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ABSTRACT

Visual realism in computer-generated images is an important goal for many computer

applications. However, a trade-off exists between the degree of realism achieved and the

time required to generate an image. Thus efficient algorithms for generating realistic

images are being actively investigated.

Shading is one graphical technique for rendering more realistic images of three-

dimensional objects. However, the most widely used algorithm, Gouraud shading, suffers

from the Mach band effect, a perceptual phenomenon that reduces realism. Gouraud

shading also handles specular reflection poorly. The next most popular algorithm, Phong

shading, generaily reduces Mach banding and captures specular highlights, though at a

great computational expense. Bishop and Weimer improved the efficiency of Phong

shading, but their algorithm introduces approximation error and is still significantly

slower than Gouraud.

This research probes the shortcomings of existing shading algorithms. The investigation

yielded seven new techniques to render more realistic images at a modest increase in

computational cost. Specifically, quadratic interpolation of intensities and adaptive

subdivision of surfaces are proposed to generate smoother intensity surfaces and thereby

reduce Mach banding. Techniques are introduced to locate highlights and adaptively

subdivide surfaces to capture the intensity peaks associated with specular reflection.

Ambient cut-off and adaptive subdivision are applied to accurately render diffuse

boundaries.

V



Trade-offs are examined so that a subset of this toolbox of shading techniques can be

chosen to most effectively satisfy the processing and realism requirements of a given

image-generating application and environment.
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1. INTRODUCTION

1.1 Visual Realism

Visual realism in computer-generated images is an important goal in such applications as

computer simulation and computer-aided design. The success of a hardware/software

package depends upon the realism of the generated images. However, absolute realism is

not a requisite for success; a certain threshold exists, above which the viewer has

sufficient cues to comprehend an image. Thus visual realism is defined as a subjective

quality of an image, which evokes a perceptual response sufficiently similar to that

evoked by reality.

The degree of realism to be achieved in a computer-generated image depends broadly on

five factors [NE WM79]:

1. the processing required to generate the image

2. the perceptual effects of the image on the observer

3. the application's requirements for realism

4. the capabilities of the display hardware

5. the complexity of the image

Visual realism in a computer-generated image is limited by stringent processing

requirements. When objects, light sources, and/or viewpoint move in space and time, a

dynamic rendering capability is required. To create the illusion of smooth motion, an

image must be regenerated at least ten times per second [FOLE82I. (Do not confuse this

rate with the sixty cycle per second refresh rate required by the display processor to

preclude flicker.) Thus the entire graphics pipeline must be traversed in one-tenth of a



second. Even advanced display architectures barely satisfy the processing requirements

of flicker-free synthesis of dynamic, complex, realistic images in real time.

Several methods have been developed to render more realistic images of three-

dimensional objects on a two-dimensional computer screen. Eight of the more popular

visualization techniques include [NEWM79] - (1) projections, (2) intensity cues, (3)

stereoscopic views, (4) kinetic depth effect, (5) hidden-line elimination, (6) texture

mapping, (7) anti-aliasing, and (8) shading. These techniques can be applied individually

or in combination. No one technique is best; the choice depends on the trade-off of

computational costs, perception, the application's requirement for realism, hardware

capability, and image complexity. This research investigates the visualization technique

of shading.

1.2 Graphics Pipeline

The process of generating an image on a display device is a sequence of transformations,

called the graphics pipeline. The graphics pipeline for raster-scan displays is depicted in

Figure 1. The output of the graphics pipeline, intensity (and color) values for every pixel

on the screen, is stored in the frame buffer, typically random access memory. The frame

buffer is read by the display processor to generate voltage levels to drive the display

device.

The first stage of the graphics pipeline traverses a structured display file of application-

defined objects. All categories of information - geometric, textual, algorithmic,

relational, visual - can be stored in the object database and all can be presented

pictorially on the display screen. For our purposes, the structured display file contains an

2
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Figure 1. Graphics Pipeline

The graphics pipeline transforms application-defined objects into a
raster-scan image. The circles represent data transformations and the
parallel lines represent temporary data stores.

ordered list of vertices, completely specifying the polygon mesh approximations to curved

three-dimensional objects.

The second stage of the graphics pipeline transforms model coordinates to world

coordinates and finally to viewing coordinates. An instance transformation is first

applied to build objects from component parts and instantiate them in world space. The

software developer chooses a world coordinate system to suit the graphics application.

Objects are then defined and manipulated abstractly in terms of this world space. A

geometric transformation is then applied to provide dynamic placement of objects in

world space.

The third stage of the graphics pipeline converts world coordinates to viewing coordinates

by normalizing in three dimensions. The converted output primitives are then clipped

3



against the canonical view volume. Whole objects or parts of objects may be clipped.

Only those points, lines, polygons, text, etc. that are within the boundaries of the current

view volume undergo further processing. In this way, extraneous calculations are

precluded. The coordinates of the remaining primitives are then converted to 3D

normalized device coordinates (NDC) which define a device-independent logical

coordinate system such as the unit cube.

The fourth stage of the graphics pipeline removes hidden surfaces. In a three-

dimensional scene, objects closer to the viewer may overlap and therefore obscure more

distant objects. The obscured surfaces are eliminated from further consideration.

Finally, the visible surfaces are projected into two dimensions in 2D NDC space.

The fifth and final stage of the graphics pipeline determines the appropriate shades for

every visible surface. Shade is defined as the intensity and color of the light reflected and

transmitted towards the observer. A shade is calculated for each picture element, or

pixel, on a raster-scan display. Shading is the most computationally expensive stage of

the graphics pipeline.

1.3 Shading Models

A shading model is applied to computer-generated objects to determine the shade of each

point on the surfaces of the objects. The three simplest models - ambient light,

Lambert's diffuse reflection, and Phong's specular reflection - have been implemented

widely in graphics systems requiring fast image generation.

Consider the lighting in your immediate environment. There are sources of light and

objects that reflect or transmit light. Light may be reflected off of an object towards your

4



eye or in some other arbitrary direction. In fact, light may be repeatedly reflected until it

reaches your eye. The brightness of a point on the surface of an object is thus the sum

total of light that is reflected directly from the light sources towards your eye and light that

is repeatedly reflected.

Repeated reflections can be modeled accurately via ray tracing or radiosity methods.

Individual light rays can be traced from the viewpoint through each pixel back towards

the light sources. Alternatively, a set of linear equations can be solved to describe the

transfer of light energy between all surfaces in the scene. While affording high realism,

both techniques are computationally expensive. Ray tracing and radiosity are currently

not suitable for applications requiring fast image generation.

Alternatively, the cumulative intensity of light that has been repeatedly reflected is

approximated by a single constant. This low-level background illumination is assumed to

be uniform in all directions, and is thereby termed ambient. A measure of a surface's

capacity to reflect ambient light is given by a constant called the reflectance coefficient.

The amount of ambient light (I.) which is reflected from any point on the surface of an

object is expressed as the product of the intensity of the ambient light (Ib) and the

surface's ambient reflectance coefficient (k.),

=I ka (1)

Light sources are modeled as idealized points which may be at arbitrary distances, in

arbitrary orientation, and arbitrary in number. Light that is reflected directly from its

source to the viewer is modeled in two ways, diffuse and specular reflections. Diffuse

reflection is exhibited by dull surfaces, such as a brick wall, for which incident light is

reflected uniformly in all directions. Specular reflection is exhibited by shiny surfaces,



such as glazed pottery, for which incident light is reflected primarily in one direction. 4

The intensity of a diffuse reflection at a given point on the surface of an object (Id) is

dependent upon the light intensity of the point source (Ip) and its direction (Th, the

direction of the surface normal at that point (V), and the surface's diffuse reflectance 4

coefficient (kd). This relation is given by Lambert's law (Figure 2):

Id = It, kd (2)

where Id is at minimum zero and r and 9 are unit vectors.

N
L

surface

Figure 2. Diffuse Reflection

The intensity of a diffuse reflection at a given point on the surface of an
object is dendent upon the light intensity of the point source and its
direction (L), the direction of the surface normal at that point (Mh, and

the surface's diffuse reflectance coefficient.

A specular highlight is perceived when light is reflected in the direction of the viewer. The

intensity of the specular highlight falls off rapidly from its peak intensity. Bui Tuong

Phong [BU1751 modeled this fall-off as some power n (depending on the shininess of the

surface) of the cosine of the angle between the between the direction of reflection (-) and

the viewpoint (M (Figure 3). Phong's model for specular reflection, which is based on

empirical data, does a creditable job in capturing highlights. A more accurate,

theoretically-based model devised by Torrance and Sparrow is discussed in Section 7.1.1.

6



In Phong's model, the intensity of a specular reflection (I,) can be expressed as:

I, = IpJkCR -*T) (3)

where k, is the surface's specular reflectance coefficient and it andV are unit vectors.

NH
L R

V

surface

Figure 3. Specular Reflection

The intensity of a specular reflection at a given point on the surface of
an object is deendent upon the light intensity of the point source and
its direction (L the direction of the surface normal at that point (T),
the viewpoint (V), and the surface's diffuse reflectance coefficient. The
direction of reflection (R) and the direction of maximum highlight (Mh
are fully determined.

Ican be expressed as a function ofrand 9:

= 2r ( ' 9)?q7- L (4)

which satisfies the following three conditions:

1. 7 is in the plane formed by rand V.

2. .77=7L.Y.

3. ris normalized.

Equation 3 has been alternately expressed as:

1, 2 I k, ( -. V)" (5)

where V is a unit vector in the direction of maximum highlight given by:

7



only approximates V "; the angle between j7 and 9 is one-half the magnitude of the

angle between 7 and V. As we shall see, Equation 5 has been used in shading algorithms

(e.g., surface normal interpolation) for computational convenience, since j7 can be

computed efficiently via linear interpolation. However, Equation 3 renders highlights that

are smaller than they should be. For those shading algorithms (e.g., intensity

interpolation) which calculate intensities exactly at only a few points, the more faithful

Equation 3 is used.

The shade of a point on the surface of an object can then be modeled by summing

intensities of the ambient, diffuse and specular components given in Equations 1, 2 and 3

(or 5), respectively:

1 I= + Id + 1, (6)

= Ibka + ,kd~rhv + 1,k,. (A -V)- (7)

Ibka + Ikdr-' + Ipk3(A'J) n  (8)

Equation 7 is directly extensible to multiple light sources:

I = Ibk. + m Ijkdr,. + mIp, k,, (TP ) (9)
1 1

where m is the number of light sources.

The color of the light reflected from a surface depends upon the colors of the incident

light and of the surface. The color of the ambient and diffuse components is the same

color as the surface. The color of the specular component is a function of the colors of

the light source and the object's surface. In the simplest model for specular reflection,

8



Phong assumes that the color of the specular component is the color of the light source.

While this assumption is valid for plastics, it is not valid for other materials [COOK81].

For now, we make this simplifying assumption and later, discuss its ramifications (Section

7.1).

Color can be represented by values for its three subtractive primary color components:

cyan, magenta and yellow. Subtractive colors are used because reflection is a subtractive

process [FOLE82]. The equation for the intensity of the cyan component of reflected

light is:

t = Ibck., + I1 k~r.7 + Ik,,(A V " (10)

The equations for the magenta and yellow components are analogous. The three primary

colors combine to give the color of the reflected light.

This treatment of color assumes that a tristimulus model of human vision can be applied

to model the interaction of light with objects [FOLE82]. While this assumption produces

creditable images, a physically more accurate model was devised by Hall [HALL83].

Hall's model uses wavelength-dependent Fresnel reflectivity terms for better sampling in

wavelength space (Section 7.1).

Color complicates our discussion. The psychophysical response to color by humans

introduces factors irrelevant to our discussion of algorithmic complexity and image

realism. For example, the consideration of our varying sensitivity to different

wavelengths opens whole new areas of research without greatly impacting our thesis.

Thus the following analyses will be restricted to monochrome images.

Since our primary interest is speed, only the three simplest models and their algorithmic

9



implementations will be discussed in detail. Three more sophisticated shading models

are considered in Section 7.1. As we shall see, intensities are calculated exactly at only a

few points when interpolating intensities. Then even the most accurate shading models

can be used without incurring great computational expense.

1.4 Polygon Meshes

Three-dimensional surfaces are represented in a variety of ways. Three of the more

common techniques are polygon meshes, parametric functions, and quadratic functions.

Polygon meshes are the most widely used because they have several distinct advantages.

Furthermore, parametric and quadratic surfaces can be and often are reduced to polygon

meshes during the display process. :

Curved surfaces can be approximated by polygonal facets to any desired degree of

precision. Furthermore, polygons facilitate computations. Their planar nature implies

simple linear calculations, thereby simplifying the determination of surface normals,

intersections, and hidden surfaces. Planes maintain their characteristics in perspective

space and their specification with vertices facilitates coordinate transformations.

Consider Newell's teapot [CROW87]. Blinn [BLIN87] provided a compact

representation of its structure in terms of sweep curves (for the body and lid) and Bezier

surface patches (for the handle and spout). For ease of implementation, we modified the

representation of the teapot's body and lid to also be Bezier surface patches. The front 4

surfaces of the body, lid, and handle are each modeled as two surfaces patches, the spout

just one. T avoid hidden surface elimination and thereby simplify implementation, only

the front surfaces of the teapot are generated and displayed.

10



The parametric representation of a Bezier surface patch is of the form x = X(u,v),

y = Y(u,v), and z = Z (u,v) where x, y, and z are world coordinates, and u and v are the

parameters. The bicubic equation for x is as follows:

x = X(u,v)

= (1-u)3(1-v) 3BXoo + 3u (1-u) 2(1-v) 3BX1 o + 3u 2(1-u)(1-v) 3B,20 +

u 3(1-V)3B.30 + (1-u) 3v (1-v)2Bo 1 + 3u (1-u)2v (1-v)2B.II +

3u 2(1-u)v (1-v) 2 BX21 + U 3v (1-V) 2 B 31 + (1-u) 3v 2 (1-)B-0 2 +

3u (1-u) 2v 2 (1-v)B,12 + 3U2 (1-u)v 2 (1-v)B,,22 + u 3v 2 (1-v)Bx32 +

(1-u) 3v 3B, 03 + 3u (1-u) 2v3 Bx, 3 + 3u 2(1-u)v 3B, 23 + u 3v 3Bx33  (11)

where Bxi, are the x-coordinates of the sixteen Bezier control points for each surface

patch, with analogous equations for y and z.

World coordinates for points on the teapot's surface are obtained by stepping

incrementally in both parameters u and v from 0 to 1. Obviously, a smaller step size

yields a greater number of points. Adjacent points are then linked to form triangular

facets; a straightforward exercise due to the regularity of the generated mesh.

Surface normals are also calculated at the generated points for the purposes of shading.

The tangents to the surface in u,v space are (X,, Y., Z,) and (X,, Y,, Z,), where:

X. OX (u, v)
au

= I-3(1-) 2 (1-v) 3 BXoo + 3(-2u (1-u)+(1-u)2)(1-v) 3Bxlo +

3(-u 2 +2u (1-u))(1-v) 3Bx2o + 3u2(1-v) 3B.3o + -3(1-u) 2v(1-v) 2B.o1 +

3(-2u (1-u)+(1-u)2 )v (1-v)2 B,11 + 3(-u 2 +2u (1-u))v(1-v)2 B. 21 +
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3u 2v(1-v) 2B, 31 + -3(1-U) 2V2 (1-)B0o2 +

3(-2u (1-u)+(1-) 2)v2 (1-v)B.,12 + 3(-U2 +2u (1-u))v1(1-v)B 22 +

3u 2v2(1-v)B, 32 + -3(1-u) 2 3B o3 + 3(-2u (1-u)+(-u))v 3Bi 3 +

3(-u 2 +2u (1-u))v3B.23 + 3u 2 3B 33  (12)

with analogous equations for the other five partial derivatives.

The normal (N, Ny, N,) to the surface at a given u,v is the cross product of the tangents:

N= Y. Z, - Z.Y, (13)

Ny =Zu, - XuZ. (14)

N = X. Y - YUX (15)

1.5 Timing Study

The computational costs of shading algorithms will be analyzed in terms of unit costs for

floating-point arithmetic operations. The number and type of arithmetic operation are

counted for each step of a shading algorithm. The total computational costs are then

determined by assuming relative costs for each of the arithmetic operations. While this

type of analysis may satisfy the theorist in all of us, computer run times provide some

empirical data for comparison.

Timing studies will be presented throughout the remainder of this paper with images

generated on a Sun Microsystems® 3/110 color graphics workstation and photographed

on a Dunn Instruments' Multicolor" Image Processing System. The Sun workstation has

eight megabytes of main memory and thirty megabytes of swap space. The algorithms

were coded in the C programming language and the output generated using the Pixrect
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graphics subroutine library. The compiler's floating-point code generation option was

used to generate in-line code for the Motorola MC68881 floating-point processor.

The run times in CPU seconds were obtained using the system-supplied profiler. The

profiler tabulates the percentage of time spent executing each subroutine, the number of

times it was called, and the number of milliseconds per ca;l. The CPU times obtained by

the profiler cannot be assumed to be exact. Though much of the extraneous time required

by the operating system has been factored out of the run times for the applications code,

according to Heisenberg's Uncertainty Principle, the very act of measuring introduces

some error.

Computer-generated images of Newell's teapot are used as the test case. The starting

points for comparing computational costs are data files which contain world coordinates

and surface normals at the vertices of the polygon mesh, as well as adjacency information

for constructing triangular facets.

Figure 4 shows three wire frame images of the teapot. The wire frame represents the

original set of triangles which approximates the curved surface of the teapot. As we

move from Figure 4a to 4c, smaller steps in parameter space yield a more accurate

approximation. Figure 5 shows images of teapots shaded by linearly interpolating

intensities, corresponding to the polygon meshes of Figure 4.

Images such as these will appear throughout the rest of the paper along with detailed

timing analyses. To give an idea of what we're striving for, Figure 6 shows the best image

that can be achieved with the chosen shading model. A surface normal was obtained at

each pixel of the teapot and its intensity was calculated by Equation 7.
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(a)

(b) (c)

Figure 4. Sample Wire-Frame Images

Three wire frame images of the teapot. As we move from a to c, smaller
steps in parameter space yield a more accurate approximation.

1.6 Objectives

The objectives of this research are to investigate deficiencies in existing shading

algorithms and to propose enhancements for their resolution. In particular, the most

widely used algorithm, Gouraud shading, suffers from the Mach band effect, a perceptual

phenomenon that reduces visual realism. Mach bands are perceived because the linear

interpolation scheme generates C' discontinuities in the intensity surface. Can we

generate a smoother intensity surface to reduce Mach banding? And do so at a modest

increase in computational costs, possibly by quadratically interpolating intensities?
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(a)

(b) (c)

Figure 5. Sample Shaded Images

Three images of teapots shaded by linearly interpolating intensities,
corresponding to the polygon meshes of Figure 4.

Gouraud shading also handles specular reflection poorly. A specular highlight may be

entirely missed if it should fall at a point other than at a vertex because its intensity

decreases exponentially. Can we locate the peak of the highlight on the intensity surface

so that a new vertex can be added to the polygon mesh? Will one new point suffice or will

it be necessary to adaptively subdivide the surface to capture the rapid fall-off?

The next most popular algorithm, Phong shading, generally reduces Mach banding and

captures specular highlights, though at a great computational expense. Bishop and

Weimer improved the efficiency of Phong shading by approximating the dot products of

the intensity equation (Equation 8) by a Taylor series. However, their algorithm
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Figure 6. Best Shaded Teapot 4

The best image that can be achieved with the chosen shading model. A
surface normal was obtained and the intensity calculated at each pixel of
the teapot.

introduces approximation error in regions of high surface curvature. Can we adaptively 4

subdivide the surface to reduce the approximation error? Can we apply a similar

technique in Gouraud shading to reduce the curvature of the intensity surface in order to

minimize Mach banding?

This research attempts to answer these questions and thereby build a toolbox of cost-

effective techniques for shading three-dimensional objects on a raster-scan display.

1.7 Organization

Section 2 details the algorithmic implementations of shading models for polygon meshes

and compares computational costs. Section 3 addresses the issues of curvature and

continuity of the intensity surface with respect to the perceptual effect of Mach bands.

Section 4 proposes a shading algorithm that fits a C' intensity surface with quadratic

polynomials. Section 5 introduces several enhancements to shading algorithms that

capture specular highlights and diffuse boundaries. Section 6 describes several trade-off

studies that address issues to be considered when building a shading algorithm suitable for
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a given application. Section 7 presents the conclusions of this research and suggestions

for future work.

A list of bibliographic references and appendices follow. Appendix A gives the Cendes-

Wong formulas to perform quadratic C' interpolation over triangular surface patches.

Appendix B comprises the C source code implementation of each shading algorithm.
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2. POLYGON MESH SHADING

This section details the algorithmic implementations of shading models for polygon

meshes. For all implementations, the polygonal facets are assumed to be triangular.

Triangular facets can be obtained from the original set of polygons. For example, the

polygonalization of a curved surface represented by parametric bicubics yields

quadrilaterals. Triangles are simply obtained by adding a diagonal. However, the

triangulation of arbitrary polygons is not a trivial matter, but good algorithms have been

devised [LAWS77,BARN77, NILL83].

2.1 Constant

Constant shading is the simplest implementation of the shading model applied to polygon

meshes. Constant shading uses a constant average light direction (L) and a constant

average direction of maximum highlight (f7) over each polygonal facet. If the surface

normals of the underlying surface are approximated by the surface normal of the facet,

the dot products (r .v) and (. .) are constant for all points. Finally, assuming that the

reflectance coefficients are constant over the facet, all terms on the right-hand side of

Equation 7 are constant.

Constant shading is the cheapest technique for shading polygon meshes. Since all terms

on the right-hand side of Equation 7 are constant for all points on a facet, the intensity of

reflected light need only be calculated once per facet. All pixels within the facet are

assigned the same shade. Unfortunately, objects rendered with constant shading appear

unrealistic. Since the shade of each facet is generally different than that of its neighbor, a

C0 discontinuity (i.e., a discontinuity in magnitude) in intensity arises across facet
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boundaries. The underlying polygonal approximation to the curved surface thereby

becomes apparent.

2.2 Linear Interpolation of Intensities

Gouraud [GOUR71] proposed a refinement to constant shading to eliminate the C0

discontinuity in shades across facet boundaries. Shades are linearly interpolated across

the face of the facet to achieve CO continuity. Assuming that a surface normal is given at

each vertex, the algorithm is as follows (Figure 7):

1. Compute the shades at vertices A, B, and C using Equation 7.

2. Calculate constants for interpolating shades.

3. Calculate the shade of each pixel through linear interpolation.

B

C

Figure 7. Triangular Facet

A triangular facet with vertices A, B, and C, on a rectangular grid of
pixels.

The linear interpolation of shades in two dimensions can be expressed as:

I(x,y) = Dx + Ey + F (16)

where interpolation constants D, E, and F are given by:
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(c - IA)(YB - YA) - (B - 1A)(YC YA) (17)
(XC - XA)&YB - YA) - (X - XA)(YC YA)

E 'B - A - D(x -XA) (18)

YB - YA

F IA - DxA - ByA (19)

The primary advantage of linearly interpolating intensities is efficiency. The shade of

each pixel can be determined in just one addition using forward differencing. Initialize:

I(xo, Yo) = Dxo + Eyo + F (20)

where (xo,yo) is the centroid of the triangular facet. The centroid is chosen as the starting

point to minimize truncation error. Iterate:

I(x, 1~, y) = I(xi, y) + D (21)

I(x,yi+)= I(x,yi) + E (22)

Although this algorithm is efficient and achieves CO continuity, its linear interpolation

scheme gives rise to three drawbacks: anomalous highlights, inconsistent motion, and

Mach bands. A specular highlight may be entirely missed if it should fall at a point other

than at a vertex because its intensity decreases so rapidly. The shade of a point may

change contrary to expectations in a motion sequence if it suddenly depends upon the

shades of a different set of vertices. The third drawback, Mach bands, will be discussed

in detail in Section 3.

2.3 Linear Interpolation of Surface Normals 4

Phong [BU175] proposed a more sophisticated shading technique to better handle

specular reflection. Given the most general case in which the viewpoint and point light

sources are at finite distances, the surface normal (R'), the light direction (T), and the
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direction of maximum highlight (M1) are linearly interpolated across the face of each

facet. Referring to Figure 7, the algorithm is as follows:

1. Calculate interpolation constants for 91 r, and 7.

2. Calculate vectors 91 r, and 71 at each pixel through linear interpolation.

3. Normalize vectors 9, r, and 17.

4. Determine the shade of the pixel using Equation 8.

The linear interpolation of vectors 79, r, and 71 is similar to intensity interpolation. Here,

each coordinate must be interpolated separately. Hence the total computational cost for

Step 2 is nine additions for each pixel using forward differencing.

In Step 3, the calculated vectors are normalized to unit vectors by dividing by their

magnitudes. The magnitude of a vector is given by the square root of its own dot product.

Thus the computational cost of Step 3 for each pixel is six additions, nine multiplications,

three divisions, and three square roots.

The computational cost of Step 4 (calculating intensities) is six additions, eight

multiplications, and one exponentiation assuming that the Ik factors are pre-calculated.

Therefore, the total computational cost of this algorithm at each pixel is twenty-one

additions, seventeen multiplications, three divisions, three square roots, and one

exponentiation.

The appearances of objects shaded by linearly interpolating surface normals are

generally more realistic than those shaded by intensity interpolation. Although specular

reflection is handled successfully, highlights may still be misplaced. While only CO

continuity is attained at facet boundaries, the Mach band effect is generally reduced.
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However, as before, motion may be inconsistent due to the linear interpolation scheme.

While surface normal interpolation is an improvement over intensity interpolation in

terms of realism, its computational costs are high.

Three enhancements to Phong's original shading method have been proposed to reduce

its computational load - (1) selective application, (2) forward differencing, and (3)

Taylor series approximation. They are discussed in the following three subsections.

2.3.1 Selective Application

Phong and Crow [BUI75a] suggested that linear interpolation of surface normals be

applied only to the polygonal facets that display specular highlights while all other facets

are shaded by linearly interpolating :intensities. Highlights are located by first

transforming the reflected light vectors in a perspective space relative to the viewpoint. If

a transformed vector passes near the viewpoint, its transformed z-component approaches

one. The reflected light vector at each vertex is examined to determine whether or not

the highlight is near.

Since typically few facets display specular highlights, this combined approach would cost

little more than using intensity interpolation exclusively. Some additional processing is

required to ensure that C' intensity discontinuities do not arise at the boundary between a

facet using surface normal interpolation and an adjacent facet using intensity

interpolation.

2.3.2 Forward Differencing

Duff [DUFF79] improved the efficiency of the Phong algorithm by forward differencing
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the dot products of the intensity function. If the interpolation constants are , if, and "

for r and f, r, and7for 9, their dot product equals:

17 -77 (A + ffy (!x +Zy V)(23)

Initialize:

M.(xo, yo) = X + C"7 + ;r-r xoyo + @f.Vy2 +

7+ C-'f) x (+ (B"FT + y)YO + I'r (24)

AM.(xo, Yo) = (T"f)(2xo + 1) + ('-Z + .) yo + ('+ ) (25)

A2M, = 2(;r-ff) (26)

and iterate:

MX(xi+ 1, y) = M.(x!,.y) + AM.(xi, y) (27)

,AMx(X+1, y) = ,(Xi, y) + 2M(28)

A similar set of forward differencing equations exists for the y dimension. Each dot

product can be calculated in two additions for each pixel. Forward differencing can also

be used for the dot products found in the normalization step. Thus ten additions are

required at each pixel for the five dot products - r. r, ji - , v- v, r r, and j! 7.

The total iterative cost of Duff's algorithm is twelve additions, one multiplication, two

divisions, three square roots, and one exponentiation at each pixel.

2.3.3 Taylor Series Approximation

Bishop and Weimer [BISH86] approximate the diffuse and specular components of the

intensity function by Taylor series. If the light vector and the surface normal are linearly

interpolated and normalized as before, the diffuse component of Equation 8 can be
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rewritten as:

Id(X, Y)=kd (29)
V y x + + r)2 ( x + 'y + _P)

This function of two variables can be approximated by a Taylor series. Translating the

triangular facet so that the centroid is at the origin and expanding in a Taylor series to the

second degree:

Id(x, y) = T 5 X2 + T 4xy + T3y 2 + T2X + Tly + To (30)

with complicated expressions for the T constants.

This diffuse component can be evaluated at each pixel with a computational cost of two

additions using forward differencing. The ambient component can be combined with the

diffuse component during initialization. The calculation of the specular component at

each pixel requires two additions (similar to the diffuse component), then

exponentiation, and finally multiplication by Ipk,. The total iterative cost at each pixel is

thus five additions, one multiplication, and one exponentiation.

2.4 Comparison of Computational Costs

The total computational cost of these shading algorithms can be partitioned into start-up

and iterative costs. Start-up costs are incurred once for each vertex or once for each

triangular facet. Iterative costs are incurred for each pixel. Tables 1, 2, and 3 summarize

the start-up and iterative costs for each of the shading algorithms under investigation.

The following assumptions were made in deriving computational costs:

1. The image is monochrome.

2. The polygonal facets are triangular.
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Table 1. Start-up Costs Per Vertex

Shading Algorithm Computational Cost

+ x / V **
Constant 6 7 1

Linear Interpolation of Intensities 6 7 1

Linear Interpolation of Surface Normals

Original 0

with Forward Differencing 0

with Taylor Series Approximation 0

Table 2. Start-up Costs Per Facet

Shading Algorithm Computational Cost
+ x / V **

Constant 0
Linear Interpolation of Intensities 14 9 2

Linear Interpolation of Surface Normals

Original 126 81 18

with Forward Differencing 303 308 18
with Taylor Series Approximation 153 332 8 2

3. Unit surface normals (R) and unit light vectors (r and itor fl) are given at all

vertices.

4. Only one point light source is present (multiple light sources are considered in

Section 4.6).

5. The viewpoint and point light source are at finite distances (the most general

case).

6. Partial products have been pre-calculated to minimize cost.
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Table 3. Iterative Costs Per Pixel

Shading Algorithm Computational Cost

+ x / V **

Constant 0

Linear Interpolation of Intensities 1

Linear Interpolation of Surface Normals

Original 21 17 3 3 1
with Forward Differencing 12 1 2 3 1

with Taylor Series Approximation 5 1 1

Computational costs can be expressed as a function of the number of vertices in the

interior of the triangulation (d), the number of vertices on the boundary (e), and the

number of pixels (p) on the computer monitor. The number of facets in the triangulation

is then 2d +e -2 [GRAN86]. Let tj through t5 be the CPU times for the five floating-point

operations (addition, multiplication, division, square root, and exponentiation),

respectively. The cost of shading by linearly interpolating intensities is:

CostLI(d,e,p) = (6t I +7t 2 +t 5 )(d +e) + (14t I +9t 2 +2t 3)(2d +e -2) + t lp (31)

The cost of shading by linearly interpolating surface normal with Taylor series

approximation is:

CostLJsN(d,e,p) = (153t,+332t2+8t 3+2t 4)(2d +e-2) + (5t1 +t2 +t5 )p (32)

Consider the execution times for double-precision floating-point arithmetic of Motorola's

MC68020 CPU and MC68881 coprocessor shown in Table 4 [SUN87]. The

computational cost of shading by linearly interpolating intensities is:

CostLtI(d,e,p) = 81.84(d +e) + 114.72(2d +e -2) + 3.68p (33)

Similarly, the computational cost of shading by linearly interpolating surface normal with
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Taylor series approximation is:

CostLjSN(d,e,p) = 2418.72(2d +e -2) + 4 6.48p (34)

Table 4. Representative CPU Times for Floating-Point Arithmetic [SUN87]

Operation Microseconds

Addition 3.68

Multiply 5.28

Division 7.84

Square root 20.0

Exponentiation 22.8

With a few assumptions, we can plot computational costs as a function of the number of

facets. Assume that the image is to be generated on a 1000-by-1000 pixel monitor, i.e.,

p = 1,000,000. Also assume that the number of interior points is much larger than the

number of boundary points, i.e., d >> e. Since the number of facets equals 2d +e -2, the

number of vertices is approximately half the number of facets. Using the CPU times for

Motorola's chips, Figure 8 plots the theoretical computational costs as a function of the

number of facets. The number of facets range from ten thousand to one thousand, so the

number of pixels per facet range from one hundred to one thousand. Note that the

iterative costs dominate the start-up costs as the number of facets decrease, or

alternatively, as the average facet size increases.

In addition, empirical costs are superimposed as individual data points in Figure 8. CPU

times were obtained at four levels of resolution for each shading algorithm while

rendering a million-pixel image. A 5-to-1 scale factor is used to bring the theoretical and

empirical data values into alignment. The existence of the scale factor is due to
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Figure 8. Computational Costs as a Function of the Number of Facets

Theoretical computational costs plotted as a function of the number of
facets assuming a 1000-by-1000 pixel monitor and that the number of
interior points is much larger than the number of boundary points. The
theoretical costs correspond to Equations 33 and 81, respectively In
addition, empirical costs for a million-pixel image are shown as
individual data points (G - LIU - Linear Interpolation of Intensities, P -
LISN - Linear Interpolation of Surface Normals).

operations other than arithmetic that are executed in the real implementation. Such

operations include memory referencing, input/output, subroutine calls, etc.
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3. INTENSITY SURFACE CONTINUITY

The realism of the images generated by the aforementioned shading algorithms suffer to

different degrees from a perceptual effect called Mach bands. The magnitude of the

Mach band effect is related to continuity of the intensity surface. This relationship will be

expressed in a mathematical model. The theoretical basis of the model will be

considered in terms of the psychophysical mechanism underlying the Mach band effect.

An important point to remember throughout this discussion is that Mach bands do arise

naturally. They are present when viewing real objects, and it is therefore not our goal in

image synthesis to completely eliminate Mach bands. However, those Mach bands which

are an artifact of the shading process and are not present in the real object reduce visual

realism.

3.1 Lateral Inhibition

The Mach band effect has been attributed to the neural mechanism of lateral inhibition.

Receptors in the human eye receive light stimuli from the environment. However, the

sensation perceived by a receptor is a combination of overlapping excitatory and

inhibitory influences of neighboring receptors. Thus the response of a receptor depends

not only on the magnitude of the incoming stimulus, but also on the influences of its

neighbors. Lateral inhibition is a physiological process whereby stimulation of a receptor

excites local neighbors while inhibiting more distant neighbors. The excitatory and

inhibitory influences increase for stimuli of larger magnitude. The local influence of a

point stimulus is shown in Figure 9, taken from Ratliff's monograph on Mach bands

[RATL65J.
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0 distance
Figure 9. Lateral Inhibition [RATL65]

A point stimulus excites local neighbors while inhibiting more distant
neighbors.

Consider the intensity curve in Figure 10. Receptors in the eye are receiving light stimuli

in relation to the actual intensities (solid lines). However, those receptors near the

discontinuity are being inhibited differently than their neighbors. Receptors in the darker

region near the discontinuity are being inhibited to a greater extent than their dark

neighbors due to the proximity of the highly inhibitory bright region. Alternatively,

receptors in the brighter region near the discontinuity are being inhibited to a lesser extent

than their bright neighbors due to the proximity of the darker region. The cumulative

effect of the excitatory and inhibitory responses is the intensity of light that is perceived

(dotted lines).

3.2 Mathematical Model of the Mach Band Effect

A mathematical model of lateral inhibition provides a theoretical basis for the discussion

of Mach bands generated by the various shading algorithms. However, a high-fidelity

model is not required because in the subsequent mathematical treatment of Mach bands,
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intensity

distance

Figure 10. Perceived vs. Actual Intensity [RATL65]

The solid lines represent actual intensities of light stimuli received by
receptors in the eye. The dotted lines represent perceived intensities
due to the cumulative effect of excitatory and inhibitory responses.

their magnitudes will be discussed in relative terms only. A mathematical model of the

gross behavior of neural networks will suffice.

Several mathematical models of lateral inhibition in neural networks have been proposed

to explain the Mach band effect. Ratliff's monograph [RATL65] on Mach bands

summarizes six such models by Huggins/Licklider, Bekesy, Mach, Fry, Hartline/Ratliff

and Taylor. The six models differ in their degree of fidelity. For example, the

Hartline/Ratliff and Taylor models consider recurrent inhibition, i.e., the strength of an

inhibitory influence is determined by the ultimate response of a receptor rather than the

strength of its stimulus. However, as far as the gross behavior of neural networks is

concerned, Ratliff argued that all six models are essentially equivalent.

The six models are equivalent in the sense that "the modification of the response appears

to be related to the negative of the second derivative" of the intensity curve [RATL65].

Various intensity curves whose second derivative is undefined (i.e., C2 discontinuous) will

be considered in the following discussion. In such cases, the difference between the right
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and left first derivatives at the discontinuity will be used in lieu of the second derivative.

The magnitude of the Mach band induced at the discontinuity will be proportional to the

negative of this difference.

Figure 10 depicted a graph of the perceived Mach bands for an actual intensity curve that

is CO discontinuous. Analogous graphs can be drawn for curves of higher continuity.

Figures 11, 12, and 13 show the Mach bands induced by intensity curves that are C'

discontinuous, C2 discontinuous, and C2 continuous, respectively. The relative

magnitudes of the perceived Mach bands (dotted lines) are consistent with the

mathematical model of lateral inhibition.

intensity

distance

Figure 11. Mach Band and C' Discontinuity [RATL65]

The solid lines represent actual intensities of light stimuli, while the
dotted line represents perceived intensities. The C' discontinuity in
the intensity curve gives rise to a Mach band.

3.3 Constant Shading

The constant shading method typically generates different shades for adjacent polygonal

facets since the orientation of adjacent facets forming a curved surface are generally

different. Thus a CO discontinuity in shades arises at the boundary between the two
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intensity

distance

Figure 12. Mach Band and C2 Discontinuity [RATL65]

The solid lines represent actual intensities of light stimuli, while the
dotted line represents perceived intensities. The C2 discontinuity in
the intensity curve gives rise to a smoother, less noticeable, Mach band.

intensity

distance

Figure 13. Mach Band and C2 Continuity (Hypothetical)

The solid lines represent actual intensities of light stimuli, while the
dotted line represents perceived intensities. Assuming the validity of
the mathematical model for Mach bands, an intensity curve that is C2

continuous would not give rise to a Mach band.

facets. The CO discontinuity induces Mach bands, which further enhance the perception

of the boundary between the two polygonal facets. A sample shading intensity curve was

presented in Figure 10. The facets that approximate the curved surface are apparent and

thus objects rendered with this shading technique appear unrealistic.
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3.4 Linear Interpolation of Intensities

Linear interpolation of intensities geneTates a shading intensity curve which is CO

continuous, i.e., the magnitudes of the shades across polygon boundaries are equal.

However, since shades are linearly interpolated, a C' discontinuity in the intensity curve

arises at the boundary between two adjacent polygonal facets (see Figure 11). The

greater the curvature of the surface being approximated, the greater will be the

discontinuity, increasing the magnitudes of the Mach bands. The Mach bands perceived

at the facet boundaries accentuate the presence of the polygon artifacts.

3.5 Linear Interpolation of Surface Normals

Linear interpolation of surface normals also induces Mach bands, though generally less

severe than linear interpolation of intensities. Similarly, the intensity curve generated is

C0 continuous with C' discontinuities at the boundary between two polygonal facets.

Duff [DUFF79] analyzed the severity of Mach bands induced by linear interpolation of

intensities and surface normals. Duff used the difference between the right and left

derivatives at the facet boundaries as a measure of the Mach band effect. Duff

demonstrated that it is possible for linear interpolation of surface normals to induce more

severe Mach bands than intensity interpolation in some typical cases with spheres and

cylinders.

Furthermore, linear interpolation of surface normals with Taylor series approximation

does not even guarantee CO continuity for intensities at facet boundaries. The error term

associated with their second-degree Taylor series approximation is:
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R2(x, Y, 0) = (X -S) 2 - x 3  t f (s,t) ds dt (35)

This error term is large when x or y is large (for a big facet) and/or when the derivative is

large (for a surface with high curvature). Then the intensity approximated for the pixel

located at the facet boundary differs significantly from its true intensity. A CO

discontinuity is perceived when the approximated intensity of the pixel on the other side

of the boundary differs from its true intensity in the opposite direction.

Bishop and Weimer claim that the error becomes large enough to adversely affect the

image when the polygon curvature exceeds 600 [BISH86]. Polygon curvature is defined to

be the planar divergence of two adjacent polygonal facets. Figure 14a shows an image of

a teapot spout and 14b shows the corresponding underlying polygon mesh. Even when the

polygon curvature is as small as 450, the approximation error is large enough to be

noticeable.

(a) (b)

Figure 14. Spouts Shaded with Taylor Series Approximation

(a) An image of a teapot spout and (b) its underlying polygon mesh.
Even when polygon curvature is as small as 450, the approximation error
is large enough to be noticeable.
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3.6 Adaptive Subdivision - Object Surface Curvature

A polygon mesh can be obtained by repeatedly subdividing the original curved surface.

This yields new sets of control vertices defining a succession of smaller and more accurate

subsurfaces. Each subsurface is recursively subdivided until some threshold is reached.

The threshold criteria can be based on the smallness or flatness of the subsurface, or the

closeness of the control vertices to the original curved surface [BART87]. This technique

is called adaptive subdivision.

Suppose that we are now given a polygon mesh to render with shading. The accuracy of

the approximation, while sufficient in a geometric sense, may not satisfy shading

requirements. In particular, consider the shading algorithm that linearly interpolates

surface normals via Taylor series approximation. As discussed above, the shading

generated by this algorithm breaks down when polygon curvature exceeds 45'. However,

this requirement may not have been addressed when the polygon mesh was generated.

For example, curvature cannot be uniformly controlled by the step size when the mesh is

generated by stepping incrementally in parameter space.

This approximation error is reduced by adaptively subdividing the mesh while rendering.

Consider the curvature of the object's surface between two adjacent vertices. Figure 15 4

depicts two possible cases in two dimensions. The tangent plane through P1 is defined by

the surface normal 9. Calculate the perpendicular distance from P2 to the tangent plane.

If the difference exceeds a given threshold, the edge is subdivided at its midpoint. The

magnitude of the threshold depends upon the accuracy requirements of the particular

application. The smaller the threshold difference, the more accurate the polygonal

approximation will be.
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Figure 15. Adaptive Subdivision for Surface Curvature

In two dimensions, project the tangent at one vertex to the other vertex.
If the perpendicular distance from P2 to the tangent exceeds a given
threshold, the edge is subdivided at its midpoint.

The adaptive subdivision procedure is performed recursively. On the first pass, each

existing edge is considered for subdivision by projecting the tangent planes at the two

endpoints. The distance from a point to a plane can be determined easily by rotating the

coordinate system so that the plane aligns with two coordinate axes. The distance is then

given directly by the third coordinate of the rotated point. Let 0 be the angle between --ax

and the x-axis and let 0 be the angle between 21 and the y-axis. If (x1 , y1, z1) are the

coordinates of an endpoint, the transformation matrix in homogeneous coordinates is

given by:
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cosO 0 -sine 0
sin~sino cosO sin~coso 0
cos~sin o - sin O cos Ocos O 0,

-x1 cosO-y 1 sin0sinO-z 1 cos0sini -y 1cos0+z sinO x1 sino-y sinkcoso-zcoscoso 1]

The perpendicular distance of the second endpoint with coordinates (xz, Y2, z2 ) from the

tangent plane is then given directly by the rotated z coordinate:

Z,, = (x 1 -x 2) sinO+ (Y1 -Y 2) sin0 coso + (z1 -z 2) cos coso (36)

If subdivision is warranted, a new point is computed in screen and/or world coordinates

and edges are added to reform triangles. At the next iteration, any new edges are

considered for subdivision. A distance threshold can be included to preclude subdividing

edges that are too short. This procedure terminates when no new points are added.

For each new point, its screen coordinates and surface normal must be obtained. The

screen coordinates are simply the midpoint between two endpoints. The surface normal

is obtained in one of three ways depending upon the underlying representation of the

original surface and the degree of accuracy required. If only an approximation is called

for, the surface normal can easily be obtained by linearly interpolating the normals at the

two endpoints. For greater accuracy, the corresponding world coordinates are first

determined by applying the inverse of the viewing transformation. If the original surface

is represented by a parametric bicubic equation, techniques devised by Catmull

[CATM75], Blinn [BLIN86], or Clark [CLAR86] can be used to obtain the corresponding

parametric values. These methods including those compiled in [LANE80] are costly due

to iterative convergence. Surface normals can then be calculated explicitly.

Alternatively, if the surface of the original object is represented explicitly in world

coordinates as such f (u,v,w) = 0, then the surface normal is given by:
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(37)

After normalizing:

VT f f) 
(38)

Figure 16a shows an image of a teapot shaded by linearly interpolating surface normals

via Taylor series approximations. Notice the shading anomalies near the vertices of

triangular facets, particularly on the spout. Figure 16b shows the corresponding

underlying polygon mesh. Since the spout curves 1800 from one side to the other, each

facet takes on about 450 of curvature. This curvature is large enough to introduce

significant approximation error in the Taylor series, and thereby Co discontinuities in the

intensity surface.

pM

(a) (b)

Figure 16. Teapot without Adaptive Subdivision for Object Surface Curvature

(a) An image of a teapot, and (b) its underlying polygon mesh, shaded by
linearly interpolating surface normals via Taylor series approximations.
Shading anomalies are apparent near the vertices of triangular facets,
particularly on the spout. Curvature of about 45' is large enough to
introduce approximation error, and thereby CO discontinuities in the
intensity surface.

Figure 17a shows an image of the same teapot (identical lighting and surface

characteristics) except that the object's surface has been adaptively subdivided. Note
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that the aforementioned shading anomalies are not apparent. Figure 17b shows the

corresponding polygon mesh which has been adaptively subdivided in regions of high

curvature.

(a) (b)

Figure 17. Teapot with Adaptive Subdivision for Object Surface Curvature

(a) An image of the teapot, and (b) its underlying polygon mesh, whose
surface has been adaptively subdivided in regions of high curvature.
Shading anomalies are not apparent.

3.7 Adaptive Subdivision - Intensity Surface Curvature

As discussed in the previous subsection, an object's surface can be adaptively subdivided

to reduce the approximation error introduced by linearly interpolating surface normals

via Taylor series. A similar procedure can be applied to the intensity surface when its

curvature is sufficient to induce Mach bands when linearly interpolating intensities.

The curvature of the intensity surface at a particular vertex is estimated by the tangent

plane (tangent to the intensity surface) at that point. Calculate the perpendicular

distance from an adjacent vertex to the tangent plane in intensity space. If the difference

exceeds a given threshold, the edge is subdivided at its midpoint. The magnitude of the

threshold depends upon the accuracy requirements of the particular application. The
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smaller the threshold difference, the smoother the generated intensity surface will be.

The calculation of the perpendicular distance from an intensity point to an intensity

tangent plane is similar to that performed for object surface curvature. The distance is

determined by rotating the coordinate system so that the tangent plane aligns with the x

and y coordinate axes. 'The perpendicular distance is then given directly by the rotated

intensity point:

4., = (X 1 -X 2 ) sine + (Y 1 -y 2 ) sinO cos4 + (11-12) cosO cosO (39)

where the intensity point has coordinates (x2 , Y2, 12) and the tangent plane at point

(x1 , Y, I) is given by , the angle between A-x and the x-axis and 0, the angle between 21y

and the y-axis.

As before, the surface normal at the midpoint is obtained in one of three ways depending

upon the underlying representation of the original surface and the degree of accuracy

required. If only an approximation is called for, the surface normal can easily be

obtained by linearly interpolating the normals at the two endpoints. For greater accuracy,

the surface normal can be calculated explicitly if the original surface is represented by a

parametric bicubic equation or given explicitly in world coordinates. For any new points,

new edges are then added to reform triangles.

Figure 18a shows an image of a teapot shaded by linearly interpolating intensities without

adaptively subdividing its intensity surface. The specular highlighting is turned off to

enhance diffuse reflections. Two Mach bands are perceived near the right side and lower

portion of the teapot body where the curvature of the intensity surface is great. Figure

18b shows the corresponding underlying polygon mesh.
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(a) (b)

Figure 18. Teapot without Adaptive Subdivision for Intensity Surface Curvature

(a) An image of a teapot, and (b) its underlying polygon mesh, shaded by
linearly interpolating intensities without adaptively subdividing its
intensity surface. Two Mach bands are perceived near the right side and
lower portion of the teapot body where the curvature of the intensity
surface is great.

Figure 19a shows an image of the same teapot (identical lighting and surface

characteristics) except that the intensity surface has been adaptively subdivided. The

polygon curvature of the intensity surface is constrained to be no greater than 100. The

Mach bands that were present in Figure 18a are noticeably reduced. Figure 19b shows

the corresponding polygon mesh. Note the addition of vertices in regions of high

curvature of te intensity surface.
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(a) (b)

Figure 19. Teapot with Adaptive Subdivision for Intensity Surface Curvature

(a) An image of the teapot, and (b) its underlying polygon mesh, whose
intensity surface has been adaptively subdivided. The polygon curvature
of the intensity surface is constrained to be no greater than 100. The
Mach bands that were present in Figure 18a are noticeably reduced.
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4. INTENSITY SURFACE FITTING

Mach's mathematical model of lateral inhibition stated that the magnitude of a Mach

band is proportional to the negative of the second derivative of the intensity curve

(Section 3.2). Thus a smoother intensity curve would reduce the Mach band effect. The

polygon artifacts would be less apparent and the rendered objects would thereby be more

realistic. 4

In the previous section, adaptive subdivision was introduced to generate smoother

intensity surfaces. When linearly interpolating surface normals via Taylor series, an

object's surface is adaptively subdivided to reduce the C0 discontinuities of

approximation error. When linearly interpolating intensities, the intensity surface is

adaptively subdivided to reduce C' discontinuities in the intensity surface.

We now take one logical step forward and generate an intensity surface that is C1

continuous. When linearly interpolating intensities, first-order piecewise polynomials are

obtained to fit a C0 intensity surface. As a natural extension, can we find higher-order

piecewise polynomials to fit a C' intensity surface?

This question has been answered affirmatively for geometric surfaces. Fortunately, an

intensity surface is like any other geometric surface whose third dimension can be

expressed as a function of the other two. So, whereas the third dimension is depth or

height for geometric surfaces, our third dimension is intensity. We, therefore, explore

geometric surface-fitting techniques and choose one to generate smoother intensity

surfaces.
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4.1 Surface Fitting

Many surface-fitting algorithms exist; a survey of such methods is found in [BOEH87].

The number of such algorithms that can be applied to shading is limited by the nature of

the problem. Foremost, the problem is one of fitting an intensity surface that is smoother

than those generated by existing shading algorithms, i.e., the surface must be at least C'

continuous. Second, the surface-fitting technique must be computationally efficient. This

trade-off in smoothness and speed suggests using a technique that achieves only C'

continuity.

The third consideration in the choice of surface-fitting algorithms is interpolation vs.

approximation. An interpolated surface passes through the data points, while an

approximated surface need only pass near Since intensity values are calculated exactly

(for the given shading model) at the data points, we will require the surface to pass

through those points. Thus an interpolating technique is sought.

Fourth, the problem is one of determining shades of pixels on a two-dimensional screen.

Since intensity is a function of two variables (i.e., the two screen dimensions), a bivariate

interpolant is sought.

The fifth consideration is points vs. patches. Shephard [SHEP65] devised a class of

methods that determine point values based on the values of and distances from all given

points. Such schemes are computationally expensive. Alternatively, while it is generally

not possible to interpolate all data points with one low-order polynomial, a surface can be

constructed from patches which are each represented by a different low-order

polynomial. Although many low-order polynomials need to be determined, each can be

evaluated rapidly. Thus a piecewise polynomial approach is sought.
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The sixth restriction is in the shape of the surface patches. The data points, i.e the 4

vertices of the polygonal facets which approximate the original geometric surface, fall at

arbitrary screen locations. However, techniques for polygonal patches with four or more

sides require a regular array of data points. For example, Sibson and Thompson

[SIBS81] proposed a quadratic C' interpolant requiring a rectangular array of data

points. The only known methods for interpolation over scattered data are based on

triangulations. As stated in Section 2, triangular facets can be easily obtained from the

original polygon mesh.

In summary to this point, a bivariate C' piecewise polynomial interpolant over irregular

triangular patches is sought.

The final consideration in the choice of surface-fitting technique is the degree of the

polynomial interpolant. Section 4.2 addresses the cubic interpolation techniques of (1)

the nine parameter cubic, (2) global approaches, (3) the Clough-Tocher scheme, and (4)

transfinite methods. Section 4.3 addresses quadratic interpolation with subdivision to

increase the number of degrees of freedom. In particular, the six-subtriangle Powell-

Sabin quadratic interpolant is discussed in detail.

To achieve C' continuity, the polynomial must interpolate the intensity value as well as the

two tangent vectors at each of the three vertices of a triangular facet. Thus the

polynomial interpolant must afford at least nine degrees of freedom. A bicubic

polynomial affords ten degrees of freedom, and is thereby the lowest-order polynomial

that can interpolate the given data. For this reason, bicubics have received the greatest

attention.
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Due to its second-order terms, a biquadratic is the lowest-order polynomial that can

achieve C' continuity. However, a biquadratic polynomial affords only six degrees of

freedom, insufficient to interpolate the given data. Fortunately, the number of degrees of

freedom can be increased by subdividing the facet. Although cubic interpolants have

received more attention, quadratics are less costly to evaluate, an important

consideration when fitting an intensity surface.

4.2 Cubic Interpolation

The local surface-fitting methods described below use barycentric coordinates which

provide a unique representation of points in the x,y plane. Let P be an arbitrary point in

the x,y plane and let A, B and C be vertices of a triangle (Figure 20). Then,

X p = xAr + x 8s + Xct (40)

and

Y p = yAr + yBs + yCt (41)

such that

r +s+ t=1. (42)

Furthermore, r, s, and t are all in the range 0 to 1 for a point within or on the boundary of

the triangle.

4.2.1 Nine Parameter Cubic

The most straightforward cubic interpolant is the nine paramcter cubic. Although only C'

continuity is guaranteed between surface patches, we study the nine parameter cubic

because it is the basis of other C' methods.
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Figure 20. Barycentric Coordinates

Barycentric coordinates r, s, and t provide a unique representation of
points in the x,y plane with respect to the vertices of a triangle ABC.

The nine parameter cubic uses Bernstein polynomials for Bezier surfaces in local

barycentric coordinates. Bernstein polynomials of degree 3 are defined by:

B3,k(rst) 3! r isjtk (43)B~i'k 's') = i !j !k !

where i +j +k =3 for i, j, k k 0.

A Bezier surface over a triangular patch can be expressed in terms of Bernstein

polynomials using barycentric coordinates. The height of the surface (I) at point (x,y) is a

nine parameter cubic defined as follows:

I(x,y) = I(r,s,t) = Ebj,,kB,jk(r,s,t)

= b3 ,o,or3 + b0 ,3,0s 3 + b0 ,0,3t 3 + 3b 2,1,or2s + 3b 2,ojr2t + 3b 1 ,2,os2r +

3bo,2 ,Is 2 t + 3bl,0 ,2t2r + 3bo,l, 2t2s + 6b1,1,1rst (44)

where the b's are the Bezier points of the control polygon.

For each triangular patch, nine Bezier control points are completely specified by the given
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data (Figure 21). b3,0,0, bo, 3,0, and bo,0 ,3 are specified by the intensity values at the

vertices. b2,1,0 , b2,0,1, bl,20, bo, 2,1 , bl,0,2, and bo,1 ,2 are specified by the tangents at the

vertices. The center Bezier control point bl,1,1 is undetermined, but a standard value is

used to capture quadratic precision:

b 1,1,1 = c - Id (45)

where c is the centroid of the tangent Bezier points and d is the centroid of the corner

Bezier points.

b 0 2,1b 0 3,
bO1,1,1

b
0,0,3

b 3,0,0

Figure 21. Cubic Bezier Surface

Nine Bezier control points are completely specified by the given data for
each triangular patch.

4.2.2 Global Approaches

To achieve C' continuity, the center Bezier control points must be chosen such that the

quadrilateral abcd formed by two adjacent subtriangles is planar (Figure 22). This planar

relation can be expressed by a linear equation for each adjacent pair. Let the three points

of subtriangle abc describe a plane with coefficients e, f, g, and h. Then point d with the

homogeneous coordinates (x,yz,w) is in the plane if and only if:
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ex + fy + gz + hw =0 (46)

B

bD

C

Figure 22. C' Condition for Triangular Patches

To achieve C' continuity, the center Bezier control points a and d must
be chosen such that the quadrilateral abcd formed by two adjacent
subtriangles is planar.

This equality can be. obtained by either global or local techniques. Global techniques

collect the linear relations for all pairs of adjacent triangles and solve the large system of

equations. Although the matrices are sparse, the solutions of such large linear systems

are computationally expensive. Schmidt [SCHM82] solves this system directly while

Grandine [GRAN86] makes small iterative corrections.

4.2.3 Clough-Tocher

Local techniques to modify the inner Bezier control point are based on the Clough-Tocher

scheme [STRA73]. Variations have been devised by Lawson [LAWS77] and Farin

[FARI83]. Although local methods have been shown to be less accurate [NIEL83], the

trade-off in efficiency makes them preferable in this application.

The Clough-Tocher scheme achieves CI continuity by adding cross-boundary derivatives

at the midpoint of each edge. These three additional constraints brings the total to
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twelve, too many for one bicubic polynomial. To add degrees of freedom, each original

triangle is subdivided at its centroid into three subtriangles.

In barycentric coordinates local to subtriangle abc of Figure 22, point d can be expressed

as:

d = ar + bs + ct (47)

The small quadrilateral becf of Figure 23 is similar (in the geometric sense) to the larger

quadrilateral abcd of Figure 22. For quadrilateral becf to be planar, the equality:

f = er + bs + ct (48)

must also hold for the same values of r, s, and t. Using the nine parameter cubic to obtain

initial values e0 and fo, small corrections are added to satisfy Equation 48:

to + e2 = (eo + E1)r + bs + ci (49)

Farin [FARI83] uses a least squares method to obtain:

- r  C (50)
+ (+r 2 ) (1+r 2 )

where

g = eor + bs + ct - fo. (51)

This procedure achieves C' continuity across the edge of the two original triangles. To

achieve continuity across the edges of the subtriangles of the original triangle, the h's are

chosen so that quadrilateral gehe' is planar (Figure 24). The value of the center Bezier

control point b,,, at point a is then given by the centroid of the h's.
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Figure 23. Clough-Tocher Interpolation

The small quadrilateral becf is geometrically similar to the larger
quadrilateral abcd of Figure 22.

B

A C

Figure 24. Clough-Tocher Correction

To achieve continuity across the edges of the subtriangles of the original
triangle, the h's are chosen so that quadrilateral gehe' is planar.

4.2.4 Transfinite Methods

Another class of surface-fitting algorithms known as transfinite methods blend curves

defined at patch boundaries. Coons [COON67] derived a bicubic blending function for

four boundary curves to achieve C' continuity across the boundaries of a quadrilateral
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patch. Referring to Figure 25, Coons defined two operators P1 and P2 by:

Plf = f (O,v) Ho (u) + f (1,v) HI (u) (52)

P2f = f (U, 0) HO' (V) + f (U,- 1) H 3 (V) (53)

where the H's are cubic Hermite polynomials. These two surfaces are superimposed by

forming the Boolean sum:

Pf = (PI e P2 )f = (P1 + P2 - PIP2 )f (54)

f(u,1)

f(O,v) f(1,v)

f(u,O)

Figure 25. Coons Patch

Coons derived a bicubic blending function for four boundary curves to
achieve C 1 continuity across the boundaries of a quadrilateral patch.

Gordon [GORD69] generalized the Coons patch by interpolating a family of curves

defined over a patch. Using univariate Lagrange polynomials L?(u) and Jln(v), the

Boolean sum (Plf e P2f) interpolates the family of curves f (ui, v) and f (u, Vk) where

11

Pif = Ef (ui, v) L'(u) (55)
i=0

P2f = Ef (u, Vk)Jk'(v) (56)
k=0

Barnhill, Birkhoff, and Gordon [BARN73] applied the Coons-Gordon technique to

triangular patches. Variations on the transfinite theme were introduced by Nielson
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[NIEL80] with minimum norm networks and Little [L1Tr83] with convex combinations.

4.3 Quadratic Interpolation

All of the above surface-fitting algorithms use cubic polynomial interpolants. Although

cubics have received more attention, quadratics are less costly to evaluate. Quadratics

are the lowest-order polynomials which can achieve C' continuity using piecewise

interpolants. Although one biquadratic polynomial does not afford enough degrees of

freedom (six coefficients) for an entire triangular patch (nine constraints), the number of

degrees of freedom can be increased by subdividing the original triangles.

4.3.1 Powell-Sabin

Powell and Sabin (POWE77] argued that it is theoretically possible to interpolate a C'

surface using quadratics. Suppose a triangle is subdivided into four subtriangles as in

Figure 26. The equation of the boundary separating subtriangles PQR and ARQ is given

by:

lx + my + n =0 (57)

Let ql(x, y) and q2 (x, y) be the quadratic functions for subtriangles PQR and ARQ,

respectively. Then these two subtriangles are C' continuous if and only if:

q 2(x, y) = ql(x, y) + k(lx + my + n) 2  (58)

holds for some k [POWE77].

The quadratic q I(x, y) affords six degrees of freedom. Equation 58 introduces three more

degrees of freedom, one for each crossing from subtriangle PQR to each of the other

three subtriangles. Thus the subdivision into four subtriangles provides a total of nine
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B p C

Figure 26. Four-Subtriangle Subdivision

It is theoretically possible to interpolate a C' surface using quadratics
over a triangle that is subdivided into four subtriangles.

degrees of freedom, enough to satisfy the nine patch constraints. The coefficients of the

four quadratics are determined by solving a 9-by-9 system of linear equations. Although

this subdivision achieves C' continuity over each patch, it does not provide C' continuity

between adjacent patches.

Powell and Sabin then analyzed a six-subtriangle subdivision (Figure 27). They showed

that at least nine degrees of freedom are afforded and the six quadratic interpolants are

uniquely determined. This subdivision achieves C' continuity over each patch as well as

between adjacent triangular patches.

Let qI(x, y) be the quadratic interpolant for subtriangle AOQ. This quadratic affords six

degrees of freedom. Equation 58 introduces six more degrees of freedom, one for each

crossing to an adjacent subtriangle, for a total of twelve. In addition to the nine original

constraints, three more are introduced by the fact that when the center point is encircled,

q I (x, y) must be obtained again. The coefficients of the six quadratics can be obtained by

solving a 12-by-12 system of linear equations (Section 4.3.2). A less expensive way of
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Figure 27. Six-Subtriangle Subdivision

A six-subtriangle subdivision achieves C1 continuity over each patch as
well as between adjacent triangular patches.

obtaining the quadratic interpolants using barycentric coordinates was established by

Cendes and Wong (Section 4.3.3).

For the six-subtriangle case, Powell and Sabin considered the placement of the interior

point. If point 0 is the centroid of triangle ABC, difficulties ari:se when triangles are

obtuse. The line joining the centroids of two adjacent triangles does not intersect the

common edge. They suggest that the incenter, i.e., the center of an inscribed circle,

always provides a successful partitioning.

Powell and Sabin then turned their attention to twelve subtriangles. This subdivision

affords twelve degrees of freedom and is always acceptable but is not uniquely

determined.

4.3.2 Simultaneous Equations

Powell and Sabin showed theoretically that the coefficients of the six quadratics that fit a

C' surface over a triangular facet with nine constraints can be obtained by solving a
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12-by-12 system of linear equations. Though the solution to these equations is more

computationally expensive than the Bernstein-Bezier representation in barycentric

coordinates developed by Cendes and Wong (Section 4.3.3), we now develop this system

of equations for a potential parallel hardware implementation (Section 6.5).

Let qI(x, y) be the quadratic interpolant for subtriangle AOQ (Figure 27). qI introduces

six coefficients -a, b, c, d, e and f - and satisfies three constraints, as follows:

A ax2 + bx. y + cyA2 + dxA + eyA+f (59)

atA
5x 2ax. + byA + d (60)

ay bx. + 2 cyA + e (61)

19YA

where IA is the intensity and I and I are the partial derivatives at vertex A.

Let q2 (x, y) be the quadratic interpolant for subtriangle AOR and let I1x + mly + n1 be

the equation of AO, the boundary between subtriangles AOQ and AOR. q2 satisfies the

same three constraints as q 1 does if:

q 2 (x, y) = q1 (x, y) + k1 (1Ix + mly + n1 ) 2  (62)

q 2 introduces one more degree of freedom, k 1 .

Let q 3(x, y) be the quadratic interpolant for subtriangle ROB and let 12x + m 2y + n2 be

the equation of RO. The quadratic surface given byq 3 is C1 continuous with q2 if:

q 3(x, y) = q 2 (X, y) + k 2 (12 X + m 2y + n2) 2

= ql(x, y) + k(lx + mly + n) 2 + k 2 (12 x + m 2 y + n2) 2  (63)

q 3 introduces one more degree of freedom, k 2 , and satisfies three additional constraints:
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1B = ax4 + bXBYB + cyB + dxs + eyB + f + kl(lx + mly + nl)2 +

k 2 (12x + m 2y + n 2 ) 2  (64)

= 2axB + byE + d + kl(211xB + 21ImlyB + 211n1) +
ax

k2(212xB + 212 m 2y7 + 212n2) (65)

= bxE + 2CYB + e + kl(2mlyB + 211mixE + 2mnIn 1) +ay

k2(2m2YB + 212m2 xB + 2m 2n 2 ) (66)

where 1B is the intensity and a and - are the partial derivatives at vertex B.

By traversing lines BO and PO, the three equations that satisfy the three constraints at

vertex C are similarly developed while introducing two more degrees of freedom, k 3 and

k4 . Finally, lines CO and QO are traversed to completely encircle center point 0, giving

three more equations that must again satisfy the three constraints at vertex A and

introducing two more degrees of freedom, k 5 and k6 .

The twelve equations are solved simultaneously to obtain solutions for the twelve

unknowns - a, b, c, d, e, f, k1 , k2 , k 3, k 4 , k5 , k6 . The six quadratic surfaces can then

be computed directly.

4.3.3 Cendes and Wong

Cendes and Wong [CEND87] established a set of formulas (Appendix A) for C'

quadratic interpolation based upon the theoretical results of Powell and Sabin. The same

quadratic surface resulting from the solution of a 12-by-12 system of linear equations can

be obtained with a Bernstein-Bezier representation in barycentric coordinates. Consider
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the six-subtriangle subdivision of triangle ABC in Figure 28. A C' quadratic surface can

be represented as:

I(x, y) = I(r,s,t) = Ebj,kB2,J,k(r,s,t)
A

= b 2,0 ,0r2 + b0,2,0s 2 + b0 ,0,2t 2 + 2b,,,,ors + 2b,,o,lrt + 2bo,,,,st (67)

where the six b's are the control points and r, s, and t are barycentric coordinates local to

the subtriangle.

A

B - Q CP

Figure 28. Quadratic Bezier Control Points

Nineteen bezier control points for quadratic interpolation with six
subtriangles.

Any of the aforementioned surface-fitting techniques can be applied to shading. Whereas

the third dimension is depth or height for geometric surfaces, our third dimension is

intensity. Since computational costs are of major concern, we choose quadratic

interpolation over cubic, yielding a savings of one addition per pixel using forward

differencing. Of the quadratic interpolation techniques, we choose the Cendes-Wong

formulas. The Bernstein-Bezier representation in barycentric coordinates developed by

Cendes and Wong generates the same quadratic surface as the solution of a 12-by-12
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system of linear equations with smaller computational costs.

4.4 Implementation

The formulas for C' quadratic interpolation established by Cendes and Wong can be

applied to shading. Like the other shading algorithms, it is assumed that the original

curved surface is approximated by triangles and that the surface's reflectance coefficients

are given. The light sources and viewpoint are specified and unit vectors , r, and r are

given at each vertex. The intensity of reflected light for each vertex that is visible from

the viewpoint can then be immediately obtained from Equation 7. In terms of surface

fitting, these intensities are viewed as the scattered data values to be interpolated over x,y

screen coordinates.

In addition to intensity values, tangent vectors must be determined at each vertex. The

tangent vectors represent the change in intensity for a change in each screen dimension.

Nielson and Franke [NIEL83], in their survey of techniques for estimating tangents, state

that the tangent vectors have a significant effect on the overall quality of the generated

surface. The two basic approaches include (1) a weighted average of tangents of the

triangles adjacent to the vertex and (2) a weighted least squares fit to local or global data.

One of these tecl-niques can be used to estimate tangents.

In this application, however, we may have additional information so that tangent vectors

can be determined exactly. If the surface of the original object is represented explicitly in

world coordinates (u,v,w) by:

f (u,v,w) = 0 (68)

then the surface normal is given by:
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(69)

after normalizing:

V) (70)

Let the screen direction x be represented in world coordinates as:

X u cosa + V cosp + w cosY (71)

Then the directional derivative of the surface normal in world coordinates gives the

partial derivative of the surface normal with respect to screen dimension x:

__ = V cosa + 9v cos# + ,, cos'y (72)

ax

The partial derivatives for r and rf can be obtained similarly. The partial derivative of

the intensity function (Equation 7) with respect to the screen dimension x is:

ai = kd 0(N-.) + IPk, a.( 1 (73)

x OP ax ax

with a similar equation for y. For a given vertex, the partial derivatives of , r, and R

can be calculated and plugged into Equation 73 to determine the tangent vector exactly.

Once intensities and tangent vectors have be computed, the x,y screen coordinates of

incenter 0 and edge points P, Q, and R are determined (see Figure 28). The nineteen

Bezier control points are then calculated with the Cendes-Wong formulas.

The intensity surface given by the quadratic polynomial (Equation 67) for each of the six

subtriangles is evaluated using forward differencing. Since screen coordinate x (and y) is

a linear relation of barycentric coordinates, a step of one unit in the x direction is

equivalent to some constant step (Atr, As, andAt) in the r, s, and t directions, respectively.
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The deltas are calculated as follows:

In the barycentric coordinate system local to triangle ABC (Figure 29), r varies from 1 to

0 between points A and P. The x coordinate of point P is given by:

XP = XB + YB - YA (XB - XC) (74)
YC - YB

Thus, for a unit step in the x direction:

Ar- 1 (75)
XA - XP

As and At for unit steps in the x direction are computed similarly as well as for unit steps

in the y direction.

C

S .................. p.... %.p

Figure 29. Constant Step in Barycentric Coordinates

In the barycentric coordinate system local to triangle ABC, r varies from
1 to 0 between points A and P.

The intensity at point (x+1, y) can then be written as:

I(x +1, y) = I(r+Ar, s+As, t+At) = bi,j,kB ,1j,k(r+Ar, s+As, t+At)
A

= b2 ,O,O(r+Ar)2 + bo, 2,0(s+As) 2 + bo,0.2(t+At)
2 + 2b 1 ,1, 0(r+Ar)(s+As) +
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2b,,o,x(r+Ar)(t+At) + 2bo,,(s+As)(t+At) (76)

Using forward differencing, initialize at (xo,yo):

I(xo, Yo) = I(ro, so, to) (77)

AI(xo, Yo) = b2,o,o(2roAr + Ar 2) + bo,2,o(2SoAS + As2) + bo,0,2(2toAt + At 2) +

2b 1,1,o(roAs + soAr + ArAs) + 2b1,o,1(roAt + toAr + ArAt) +

2bo,1,(soAt + toAs + AsAt) (78)

A21 = b2 ,0,0(2Ar 2 ) + b 0, 2 ,0 (2As 2 ) + bo,o,2 (2At 2) +

2b 1,1,0(2ArAs) + 2b 1,0,1(2ArAt) + 2bo, 1,1(2AsAt) (79)

Since we are iterating over subtriangles, we need not be as concerned with truncation

error. Hence we may start at a vertex rather than at the centroid of the subtriangle. The

above set of initialization equations simplifies since, at a vertex, two barycentric

coordinates are zero and the other is equal to one.

We can then step in the x direction, evaluating intensities in just two additions at each

iteration:

I(xi+1, y) = I(xi, y) + AI (xi, y) (80)

AI(x1+l, y) = AI(x,, y) + A21 (81)

A similar set of equations exist for stepping in the y direction.

4.5 Computational Costs

The C' intensity surface generated by the new algorithm is given by a piecewise quadratic

interpolant using the Bernstein-Bezier representation in barycentric coordinates. It was

previously shown that the quadratic polynomials can be evaluated with just two additions
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at each iteration. Tables 5 and 6 summarizes the number of floating-point operations 4

required for each of the four steps in initializing one facet, applying the same assumptions

as were made for the other shading algorithms.

Table 5. Start-up Costs Per Vertex - Quadratic Interpolation of Intensities

Step + x I V **

Intensities 6 7 1

Tangents 24 13 9 2

Total 30 20 9 2 1

Table 6. Start-up Costs Per Facet - Quadratic Interpolation of Intensities

Step + x / V **

Bezier Points 46 49 4 1

Interpolation Constants 131 225 7

Total 177 274 11 1

Intensities and tangents are calculated for each vertex in the polygon mesh. Bezier points

and interpolation constants are determined for each triangular facet. Thus the cost of

shading by quadratically interpolating intensities is:

CostQ1(d,e,p) = (30t1 +20t 2 +9t 3 +2t 4+t5 )(d+e) +

(177tr+274t 2+11t 3 +t 4)(2d+e-2) + 2t1p (82)

where d is the number of vertices in the interior of the triangulation, e is the number of

vertices on the boundary, p is the total number of pixels on the computer monitor, and t.

through t 5 are the CPU times for the five floating-point operations, as before.

Using the CPU times of the Sun computers (see Table 4), the computational cost is:
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CostQn(d,e,p) = 349.36(d +e) + 2204.32(2d +e -2) + 7.36p (83)

Making the same assumptions about the number of pixels and the relative magnitudes of

d and e as in Section 2, we plot computational costs as a function of the number of facets

(Figure 30). The costs for linearly interpolating intensities (LII) and linearly interpolating

surface normals (LISN) from Figure 8 are superimposed. In addition, empirical costs for

a million-pixel image are shown as individual data points on the graph. The empirical

costs track the theoretical costs well for quadratic interpolation of intensities (QII), using

the same 5-to-1 scale factor as in Figure 8. The costs for QII are less than LISN but more

than LII; they are closer to LII due to relatively small iterative costs, but rise as rapidly as

LISN due to relatively large start-up costs.

4.6 Multiple Light Sources

So far we have analyzed the computational costs in the presence of one light source. To

generalize our results, we now consider multiple light sources. When interpolating

intensities, whether linearly or quadratically, computational costs increase only

marginally. To compute the intensity at each vertex, the contribution of each light source

must be calculated by Equation 7 and then summed. The interpolation of intensity for

each pixel then proceeds like the one-light-source case, i.e., the iterative costs are

unchanged.

However, linear interpolation of surface normals must deal with each light source

separately. Each light vector r and vector of maximum highlight 77 are interpolated

separately. Iterative, and therefore total, costs increase by a factor equal to the number

of light sources.
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Figure 30. Computational Costs as a Function of the Number of Facets

Theoretical computational costs plotted as a function of the number of
facets assuming a 1000-by-1000 pixel monitor and that the number of
interior points is much larger than the number of boundary points. The
theoretical costs correspond to Equations 33, 34, and 83, respectively.
In addition, empirical costs for a million-pixel image are shown as
individual data points (G - LII - Linear Interpolation of Intensities, Q -
QII - Quadratic Interpolation of Intensities, P - LISN - Linear
Interpolation of Surface Normals).

Tables 7, 8, and 9 break down the computational costs per vertex, per facet, and per

pixel, respectively, for each shading algorithm in the presence of two point light sources.
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Table 7. Start-up Costs Per Vertex - Two Light Sources

Shading Algorithm Computational Cost

+ x / V **

Linear Interpolation of Intensities 12 14 2

Linear Interpolation of Surface Normals 0
Quadratic Interpolation of Intensities 36 27 9 2 2

Table 8. Start-up Costs Per Facet - Two Light Sources

Shading Algorithm Computational Cost

+ x / V **

Linear Interpolation of Intensities 14 9 2

Linear Interpolation of Surface Normals 306 664 16 4

Quadratic Interpolation of Intensities 177 274 11 1

Table 9. Iterative Costs Per Pixel - Two Light Sources

Shading Algorithm Computational Cost

+ x / V **

Linear Interpolation of Intensities 1

Linear Interpolation of Surface Normals 10 2 2
Quadratic Interpolation of Intensities 2

The following assumptions were made in deriving computational costs:

1. The image is monochrome.

2. The polygonal facets are triangular.

3. Unit surface normals (9) and unit light vectors (r and -9or 7) are given at all

vertices.
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4

4. Two point light source are present 4

5. The viewpoint and point light source are at finite distances (the most general

case).

6. Partial products have been pre-calculated to minimize cost.

Computational costs can be expressed as a function of the number of vertices in the

interior of the triangulation (d), the number of vertices on the boundary (e), and the

number of pixels (p) on the computer monitor. The number of facets in the triangulation

is 2d +e -2. Let t j through t5 be the CPU times for the five floating-point operations

(addition, multiplication, division, square root, and exponentiation), respectively. The

cost of shading in the presence of two light sources is:

CostLU(d,e,p) = (12t,+14t2 +2t5)(d +e) + (14t,+9t 2 +2t 3)(2d+e -2) + tIp (84)

CostLjsN(d,e,p) = (306t 1 +664t 2 +16t 3 +4t 4)(2d +e -2) + (10t 1 +2t2 +2t 5)p (85)

CostQn(d,e,p) = (36t, +27t 2 +9t 3 +2t4 +2t 5 )(d +e) +

(177t 1 +274t 2 +11t 3 +t 4)(2d +e -2) + 2t lp (86)

Using the CPU times of Motorola's chips (see Table 4), the computational cost as a

function of the number of vertices in the interior of the triangulation (d), the number of

vertices on the boundary (e), and the total number of pixels on the monitor (p) is:

CostLn(d,e,p) = 163.68(d +e) + 114.72(2d +e -2) + 3.68p (87)

CostLsN(d,e,p) = 4837.44(2d +e -2) + 92.96p (88)

CostQjj(d,e,p) = 431.20(d +e) + 2204.32(2d +e -2) + 7.36p (89)

Making the same assumptions about the number of pixels and the relative magnitudes of

d and e as in Section 2, we plot computational costs as a function of the number of facets

in the presence of two, three, or four point light sources (Figures 31, 32, and 33 for each
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of the three shading algorithms). Note the marginal increase in costs for LH and Qi as

the number of light sources increase while LISN costs increase arithmetically.

In addition, empirical costs are superimposed as individual data points in Figures 31, 32,

and 33. CPU times were obtained at four levels of resolution for each shading algorithm

while rendering a million-pixel image in the presence of two (2) and four (4) light sources.

The same 5-to-1 scale factor between theoretical and empirical costs is used as in Figures

8 aid 30.

10 50
Theoretical.........................................................m iia

............. ........4...Theoretical.".. - ..... 2 ... *h Empirical
....................................................... .4~t e C.. .... ..... U i h

CPU I
525Seod5 ... ... .... ... . .. ......... .... .. .. .... ... ... .. ...... ... .. ... ..Seconds iiliiiiiiiiiiiiil e o d

0 1 i I i { i H 0
0 1 2 3 4 5 6 7 8 9 10

1000s of Facets
Figure 31. LiI Computational Costs - Multiple Light Sources

Computational costs for linear interpolation of intensities plotted as a
function of the number of facets in the presence of two, three, or four
light sources, assuming a 1000-by-1000 pixel monitor and that the
number of interior points is much larger than the number of boundary
points. Theoretical costs correspond to Equation 87. Empirical costs
are superimposed as individual data points for rendering a million-pixel
image in the presence of two (2) and four (4) light sources.

4.7 Summary

The innovation of this new approach is to fit a smoother intensity surface to scattered
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Figure 32. QII Computational Costs - Multiple Light Sources

Computational costs for quadratic interpolation f intensities plotted as
a function of the number of facets in the presence of two, three, or four
light sources, assuming a 1000-by-1000 pixel monitor and that the
number of interior points is much larger than the number of boundary
points. Theoretical costs correspond to Equation 89. Empirical costs
are superimposed as individual data points for rendering a million-pixel
image in the presence of two (2) and four (4) light sources.

intensity data using a geometric surface-fitting technique. It can be viewed as a natural

extension to linearly interpolating intensities which uses first-order piecewise polynomials

to fit a CO intensity surface. The new approach uses quadratic (second-order) piecewise

polynomials to fit a CI intensity surface.

Quadratic interpolation of intensities virtually eliminates the Mach band problem

plaguing linear interpolation of intensities. Figure 34a shows an image of a teapot shaded

by linearly interpolating intensities. Mach bands are apparent near the right side and

70



300 1500

4 light sources

250 1250

3 light sources

200 1000

4T h eo retical ....... H .. . _.............. .....

CPU 150 750
2 light sources

S eco n d s...... ............ ...
Empirical

100 2 2 50 CPU

....... .............. S................e od....................................... . S e c o n d s

50 250

0. . I .. I .. I i 0

0 1 2 3 4 5 6 7 8 9 10

1000s of Facets

Figure 33. LISN Computational Costs - Multiple Light Sources

Computational costs for linear interpolation of surface normals plotted
as a function of the number of facets in the presence of two, three, or
four light sources, assuming a 1000-by-1000 pixel monitor and that the
number of interior points is much larger than the number of boundary
points. Theoretical costs correspond to Equation 88. Empirical costs
are superimposed as individual data points for rendering a million-pixel
image in the presence of two (2) and four (4) light sources.

lower portion of the teapot body. Figure 34b shows the same teapot (identical lighting and

surface characteristics) shaded with quadratic interpolation. It appears more realistic
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(a) (b)

Figure 34. Linear vs. Quadratic Interpolation of Intensities

Quadratic interpolation of intensities virtually eliminates the Mach band
problem plaguing linear interpolation of intensities. Mach bands are
apparent near the right side and lower portion of the teapot body in the
first image shaded by linearly interpolating intensities. These Mach
bands are absent in the second image shaded by quadratic interpolation.

due to the absence of the Mach bands.

The linear shading of Figure 34a did not take advantage of the adaptive subdivision

scheme proposed in Section 3.7. Both quadratic shading and adaptive subdivision

address the Mach banding problem, though with differing costs. The trade-off in their

realism and speed will be presented in Section 6.2.

Quadratic interpolation of intensities ameliorates the problem of inconsistent motion

which afflicts both linear interpolation of intensities and linear interpolation of surface

normals. For the linear schemes, the shade determined for a pixel depends upon the

values of intensity or surface normal at each of the three vertices of the triangular facet

that it's in. Thus its shade may change contrary to expectations in a motion sequence if it

suddenly depends upon a different set of vertices. On the other hand, for quadratic

interpolation, the shade of a pixel depends upon intensity values at tle three vertices as

well as those at vertices of adjaccnt facets. Therefore, it is lcss likcv that motion would
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cause inconsistent results.

However, shading inconsistencies due to motion may potentially arise at the silhouette

edges. The tangents to the intensity surface at vertices on the silhouette do not depend on

the intensity values at adjacent but hidden vertices. If the object is then rotated or the

viewpoint changes, these tangents become dependent on previously hidden vertices. The

resulting shading change may be contrary to expectations.

Quadratic interpolation achieves these improvements at a modest increase in

computational cost, two additions per pixel vs. one for linear interpolation of intensities.

However, linear and quadratic interpolation of intensities share a certain disadvantage:

both handle specular reflection poorly. The next section addresses this problem.
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5. ADDITIONAL TOOLS

5.1 Specular Reflection

Specular reflection is currently handled poorly when interpolating intensities, whether

linearly or quadratically. If the peak of a highlight happens not to fall on a vertex of the

polygon mesh, the highlight may be entirely missed. Because the intensity of a specular

highlight falls off exponentially, the intensity surface will be interpolated somewhere

through the base of the highlight and inadvertently chop off its peak.

Specular reflection can be rendered realistically when interpolating intensities if a finer I

mesh of data points is generated in the region of the highlights To accomplish this,

highlights must first be located on the intensity surface. Then the surface may be

adaptively subdivided in regions with large intensity gradients.

Phong and Crow [BUI75a] presented a technique for locating specular highlights to

address the high cost of linearly interpolating surface normals. They argued that surface

normals can be linearly interpolated in facets near highlights, while the less expensive

technique of linearly interpolating intensities can be applied in all other facets.

Highlights are located by first transforming the ieflected light vectors in a perspective

space relative to the viewpoint. If a transformed vector passes near the viewpoint, its

transformed z-component approaches one. The reflected light vector at each vertex is

examined to determine whether or not the highlight is near.

This technique by Phong and Crow for locating highlights is not exact enough for our

purposes, since only the "nearness" of a highlight can be determined. We now present a

technique for locating a specular highlight precisely.
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5.1.1 Locating Specular Highlights

The first step in capturing specular highlights is determining their positions. The peak of

a highlight is located at the point where the surface normal and the vector of maximum

highlight (77) are coincident. If the surface normal can be expressed as a function of

world coordinates as in Equation 69, the world-coordinate position of the highlight on the

surface can be determined explicitly. A new data point is added there. The surface

normal is set equal to 71 and the intensity of reflected light is given by Equation 7.

Alternatively, if the surface normal is not a function of world coordinates, the vector of

maximum highlight is represented in the barycentric coordinate system defined by the

surface normals at the three vertices of a triangular facet. Let points A, B, and C be the

vertices of a facet with surface normals VA, VB, and Vc, respectively. The unit surface

nornals can be mapped to the unit sphere (Figure 35). A specular highlight will fall in

triangle ABC if some interpolated value between normals VA, RB, and Vc equals 7.

This approach to locating a specular highlight works only if 71 is constant, i.e., when light

sources are infinitely far. Remember that the peak of a highlight is also located at the

point where the reflected light vector (n and eye direction M are coincident. Thus when

light sources are at finite distances, we simply use R and V in lieu of 71 and V. The

constant V is represented in the barycentric coordinate system defined by the reflected

light vectors at the three vertices. A specular highlight will fall in triangle ABC if some

interpolated value between reflected light vectors R, , and 9c equals V.

We compute the barycentric coordinates (rv, sv, tv) of V with respect to the polar

coordinates of the surface normals:
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\A

H

Figure 35. Surface Normals on Unit Sphere

A specular highlight will fall in trianle ABC if some interpolated value
between normals RA, 7B, and NC equals the vector of maximum
highlight A.

Vy - Ry - (R 3y-R,)(V.-R L.)

tv = (R2 -Riy)(Rx-R 3  ) (90)
R2,-Ru _-Ry I+gy3

Vx V.- R1. + (RL. - R3.) tv_ u(1Sv = R - Ru(91)

rv = 1 - Sv - tv (92)

If rv, Sv, and tv are all in the range 0 to 1, the highlight falls within the triangular facet. In

fact, the position of the highlight in screen coordinates is given by:

XH = xArv + XBSV + XCtV (93)
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YH = yArv + YBSV + YctV (94)

where (xA, YA), (xE, YB), and (xc, Yc) are the screen coordinates of vertices A, B, and C,

respectively.

If two of the surface normals are coincident, an alternate procedure is followed. For a

highlight to fall within the facet, the vector of maximum highlight must fall between the

two different normals. First, the dot products between the two normals and the vector of

maximum highlight are calculated. Referring to Figure 36, dot must be less than both

dot 1 and dot 2. Next, to check if 7 is in the plane formed by 7q and 92, the cross product

of 91 and 92 is taken. If the dot product of this vector and f1 is zero, 71 is in the plane.

The relative position of the highlight is given by arc cos(dot 1) / arc cos(dot). A new point is

then added along each of two edges of the triangular facet.

N1

NxN2

doti dot H
dot2

N

Figure 36. Highlight Between Two Normals

For a highlight to fall within the facet, the vector of maximum highlight
must fall between the two different normals, dot must be less than both
dot 1 and dot 2 and 7 must fall in the plane formed by 7q and q2
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5.1.2 Adaptive Subdivision - Specular Component

Although the peak of the specular highlight is captured, the intensity may fall off too

rapidly to be accurately interpolated by a quadratic polynomial. The solution is to add

more data points. If the change in specular component between two adjacent points is

greater than a certain threshold, a new point is added at the screen position midway

between the two. The corresponding world coordinate position, if needed, can be

obtained by applying the inverse of the viewing transform matrix. A surface normal can

be calculated explicitly in world coordinates or be linearly interpolated between the two

endpoints. The intensity of reflected light is then obtained with Equation 7.

Figure 37a shows an image of a teapot shaded by linearly interpolating intensities without

locating specular highlights nor adaptively subdividing, while the image in Figure 37b has

been enhanced by these techniques. Crisper and more realistic highlights are apparent in

the second image. Figures 38a and b give the corresponding polygon meshes. Note the

additional subdivisions on the surface of the teapot in areas of specular reflection.

The costs of locating specular highlights and adaptively subdividing based on the specular

component can be greatly reduced when dynamically rendering a sequence of images by

taking advantage of frame-to-frame coherence. When objects, light sources, and/or

viewpoint move in space and time, the specular intensity surface changes. However, it

need not be completely recomputed each frame since changes are relatively minor from

one frame to the next. If each frame represents a one-tenth of a second time step, it is

expected that a highlight appearing in a given facet will next appear in that same facet or

one of its near neighbors. The costs of locating the highlight can then be limited to only a
4

few facets. Furthermore, the data points added through adaptive subdivision need not be
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(a) (b)

Figure 37. Adaptive Subdivision - Specular Component

(a) An image of a teapot shaded by linearly interpolating intensities and
(b) an image enhanced by locating specular highlights and adaptively
subdividing. Highlights are crisper and more realistic in the second
image.

(a) (b)

Figure 38. Adaptive Subdivision - Specular Component - Polygon Meshes

The polygon meshes corresponding to Figure 37. Areas of specular
reflection are adaptively subdivided in the second teapot.

discarded after each frame. These added vertices can be reused and discarded only

when the highlight has migrated far enough away, i.e., when the specular component has

dropped below a certain threshold.
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5.2 Diffuse Boundary

A C' intensity surface is generated when quadratically interpolating intensities.

However, the real intensity surface may have areas that are C' discontinuous. Other than

the obvious discontinuities at real edges (i.e., not facet edges), C' discontinuities

naturally arise at the perceptual boundary where the diffuse component becomes zero.

This occurs when the dot product of the surface normal and a light vector is zero, i.e., the

vectors are orthogonal. Without correction, quadratic interpolation would smooth this

discontinuity, hindering realism (Figure 39).

intensity

ambient
level

distance

Figure 39. Quadratic Smoothing of the Diffuse Boundary

Quadratic interpolation (dotted line) smooths the natural C'
discontinuity arising at the diffuse boundary.

Furthermore, when linearly interpolating intensities, the diffuse boundary is misplaced.

Consider two adjacent vertices whose surface normals are greater and less than 900 from

a light vector, respectively. As shown in Figure 40, the diffuse boundary would fall on the

former vertex rather than at some point in between the two.
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Figure 40. Linear Misplacement of the Diffuse Boundary

When linearly interpolating intensities (dotted line), the diffuse
boundary is misplaced.

5.2.1 Ambient Cut-Off

For the case of one light source, the C' discontinuity can be captured at the diffuse

boundaries by allowing the diffuse component, given by Equation 2, to become negative,

i.e., when the angle between the light vector and the surface normal exceeds 900. We

interpolate as usual, but then compare the interpolated intensity with the ambient light

level. The intensity of the pixel is set to the greater of these two values (Figure 41). Note

that the specular component must be zero when the angle between the light vector and

surface normal exceeds 900.

Figure 42a shows an image of the teapot without correcting for the diffuse boundary, while

ambient cut-off has been used for the teapot of Figure 42b. Note the better-defined

diffuse boundary on the body of the second teapot.

This correction requires one comparison at each pixel. Assume that the computational

cost of a comparison is equivalent to that of an addition operation. Thus one unit of

computation is added to the iterative costs of the shading algorithms when capturing
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ambient
level
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Figure 41. C' Discontinuity at Diffuse Boundary

The C' discontinuity can be captured at the diffuse boundaries by
allowing the diffuse component to become negative (dotted line). The
calculated intensity is then cut off at the ambient light level.

(a) (b)

Figure 42. Ambient Cut-Off

(a) An image of the teapot and (b) an enhanced image correcting for the
diffuse boundary. Ambient cut-off captures the diffuse boundary.

diffuse boundaries with one light source.

5.2.2 Locating Diffuse Boundaries

For the case of two or more light sources, a different approach is required. Consider the

diffuse contributions of two light sources in Figure 43. To capture accurate perceptual
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boundaries, new data points are added along their lengths. A new point is added

between two adjacent screen-coordinate points (xl,yl) and (x2 ,y2) if their diffuse

components diffuse, and diffuse2 , respectively, are of different sign (again allowing

Equation 2 to become negative). We linearly interpolate the diffuse component between

these two points to determine the zero crossing. The screen coordinates of the new point

are then given by:

Xnew = xifactor + x2 (1-factor) (95)

Yne = y factor + y 2 (1 -factor) (96)

where

diffuse2 (97)
diffuse 2 - diffuse,

intensity

combined

light source 2

light source 1

distance

Figure 43. Diffuse Boundary with Two Light Sources

For two or more light sources, ambient cut-off cannot be used to capture
the diffuse boundary. New points are added on edges where the diffuse

component becomes zero.

The corresponding world coordinate position is obtained by applying the inverse of the

viewing transform matrix. The surface normal is determined explicitly if it can be
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expressed as a function of world coordinates as in Equation 69. Alternatively, the surface

normal is obtained by linearly interpolating the surface normals between the two

endpoints of the edge. The intensity of reflected light is then obtained with Equation 7.

However, tangents require special treatment.

The tangent vectors differ on either side of the diffuse boundary due to the C'

discontinuity. Using tangent estimation, tangents on each side should only be based upon

neighboring points that lie on that same side. Alternatively, tangents can be calculated

explicitly. On the lighter side, tangents are based upon contributions from both light

sources, while on the darker side, tangents are based only upon the contribution of the

light source with the positive diffuse component.

Figure 44a shows an image of the teapot without correction for diffuse boundaries, while

they have been located for the teapot of Figure 44b. Note the better-defined diffuse

boundary on the body of the second teapot. Figures 45a and b show the corresponding

polygon meshes. Note the points added along the diffuse boundaries.

The costs of locating diffuse boundaries can be greatly reduced when dynamically

rendering a sequence of images by taking advantage of frame-to-frame coherence. When

objects, light sources, and/or viewpoint move in space and time, the diffuse intensity

surface changes. If each frame represents a one-tenth of a second time step, the diffuse

boundary will, however, not migrate far from o, frame to the next. The costs of locating

the diffuse boundary can then be limited to the same set of facets through which the

boundary passes as well as their near neighbors.
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(a) (b)

Figure 44. Locating Diffuse Boundaries

(a) An image of the teapot and (b) an enhanced image in which the
diffuse boundary is located.

(a) (b)

Figure 45. Locating Diffuse Boundaries - Polygon Meshes

The polygon meshes corresponding to Figure 44. New points were
added at the diffuse boundary in the second teapot.
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6. TRADE-OFFS

We now have a complete toolbox for shading three-dimensional objects on a raster-scan

display. When linearly interpolating intensities, the toolbox comprises:

* adaptively subdividing the diffuse intensity surface to reduce Mach banding

" locating specular highlights

* adaptively subdividing specular intensity surfaces

" locating diffuse boundary

* using ambient cut-off for diffuse boundary in presence of only one light source

When quadratically interpolating intensities, the toolbox comprises:

* locating specular highlights

" adaptively subdividing specular intensity surfaces

" locating diffuse boundary

" using ambient cut-off for diffuse boundary in presence of only one light source

When linearly interpolating surface normals, the toolbox comprises:

* adaptively subdividing the object's surface to reduce approximation error

We now consider how to build a shading algorithm which is most appropriate for a given

application and hardware environment. More specifically, "appropriateness" depends

on realism requirements, computational costs, lighting and surface characteristics, image

complexity, and perception. To enable the reader to build a shading algorithm with

appropriate tools, a trade-off study, accompanied by timing analyses, follows.
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6.1 Original Triangulation vs. Adaptive Subdivision

The shading algorithms under consideration start with a triangular mesh that

approximates the curved surfaces of an object to be rendered. We refer to this mesh as

the original triangulation. It may or may not be sufficient for shading purposes, that is,

satisfy the realism requirements of a particular application. When insufficient, adaptive

subdivision can be applied while shading. The question remains, what is the trade-off

between the original triangulation and adaptive subdivision to satisfy realism

requirements?

In cases where it is more cost effective to adaptively subdivide, one may take the

argument to the extreme: let. the original triangulation be just one facet and adaptively

subdivide while shading to meet shading requirements. While this w11 work in theory, the

silhouette edge will be too coarse. To smooth the silhouette edge, a technique developed

by Phong and Crow [BUI75a] can be applied independently.

Figure 46 shows two images of a teapot that have been shaded by linearly interpolating

surface normals. Figure 46a started with 56 facets and was adaptively subdivided to yield

250 facets. Figure 46b started with 248 facets and was not adaptively subdivided. The

first image has a sharper highlight and smaller approximation error. The second image

has a more accurately placed highlight and a more faithful silhouette edge. While their

run times are equivalent (25.14 vs. 25.16 seconds, respectively), the second image is

clearly superior. Thus up to a point, it is more cost effective to start with a finer polygon

mesh.

Typically, thc triangular approximation of curved surfaces is performed once. Sometimes

we have no choice; the triangular mesh may have been previously generated and the
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(a) (b)

Figure 46. Silhouette Edge vs. Adaptive Subdivision

The first teapot started with 56 facets and was adaptively subdivided to
yield 250 facets. The second teapot comprises 248 facets and was not
adaptively subdivided. The first image has a sharper highlight and
smaller approximation error. The second image has a more accurately
placed highlight and a more faithful silhouette edge. While their run
times are equivalent, the second image is clearly superior.

specifications of the original surfaces are now unavailable. Or the world coordinates on

the surface of a real object may have been obtained with a 3D digitizer. Even if the

original surface is available, the determination of world coordinates, surface normals,

and adjacency for all surfaces is computationally expensive. There is not enough time in

the graphics pipeline to re-triangulate each time surface shading changes.

One-time triangulation can be performed to satisfy static geometric requirements. On the

other hand, the triangulation needed to satisfy shading requirements varies from one

rendering to the next. As lighting, surface characteristics, and/or orientation change, the

intensity surface changes, possibly requiring re-triangulation. Therefore, the original

triangulation cannot be guaranteeed to satisfy shading requirements for all possible

shaded renderings.
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6.1.1 Object Surface Curvature

Consider the relationship between surface geometry and shading. When linearly

interpolating surface normals via Taylor series (Section 2.3.3), geometry and shading are

directly related. Suppose that the original triangulation is obtained by adaptively

subdividing the original curved surface. If the geometric requirement is for each

approximating subsurface to be sufficiently flat, the shading requirement is satisfied.

Each triangular facet will then be flat enough to preclude significant approximation error

in the Taylor series.

However, if the original curved surface is represented parametrically, curvature cannot be

uniformly controlled. The triangular mesh is obtained by stepping incrementally in

parameter space, but step size is not directly related to curvature. Since each facet is not

guaranteed to be flat enough, adaptive subdivision based on surface normals (Section 3.6)

is our only recourse. Object surface curvature is dependent only on the surface geometry,

not on the lighting and surface reflectance characteristics. Adaptive subdivision of the

polygon mesh can therefore be performed once before shading or for the visible surfaces

while shading.

6.1.2 Intensity Surface Curvature

When linearly interpolating intensities and adaptively subdividing to reduce Mach

banding (Section 3.7), geometry and shading are somewhat less related. The diffuse

intensity surface is related to the geometric surface by the dot product(s) of the surface

normal and light vector(s). Assume that the geometric surface was triangulated so that

curvature does not exceed 100 for any facet. When the surface normal and light vector
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are near coincident, the maximum change in their dot product over a facet is

coso0 - coslO0 = .015. This difference is small enough to preclude Mach banding

However, when the surface normal and light vector are nearly orthogonal, the maximum

change in their dot product over a facet is cos8O0* - cos9O0* = .174. This difference may be

sufficient to produce Mach bands, given the appropriate light intensity and surface

reflectance characteristics.

Figure 47a shows an image of a teapot comprising 944 facets and shaded without adaptive

subdivision. Figure 47b started with 248 facets and was adaptively subdivided to yield 632

facets. The first image was generated in 9.22 seconds, while the second took 9.28.

Though these CPU run times are comparable, Mach banding appears to be less severe

when starting with a finer polygon mesh, not to mention the more faithful silhouette edge.

(a) (b)

Figure 47. Original Triangulation vs. Adaptive Subdivision - Intensity Surface Curvature

The first teapot comprises 944 facets and was shaded without adaptive
subdivision. The second teapot started with 248 facets and was
adaptively subdivided to yield 632 facets. Though their run times are
Lomparable, Mach banding appears to be less severe when starting with
a finer polygon mesh.
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6.1.3 Specular Component

When adaptively subdividing to capture specular highlights (Section 5.1.2), geometry and

shading are virtually unrelated. The specular intensity surface is related to the geometric

surface by a power function of the dot product(s) between the viewpoint and reflected

light vector(s). Let the power be an average value, say 50, and again assume that the

geometric surface was triangulated so that curvature does not exceed 100 for any facet.

Let a specular peak fall on one facet vertex, i.e., the viewpoint and reflected light vector

are coincident, so that the specular component equals 1. An adjacent vertex whose

surface normal differs by 10' would then have a specular component equal to

cos 200 50 = .04. This difference of 0.96 in the specular component reflects a large

intensity change over one facet. Thus a 100 difference in surface curvature cannot be

guaranteed to capture specular highlights.

However, it is not cost effective to start with a finer polygon mesh because, in most areas,

the smaller f1cets are not needed. It is better to capture the large intensity gradients

associated with highlights by adaptively subdividing based on the specular component.

Figure 48a shows a teapot comprising 944 facets and shaded without adaptive

subdivision. Figure 48b started with 248 facets and was adaptively subdivided to yield 595

facets. The specular highlight of Figure 48b is not only superior to that of Figure 48a, the

second image using adaptive subdivision was generated faster (24.24 vs. 16.98 seconds,

respectively).

6.1.4 Diffuse Boundary

The previous subsections addressed adaptive subdivision with respect to the object
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(a) (b)

Figure 48. Original Triangulation vs. Adaptive Subdivision - Specular Component

The first teapot comprises 944 facets and was shaded without adaptive
subdivision. The second teapot started with 248 facets and was
adaptively subdivided to yield 595 facets. The specular highlight of the
latter is superior and was generated faster.

surface, the intensity surface, and the specular component. The relationship between

geometry and shading varied from direct to cosine to power function, respectively.

However, when applying adaptive subdivision to capture the diffuse boundary(ies)

(Section 5.2.2), there is no corresponding functional relationship.

By definition, a diffuse boundary falls on an edge when the surface normal is orthogonal

to a light vector. Let the surface normals at two adjacent vertices be greater and less than

90' from a light vector, respectively. Without adaptive subdivision, the diffuse boundary

would fall on the former vertex rather than at some point in between the two. The degree

of misplacement depends mostly on the length of the edge. If we again assume that the

geometric surface was triangulated so that curvature does not exceed 100 for any facet, no

bounds can be placed on edge lengths.

Therefore, the geometrical requirement of surface curvature cannot be guaranteed to

satisfy the shading requirement for diffuse boundaries. Since the original triangulation
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will probably not be sufficient to capture diffuse boundaries, we must resort to adaptive

subdivision.

6.2 Linear vs. Quadratic Interpolation of Intensities

The previous section addressed trade-offs within a given shading algorithm. This section

explores the trade-off in visual realism vs. computational costs between two algorithms.

Specifically, quadratic interpolation of intensities attacks the problem of Mach banding

by fitting a C' intensity surface. Similarly, a finer original triangulation when linearly

interpolating intensities reduces Mach banding by decreasing the magnitudes of C'

discontinuities.

Figure 49a shows an image of a teapot with 1168 facets shaded by linearly interpolating

intensities. The teapot of Figure 49b has 248 facets and was shaded by quadratic

interpolation. Their CPU run times are 10.10 and 10.84 seconds, respectively. Though

their run times are comparable, linear interpolation does a superior job in shading with

only about five times as many facets. Though the Mach bands are not completely

eliminated, Figure 49a has a smoother appearance and a more faithful silhouette edge.

The conclusion that linear interpolation of intensities does a better job than quadratic

interpolation is based on the assumption that a fine enough polygon mesh is given.

However, if we are given a very coarse polygon mesh, quadratic interpolation of

intensities has a clear advantage. While the quadratically interpolated intensity surface

may not be very accurate, at least we are guaranteed C' continuity. Furthermore, with

very few vertices and facets, the start-up costs for quadratic interpolation are reasonably

small, while iterative costs are fixed at just twice that of linear interpolation.
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(a) (b)

Figure 49. Linear vs. Quadratic Interpolation

The flrst teapot comprising 1168 facets was shaded by linearly
nterpolating intensities. The secund teapot has 248 facets and was

shaded by quadratic interpolation. Though their run times are
comparable, linear interpolation generates a smoother appearance and
more faithful silhouette edge.

In the extreme, consider a teapot whese body comprises only twelve triangles. Figure -')a

,hows its inage rendered by linearly interpolating intensities and Figure 50b by quadratic

interpolation. With only twelve triangles, quadratic interpolation still does a reasonable

job in smooth shading, while linear interpolation is clearly deficient.

With very coarse meshes, nonlinear foreshortening, a problem not previuaslv addressed,

may appear. Each of the shading algorithms under investigation interpolates in screen

space. None take into account the foreshortening associated with the prospective

projection from three dimensions to two. While the errors introduced are typically small

[IIECK861, they may become noticeable when the polygonal facets are large. Though we

will not consider the problem of nonlinear foreshortening further, we mention in passing

that the correct solution is obtained by an extra division at each pixel [I-IECK861.
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(a) (b)

Figure 50. Linear vs. Quadratic Interpolation - Coarse Triangulation

With only twelve triangles, the quadratic interpolation of the first image
still does a reasonable job in smooth shading, while the linear
interpolation of the second image is clearly deficient.

6.3 Linear Interpolation of Surface Normals vs. Adaptive Subdivision

Unassisted, linear interpolation of surface normals does the best job of capturing specular

reflections among the three basic shading methods. However, this algorithm is

significantly slower than the other two. By locating specular peaks and adaptively

subdividing based on the specular component, linear and quadratic interpolation of

intensities render realistic highlights at some expense.

One can argue that quadratic interpolation of intensities should be able to capture

specular reflections with fewer subdivisions because of its higher-degree polynomial.

However, remember that we are fitting an intensity surface to a region that behaves as a

power cosine function; the power typically in the range of 1 to 200 IFOLE82]. A

quadratic surface is not much better than a linear surface at fitting a high-degree surface.

Thus to achieve the same degree of realism in rendering a specular highlight, quadratic

interpolation has to subdivide about as much as linear. Therefore, linear interpolation of

intensities has the clear advantage in the realism vs. cost trade-off for specular reflection.

95



The number of subdivisions at the equal-cost point is actually much greater due to

adaptability. Since specular highlights are rare, most facets do not require subdivision;

more effort can be applied to those that do. The following timing study with images of the

teapot demonstrates this point.

Figure 51a shows an image of a teapot with 944 facets shaded by linearly interpolating

surface normals. The teapot of Figure 51b was shaded by linearly interpolating

intensities; it started with 944 facets and adaptively subdivided based on the specular

component to yield 1287 facets. Their CPU run times are 31.44 and 13.54 seconds,

respectively. The images are comparable in terms of realism (the highlight on the body of

the second teapot is actually more faithful due to use of r .'7 in Equation 7 vs. 1. - in

Equation 8). However, linear interpolation of intensities with adaptive subdivision based

on the specular component far outdistances linear interpolation of surface normals in

terms of speed.

6.4 Ambient Cut-Off vs. Locating Diffuse Boundaries

Both ambient cut-off and locating diffuse boundaries have been proposed as techniques

to capture the CO boundaries at which the diffuse component becomes zero. Since

ambient cut-off is only viable in the presence of one light source, we will compare these

two techniques under this constraint.

While both techniques do a creditable job in capturing diffuse boundaries, different

computational costs are associated with each. As derived in Section 5.2.1, ambient cut-

off has no additional start-up costs but requires one additional comparison (costing one

unit) at each pixel. Locating diffuse boundaries, on the other hand, incurs higher start-up
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(a) (b)

Figure 51. Linear Interpolation of Surface Normals vs. Adaptive Subdivision

The first teapot comprising 944 facets was shaded by linearly
interpolating surface normals. The second teapot was shaded by
linearly interpolating intensities; it started with 944 facets and
adaptively subdivided based on the specular component to yield 1287
facets. The images are comparable in terms of realism, even though the
run time of the latter is much faster.

costs but has no additional iterative costs; the intersections of the diffuse boundary and

the facet edges must be located and triangles reformed for the newly added points.

Figure 52a shows an image of a teapot whose diffuse boundaries were captured by

ambient cut-off. Points were added along the diffuse boundaries of the intensity surfaces

of Figure 52b. The diffuse boundaries in both images are well-defined. In addition, their

CPU run times are comparable (6.66 vs. 6.94 seconds, respectively). While ambient cut-

off is simpler to implement, it is not as general a technique as locating the diffuse

boundary.

6.5 Software vs. Hardware Implementation

The Pixel-planes project [FUCH81] took a radically different approach to computer

architecture design. Pixel-planes is organized into a binary tree of 64 one-bit arithmetic

logic units and two multiplier trees. Linear expressions of the form, Ax+By+C, can be
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(a) (b)

Figure 52. Ambient Cut-Off vs. Locating the Diffuse Boundary

Ambient cut-off was used to capture the diffuse boundaries in the first
teapot. Points were added along the diffuse boundaries of the second
teapot. The diffuse boundaries in both images are well-defined and their
run times are comparable.

computed in parallel. Thus, coordinate transformations, clipping, projections, and

shading can be computed for all pixels in one pass.

Goldfeather and Fuchs [GOLD86I recently designed a VLSI-based system for rapidly

renderipg quadratic surfaces. The system, called Pixel-powers, is a direct extension of

Pixel-Planes, a linear expression evaluator described above. Pixel-powers is capable of

evaluating quadratic expressions for every pixel in parallel. Their goal was to generate

images of curved surfaces represented by quadratic expressions in real time.

The Pixel-powers system can be innovatively used to implement the quadratic shading

algorithm. Though Pixel-powers was designed to render geometric surfaces, its quadratic

expression evaluator (QEE) can be used to generate intensity surfaces as well. However,

the shading algorithm must be re-expressed in a form suitable for the QEE.

The shading algorithm employs the Cendes-Wong formulas to generate a Bernstein-

Bezier surface in barycentric coordinates. However, the QEE requires a quadratic
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expression of the form:

AX2 + Bxy + C2 + Dx + Ey + F (98)

The shading algorithm can be altered to fit this form by solving a 12-by-12 system of linear

equations. The six coefficients, A, B, C, D, E, and F, are obtained for each C' piecewise

quadratic intensity surface facet, as derived in Section 4.3.2. Although the

computational costs of this solution are higher than the initialization costs for Cendes-

Wong, the coefficients can then be fed to the QEE to evaluate the shade of each pixel in

parallel.

Goldfeather and Fuchs claim that Pixel-powers is capable of rendering 30,000 curved

polygonal facets per second. Based on this analysis, such claims can now be extended to

curved polygonal facets that are shaded with a C' quadratic shading technique.

6.6 Summary

Table 10 summarizes the results of the trade-off study between the original triangulation

(OT) and adaptive subdivision (AS). Table 11 summarizes the results of the trade-off

study between computational costs and visual realism.
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Table 10. Original Triangulation vs. Adaptive Subdivision Trade-off

LII QI LISN

Object surface curvature OT

Intensity surface curvature OT

Specular component AS AS

Diffuse boundary AS AS

The more cost-effective method, original triangulation (OT) or adaptive
subdivision (AS), appears for each tool for each shading algorithm
(Lfl - Linear Interpolation of Intensities, QII - Quadratic Interpolation
of Intensities, LISN - Linear Interpolation of Surface Normals). A blank
cell means that the tool does not apply for the shading algorithm.

Table 11. Computational Cost vs. Visual Realism Trade-off

UI QH LISN

cost realism cost realism cost realism

Fine polygon mesh M M H M VII H

Coarse polygon mesh L L L M H L

Diffuse only L M M H VH H

Diffuse and specular M H H H VH_ H

Computational costs and visual realism are tabulated qualitatively for a
set of application-defined requirements for each shading algorithm (LII
- Linear Interpolation of Intensities, QII = Quadratic Interpolation of
Intensities, LISN - Linear Interpolation of Surface Normals). The
scale of measures is L - low, M- medium, H - high, and VH - very high.
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7. CONCLUSIONS

We have presented a toolbox for shading three-dimensional objects on a raster-scan

display whose surfaces are represented as polygon meshes. For each shading technique,

theoretical and mathematical foundations were documented. Algorithms werd developed

and analyzed in terms of theoretical and empirical computational costs. Trade-offs in

realism requirements, computational costs, lighting and surface characteristics, image

complexity, and perception were investigated. Timing analyses accompanied the

discussion to enable the reader to identify which shading tools are most appropriate for

his or her application and hardware environment.

The toolbox comprises three basic shading methods - linear interpolation of intensities,

linear interpolation of surface normals, and quadratic interpolation of intensities. The

first shading algorithm suffers from the Mach band effect, while the second has a heavy

computational load. The third algorithm, newly proposed in this paper, takes an

innovative approach to shading by applying a known geometric surface-fitting technique.

A smoother intensity surface is fit through scattered intensity data using piecewise

quadratic polynomials. The C' intensity surface reduces Mach banding and can be

calculated in just two additions per pixel using forward differencing.

In addition, several tools have been developed to handle specific deficiencies in the above

methods. Two tools improve surface continuity - adaptive subdivision of the object's

surface and adaptive subdivision of the intensity surface. The first technique reduces

approximation error when linearly interpolating surface normals via Taylor series. The

latter method is an intensity-space extension to the former geometric technique to reduce

Mach banding when linearly interpolating intensities.

101



When interpolating in intensity space, it was not heretofore possible to realistically

capture specular reflections. A combination of techniques was introduced to locate

specular highlights and adaptively subdivide based on the specular component. These

techniques provide realistic renderings of specular reflections when quadratically or

linearly interpolating intensities.

In images rendered with an existing shading algorithm, the diffuse boundaries, i.e., the

perceptual boundaries where the diffuse component becomes zero, were typically

misplaced. The magnitude of the error was dependent upon the coarseness of the

polygon mesh. Two tools were introduced to give sharp, properly placed diffuse

boundaries. The intersections between the diffuse boundaries and the facet edges are

located and new vertices added. Or, in the presence of only one light source, an extra

comparison is performed at each pixel to clamp intensities to the ambient light level.

7.1 Future Work

Certain areas of research presented in this paper can be more fully explored. Eight such

areas include (1) specular reflection, (2) color, (3) intensity, (4) non-point light sources,

(5) adaptive subdivision to reduce Mach banding, (6) dynamic images, (7) hardware

implementation, and (8) images of other objects.

7.1.1 Specular Reflection

Phong's model for specular reflection, which is based on empirical data, does a creditable

job in capturing highlights. A more sophisticated model based on physical studies was

devised by Torrance and Sparrow [TORR66, TORR67]. A surface is assumed to
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comprise microscopic facets, each a perfect reflector. The collective distribution of their

orientation around the surface normal determines the reflective characteristics of the

surface.

When linearly or quadratically interpolating intensities, the Torrance-Sparrow model can

easily be incorporated into our toolbox for shading. Intensities are calculated using this

model at the vertices of the polygon mesh. These more accurate intensities are then

interpolated across the polygon facets. The added computational costs are nominal since

it is incurred only at start-up. On the other hand, when linearly interpolating surface

normals, the added expense is incurred at each pixel.

7.1.2 Color of Specular Reflection

Cook and Torrance [COOK81 devised a model based on geometrical optics that

accounts for the spectral energy distribution of light. The color of the specular reflection

is a function of the colors of the light source and the object's surface. This enhancement

to the lighting model can be easily incorporated into our toolbox. An appropriate triple

of specular reflectance coefficients can be chosen for the three primary colors based upon

the colors of the light source and the object's surface.

Cook and Torrance [COOK81] further apply the Fresnel equation to express the color of

the specular reflection as a function of the angle of incidence. As the angle of incidence

decreases, the color of the object's surface has greater influence on the color of the

specular reflection. When linearly or quadratically interpolating intensities, this effect

can be realized by calculating intensities at the vertices of the polygon mesh based the

angle of incidence. These more accurate intensities are then interpolated across the
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polygon facets. This model can also be applied for linear interpolation of surface

normals with added computational expense at each pixel.

7.1.3 Intensity and Color

The cost comparisons, timing studies, and realism trade-offs were all based on

monochrome images. It was stated that the analyses of monochrome images resulted in

no loss of generality since intensity equations for each of the three subtractive primary

colors can be computed separately. This assumes that a tristimulus model of human

vision can be applied to the interaction of light with objects [FOLE82]. While this is easy

to implement, a more accurate model may be desired to generate more realistic images

for a given application.

Instead of only three color components, Hall [HALL83] devised a lighting model which

samples ten wavelengths in the color spectrum. Hall incorporates wavelength-dependent

Fresnel reflectivity terms to accurately scale the intensity contribution at each

wavelength. In addition to reflected light, Hall's mathematical model for intensity

includes terms for transmitted light, as well as the transmittance through the medium

between the surface and viewer. As before, these more accurate intensities can be

calculated once upon start-up when interpolating intensities, or iteratively at each pixel

when interpolating surface normals.

7.1.4 Non-Point Light Sources

In this paper, we modeled light sources as idealized points that radiate equally in all

directions. Such light sources, while simplifying the mathematics, cast sharp shadows. A
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real light source has a non-zero cross-sectional area and may radiate directionally. Such

distributed light sources cast soft shadows with umbras and penumbras. A more accurate

lighting model may be desired to generate more realistic images for a given application.

Warn [WARN83] devised a lighting model to capture the size and directionality of light

sources. Light from a point light source is specularly reflected off of an imaginary

reflector. The size, angle, and specular reflectance properties of the reflector model the

characteristics of the distributed light source. The apparent intensity of the light source

striking the surface of an object is easily computed. The modified intensity of reflected

light is then computed by our Equation 7 as before. This enhancement can be easily

incorporated for linear and quadratic interpolation of intensity.

7.1.5 Adaptive Subdivision to Reduce Mach Banding

One technique was proposed in this paper to reduce Mach banding by adaptively

subdividing when linearly interpolating intensities. This technique lost the realism-cost

trade-off to a finer original triangulation for two reasons: the basic shading algorithm of

linear interpolation of intensities is very efficient, and the criterion for adaptive

subdivision was not particularly effective. The potential for improvement lies in the

second point.

The criterion for adaptive subdivision was based on intensity surface curvature for two

reasons. First, psychophysical experiments showed a relation between the perceived

magnitude of Mach bands and intensity surface curvature. Second, the technique was a

direct extension of adaptive subdivision based on object surface curvature. However,

since this criterion proved lacking, other criteria should be explored to efficiently reduce
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Mach banding by adaptive subdivision.

7.1.6 Dynamic Images

Several assertions were made concerning dynamic images which were not supported

through implementation. Quadratic interpolation of intensities may generally improve

shading consistency from one frame to the next, while adversely affecting dynamic

shading near silhouette edges (Section 4.7). The costs of locating specular highlights and

adaptively subdividing based on the specular component can be greatly reduced when

dynamically rendering a sequence of images by taking advantage of frame-to-frame

coherence (Section 5.1). Similarly, the costs of locating diffuse boundaries can be greatly

reduced by taking advantage of frame-to-frame coherence (Section 5.2). These results

should be examined via implementation on computer hardware with real-time graphics

capability.

7.1.7 Hardware Implementation

The potential exists for implementing parts of this shading toolbox in hardware. The

basic Phong and Gouraud shading algorithms have been implemented in hardware

extensively. Custom hardware can be built to implement any other part of the toolbox.

Alternatively, the existing Pixel-powers system can be put to the task of parallelizing

quadratic interpolation of intensities.

7.1.8 Images of Other Objects

Throughout this paper, an image of a teapot was rendered to compare and analyze

realism and computational costs. Because of its varied surface curvature, it has proven
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to be a good image for our study, and we hope representative enough to generalize our

conclusions. To validate our results, realism and cost trade-offs should be analyzed for a

variety of images in different applications on several computers.

We briefly investigated another class of object, a corrugated roof. The surface of the roof

differs from the teapot by exhibiting substantial concavity and regularity. Surface

normals, as well as intensity surface normals, at adjacent vertices may bend towards one

another or be coincident. This impacts most of the algorithms in the shading toolbox

because adaptive subdivision is based on surface normals.

The shading algorithms took the topology of this new object in stride. Figures 53a and b

present two images of the corrugated roof, shaded by linearly and quadratically

interpolating intensities, respectively. Techniques to locate highlights and adaptively

subdivide based on the specular component were employed. Note the linear highlights

which span the roof's entire length. Figure 54 shows the roof at a somewhat higher

resolution and in different lighting.
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(a) (b)

Figure 53. Corrugated Roof 1

The first image is shaded by linearly interpolating intensities and the
second by quadratically interpolating intensities. Techniques to locate
highlights and adaptively subdivide based on the specular component
capture the linear highlights which span the roof's entire length.

(a) (b)

Figure 54. Corrugated Roof 2

The first image is shaded by linearly interpolating intensities and the
.econd by quadratically interpolating intensities. These images are at a
somewhat higher resolution and lighted differently than Figure 53.
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APPENDIX A - CENDES-WONG FORMULAS

Appendix A supplies the set of formulas established by Cendes and Wong [CEND87] to

perform quadratic C' interpolation over triangular patches. Figure 55 ascribes a number

to each of the nineteen Bezier control points.

3

11 6 12

Figure 55. Cendes-Wong Quadratic Interpolation

Nineteen bezier control points for quadratic interpolation with six
subtriangles.

Table 12 gives the formulas for the control points b. Let (rs,t) be the barycentric

coordinates of the triangle incenter at node 1. Let o,/t, and -y represent distance ratios as

follows:

d 7,6  d 3,2 d 5, 4

d7,5 d3,37 d5,3

where di, is the distance between nodes i andj. Coefficients c, through c9 are defined as

follows:

c, -- (X -x 3)

1
C2= -(x - x 5 )2
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1
C3 = -(x 1 -X 7 )

2

= -- (x7 - x3)
2

C5 = 1-(x5 - x 3)

-2

C6= -- (x3 -xs)
2

C7 = -(x 7 - xs)
2

C 8 = 2-'-(X 5 -X 7 )

c9 = 1-- (x3 - x 7)2

The d coefficients are defined similarly by replacing y for x in the above equations.
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Table 12. Cendes-Wong Formulas

13ah L/ ax a3 / (y I _ aI-9 aX ai-q/ ay
b, r rc rd1  s sC c

b, (1-,3) (1-,3)c4 (1-,3)d 4  I__ _ _ _ _

_ 1 _ _

1 7
1 c4d

b1 C6 d

b14 -a (l-15)cl (1-,6)dj ____ ____

bl; 1 _id

_ _ 1
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Table 12 (Continued)

__7 a2 7 /1aIx a17 Iay
bt t3,tt

JI

1 b
7_ _ __ 6

bl; 1 odo
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APPENDIX B - IMPLEMENTING THE SHADING TOOLBOX

Appendix B supplies the C source code implementation of the shading toolbox. Source

code is given for the three basic shading algorithms:

" linear interpolation of intensities

" linear interpolation of surface normals

" quadratic interpolation of intensities

In addition, source code is given for six tools to enhance shading:

* adaptive subdivision of the object's surface to reduce Taylor series

approximation error

" adaptive subdivision of the intensity surface to reduce Mach banding

" locating specular highlights

* adaptive subdivision based on the specular component

" locating diffuse boundary and facet edge crossings

" ambient cut-off for diffuse boundaries

Finally, the program and data to generate the four parts of the teapot - body, lid, spout,

and handle - are supplied.
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Main Routine

/****************.******Globals *21 * /

#include <pixrect/pixrecL-hs.h>
#include <stdio.h>
#include <ctype.h>
#include <math.h>

struct pixrect *screen, *region;
double xnorxnal[1000] ,ynormal[1000] ,znormal[1000] ,xworld[1000] ,yworld[1000],

intens[1000] ,specular[1000] ,xtang[1000] ,ytang[1000] ,Xlight,ylight ,zlight,
xeye ,yeye,zeye ,xhigh,yhigh ,zhigh,x[23] ,y[23] ,z[231,
ambient,kd,ks,spec.powermax..dist ,max..spec,
xmid[1000] [40] ,ymid[1000] [40] ,xincenter[1000] [40] ,yincenter[1000J [401,
qql [1000][40],qq2[10001[40] ,qq3[1000][401;

int adj [1000] [40] ,nvertex[1000] ,insert.Jist[1000] [3] ,connectjist[1000] [5],
nconnect[1000] ,boundary[1000] ,iamb,npoints;

/**~***************~***Main***************f

#include "globals.h"

main (argc, argv)
char **argv;
int argc;

unsigned char shade[256];
FILE *stream;

read-light-data ;

1* open frame buffer *

screen = pr...open ("Idev/fb");
region = pr...region (screen, 0, 0, 567, 270);

/* set color map to gray scale *

for (i=0; i<256; i++) {
shade[i] = (unsigned char) i;

I
prs-putcolormap (region, 0, 255, shade, shade, shade);

/* shade individual teapot part only */

if (argc > 1 && strcmp(argv[1], "w") !-0 && strcmp(argv[1], "d") !=0){
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Main Routine

if (strcmp(argv[1], "I") == 0) {
readobject-data ("lid.data");
calculate-shades (argc, argv);}

else if (strcmp(argv[1], "s") == 0) {
readobject-data ("spout.data");
calculate-shades (argc, argv);

I
else if (strcmp(argv[l], "b") == 0) {
read-object-data ("body.data");
calculate-shades (argc, argv);

}
else if (strcmp(argv[1], "h") == 0) {
read-object-data ("handle.data");
calculate-shades (argc, argv);}

}

/* shade entire teapot */

else {
read-object-data ("lid.data");
calculate-shades (argc, argv);

read-object-data ("spout. data");
calculate-shades (argc, argv);

read-object-data ("body.data");
calculate-shades (argc, argv);

read-object-data ("handle.data");
calculate-shades (argc, argv);}

/* save to raster file */

if ((argc> 1 && strcmp(argv[l], "d") 0) 11
(argc > 2 && strcmp(argv[2], "d") 0)) {

stream = fopen ("new.pixrect", "w");
pr-dump (region, stream, NULL, 2, 1);

}

******************************* Calculate Shades *******************************

calculateshades (argc, argv)
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Main Routine

char **argv;
int argc;

int j, p1, p2, p3, nvert;

/* locate specular highlights *

if (ks > 0.0) locate...specular 0

/* calculate intensity for each vertex ~

for (p1=0; pl<npoints; pl++){
calc..Jntensity (p1);

/* adaptively subdivide for specular component *

if (ks > 0.0 && max...dist < 99999.) subdivide..specular 0

/* calculate tangents to intensity surface *

for (p1=0; pl<npoints; pl++){
calc...slope (pl);

I

/* create wire frame image ~

0 if (argc > 1 && strcmp(argv[1], "w") -= 0){
for (p1=0; pl<npoints; pl++){

for 0j=0; ji<nvertex(p11; j++){
p2 = adj[pl]lj];
if (p2 > pl){
pr...vector (region, (int)xworld[pl], (int)yworld[p 1],

I (int)xworld[p2], (int)yworld[p2], 0, 0);

0 /* shade teapot ~

else {

I* find incenter for each facet *

for (p1=0; pl<npoints; pl++){

nvert - adjacent(pl);
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Main Routine

for 0-0O; j <nvert; j++) {
p2=- adj[pl]UI;
p3 - adj[pl][(j+1) % nvertex[plI];
if (p2 >pl && p3 >pl)

incenter (p1, p2 , p3, j);

/* shade each facet *

for (p1=0; pl<npoints; p1-H-){
nvert = adjacent(pl);
for 0j=0; j <nvert; j++) f
p2 = adj[pl]lU];
p3 = adj[pl][(j+1) % nvertex[plII;
if (p2 > pl && p3 > pl){

triangle (pi, p2, p3, j);

12



Linear Interpolation of Intensities

#include "globals.h"

triangle (pl,p2,p3)
int pl,p2,p3;

double mid ,yh..yl,xinterintmax;
int shade,ylowyhigh,otherixmin,ixrnax,ymin,ymax;
register it ix,iy;
register double intensity, intensityOO ,intxl ,intyl, xmin,xmax,

dxmin,dxm ax;

/* find smallest and largest y coordinate *

ylow =pl;
if (yworld[p2] <yworld[pl]) ylow = p2;
if (yworld[p3]<yworld~ylowj) ylow = p3;
yhigh = p1;
if (yworld[p2]>yworld[pl]) yhigh =p2
if (yworld[p3]>yworld[yhigh]) yhigh = p3;
other = p1;
if (ylow!=p2 && yhigh!=p2) other - p2;
if (ylow!=p3 && yhigh!=p3) other = p3;

yht.yl = 1. / (yworld[yhigh] - yworld[ylow]);

/* calculate interpolation coefficients for forward differencing ~

intensityOO -intens[ylow];
intyl = (intens(yhigh] - intens[ylow]) *yh-yl;

raid - (yworld[other] - yworld[ylow]) *ylt-yl;

xinter = xworld[ylowl + mid * (xworld[yhigh] - xworld[ylow]);
intmax = intens[ylow] + mid * (intens[yhigh] - intens[ylowl);

P intxl - (intens(other] - intmax) / fabs(xworld~otherl - xinter);

1* prepare for iteration from low y to mid y ~

yinin - (int)(yworld[ylow]);
ymax =(int)(yworld [other]);

xmin =xworld[ylow];

xmax =xworldfylow];

dxmin =(xworld[yhigh] - xworld[ylowl) *yh-.yl;

dxrnax =(xworld(other] - xworldfylowl (yworld[other] - yworldfylowl);

/* for each y ~
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Linear Interpolation of Intensities

for (iy=ymin+l; iy<=ymax; iy++) {
intensity - intensityOO;
ixmin = (int)xmin;
ixmax = (int)xmax;

if (xmax>xmin) {

/* for each x

for (ix=ixmin; ix<=ixmax; ix++) {
shade = (int)(intensity);
ambient-cutoff (&shade);

pr-put(region,ix,iy, shade);

/* increment for step in x */

intensity = intensity + intxl;
}

else {

/* for each x

for (ix=ixmin; ix>=ixmax; ix-) {
shade - (int)(intensity);
ambient-cutoff (&shade);

pr.put(region,ix,iy, shade);

/* increment for step in x */

intensity = intensity + intxl;

/* increment for step in y */

intensityOO - intensityO0 + intyl;
xmin = xmin + dxmin;
xmax = xmax + dxmax;

/* prepare for iteration from mid y to high y */

ymin = (int)(yworld[other]);
ymax - (int)(yworld[yhigh]);
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Linear Interpolation of Intensities

xmax - xworld[other];
dxmax - (xworld[yhigh] - xworld[other) / (yworld[yhigh] - yworld[other]);

for (iy=ymin+l; iy<=ymax; iy++) {
intensity = intensityOO;
ixmin = (int)xmin;
ixmax = (int)xmax;

if (xmax>xmin) {

/* for each x */

for (ix=ixmin; ix<=ixmax; ix++) {
shade = (int)(intensity);
ambient-cutoff (&shade);

pr.put(region,ix,iy, shade);

/* increment for step in x */

intensity = intensity + intxl;
}

else {

/* for each x

for (ix=ixmin; ix>=ixmax; ix-)
shade = (int)(intensity);
ambient-cutoff (&shade);

pr-put(region,ix,iy, shade);

/* increment for step in x */

intensity = intensity + intxl;

/* increment for step in y */

intensityOO = intensityOO + intyl;
xmin = xmin + dxmin;
xmax - xmax + dxmax;
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Linear Interpolation of Surface Normal

#include "globals.h"

triangle (pi, p2, p3)
int pl, p2 , p3;

double xs, ys, mid, xdel, ydel, xcenter, ycenter,
T5, T4, T3, 'P7, Ti, TO, S5, S4, S3, S2, Si, SO,
Ax, Ay, Az, Bx, By, Bz, Cx, Cy, Cz,
a, b, c, d, e, f. g) h, i, x1., x2, x3, yyi, y2, y3,
xydel, xluxl, xh-.xo, xo...xl, yb...yl, xmin, xmax, dxxnin, dxmax;

itshade, ylow, yhigh, other, ixmin, ixmax, ymin, ymax;
register int. ix, iy;
register double diffuse, specular, dxi, Wx, dyl, dy2, sxi, sx2, syl, sy2,

diffuseO, dxlO, dxy, specularO, sxiO, sxy;

/* find centroid of triangular facet */

centroid(pl, p2 , p3, &xcenter, &ycenter);
x1i xworld[pl] - xcenter;
x2 -xworldlp2] - xcenter;
x3 -xworldlp3] - xcenter;
yyi = yworld[pi] - ycenter;

y2= yworld[p2] - ycenter;
y3 = yworld~p3l - ycenter;

/* calculate interpolation coefficients for surface normal *

if (fabs(y2-yyi) > .0001) {
Ax = ((xnorrnal[p3] - xnorrnal[pil) * (y2 - yyi) - (xnorxnal[p2] - xnormal[pl~j) *(y3 - yyl))I
((x3 - xi) * (y2 -yyl) - (x2 - x1) * (y3 - yyl));

Bx - (xnorrnal[p2] - xnormal[pi] - Ax * (x2 - x1)) / (y2 - yyi);
Cx = xnorxnal[pl] - Ax * x1i- Bx * yyi;

Ay = ((ynormal[p31 - ynormal~pi]) * (y2 - yyl) - (ynormal[p2] - ynorrnal[plj) * (y3 - yy)) /
((x3 - x1) * (y2 - yyl) - (x2 - x1) * (y3 - yyl));

By - (ynorxnalfp21 - ynormal~pl] - Ay * (x2 - x1))!/ (y2 - yyl);
Cy = ynormal~piJ - Ay * x1 - By * yyl;

Az = ((znornialfp3J - znormal~pil) * (y2 - yyl) - (znormal[p2] - znormal[pl) * (y3 - yyl)) /

Bz - (znormal[p2] - znornial[pl] - Az * (x2 - x1)) / (y2 - yyl);
Cz - znormal(pl] - Az * x1 - Bz * yyl;

else{
Ax - ((xnormallp2l - xnorrnall]) * (y3 - yyl) - (xnormal[p3] - xnormal[pij) * (y2 - yyl))/
((x2- x1) * (y3 -yyl) -(x3 -x1) * (y2 -yyl));

Bx - (xnormal[p31 - xnormal~plI - Ax * (x3 - x1)) / (y3 - yyl);
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Cx - xnormal[pi] - Ax * xl - Bx * yyi;

Ay -((ynorinal[p2] - ynormal[pi]) * (y3 - yyi) - (ynormal[p3] - ynormal~pi]) * (y2 - yyi))/
((x2 - x!) * (y3 - yyi) - (x3 - x1) * (y2 - yyi));

By - (ynormal[p3] - ynormal[pi] - Ay * (x3 - xi)) / (y3 - yyi);
Cy - ynormal[pi) - Ay * x1 - By * yl

Az - ((znormal[p2] - znormal[pij) * (y3 - yyi) - (znormalfp3J - znormal[pi]) *(y2 - yyi))/
((x2 - x1) * (y3 - yyi) - (x3 - x1) * (y2 - yyi));

Bz - (znormal[p3] - znormal[pi] - Az * (x3 - xi)) /(y3 - yyi);
Cz -znormal[pi] - Az * x1 - Bz * yyi;

1* precalculate factors *

a - (xlight*Ax + ylight*Ay + zlight*Az);
b - (xlight*Bx + ylight*By + zlight*Bz);
c = (xlight*Cx + ylight*Cy + zlight*Cz);
d - Ax*Ax + Ay*Ay + Az*Az;
e = 2.*(Ax*Bx + Ay*By + Az*Bz);
f - Bx*Bx + By*By + Bz*Bz;
g - 2.*(Ax*Cx + Ay*Cy + Az*Cz);
h - 2.*(Bx*Cx + By*Cy + Bz*Cz);

= Cx*Cx + CY*Cy + Cz*Cz;

/* calculate diffuse component for forward differencing *

T5 = (3.*c*g*g - 4.*c*d*i - 4.*a*g9*i) / (8.*i*i*sqrt(i));
T4 - (3. *c*g*h - 2. *c*e*i - 2. *b*g*i - 2. *a*h*i) / (4. *i*i*sqrt(i));
T3 -(3.*c*h*h - 4.*c*f*i - 4.*b*h*i) / (8.*i*i*sqrt(i));
T7' - (2.*a*i - c*g) / (2.*i*sqrt(i));
Ti - (2.*b*i - c*h) / (2.*i*sqrt(i));
TO-c / sqrt(i);

1* precalculate factors *

a = (xeye*Ax + yeye*Ay + zeye*Az);
b = (xeye*Bx + yeye*By + zeye*Bz);
c - (xeye*Cx + yeye*Cy +s zeye*Cz);

/* calculate specular component for forward differencing *

S5 = (3.*c*g9*g - 4.*c*d*i - 4.*a*g*i) / (8.*i*i*sqrt(i));
S4 - (3.*c*g*h - 2.*c*e*i - 2.*b*g*i - 2.*a*h*i) / (4.*i*i*sqrt(i));
S3 - (3.*c*h*h - 4.*c*f*i - 4.*b*h*i) / (8.*i*i*sqrt(i));
S2 - (2.*a*i - c*g) / (2.*i*sqrt(i));
Si = (2.*b*i - c*h) / (2.*i*sqrt(i));
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SO - c / sqrt(i);

/* find smallest and largest y coordinate ~

Ylow -pl;
if (yworld~p2] <yworldI~p1]) ylow - p2;
if (yworld[p3] <yworldjylow]) ylow = p3;
yhigh -pl;
if (yworld~p21>yworld~pl]) yhigh - 2
if (yworld[p3]>yworld~yhigli]) yhigh - p3;
other = p1;
if (ylow!-p2 && yhigh!=p2) other = p2;
if (ylow!=p3 && yhigh!=p3) other = p3;

ylt.yl - 1. / (yworld[yhigh] - yworld[ytowl);

xh..xl - xworld[yhigh] - xworld(ylow';
xh...xo = xworld[yhigh] - xworld[other];
xo..xl - xworld[otherl - xworld[ylow];

mid -(yworld[other]-yworldfylow]) * yh-yl;
xs = xworld[ylow] +- mid * x-l
if (xs < xworld[other]) xdel = 1.0;1
else xdel - -1.0;
ydel. = 1.0;
xydel = xh-xl * yh...yl;

xs = xworld[ylow] - xcenter;
ys = yworld~ylowl - ycenter;

/* calculate zeroth, first, and second differences
for diffuse component */

diffuse0 = T5*xs*xs + T4*xs*ys + T3*ys*ys + T2*xs + T1 *ys + TO;
dxlO - T5*(2.*xs*xdel+xdel*xdel) + T4*ys*xdel + T*xdel;
dx2 = T5*2.*xdel*xdel;
dyl - T5*(2. *xs*xydel+xydel*xydel) + T4*(ys*xydel+xs*ydel+xydel*ydel) +
T3*(2. *ys*ydel+ydel*ydel) + T2*xydeI + Ti *ydel;

dy2 - T5*2.*xydel*xydel + T4*2.*ydel*xydel + T3*2.*ydel*ydel;
dxy = T5*2.*xydel*xdel + T4*ydel*xdel;

/* calculate zeroth, first, and second differences
for specular component */

specularO - S5*xs*xs + S4*xs*ys + S3*ys*ys + S2*xs + Sl*ys +- SO;
sxlO - S5*(2.*xs*xdel+xdel*xdel) + S4*ys*xdel + S2*xdel;
sx2 - 55*2.*xdel*xdel;

132



Linear Interpolation of Surface Normal

syl - S5*(2.*xs*xydel+xydel*xydel) + S4*(ys*xydel+xs*ydel+xydel*ydel) +
S3*(2.*ys*ydel+ydel*ydel) + S2*xydel + S1*ydel;

sy2 - S5*2.*xydel*xydel + S4*2.*ydel*xydel + S3*2.*ydel*ydel;
.sxy - S5*2.*xydei*.xdei + S4*ydel*xdei;

1* prepare for iteration from low y to mid y ~

yinin = (int)(yworld[ylow]);
ymax - (int) (yworld [other]);

xmin =xworld[ylow];

xmax =xworld[ylow];

dxmin =(xworldfyhigh] - xworld[ylowl) *yh-y1;

dxmax =(xworld[other] - xworld[ylow] )/(yworld[other] - yworld[ylow]);

/* for each y */

for (iy=ymin+1; iy<=ymax; iy++){
diffuse - diffuseO;
dxl = dxlO;
specular = specularO;
sxl = sxO;
ixmin =(int)xmin;

ixmax =(int)xmax;

if (xmax > xmin){

/* for each x *

for (ix=ixmins-; ix<=ixxnax; ix++){
shade - (int) ((ambient + kd*diffuse +

ks*pow(specular, spec...power)) *255.);

ambient-cutoff (&shade);

pr...put (region, ix, iy, shade);

/* increment for step in x

diffuse - diffuse + dxl;
dxl - dxl + dx2;
specular - specular + sxl;
sxl - sxl + sx2;

else{
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/* for each x *

for (ix=ixnuin; ix>ixinax; ix-){
shado (int) ((ambient ikd*diffase

ks*pow(specular, spec-.power)) *255.);

ambient-cutoff (&shade);

pr...put (region, ix, iy, shade);

I* increment for step in x

diffuse = diffuse +i dxl;
dxl =dx1 + dx2;
specular - specular + sxl;
sxl = sxl + sx2;

f* increment for step in y ~

diffuseO = diffuseO + dyl;
dyl =dyl +dy2;
dxlO = dx1O + dxy;

specularO =specularO + syl;
syl. = syl + sy2;
sxlO =sxlO + sxy;

xmin =xniin + dxmin;
xmax =xmax + dxmax;

/* prepare for iteration from mid y to high y ~

ymin - (int)(yworld [other]);

yniax = (int)(yworld[yhigh]);

xmax = xworld[otherl;
dxmax - (xworld[yhigh] - xworld[other]) / (yworld[yhighl - yworld[otherl);

/* for each y */

for (iy-yrnin+1; iy<-ymax; iy++){
diffuse - diffuseO;
dx1 - dx1O;
specular - specularO;
sxl - SXlO0;

134



Linear Interpolation of Surface Normal

ixmin = (int)xmin;
ixmax = (int)xmax;

if (xmax > xmin) {

/* for each x */

for (ix=ixmin+l; ix<=ixmax; ix++) {
shade = (int) ((ambient + kd*diffuse +

ks*pow(specular, specpower)) * 255.);
ambient-cutoff (&shade);

prput (region, ix, iy, shade);

/* increment for step in x

diffuse = diffuse + dxl;
dxl= dxl + dx2;
specular - specular + sxl;
sxl = sxl + sx2;}

}
else {

/* for each x

for (ix=ixmin; ix>ixmax; ix-) {
shade = (int) ((ambient + kd*diffuse +

ks*pow(specular, specpower)) * 255.);
ambient-cutoff (&shade);

prput (region, ix, iy, shade);

/* increment for step in x

diffuse = diffuse + dxl;
dxl - dxl + dx2;
specular = specular + sxl;
sxl - sxl + sx2;}

}

/* increment for step in y */

diffuseO - diffuseO + dyl;
dyl= dyl + dy2;
dxlO - dxlO + dxy;
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specularO - specularO + syl;
syl -syl +sy2;
SXlO sxlO + sxy;

xmin xmin +dxmin;
xmax =xmax + dxmax;
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#include "globals.h"

triangle (p1, p2 , p3, ipoint)
int p1, p2, p3, ipoint;

int k, adji, adj2, adj3, nvpl, nvp2;
double q1, q2, q3, dxdz4, dydz4, dxdz7, dydz7, dxdz9, dydz9, aiph, beta, gamin,

al, a2, a3, a4, a5, a6, a7, a8, a9, bi, b2, b3, b4, b5, b6, b7, b8, b9;

/* determine adjacency ~

nvpl = nvertex~pl];
if (boundary[pl] && boundary[p2]) adji - -1;
else adji - adj[pl][(ipoint-1+nvpl) %/ nvplJ;
if (boundaryl] && boundary[p3]) adj3 = -1;
else adj3 = adj[pl][(ipoint+2) % nvpl];
if (boundary[p3] && boundary[p2]) adj2 =-1;
else {

nvp2 = nvertex[p2];
for (k=O; k<nvp2; k++){

if (adj[p2][k] == p3) {
if (adj[p2][(k-1+nvp2) % nvp2] == p1) adj2 =adj[p2][(k+1) % nvp2];
else adj2 = adj[p2l[(k-l+nvp2) % nvp2];

1* start with given coordinates and calculated tangents ~

x[71 = xworld~pl];
y[7] = yworld[pl];
x[9] = xworld[p21;
y[191 = yworld[p2];
x[4] = xworld[p3];
y[41 = yworld[p3];

dxdz7 = xtang[pl];
dydz7 = ytang[pl];
dxdz9 = xtang[p2];
dydz9 = ytang[p2];
dxdz4 = xtang[p31;
dydz4 = ytang[p31;

1* determine incenter ~

4[13] - xincenterpl][ipoint];
yf 13] - yincenter[pl][ipoint];
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q1 = qql[pl][ipoint];
q2 = qq2j[pl][ipoint];
q3 = qq3[pl][ipointl;

/* compute ratio at midpoint of first edge *

if (adji >=0) midpoint3 (p1, p2, p3, adji, ipoint);
else {

x[31 = x[71 + .5 * (x[9]-x[7]);
y[3] = y[7] + -5 * (y[91-y[7]);

I
if (fabs(x17]-x[9]) < 0.0001) aiph = (yI[9-y[3j)/(yj]-yII 7 ]);
else aiph = (x[91-x[3)/(x1-x1 71);

I* compute ratio at midpoint of second edge *I

if (adj2 >= 0) midpoint2 (p1, p2, p3, adj2, ipoint);
else {

x[21 = x[41 + .5 *(x[9]-x[4]);

y[21 = y(4 ] + .5 *(y[9]..y[4]);

if (fabs(x[41-x[91) < 0.0001) beta = (y[21-y[4])/(y[ 9 -y14]);
else beta = (x[2]-x[4])/(x[9 ]-x[4 ]);

/* compute ratio at midpoint of third edge */

if (adj3 >= 0) midpointl (p1, p2, p3 , adj3, ipoint);
else {

x[l] = x4]1 + .5 *(x[71-x[4]);

y[1] = y[ 4 ] + .5 *y7-y4)

I
if (fabs(x[7]-x[4]) < 0.0001) gamin = (y[1]-y[7]))(y[4]-y[ 7 ]);
else gamin - (xl-x[71)(x41-x171);

/* precalculate factors ~

al = .5*((ql..1.)*x[4] + q2*x[ 7] + q3*x[9]);
a2 = .5*(ql*x[4] + (q2-1.)*x[j7] + 3x9)
a3 - .5*(ql*x[4] + q2*x[7] + (31)x9)
a4 = .5 *beta* (x[91-x [41);
a5 = .5*(l.-gamm)*(x[7]-x[ 4 1);
a6 = S5*gamm*(x[4]-x[7 ]);
a7 = .5*(1.-alph)*(x[9j-x[7j);
a8 = .5*alph*(x[71-x[91);
a9 - .5*(1.-beta)*(x[41-x[91);

bi. - .5*((q1-1.)*y[ 4 ] + q2 *y[7] + 3y9)
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b2 - .5*(ql*y[41 + (q2-1.)*y[7] + q3*y[9]);
W3 - .5*(ql*y[4] + q2*y[7] + (31)y9)
M4 = .5*beta*(y[9]..y[4]);
b5 = .5*(1...gamm)*(y[7]..y[4]);
b6 - .5*gaimn*(y[4..yf7]);
b7 = .5*(1..alph)*(y[9].y[7]);
b8 - .5*alph*(y[7]..y[9]);
b9 = .5*(l.beta)*(y[4]-y[9]);

f* compute Bezier control points ~

z[4] - intens[p3];
4[7] = intens[pl];
4[91 = intens~p2];
4(6] - z[4] + a4*dxdz4 + b4*dydz4;
z[51 = 4[4] + a5*dxdz4 + b5*dydz4;
z[81 = z[71 + a6*dxdz7 + b6*dydz7;
z[101 = z[7] + a7*dxdz7 + b7*dydz7;
z[12] = z[91 + a8*dxdz9 + b8*dydz9;
z[11] = 4[9] + a9*dxdz9 + b9*dydz9;
z[171 = z4] + al*dxdz4 + bl*dydz4;
4t201 = z[7] + a2*dxdz7 + b2*dydz7;
z[22] = z[9] + a3*dxdz9 + b3*dydz9;
z[131 = ql*z[17] + q2*4[201 + q3*z[221;
4(21 = (1.-beta)*z[6] + beta*z[11;
z[1 I = gamm*z[5] +~ (1.-gamm)*z[8];
z[31 = alph*4[10] + (1.-alph)*z[121;
4[15] = (l.-beta)*z[17] + beta*z[22];
z[141 = garnm*z[17] + (1.-gamm)*z[20];
z[161 = alph*z[20] + (1.-alph)*z[22];

/* shade each of the six subtriangular facets ~

draw (7, 3);
draw (3, 9);
draw (9, 2);
draw (2, 4);
draw (4, 1);
draw (1, 7);

/*********************Draw

draw (a, b)
int a, b;

double dr, ds, dt, mid, dry, dsy, dty, bez00, bezil, bez22, bezOl, bez02, befl2,
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ylt.yl, ylt.yo, yo...yl, xh...xl, xh...xo, xo-xl;
mnt shade, ylow, yhigh, other, ixmin, ixmax, yniin, ymax;
register int ix, iy;
register double intensity, intensity0O, intensl00, intensi, intens2,

intyl, inty2, deixy, xmin, xmax, dxmin, dxmax;

/* find smallest and largest y coordinate *

ylow - a;
if (y[b] <y[a]) ylow - b
if (y[131<y~ylow]) ylow - 13;
yhigh - a;
if (y[b] >y[a]) yhigh = b;
if (y[13]>y[yhigh]) yhigh = 13;
other = a;
if (ylow!=b && yhigh!=b) other = b
if (ylow!=13 && yhigh!=l3) other =13;

1* precalculate factors ~

xh...xl - x[yhigh]-.x[ylow];
xh-xo x[yhigh]-xllother];
xo...xI x[other]-x[ylowII;

yht.yl =1. /(y[yhigh]-y[ylow]);
yh..yo =1. /(y[yhigh]-y[otherD);
yo...yl =1. /(y[otherl-yfylow]);

bez00 z[otherl;
bezil z~yhighj;
bez22 - z[ylow];
bezOl. = z[other+yhigh];
bez02 = z[other+ylowl;
bezl2 - zfyhigh+ylow];

/* covert from barycentric to screen coordinates ~

if (fabs(yfyhigh] - y[ylowJ) < 0.0001) dr =0.;

else {
mid = (y[otherl-y[ylowl) * yh-yl;
mid - x[ylowl + mid * xhuxl;
dr - 1. / (x[otherl-mid);

if (fabs(y[otherl - y[ylowl) < 0.0001) ds =0.;

else (
mid - (yj~yhigh]-y[ylow]) * yo-yl;
mid - x[ylowl + mid * xo...xl;
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ds - 1. / (x[yhigh]-rmd);
I
if (fabs(y[yhigh] - y[other]) < 0.0001) dt - 0.;
else {

mid - (y[ylowl-y[otherl) * yh...yo;
mid = x[other] + mid * xh-xo;
dt - 1. / (x[ylow]-mid);

I
if (dr <0.0){

dr =-dr;
ds=--ds;
dt =-dt;

/* calculate zeroth, first, and second differences *

intensity00 - bez22;
intensl00 = bez00*dr*dr + bezll*ds*ds + bez22*dt*(2. + dt) +

2.*bez0l*dr*ds + 2.*bez02*dr*(1. + dt) + 2.*bezl2*ds*(1. + dt);
intens2 = 2.*(bez00*dr*dr + bezll*ds*ds + bez22*dt*dt) +

4.*(bez~l*dr*ds + bez02*dr*dt + bezl2*ds*dt);

dry = 0.0;
dsy = ylt-yl;
dty =-dsy;

intyl. = bezll*dsy*dsy + bez22*dty*(2. + dty) + 2.*bezl2*dsy*(1. + dty);
inty2 - 2.*(bezll*dsy*dsy + bez22*dty*dty) + 4.*bezl2*dsy*dty;
deixy - bezll*2.*dsy*ds + bez22*2.*dty*dt +

2.*(bez0l*dr*dsy + bez02*dr*dty + bezl2*(ds*dty + dt*dsy));

1* prepare for iteration from low y to mid y ~

ymin - (int)y[ylowl;
ymax =(int)y[other];

xmin =x[ylow];

xmax - x[ylow];

dxmin (xlyhigh] - xlylow]) *yh-yl;

dxmax =(x[other] - x~ylow]) *yo...yl;

/* for each y *I

for (iy-ymin+1; iy<-ymax; iy++){
intensity - intensity00;
intensi = intensl00;
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ixmin = (int)xmin;
ixmax - (int)xmax;

if (xmax > xmin) {

/* for each x

for (ix=ixmin+l; ix<=ixmax; ix++) {
shade - (int)(intensity);
ambient-cutoff (&shade);

pr.put (region, ix, iy, shade);

/* increment for step in x */

intensity = intensity + intensl;
intensl = intensi + intens2;}

}
else {

/* for each x

for (ix=ixmin; ix>ixmax; ix-) {
shade - (int)(intensity);
ambient-cutoff (&shade);

pr.put (region, ix, iy, shade);

/* increment for step in x

intensity = intensity + intensl;
intensl = intensl + intens2;

}
}

/* increment for step in y */

intensityOO = intensityOO + intyl;
intyl = intyl + inty2;
intenslOO - intenslOO + delxy;
xmin = xmin + dxmin;
xmax = xmax + dxmax;}

/* prepare for iteration from mid y to high y */
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ymin = (int)(y[other]);
ymax = (int)(y[yhigh]);

xmax = x[other];
dxmax - (x[yhigh] - x[other]) * yh.yo;

/* for each y */

for (iy-ymin+l; iy<=ymax; iy++) {
intensity = intensityOO;
intensl =intenslOO;
ixmin - (int)xmin;
ixmax = (int)xmax;

if (xmax > xmin) {

/* for each x */

for (ix=ixmin+l; ix<=ixmax; ix++) {
shade = (int)(intensity);
ambient-cutoff (&shade);

pr.put (region, ix, iy, shade);

/* increment for step in x */

intensity = intensity + intensl;
intensl = intensl + intens2;

else

/* for each x

for (ix=ixmin; ix>ixmax; ix-) {
shade = (int)(intensity);
ambient-cutoff (&shade);

pr.put (region, ix, iy, shade);

/* increment for step in x */

intensity = intensity + intensl;
intensl =- intensl + intens2;
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/* increment for step in y ~

intensityOO - intensityOO + intyl;
intyl = intyl + inty2;.-
intenslOO - intenslOO + deixy;
xmin - xmin + dxmin;
xmax =xmax + dxniax;

}4
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#include "globals.h"

****************************** Subdivide Object *****************************

subdivide-object ()
{

int j, pl, p2, p3, opoints, start-point, nvert;
double xdiff, ydiff, zdiff, deltal, sinl, cosl, sin2, cos2;

initialize 0;

opoints = 0;

/* loop until no further subdivisions */

while (1) f
start-point = opoints;
opoints - npoints;

/* for each vertex */

for (pl = start-point; pl < opoints; pl++) {

/* for each edge */

for (j = 0; j < nvertex[pl]; j++) {
p2 = adj[pl][j];
if (pl > p2) f

/* make sure edge is long enough */

xdiff = xworld[pl] - xworld[p2];
ydiff = yworld[pl] - yworld[p2];
if (xdiff*xdiff + ydiff*ydiff > max-dist) {
zdiff = zworld[pl] - zworld[p2];

/* calculate rotation angles */

sin1 = xnormal[pl] / sqrt (xnormal[pl]*xnormal[pl] + 1.);
cos1 = 1. / sqrt (xnormal[pl]*xnormal[pl] + 1.);
sin2 - ynormal[pl] / sqrt (ynormal[pl]*ynormal[pl] + 1.);
cos2 = 1. / sqrt (ynormal[pl]*ynormal[pl] + 1.);

/* determine distance to tangent plane in rotated coordinate system */

deltal = (xdiff * sin2) + (ydiff * sini * cos2) +
(zdiff * cos1 * cos2);
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/* add point if exceeds threshold */

if (fabs(deltaI) > max-norm)
add-point (pl,p2,j);

/* make same checks for other vertex */

else {

/* calculate rotation angles */

sini xnormal[p2] / sqrt (xnormal[p2]*xnormal[p2] + 1.);
cos1 1. / sqrt (xnormal[p2]*xnormal[p2] + 1.);
sin2 - ynormal[p2] / sqrt (ynormal[p2]*ynormal[p2] + 1.);
cos2 = 1. / sqrt (ynormal[p2]*ynormal[p2] + 1.);

/* determine distance to tangent plane in rotated coordinate system */

deltaI - (xdiff * sin2) + (ydiff * sini * cos2) +
(zdiff * cos1 * cos2);

/* add point if exceeds threshold */

if (fabs(deltaI) > max-norm)
add-point (pl,p2,j);}

}
}

}
}
if (opoints = npoints) break;

/* reform triangles */

connect-points (opoints);
1
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#include "globals.h"

I****************************** Subdivide Intensity ****** * ***

subdivide-intensity 0

int opoints, start-polnt, pl, p2 , j;

opoints = 0;

/* loop until no further subdivisions */

while (1) {
start-point - opoints;
opoints = npoints;

/* for each vertex */

for (pl = start-point; pl < opoints; pl++) {

/* for each edge */

for (j = 0; j < nvertexfpl]; j++) {
p2 = adj[pl][j];

if (pl > p2) {

/* make sure edge is long enough */

xdiff = xworld[pl] - xworld[p2];
ydiff = yworld[pl] - yworld[p2];
if (xdiff*xdiff + ydiff*ydiff > max-dist) {
Idiff = intens[pl] - intensp2];

/* calculate rotation angles */

sini = xtang[pl] / sqrt (xtang[pl]*xtang[pl] + 1.);
cosl -1. / sqrt (xtang[pl]*xtang[pl] + 1.);
sin2 = ytang[pl] / sqrt (ytang[pl]*ytang[pl] + 1.);
cos2 = 1. / sqrt (ytang[pl]*ytang[pl] + 1.);

/* determine distance to tangent plane in rotated coordinate system */

deltaI - (xdiff * sin2) + (ydiff * sin1 * cos2) +
(Idiff * cosi * cos2);

/* add point if exceeds threshold */
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if (fabs(deltaI) > max-..norm)
add-point (pl,p2,j);

/* make same checks for other vertex ~

else{

/* calculate rotation angles ~

sini xtang~p2] / sqrt (xtangfp2]*xtangfp21 + 1.);
cosi 1. / sqrt (xtang[p21*xtang[p21 + 1.);
sin2 - ytang[p2 ] / sqrt (ytang[p21*ytang[p2] + 1.);
cos2 = 1. / sqrt (ytang[p21*ytang[p2] + 1.);

/* determine distance to tangent plane in rotated coordinate system *

deltaI = (xdiff * sin2) + (ydiff * sini *cos2) +
(Idiff * cosi * cos2);

/* add point if exceeds threshold ~

if (fabs(deltaI) > max-norm)
add-.point (pl,p2,j);

if (opoints == npoints) break;

1* reform triangles */

connect-points (opoints);
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0 #include "glob als .h"

/ **********************Locate Specular * * ** * /

locate...specular ()

imt j, u, p1, p2, p3, opoints, nvert;
double r, s, t;

initialize 0);
opornts = npornts;

/* for each vertex *

for (p1=0; pl<opoints; pl++){
nvert = adjacent(pl);

0 /* for each facet */

for (j-0, j<nvertV j++)
p2 = adj[pl][j];
p3 = adj[pl][(j+1) % nvertex[pl]];

if (p2 >pl && p3 > pl){

1* determine barycentric coordinates of vector of maximum
highlight in terms of local intensity surface normals */

bary (xnormalljpl], ynormal[pl], xnormal~p2], ynormal[p2],
xnormal[p3], ynornmal[p3j, xhigh, yhigh, &r, &s, &t);

/* highlight falls with facet if all three barycentric
coordinates are in the range of 0 to 1 *

if (!boundary[pl] 11 !boundary[p2] 11 !boundaryfp3]) {

1* move existing vertex to position of maximum highlight *

u = p1;
if (s * (1-boundary[p2]) > r * (1-boundary[p1J)) u -=2
if (t * (1-boundary~p3]) > r * (1-boundary[pl]) &&

t * (1-boundary[p3]) > s * (1-boundary~p2J)) u = p3;

0 xworld[u] - r*xworld[pl] + s*xworld[p21 + t*xworld[p31;
yworld[u] - r*yworld[pl] + s*yworld[p21 + t*yworld~p3];
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xnormal[u] = xhigh;
ynormal[u] = yhigh;
znormal[uI zhigh;

}4
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#include "globals.h"

subdivide-specular ()
{
int opoints, start-point, pl, p2, j;

opoints = 0;

/* loop until no further subdivisions */

while (1) {
start-point = opoints;
opoints = npoints;

/* for each vertex */

for (pl=start-point; pl<opoints; pl++) {

/* for each edge */

for (j=0; j<nvertex[pl]; j++) {
p2 = adj[pl][j];

/* add point if difference in specular components
exceeds given threshold */

if (pl > p2 && fabs(specular[pl]-specular[p2]) > max.spec) {

/* make sure edge is long enough */

xdiff = xworld[pl] - xworld[p2];
ydiff = yworld[pl] - yworld[p2];
if (xdiff*xdiff + ydiff*ydiff > max.dist) {

add-point (pl,p2,j);}
}

}
}
if (opoints == npoints) break;

/* reform triangles */

connect-points (opoints);
1}

}
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#include "globals.h"

* ** * Locate Diffuse *******************************

locate-diffuse 0
{

int ilight, opoints, pl, p2, p3 ;
double xdiff, ydiff, lbound, ubound, factor, diffuse;

opoints = npoints;

/* for each light source

for (ilight=0; ilight<nlights; ilight++) {

/* for each vertex */

for (pl=0; pl <=opoints; pl++) {

/* for each edge */

for (j=0; j<nvertex[pl]; j++) {

/* if intensity of point 1 negative *1

if (intens2[ilight][pl] < -1.0 && !dboundary[ilight][pl]) {
p2 = adj[pljj];
if (p2 <= opoints) {

/* and intensity of point 2 positive */

if (intens2[ilight][p2] > 1.0 && !dboundary[ilight][p2]) {

/* find point where diffuse component is zero iteratively */

xdiff = xworld[p2] - xworld[pl];
ydiff = yworld[p2] - yworld[p11;
lbound = 0.;
factor = 1.;
diffuse = 99.;

/* loop until close enough to zero diffuse */

while (fabs(diffuse) > 1.) {
if (diffuse > 0.0) ubound = factor;
else lbound = factor;
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/* try new midpoint ~

factor - .5 * (ubound + ibound);
xnew - xworld[pl] + factor*xdiff;
ynew - yworld[pl] + factor*ydiff;
znew - sqrt(1. - xnew*xnew - ynew*ynew);

/* calculate new diffuse component *I

diffuse = kd[ilight] * 255. * (xnew*xlight[ilight] +
ynew*ylight[ilightl +i znew*zlight[ilight]);

p3 = add-point(pl,p2,factorj,O);
dboundary[ilight][p3] 1;

/* reform triangles *

connect-points(opoints+1);
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#include "globals.h"

******************************* Ambient Cut-off *******************************

ambient-cutoff (shade)
int *shade;{
/* if calculated shade is less than the ambient light level */

if (*shade < iamb) *shade = iamb;
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#include "globals.h"

~~~~~ ~~~Caic Intensity **************/

calc-intensity (p1)
int pl;

double diffuse, xreflect, yreflect, zreflect;

/* calculate diffuse component */

diffuse = xnormal[pl]*xligllt + ynormal[pl]*ytight + znormal[pl]*zlight;

/* determine reflected light vector */

xreflect = 2.*diffuse*xnormal[pl] - xlight;
yreflect = 2.*diffuse*ynormal[plI - ylight;
zreflect = 2.*diffuse*znormal[pl] - zlight;
normalize (&xreflect, &yreflect, &zreflect);

/* calculate specular component */

specular[pl] = pow ((xreflect*xeye + yreflect*yeye + zreflect*zeye), spec-power);
if (specular[pl] < 0.0) specular[pl] = 0.0;

/* compute intensity */

intens(pl] = (ambient + kd*diffuse + ks*specular[pl]) * 255.;

~~~~~ ~~Calc Slope **************/

calc..slope (p1)
int pl;

/* compute tangents to intensity surface *

double xslope=0.0, yslope=0.0, area, xarea=0.0, yarea=0.0, aroot, broot, cosine,
x, y, zx, zy, xa, xb, xc, ya, yb, yc, a, b, c;

mnt j, k, p2, p3, nvert;

/* for each facet adjoining point 1 *

nvert - adjacent(pl);
for 0-=0; j <nvert; j++){
k = 0j+1) % nvertex[pl];
p2 - adj[pl][j];
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p3 - adj[pl]lk];

xa - xworld[plI - xworld[p2];
ya = yworld~~p1] - yworld[p2];
xb = xworld~p3] - xworld~plI;
yb -yworld~p31 - yworld[pl];
xc - xworldllp3l - xworldlp2l;
yc = yworld[p3] - yworld[p2];

a = xa*xa + ya*ya;
b - xb*xb + yb*yb;
c = xc~xc + yc*yc;

aroot - sqrt (a);
broot = sqrt (b);
cosine -(a-ib-c) / (2.*aroot*broot);
if (fabs(cosine) > 1.0) cosine = 1.0;

/* calculate area of facet ~

area - aroot * broot * sqrt (1. - cosine*cosine);

1* compute intensity slope in x direction *

if (fabs(yc) < 0.0001) {
xslope =xslope + area * (intens[p3] - intens[p2]) /xc;
xarea =xarea + area;

else{
x = ya *xc / yc + xworld[p2];
if (fabs(x - xworldllpl]) > 0.0001){
zx = ya * (intens[p3]-intens[p 2]) /yc + intens[p2];
xslope - xslope +i area * (zx - intens[pl]) / (x - xworldfplI);
xarea = xarea + area;

/* compute intensity slope in y direction *

if (fabs(xc) < 0.0001) f
yslope - yslope + area * (intensfp3] - intens[p2]) / yc;
yarea = yarea + area;

I
else{
y -xa *yc /xc +yworld~p2j;
if (fabs(y - yworldlpl]) > 0.0001){

zy - xa * (intens~p3]-intens~p 2I) /xc + intens[p21;
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yslope = yslope + area * (zy - intens[pl]) / (y - yworld[pl]);
yarea = yarea + area;

1* compute tangent as weighted average based on area

Xtangjlpl] - xslope /xarea;
ytang[pl] = yslope /yarea;

/**********************Normalize

normalize (xvector, yvector, zvector)
double *xvector, *yvectoI., *zvector;

double tot;

/* normalize to unit vector in three dimensions ~

tot =sqrt (*xvector* (*xvector)+ *yvector*(*yvector)+ *zector*(*zvector));
*xetr= *xvector/tot;

*yvector = *yvector/tot;
*zvector -*zvector/tot;

norxn2 (xvector, yvector)
double *xvector, *yvector;

double tot;

/* normalize to unit vector in two dimensions *

tot = sqrt (*xvector*(*xvector)+ *yvector*(*yvector));
*xvcto -*xvector/tot;

*yvector - *yvector/tot;

~~~~~ ~~Initialize***************/

initialize (

mnt i;
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for (i=O; i<1000; i++) {
nconnect[i] = 0;

}

******************************* Read Light Data *******************************

read-light-data 0{
FILE *stream;

/* read light vector */

stream = fopen ("light.data", "r");
fscanf (stream, "%If%lf%lf", &xlight, &ylight, &zlight);
ylight = -ylight;
normalize (&xlight, &ylight, &zlight);

/* read eye direction */

fscanf (stream, "%If%lf%lf", &xeye, &yeye, &zeye);
yeye = -yeye;
normalize (&xeye, &yeye, &zeye);

/* calculate vector of maximum highlight */

xhigh = xeye + xlight;
yhigh = yeye + ylight;
zhigh = zeye + zlight; 4
normalize (&xhigh, &yhigh, &zhigh);

/* read ambient light level and reflectance coefficients */

fscanf (stream, "%If", &ambient);
iamb = ambient * 255.;
fscanf (stream, "%f", &kd);
fscanf (stream, "%If", &ks);
fscanf (stream, "%If", &specpower);

/* read threshold criteria */

fscanf (stream, "%If", &max.spec);
fscanf (stream, "%If", &max.dist);
max.dist = max-dist*max.dist;

******************************* Read Object Data *******************************
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k ~reac-object-data (filename)
char '*flename[];

int i, j, ipoint;
FILE *stream;

/* read total number of vertices ~

stream = fopen (filename, "r");
fscanf (stream, "%d", &npoints);

for (i=0; i<npoints; i++) (

/* read world coordinates ~

fscanf (stream, "%d", &ipoint);
fscanf (stream, "%If", &xworld[ipoint]);
fscanf (stream, "%tf", &yworld[ipoint]);

/* read surface normal */

fscanf (stream, " %d", &boundary[ipoint]);
fscanf (stream, "%If", &xnormalfipoint]);
fscanf (stream, "%If", &ynormal[ipoint]);
ynorrnal[ipoint] - -ynormal[ipoint];
fscanf (stream, "%lf", &znormal[ipoint]);

/* read adjacency info */

fscanf (stream, "%d", &nvertexliipointj);
for 6=0; j <nvertex[ipoint]; j++) f
fscanf (stream, "%d", &adj[ipoint]Uj]);

/**********************Bary

P bary (xl, yyl, x2, y2, x3, y3, xsl, ysl, r, s, t)
double xl, x2, x3, yyl, y2, y23, xsl, ysl, *r, *s, *t;

/* compute barycentric coordinates ~

if (fabs(x2-xl) > .0000001) f
*t (ysl - yyl - (y2-yyl)*(xsl-xl)/(x2-xI.))/
((y2-yy1)*(xl-x3)/(x2-xl) - yyl + y3);
*s (xsl-xl+(xl-x3)*(*t)) / (x2-xl);
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else{
*s (ysl - yyl - (y3-yy1)*(xs1-x1)/(x3-xl))/
((y3-yy1)*(x1-x2)/(x 3 -xl) - yyl + y2);

*t(xs1-xl+(x1-x2)*(*s)) / (x3-xl);

/************************Centroid .

centroid(pl, p2, p3, xcen, ycen)
int pl, p2, p3;
double *xcen, *ycen;

1* compute centroid of triangle ~

* xcen = (xworld[plI+xworld[p21+xworldI~p3I)/3.;
*ycen = (yworld~pl]+yworldllp2l+yworld[p3])/3.;

incenter (p1, p2, p3, ipoint)
int p1, p2, p3, ipoint;

double deix, dely, dl, d2, d3, dtot, q1, q2, q3;

1* compute incenter of triangle *

deix - xworld[pl]-xworld[p2];
dely = yworld[pl]-yworldllp2];
dl = sqrt (delx*delx+dely*dely);

deix - xworld[p3]-xworld[p2];
dely - yworld~p31-yworldllp2l;
d2 - sqrt (delx*delx+dely*dely);

deix = xworld~pljj-xworld[p3];
dely - yworld[pl]-yworldllp3l;
d3 = sqrt (delx*delx+dely*dely);

dtot -1. / (dl +d2 +d3);
q1 - dl. * dtot;
q2 -d2 *dtot;
q3 -d0* dtot;
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xincenter[pl][ipoint] = ql*xworld[p3] + q2*xworld[pl] + q3*xworld[p2];
yincenter[pl][ipoint] = ql*yworld[p3] + q2*yworld[pl] + q3*yworld[p2];
qql[pl][ipoint] = ql;
qq2[pl][ipoint] = q2;
qq3[pl][ipoint] = q3;}

I****************************** Interse *******************************cto

intersection (xl, yyl, x2, y2, x3, y3, x4, y4, vertex)
double xl, x2, x3, x4, yyl, y2, y3, y4 ;
int vertex;{
double 11, 12, ml, m2, n1, n2;

/* find intersection of two lines */

11 = yyl -y2 ;
ml= x2 -xl;
n1 = -ml*yyl - l1*xl;
12 = y3 -y4 ;
m2 = x4 -x3;
n2 = -m2*y3 - 12*x3;

x[vertex] = (ml*n2-m2*nl) / (ll*m2-ml*12);
if (fabs(ml) > 0.0001) y[vertex] = (-(1l*x [vertex]) - n1) / ml;
else y[vertex] = (-(12*x[vertex]) - n2) / m2;

******************************* Adjacent *

int adjacent (pl)
int pl;

{
if (boundary[pl]) return (nvertex[pl]-l);
else return nvertex[pl];

}

****************************** Add Point *******************************

add-point (pl, p2 , j)
int pl, p2, j;

{
/* add new point at midpoint between points 1 and 2 */

xworld[npoints] = xworld[pl] + .5 * (xworld[p2] - xworld[pl]);
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yworld[npoints] - yworld[pl] + .5 * (yworld~p2] - yworld[pl]);

/* calculate surface normal via linear interpolation *

xnormal[npoints] = xnormal[pl] + .5 * (xnormal[p2] - xnormal~pll);
ynormal[npoints] - ynormal[pl] + .5 * (ynornial[p2] - ynormal~pl]);
znormal[npoints] - znormal~pl] + .5 * (znormal[p2l - znormal[pl]);
normalize (&xnormal[npoints], &ynormal[npoints], &znormal[npoints]);

/* calculate new intensity *

calc-intensity (npoints);

/* update adjacency info *

insert-ist[npoints][1] = p1;
insert-Jist[npoints[21 = p2 ;
boundary[npoints] - boundaryl] && boundary[p2] &&

(adj[pl[OI = p2 11 adj[pl][nvertex[plI-1] == p)
nvertex[npoints] = 2;
adj[npoints][O] - pi;
adj[npoints][1] = p2 ;
replace (p2, p1, npoints);
adj[plJOI = npoints;

npoints++;

}ipit

midpointl (p1, p2, p3, adj, ipoint)
int p1, p2, p3, adj, ipoint;

/* find middle Bezier control point for edge 1I*

int index, pin;

/* previously computed *

if (ipoint -- nvertex~pl]-l11f adj < p1){
x[1] = xmid[pl][(ipoint+1) % nvertex[pl]];
y[l] - ymid[pl][(ipoint+1) % nvertex[pl]];
I

/* determine intersection between edge and line connecting incenters ~

else{
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intersection (x[41, y1, x[71, y[71, x[13], yA131
xincenter[pl] [ipoint+1], yincenter[pl] [ipoint+1I, 1);

xmid[pl][ipoint+11 - 41)];
ymid[pl][ipoint+l] - YE1];

f************************ idpoint2 ***************

midpoint2 (p1, p2, p3, adj, ipoint)
int p1, p2, p3, adj, ipoint;

/* find middle Bezier control point for edge 2 *

mnt index, pmin;

/* previously computed ~

if (adj < pl) {
find-mid2 (p2, p3, &pinin, &index);
x[21 xmidfpxin] [index];
y[21 ymid[pmin] [index];

/* determine intersection between edge and line connecting incenters ~

else f
find-mid (p2, p3, adj, &pmin, &index);
intersection (x[41, y(4], x[9], y[91, x[13], y[13],

xincenter[pminj [index], yincenter[pminj [index], 2);

fincdrnid2 (p2, p3, &pmin, &index);
xmid[pmin] [index]=x[]

P ~~ymid[pmin] [index]-y(1

~~ Midpoint3

midpoint3 (p1, p2, p3, adj, ipoint)
mnt p1, p2, p3, adj, ipoint;

/* find middle Bezier control point for edge 3 *

mnt index, pmin;

/* previously computed ~
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if (ipoint > 0 II adj < pl) {
x[3] = xmid[pl][ipoint];
y[3] = ymid[pl][ipoint];}

/* determine intersection between edge and line connecting incenters */

else {
intersection (x[7], y[71, x[9], y[9], x[13], y[13],

xincenter[pl][nvertex[pl]-l], yincenter[pl][nvertex[pl]-l], 3);
xmidtpl][ipoint] = x[3];
ymid[pl][ipoint] = y[3];

}
}

*** Find Mid *

find-mid (pl, p2, p3, pmin, index)
int pl, p2, p3, *pmin, *index;

{
if (p2 < p3) {

if (p2 < pl) {
*pmin p2;
*index = find-index (p2 , p3, pl);

}
else {
*pmin = pl;
*index = find-index (pl, p2, p 3);

}
}
else {
if (p3 < pl){

*pmin - p3;
*index - find-index (p3 , p2, pl);

}
else {

*pmin = pl;
*index = find-index (pl, p2, p3);

}
}

}

******************************* Find Mid2 *

find-mid2 (pl, p2, pmin, index)
int pl, p2, *pmin, *index;

{
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if (pl < p2){
*pmin =pl;
*index = find-index2 (pl, p2);

}
else

P *pmin =p2;
*index = findindex2 (p2, pl);

}
}

************************ Find Index*******************************

int find-index (pl, p2, p3)
int pl, p2, p3;{
int i, nvert;

nvert = nvertex[pl];

for (i=0; i<nvert; i++) {
if (adj[pl][i] == p2 && adj[pl][(i+l) % nvert] == p3) return i;
if (adj[pl][i] =- p3 && adj[pl][(i+l) % nvert] =- p2) return i;

********************** Find Index2 ******************************/

int find-index2 (pl, p2)
int pl, p2;{
int i, nvert;

nvert = nvertex[pl];

for ( =0; i<nvert; i++)
if (adj[pl][i] =- p2) return i;

}

******************************* Connect Points *******************************

connect-points (start-point)
int start-point;

/* reform triangles */

int j, k, 1, m, n, nv, u, pl, p2, p22, p3, p4, p5, p6, side, newadds, nvert;
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/* loop until no new points added */

new-adds - 1;
while (new-adds) {
new-adds = 0;

/* for each vertex */

for (pl--O; pl<start-point; pl++) {
nvert = adjacent(pl);

/* for each facet */

for (j=0; j<nvert; j++) f
p2 = adj[pl][j];
p3 = adj[pl][(j+1) % nvertex[pl]];

if (p2 >= start-point && p3 >= start-point) {
for (k=l; k<=2; k++) {
for (1=1; 1<=2; 1++) {

/* if on adjacent edges */

if (insert-Jist[p2][k] == insert-list[p3][l]) {
p4 = insert-Jist[p2][(k%2)+1];
p5 = insert-list[p3][(l%2)+l];
for (m=O; m<nvertex[p4]; m++) {

/* if two points added, add new point on third and last edge */

if (adj[p4][m] =- pS) f
add-connect (p4 , p5);
new-adds = 1;
goto next-tri;}

}
}

}
}

}
nexttri:;
}

}

/* for each new point *1
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for (pl=start-point; pl<npoints-1; pl++){
for (p2=pl+l; p2<npoints; p2++){
for (k=1; k<=2; k-H-){

for (1=1; 1<=2; 1++){

/* if on adjacent edges ~

if (insert-Jist[pl][k] -- insert-Jist[p2] [1]){
m =insert-Jist[pl][k];

nv =nvertex~m];

if (boundary[pl] && boundary[p2] && nv > 2) goto nextl3;

/* count the connections ~

for (n=O; n<nv; n++) {
if (adj[m]In] =- p1) f
if (adj[m][(n-1+nv) % nv] == p2 11 adj[m][(n+l) % fly] == p2){
nconnectIpl]++;
nconnect[p2]++;
connectiist[pl][nconnect~pl]] - p2;
connectlist[p2] [nconnect[p2]J = pl;
find-..connect (p1, nconnect(pl], &p22 , &p3, &p4, &p6 );
for (u=1; u<nconnect~pl]; u++) f
find-~connect (p1, u, &p22, &p3, &p4, &p5);
if (p5 == p6) f

insert (p1, mn, connectlist[pl][u], p2);
goto next3;

insert (p1, insert-Jist[p[11, insertjist[pl ][21, p2.);
next3:

find-~connect (p2, nconnect[p2], &p22, &p3, &p4, &p6 );
for (u-1; u<nconnectfp2]; u++) f
find-..connect (p2 , u, &p22, &p3, &p4 , &p5);
if (p5 -= p6){

insert (p2, mn, connect-list[p2][u], p1);
goto next4;

insert (p2 , insertJist[p2111, insert-ist[p2][2], p1);
next4: goto nextl3;
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I
nextl3:}

}

/* for each new point */

for (pl=start-point; pl<npoints; pl++) {

/* if not connected to any other new point,
connect to two vertices */

if (nconnect[pl] == 0) {
connect2 (pl);

I
/* if connected to one other new point,

connect to it and to one vertex */

else if (nconnect[pl] == 1) {
connectl (pl);
choice (pl, 1);}

/* if connected to two other new points,
connect to both and to one vertex */

else if (nconnect[pl] == 2) {
find-connect (pl, 1, &p2, &p3, &p4, &p5);
find-connect (pl, 2, &p2, &p3, &p4, &p6);
if (p5 =- p6) {
connecti (pl);

}
else {
choice (pl, 1);
choice (pl, 2);

}

/* if connected to three other new points,
connect to one vertex */

else if (nconnect[pl] =- 3) {
side = odd-man (pl);
choice (pl, side);

}
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}

******************************* Add Connect ******************************/

add-connect (pl, p2 )
int pl, p2;

{
int i;

for (i=O; i<nvertex[pl]; i++) {
if (adj[pl][i] == p2 ) {
add-point (pl, p2, i);
return;

}
}

}

I****************************** Find Connect *

find-connect (pl, side, p2, p3, p4, p5)
int pl, side, *p2, *p3, *p4 , *p5 ;

{
int i, j;
*p2 = connect-Jist[pl][side];

for (i=1; i<=2; i++) {
for (j=l; j<=2; j++) {
if (insert-Jist[*p2][j] == insert-list[pl][i]) {

*p3 = insert.Jist[p1][i];
*p4 = insert-Jist[pl][(i % 2) + 1];
*p5 = insertjist[*p2][(j % 2) + 1];

return;
>

}
}

***********************Connect1 ***************

connecti (pl)
int pl;

int p2 , p3, p4, p5, nvp3, pj;

/* connect new point to one existing vertex
and update adjacency info */

if (boundary[pl]) return;
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find-connect (p1, 1, &p2 , &p3, &p4 , &p5);
nvp3 = nvertex[p31;
for (pj=0; pj<nvp3; pj++){

if (adj[p3][pj] -= pl){
if (adj[p3][(pj+1) % nvp3] -= p2){
insert (adj[p3][(pj-1+nvp3) % nvp3j, p4, p3, p1);
insert (p1, p4 , p3, adj[p3][(pj-1+nvp3) % nvp3]);

eeinsert (adj[p3][(pj+1) % nvp3], p4 , p3, pi);
insert (p1, p4, p3, adi[p31[(pj+1) % nvp3]);

/ **********************Connect2***************/

connect2 (pi)
int pl;

int p2, p3, pj, nvp2;

1* connect new point to two existing vertices
and update adjacency info *

p2 = insert-list~pll];
p3 = insertlist[pl][2 ];

nvp2 = nvertex[p2 ];
for (pj=0; pj.<nvp 2 ; pj++){
if (adj[p2][pj] == p1) {
if (!boundary[pl] 11 pj>0){

insert (adjlp2III(pj-1+nvp2) % nvp2II, p2 , p23, pi);
insert (p1, p2, p3, adj[p2l[(pj-1+nvp2) % nvp2]);

if (!boundary~p1] 11 pj<nvp2-l) {
insert (adi[p211(pj+1) 0/ nvp2], p2 , p3, p1);
insert (p1, p2 , p3, adi[p211(pj+l) %/ nvp2]);

choice (pi, side)
mnt p1, side;
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int p2, p3, p4 , p5, smallest;

/* choice of two existing vertices to connect to,
pick vertex that creates largest angle */

find-connect (p1, side, &p2, &p3, &p4 , &p5);
if (p2 > pl){

smallest = selecti (pl, p2 , p5, p4);
if (smallest) {

insert (p1, p2, p4, p5);
insert (p5, p2, p4, p1);

I
else{
insert (p2, p1, p5, p4);
insert (p4, p1, p5, p'l);

int odd-mjan (pl)
int pl;

int p2[4], p3, p4, p5[41, pi;

for (pi=1; pi<=3; pi++) {
find-connect (p1, pi, &p2[pi], &p3, &p4, &p5[pi]);

I
if (p5[l] -= p5[21) return 3;
else if (p5[l] ==p5[3]) return 2;
else if (p5[3] ==p5[2]) return 1;

/***********************Dot Product***************/

double dot-product (p1, p2 , p3)

int p1, p2, p3;

double xdiffl, xdiff2, ydiffl, ydiff2;

/* compute two-dimensional dot product *

xdiffl - xworld[pl] - xworldtp2l;
ydiffl. - yworldipl] - yworldjp2];
norrn2 (&xdiffl, &ydiff 1);
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xdiftf2 - xworld[pl] - xworld[p3];

ydiff2 = yworld[pl] - yworld[p3];
norm2 (&xdiff2, &ydiff2);

return (xdiffl*xdiff2 + ydiffl*ydiff2);
}

*************************Selectl ***************

int selectl (pl, p2, p3, p4)
int pl, p2, p3, p4;

{
double small, cosine;

/* select largest angle, smallest dot product */

small = dot-product (pl, p4, p3);

cosine = dot-product (pl, p2, p3);
if (cosine > small) small = cosine;

cosine = dot-product (p3, p2, pl);
if (cosine > small) small = cosine;

cosine = dot-product (p3, p4, pl);
if (cosine > small) small = cosine;

cosine = dot-product (p2, p4, pl);
if (cosoine > small) return 1;

cosine = dot-product (p2 , p4 , p3);
if (cosine > small) return 1;

cosine = dot-product (p4, p2, p3);
if (cosine > small) return 1;

cosine = dot-product (p4, p2, pl);
if (cosine > small) return 1;

return 0;

*** Insert *

insert (pl, p2, p3, p4)
int pl, p2 , p3, p4;
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int1, m, nv;

1* insert a new vertex between two others
in the adjacency list *

nv = nvertex[plI;
for (1=0;l<nv;lI++){
if (adj[pl][l] == p2){
if (boundary[pl]) {

if (1 > 0 && adj [pl]I(l-1)] ==p3) 1-;

else{
if (adjI~plI[(1-1+nv) % nv] ==p3) 1-;

I
for (m=nv; m>1+1; in-){

adj[pl][m] = adj[pl][m-1I;

adj[pl][1+1] = p4;
nvertex[pl]++;
return;

replace (p1, p2, p3)
int pl, p2, p3;

int pj;

/* replace one vertex by another
in the adjacency list */

for (pj=0; pj<nvertex[pl]; pj++){
if (adj[p1][pj] == p2){
adj[pl][pj] =p3;
return;

173



Teapot Triangulation

#include <stdio.h>
#include <ctype.h>
#include <math.h>
#include <string.h>

#define screen-..scale 10.1
#define screen-size 900.

extern double xndco;
extern double yndc();

int n, i, j, k, ipoint, totaL-points, ssteps, tsteps, even;
double Bez[3][20][4], coord, ssize, tsize, min,

xnormal, ynormal, znorrual, s...deriv[3], t-deriv[31,
screen-factor = screen...size/screen-scale;

FILE * stream; 4

~~~~ ~~~Main***************/

main (argc. argv)
int argc;
char **argv1 ; 4

/* triangulate individual teapot parts ~

if (argc > 1.){
if (strcmp(argv[l], "b") -=0){f

stream -fopen("body. sweep", 'r');
input 0);
stream -fopen("body. data", "w");
output o;

if (strcmp(argv[l], "1"1) -0){
stream -fopen("lid. sweep", "r");
input 0);
stream - fopen("lid. data", "w");
output o;

if (strcrnp(argvjl], "h") =- 0){
stream = fopen("handle. sweep", 'Y');
input 0);
stream - fopen("handle. data", "w");4
output 0;
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if (strcmp(argv[1], Is") =- 0){
stream - fopen("spout. sweep", "r");
input ();
stream - fopen("spout. data", "w");
output 0;

/* triangulate the whole teapot ~

else {
stream = fopen("body. sweep", "r");
input 0);
stream - fopen("body. data", "w");
output 0;

stream =fopen("lid. sweep", "r");
input ();
stream =fopen("lid. data", "w");
output 0;

stream =fopen("handle. sweep"7, "r");
input 0);
stream =fopen("handle. data", "w");
output o;

stream =fopen("spout. sweep", "r");
input ();
stream =fopen(" spout. data", "w");
output 0;

/***********************Input **************I

input (

/* read step sizes ~

fscanf (stream, "%d%d", &ssteps, &tsteps);
ssize - 1.0 / (double) (ssteps-1);
tsize =1.0 / (double) (tsteps-1);

/* read number of patches */I

fscanf (stream, "%d", &n);
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/* read Bezier control points */

for (=0; i<n; i++){
for (j=0; j<4; j++) {

for (k=0; k<3; k++){
fscanf (stream, "%lf", &Bez[k][i][j]);
}

}
}

}

***************************** Output ******************************

output 0{
double s, t, skip, sing;

/* output total number of points */

totaLpoints = (n-1)/3 * ssteps * tsteps - (n-4)/3 * tsteps;
fprintf (stream, "%dO, totaLpoints);

ipoint = 0;
min = 0.0;

/* for each patch */

for (i=0;i<n-3;i=i+3) {
if (i > 0) min = ssize;

/* step in s direction */

for (s=min; s<1.01; s=s+ssize) {
fprintf (stream, "0);
j=0;

/* singular point at top of lid */

if (Bez[0][i][0] =- 0.0 && s == 0.0) {

skip - 2. * ssize / (double)(tsteps + 1);
for (sing=ssize-skip; sing>-ssize+0.0001; sing=sing-skip) {

if (sing>0.0) point ( sing, 0.0);
else point (-sing, 1.0);

}
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else{

1* step in t direction *

for (t-0.0; t<1.01; t=t+tsize){
point (s, t);

Pon

point (s, t)
double s, t;

fprintf (stream, "%d", ipoint);
even = 0++++ 1) % 2;

/* determine coordinates *

for (k=O; k<2; k++) f
coord = (l-)(.s*l-)(.t)(.t*l-)Bzk[ ][01 +
3.*s *(1..s)*(1.-s)*(1..t)*(14-)*(1.-t)*Bez[k][i+1][O] +
3.*s *s *(1.s)*(.t)*(.t)*(.t)*Bez[k][i+2][O] +
S *s *s *(1..t)*(1 .- t)*(l.-t)*Bez[k][i+3[O] +

3.*(l.s)*(l.s)*(l.s)*t *(1.-t)*(1.-t)*Bez[k][i ][11 +
9.*s *(1..s)*(1.-s)*t *(1.4)*(1.t)*Bez[k[i+1]I1I +

9.*s *s *(l.-s)*t *(1.4)*(1.4)*Bez[k][i+2][1] +
3.*s *s *s *t *(1.A)*(1.t)*Bez[k[i+3[1] +

3.*(l.s)*(l.s)*(l.s)*t *t *(1.-t)*Bez[k][i ][2] +
9.*s *(l.s)*(l.s)*t *t *(l.t)*Bez[k][i+11[2] +
9.*s *s *(1..s)*t *t *(l.t)*Bez[k][i+2][2] +
3.*s *s *s *t *t *(l.-t)*Bez[k[i+3[21 +

(l.-s)*(l.-s)*(l.-s)*t *t *t *Bez[klc ][31 +
3.*s *(1..s)*(1..s)*t *t *t *Bez[k][i+1][3] +
3.*s *s *(1.s)*t *t *t *Bezk[i+21[31 +

s *S *5 *t *t *t *Bez[kI[i+3][31;

if (k ==0) fprintf (stream, " %If", xndc(coord));

else fprintf (stream, - %f", yndc(coord));

177



Teapot Triangulation

if (t < 0.011 t > 0.99 11 (i ==0 && s < 0.01) 11 (i -- n-4 && s > 0.99))
fprintf (stream, " I");

else fprintf (stream, ",0);

/* calculate partial derivatives ~

for (k-0; k <3; k++) {
s...deriv[kI = -3*(l.s)*(..s) *(1..t)*(1..t)*(1..t)*Bezfk][i ][0] +

3.*(-2.*s*(l.-s) + (1-)(.s)(.t*l-t*l-)Bzk[~]0 +
3.(ss+ 2.*s*(1.-s)) *(l.-t)*(l.t)*(.t)*Bez[k[i+][01 +

3.*S*S *(1.-t)*(1.t)*(l.4)*Bek][i3[01 +

3.* -3*(l.-s)*(1..s) *t *(1.4)*(1.4)*Bez[k[i ][1] +

9.*(-.*s*(1.-s) + (l..s)*(1.-s))*t *(14-)*(14-)*Bez[k[i+11[11 +

3 *3s*s .s(.) *t *1.t)*-)*Bez[k][i+[1] +

3*.*s*(1.s + t (.)*1.-0)*.t* )*Bez lki+3[11[ 

3 -3. + (1.-s* (1. s)) * * *(1)*Bez[k[i+[21 +

3.*3*s*ls) (.s*l-* *~ t *(1.-t)*Be1 [i+l] +

.*(s+ .2*s*(.s 1- (.s)) *t * *(l-t *Bez[kI[i+111 +
3.+32.ss*(1S) * *.*t)*Bez[k][i+1[31 +

-3.*l.-)*(l-s) *t *t *t *Bez[k[i+3][31 +

Ldrvk]=(.~*(.s*(.s) (.-s*(14-s)*t)* *Bez[k ] +
3* ( ..s*(.s*s ..*(..)) ~t*Bet1i+]0 +t* Bzk[+13

3*.*sss(*t s) **(t *(..)*Bz~Ik+2[01 +3[1

t-eivk *= *5 * *(.ts)*(1..t)*ezk[+]0 +3*I-)(.t*e~]i]0

9.*s *(s)*(.s)*(..2*t*14) (1t*((1.-t))*Bezkk][i+1][1 +
9.s*s *~ (..s) *(l..2t*(l.-t)*+ (z~t)(1.i))e[k]2 1 +
* * *5 * (.t*(.)Bz[+3]0 +1~)(.t)Bzk[+11

3.*l.s)*I.s)*l.S)*-2*t*l.t+ .t)*(.t))*Bez[k[i 1]2 +

9.*s (s*1.s*. + .t)*(.t))*Bez[k[i+11 +
9.*s *(l s*(.s*(t*l.t + .t)*(.t))*Bez[ki+21 +

3.*s *S *(-.**(.t + .t)*(.t))*Bez[k+][21 +

3(.s)*(.s)*(.s)*3*t+*t* .)*Eek [][ +[1

3*.-s*(.s)*(.s)* 3*t*t *Bezk[i+1][31 +

3.*s *s *(1..s)* 3.*t*t *Bez~k[i+21[31 +

s *S *S * 3.*t*t *Bez[k][i+3][31;

178



Teapot Triangulation

/* calculate surface normal *

xnormal = -s..deriv~l1*tLderiv[21 + s...deriv[21*L-deriv[1I;
ynormal - s..deriv[0]*tLderiv[2] - s...deriv[2]*tLderiv[0I;
znormal = -s...deriv[]*tLderiv[1] + s-deriv[1]*t-derv[0I;
normalize (&xnormal, &ynormal, &znorrnal);

/* singular point at top of lid */

if (Bez[0][i][0] =- 0.0 && s =- 0.0)
fprintf (stream, " %If %If %IF', 0.0, 1.0, 0.0);

else
fprintf (stream, " %If Ml %If", xnormal, ynormal, znormal);

/* determine adjacencies *

1* top right corner *

if (ipoint == 0) fprintf (stream, " 3 1 %d %/d0, tsteps+1, tsteps);:

1* top left corner *

else if (ipoint == total..points-1){
if (even) fprintf (stream, " 2 %d %dO, ipoint-1, ipoint-tsteps);
else fprintf (stream, " 3 %d %d %dO, ipoint-1, ipoint-tsteps-1, ipoint-tsteps);

/* bottom left corner

else if (ipoint == tsteps-1){
if (even) fprintf (stream, "3 %d %d %dO, ipoint-1, 2*tsteps-2, 2*tsteps-1);
else fprintf (stream, " 2 %d %dO, ipoint-1, 2*tsteps-1);
I
/* bottom right corner

else if (ipoint == totaLpoints-tsteps) fprintf (stream, " 2 %d %dO, ipoint+l, ipoint-tsteps);

/* top edge */

else if (s < ssize - 0.0001){
if (even) fprintf (stream," 5 %d %d %d %/d %/d0, ipoint-l, ipoint+tsteps-l,

ipoint+tsteps, ipoint+tsteps+ 1, ipoint+ 1);
else fprintf (stream, " 3 %d %d 0/0dO, ipoint-l, ipoint+tsteps, ipoint-il);
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/* bottom edge *

else if (i == n-4 && s > 0.99){
if (even) fprintf (stream, " 3 %d %d %dO, ipoint-1, ipoint-tsteps, ipoint+1);
else fprintf (stream, " 5 %d %d %d %d %dO, ipoint-1, ipoint-tsteps-1,

ipoint-tsteps, ipoint-tsteps+1, ipoint±1);

/* right edge *

else if (t < 0.01) fprintf (stream, " 4 %/d %d %d %d0, ipoint-tsteps, ipoint+1,
ipoint+tsteps+ 1, ipoint+tsteps);

/* left edge */

else if (t > 0.99){
if (even) fprintf (stream, " 4 %d %d %d %/d0, ipoint-tsteps, ipoint-1,

ipoint+tsteps-1, ipoint+tsteps);
else fprintf (stream, " 4 %/d %d %d %dO, ipoint-tsteps, ipoint-tsteps-1,

ipoint-1, ipoint+tsteps);

/* interior point ~

else {
if (even) fprintf (stream, " 6 %/d %/d %d %/d %d %dO, ipoint-1, ipoint-tsteps,

ipoint+1, ipoiit+tsteps+ 1, ipoint+tsteps, ipoint+tsteps-1);
else fprintf (stream, " 6 %d %d %d %d %d %/d0, ipoint-1, ipoint-tsteps-1,

ipoint-tsteps, ipoint-tsteps+1, ipoint+1, ipoint+tsteps);

ipoint++,

/**********************Normalize***************/

norm alize(xvector, yvector, zvector)
double *xvector, *yvector, *zvector;

double tot;

/* normalize to unit vector ~

* xvector = *xvector/tot;

'*yvector = *yvector/tot;
*zvector = *zvector/tot;
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/ *******************XNDC

double xndc (x)
double x;

return ((x +i 3.) *screen-factor);

/********************YNDC

double yndc (y)
double y;

return ((-y +' 3.) *screen-factor);
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******************************* Body ****************************

24

7

1.5000 2.25000 0.0
1.5000 2.25000 1.5000
-1.5000 2.25000 1.5000
-1.5000 2.25000 0.0

1.7500 1.72500 0.0
1.7500 1.72500 1.7500
-1.7500 1.72500 1.7500
-1.7500 1.72500 0.0

2.0000 1.20000 0.0
2.0000 1.20000 2.0000
-2.0000 1.20000 2.0000
-2.0000 1.20000 0.0

2.0000 0.75000 0.0
2.0000 0.75000 2.0000
-2.0000 0.75000 2.0000
-2.0000 0.75000 0.0

2.0000 0.30000 0.0
2.0000 0.30000 2.0000
-2.0000 0.30000 2.0000
-2.0000 0.30000 0.0

1.5000 0.07500 0.0
1.5000 0.07500 1.5000
-1.5000 0.07500 1.5000
-1.5000 0.07500 0.0

1.5000 0.00000 0.0
1.5000 0.00000 1.5000
-1.5000 0.00000 1.5000
-1.5000 0.00000 0.0

******************************* Handle ******************************/

79
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-1.60 1.8750 0.0
-1.60 1.8750 0.3
-1.50 2.1000 0.3
-1.50 2.1000 0.0

-2.30 1.8750 0.0
-2.30 1.8750 0.3
-2.50 2.1000 0.3
-2.50 2.1000 0.0

-2.70 1.8750 0.0
-2.70 1.8750 0.3
-3.00 2.1000 0.3
-3.00 2.1000 0.0

-2.70 1.6500 0.0
-2.70 1.6500 0.3
-3.00 1.6500 0.3
-3.00 1.6500 0.0

-2.70 1.4250 0.0
-2.70 1.4250 0.3
-3.00 1.2000 0.3
-3.00 1.2000 0.0

-2.50 0.9750 0.0
-2.50 0.9750 0.3
-2.65 0.7875 0.3
-2.65 0.7875 0.0

-2.00 0.7500 0.0
-2.00 0.7500 0.3
-1.90 0.4500 0.3
-1.90 0.4500 0.0

******************************* Lid *******************************

99

7

0.0 3.00 0.0
0.0 3.00 0.0
0.0 3.00 0.0
0.0 3.00 0.0

0.83.0010.0
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0.83.000.8
-0.8 3.00 0.8
-0.8 3.00 0.0

0.0 2.70 0.0
0.0 2.70 0.0
0.0 2.70 0.0
0.0 2.70 0.0

0.2 2.55 0.0
0.2 2.55 0.2
-0.2 2.55 0.2
-0.2 2.55 0.0

0.4 2.40 0.0
0.4 2.40 0.4
-0.4 2.40 0.4
-0.4 2.40 0.0

1.3 2.40 0.0
1.3 2.40 1.3
-1.32.40 1.3
-1.3 2.40 0.0

1.3 2.25 0.0
1.3 2.25 1.3
-1.3 2.25 1.3
-1.3 2.25 0.0

******************************* Spout *

1311

4

1.700 1.27500 0.0
1.700 1.27500 0.66
1.700 0.45000 0.66
1.700 0.45000 0.0

2.600 1.27500 0.0
2.600 1.27500 0.66
3.100 0.67500 0.66
3.100 0.67500 0.0

2.300 1.95000 0.0
2.300 1.95000 0.25
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2.400 1.87500 0.25
2.400 1.87500 0.0

2.70032.25000 0.0
2.700 2.25000 0.25
3.300 2.25000 0.25
3.300 2.25000 0.0

185



Distribution List for IDA Paper P-2354

NAME AND ADDRESS NUMBER OF COPIES

Other

Defense Technical Information Center 2
Cameron Statioi
Alexandria, VA 22314

Mr. Karl H. Shingler 1
Department of the Air Force
Software Engineering Institute
Joint Program Office (ESD)
Carnegie Mellon University
Pittsburgh, PA 15213-3890

IDA

General W.Y. Smith, HQ 1
Mr. Philip L. Major, HQ 1
Dr. Robert E. Roberts, HQ 1
Dr. Michael R. Kappel. CSED 2
Mr. Terry Mayfield, CSED I
Ms. Katydean Price, CSED 2
Dr. Richard Wexelblat, CSED 1
IDA Control & Distribution Vault 2

D

II

I

Distribution List-i


