of default reasoning, where in the absence of specific information to the
contrary, a reasoning system would assume default values associated with the features of a frame,
thus allowing missing information to be plausibly inferred, greatly decreasing storage requirements
(only non-default values, i.e., exceptions, need to be stored), and increasing retrieval speed. At first
blush, all these useful properties were "heuristic" aspects, i.e., how to get the computation done
faster, and thus one would think not of intrinsic epistemic interest. However, when the consensus
started to develop the form of default reasoning was one of the essential aspects of being in-
telligent, defaults be. .)art of the epistemic component of Al. That is, theorists started
hypothesizing the exist%. of something called "default reasoning" or "nonmonotonic logic" in order
to account for this phenomenon in a rigorous way. Similarly, as builders of Al systems discover the
utility of organizational constructs such as "plans" (which are abstract, partial solutions to
problems, stored by the agent, typically indexed by the goals they help achieve), one finds that new
episatemic theories auch as plan logics get proposed and investigated. It is almost as if the lowly
"heuristic" component is in fact what the action in Al is often about, while the epistemic part ap-
propriates the nuggets of organizational wisdom that research in the heuristic componenc identifies.

Now of course there is nothing wrong with this as a way of making scientific progress: Let the
system builders discover phenomena experimentally and let the theoreticians follow up with for-
malization. However, the eventual success of this kind of formalization is quetionable. Is there in
fact a set of inference rules that compactly characterize all and only default inferences? I propose
that terms such as "nonmonotonic logic" are reificuions: a complete account would require
specificaticn of a much larger set of rules than what is normally thought of as inference rules; so
larlie as to be virtually coextensive with the entire set of dissinct types of functions in which frames
get used: scripts, plans, etc.

389

The distinct notions of abstractly characterizing an intelligent agent, viz., the epistemic.' hvuristic
distinction, and logic as a representation for the epistemic component, are often conflated. I juit

commented on how uncertain the actual allocation of information to the epistemic and heuristic
components can be. Now I need to make some cemarks on logic as a representation for thm epis-

temic component.

4.3. Logic for Representation

The proposal to use logic for representation of knowledge could be in the service of two rather

different purposes: one, in order to reason about the agent and two, to model the reasoning of the
agent. The former is in the spirit of certain ideas in computer science where a program may be in

any appropriate language, but reasoning about the program, e.g., to establish its correctness, is often
done using logic. However, in practice, almost all use of logic as knowledge representation in At
has been in the service of the latter, i.e., to actually create reasoning agents.

Logic as knowledge representation makes a serious commitment to knowledge as propositions, and
to TruelFalse judgements as the basic use of knowledge. It is also closely connected to the belief

that the aim of intelligence is to draw correct conclusions. In this view, wha& human beings often
do, e.g., draw plausible, useful, but strictly speaking logically incorrect conclusions, is interesting as
psychology, but that only shows up humans as approximations to the ideal incelligenz agent, whose

aim is to be correct.

A little digression about the nature of the ideal intelligence may be appropriate here. I believe
chat there has been *i problem in Al due to two different senses of the word "intelligence." There
is the technical sense of intelligence as the information processing activities engaged in by, possibly

among others, human beings, and which is the goal of Al to understand and capture. There is
another sense in. which iatelligent really refers to "very intelligent," i.e., some one who has been
especially impressive in his or her cerebration. At least in the current western milieu, this latter
quality would be denied to someone who, after all the work of thinking, was not correct in the
conclusions that were drawn. Ever since late 19th century, when the foundations of mathematics

showed 'cracks and there were considerable wnrries about how to be sure if conclusions were correct,

which in turn pus'4d symbolic logic to its current rich technica! accomplishments, logical reasoning

has been equated with the real test of thought, vide the title of Boole's book, Laws of Thought. [n
addition, the content of consciousness seems to include a series of propositions, some of them beliefs,
and at least for a certain kind of theorist, it seems entirely natural to model thought itself as basi-

cally manipulation of propositions and generation of new onus. In this view of thought, stream of
consciousness imaginings, hall-formed ideas, vague sensations at the back of the mind, how a cer-

tain idea suddenly came to occupy consciousness from the depths of the mind, etc., etc.. do not
counxt as serious subject of study from the viewpoint of intelligence as such. Hence the almost un-
conscious equation of thought with logical thought, and the natural attempt to seek in logic the
language of representation and construction of the idealized agent.

Now, is "truth" in fact the tight kind of basic interpretive framework for knowledge? Or are no-
tions of functional adequacy, i.e., knowledge that helps to get certain kinds of tasks done, or the

related notions of plausibility, relevauce, etc. more effective in capturing the way agents in fact use
knowledge? My 16-month old daughter, when shown a pear, said, "apple!." Is it more than mere
parental pride that makes me attribute a certain measure of intelligence to that remark, when,
viewed strictly as at. utterer of propositions, she told eu untiuth? What kind of a theory of intel-
ligence can explain that her conclusion was adequate for the occasion: she could get away with that
error for most purposes -- she could eat the pear and get nourishment, e.g. -- while an equally
false proposition, "It's a chair," would niot give her similar advantages?

390 '

A number of theoretical advantages have been claimed for logic in Al, including precision and the
existence of a semantics. The problem is that the semantics are not at the most appropriate level
for the problem at hand, and logic is neither a unique nor a privileged way to be precise.

4.4. Intelligence Has Other Functions Than Correctness

Laws of justification are not identical to laws of thought, Boole notwithstanding. While it would
be useful for an intelligent agent to have the former laws and apply them appropriately, those laws
alone cannot account for the power of intelligence as a process. It seems highly plausible to me
that much of the power of intelligence arises not in its ability to lead to correct conclusions, but in
its ability to direct explorations, retrieve plausible ideas, and focus the more computationally expen-

yive justification processes where they are absolutely required. Thus the power of intelligence really
resides in what has been called the heuristic part, and theories of intelligence will need to be
theories of that part of the decomposition, the par thatr is most concerned with computational
feasibility. This is why organizational theories such as the frame theory, planning, and theories of
memory, find their important ideas migrating to the epistemic side, which by definition, in the logic
framework, is supposed to worry about the real essence of intelligence. What is interesting is that
the pressure of discoveries in the heuristic side comes from efforts to actually construct intelligent
artifacts. To the extent that explanation of intelligence as a computational phenomenon is treated
within Al as the capability to construct intelligent artifacts, it is significant that it is this so-called
heuristic side that has been the source of important discoveries about how the intelligent information
processing can be controlled. Abstraction in the manner proposed by those who advocate logic
separates knowledge from its function, and this leads to missing important aspects of the form and
content of knowledge.

It is often argued that the epistemic/heuristic distinction is tactical: get the terms needed right,
before womring about how to actually use them in reasoning. For example, before building, say,
common sense reasoners, let us get all ontology of common sense reasoning right: "know," "cause,"
etc. The thrust of my argument is that, as a rule, a use-independent study of such terms is likely
to make distinctions that are not needed by the processing part and miss some that are.

This is not to say that logic, as a set of ideas about justification, is not important to intelligence.
How intelligent agents, discover justifications and how they integrate them with discovery procedures
for a final answer that is plausibly correct, and how this done in such a way that the total com-
putational process is controlled in complexity are indeed questions for Al as an information process-
ing theory of intelligence. In this view logic is a brick intelligence builds, racher than the brick out
of which intelligence is built.

The laudable goal of separating the knowledge necessary for intelligence from the implementation
details needs in my opinion to be achieved by concentrating on the functional characteristics of in-
telligence. This brings me to the third set of theories.

4.5. Generic Functional Theories of Intelligence

Ttie theories that I discuss in this section identify a generic, functional property of intelligence
which is used to solve a "natural kind" of cognitive problem. Examples cf such theories are: the
GPS means-ends theory of problem solving (Newell and Simon, 1972), Lhe Frame theory of
knowledge organisation (Minsky, 1975), Schank's CD, Script (Schank and Abelsc~n, 1977) and
memory theories (Schank, 1982), our own work at Ohio State ou generic types of problem solving
(Chandr'aekaran, 1983; 1986; 1987). These theories typically emphasize some organizational aspect,
which facilitates some pnrticular cla1s of inferences, or eamputatsons, or constructions it a comguta-
tionally efficient way. An abstract description of theso proceses would be replete with terms that

391

carry an information processing strategy connotation, such as default, goals, subgoals, expectattons,
plans. and claseification. Knowledge of an agent is encoded using such terms. Each of these
processes -- the inference mechanisms along with the knowledge structures -- constitute what we
call a generic information processing strategy. Each captures a functional unit of intelligence as a
process, and is generic in the sense that it is domain-independent. 'I

In this section. I briefly discuss some of the well-known theories of this genre. In particular. I
consider such strategies in knowledge-based problem solving.

Let me recapitulate some of the theories that I mentioned at the beginning of this section.

"* The General Problem Solver. GPS says that a generic process available to intelligence is
to treat problems in a goal/subgoal manner. In this way. the ends, i.e.. the goals, of the

problem solver, are matched to the means, the operators available. The agent has to
have knowledge organized in a certain way, which gives information about relationship
between goals, operators, etc., and a particular inference process (or control regime) called
the means.ends ,ilgorthm is needed to use this knowledge to solve the problem. Note
that the means-end method is not implicit in the problem statement, i.e., a purely logi-
cal analysis merely would specify a problem space in which the solution would lie. On
the other hand, means-ends is not a particular solution algorithm for a particular
problem. It is a generic information processing strategy that can be used provided that
knowledge is available in a certain form.

"u The frame theory. It proposes that the generic functional properties of "chunking" and
"stereotyping" are important phenomena in knowledge organization. These features of
the organization enable an important type of inference process called default reasoning to
take place by using the default expectations implicit in the idea of stereotypes. Chunking
and stereotyping are computationally efficient mechanisms, both for memory and for

processing.

"* Schank's conceptual dependencies and script theories. These are in the spirit of frame
theory, but they propose contentful additions that are appropriate for certain classes of
problems. CD's are particular kinds of chunks that represent action stereotypes, and en-
able default inferences about actions associated with verbs to be made efficiently during
natural language understanding. Scripts ar, frames representing stereotypical action se-
quences, which enable expectations to mediate understanding. Both these notions (and
other similar constructs in Schank's theories of memory organization) use expet tations
arising from stereotypes of phenomena as efficient means of computing some information
about the situation.

"* Plans: these are compiled, abstract, partial solutions to problems, indexed by goals.
Agents which use them cut down the search for solutions enormously, again a "hetristic"
advantage, but mirrored in knowledge so deeply that it becomes epistemic in character.
See (Miller, et al, 1960).

"* Memor./ Organization & Retrieval: Agents index, store and retrieve relevant events of
their experience in such a way that they provide, among other capabilities, a method of

reasoning (by analogy with past events, e.g.) The work of Schank's group proposes a
number of types of memory chunks and indexing schemes.

rl-La..., w..+ t ' -telier ,. ote Ul th. Wr- ""392

392

* Generic Tasks: In our own work on knowledge-based reasoning, we have proposed a
number of information processing strategies, each of which is characterized by knowledge
represented using strategy-specific primitives, and organized in a specific manner. Each
of the strategifs also employs a characteristic inference procedure which is appropriate to
the task. By showing how these strategies help in solving a computationally complex
problem such as diagnosis, I hope to suggest how strategies of this kiad characterize in-
telligence. The role of a specific set of generic strategies in diagnosis is the subject of
the Section 4.6.

4.6. Generic Information Processing Strategies in Diagnostic Reasoning

Formally, the diagnostic problem can be defined as follows: Find a mapping from the set of all
subsets of observations of a system, to the set of all subsets of possible malfunctions, such that the
malfunctions in the subset best explain the observations.

A mathematician's interest in the problem would be satisfied once it can be shown that under
certain assumptions this task is computable, i.e., an algorithm exists to perform this mapping. He
might even further wish to derive the computational complexity of this task for various assumptions
about the domain and the range cf this mapping. This directly leads to Al algorithms of a Zet-
covering variety for diagnosis (Reggia, et al, 1985).

A logician would consider the solution epistemically complete if he can provide a formalism to list
the relevant medical facts and formulate the decision problem as deducing a correct conclusion.
Some diagnostic formalisms, such as the ones based on truth maintenance systems, view the diag-
nostic problem as one more version of truth-maintenance activity (Reiter, 1987).

Now, each of these methods is comiputationally quite complex. and without extensive addition of
knowledge as "heuristics", the problem cannot be solved in anything resembling real time. It is
clear, however, that the abstract problem is one that faces intelligent agents on a regular basis: how
to map from states of the woild to their explanations? From the tribesman on a hunt who needs to
construct an explanation of observations on the jungle ground to a scientist constructing theories.
this basic problem recurs in many forms. Of course, not all versions of the problem are in fact
solved by humans, but many versions of the problem, such as medical diagnosis, are solved quite
routinely. Presumably something about the agent as an intelligent information processor directly
plays a role in this solution process.

Because of our concern in this paper with the structure of intelligence, instead of looking for solu-
tions to this problem in particular domains (such as simple devices, where perhaps tractable al-

gorithms -- e.g., direct-mapping tables that go front symptomn to diagnoses -- might exist and
be programmed), let us ask the following question: Whitt i an intelligence that at rtan perform this
tas/k? That is, we are interested in the relation between mental structures and the performance of
the diagnostic task. The distinction that we are seeking can be made clearer by considering mul-
tiplication. Multiplication viewed as a computational task has been sufficiently studied that very
fast amid efficient algorithms are available, and are routinely used by today's computers. On the
other hand if we were to ask, "How does a person (e.g., an arithmetic prodigy) actually perform
multiplication in the head?", the answer will be different front the multiplication algorithms just
mentioned. The answer would need to be given in terms of how the particular problem is solved
by using more generic mental structures. Now, of course, the answer would differ depending upon
one's theory of what those mental structures are.

[have already indicated what kinds of answers to this question would be fostered by unitary ar-
chitectures: In rule-based architectures, the problem solver will simply need to have sufficient

393

number of rules about malfunctions and observations, frame-theorists would propose that diagnostic
knowledge is represented as frames representing domain concepts such as malfunctions, etc. The in-
ference methods that are applicable to each of the above are fixed at the level of the functional ar-
chitecture: some form of forward or backward chaining for rule systems. and some form of in-
heritance mechanisms and embedded procedures for frame systems. I have argued elsewhere how
this level of abstraction for control is at too low a level to perspicuously encode the inference
processes that apply at the level of the task, i.e., diagnosis. (Since all these architectures are
computation- universal, they can be made to encode whatever diagnostic algorithm the designer has
in mind, but the ideas underlying the algorithms are "lost" as code at these levels, rather than ex-
plicitly supported by the architectural constructs.) This level of representation suppresses what is
distinctive about diagnosis as a set of domain-independent information processing strategies. See
our earlier arguments regarding syntactic solutions at the architectural level.

In our work on knowledge-based reasoning, we have identified several generic strategies, each with
a well-defined information processing function. Each of them uses knowledge in certain forms, or-
ganized in certain ways, and employs inference strategies that are appropriate to the cask. We have
described, in a series of papers. how these strategies can be used in different combinations to put
together diagnostic or design systems. In the rest of this section, I want to describe briefly how
three strategies of the above-described type can come together to solve a number of real world ver-
sions of the diagnostic task.

In many domains knowledge is available in the form of malfunction hierarchies (e.g., disease
hierarchies in medicine) and for each malfunction hypothesis in the hierarchy, a mapping from ob-
servations to the degree of plausibility of hypothesis can be done using a strategy of concept
matching. In concept matching, a concept is matched to data by a hierarchy of abstractions, each
of which produces a degree of local match. In such domains, the diagnostic problem can be
decomposed into three subproblems (Chandrasekaran, 1986; Josephson, et al, 1987):

1. Hierarchical classification: A classification process on the diagnostic hierarchy is invoked.
At the end of the classification process a set of tip nodes of the diagnostic hierarchy are
"established" to some degree of plausibility, each explaining a set of observations. in -the
medical domain, these tip nodes will correspond to specific diseases or in the case of
mechanical systems, they may be malfunctions of specific components.

2. Concept-matching: Each of the hypotheses in the classification process is evaluated by
appealing to the appropriate concept-matching structures which map from relevant data
to •ysabolic confidence value for that hypothesis.

.3. Abdctive Assembly: The Oassification process (in conjunction with the concept
matcbers) terminates in a small number of highly plausible hypotheses, each explaining a
subset of observations. An abductive asiembly strategy, which uses knowledge about in-
tercation among malfunctions, can be used to assemble a subset of them into the a com-
posite hypothesis that best explains all the data.

Under the right conditions of knowledge availability, each of the above strategies is computation-
ally tractable. In hierarchical classification, entire subtrees cai. be pruned if a node is rejected. The
mapping from data to concept matching c.n be done by hrrcitic,•J abotractions giving concept
matching a similar computational advantage. Abductive -,,ss.•nibi" cW1 b'e computationally expensive,
but if some other process can prune the space and generate only a small number of hypotheses to
begin with, then its computational demand can be kept under control. This is precisely what
hierarchical classification does in thov, above scheme.

The original intractable problem has been converted, by a series of information processing

"394

strategies and by appropriate types of knowledge and control, into a tractable one, for those uerwzons
where 'knowledge of the required form is available.

Classification as a strategy is ubiquitous in human reasoning because of the computational ad-
vantages of indexing action knowledge over equivalence classes of states, instead of the states them-

selves. How classification hierarchies are created -- from examples, from other types of knowledge
struczures, etc. -- requires an additional set of answers. I have discussed elsewhere

(Sembugamoorthy and Chandrasekaran, 1986) how knowledge of the relationships between structure
and the functions of components. i.e., how the systems work, can often be used to derive such mal-

function hierarchies. These processes in turn are generic, requiring knowledge in specific forms and
using appropriate but characteristic inference strategies.

Let me make something quite clear at this point. The claim is not that diagnosis is logically a

classification problem, or even that all human diagnostic reasoning uses classification as one of the
strategies. What I have attempted to show is that many version of the diagnostic problem can be,

and often are, solved by having knowledge in forms that this and other generic strategies can use.
If that knowledge is not available, either other strategies that can generate knowledge in that form
are invoked, or ocher strategies that can help solve the diagnostic problem without classification
hierarchies are attempted. In particular, strategies such as reasoning by analogy to an earlier case.
or merely retrieval of similar cases and explaining the differences by adding, deleting or modifying
diagnostic hypotheses are tried. In fact, ai mentioned earlier, the whole collection of retrieval

strategies (Schank, 1982) are themselves information processing strategies of the functional kind that
I have been talking about.

4.7. Functional Theories: Heuristic Becomes Epistemic

What I have so far called functional theories within Al -- GPS, frames as stereotypes, conceptual

dependency theory, scripts, and generic tasks in problem solving -- all have this in common: They
all typically emphasize some organizational aspect and facilitate some particular kind of inference or

construction in a computationally efficient way. In other words, computational feasibility -- the
so-callea heuristic component -- is built into this kind of theory making. Organization serves
directly in securine.computational feasibility. A direct epistemic analysis of the underlying problem
would typically miss these constructs. Once you discover them you can go back and start doing
epistemic analysis on them, but basically the way of discovering them is not by simply taking an

epistemic stance toward them (here I use "epistemic" in the McCarthy-Hayes sense of the term).

Another important thing about this with respect to knowledge is that each of these approaches
provides primitive terms for encoding the relevant knowledge. GPS proposes that some of the
knowledge ought to be encoded in the form of goals and subgoals. The conceptual dependency

primitives are provided from the CD theory. Our work on generic tasks has resulted in a family of
languages, each of which provides primitives to capture the knowledge needed for that one of the

generic strategies. In my view, ýhese primitives constitute part of the vocabulary of the language of
thought.

The search for such strategies as the basic task of research in Al in fact defines a new view of

epistemics: It is the abstract characterization of such strategies and the corresponcding types of

knowledge. Such an abstract description of these piocesses would be replete with terms '..at carry
an information processing strategy connotation, such as default, goals, •ubgoals, ezpectatwns, p.'ans,

and cloassficatson.

395

5. A proposal on the Nature of Intelligent Information Processing

I have given an overview of the three kinds of theories that have been advanced about the nature

of intelligenceL L:

0 architectural theories

* logical abstraction theories, and

& functional theories

and indicated a clear preference for functional theories. I would now like to generalize this

preference into a proposal about the nature of intelligence.

The Proposal

Intelligence is a coherent repertoire of generic information processing strategies, each of which

solves a type of problem in a computationally efficient way, using knowledge of certain types, or-
ganized in a specific way, and using specific and locally aippropriate control strategies.

What is common. as intelligent agents. between Einstein, the man-on-the street, the tribesman

on a hunt. and, probably. intelligent Alpha-Centaurians (if such things exist) is that they all face
very similar computational problems, and the kinds of solutions that they adopt for these problem

have an essential similarity. They all use plans, indexed by goals, as efficient means of synthesizing
actions, they all use some version of scripts and conceptual dependency primitives to organize their

inferences, they all use classification strategies to match actions to world states, etc., etc. Of course
the strategies that we may discover by studying human information processing may not be -- and

in all likelihood is not -- coextensive with the general class of such strategies. That would be too
anthropomorphic. a view of intelligence.

The task of Al as the science of intelligence is to identify these strategies concretely, and under-

stand how they integrate into coherent wholes.

In a sense this approach can be called abstract psychology because it doesn't discuss a particular

human being or even class of human beings. What it says is that the description of cognitive
strategies provides a language in which to describe intelligent agents. And also, I think, it is con-
sistent with the view of intelligence as a biological, evolvable collection of coherent kluges' that
work together. So intelligence is not really defined as one thing -- architecture or function -- it

is really a collection of strategies. The fact that the strategies all contribute to computational

feasibility distinguishes them as a characterizable class of information processes.

Some qualifying remarks about the scope of my discussion are perhaps necessary. Almost all my
discussion has emphasized cognitive phenomena in contradistinction to perceptual phenomena. Ob-
viously the role of knowledge and control in perception is a much different issue than in cognition.

in general, I have not included in my discussion what Fodor (1983) calls input modules. (as opposed
to central processes): his modules include some aspects of parsing in language, e.g. The spirit of
what I say in this paper can be extended to these other phenomena, I believe. But that is a task

for another day.

~~14p..oi.iy I t.,ar . Ic. I~,, i ,L~ec. .u have .- ,'kaowLedice.1 rhal

S [.•~rifletly. '.t tt rhr •tatltav •,("' 'r,,'" pht iii ma." •te,396
. ,ttt,*tt•tttl*|ke •h*rtarorw iti~sy 11MVP A se ,tt' tttl•u I1tarful to• *ay atlwist the tuttv 'ostlruti,'ftle.

396

6. Concluding Remarks

In this final section, I would like to make some remarks about the relationship of functional
theories to architectural and abstract characterization theories.

Some of the intuitions behind the architectural theories ar abstract characterization theories -ire
in fact valid and useful, but theory-making of these kinds can be enhanced by asking questions of
the functional kind first. In particular, considering architectural theories first, it is probably true
that there does exist an architecture at which mental phenomena can be particularly appropriately
implemented. Certainly in the case of human intelligence there ws some level to which the infor-
mation processing architecture question can be reduced: if needed, to the neuronal information
processing level: possibly to what connectionists call the subsymbolic level; preferably to the level Af
something like a rule architecture. Certainly I don't intend to argue against the existence of that
level of the architecture and its properties. However, the content phenomena of intelligence as a
computation are not expressed at that level, and require an analysis at the functional level as I
have indicated.

There is another aspect to the architectural issue. To the extent that each of the strategies uses
knowledge primitives, and comes with its own inference methods, a local architecture can be as-
sociaced with it. For example, we have developed a family of high level architectures (or. it comes
to the same thing, languages.) for the generic information processing strategies that we have iden-
tified: a language called CSRL (Bylander and Mittal, 1986) supports hierarchical classification and
structured concept matching, PEIRCE (Punch, et al, 1986) supports abductive assembly, and so on.
The information processors built using these architectures can exchange Lhe results of their computa-
tion with each ocher.

The functional orientation that I have advocated makes possible a new approach to mental ar-
chitectures which are nonunitary, i.e., intelligence is conceptualized as a community of "specialists",
each of which is an instance of a functional type of knowledge/inference system, communicating with
other such entities. In fact our own group's work on problem solving has been implemented using
precisely this notion of a nonunitary architecture. It needs to be reiterated that this notion does
not argue against the whole set of them being implemented on a lower level unitary architecture,
such as a rule axchitecture. It merely talks about the importance at the conceptual level of not
being driven by the unitary architecture notion for all the reasons that we elaborated in Section 4.1
on this subject.

Similarly, the functional theories suggest a new approach to epistemics. They do not argue
against the importance of characterizing intelligence independent of incidental implementation con-
siderations (neurons vs transistors, e.g.), or of agent-specific heuristic knowledge (such as the
knowledge that a particular agent might have, e.g., "When considering malfunctions in an electronic
circuit, always check the power source First.") It is just that this approach proposes an alternative
basis on which to make the abstract characterization. I propose that we ask, "What kinds of
processes do intelligent agents perform?", rather than, "What kinds of things do they know?" as the
starting point. The claim is that what they nteed to know in order to do the tasks in fact provides
a new way of doing the epistemic analysis of an agent in the abstract. At the very least, func-
tional theories provide the content information about intelligence as computation that needs to be
specified abstractly.

Intelligence as we know it is (so far) a biological phenomenon, rather than a logical or math-
ematical phenomenon. A comparison is often made between intelligeuce and flight, and people who
would build flying machines by basing them on birds usually come off looking not so good in this
comparison. The problem with that analogy is that flying is one (rather well-defined) function,

397

while intelligence is not characterized by one function. A better analogy would be with under-
standing life: all we know about life is that it is what biological phenomena pertain to. Any par-
ticular aspect of life, e.g, self-reproduction, can be studied mathematically, but there has been pre-
cious little so far to show for such studies from the viewpoint of understanding biology. Intelligence
is not only analogical to biology, but is, as a phenomenon in nature, so far exhibited in biological
organism of certain complexity. The actual content of information processing phenomena of intel-
ligence is bound to be rather complex. What is biological about the poposal in this paper is that
intelligence is explained as part evolutionary, part cultural, part life-time interaction and integration
of a number of elementary strategies into more and more complex strategies, but all of them are
united by this basic concern with computational feasibility for generation c.f plausible solutions,

.rather than with deductive correctness. To see biological intelligence as a mere approximate attempt
to achieve logical correctness is to miss the point of intelligence completely. Of course there are
processes in intelligence that over a long period of time and collectively over humankind help to
produce increasingly higher fidelity internal representations, but that is just one part of being intel-
ligent, and in any case such processes are themselves subject to computational feasibility constraints.
Once highly plausible candidates for hypotheses about the world are put together by such processes
(such as abductive assembly that might be used in producing an explanation in science), then ex-
plicit justification processes may be used to verify them.

Acknowledgemuents: Support by Defense Research Projects' Agency through RADC Contract
F30602-85-C-0010 and by Air Force Office of Scientific Research, grant 87-0090 during the
preparation of this paper is grafefully acknowledged. I would like to thank Dean Allemang, Larry
Birnbaum, Tom Bylander, Ashok Goel, Vinod Goel, John and Susan Josephson, Allen Newedl, Derek
Partridge, Bill Punch, N. Sridharan, and J,,n Sticklen for commenting on early drafts. I know that
few of them agree with all the things that I say here, so the usual qualification that the author
takes responsibility for what is said is particularly relevant.

References

Bruner, J. S. (1957). On perceptual readiness. Pslichological Review, 64, 123-152.

Bylander, T. C., and Mittal, S. (1986). CSRL: a language for classificatory probLem solving and
uncertainty handling. Al Maqazine, 7, 3, 66-77.

Chandrasekaran, B. (1983). Towards a taxonomy of problem-solving types. A[Magazine, 4, 1,
9-17.

Chandrasekaran, B. (1986). Generic tasks in knowledge-based reasoning: high-level building
blocks for expert system design. IEEE Ezpert, Fall, 23-30.

Chandrasekaran, B. (1986a). From numbers to symbols to knowledge structures: pattern recognition
and artificial intelligence perspectives on the classification task, Pattern Recognition in Practice-fl,
E.S. Gelsema and L.N. Kanal (eds), Amsterdam: North-Holland Publishing Company, 547-559.

Chandrasekaran, B. (1987). Towards a functional architecture for intelligence based on generic in-
formation processing tasks. To appear in Proceedings of the International Joint Conference on Artifi.
ctal Intelligence, Milan, Italy.

Clancey, W. J. and Letsinger, R. (1984). NEOMYCIN: reconfiguring a rule-based expert system
for application to teaching. In Readings in Medical Artificial Intelligence. W.J. Clancey, E.H.
Short•iffe (eds). Reading, MA: Addison-Wesley. 361-381.

Dennett, D. (1986). The logical geography of computational approaches: a view from the east
pole. In Brand, M. & Harnish, R. M. (eds) The Representation of Knowledge and Belief, Tucson,
AZ, The University of Arizona Press.

398

Doyle, J. (1979). A truth maintenance system. Artificial Intelligence. 12:231-272.

Dreyfus, H. L. (1979). What Computers Can't Do, 2nd Edition. New York: Harper & Row.

Duda, R. 0. and P. E. Hart (1973). Pattern Classification and Scene Analysis. New York:
Wiley- [nterscience.

Fodor. J. A. (1083). The Modularity of Mind. Cambridge: The MIT Press, A Bradford Book.

Fodor, J. A. & Pylyshyn, Z.W. (1987). Connectionism and cognitive architecture: a critical
analysis. (draft, to appear).

Gold, E. (1967). Language identification in the limit. Information and Control 16:447-474.

Gomez F. and Chandrasekaran, B. (1981). Knowledge organization and distribution for medical
diagnosis. IEEE Transactions on System•, Man and Cybernetics. SMC-11(1):34-42.

Hebb, D. 0. (1949). The Organization of Behavior. New York: Wiley.

Josephson, J. R., Chandrasekaran, B., Smith, J. W., and Tanner, M. C. (1987). A mechanism for
forming composite explanatory hypotheses. IEEE Tranzactions on Systems, Man, and Cybernetics.
To appear in the Special Issue on Causal and Strategic Aspects of Diagnostic Reasoning.

McCarthy, J., and Hayes, P. (1969). Some philosophical problems from the standpoint of artificial
intelligence. In Machine Intelligence 4, B. Meltzer and D. Michie (eds). Edinburgh: Edinburgh Univ.
Press.

McClelland, J. L., Rumelhart, D. E., and Hinton, G. E. (1986). The appeal of parallel distributed
processing. In Rumelhart, McClellaud and. the PDP Research Group (eds.) Parallel Dtstributed
Processing, Volume 1, Cambridge: M.I.T. Press, A Bradford Book.

McCulloch, W., and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous ac-
tivity. Bulletin of Mathematical Biophysics. 5: 115-137.

Miller, G. A., Galanter, E. and Pribram, K. H. (1960). Plans and the Structure of Behavior. New
York: Holt, Rinehart & Winston.

Minsky, M. L. (1975). A framework for representing knowledge. In The Psychology of Computer
Vision, ed. P. H. Winston. New York: McGraw-Hill.

Minsky, M. L. and Papert, S. (1969) Perceptrons, Cambridge, MA: MIT Press.

Newell, A. (1973). Production systems: models of control structures. In Visual Information
Processing, ed. W. Chase. New York: Academic Press.

Newell, A. (1980). Physical symbol systems. Cognitive Science, 4, 135-183.

Newell, A., and Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, N.J.: Prentice-
Hall.

Punch, W., Tanner, M., and Josephson, J. (1986). Design considerations for Peirce, a high level
language for'hypothesis assembly. In Proc. Expert Systems In Government Symposium, Silver Spring,
MD: IEEE Computer Society Press, 279-281.

Pylyshyn, Zenon W. (1984). Computation and Cognition: Toowards a Foundation for Cognitive
Science, The MIT Press, Cambridge, MA, 1984.

399

Doyle, J. (1979). A truth maintenance system. Artificial Intelligence. 12:231-272.

Dreyfus, H. L. (1979). What Computers Can't Po, 2nd Edition. New York: Harper & Row.

Duda, R. 0. and P. E. Hart (1973). Pattern Classification and Scene Analysis. New York:
Wiley- [ncerscience.

Fodor, J. A. (19:3). The *vodularity of Mind. Cambridge: The MIT Press, A Bradford Book.

Fodor, J. A. & Pylyshyn, Z.W. (1987). Connectionism and cognitive architecture: a critical
analysis. (draft, to appear).

Cold, E. (1967). Language identification in the limit. Information and Control t6:447-474.

Gomes F. and Chandrasekaran, B. (1981). Knowledge organization and distribution for medical
diagnosis. IEEE Transactions on System,,, Man and Cybernetics. SMC-11(1):34-42.

Hebb, D. 0. (1949). The Organization of Behavior. New York: Wiley.

Josephson, J. R., Chandrasekaran, B., Smith, J. W., and Tanner, M. C. (1987). A mechanism for
forming composite explanatory hypotheses. IEEE Transactions on Systems, Man, and Cybernetics.
To appear in the Special Issue on Causal and Strategic Aspects of Diagnostic Reasoning.

McCarthy, J., and Hayes, P. (1969). Some philosophical problems from the standpoint of artificial
intelligence. In Machine Intelligence 4, B. Meltzer and D. Michie (eds). Edinburgh: Edinburgh Univ.
Press.

McClelland, J. L., Rumelhart, D. E., and Hinton, G. E. (1986). The appeal of parallel distributed
processing. In Rumelhart, McCleflaud and. the PDP Research Group (eds.) Parallel Distributed
Processing, Volume 1, Cambridge: M.I.T. Press, A Bradford Book.

McCulloch, W., and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous ac-
tivity. Bulletin of Mathematical Biophysics. 5: 115-137.

Miller, G. A., Galanter, E. and Pribram, K. H. (1960). Plans and the Structure of Behavior. New
York: Holt, Rinehart & Winston.

Minsky, M. L. (1975). A framework for representing knowledge. In The Psychology of Computer
Vision, ed. P. H. Winston. New York: McGraw-Hill.

Minsky, M. L. and Papert, S. (1969) Perceptrons, Cambridge, MA: MIT Press.

Newell, A. (1973). Production systems: models of control structures. In Visual Information
Processing, ed. W. Chase. New York: Academic Press.

Newell, A. (1980). Physical symbol systems. Cognitive Science, 4, 135-183.

Newell, A., and Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, N.J.: Prentice-
Hall.

Punch, W., Tanner, M., and Josephson, J. (1986). Design considerations for Peirce, a high level
language for'hypothesis assembly. In Proc. Expert Systems In Government Symposium, Silver Spring,
1MD: IEEE Computer Society Press, 279-28t.

"Pylyshyn, Zenon W. (1984). Computation and Cognition: Towards a Foundation for Cognitive
Science, The MIT Press, Cambridge, MA, 1984.

399

Reggia, I., Nau, D.. Wang, P.,. and Peng, Y. (1985). A formal model of diagnostic inference.
Information Sciences, 37. 227-2>5,

Reiter, R. (1987). A theory of diagnosis from first principles. Artificial Intelligence, 32,, 57-95.

Rosenblatt, F. (1962). Principles of .Veurodynamics, Cornell Aeronautical Laboratory Report 1196-
G-8. Washington, D.C.: Spartan.

Rumeihart, D.E. & McCleiland, J.L. (1986). PDP Models and general issues in cognitive science.
In Rumeihart, McClelland and. the PDP Research Group (eds.) Parallel DOitributed Proceitng,
Volume 1, Cambridge: M.I.T. Press, A Bradford Book.

Rumelhart, D.E. & McClelland, J.L. (1986b). On learning the past tenses of English verbs. In
McClelland, Rumelhart and the PDP Research Group (eds.) Parallel Diitrtbuted Proceeding, Volame
2, Cambridge, M.I.T. Press. A Bradford Book.

Rumelhart, D. E.. Smolensky, P., McClelland, J. L., and Hinton. G. E. (1986). Schemata and
sequential thought processes in PDP models. In McClelland, Rumeihart and the PDP Research
Group (eds.) Parallel Distributed Processing, Volume 2, Cambridge, M.I.T. Press, A Bradford Book.

Schank, Roger C. (1982). Dynamic Memory: A Theory of Reminding and Learntnq in Computers
and People. New York: Cambridge University Press.

Schank, R. C., and Abelson, R. P. (1977). Scripts, Plans, Goals and Understanding. Hillsdale, N.J.:

Eribaum.

Sembugamorthy, V. and Chandrasekaran, B. (1986). Functional representation of devices and com-
pilation of diagnostic problem solving systems. In Ezperience, Memory and Reasoning. J. Kolodner
and C. Reisbeck (eds). Lawrence Erlbaum Associates, 47-73.

Smolensky, P. (1988). On the proper treatment of connectionism. The Behavioral and Brain
Sciences, 11, (in press).

Solomonoff, R. Jo (1957). An inductive inference machine, IRE National Conventton Record, pt. 2.
i56-62.

Wiener, Norbert. (1948). Cybernetics, or Control and Communication in the Animal and the

Machine. New York: Wiley.

400

Appendix K

A Layered Abduction Model of
Perception

401/402

A Layered Abduction Model of Perception:
Integrating Bottom-up and Top-down Processing

in a Multi-Sense Agent

John R. Josephson

Laboratory for Artificial Intelligence Research

Ohio State University
Columbus, Ohio 43210

I February 1989

Abstract

This paper introduces a layered-abduction model of perception which unifies bottom-up and top-down
processing in a single logical and information-processing framework. The process of interpreting the in-
put from each sense is broken down into discrete layers of interpretation, where at each layer a "best
explanation" hypothesis is formed of the data presented by the layer or layers below, with the help of
information available laterally and from above. The formation of this hypothesis is treated as a problem
of abductive inference, similar to diagnosis and theory formation. Thus this model brings a knowledge-
based problem-solving approach to the analysis of perception, treating perception as a kind of "compiled"
cognition.

The bottom-upý passing- of information from layer to layer defines channels of information flow, which
separate and converge in a specifie way for any specific sense modality. Multi-modal perception occurs
where channels converge from more than one sense.

This model has not yet been implemented, though it is based on systems which have been .'ccessful
in medical and mechanical diagnosis and medical test interpretation.

Introduction

Computational models of information processing for both vision and spoken language recognition have com-
monly supposed an orderly progression of layers, beginning near the retina or auditory periphery, where
hypotheses are formed about "low-level" features, e.g., edges (in vision) or bursts (in speech perception), and
proceeding by stages to higher-level hypotheses. These higher-level hypotheses typically depend largely on
hypotheses formed at lower levels, but are also subject to influence from above.

Models intended to be comprehensive often suppose 3 or more major layers, often with sublayers, and
sometimes with parallel channels which separate and combine to support higher-layer hypotheses (e.g., shad-
ing discontinuities and color contrasts separately supporting hypotheses about object boundary) 131. 28, 291.
Audition, Phonetics, grammar, and semantics have been proposed as layers of interpretation for speech com-
prehension. Recent work on primate vision appears to show the existence of separate channels for information
about shading, texture, and color, not all supplying information to the same layers of interpretation "291.

In both vision and speech understanding most of the processing of information is presumably bottom-
up, from information produced by the sensory organ, through intermediate representations, to the abstract
cognitive categories that are required for reasoning. Yet top-down processing is significant, as higher-level
information is brought to bear to help with identification and disambiguation. Both vision and speech recog-
nitior can thus be thought of as "layered interpretation" tasks whereby the output from one layer becomes data
to be "Interpreted" at the next. Layered interpretation models for non-perceptual interpretive process make

40-

sense too, for example medical diagnosis can be thougi"t of. 4'i an inference which proceeds from symptoms,
to pathophysiological states, to diseases, to etiolodia.. It t.m sonable to expect that perceptual processes
have been optimized over evolutionary time, and that the specific layers and hypotheses, especially at lower
levels, have been compiled into special-purpose mc',wa'isms. Perceptual learning provides another source of
compilation and optimization. INvertheless, these layered interpretation models all seem to share certain
functional similarities.

In particular, it appears that at each layer of interpretation the information processing task is the same:
that of forming a coherent, composite (multi-part) "best explanation" of the d6ta from the previous layer.
That is, the task is one of performing an inference to the best ezplnation, in other words, an abdtsctive
inference.

Moreover, it appears that similar types of hypotheses-hypothesis interactions appear in vision, speech
understanding, and diagnosis. Here are three important ones:

i. Two hypotheses might partially overlap in what they can account for, but otherwise be compatible (e.g.
an edge might be a boundary for two different objects, the /s/ sound acoustically in the middle of "six
stones" belongs to both words, the high white blood count is a result of two different infections),

2. Hypotheses might be pair-wise incompatible (e-g. patch X is either part of the figure or part of the
background),

3. Hypotheses might be supportive in an associative way, the presence of one giving some evidence for the
presence of the other. (Associative support presumably represents the net impact of several distinct
types of evidentiil relationships.)

The functional similarities suggests the posibility of a generic mechanism, and just such a generic mechanism
is proposed here. It is hypothesized that that the processing that occurs in vision, hearing, understanding
spoken language, and in interpreting information from other senses (natural and robotic) can all be usefully
thought of as variations, incomplete realizations, or compilations (domain-specific optimizations) of this one
basic computational mechanism, which we may call the 1ia/ered abduction model of perception.

There is a long tradition of belief that perception involves some form of inference (27] (17] (2]. Several
researchers have in fact proposed that pe•eeption, or at least language understanding, involves some form of
abduction or best-explanation inference [(0, p.557] '9] (111 [37] '21, pp.87-94] 114 , pp.88,104]. Abduction is
often thought of as being logically similar' to.thqory formation in science (17] (46] (14, p.104] and to diagnostic
reasoning.

Abduction

The logician and philosopher Charles Sanders Peirce introduced the term "abduction" to refer to a kind of
plausible inference, which he took to be logically distinct from both induction and deduction (36]. An abduction
passes front a body of data, to a hypothesis that explains or accounts for that data. Thus abduction is a kind
of theory-forming or interpretive inference. In fact Peirce says in one place, "Abductive inference shades into
perceptual judgment without any sharp line of demarcation between them." (37, p.304].

In their popular Al textbook Charniak and McDermott characterize abduction variously as modus ponens
turned backwards, inferring the causal reasons behind something, generation of explanations for what we see
around us, and inference to the best explanation '10]. They write that medical diagno.sis, story understanding,
vision, and understanding natural language are all abductive processes, and they speculate as to whether there
might be possible a "'unified theory' of abduction" which will link all of these processes together (10, p.557".

Other Al practitioners have given similar characterization of abduction (26] (381 (39] (401, some have
proposed or built systems using similar ideas without actually using the term "abduction" in describing their
work (3313 (121 (35] (41] (341. Some attempts have been made to cast the natural language understanding

problem explicitly as abduction (11[.] 9]. Philosophers have written of "inference to the best explanation" [19]

404

* it 3; '21] and "the explanatory inference" (30]. Related philosophical traditions are the "hypothetico-deductive"
model of the scientific iferhod, and accounts of "the logic of discovery" (18]. Recently Paul Thagard has given
abduction an important role in his analysis of the logic of scientific theory formation '46].

We may chazacterize Abduction as a form of inference that follows a pattern like this:

D is a collection of data (facts, observations, givens),
H explains D (would, if true, explain D),
No other hypothesis explains D as well as H does.

Therefore, H is probably true.

The confidence in the conclusion should (and typically does) depend on these factors:

* how decisively H surpasses the alternatives,

e how good H is by itaelf, independently of considering the alternatives (e.g. we will be cautious about
accepting a hypothesis, even if it is clearly the best one we have, if it is not sufficiently plausible in
itself),

* how thorough the search was for alternative explanations, and

a pragmatic considerations, including

- the costs of being wrong and the benefits of being right,

- how strong the need is to come to a conclusion at all, especially considering the possibility of seeking
further evidence before deciding.

I hope my reader rec1ognises this. form of inference as being common in ordinary life, and a part of the
"scientific method". What I am proposing here is that it also occurs on many levels in perception.

In general, as Marr pointed out, it is important to distinguish the goal of a computation; from the logic
of the strategy by which that goal can be achieved, from the specific representations and algorithms used

-to describe a specific strategy, and from implementations of those representations and algorithms (31, p.25!.
Describing a layer of interpretive inference as "abduction" describes the goals of the inference, and suggests
strategies to achieve them, as I hope will become clear in what follows. The discussion here will not directly
address representation, algorithm, or implementation.

The Layered Abduction Model

Each layer of interpretation, or more precisely, each locus of hypothesis formation (leaving open the possibility
of more than one per layer) I call an agora after the meeting place where the ancient Greeks would gather
for dialog and debate. The picture is that an agora is a place where hypotheses of a certain type gather
and contend and where under good conditions a consensus hypothesis emerges. In typical cases the emerging
interpretive hypothesis will be a composite hypothesis, coherent in itself, and with different sub-hypotheses
accounting for different portions of the data. For example in vision the edge agora can be thought of as the
location where a set of edge hypotheses are formed and accepted, each specific edge hypothesis accounting for
certain specific data from lower-level agoras.

Our model calls for the information processing at each agora to be decomposed into three functionally
distinct types of activity, which we can call evocation ofAypotheses, instantition of Ihypotheses, and composition
of h•ipoth&eses.

Suocation can occur bottom-up, a hypothesis being stimulated for consideration by the data presented
at the layer below. In diagnosis we would say that the presence of a certain finding suggests that certain

405

hypotheses are appropriate to consider. More than one hypothesis may be suggested by a given datum.
-Evocation can also occur top-down, either as the result of priming (an expectation from the level above), or as
a consequence of data-seeking activity from above, which can arise from the need for evaluation. Evocations
can in general be performed in parallel, and need not be synchronized.

Instantationt occurs when each stimulated hypothesis is independently scored for confidence (eialuation),

and a determination is made of what part or aspect of the data the hypothesis can account for (determination
of ezplanatory scope). This process is in general top-down, and in order to instantiate itself a hypothesis may
seek data which was not part of its original stimulus'. The data which are accounted for may or may not be
identical to the data upon which the hypothesis was scored, or the data which did the evoking.

In the course of instantiation the hypothesis set may be expanded by including subtypes and supertypes
of high-confidence hypotheses 2. Instantiation is typically based on matching against prestored patterns of
features, but instantiating "by synthesis" is also possible whereby the features to match are generated at run
time. The result of a wave of hypothesis instantiation is a set of hypotheses, each with some measure of
confidence, and each offering to account for some portion of the data. Usually many of the evoked hypotheses
can be ruled out, and will not form part of the result. Since in a wave of instantiation hypotheses are considered
independently of each other, this too can go on in parallel.

Composition occurs when the instantiated hypotheses interact with each other and (under good conditions)
a coherent best interpretation emerges. Note that, as this stage begins, each hypothesis has both a confidence
value, and a body of data that it can account for. In the end some hypotheses will have been incorporated
into the composite hypotheses, some will have been excluded, and perhaps some will be in limbo as a result
of some remaining ambiguity of interpretation.

Strategy for Composition of Hypotheses

For hypochesis composition an overall abduction problem has been set up: to account for all of the (reliable
and important) data presented by the agora(s) immediately below. A series of small abduction problems is
also set up: to account for each particular datum. A basic strategy is to try to solve the overall abduction.
problem by solving a sufficient number of smaller and easier abduction problems. We begin by solving the
easiest small abduction problems, the ones in which we can have the most confidence. If a certain hypothesis is
the only plausible ezpianation for some finding (it accounts for the finding and its local-match confidence value
is not too low), then it is entitled to high confidence, and entitled to be accepted into the overall composite
hypothesis that represents the solution to the overall abductive problem.

Let us call a hypothesis "BELIEVED" when it has been accepted as the correct interpretation for the
data it offers to account for. Data accounted for by BELIEVED hypotheses are "ACCOUNTED-FOR"

and are considered to be successfully interpreted. Let us call a hypothesis "ESSENTIAL" if it is the only
plausible explanation for some reliable datum (which is typically a hypothesis at the next lowest level that
is BELIEVED). Thus an ESSENTIAL hypothesis scores positively and accounts for data items for which
there are no other good interpretatiohs. ESSENTIAL hypotheses are BELIEVED. Information about the
explanatory relationships is thus used to increase the confidence in certain hypotheses.

If not all of the data are yet accounted for, the next step is to propagate the consequences of the initial set of
BELIEVED hypotheses. These consequences arise as the result of causal and statistical relationships between
hypotheses typically stored as compiled knowledge in advance of processing. Thera, are several kinds of these
relationships-I describe them here just briefly. Hypotheses at the same level (in the same agora) can have
relationships of compatibility, entailment, or incompatibility, which can be a matter of degree. Propagating
the consequences of BELIEVED hypotheses by taking account of these relations requires the appropriate
adjustment of scores for related viable hypotheses outside of the BELIEVED set, or other appropriate actions.
For example a hypotheses incompatible with a BELIEVED hypotheses can be rejected categorically, and
removed from further consideration. Another kind of relationship is where a hypotheses "EXPECTS" the

I Under certain data.driven circumstances it is good enough just to score on the basis of voti•g by the stimulating dats from
below, and then no top.down processing need occur, at least for scoring.

In general the spae. of potential hypotheses can be assumed to be hierarchically organized by Level of specificity.

406

presence of data items at the next lower level (this too can come in degrees). Propagating such an expectation
requires evoking the hypothesis corresponding to the expectation (priming) if it has not already been evoked.
if it has, it can be given an extra measure of confidence. If a strong expectation is contradicted by the data.

an anomaly has occurred, and special handling is appropriate.3

A hypothesis is a "CLEAR-BEST" if it is the distinctly best explanation (by confidence level) of some

data item. CLEAR-BEST hypotheses are BELIEVED too. Note that an ESSENTIAL or CLEAR-BEST

hypothesis is the uniquely best explanation for some data items-it is a local abductive conclusion. If not

all of the data has been accounted for, the consequences of CLEAR-BESTs are propagated similarly to the
ESSENTIAL hypotheses. Note that this propagation can result in more hypotheses becoming CLEAR-BESTs,
e.g., if high-scoring explanatory competitor- are removed from consideration, or if propagating consequences
readjusts hypothesis scores so that a clear winner emerges.

If the ESSENTIAL hypotheses together with the CLEAR-BESTs do not account for everything, we have
done all we can do on the current evidence without resorting to guessing. Generally our best strategy under
these circumstances would be to go back for more data. In fact we are in a position to guide the data gathering
by focusing on the problem of discriminating between alternative good explanations for significant data items.
This is a form of top-down processing we may call "focused disambiguation". Sometimes, however, we have all
of the relevant data we are going to get, for example we may be unable to ask the speaker to repeat. Under these
circumstances we still have the means available to do some clever guessing. We can begin to include hypotheses
which are best explanations for certain findings, but which are not far enough ahead of the alternatives, or not
of high enough local-match confidence, to enable them to be accepted confidently. These WEAKLY-BESTs
constitute the best guesses we can make under the circumstances. Actually some of them can be accepted
with a fairly high degree of confidence. A finding can be made to vote for the hypotheses which best explain it
(with voting strength in proportion to the measure by which the hypothesis beats its nearest competitor). The
idea is that two different findings, both pointing to the same hypotheses as the best explanation constitute
(apparently) independent sources of evidence for the hypothesis, i.e., constitute converging lines of inference
for the hypothesis. Hypotheses with more votes can be accepted more confidently than hypotheses with fewer
votes, and perhaps enough can 6e confidently accepted to complete the explanation.

Now in general relationships (spatial, grammatical, etc.) btween the parts of a hypothesis are significant
and need to be maintained. Some of these relationships can be seen aa. the filling of related roles in higher-layer
interpretive hypotheses, for example a diagnostic hypothesis of a flow going :n between A and B would bind
A-related and B-related data together into relationships. But some other relationships (e.g. spatial in low level
vision) are presumably compiled into the hardware, so that the appropriate constraints are applied between
neighboring hypotheses as an automatic result of the operation of-the machinery. Still and all, tike net impact
on hypothesis composition of these relationships can probably be captured by basic relationships of mutual
sympathy and antipathy.

At the end of a. wave of composition activity certain hypotheses have been accepted as BELIEVED. These
constitute a confident best explanation for a portion of the data. Often there will also remain a set of
unexplained data, and a set of viable hypotheses which, at various levels of confidence, offer to explain that
data, but for which no clear solution is apparent. Nevertheless the BELIEVED hypotheses may be enough
data for the next higher layer to do its business; resolving the remaining ambiguities may be unimportant in
the context. Alternatively, remaining ambiguities may get resolved later as a result of further processing at
that layer stimulated by downward-flowing expectations.

Downward- Flowing Processing

We may distinguish at least four sources or functions of top-down processing. One is that the data-seeking
needs of hypothesis evaluation can provoke computation of the data (top-down evocation and evaluation of
a hypothesis) as was discussed above. Another that was mentioned is that expectations based on firmly
established hypotheses at one layer can prime certain data items (i.e. evoke consideration of them and bias

3 Throughout the processing various'kinds of anoma.lies can occur. Anomalies are detected and recorded, and typically stimulate
special handling; from here on I describe the course of processing only for when everything goes smoothly.

1407

their score upward). A third way is that hypotheses that are uninterpretable as data at the higher levei - no
explanation can be found) can be "doubted" and reconsideration of them provoked. Finally data pairs that are
jointly uninterpretable, as for example two words, the co-occurrence of which cannot be reconciled syntactically
or semantically, can be considered to be incompatible (to some degree of strength) and recomputation of the
composite hypothesis can be provoked from above. In these ways higher-level interpretations can exert a
strong influence on the formation of hypotheses at lower levels, and layer-layer harmony is a two way street.

Recovering from Mistakes

Mistakes in Initial Hypothesization and Scoring

a Hypothesis suggestions come from above as well as below, thus hypotheses which would be missed on
bottom-up processing can still be considered.

* If suggestions are inadequate, e.g. no hypotheses are evoked c.overing a segment of data, or all suggestions
score low, exhaustive search (though hierarchically organized for efficiency) is undertaken to broaden the
hypotheses being considered, thus hypotheses that are missed on suggestion.based stimulation can still
be considered.

"- Hypothesis evaluation is augmented by en..ouragement and discouragement (resulting from positive
associations and incompatibilities) from other hypotheses in the same agora. Thus the local-match
confidencq score is improved by contextual information.

" Hypotheses evaluation is augmented by encouragement and discouragement based on expectations de-
rived from confident higher-level hypotheses. This constitutes another kind of context-based improve-
ment and check on the the confidence score.

"" The acceptance of a hypothesis is based on how well it surpasses explanatory alternatives, thus after
recognition-based scoring, a significant additional uncertainty-reducing operation is.performed before
acceptance.

" Strength of confidence is supported by "the consilience of inductions" whereby converging lines of infer-
ence all support the same hypotheses. Thus system performance should be robust.

"" Acceptance, when it finally occurs, is still tentative and liable to be overthrown by relationships to the
mass of other confident hypotheses.

Mistakes in Choice of Initial Islands of Confidence

" Actually the islands are very strong. They are never based only on a hypothesis having high initial
confidence; it is at least required to also be a distinctly best explanation for some datum.

" Inconsistencies lead to detected anomalies, which lead to special strategies that weigh alternative courses
of action. Originally accepted hypotheses can collide with others and subsequently called into question.

" Inconsistency collisions can occur laterally, or from above (violation of expectation, or from below (vi-
olation of expectation), and can come in degrees of strength. In effect there is broad cros checking of
accepted hypotheses.

" An inexplicable datum should be doubted and called into question-it may not really be there. If
after re-evaluation the datum remains strong despite the doubt, then the system can detect that it has
encountered the limits of its knowledge, and is.positioned to learn a new hypothesis category.

" Sometimes two parts of a compound hypothesis are inconsistent in context, where the judgment of higher
levels is that they cannot both occur, based upon the inability to form a consistent hypothesis at the
next higlhest level. (It scems that this can account for unstable perceptual objects like the Necker cube.)

o08

Summary of the Control Strategy

We may summarize the control strategy by saying that it employs multi-level and multiple intra-level island-
driven processing. Islands of relative certainty are seeded by local abductions and propagate laterally (incom-
patibilities, positive associations), downwards (expectations), and upwards (firm items of data to be accounted
for). Processing occurs concurrently and in a distributed fashion. Higher levels provide soft constraints through
the impact of expectations on hypothesis evoration and scoring, but do not strictly limit the hypothesis space.

Extension of the Model to Multi-Modal ?erception

"The basic idea in extending the model to multi-modal prcception, i.e. perception that combines the information
from more than a single sense, is that combining information from different senses is functionally no different
than combining information from different channels within one sente modality. Different channels within the
visual system deliver up the data useful at a certain !c.tc to form hypo'heses about the locations of 3-d objects
within the visual space; similarly, different senses ',eliver up th• data useful for forming hypotheses about, say,
object identity.

One special processing problem for multi.sense integration is the problem of identifying a "That" delivered
up by one sense, with a "That" delivered uip by another. Which person is the one that is speaking? Is it
the same object being seen in the infrared as that being seen in x-rays? Logically, it should be possible for
information derived from one sense to help with resolving distinct objects within the other sense. There is
actually some evidence that vision can hi.lp hearing to separate distinct streams of tones (32, p.83] and hear
the tone stream as two distinct auditory objects.

One useful computational support for cross modal perception is provided by correlated spatial representa-
tions, as our visual maps are correlated with our auditory maps of the space surrounding us. Thus, for example,
"a robot should bring together separate channels of information from its senses of "sight" and "touch" into
"a unified spat;.'aL representation of its immediate surroundings. Moreover this "hot map" of its surroundings
should be mointained continually, and updated and revised as new information arrives and is interpreted. This.
hot map, with its symbols on it, can be viewed as the resulting composite hypothesis formed at "the agora of
objects in the immediate surroundings" by a process of abductive interpretation.

Yet some senses are not particularly spatial (e.g. smell). We can envision computational support for
cross-modal p,.rception in the form of pattern-based recognition knowledge, where the compiled recognition
patterns for an object category rely on features from more than one sense. This is very analogous to medical
diagnosis where a disease is recognized from evidence from such disparate sources as lab tests, x-rays, and
patient history. Such recognition knowledge can be used to support an "agora of the patient's disease" in much
the same manner as the robot mentioned above maintaines its map of objects in its surroundings. Somewhat
further along we can envision a robot that maintains an "agora of understanding" whereby it monitors some
complex device and continually maintains a causal understanding of its. Much much further along we can
imagine building a robot scientist whu maintains an "agora of theoretical understanding" whereby its best
understanding of the world is maintained.

Summary: Perception as Compiled Cognition

The formation of a composite best-explanation hypothesis at any level in perception is treated as a problem
of abductive inference, similar to diagnosis and theory formation. Thus this rnr.del brings a knowledge-based
problem-solving approach to the analysis of perception, treating perception as a kind of "compiled" cognition.

Acknowledgments

The model described here is an outgrowth of research on diagnostic reasoning that has gone on at Ohio State
Laboratory for Al Research over the past decade in the context of a developing theory of generic information

409

processing tasks `41, (6], ;5], [71, (8], r421, (43], (44]. Various facets of abductive reasoning have been investigated,
especially the problem of assembling composite explanatory hypotheses ,24], L25', (261, (1], L201, !16!, :'5;, .45:,
"231 '22[.

This work has been supported by the Defense Advanced Research Projects Agency under RADC contract
F30602-85-C-000; and the NIH Heart, Lung and Blood institute, grant number I ROI HL38776-01. The
development of the layered abduction model has benefited especially from discussions with B. Chandrasekaran,
Susan Josephson, Dean Allemang, Ashok Goel, Tom Bylander, Michael Tanner, Terry Patten, and Jordan
Pollack. as well many discussions at the Image Understanding Workshop sponsored by DARPA/ ISTO in April
1988.

References

V. D. Allemang, M. C. Tanner, T. Bylander, and J. R. Josephson. On the computational complexity of
hypothesis assembly. In Proc. Tenth International Joint Conference on Artificial Intelligence, Milan,
August 1987.

j21 Jerome S. Bruner. On perceptual readiness. Psyichological Revuiew, 64(2):123-152, 1957.

13' B. G. Buchanan, Sutherland, G. L., and E. A. Feigenbaum. Heuristic DENDRAL: a program for gener.
ating ezplanatory hypotheses in organic chemist y, pages 54-69. Edinburgh University Press, Edinburgh,
1969.

4' B. Chandrasekaran. Generic tasks in knowledge-based reasoning: High-level building blocks for expert
system design. IEEE Expert, pages 23-30, 1986. Fall 1986.

So' B. Chandrasekaran. Towards a functional architecture for intelligence based on generic information
processing tasks. In Proceedings of the Tenth International Joint Conference on Artificial Intelligence,
1987.

A6 B. Chandrasekaran. Generic tasks as building blocks for knowledge-based systems: The diagnosis and
routine design examples. Technical report, The Ohio State University, 1988.

.7 B. Chandrasekaran, F. Gomez, S. Mittal, and J. W. Smith. An approach to medical diagnosis based on
conceptual structures. In Proceedings of the Sixth International Joint Conference on Artificial Intelligence,
pages 134-142, 1979.

:8] B. Chandrasekaran and S. Mittal. Conceptual representation of medical knowledge for diagnosis by
computer: Mdx and related systems. In M. Yovits, editor, Advances in Computers, volume 22, pages
217-293. Academic Press, 1983.

'9] E. Charniak. A neat theory of marker passing. In Proceedings of AAAI-86, volume 1, pages 584-588.
AAAI, Morgan Kaufmann, August 1986.

:10] Eugene Charniak and Drew McDermott. Introduction to Artificial Intelligence. Addison Wesley, 1985.

Ill Venugop" Rao Dauigi. Word Sense Disambigution in Descriptive Tezt Interpretation: A Dual-Route
Parsimonaso Covering Model. PhD thesis, University of Maryland, College Park, 1988.

'12] Johan de Kleer. Reasoning about multiple faults. Al Magazine, 7(3):132-139, August 1986.

:131 R. Ennis. Enumerative induction and best explanation. The Journal of Philosophy, LXV(18):523-529,
September 1968.

":141 Jerry Fodor. The Modularity of Mind. Bradford Book, 1983.

:15; Ashok God, J. Ramanujan, and P. Sadayappan. Towards a 'neural' architecture for abductive reasoning.
In Proceedings o/the Second Internatwnal Conference on Neursl Networks, volume 1, pages 681-688,
1988.

410

L161 Ashok Goel, P. Sadayappan, and John R. Josephson. Concurrent synthesis of composite explanattor'
hypotheses. In Proceedings of the Seventeenth International Conference on Parallel Processing, pages
156-160, auguist 1988.

[17] Richard L. Gregory. Perception as hypotheses. In Richard L. Gregory, editor, The Ozford Companion to
the Min•, pages 608-611. Oxford University Press, 1987.

[18] N.R. Hanson. Patterns of Discovery. Cambridge University Press, 1958.

T19] Gilbert Harman. The inference to the best explanation. Philosophical Review., LXXIV:88-95, January
1965.

":20] John Josephson. A framework for situation assessment: Using best-explanation reasoning to infer plans
from behavior. In Proceedings of Ezpert Systems Workshop, pages 76-85, April 1987.

[211 John R. Josephson. Ezplanation and Induction. PhD thesis, The Ohio State University, 1982.

[221 John R. Josephson. Reducing uncertainty by using explanatory relationships. In Proceedings of the Space
Operations Alutomation and Robotics Conference.1988 (Soar-88), pages 149-151, 1988.

[23] John R. Josephson. Towards a generic architecture for layered interpretation tasks-implications for plan
recognition. Technical report, The Ohio State University, 1988.

ý24] John R.. Josephson, B. Chandrasekaran, and Jack Smith, Jr. Assembling the best explanation. In
Proceedings of the IEEE Workshop on Principles of Knoowledge-Based Systems, pages 185-190, Denver,
Colorado, December 1984. IEEE Computer Society. A revised version by the same title is available as a
technical report.

:25! John R. Josephson, B. Chandrasekaran, Jack Smith, Jr., and Michael C. Tanner. Abduction by classifi-
cation and assembly. In PSA 1986 Volume One, volume 1, pages 458-470, East Lansing, Michigan, 1986.
Philosophy of Science Association.

i261 John R. Josephson, B. Chandrasekaran, Jack Smith, Jr., and Michael C. Tanner. A mechanism for forming
composite explanatory hypotheses. IEEE Transactions on Systems, Man and Cybernetics, Special Issue
on Causal and Strategic Aspect. of Diagnostic Reasoning, SMC-17(3):445-54, May,June 1987.

f271 Imrmanuel Kant. Critique of Pure Reason. St. Martins Press, (1968), New York, 1787. tr. Norman Kemp
Smith.

[281 V.R. Lesser, R.D. Fennell, L.D. Erman, and R.D. Reddy. The Hearsay II speech understanding system.
IEEE Transaetions on Acoustics, Speech and Signal Processing, ASSP-23:11-24, 1975.

[29] Margaret Livingstone and David Hubel. Segregation ofform color, movement, and depth: Anatomy,
phisiology, and perception. Science, 240, May 1988.

[30] William G. Lycan. Epistemic value. Synthese, 64:137-164, 1985.

[31] David Marn. Vision. W. H. Freeman and Company, 1982.

[32] Dominic Wi'liam Masso. Speech Perception by Ear and Eye:A Paradigm for Psychological Inquiry.
Lawrence Erlbaun Associates, New Jersey, 1987.

L33] Randolph A. Miller, Harry E. Pople, Jr., and Jack D. Myers. Internist - i, an experimental computer-based
diagnostic consultant for general internal medicine. Neuw England Journal of Medicine, 307:468-476, 1982.

134] R. S. Patil. Causal representation of patient illness for elecrolyte and acid-base diagnosis. Ph. D Thesis,
1981.

[35] J. Pearl. fDistributed revision of composite beliefs. Artificial Intelligence, 33(2):173-215, October 1987.

[361 Charles S. Peirce. Abduction and induction. In Justus Buchler, editor, Philosophical Writings of Peirce,
chapter 11, pages 150-156. Dover, 1955.

411

037] Charles S. Peirce. Perceptual judgments. In Justus Buchier, editor, Philosophical Writings of Peirce,
pages 302-305. Dover, 1955.

[38] H. Pople. On the mechanization of abductive logic. Proceedings of the Third International Joint Confer.
ence on Artificia Intelligence, pages 147-152, 1973.

ý(39] James Reggia. Abductive inference. In Kamal N. Karna, editor, Proceedings of The Expert Systemns in
Government Symposium, pages 484-489. IEEE Computer Society Press, 1985.

;4 0] James A. Reggia, Barry T. Perricone, Dana S. Nau, and Yun Peng. Answer justification in diagnostic

expert systems-part 1: Abductive inference and its justification. rEEE Transactions on Biomedical
Engineering, BME-32(4):263-267, April 1985.

(41] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(l):57-95, 1987.

(421 Jack Smith, Jr., John R. Svirbely, Charles A. Evans, Pat Strohm, John R. Josephson, and Michael C.
Tanner. Red: A red-cell antibody identification expert module. Journal of Medical Systems, 9(3):121,-138,
1985.

(43] Jack W. Smith, Jr. RED: A Classiicatory and Abductive Expert System. PhD thesis, Ohio State Univer-
sity, August 1985.

;44] Jon Sticklen. MIDX.2: An Integrated Medical Diagnostic System. PhD thesis, The Ohio State University,
1987.

[451 Mike Tanner and John Josephson. Abductive justification. Technical report, Ohio State University
Laboratory for Al Research, 1988.

[46] Paul Thagard. Computational Philosophy of Science. Bradford Books / MIT Press, 1988.

412

Appendix L

Papers and Technical Reports

What follows is a list of papers and technical reports that were supported wholly
or partially by the project. Abstracts are included for some of them. Copies or
reprints are available on request with a nominal charge to cover costs. Write
to: LAIR Technical Reports, CIS Dept., The Ohio State University, 228 Bolz
Hall, 2036 Neil Avenue Mall, Columbus, OH. 43210, U.S.A. Please include
the symbolic code for any reports requested. The symbolic code is the item
associated with each entry which appears between the (square brackets].

1. B. Chandrasekaran, Generic Tasks in Expert System Design and Their
Role in Explanation of Problem Solving, appears in Proceedings of the
Workshop on Al and Distributed Problem Solving, National Academy of
Sciences Office of Naval Research, 1985, May 16-17. Also appeared in in
Proceedings of the Expert Systems Workshop, DARPA, April 1986, pages
127-135. (85-BC-EXPROB] (This paper has been superseded by (87-BC-
EXPCON].)

2. B. Chandrasekaran, J. Josephson and A. Keuneke, Functional Representa-
tions as a Basis for Generating Explanations, appeared as an invited paper
in Proceedings of the 1986 IEEE International Conference on Systems,
Man and Cybernetics, October 14-17, 1986, IEEE, Atlanta, Georga. (86-

413

BC-FUNEXPL]
ABSTRACT: It is generally agreed that systems used to provide consul-
tation or advice need to explain their knowledge and problem solving in
order to be acceptable and useful. We have been developing a framework
that unifies problem solving, deep cognitive models, and explanation. We
have earlier proposed a functional representation for modeling understand-
ing of how devices work. In this paper we outline how plans can be
thought of as abstract devices, and how aspects of a planner's behavior
can be explained by using this representation.

3. B. Chandrasekaran, Generic Tasks in Knowledge-Based Reasoning: High-
Level Building Blocks for Expert System Design, appeared in IEEE Expert,
Fall 1986. pages 23-30. (86-BC-IEEEX]
ABSTRACT: In the view of our research group at the Laboratory for Ar-
tificial Intelligence Research, the field of expert systems is stuck in a level
of abstraction that obscures the essential nature of the information pro-
cessing tasks that current systems perform. The available paradigms often
force us to fit the problem to the tools rather than fashion the tools to
reflect the structure of the problem. This situation is caused by a failure to
distinguish between what we might call the information processing level
(or the knowledge level, in Allen Newell's words) and the implementa-
tion language level. Most available languages, be they rule-, frame-, or
logic-based, are more like assembly languages than high-level program-
ming languages with constructs essential for capturing the essence of the
information processing phenomena. We wish to provide a critique of the
abstraction level of the currently dominant approaches and propose an al-
ternative level of abstraction. The proposed alternative not only clarifies
the issues but also makes possible tools and approaches that help in system
design, knowledge acquisition, and explanation.

4. B. Chandrasekaran and J. Josephson, Explanation, Problem Solving, and
New Generation Tools: A Progress Report, appears in the Proceedings of
the Expert Systems Workshop, April 1986, Science Applications Interna-
tional Corporation under contract to DARPA, April, 1986, Pages 101-126.
£86-BC-NEWGENI
ABSTRACT: This is a progress report on our project on "Explanation in
Planning and Problem Solving Systems". It is being written approximately
at the 15-month mark. Conceptual frameworks for generation of explana-
tion of two kinds have been built: one for explaining how decisions are

414

made during problem solving, explaining control strategies as well as other
aspects of run-time behavior, and the other to give a planner the capacity to
represent an understanding of its own plan fragments, and thus to explain
to the user how a plan is meant to work. A prototype mission planning
system with some explanation capabilities has been built, and a nunber
of high-level knowledge-based system construction tools have been built
with features that facilitate knowledge acquisition, system implementation
and explanation generation. Two of these tools (DSPL and HYPER) are
discussed in this report, one (CSRL) predates this explanation project and
has been extensively reported on, and several others are in various stages
of design and implementation. Together they will constitute a high-level
tool box for the construction of knowledge-based systems. They will be
useful for building a variety of planning, diagnostic, abductive, and re-
trieval systems, and systems which are combinations of these types. These
tools have as design features a number of "hooks" for the attachment of
explanation synthesis tools.

In the first stage of this project, we have chosen "routine planning" as a task
for which to build a prototype. In particular. a planning task for Offensive
Counter Air (OCA) missions was chosen for analysis and implementation.

5. B. Cbandrasekaran, J. Josephson, A. Keuneke and D. Herman, An Ap-
proach to Routine Planning, appeared in Proceedings of the Knowledge-
Based Planning Workshop, Austin, Texas, December 1987, pages 15.1-
25.10. (86-BC-PLANNING] (This paper has been superseded by [86-BC-
PLANEXPLAIN].)

6. B. Chandrasekaran, J. Josephson, A. Keuneke and D. Herman, Building
Routine Planning Systems and Explaining Their Behavior. This paper su-
persedes (86-BC-PLANNING] and is to appear in the International Journal
of Man-Machine Studies in 1989. [86-BC-PLANEXPLAIN]

ABSTRACT: It has become increasingly clear to builders of knowledge-
based :systems that no single representational formalism or control construct
is optimal for encoding the wide variety of types of problem solving that
commonly arise and are of practical significance. In this paper we iden-
tify a class of problem solving activities which we have labeled routine
planning. We consider the constructs necessary to represent the problem
solving which appropriately characterizes this class, and describe DSPL, a
high-level language designed specifically to encompass the required knowl-
edge structures and control methodology for routine planning. Finally, we

415

consider what type of structure is appropriate to represent an agent's un-
derstanding of how the plan itself works.

7. B. Chandrasekaran and A. Keuneke, Classification Problem Solving: A
Tutorial From An Al Perspective, appears as an invited paper on "Pattern
Recognition Theory and Applications" in Proceedings of the NATO Ad-
vanced Study Institue, June 8-20, 1986, Spa, Belgium; appears as chapter
31 of Pattern Recognition Theory and Applications, Springer-Verlag Pub-
lishers, edited by P. Devijver and 3. Kittler, pp. 393-409, 1986. [86-BC-
TUTO"

8. B. Chandrasekaran and M. Tanner, Uncertainty Handling in Expert Sys-
tems: Uniform Vs. Task-Specific Formalisms, appears in Uncertainty in
Artificial Intelligence, pages 35-46, Editors, L. N. Kanal and J. Lemmer,
Publisher, North Holland Publishing Company, 1986. (86-BC-UNCERT]

9. Jesse F. Dillard, Kamesh Ramakrishna, B. Chandrasekaran, Knowledge-
Based Decision Support System for Military Procurement, appears in Ex-
pert Sysiems for Business, Barry 0. Sliverman, editor, Addison-Wesley,
1987, pp. 120-139. [86.JD.MILPRO]

10. S. Hashemi, B. Hajek, D. Miller, B. Chandrasekaran and J. Josephson,
Expert Systems Application to Plant Diagnosis and Sensor Data Validation,
appears in Proceedings of The Sixth Power Plant Dynamics, Control and
Testing Symposium, Knoxville, Tennessee, April, 1986. (86-SH-SENSOR]

11. D. Herman, 3. Josephson and R. Hartung, Use of DSPL for the Design of a
Mission Planning Assistant, appears in Proceedings of the IEEE Expert Sys-
tems in Government Symposium, IEEE Computer Society, October,1986,
Pages 273-278. (86-DH-DSPL]

12. W. Punch and J. Josephson, A Classification Approach to the Diagnosis of
Malfunctions in Complex Mechanical Systems, OSU CIS LAIR Technical
Report. (86-WP-MALFUN]

ABSTRACT: Classification problem solving provides a powerful method-
ology for diagnosis of faults in complex mechanical systems. Hierarchical
representations of such systems organize the problem solving so that is is
modular and computationally efficient. This approach incorporates knowl-
edge of four related but distinct types; matching knowledge, accounts-for
knowledge, expectation knowledge and decomposition knowledge. How

416

these knowledge types are used in diagnosis is discussed, as well as an
overall system architecture. Examples from existing systems are provided.

13. W. Punch, M. Tanner and S. Josephson, Design Considerations for Peirce,
a High Level Language for Hypothesis Assembly, appears in Proceedings
Expert Systems In Government Symposium, IEEE Computer Society Press,
1986, October, Pages 279-281. (86-WP-PEIRCE]

ABSTRACT: Diagnosis is essentially a problem of abduction, that of infer-
ring a best explanation for a body of data. This has been recognized in the
design of many expert systems (RED, Internist. Dendral). Generating and
evaluating explanatory hypotheses, in order to satisfy explanatory goals,
is clearly a pervasive form of knowledge based reasoning. In this paper
we describe a particular strategy for abduction: the assembly of a com-
plete explanation from a set of simpler hypotheses. We identify the types
of knowledge needed for abductive-assembly, and discuss design consid-
erations for a programming tool (Pierce) for building expert systems and
subsystems which perform abductive assembly.

14. D. Allemang, M. Tanner, T. Bylander and 3. Josephson, On the Compu-
tational Complexity of Hypothesis Assembly, appears in the Proceedings
of the Tenth Internttional Joint Conference on Artificial Intelligence, Au-
gust.1987, Milan. Italy. (87-DA-ABDCOMP]

15. T. Bylander and B. Chandrasekaran, Generic Tasks for Knowledge-Based
Reasoning: The "Right" Level of Abstraction for Knowledge Acquisi-
tion, appears in International Journal of Man-Machine Studies, 1987,

.26, pp. 231-243. This is a revised edition of an earlier paper by the
same title which appeared in Proceedings of the Knowledge Acquisition
for Knowledge-based Systems Workshop, Banff, Canada, November, 1986.
[87-TB-KNOWAC]

ABSTRACT: Our research task has been to identify generic tasks-basic
combinations of knowledge structures and inference strategies that are pow-
erful for solving certain kinds of problems. Out strategy is best understood
by considering the "interaction problem", that representing knowledge for
the purpose of solving some problem is strongly affected by the nature
of the problem and by the inference strategy to be applied to the knowl-
edge. The interaction problem implies that different knowledge-acquisition
methodologies will be required for different kinds of reasoning, e.g. a dif-
ferent knowledge-acquisition methodology for each generic task. We illus-

417

trate this using the generic task of hierarchical classification. Our proposal
and the interaction problem call into question many generally held beliefs
about expert systems such as the belief that the knowledge base should be
separated from the inference engine.

16. T. Bylander, B. Chandrasekaran and J. Josephson, The Generic Task Toolset,
appears in Proceedings of the Second International Conference on Human-
Computer Interaction, Honolulu, Hawaii, August, 1987. [87-TB-TOOLSET]
Included as Appendix H to this report.

17. B. Chandrasekaran, What Kind of Information Processing Is Intelligence?
A Perspective On AI Paradigms and a Proposal, to appear in Source Book
on the Foundations of AI, Partridge and Wilks, Editors, Cambridge Uni-
versity Press, 1988. [87-BC-PARADI] Included as Appendix I to this
report.

18. B. Chandrasekaran, A. Goel and D. Allemang. Connectionism and Infor-
mation Processing Abstractions: The Message Still Counts More Than the
Medium, appears in The Journal of.Behavioral and Brain Sciences, 1988,
as a commentary on Paul Smolensky's paper entitled "On the Proper Treat-
meat of Conaectionism"; appears in Al .aga:ine. Winter 1988, pp. 24-34.
[87-BC-CONNECT] (Expanded version of parts of [87-BC-PARIADI], this
paper is superseded by (88-BC-CONPROAB].)

19. B. Chandrasekaran, J. Josephson and K. Schwan, Artificial Intelligence
and Concurrent Processing, OSU CIS LAIR Technical Report. [87-BC-
CONPRO]

20. B. Chandrasekaran, M. Tanner and J. Josephson, Explanation: The Role
of Control Strategies and Deep Models, appears in Expert Systems: The
User Interface, Ablex Press, James Hendler, ed., 1987. (87-BC-EXPCONI
(This paper subsumes [85-BC-EXPROB] and [87-BC-EXPLAN] and has
been superseded by [89-BC-EXPLAN].)

21. B. Chandrasekaran and W. Punch. Hierarchical Classification: Its Use-
fulness for Diagnosis and Sensor Validation, in Proceedings of the Sec-
ondAIAAINASAIUSAF Symposium on Automation, Robotics and Advanced
Computing for the National Space Program, March 9-11, Arlington, Vir-
ginia. [87-BC-HIERAR] (This paper subsumes [85-BC-SENCON] has
been superseded by [87-BC-VALIDA].)

418

22. B. Chandrasekaran, Towards a Functional Architecture for Intelligence
Based on Generic Information Processing Tasks, appears as an invited
address in the Proceedings of the Tenth International Joint Conference on
Artificial Intelligence, Milan, Italy, August 28, 1987.' [87-BC-IJCAI]

ABSTRACT: The level of abstraction of much of the work in knowledge-
based system (the rule, frame, logic level) is too low toprovide a rich
enough vocabulary for knowledge and control. I provide an overview of
a framework called the Generic Task approach that proposes that knowl-
edge systems should be built out of building blocks, each of which is
appropriate for a basic type of problem solving. Each generic task uses
forms of knowledge and control strategies that are characteristic to it, and
are generally conceptually closer to domain knowledge. This facilitates
knowledge acquisition and can produce a more perspicuous explanation
of problem solving. The relationship of the constructs at the generic task
.level to the rule-frame level is analogous to that between high level pro-
gramming languages and assembly languages. I describe a set of generic
tasks that have been found particularly useful in constructing diagnostic,
design and planning systems: diagnostic reasoning is used to illustrate the
approach. I describe the Generic Task Toolset for constructing knowledge
systems, which embodies the Generic Task approach. I conclude with the
implications of this approach for the functional architecture of intelligence.

23. B. Chandrasekaran, J. Smith and 3. Sticklen, "Deep" Models and Their
Relation to Diagnosis, Invited paper, Toyota Foundation Symposium on
Artificial Intelligence in Medicine, Tokyo, Japan, August 1986. OSU CIS
LAIR Techreport (87-BC-JAPAN] (Superseded by (88-BC-JAPAN].)

24. B. Chandrasekaran, J. Josephson and D. Herman, The Generic Task Toolset:
High Level Languages for the Construction of Planning and Problem Solv-
ing Systems, appears in Proceedings of the Workshop on Space Teler-
obotics, NASA and Jet Propulsion Laboratories, Pasadena, California, Jan-
uary 20-22, 1987. (87-BC-TOOLEV] (Superseded by [88-BC-ROUTINE].)

25. B. Chandrasekaran and W. Punch, Data Validation During Diagnosis: A
Step Beyond Traditional Sensor Validation, appears in Proceedings of
AAAI-87, pp. 778-782. [87-BC-VALIDA]

ABSTRACT: As diagnostic systems reach greater acceptance solving real
world problems more attention must be paid to the system's ability to deal
with conflicting data. That is, human experts show an ability to reach diag-

419

nostic conclusions using conflicting or absent data while many diagnostic
expert systems require correct data for correct conclusions. As an example
we show that the domain of mechanical systems traditionally. approaches
the problem by validating system with various kinds of redundancy in
sensor hardware before doing diagnosis. While such techniques are use-
ful. we propose that another level of redundancy provided by expectations
derived during diagnosis. We further show how such expectation-based
data validation is a natural part of diagnosis as performed by hierarchical
classification expert systems.

26. A. Goel. N. Soundararajan and B. Chandrasekaran, Complexity in Classifi-
catory Reasoning, appears in Proceedings of AAAI-87, July 13-18. Seattle,
Washington, Pages 421-425. [87-AG-CLASCOMP]

ABSTRACT: Classificatory reasoning involves the tasks of concept evalu-
ation and classification, which may be performed with use of the strategies
of concept matching and concept activation, respectively. Different imple-
mentations of the strategies of concept matching and concept activation are
possible, where an implementation is characterized by the organization of

'knowledge and the control of information processing it uses. In this paper"
we define the tasks of concept evaluation and classification, and describe
the strategies of concept matching and concept activation. We then derive
the computational complexity of the tasks using different implementations
of the task-specific strategies. We show that the complexity of performing
a task is determined by the organization of knowledge used in performing
it. Further, we suggest that the implementation that is computationally the
most efficient for performing a task may be cognitively the most plausible
as well.

27. A. Goel, J. Josephson and P. Sadayappan, Concurrency in Abductive Rea-
soning, appears in Proceedings of the Knowledge-based Systems Work-
sshop, DARPA, April 21-23, St. Louis, Missouri, pages 86-92, [87-AG-
CONCUR]

ABSTRACT: The information processing task in abductive reasoning is
to infer a best explanation for a set of data. Some typical subtasks of
this are generating hypotheses that can account for various portions of the
data, and synthesizing a composite hypothesis that best explains the whole
data set. In this paper we provide task-specific concurrent algorithms for
some of the subtasks of abductive reasoning. In particular we present a
blackboard architecture and a marker algorithm for the task of synthesizing

420

a composite hypothesis.

28. A. Goel. P. Sadayappan, 3. Josephson and N. Soundararajan, Distributed
Synthesis of Composite Explanatory Hypothesis, OSU CIS LAIR Technical
Report [87-AG-DISSYNCOMP]. (Superseded by [88-AG.CONSYNCOMP].)

29. A. Goel B. Chandrasekaran and D. Sylvan, JESSE: An Information Pro-
cessing Model of Policy Decision Making, appears in Proceedings of the
Expert Systems in Government Conference, 1987, October 19-23, Wash-
ington D.C., pages 178-187. [87-AG-JESSEESI,.C] (This is a revised and
expanded version of an earlier paper entitled "JESSE: A Conceptual Miodel
of Political Decision-Making", by A. Goel and B. Chandrasekaran, which
appeared in MAICSS-87, Chicago, Illinois, April 24-25, 1987, pages 133-,
135.)
ABSTRACT: JESSE is an experimental system that models some aspects

of Japanese energy policy decision making. It provides a functional archi-
tecture for decision making by the Japanese political and economic elite
in the domain of her energy supply security. The system is initiated by
supplying information about an energy-related event. It recognizes the

--. .threat posed by the event to Japanese energy supply security, and delivers
a set of plans appropriate for the situation. In deciding on a set of plans.
the system takes into account the state of Japanese foreign relations which
impose constraints on the choice of policy options. JESSE is an integrated
knowledge-based system. It contains multiple modules that perform the
generic information processing task of Classification, and a module that
performs the generic task of Plan Selection and Refinement. Each classifi-
cation module is made up of a small number of problem solving agents that
cooperatively accomplish the task of Classification. Similarly, the module
for Plan Selection and Refinement contains a small number of cooperating
planning agents. Thus, the complex information processing task of deci-
sion making is achieved collectively by an ensemble of problem-solving
and planning, agents acting in concert with one another.

30. J. Josephson, A Framework for Situation Assessment: Using Best-Explanation
Reasoning to Infer Plans from Behavior, appears in Proceedings of the
Expert Systems Workshop, DARPA, April, 1987, St. Louis, Missouri. [87-
JJ-FRAME1]

ABSTRACT: We propose a computational framework for battlefield situa-
tion assessment, describing how the relevant knowledge can be organized,

421

represented, and used in the service of problem solving. We describe how
the reasoning processes can be controlled to avoid excessive and impracti-
cal amounts of search, and indicate how the computations can be distributed
in a natural way to spread the burden over a community of separate proces-
sors and processing sites. This design extends previous work done at The
Ohio State LAIR on diagnostic reasoning and representation of plan un-
derstanding, and applies it to a particular military information-processing
problem, a species of the more general intellectual task of inferring plans
and intentions from behavior.

31. D. Herman and K. Chevrier. Using DSPL in INTERLISP-D, OSU CIS
LAIR Technical Report (87-DH-DSPLINTERLISP].

ABSTRACT: DSPL (Design Specialists and Plans Language) is a language
developed for implementing expert systems which perform a kind of design
problem solving. This document covers various details of loading and
interacting with DSPL on a Xerox 1108 Lisp machine (a.k.a. Dandelion),
running at least the Buttress release of LOOPS with at least the Koto
release of INTERLISP-D. It is assumed that the reader is familiar with
both LOOPS and INTERLISP-D on a Dandelion, as well as an exposure
to the theoretical motivations underlying the DSPL Language.

32. D. Herman, The DSPL Manual, OSU CIS LAIR Technical Report (87-
DH-DSPLMANUAL].

Three papers collected to assist the user in DSPL: [87-DH-DSPLINTERLISP],
(87.DH-DSPLTUTORIAL] and (86-DB-KNOWCO].

33. D. Herman and D. Brown, DSPL: Language for Routine Design and Plan-
ning, appears over four issues of Applied Artificial Intelligence Reporter,
April-July, 1987, Volume 4, Number 4-7, Pages 14-15, 14-15, 8-9, 15-19.
(87-DH-DSPLTUTORIAL]

34. D. Myers, 1. Davis and D. Herman, A Task Oriented Approach to Knowledge.
Based System for Process Engineering Design, appears in Computers In
Chemical Engineering, special issue on Al in Chemical Engineering Re-
search and Development, January, 1988. (87-DM.TASKAPP] (Superseded
by [88-DM-STILL].)

35. W. Punch and T. Bylander, CSRL: An Expert System Programming Lan-
guage, a tutorial series appearing in Applied Artificial Intelligence Reporter,
November and December of 1986 and January of 1987. [87-WP.AAIREP]

422

36. J. Josephson, B. Chandrasekaran, J. Smith and M. Tanner, A Mechanism
for Forming Composite Explanatory Hypotheses. This paper is a revised
and expanded version of an earlier paper by the same title which appeared
in IEEE Transactions on Systems, Man and Cybernetics, Special Issue on
Casual and Strategic Aspects of Diagnostic Reasoning, 1987, and which
subsumed a paper entitled "Abduction by Classification and Assembly",
presented at The Philosophy of Science Association Biennial Meeting for
1986 and appearing in PSA 1986, Vol. 1. 11is paper is OSU CIS Technical
Report [88-JJ-MECHANISM]. It is included as Appendix F tothis report.

37. B. Chandrasekaran, A. Goel and D. Allemang, Connectionism and Infor-
mation Processing Abstractions, appears in Proceedings of the AAAI spring
symposium on Parallel Models of Intelligence: How Can Slow Components
Think So Fast?, Stanford University, March 1988, pages 66-85. [88-BC-
CONPROAB] (A shorter version of this paper appeared in Brain and Be-
havioral Science as a commentary on Smolensky's paper "On the proper
treatment of Connectionism".)

ABSTRACT: Since Connectionism challenges some of the basic assump-
tions on which much of Artificial Intelligence research has been based, it
is important to examine the nature of representations and the differences
between the Symbolic and Connectionist in this regard. Even though Sym-
bolic and Connectionist systems may appear to yield the same function-
ality, we discuss how there is greater distinction between them than the
Connectionist architectures being mere implementations of corresponding
Symbolic algorithms. The two accounts differ fundamentally in terms
of representational commitments, and thus in principle they offer alterna-
tive information processing theories. Nevertheless, we argue that the hard
work of theory formation in Artificial Intelligence remains at the level of
proposing the right information processing abstractions, since they provide
the content of the representations. When, and if, we have Connectionist
implementations solving a variety of higher level cognitive problems, the
design of such systems will have these information processing abstractions
in common with the corresponding Symbolic implementations. The infor-
mation processing level specification of a theory of intelligence will then
lead to decisions about which transformations on representation are best
performed by means of Symbolic algorithms and which by Connectionists
networks. In essence we claim that while Connectionism is a useful cor-
rective to some of the basic assumptions of the Symbolic paradigm, for the
most of the central issues of intelligence Coanectioaism is only marginally

423

relevant.

38. B. Chandrasekaran, Design: An Information Processing-Level Analysis,
OSU CIS LAIR Technical Report [88-BC-DESIGN]. This is a draft version
of Chapter 2 of the book Design Problem Solving: Knowledge Structures
and Control Strategies, by D.C. Brown and B. Chandrasekaran. It is
included as Appendix G to this report.

39. B. Chandrasekaran and A. Qjoel, From Numbers to Symbols to Knowledge
Structures: Artificial Inelkarerce Perspectives on the Classification Task,
appears in IEEE Transacaions on Systems, Man and Cybernetics, Vol. 18,
No. 3, May/June 1988, pp. 415-424. [88-BC-FROMNO1 Included as
Appendix E to this report.

40,. B. Chandrasekaran, "Deep" Models and Their Relation to Diagnosis, ap-
pears in Artificial Intelligence in Medicine, Volume 1, Number 1, 1989,
pp. 29-40, Burgverlag. Tecklenburg, Germany. (88-BC-JAPAN] (It is a
revised version of [87-BC-JAPAN].)

ABSTRACT: In this paper we distinguish between deep models in the
sense of scientific first principles and deep cognitive models where the
problem solver has a qualitative symbolic representation that accounts for
how a system "works". We analyze diagnostic reasoahig as an informatiou
processing task, identifying the generic types of knowledge (and reasoning)
needed for the task to be performed adequately. If these are available an
integrated collection of generic problem solvers can produce a diagnostic
conclusion, The need for deep or causal models arises when some or all of
these types of knowledge are missing in the problem solver. We provide
a typology of different knowledge structures and reasoning processes that
play a role in qualitative or functional reasoning and elaborate on func-
tional representations as deep cognitive models for some aspects of causal
reasoning in medicine.

41. B. Chandrasekaran, Generic Tasks As Building Blocks for Knowledge-
Based Systems: The Diagnosis and Routine Design Examples, Appears in
Knowledge Engineering Review, 1989, pp. 183-210. [88-BC-ROUTINE]
(Supersedes [87-BC-HIERAR] and [87-BC-TOOLEV]). Included as Ap-
pendix D to this report.

42. K. Chevrier, M. Dejongh and 0. Fischer, Using DSPL in KEE, OSU CIS
LAIR Technical Report [88-KC-DSPLKEE].

4241

ABSTRACT: DSPL (Design Specialist and Plan Language) is a language
developed for implementing expert systems which perform routine design
problem solving. This document covers various details of loading and
interacting with DSPL in KEE. It assumes that the reader is familiar with
KEE, and has an exposure to the theoretical motivations underlying the
DSPL language.

.43. A. Gool, 3. Kolen and D. Allemang, Learning in Connectionist Networks:
Has the Credit Assignment Problem been Solved?, OSU CIS LAIR Tech-
nical Report [88-AG-CONNETS].

ABSTRACT: A central problem of learning in an information processing
system is that of credit assignment. This is usually constructed to be the
problem of identifying which components of the system are responsible
for incorrect system performance. In connectionist models this takes the
form of adjusting the weights of connections between the processing units.
in the network in accordance with the generalized delta rule. The success
of this scheme for learning in connectionist networks at modeling certain
aspects of human behavior has led to the claim that the credit assignment
problem has been solved. However, in this paper we suggest that the

.interpretation of the credit assignment problem on which this claim is
based is inadequate both computationally as well as epistemically. From
the computational perspective, a useful solution to the problem should be
efficient so that learning can take place in reasonable time. From the
epistemic viewpoint, the content of what is learned must be such that
the system can perform a given task not only for the specific cases on
which it was trained, but also for novel cases of the same task. We
report on two experiments which suggest that the learning scheme based
on the generalized delta rule ensures neither computational efficiency nor
epistemic adequacy. We reluctantly conclude that an adequate, general
solution to the credit assignment problem has not yet been found.

44. A. Goel, P. Sadayappan, and 3. Josephson, Concurrent Synthesis of Com-
posite Explanatory Hypotheses, appears in the proceedings of the Seven-
teeath International Conference on Parallel Processing, St. Charles, IL
Aug 15-19 1988. [88-AG-CONSYNCOMP] (This paper supersedes [87-
AG-DISSYNCOMPI.)

ABSTRACT: The information processing task of abduction is to infer a
hypothesis that best explains a set a data. A typical subtask of this is
to synthesize a composite hypothesis that best explains the data set from

425

elementary hypotheses that can explain various portions of the data. In
this paper, we present a computational model for concurrent synthesis of
composite explanatory hypotheses that can be realized on a distributed
memory, message passing, parallel machine. In this model, a process is
associated with each datum to be explained as well as with each elemen-
tary hypothesis that can explain some portion of the data, and the control
of processing alternates between the data and hypotheses' processes. In
each cycle of processing, the data and the hypotheses' processes view the
problem solving from their perspectives, and add to the growing com-
posite explanatory hypothesis until a best explanation is synthesized We
analyze the time complexity of the concurrent algorithms, and discuss the
architectural implications of the model.

45. A. Goel and B. Chandrasekaran, Integrating Model-based Reasoning and
Case-based Reasoning for Design Problem Solving, appears in the Pro-
ceedings of the AAAI Workshop on Al in Design, St. Paul, Minnesota,
August 1988. (88-AG-REASON]

ABSTRACT: Design is a complex information processing activity. What
problem solving strategy is appropriate for the design of a specific artifact
depends on what knowledge is available to the designer. One form in
which design knowledge is often available is that of previously designed
artifacts. For this reason, case-based reasoning is an attractive approach
to design problem solving. A main issue in case-based design is how to
adapt the structure of an existing design to achieve a new device function-
ality. This capability requires a causal understanding of how the structure
of a device enables the accomplishment of its function. Such a causal
understanding can often be expressed as a functional model of the de-
vice that specifies the designer's knowledge about the role of the various
components and their relations in the functioning of the device. The Func-
tional Representation scheme is a method for organizing and representing
an agent's causal understanding of devices. In this scheme, the agent's
understanding of the functioning of a device is expressed as behaviors that
compose the functions of its structural components into device functions.
In this paper, we illustrate how this organization of knowledge may enable
a designer to identify the portions of the device structure that need to be
modified to achieve a new functionality, and to reason about the effects
of these structural changes. The integration of this capability with that
of indexing, storing, and retrieving previous design cases can provide a
powerful strategy for efficiently solving complex design problems.

426

46. J. R. Josephson, A Foundation for Task-Specific Explanation for Community-
of-Minds Knowledge Systems, appears in the Proceedings of AAAI-88
Workshop on Explanation, August 22, 1988, St. Paul, Minnesota, pp.
87-89. (88-JJ-ENGRAMS]

47. John R. Josephson, Reducing Uncertainty by Using Explanatory Relation-
ships, appeared in the Proceedings of the Space Operations Automation
& Robotics Workshop sponsored by the USAF and NASA, Dayton, Ohio,
July 1988. [88-JJ-REDUCING]
ABSTRACT: Explanatory relationships can be used effectively to reduce
the uncertainty that remains after diagnostic hypotheses have been scored
using local matching.

48. A. Keuneke and D. Allemang, Understanding Devices: Representing Dy-
namic States, OSU CIS LAIR Technical Report (88-AK-DYNSTATES].

ABSTRACT: An agent's understanding of a device is limited by the incom-
pleteness of his representational model. Subsequent model- based reason-
ing can only be as good as the device model used. In order for the model
of a device to be considered a cognitive model, the representation must
provide for the organization and abstractions which cognitive agents bring
to bear during problem solving. In this paper we suppose an agent under-
standing a device. We identify conceptual transitions of device behaviors
that such a agent makes easily. and we argue for the necessity of a new
type of abstraction for model representations in order to provide such ca-
pabilities. Since the abstraction is particularly useful for cyclic processes,
we illustrate its usefulness in devices which possess cyclic behaviors.

49. A. Keuneke and D. Allemang, Exploring the No-Function-In-Structure
Principle, appears in Journal of Experimental and Theoretical Arntficial
Intelligence, Volume 1, pages 79-89, 1989. [88-AK-EXPLOR]

50. D. Myers, J. Davis and D. Herman, A Task Oriented Approach to Knowledge-
Based Systems for Process Engineering Design, OSU CIS LAIR Technical
Report [88-DM-STILL]. An earlier version of this paper appears in Com-
puters in Chemical Engineering, special Issue on Al in Chemical Engi-
neering Research and Development, January, 1988. (This paper supersedes
[87-DM-TASKAPP].)

ABSTRACT: Expert systems for process engineering design applications
provide a means of capturing not only calculations but also the decision-
making knowledge and efficient problem-solving methods of the design

427

expert. Many important design applications in this domain involve design
strategies and knowledge which are well structured. Our task-oriented
approach recognizes this structure in the design task and exploits it by
describing the design in terms of identifiable types of knowledge and a
specific problem-solving strategy. DSPL is an expert system programming
shell which allows knowledge characteristics of process engineering design
problems to be explicitly represented according to the design task structure
and offers. an enhanced programming framework over first generation tech-
niques emphasizing rule, frame, and logic levels. STILL, an expert system
for the design of sieve tray distillation columns, provides an application of
the DSPL language and a demonstration of the methodology.

51. Donald A. Sylvan, Ashok Goel, and B. Chandrasekaran, Analyzing Politi-
cal Decision Making from an Information Processing Perspective: JESSE,
to appear in the American Journal ofPolitical Science. [88-DS-JESSEI]
(This paper supersedes [88-DS-JESSEPOLITI.)

ABSTRACT: Political behavior is argued to result from interacting political
and information processing mechanisms. Political mechanisms deal with
the values, interests. and influence of the political actors, while information
processing mechanisms concern themselves with actors' use knowledge
and experience in exploring the space of choices and actions.

Information processing approaches are argued to provide a language for ex-
pressing theories of political decision making with greater precision than
before. This language also enables computational experimentation with
the political theories. The general information processing approach is il-
lustrated in detail for the specific domain of Japanese energy and foreign
policy decision making. A political theory of decision making by the
Japanese political and economic elite in the domain of her energy supply
security is developed from an information processing perspective. This
theory is embodied in an experimental system called JESSE, JESSE con-
tains multiple modules that perform the generic task of Classification, and
a module that performs the generic task of Plan Selection. The system
is initiated by supplying information about an energy-related situation. It
classifies the situation into types of threats posed to Japanese energy sup-
ply security and retrieves stored plans from memory. Its output can range
from decision not to take any action, to a large number of actions some of
which may seem contradictory.

428

The theory embodied in JESSE is argued to apply to political decision-
making situations in which there are -limits on institutional rivalry, the
members of the decision making group have been socialized similarly,
the problem domain is seen as sacrosanct, and there is substantial prior
analysis and planning. The issue of validating the theory is addressed, and
JESSE is found to be a plausible model of Japanese decision making in
the domain of her energy supply security.

52. D. Sylvan, A. Goel and B. Chandrasekaran, An Information Processing
Model of Japanese Foreign and Energy Policy Decision Making: JESSE.
This paper was presented at the Annual Meetings of the International Stud-
ies Association, St. Louis MO, March 30- April 2, 1988 and was presented
at the Seminar on Foreign and Defense Policy Decision Making, Mershon
Center, The Ohio State University, January 27-28. 1988. This paper em-
phasizes the political aspects of the JESSE System. Another report in this
collection, [87-AG-JESSEESIG], emphasizes the Artificial Intelligence de-
sign of the model. (Superseded by (88-DS-JESSE].)

53. S. Shum, J. Davis, W. Punch and B. Chandrasekaran, An Expert Sys-
tem Approach to Malfunction Diagnosis in Chemical Plants, appears in
Computers in Chemical Engineering, Vol. 12 No. 1, 1988, pp.27-36.

•[(88-SS-MALCHEMK

ABSTRACT: An efficient knowledge-based system approach to malfunc-
tion diagnosis in chemical processing plants is discussed. The approach
involves a hierarchical diagnostic structure in which the nodes represent
specific malfunction hypotheses. Instead of being a static collection of
knowledge, the hierarchy is a collection of small individual specialists co-
ordinated to arrive at an overall diagnosis. Each specialist contains com-
piled and qualitative domain knowledge for evaluating the malfunction
hypothesis. This malfunction hierarchy is particularly effective in han-
dling multiple symptom and multiple malfunction situations. Conclusions
are based on a working prototype system which has built and tested to
demonstrate the computational methodology.

54. M. C. Tanner and J. R. Josephson, Explanation and Abductive Justification,
appears in Proceedings of The Spring Symposium Series on Artificial Intel.
ligence In Medicine, Stanford University, March 22-24, 1988, pp. 95-96.
[88-MT-EXPLANATION] (This paper supersedes [87-MT.ABJUSTW].)

429

55. T. ByLander, D. Allemang, M. Tanner and J. Josephson, Some Results
Concerning the Complexity of Abduction, appears in Proceedings of The
Spring Symposium Series on Artificial Intelligence in Medicine, Stanford
University, March 22,23,24, 1988, pp. 13-14. [88-TB-COMPLEXITY]
(Superseded by [89-TB-COMPLEXITY)).

56. Tom Bylander, Dean Allemang, Michael C. Tanner, and John R. Joseph-
son, Some Results Concerning the Computational Complexity of Abduc-
tion, appears in the Proceedings of the First International Conference on
Principles of Knowledge Representation and Reasoning, Toronto, 1989,
pages 44-54. [89-TB-COMPLEXITY] (This paper supersedes [88-TB-
COMPLEXITY].)

ABSTRACT: The problem of abduction is to find the best explanation
of a set of data or observations. In this paper we focus on one type of
abduction in which the best explanation is the most plausible conjunction
of hypotheses that explains all the data. We then present several compu-
tational complexity results demonstrating that very restrictive conditions
must be satisfied for this type of abduction to be tractable (solving in poly-
nomial time). Determining the plausibility and explanatory coverage of
hypotheses must be tractable, there cannot be substantial incompatibility
relationships or cancellation effects between individual hypotheses, and
plausibility comparison between composite hypotheses must be logically
weak.

57. David C. Brown and B. Chandrasekaran, Design Problem Solving: Knowl-
edge Structures and Control Strategies, Pitman, London. Morgan Kauf-
mann, San Mateo, California, 1989.

ABSTRACT: In this book the 'classical" view of expert systems is con-
trasted with an alternative view in which a number of knowledge sources,
each specializing in a generic type of knowledge-based reasoning, coop-
crate in a well-structured fashion to produce a solution. This view of
expert problem solving encourages knowledge-level analysis of problems.
A framework for design problem solving is presented that organizes the
different types of knowledge and control strategies that are part of design
activity. A detailed analysis of routine design is presented, using the design
of a small air cylinder as an example. The knowledge used in the AIR.
CYL expert system is captured in the DSPL language, which is specially
designed for the expression of design knowledge. The book concludes
with a research agenda for design problem solving.

430

58. Ashok Goel and B. Chandrasekaran, Use of Device Models in Adaption of
Design Cases, to appear in the Proceedings of the Second DARPA Workshop
on Case-Based Reasoning, Pensacola, Fla, May 31-June, 1989. (89-AG-
NOCODE I]

ABSTRACT: A major issue in case-based design problem solving is how
to adapt the structure of an existing design to achieve a similar but novel
device function. The capability to suitably adapt retrieved design cases
requires a causal understanding of how the structure of the device enables
the accomplishment of its function. Such a causal understanding can often
be represented as a functional model of the device that specifies the de-
signer's knowledge about the role of the structural components and their
relations in the functioning of the device. The Functional Representation
scheme is a language for organizing and representing a problem solving
agent's understanding of devices. In this scheme, the agent's understand-
ing of a device is expressed as causal behaviors that compose the functions
of its structural components into the device functions. We illustrate how
this organization of knowledge enables a designer to efficiently identify
the portions of the device structure that need to be modified to achieve
similar but novel functions, and to effectively reason about the effects
of these structural changes on the device functionality. The integration of
this capability with that of retrieving and storing of design cases provides a
computationally powerful strategy for solving non-trivial design problems.

59. Tom Bylander and Michael A. Weintraub, Integrating Qualitative and As-
sociational Models in Diagnosis in Complex Domains, OSU CIS LAIR
Technical Report [89-TB.INTMODELS].

ABSTRACT: Diagnosis is the task of explaining observations of a faulty
system in terms of malfunctions and their causes. This task is difficult in
complex domains, i.e., when the knowledge about the domain is incom-
plete, multiple faults exist, faults interact, and the system being diagnosed
-attempts to compensate for a malfunction. In complex domains, both as-
sociational and qualitative models have advantages and disadvantages for
doing diagnosis. Associational models are efficient, but require a combi-
natorial number of associations to cover all possible situations. Qualitative
models are effective, but require a combinatorial search of multiple fault
hypotheses. This paper describes an architecture for diagnosis that at-
tempts to extract the best of both models by using an abductive assembler
to integrate an associational model with a qualitative model. Each subtask

431

of the abductive assembler is assigned to the model that can perform the
subtask most efficiently and effectively.

60. B. Chandrasekaran, Michael C. Tanner, and John R. Josephson, Explain-
ing Control Strategies in Problem Solving, appears in IEEE Expert, Spring
1989, pp. 9-24. (89-BC-EXPLAN] (Supersedes 87-BC-EXPCON.) In-
cluded as Appendix C to this report.

61. B. Chandrasekaran, What Kind of Computation is Intelligence? A Frame-
work for Integrating Different Kinds of Expertise, to appear in the proceed-
ings of the NASA Conference on Space Telerobotics, Pasadena, California,
January 31-February 2, 1989. (89-BC-INTEGEXP]

ABSTRACT: The view that the deliberative aspect of intelligent behavior
is a distinct type of algorithm, in particular a goal-seeking exploratory
process using qualitative representations of knowledge and inference, is
elaborated. There are other kinds of algorithms that also embody expertise
in domains. We discuss the different types of expertise and how they can
and should be integrated to give full account of expert behavior.

62. John R. Josephson, Diana Smetters, Richard Fox, Dan Oblinger. Arun
Welch, and Gayle Northrup, Integrated Generic Task Toolset-Fafner Re-
lease 1.0-Introduction and User's Guide. OSU CIS LAIR Technical Re-
port t89-JJ-FAFNER].

ABSTRACT: The Integrated Generic Task Toolset provides computational
mechanisms especially suited for certain reasoning tasks which are typ-
ically encountered during the course of diagnosis, design, planning, and
similar knowledge-based activities., By directly supporting a set of basic
reasoning tasks, the toolset provides building blocks out of which more
complex reasoning systems can be built. To support a particular reason-
ing task, the toolset provides a set of appropriate mechanisms, each with
its own control strategies and characteristic ways of organizing and rep-
resenting knowledge. Thus, the toolset provides to the knowledge system
builder an advantage over rules, logic, semantic nets, frames, and neu-
ral nets, similar to the advantage that higher-level languages provide over
assembly language for the computer programmer.

A release of the integrated toolset, called Fafner, is available for research
use. Fafner provides the "toolbed" a framework for integrating the indi-
vidual tools, the RA tool, and the CSRL tool. The RA tool provides the
facilities for constructing recognition agents, agents designed to determine

432

the degree of match between a hypothesis and a situation. RA is the first
of six tools to be included in this and later releases, and is an important
foundation for the others. The CSRL tool builds on the foundation pro-
vided by RA, and allows the construction of hierarchies of classification
specialists. Such hierarchies are used to perform the hierarchical classifi-
cation task, an important part of both diagnosis and reasoning in general.
Fafner is written completely in Common Lisp and CLOS (Common Lisp
Object System) and is fully portable at that level.

63. John R. Josephson, A Layered Abduction Model of Perception: Integrating
Bottom-up and Top-down Processing in a Multi-Sense Agent, to appear in
the Proceedings of the NASA Conference on Space Telerobotics, Pasadena,
California, January 3 1-February 2, 1989. (89-JJ-TOPBOTTOM] Included
with this report as Appendix K.

64. Todd Johnson, Jack W. Smith Jr., and B. Chandrasekaran, Generic Tasks
and Soar, OSU CIS LAIR Technical Report [89-TJ-GTSOAR].

ABSTRACT: This paper describes our research which is an attempt to
retain as many of the advantages as possible of both task-specific archi-
tectures and the flexibility and generality of more general problem-solving
architectures like Soar. It investigates how task-specific architectures can
be constructed in the Soar framework and integrated and used in a flexible
manner. The results of our investigation are a preliminary step towards
unification of general and task-specific problem solving theories and archi-
tectures.

65. Mike Weintraub and Tom Bylander, QUAWDS: A Composite Diagnostic
System for Gait Analysis, OSU CIS LAIR Technical Report [89-MW-
QUAWDS].

ABSTRACT: QUAWDS is a system for analyzing human gait. QUAWDS
integrates associational and qualitative models of knowledge into a di-
agnostic system, taking advantage of the tasks each kind of model can
determine efficiently and effectively. An abductive assembler is used to
coordinate the different models. The result is a diagnostic solution that is
"locally best," i.e., no single change to the answer will produce a better
solution. We believe QUAWDS' architecture is suitable for many complex
domains.

66. Ashok God and B. Chandrasekaran, Functional Representation of Designs
and Redesign Problem Solving, to appear in Proceedings of the Eleventh

433

International Joint Conference on Artificial Intelligence, Detroit, Michigan,
Aug., 1989. f89-AG-NOCODE2]

ABSTRACT: The information processing task of redesign and its subtasks
of diagnosis and repair are analyzed. Various kinds of knowledge required
for redesign problem solving are identified, and a scheme for represent-
ing them is described. In this scheme, the functions of the device and its
smctural components are represented explicitly, and causal and anticipa-
Story knowledge about its design is organized around these functions. This
* functional representation language also provides primitives for represent-
ing and accessing knowledge of domain principles such as Physics laws.
The use of functional representation of designs in redesign problem solving
is illustrated for the redesign of the reaction wheel assembly aboard the
Hubble space telescope.

434

DISTRIBUTION LIST

addresses .number
of cooies

RADC/COES 5
ATTN: Robert N. Ruberti
Gri-ffiss AF8 NY 13441-5700

Ohio State University 5
Lab for AI Research
Dept of Computer & Info Science,
1314 KinnearRoad
CoLumbus OH 43212

S•RADClDOVL 1

TechnicaL Library
Griffiss AFB NY. 13441-5700

Admini strator 5
Defense TechnicaL Info Center
DTIC-FDA
Cameron Station BuiLding 5
Alexandria VA 22304-6145

Defense Advanced Research Projects 2
Agency

1400 Witson BLvd
ArLington VA 22209-2308

AFCSA/SAMI
ATTN: Miss Griffin
10363 Pentagon
Washington DC 20330-5425

HN USAFISCTT
Pentagon
Washington DC'20330-5190

SAFIAOSC 1
Pentagon 40-267
Washington DC 20330-1000

0L-1

Director, Information Systems
OASD CC31)

Y Room 3E187
Pentagon
Washington DC 20301-3040

14O AFSC/XTKT
Andrews AFB DC 20334-5000

NOQ AFSC/XTS
Andrews AFB NO 20334-5000

NQ AFGC/XRK1
Andrews AFB lID 20334-5000

14O SAC/SCPT1
OFFUTT AFS NE 68113-5001

DTESA/RQE
ATTN: Mrs Larry G*McManus
Kirttand AFB NM 87117-5000

NOQ TAC/DRIY
ATTN: Mr. Westerman
Langley -AFB VA 23665-5001

NO TAC/DOA
Langtey AF3 VA 23665-5001

NQ TACIDRCAI
Langtey AFB VA 23665-5001

DL-2

ASD/AFALCIAXAE
ATTN: W. H. Dungey
Wright-Patterson AFB OH 45433-6533

,WRDC/AAAI
Wright-Patterson AF8 OH 45433-6533

AF!T/LDEE 1
BuiLding 640o Area B
Wright-Patterson AFB OH 45433-6583

WRDC/MLTE
Wright-Patterson AFB OH 45433

WRDC/FIESSSURVIAC
Wright-Patterson AFB OH 45433

AAMRL/HE
Wright-Patterson AFB OH 45433-6573

2750 ABW/SSLT
BuiLding 262
Post 11S
Wright-Patterson AFB ON 45433

AFHRL/OTS I
WitLLiams AFB AZ 85240-6457

AULILSE
MaxweLL AFB AL 36112-5564

DL-3

Ho Air Force SPACECOM/XPYS
ATTN: Dr. William R. Matoush
Peterson AFB CO 80914-5001

'Defense Communications Engr Center
Technical Library
1360 WiehLe Avenue
Reston VA 22090-5500

C3 Division Development Center 2
-- Marine Corps

Development & Education Command
Code DIOA
Quantico VA 22134-5080

US Army Strategic Defense Command
DASD-H-MPL
PO Box 1500
Huntsville AL 35807-3801

Commanding Officer
Naval Avionics Center
Library
DI765
Indianapolis IN 46219-2189

Commanding Officer
Naval Ocean Systems Center
Technical Library
Code 9642B
Son Diego CA 92152-5000

Commanding Officer
Naval Weapons Center
Technical Library
Code 3433
China Lake CA 93555-6001

Superintendent
Naval Post Graduate School
Code 1424
Monterey CA 93943-5000

Commanding Officer 2
Naval Research Laboratory
Code 2627
Washington DC 20375-5000

DL-4

Space & Naval Warfare Systems COMM
PMW 153-3DP
ATTN: R. Savarese
Washington DC 20363-5100

Commanding Officer 2
US Army MissiLe Command

-Redstone Scientific Info Center
AMSMI-RD-CS-R (Documents)
Redstone Arsenal AL 35898-5241

"Advisory Group on Electron Devices 2
TechnicaL Info Coordinator
-ATTN: Mr'0 John Hammond
201 Varick Street - Suite 1.140
New York NY,.10014

Los Atamos Scientific. Laboratory
Report Librarian
ATTN: Mr. Dan. Baca
PO aox 1663o MS-P364
Los ALamos NM 87545

Rand Corporation
Techni cal Library
ATTN: Ms. Doris HeLfer
PO Sox 2138
Santa Monica CA 90406-2138

USAG
ASH-PCA-CRT
Ft. Nuachuca AZ 85613-6000

1839 EIGIEIET
ATTN: Mr. Kenneth W. Irby
KeesLer AFS MS 39534-6348

J TFPO-TD
Director of Advanced TechnoLogy
ATTN: Dr. Raymond F. Freeman
1500 PLanning Research Drive
McLean VA 22102

HQ ESC/CWPP
San Antonio TX 78243-5000

DL-5

AFEWC/ESRI 3
San Antonio TX 78243-5000

495 EIGIEIR
ATTN: M Craft
Griffiss AFS NY 13441-6348

ESD/XTP
Hanscou AFS NA 01731-5000

ESD/ICP
Hanscom AFS MA 01731-5000

ESDIAVSE 2
Building 1704
Hanscom AFB MA 01731-5000

HO ESD SYS-2 I
Hanscom AFB MA 01731-5000

Director
NSAICSS
T513ITDL
ATTN: Mr. David MarJarum
Fort George 6. Meade MD 20755-6000

Director
NSAICSS
W166
Fort George G. Meade MD 20755-6000

Director
NSA/CSS
R24
Fort George Go Meade ND 20755-6000

DL-6

Director
"NSA/CSS
R21
9800 Savage Road

'Fort George 6. Mea.de MD 20755-6000

Director
NSAICSS
DEFSMAC
ATTN: Mr. James E. HiLLman
Fort George G. Mead* MD 20755-6000

Director
NSAICSS
R5
Fort George G. Meade MD 20?55-6000

Director
NSA/CSS
R8
Fort George Go Meade MD 20755-6000

Director
NSA/CSS
S21.
Fort George G. Meade MD 20755-6000

Director
NSA/CSS
wO?
Fort George 6. Meade MD. 20755-6000

Director 1

"NSAICSS
W3
Fort George .6. Meade MD 20755-6000

Director 2
NSAICSS
R523
Fort George G- Meade, ND 20755-6000

AFHRLILRG
ATTN: Mr. M. Young
WPAFB OH 45433-6503

DL'7

AAMRLII4EA
ATTN: Dr, S. Tsou
WPAF!6 ON. 45433-6503

AAMPLIHED
ATTN,- Maj t4.R* McFarrem
WPAFS-04 45433-6503

.WROCIKTD
ATTN% Ore D. Hoppei,
WPAFPS ON 45-433-6503

AFIT/ENG
-ATTN,* Maj P. Auburn
WPAFB'OH 45433-6053

CEETL-GL-VT
ATTN: Mr. T. Jorgensen
Ft BeLvoir VA 22060-5546

MISSION

of
Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C3I) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C31 systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibility.

