NONAXISYMMETRIC BODY, SUPERSONIC, INVISCID DYNAMIC DERIVATIVE PREDICTION

BY LEROY DEVAN
WEAPONS SYSTEMS DEPARTMENT

JUNE 1989

Approved for public release; distribution is unlimited.
DESTRUCTION NOTICE -- For classified documents, follow the procedures in DOD 5220 22M, Industrial Security Manual, Section II-19, or OPNAVINST 5510.1H. Chapter 17. For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.

NAVAL SURFACE WARFARE CENTER
Dahlgren, Virginia 22448-5000 • Silver Spring, Maryland 20903-5000

REPORT DOCUMENTATION PAGE				
	June 1989	Final		
Nonaxisymmetric Body, Supersonic, Inviscid Dynamic Derivative Prediction			Sqoject Numbers:RA11G13RU11G14RU11811	
Naval Surface Warfare Center (G23) Dahlgren, VA 22448-5000				
			NSWC TR 89-99	
11 sipplementar riotes				
Approved for public release; distribution is unlimited.				20 CH
NBSERACT (MAXIMIIM 200 WORDS). A supersonic, aerodynamic computational model, which is the basis of the NANC code, has been extended to compute dynamic derivatives. The extension is to the inviscid contr:bution of constant angular rates and axial accelerations. The body geometry limitations are the same as for the steady-state model. Here, a pointed body or equivalent pointed body is assumed for low Mach numbers; at higher Mach numbers, the effect of axial acceleration is neglected and the body may be blunt. The body may be noncircular with planar discontinuities, including inlets, with fins (up to six per fin set), which lie on a cylindrical coordinate ray. For the low Mach number range, the original second-order potential model has been extended for angular rate derivative prediction. For the acceleration rate derivatives, a "hybrid" first- and second-order model has been developed. For the high Mach number range, an equivalent angle-of-attack vector is defined and combined with local solution models. Computational comparisons are made with experimental data, primarily for pitch and roll damping derivatives.				
is s.atcititems Dynamic derivatives; supersonic, aerodynamic computational model; first- and second-order model; roll, pitch damping; fin Magnus				
U'NCLASSIFIED ${ }^{\text {and }}$	UNCLASSIFIED ${ }^{\text {U }}$	UNCLASSIFIED	为禹	"

FOREWORD

This work represents an extension of the work reported in Naval Surface Warfare Center (NSWC) TR 86-253. The latter report presented computational methods for predicting aerodynamic loading for supersonic Mach numbers on nonaxisymmetric flight vehicles at constant or steady incidence. The extension is for the prediction of aerodynamic loading or dynamic derivatives associated with constant body axis angular rates and/or acceleration. The resulting computer program allows one to predict roll and pitch damping, fin Magnus, and other dynamic derivatives for the preliminary and intermediate design stage.

Support for the work was provided by the following sponsors:

1. Aerodynamics and Structures Block of the Surface-Launched Weaponry Technology Program Project Numbers RA11G13/RU11G14.
2. Air-Launched Antisurface Weaponry Technology Project Number RU11811.

This report was reviewed and approved by Dr. T. J. Rice, Head, Aeromechanics Branch and C. A. Cooper, Head, Missile Systems Division.

Approved by:

CONTENTS

Section Page
1.0 INTRODUCTION 1
2.0 GEOMETRY, FREE-STREAM VELOCITY AND FORCE CONVENTIONS 2
3.0 THEORETICAL DEVELOPMENT 3
3.1 FIRST- AND SECOND-ORDER POTENTIAL EQUATIONS 3
3.2 COMPUTATIONAL COORDINATES AND GRIDS 6
3.3 NUMERICAL METHODS 6
3.4 LOADING COEFFICIENTS AND OTHER NUMERICAL CONSIDERATIONS 8
3.5 HIGH MACH NUMBER SOLUTION 9
4.0 EVALUATION OF THE NUMERICAL METHODS 9
4.1 BODY-ALONE COMPARISONS 10
4.2 BODY-TAIL CONFIGURATIONS 10
4.3 BODY-WING-TAIL OR BODY-CANARD-TAIL CONFIGURATIONS 12
5.0 CONCLUDING REMARKS 13
6.0 REFERENCES 13
APPENDIX:NOMENCLATUREA-1
DISTRIBUTION (1)
ILILUSTRATIONS
Figure Page
1 HALF BODY GEOMETRY 16
2 THIN FIN GEOMETRY 16
3 FIN PLANFORM GEOMETRY 17

ILILUSTRA'TIONS (CONTINUED)

Figure Page
$4 \quad \mathrm{C}_{\mathrm{mq}}{ }^{\prime}+\mathrm{C}_{\mathrm{m} \dot{\alpha}}$ COMPARISONS FOR A CIRCULAR CONE, $\mathrm{L}_{\mathrm{N}}=2.98$ CALIBERS, $\mathrm{x}^{\prime}=2.18$ FROM NOSE. 17
5 $\mathrm{C}_{\mathrm{mq}}{ }^{\prime}+\mathrm{C}_{\mathrm{m}}{ }^{*}$ FOR A CONE-CYLINDER, $\mathrm{L} \dot{\sim}=2.98$ CALIBERS, $\mathrm{L}=5.12$ CALIBERS, $\mathrm{x}^{\prime}=3.44$ CALIBERS FROM NOSE 18
6
$\mathrm{C}_{\mathrm{mq}}{ }^{\prime}+\mathrm{C}_{\mathrm{m}} \dot{\alpha}$ COMPARISON FOR THE ARMY-NAVYSPINNER, L $\div=2.0$ CALIBERS, $\mathrm{L}=5.0$ CALIBERS,$\mathrm{x}^{\prime}=$ 3.0 CALIBERS FROM NOSE18
7 $\mathrm{C}_{\mathrm{mq}}{ }^{\prime}+\mathrm{C}_{\mathrm{m}} \times$ FOR THE ARMY-NAVY SPINNER, $\mathrm{L} \times 2.0$ CALIBERS, $L=9.0$ CALIBERS. $x^{\prime}=5.06$ CALIBERS FROM NOSE 19
8
$\mathrm{C}_{\mathrm{Nq}^{\prime}}+\mathrm{C}_{\mathrm{N}} \times \mathrm{COMPARISON}$ FOR AN ELLIPTIC CONE 19
9 $\mathrm{C}_{\mathrm{mq}}{ }^{\prime}+\mathrm{C}_{\mathrm{m}} \dot{\propto}$ COMPARISON FOR AN ELLIPTIC CONE 20
10
BASIC FINNER CONFIGURATION 20
11
BASIC FINNER C lp_{l} COMPARISON 21
12 21
$\mathrm{C}_{\mathrm{np}}{ }^{\prime} \dot{\alpha}$, MAGNUS DERIVATIVE FOR THE BASIC FINNER13
14 ASPECT RATIO $=3$ CONFIGURATIONS 22
15
PITCH DAMPING COMPARISON FOR AN AR $=3$ WING- BODY CONFIGURATION 23
16 23
AIR SLEW DEMONSTRATOR VEHICLE.17
18 24
XM-144 CONFIGURATION19
TOTAL PITCH DAMPING COMPARISON FOR THE BASIC FINNER 22BASIC FINER
PITCH DAMPING COMPARISON FOR THE AIR SLEW DEMONSTRATOR VEHICLE 24
TOTAL PITCH DAMPING FOR THE XM-144 25
20
BRL M735 CONFIGURATION 25
21
ROLL DAMPING COMPARISON COMPUTATIONS FOR THE M735 PROJECTILE 26

ILLUSTRATIONS (CONTINUED)

Figure Page
22 TOTAL PITCH DAMPING COMPARISON FOR THE M735 PROJECTILE 26
23 SIDEWINDER GEOMETRY 27
24 TOTAL PITCH DAMPING COMPARISON FOR THE SIDEWINDER 27
25 TOTAL PITCH DAMPING COMPARISON FOR THE RFL 122 28
26 TOTAL PITCH DAMPING COMPARISON FOR AN AEROSPATIALE MISSILE CONFIGURATION 28

1.0 INTRODUCTION

Preliminary design requires the estimate of aerodynamics for a large set of free-stream and geometric variations. To keep computational costs reasonable, rapid (but reasonably accurate) methods are sought and utilized.

For cruciform finned, axisymmetric bodies at low angle of attack, component buildup methods ${ }^{1,2}$ can be utilized for a restricted range of configurations and freestream conditions that are applicable to current designs.

Linear surface singularity methods ${ }^{3,4}$ have been highly developed for complex configurations, including high angle-of-attack vortex modelling. Set-up and run times are fairly long.

The second-order Van Dyke model5, which corrects for compressibility effects, was extensively modified and adapted for noncircular bodies with planar discontinuities, including inlets, and multi-sets of fins.6-9 The NANC code10-12 includes the second-order potential model plus a local solution model based on the methods of Reference 13.

Dynamic derivative estimates are calculated in the NSWC Aeroprediction code of Reference 1. Body-alone contributions are given by an empirical data fit. Finalone contributions are given by thin-wing theory. Interference modelling is incomplete when compared with the static case. Thin-wing theory is based on conical solutions that are not valid for small aspect ratio fins.

Dynamic derivative estimation is primarily of interest for unguided applications. Pitch damping is usually ignored for guided applications since the autopilot provides control surface moments, which are proportional to the pitch rate and significantly larger.

Classical unsteady aerodynamics is based upon the unsteady linear potential equation. 14 The unsteady potential equation may be applied to harmonic analysis of the rigid motion or to aeroelastic applications. The harmonic gradient method of Reference 15 is a singularity collocation code utilizing a complex potential. The total pitch damping for low frequency is the same as for the constant pitch and acceleration rate estimate.

The NANC code is modified in this report to compute forces and moments which are a function of constant axial rotation rates and moment center accelerations. The remainder of the report assumes that the reader is familiar with the
earlier work summarized in Reference 10 and concentrates on the dynamic derivative modifications.

2.0 GEOMETRY, FREE-STREAM VELOCITY AND FORCE CONVENTIONS

Assumptions concerning body and fin geometry are the same as in Reference 10. Figures 1 through 3 are taken from Reference 10. However, the body is assumed to have a pointed nose for the low Mach number range.

A static blunt body model establishes a matching plane of velocity component data by matching a modified Newtonian pressure distribution and utilizing conical potential functions and other assumptions. A blunt body model for the plunging acceleration problem was not deemed feasible. A model for pure axial rotation is only somewhat more feasible.

Computations utilize a cylindrical coordinate system and the "thin-fin" approximation with the fin midplane lying on a cylindrical coordinate ray. The body is divided into sections by planar discontinuities (including planar inlets). Any section except the first may have a set of fins with up to six fins. See Reference 10 for a more detailed discussion.

Force convention is the same as used in earlier work. The axial force, F_{A}, acts in the x direction; the normal force, F_{N}, acts in the z direction; and the side force, F_{Y}, acts in the negative y direction. The roll moment, M_{ℓ}, acts in the negative x direction; the yawing moment, M_{n}, acts in the negative z direction; and the pitching moment, M_{m}, acts in the negative y direction.

The main difference between the current work and earlier work is the bodyaxis oriented equivalent dimensionless free-stream velocity vector. In Cartesian coordinates, the velocity vector relative to body axes, in dimensionless form, is given as

$$
\begin{align*}
q_{0 \infty} & =\left|\frac{\dot{u}_{0} t}{V_{r}}+\frac{-q^{\prime} z+r^{\prime} y}{V_{\infty}}+\cos \alpha \cos \beta^{\prime}\right| i^{\prime} \\
& +\left|\frac{\dot{v}_{0} t}{V_{n}}+\frac{-r^{\prime}\left(x-x^{\prime}\right)+p^{\prime} z}{V_{\infty}}+\sin \beta^{\prime}\right| j^{\prime} \tag{2-1}\\
& +\left|\frac{\dot{w}_{0} t}{V_{s}}+\frac{p^{\prime} y+q^{\prime}\left(x-x^{\prime}\right)}{V_{\cdot r}}+\sin \alpha \cos \beta^{\prime}\right| k^{\prime} \\
& =q_{r}+\dot{q}_{r}^{\prime} \quad \lim t \rightarrow 0
\end{align*}
$$

Note that the time derivatives of the axial rotation rates could be included as well, but are neglected. $p^{\prime}, q^{\prime}, r^{\prime}$ are the axial rotation rates in the negative x, y, and z directions, respectively, and $\dot{\mathrm{u}}_{0}, \dot{\mathrm{v}}_{0}$, and $\dot{\mathrm{w}}_{0}$ are the corresponding acceleration rates. For the total pitch damping problem, q^{\prime} and \dot{w}_{0} are the pertinent input terms. α and β^{\prime} are the angle of attack and side slip, respectively.

An additional symmetry operation variation for LM (defined in Reference 10) is introduced here. LM = 1 is for axial force as the only nonzero force term. $L M=2$ is for axial force and rolling moment as the only nonzero forces. The new symmetry value for $\mathrm{LM}=2$ is for a circular body with quarter-plane symmetric fin distribution and a roll control deflection or constant roll rate. For the LM $=2$ case, the computation is $\mathrm{LM}=1$ before the first fin set and $\mathrm{LM}=2$ subsequently. $\mathrm{LM}=3$ is for the axial force, normal force, and pitching moment nonzero. $\mathrm{LM}=5$ is for axial force, side force, and side moment nonzero. $\mathrm{LM}=6$ is for a full plane computation. LM is defined for each section of the body and must increase or remain the same as the computation is marched down the body.

3.0 THEORETICAL, IEVEI.OPMENT

3.1 FIRST- AND SECOND-ORDER POTENTIAL EQUATIONS

The full nonlinear, dimensionless, potential equation is

$$
\begin{equation*}
a^{2} \nabla \cdot Q=M_{r}^{2}\left|\frac{1}{V_{r}^{2}} \frac{\partial}{\partial t^{2}}+\frac{1}{V_{s}} \frac{\partial Q^{2}}{\partial t}+\frac{Q \cdot \nabla Q^{2}}{2}\right| \tag{3-1}
\end{equation*}
$$

Here, a is the speed of sound divided by a_{r} and $Q=\nabla \phi$ is the dimensionless velocity vector. Equation (3-1) is appropriate to a body moving through a fluid at rest. It is derived from the continuity equation, momentum equations, and the Bernoulli relationship. For body-fixed coordinates,

$$
\begin{align*}
& \frac{\partial}{\partial t}=\frac{\partial}{\partial t}-V \cdot \nabla \tag{3-2}\\
& V=-q_{\partial \infty} . \tag{3-3}
\end{align*}
$$

In addition, the relative velocity, $\mathrm{q}_{\mathrm{r}}=\mathrm{Q}-\mathrm{V}$, is introduced. The continuity equation then becomes

$$
\begin{equation*}
\frac{1}{v_{r}} \frac{1}{\rho} \frac{\partial \rho}{\partial t}+\nabla \cdot q_{r}+\frac{1}{\rho}\left(q_{r} \cdot \nabla\right) \rho=0 \tag{3-4}
\end{equation*}
$$

The Bernoulli relationship for body coordinates becomes

$$
\begin{equation*}
M_{r}^{2}\left|\frac{1}{V_{x}} \frac{\partial \Phi}{\partial t}+\frac{q_{r}^{2}-V^{2}}{2}\right|+\frac{a^{2}}{1-1}=\frac{1}{y-1} \tag{3-5}
\end{equation*}
$$

The density may be eliminated from Equation (3-4) by using Equation (3-5) to yield

$$
\begin{align*}
a^{2} \nabla \cdot q_{r} & =M_{r}^{2}\left\{q_{r} \cdot \nabla\left(\frac{q_{r}^{2}-v^{2}}{2}\right)+\frac{1}{v_{r}^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}+\frac{\partial}{\partial t}\left(\frac{q_{r}^{2}-v^{2}}{2}\right)+q_{r} \cdot \frac{\partial Q}{\partial t}\right\} \tag{3-6}\\
a^{2} & =1+\frac{r^{2}-1}{2} M_{r}^{2}\left|V^{2}-q_{r}^{2}-\frac{2\left(\frac{\partial \phi}{\partial t}\right)}{v_{r}}\right| \tag{3-7}
\end{align*}
$$

A small disturbance from the static free-stream dimensionless velocity vector is given by

$$
\begin{equation*}
q_{r}=i^{\prime}+\left(q_{0 c}-i^{\prime}\right)+q=i^{\prime}+q_{x}^{\prime}+q . \tag{3-8}
\end{equation*}
$$

Substitution of Equation (3-8) into Equation (3-6) and neglecting higher order terms yields the first-order wave equation

$$
\begin{equation*}
\nabla \cdot q_{1}^{\prime}=M_{x}^{2}\left|\frac{1}{v_{x}^{2}} \frac{\partial^{2} \phi_{1}^{\prime}}{\partial t^{2}}+2\left(\frac{\partial u_{1}^{\prime}}{\partial t}\right)+\frac{\partial^{2} \phi_{1}}{\partial x^{2}}\right| \tag{3-9}
\end{equation*}
$$

q_{1}^{\prime} is the first-order velocity vector, u_{1}^{\prime} the x component of q_{1}^{\prime}, and ϕ_{1}^{\prime} the corresponding potential function.

The first-order problem may be further broken down into three steady problems.

$$
\begin{equation*}
\Phi_{1}^{\prime}=\phi_{1}+\frac{\mathrm{M}_{\infty}^{2}}{\beta^{2}} \Phi_{\mathrm{a}}+V_{\infty}\left|t-\frac{x \mathrm{M}_{\infty}^{2}}{\beta^{2} V_{\infty}}\right|_{\mathrm{b}} \tag{3-10}
\end{equation*}
$$

Here ϕ_{1} is the potential function associated with the angle-of-attack problem and axial rotation rates. ϕ_{a} and ϕ_{b} are equivalent steady potential functions associated with the plunging rate problem. Equation (3-10) satisfies Equation (3-9) when ϕ_{1}, ϕ_{a}, and ϕ_{b} satisfy the steady first-order wave equations

$$
\begin{equation*}
\left(\nabla \cdot q_{e}\right)_{c}-\beta^{2} \frac{\partial u_{e}}{\partial x}=0 \tag{3-11}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla \times q_{\rho}\right)_{c}=0 \tag{3-12}
\end{equation*}
$$

$\ell=1, \mathrm{a}, \mathrm{b} ; \mathrm{c}$ stands for the crossflow plane and components.
As in earlier work, an improved solution to the first-order problem is obtained by evaluating the neglected nonlinear terms using the first-order solution and solving a nonhomogeneous potential equation. Only time-independent terms are considered.

$$
\begin{align*}
& \left(\nabla \cdot q_{2}\right)_{c}-\beta^{2} \frac{\partial u_{2}}{\partial \mathrm{x}}=M_{\Sigma}^{2} \nabla \cdot \Omega \tag{3-13}\\
& \left(\nabla \times q_{2}\right)_{c}=0 \tag{3-14}\\
& \Omega=\Omega_{\mathrm{r}^{\prime}}{ }^{\prime}+\Omega_{\mathrm{c}} \tag{3-15}\\
& \Omega_{x}=u_{1}\left|\frac{1}{2} q_{1}^{2}-\frac{\left(2-\gamma^{\prime}\right)}{6} M_{s}^{4} u_{1}^{2}-\frac{\left(2-\gamma^{\prime}\right)}{2} M_{x}^{2} q_{1}^{2}-1\right| \\
& +\mathrm{u}_{x}\left|\frac{\mathrm{q}-1}{2} \mathrm{M}_{x}^{2} \mathrm{u}_{1}^{2}+\mathrm{q}_{1}^{2}+\mathrm{q}_{x} \cdot \mathrm{q}_{1}\right| \tag{3-16}\\
& \Omega_{c}=q_{1 c}\left|\frac{q_{1}^{2}}{2}+\frac{2-q}{2} M_{\infty}^{2} u_{1}^{2}\right|+q_{x c}\left(q_{1}^{2}+q_{\infty} \cdot q_{1}\right) \\
& +\frac{M_{x}^{2}}{\beta^{2}}(y-1)\left|\frac{q_{1 c}^{2}}{2} q_{x c}+q_{1 c} \times\left(q_{1 c} \times q_{r c}\right)\right| \tag{3-17}
\end{align*}
$$

Boundary conditions for first- and second-order problems are

$$
\begin{gather*}
\left(q_{\ell}+q_{p}\right) \cdot n=0 \tag{3-18}\\
\ell^{\prime}=1,2
\end{gather*}
$$

The equivalent steady problem boundary conditions for tine \dot{q}, problems are

$$
\begin{array}{ll}
\left(q_{b}+\frac{\dot{q}_{x}}{V_{n}}\right) \cdot n=0 \\
\left(q_{a}+x \frac{\dot{q}_{m}}{v_{r}}\right) \cdot n=-\frac{\partial r_{b}}{d x} \phi_{b} & \underline{\text { body }} \\
\left(q_{a}+x \frac{q_{i}}{b}\right) \cdot n=-t, \phi_{h} & \underline{\text { fin }} \tag{fin}
\end{array}
$$

Here, $\partial r_{b} / \partial \mathrm{x}$ and t_{x} are body and fin slopes, respectively.

3.2 COMPU'TATIONAI COORDINATES AND GRIDS

The region betwern the body and the Mach cone is mapped to the rectangular region shown in Figure 2 by the shearing transformation

$$
\begin{equation*}
\xi=\frac{r-r_{b}}{x / \beta-r_{b}} \tag{3-21}
\end{equation*}
$$

Further clustering transformations $\xi=\zeta(\zeta)$ and $\Phi=\Phi(H)$ are used for nonuniform gridding of the H and ξ variables. The functional dependencies are not given explicitly. See Section 3.2 in Reference 10 for more details.

3.3 NUMERICAL METHODS

Most of the numerical methods are as reported in Reference 10. However. some of them have been changed.

The implicit formulation for the first body section is as in earlier work. The velocity vector advancement Equations (3-11) through (3-14) are single second-order equations in a potential, $\phi=\times F, 6,7 \mathrm{~F}$ is known as a conical potential function. However, actual conical similarity for the total pitch damping problem requires the functional form of $\phi=x(G+x H)$. The pressure distribution on a cone is now linear with x instead of constant. Therefore, the computation uses more than two steps for a solution for a cone. The solution at $x=0$ is assumed to be conical. However, the resultant computation for a numerical solution using a few marching steps does not vary significantly from a solution developed based on the true conical similarity of ϕ $=\mathrm{x}(\mathrm{G}+\mathrm{xH})$ and two marching steps.

At body planar discontinuities and supersonic leading and trailing edges, the jump in various velocity components is obtained by application of the method of "weak solutions" 16 combined with a downstream boundary condition and conservation of the velocity component tangent to the discontinuity edge condition. At a subsonic leading edge, the solution for the velocity jumps does not exist and the conservation relationship provided by the method of "weak solutions" must be replaced by a heuristic one. The "weak solution" conservation relation is modified due to the modified Equation (3-13).

For all sections, except the first, the conservation velocity vector advancement equations are solved using a MacCormack 17 predictor-corrector scheme for points not on a solid surface. Body and fin surface velocities are advanced by characteristic compatibility relations (two in number) combined with a solid surface boundary
condition. 18 At a corner where the fin and body meet, no unique solution is possible. The advancement equations for the fin-body junction have been modified. The finbody junction line is assumed to be a streamline. Therefore, fin and body boundary conditions and one other condition are needed to solve for the three velocity components.

One estimate of the axial velocity component, u, can be obtained from one body advancement quantity and the body boundary condition.

$$
\begin{align*}
& E_{B}=u_{B} \beta \sqrt{1+\varepsilon_{\theta}^{2}}+v_{B}-\varepsilon_{\theta} w_{B} \tag{3-22}\\
& v_{B}-\varepsilon_{\theta} w_{B}=\frac{\partial \gamma_{b}}{\partial x}\left(u_{B}+u_{\infty}^{\prime}\right)-v_{\infty}^{\prime}+\varepsilon_{\theta} w_{\infty}^{\prime} \tag{3-23}
\end{align*}
$$

Here, u, v, and w are the axial, radial, and θ components of velocity. $\varepsilon_{\theta}=1 / r_{b}\left(\partial r_{b} / \partial \theta\right)$. The B subscript stands for the body. For the first- and second-order problem, $\mathrm{u}_{x}^{\prime}, \mathrm{v}_{x}^{\prime}$, and w^{\prime} are free-stream velocity components. For the ϕ_{b} problem, $q_{x}^{\prime}=\dot{q}_{x}$. For the ϕ_{a} problem, $u_{x}^{\prime}=\dot{u}_{x} x / V_{n}-\phi b, v_{n}^{\prime}=\dot{v}_{x} x / V_{r}$, and $w_{x}^{\prime}=\dot{w}_{x} x / V_{x} . u_{B}$ is obtained from Equations (3-22) and (3-23). E_{B} is known.

A second estimate of the axial velocity component is obtained from the fin advancement quantity and the fin boundary condition

$$
\begin{align*}
& \mathrm{E}_{\mathrm{F}}= \pm \beta \mathrm{u}_{\mathrm{F}}+\mathrm{w}_{\mathrm{F}} \tag{3-24}\\
& \mathrm{w}_{\mathrm{F}}=-\mathrm{w}_{s}^{\prime}+\mathrm{t}_{\mathrm{x}}\left(\mathrm{u}_{\mathrm{F}}+\mathrm{u}_{x}^{\prime}\right) \tag{3-25}
\end{align*}
$$

Here, E_{F} is known. u ${ }_{F}$ may be obtained from Equations (3-24) and (3-25). The upper sign is for the $\theta>\theta_{\text {fin }}$ side of the fin.

The final values of u, v, w for the fin-body junction are obtained from

$$
\begin{align*}
& u=\frac{1}{2}\left(u_{B}+u_{F}\right) \tag{3-26}\\
& v-\varepsilon w=\frac{\partial r_{b}}{\partial x}\left(u+u_{n}^{\prime}\right)-v_{x}^{\prime}+\varepsilon_{\theta} w_{x}^{\prime} \tag{3-27}\\
& w=-w_{x}^{\prime}+t_{x}\left(u+u_{r}^{\prime}\right) \tag{3-28}
\end{align*}
$$

Note that ϕ_{b} need only be determined on the solid surfaces and is needed for the ϕ_{a} problem boundary condition and evaluation of the Bernoulli pressure coefficient relationship. An advancement equation for ϕ_{b} is given by

$$
\begin{equation*}
\frac{c p_{b}}{d x}=u_{b}+\left|\frac{\partial r_{b}}{\partial x}(1-\varepsilon)+\frac{\varepsilon}{\beta}\right| v_{b}+t_{v} w_{b} \tag{3-29}
\end{equation*}
$$

On a body surface or interior point, t_{x} is set to zero.
A subsonic leading edge requires a modification of the jump relations. For all cases,

$$
\begin{equation*}
u_{k, j}=u_{k-1, j} \sqrt{r_{0}^{2}-r_{k-1, j}^{2}} / \sqrt{r_{0}^{2}-r_{k, j}^{2}} \tag{3-30}
\end{equation*}
$$

k is the grid index in the r direction; j is the index in the θ direction. Equation (3-30) combined with downstream boundary condition and conservation of the velocity component tangent to the edge provides a solution for the downstream values of velocity. The square root ratio is limited to a value of $2 . r_{0}$ is the radius of the leading edge. Equation (3-30) has the well known square root singularity for a subsonic leading edge.

3.4 LOADING COEFFICIENTS AND OTHER NUMERICAL CONSIDERATIONS

The axial acceleration rates contribution to velocities in the limit as $\mathrm{t} \rightarrow 0$ is given by differentiation of the last two terms of Equation (3-10).

$$
\begin{equation*}
q_{a x}=\frac{M_{\infty}^{2}}{\beta^{2}}\left|q_{a}-x q_{b}\right|-i^{\prime} \frac{M_{x}^{2}}{\beta^{2}} \phi_{b} \tag{3-31}
\end{equation*}
$$

The first- or second-order pressure coefficient is then given by

$$
\begin{align*}
& \mathrm{C}_{\mathrm{p}}=\left|x^{3.5}-1\right| /\left(.7 \mathrm{M}_{x}^{2}\right) \tag{3-32}\\
& x=1+.2 \mathrm{M}_{x}^{2}\left(\mathrm{q}_{n}^{2}-\mathrm{Q}_{\mathrm{T} \ell}^{2}-2 \Phi_{\mathrm{b}}\right) \tag{3-33}\\
& \mathrm{Q}_{\mathrm{T} \ell}=\mathrm{q}_{\mathrm{ax}}+\mathrm{q}_{r}+\mathrm{q}_{\ell} \tag{3-34}\\
& \ell=1,2
\end{align*}
$$

This is a "hybrid" model for the plunging rate case since q_{ax} is a first-order potential quantity.

The inviscid loading coefficients are as given in Section 5.0 of Reference 10.
Smoothing of the MacCormack vector quantities is an input option for sections with fins. It is particularly needed for subsonic leading edges. $Q_{T 1}^{2}$ with $q_{a x}=0$ is used as a weighting function for first- and second-order vector terms as in Section 3.11 of Reference $10 . Q_{T I}^{2}$ with $q_{a x} \neq 0$ is used as a weighting function for the ϕ_{a} and ϕb problem vector terms.

The explicit marching solution will fail when x becomes negative in Equation (3-32). For $\dot{\mathrm{q}}_{\mathrm{s}}=0, x$ is set to zero or the vacuum value and the velocities are adjusted as discussed in Section 3.11 of Reference 10. For $\dot{q}_{\infty} \neq 0$ and x negative, the solution is halted and an error message is written to the output file.

3.5 HIGH MACH NUMBER SOLUTION

The potential model breaks down at Mach numbers where the origin Mach cone crosses the body surface. $\dot{\mathrm{q}}_{n}$ is set to zero for this local solution model.

The velocity vector, q_{∞}, is normalized to 1 as

$$
\begin{equation*}
q_{\infty}^{\prime}=q_{n}^{\prime}\left|q_{n}\right| \tag{3-35}
\end{equation*}
$$

$\mathrm{q}_{\infty}^{\prime}$ is then used to find the turning angie between an effective free-stream velocity vector and the local surface normal. These are combined with the local solution methods of Reference 13. It is expected that these local solution methods will be inaccurate below $M_{n}=4$. Note that blunt bodies may be considered.

4.0 EVALUATION OF THE NUMERICAL. METHOUS

Evaluation is almost exclusively made by comparison with experimental data. The data sources are ballistic range data or wind tunnel tests. Dynamic derivatives must be based on parameter estimation techniques associated with kinematic data and an assumed aerodynamic model. In general, the accuracy and repeatibility of the estimated coefficients is much worse than for static coefficients.

The code development is for nonaxisymmetric bodies with combined angle of attack, control deflection, rotation rates, and axial accelerations. Data, however, is mostly available for C_{lp} and $\mathrm{C}_{\mathrm{mq}}{ }^{\prime}+\mathrm{C}_{\mathrm{m}} \dot{\alpha}$ for circular bodies at zero incidence. Computations are separate for $\mathrm{C}_{\mathrm{lp}^{\prime}}, \mathrm{C}_{\mathrm{mq}}{ }^{\prime}$, and $\mathrm{C}_{\mathrm{m}} \dot{\alpha}$.

The dynamic derivatives are given in general form as

$$
\begin{equation*}
C_{i}=\frac{M_{i}}{S_{R} x_{R} Q_{D}\left(\omega_{i} x_{D} / V_{\infty}\right)} \tag{4-1}
\end{equation*}
$$

S_{R} is a reference area; x_{R} is a reference length; M_{i} is a force or moment; Q_{D} is the dynamic pressure; x_{D} is a length associated with a reduced frequency; and ω_{i} is an axial roll rate or dimensionless acceleration.

4.1 BODY-ALONE COMPARISONS

The reference area for bodies will be the maximum cross-sectional area.
The first computation is for a 2.98 caliber length cone. The moment center is located 2.18 calibers from the nose. x_{R} is the maximum body diameter and x_{D} is the maximum body radius. Unless otherwise indicated, references will not vary in the rest of the report. Figure 4 compares $\mathrm{C}_{\mathrm{mq}}{ }^{\prime}+\mathrm{C}_{\mathrm{m} \dot{x}}$ computational values with values extracted from the ballistic range data of Reference 19. The usual lack of repeatibility of the data is shown due to different initial yaws and, hence, epicyclic history. Figure 5 compares $\mathrm{C}_{\mathrm{mq}}{ }^{\prime}+\mathrm{C}_{\mathrm{m}} \dot{\alpha}$ computational values for a cone-cylinder and the ballistic range data of Reference 19.

The next comparison computations are for the Army-Navy Spinner configurations. These configurations have 2-caliber secant ogive noses with arc radii twice that of a tangent ogive and various body lengths and moment center locations. Figure 6 compares $\mathrm{C}_{\mathrm{mq}}{ }^{\prime}+\mathrm{C}_{\mathrm{m} \dot{\alpha}}$ computations with data for a 5 -caliber length body. Note the great differences between different range tests and wind tunnel tests. Also plotted are $C_{m} \dot{x}$ and a slender body value. Figure 7 compares $C_{m q}{ }^{\prime}+C_{m \dot{\alpha}}$ computations with data for a 9 -caliber length body. GE-Spinner refers to the empirical curve fit of Reference 20.

The final body computational example is taken from Reference 15. x_{R} and $\left.x_{D}\right)$ are cone lengths, L, for an elliptic cone. Semi-minor to semi-major axis ratio is $\mathbf{a} / \mathrm{b}=$ $.75 \mathrm{a} / \mathrm{L}=.0866, \mathrm{x}^{\prime}=0$. Figure 8 compares $\mathrm{C}_{\mathrm{Vq}^{\prime}}+\mathrm{C}_{\mathrm{N} \dot{\alpha}}$ first- and second-order computations with that of Reference 15 . Figure 9 compares $C_{m q}+C_{m \dot{\alpha}}$. Computations for $\mathrm{C}, \dot{\sim}$ show significant differences between first- and second-order order. The computation of Reference 15 is a first-order computation using different numerical methods. Three computational planes seems to be adequate for this case.

4.2 BODY-'TAIL CONFIGURATIONS

The first configuration considered for this section is the Basic Finner of Figure 10.21,22 Figure 11 shows a comparison of data with computation for the roll damping derivative. The loading for the roll damping problem is low near the body and increases with span distance. The roll moment loading increases even more rapidly with span distance. At a side edge, the loading drops to zero. Load integration routines were modified to try to account for the sharp drop off of loading near a side edge. This improved $\mathrm{C}_{1 \mathrm{p}^{\prime}}$ prediction at lower Mach numbers. Figure 12 depicts a Magnus moment derivative, $\mathrm{C}_{\mathrm{N}^{\prime} \times \mathrm{x}}$, computation comparison with data. A bodyalone estimate using the empirical computation of Reference 20 indicates a variation of - .4 to 3 for the Mach number range of 1.2 to 3 . The computation here only follows for the data trend but not the magnitude. Figure 13 depicts a total pitch damping comparison. A trend of being above the data at lower Mach numbers is indicated here.

The next configuration is that of Figure 14(b) taken from Reference 23. The equation of the body in calibers is

$$
\begin{gathered}
r_{b}=.5\left|1-(1-x / 6.25)^{2}\right|^{3 / 4} \\
r_{b}=.5, x>6.25
\end{gathered}
$$

Since $\partial r_{b} / \partial \mathrm{x}$ and $\partial 2 \mathrm{r}_{\mathrm{b}} / \partial \mathrm{x}^{2}$ are singular at $\mathrm{x}=0$, the nose is approximated as

$$
\begin{equation*}
r_{b}=.29716844 x-.131673491 x^{2}+.034340881 x^{3} \quad 0<x<1 \tag{4-3}
\end{equation*}
$$

Equation (4-3) matches zero through second derivatives of Equation (4-2) at $x=1$. The total pitch damping comparison is shown in Figure 15. Reference area is the extended to centerline fin planform area (two fins). Reference $\mathrm{x}_{\mathrm{R}}=2 \mathrm{x}_{\mathrm{D}}=$ the mean aerodynamic chord,

$$
\begin{equation*}
C^{\prime}=\frac{2}{3} \frac{\left(C_{r}^{2}+C_{t}^{2}+C_{t} C_{r}\right)}{C_{t}+C_{r}} \tag{4-4}
\end{equation*}
$$

Here, C_{r} and C_{t} are root and tip chords of the extended fin. The moment center is $.2 \mathrm{C}^{\prime}$ from the apex of the wing extended to the body centerline. Leading and trailing edges are supersonic and the computation compares fairly well with the data. Computations were adequate for the configuration of Figure 14(a) for supersonic leading edges, but very poor for subsonic edges when the moment center is $.35 \mathrm{C}^{\prime}$ from the extended wing apex. The reason is the inaccurate computation of $\mathrm{C}_{\mathrm{m}} \dot{\alpha}$. For moment centers which are, more typically, not close to the point of action of $\mathrm{C}_{\mathrm{i} \dot{\alpha} \dot{\alpha}}$, the sensitivity and accuracy is better.

The next configuration considered is depicted in Figure 16. A $\mathrm{C}_{\mathrm{mq}}{ }^{\prime}+\mathrm{C}_{\mathrm{m} \dot{\alpha}}$ comparison for this configuration is shown in Figure 17. Here, the trend of overprediction is reversed.

The next body-tail configuration considered is the flechette of Figure 18 taken from Reference 24. Reference 24 (unpublished) compares one of the routines for computing total pitch damping in Reference 1 with available data for a large number of body-alone and body-tail configurations. The XM- 144 body end radius of .005 calibers is approximated as .05 calibers. Figure 19 compares computations with data. For this case, the leading edge of the fins is subsonic below Mach numbers of 3.25. The data was surprisingly smooth for this configuration. The boat tail has a significant effect on the computational results.

The final body-tail configuration 25 of Figure 20 has six fins and a boat-tail angle of 2 deg. Figure 21 compares C_{lp} potential and local computations with the PNS computations of Reference 25 . The sharp rise close to sonic leading edge conditions is predicted by the thin-fin, fin-alone methods of Reference 1. The boat tail
significantly affects the solution. Figure 22 shows a pitch damping computational comparison with data for a configuration close to that of Figure 20. The configuration and data are from Reference 24 . Here, the conical nose length is 3.32 calibers and the moment center is 7.14 calibers from the nose. From Figures 21 and 22, one can see that the local solution is of limited value.

4.3 BODY-WING-TAIL OR BODY-CANARD-TAIL CONFIGURATIONS

Here, the additional interference of forward lifting surfaces on the tail is the primary phenomenon. As in earlier work, it is assumed that the velocity vector downstream of a supersonic trailing edge lies on a constant cylindrical ray plane, θ $=\theta_{\mathrm{f}}$.

The first computational comparison is for the B-C-T configuration of Figure 23. Figure 24 shows a computational comparison with experimental data. The trend at lower Mach numbers is as noted earlier. Here, the carryover canard to tail of $\mathrm{C}_{\mathrm{m}} \dot{\alpha}$ grows as the Mach number decreases. Evaluation of the plunging acceleration contribution of Equation (3-31) involves $M_{\infty}^{2} / \beta^{2}$ and differences which probably become sensitive as the Mach number is decreased. Computations of C_{lp} ' also indicate a carryover effect which is not accounted for by component superposition methods. At $\mathrm{M}_{\infty}=1.76, \mathrm{C}_{\mathrm{lp}^{\prime}}=-199.3$ for the total configuration. For the same Mach number, the total of individual canard and tail configurations adds up to $\mathrm{C}_{\mathrm{ip}}=-171.1$.

Figure 25 compares total pitch da:nping with data and a semi-empirical estimate for the RFL 122 configuration of Reference 26. The ordinate scale was not given and is inferred here. The $\mathrm{C}_{\mathrm{m}} \dot{\alpha}$ carryover phenomenon seems to be less extreme in this case. The semi-empirical estimate seems to be worse, assuming the data fit is correct. A $\mathrm{C}_{\mathrm{lp}}{ }^{\prime}$ computation at $\mathrm{M}_{\infty}=1.5$ yields -89.5 for the total configuration. The wing contribution to $\mathrm{C}_{\mathrm{lp}}{ }^{\prime}$ at the same Mach number is -94.0.

The final computation is for the B-W-T configuration of Reference 27. Total pitch damping comparison and configuration are depicted in Figure 26. Geometry and the moment center location are given in Reference 27. The geometry was scaled from Reference 27. x^{\prime} is assumed to be at $x^{\prime}=8.5$ calibers from the nose. The $C_{m} \dot{\alpha}$ carryover phenomenon is noted as before. Missile refers to an Aerospatiale semiempirical code.

5.0 CONCI.UDING REMARKS

The computational methods, developed for computing static aerodynamic coefficients for noncircular bodies at supersonic Mach numbers, have been extended to the computation of dynamic derivatives.

Geometric limitations are the same as for the earlier work. However, it is assumed that the bodies are pointed.

The weakest elements in the original code are exaggerated here since moments are almost exclusively computed. The variation of pressures close to subsonic leading and side edges is affected by edge singularities. $\mathrm{C}_{l p^{\prime}}$ prediction is poorest for fins with low aspect ratios. $\mathrm{C}_{\mathrm{mq}}{ }^{\prime}+\mathrm{C}_{\mathrm{m}} \dot{\alpha}$ prediction is poorest when the leading edge is subsonic and the point of action of $\mathrm{C}_{\mathrm{N}_{q^{\prime}}}+\mathrm{C}_{\mathrm{V} \dot{x}}$ is close to the moment center. The carryover effect for $\mathrm{C}_{\mathrm{m}} \dot{x}$ is overpredicted when the leading edges are subsonic for bodies with two sets of lifting surfaces.

The methods developed are capable of computing dynamic derivatives that are usually not computed or measured for in-plane and out-of-plane cases.

Computational comparison with data is fairly good for most cases. In general, the repeatibility of dynamic derivative experimental values is much poorer than for static derivatives.

The current computer code, implementing the dynamic derivative models, requires about 330,000 octal storage locations for a 15 -by- 60 grid for full plane computations. Computational times for axial rate computations are about the same as for static computations. Plunging rate computations are about 50 percent longer.

6.0 REFERENCES

1. L. Devan, L. A. Mason, and F. G. Moore, Aerodynamics of Tactical Weapons to Mach Number 8 and Angles-of-Attack 180 Degrees, AIAA Paper 82-0250, AIAA 20th Aerospace Sciences Meeting, Orlando, FL, January 1982.
2. S. R. Vukelich and J. E. Jenkins, Missile Datcom: Aerodynamic Prediction of Conventional Missiles Using Component Build-up Techniques, AIAA Paper 840387, AIAA 22nd Aerospace Sciences Meeting, Reno, NV, January, 1984.
3. A. E. Magnus and M. A. Epton, PAN AIR -- A Computer Program for Predicting Subsonic or Supersonic Linear Potential Flows About Arbitrary Configurations Using a Higher Order Panel Method, Vol.I -- Theory Document, NASA CR-3251, 1980.
4. M. F. E. Dillenius and J. N. Nielsen, Computer Programs for Calculating Pressure Distributions Including Vortex Effects on Supersonic Monoplane or Cruciform Wing-Body-Tail Combinations with Round or Elliptical Bodies, NASA CR-3122, April 1979.
5. M. D. Van Dyke, First-and Second-Order Theory of Supersonic Flow Past Bodies of Revolution, Journal of the Aeronautical Sciences, March 1951.
6. L. Devan, Conical. Noncircular. Second-Order, Potential Theory of Supersonic Flow, AIAA Journal, Vol. 22, No. 5, May 1984.
7. L. Devan and L. A. Kania, Nonaxisymmetric Body, Second-Order, Linear Supersonic Flow Prediction, AIAA Paper 84-0313, AIAA 22nd Aerospace Sciences Meeting, Reno, NV January 1984.
8. L. Devan and L. A. Kania, Nonaxisymmetric Discontinuous Body, Second-Order. Linear Supersonic Flow Prediction, AIAA Paper 85-1810-CP, AIAA 12th Atmospheric Flight Mechanics Conference, Snowmass, CO, August 1985.
9. L. Devan, Nonaxisymmetric Body, Supersonic, Aerodynamic Prediction, AIAA Paper 87-2296-CP, AIAA 14th Atmospheric Flight Mechanics Conference, Monterey, CA, August 1987.
10. L. Devan, Nonaxisymmetric Body. Supersonic, Aerodynamic Prediction, NSWC TR 86-253, August 1987.
11. L. Devan, NANC, Nonaxisymmetric Body. Supersonic Aerodynamic Prediction Code -- Program Description and Users Guide, NSWC TR 87-167, October 1987.
12. L. Devan, NANC, A Nonaxisymmetric Body, Supersonic Aeroprediction Code, AIAA Paper 88-526, AIAA 26th Aerospace Sciences Meeting, Reno, NV, January 1988.
13. A. E. Gentry, D. N. Smyth, and W. R. Oliver, The Mark IV Supersonic-Hypersonic Arbitrary-Body Program, Vol. I: Users Manual, Vol. II: Program Formulation. Vol. III: Program Listings, AFFDL TR 73-159, November 1973.
14. J. W. Miles, The Potential Theory of Unsteady Supersonic Flow, Cambridge at the University Press, 1959.
15. P. Garcia-Fogeda, P. C. Chen, and D. D. Liu, Unsteady Supersonic Flow Calculations for Wing-Body Combinations Using Harmonic Gradient Method, AIAA Paper 88-0568, AIAA 26th Aerospace Sciences Meeting, Reno, NV, January 1988.
16. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II, Interscience Publishers, 1953, pp. 486-490.
17. R. W. MacCormack, The Effect of Viscosity on Hypervelocity Impact Cratering, AIAA Paper 69-354, Cincinnati, OH, April 1969.
18. C. P. Kentzer, Discretization of Boundary Conditions in Moving Discontinuities, Second International Conference on Numerical Methods in Fluid Dynamics, Berkeley, CA, September 1970.
19. L. E. Schmidt, The Dynamic Properties of Pure Cones and Cone-Cylinders, BRL Memorandum Report 759, January 1954.
20. R. H. Whyte, SPIN-73, An Updated Version of the Spinner Computer Program, Picatinny Arsenal TR-4558, November 1973.
21. J. D. Nicolaides and L. C. MacAllister, A Review of Aeroballistic Range Research on Winged and/or Finned Missiles, Bureau of Ordnance, Ballistic Technical Note No. 5, 1955.
22. L. C. MacAllister, The Aerodynamic Properties of a Simple Non-Rolling Finned Cone-Cylinder Configuration Between Mach Numbers 1.0 and 2.5, BRI, Report 934, May 1955.
23. M. Tobak, Damping in Pitch of Low-Aspect Ratio Wings at Subsonic and Supersonic Speeds, NACA RMA52L04A, April 1953.
24. R. Whyte, J. Burnett, and W. Hathaway, Evaluation of the Computation of Pitch Damping Subroutine LMSC, General Electric Armament Systems Department, Burlington, VT, November 1979.
25. P. Weinacht and W. Sturek, Computation of the Roll Characteristics of Finned Projectiles, BRL TR 2931, June 1988.
26. H. Fuchs, Dynamic Derivatives of Missiles and Fighter-Type Configurations at High Angles of Attack, Missile Aerodynamics Conference Honoring Dr. J. N. Nielsen, Monterey, CA, October 31-November 2, 1988.
27. R. G. Lacau, Survey of Missile Aerodynamics, Missile Aerodynamics Conference Honoring Dr. J. N. Nielsen, Monterey, CA, October 31-November 2, 1988.

FIGLRE 1. HALF BODY GEOMETRY

FIGURE 2. THIN FIN GEOMETRY

FIGLRE 3. FIN PLANFORM GEOMETRY

FIGLRE 4. $\mathrm{C}_{\mathrm{mq}}{ }^{\prime}+\mathrm{C}_{\mathrm{m}^{\bullet}}$ COMPARISONS FOR A CIRCULAR CONE, $\mathrm{L}_{\mathrm{N}}=2.98$ CALIBERS $\mathrm{x}^{\prime}=2.18$ FROM NOSE

FIGURE 5. $\mathrm{C}_{\mathrm{mq}}{ }^{+}+\mathrm{C}_{\mathrm{m} \dot{\alpha}}$ FOR A CONE-CYLINDER, $\mathrm{L}_{\mathrm{N}}=2.98$ CALIBERS, $\mathrm{L}=5.12$ CALIBERS, $\mathrm{x}^{\prime}=3.44$ CALIBERS FROM NOSE

FIGURE 6. $\mathrm{C}_{\mathrm{mq}}{ }^{\prime}+\mathrm{C}_{\mathrm{m}} \dot{x}$ COMPARISON FOR THE ARMY-NAVY SPINNER, $\mathrm{L}_{\mathrm{N}}=2.0 \mathrm{CALIBERS}, \mathrm{L}^{2}=5.0 \mathrm{CALIBERS}, \mathrm{x}^{\prime}=3.0 \mathrm{CALIBERS}$ FROM NOSE

FIGCRE 7. $\mathrm{C}_{\mathrm{mq}}{ }^{\prime}+\mathrm{C}_{\mathrm{m}} \dot{\sim}$ FOR THE ARMY-NAVY SPINNER, $\mathrm{L}_{\mathrm{N}}=2.0$ CALIBERS, $\mathrm{L}=9.0 \mathrm{CALIBERS}, \mathrm{x}^{\prime}=5.06$ CALIBERS FROM NOSE

FIGURE 8. $\mathrm{C}_{\mathrm{Nq}^{\prime}}+\mathrm{C}_{\mathrm{N} \dot{\alpha}}$ COMPARISON FOR AN ELLIPTIC CONE

FIGURE 9. $\mathrm{C}_{\mathrm{mq}}{ }^{+}+\mathrm{C}_{\mathrm{m} \dot{\alpha}}$ COMPARISON FOR AN ELLIPTIC CONE

FIGURE 10. BASIC FINNER CONFIGURATION

FIGURE 11. BASIC FINNER $\mathrm{C}_{1 \mathrm{p}}{ }^{\prime}$ COMPARISON

FIGCRE A2 $\mathrm{C}_{\text {пр }}$: MAGNUS DERIVATIVE FOR THE BASIC FINNER

FIGURE 13. TOTAL PITCH DAMPING COMPARISON FOR THE BASIC FINNER

FIGURE 14. ASPECT RATIO $=3$ CONFIGURATIONS

FIGURE 15. PITCH DAMPING COMPARISON FOR AN AR $=3$ WING-BODY CONFIGURATION

FIGURE 16. AIR SIEW DEMONSTRATOR VEHICLE

FIGURE 17. PITCH DAMPING COMPARISON FOR THE AIR SLEW DEMONSTRATOR VEHICLE

FIGURE 18. XM-144 CONFIGURATION

FIGURE 19. TOTAL PITCH DAMPING FOR THE XM-144

ALL DIMENSIONS IN CALIBERS (ONE CALIBER $=35.2 \mathrm{~mm}$)

FIGCRE 20. BRL M735 CONFIGCRATION

FIGURE 21. ROLL DAMPING COMPARISON COMPUTATIONS FOR THE M735 PROJECTILE

FIGCRE 22. TOTAL PITCH DAMPING COMPARISON FOR THE M735 PROJECTILE

FIGURE 23. SIDEWINDER GEOMETRY

FIGURE 24. TOTAL PITCH DAMPING COMPARISON FOR THE SIDEWINDER

FIGURE 25. TOTAL PITCH DAMPING COMPARISON FOR THE RFL 122

FIGURE 26. TOTAL PITCH DAMPING COMPARISON FOR AN AEROSPATIALE MISSILE CONFIGURATION

APPENDIX
NOMENCLATURE

NOMENCLATURE

Dimensionless speed of sound
$a_{\infty} \quad$ Reference speed of sound $=$ free-stream value
$C_{i} \quad$ General force or moment coefficient
$\mathrm{C}_{\mathrm{p}} \quad$ Pressure coefficient
Grid index for a constant x plane
$i^{\prime} \quad$ Unit vector in x direction
Grid index for constant θ plane
Unit vector in y or r direction
Grid index for constant ξ plane
$k^{\prime} \quad$ Unit vector in z or θ direction
LM Aerodynamic symmetry mode
$M_{i} \quad$ Moment or force
$M_{0} \quad$ Free-stream Mach number
n Unit normal vector from a solid surface
$\mathrm{p}^{\prime} \quad$ Rotational rate about the x axis
(NOTE: All q velocities are nondimensional)
q Perturbation velocity vector
$q^{\prime} \quad$ Rotation rate about y axis
$q_{a} \quad$ Velocity vector associated with ϕ_{a} potential
$\mathrm{q}_{\mathrm{ax}} \quad$ Velocity vector at $\mathrm{t}=0$ due to plunging acceleration
$q_{b} \quad$ Velocity vector associated with ϕ_{b} potential
$\mathrm{q}_{0 \infty} \quad$ Equivalent free-stream velocity vector relative to body axes
$q_{r} \quad Q-V$, relative velocity
$q_{n} \quad$ Equivalent free-stream velocity vector relative to body coordinates at t $=0$
$\dot{\mathrm{q}}_{\infty} \quad$ Free-stream acceleration relative to body axes (dimensionless)
$q_{\infty}^{\prime} \quad \quad$ Equals $q_{0 \infty}-\mathrm{i}^{\prime}$
First-order velocity vector, steady part
$q_{1}^{\prime} \quad$ Total first-order velocity vector
$\mathrm{q}_{2} \quad$ Second-order velocity vector
$q_{1 c} \quad$ First-order crossflow vector
Q Total velocity vector of fluid in body axis coordinates relative to gas at rest
$1 / 2 \rho_{\infty} V^{2}$, dynamic pressure
$\mathrm{Q}_{\mathrm{T} \ell}$
r
\mathbf{r}^{\prime}
$\mathrm{r}_{\mathrm{b}} \quad$ Body radius
$r_{0} \quad$ Body radius to outer fin edge
$S_{R} \quad$ Reference area
t
t_{x}
$u \quad x$ component of perturbation velocity
$\dot{\mathrm{u}}_{0} \quad \mathrm{x}$ component of $\mathrm{c} . \mathrm{g}$. acceleration
$\mathrm{u}_{1}^{\prime} \quad \mathrm{x}$ component of q_{1}^{\prime}
$v \quad r$ component of perturbation velocity
$\dot{\mathrm{v}}_{\mathrm{O}} \quad \mathrm{y}$ component of $\mathrm{c} . \mathrm{g}$. acceleration

V
$\mathrm{V}_{\infty} \quad$ Magnitude of velocity vector of c . g. at $\mathrm{t}=0$
w
$\dot{\mathbf{w}}_{\mathrm{o}}$
x
x^{\prime}
$\zeta \quad$ Equals $\zeta(\xi)$, clustering transformation in ζ direction
Equals $-q_{0 x}$, velocity relative to gas at rest in body axis coordinates
θ component of perturbation velocity
z component of $\mathrm{c} . \mathrm{g}$. acceleration
Cartesian coordinate from nose -- zero incidence direction
Moment center distance from nose
Reference length
Reference length associated with reduced frequency
Cartesian coordinate perpendicular to vertical body symmetry plane (to the right looking downstream)

Cartesian coordinate perpendicular to x , y plane (up, looking downstream)

Angle of attack
Equals $\sqrt{M_{\infty}^{2}-1}$
Angle of side slip
Specific heat ratio
Equals $\left(\partial r_{b} / \partial \theta\right) / r_{b}$

Cylindrical coordinate angle from leeside plane
Equals $\left(r-r_{h}\right) /\left(x / \beta-r_{b}\right)$, shearing transformation
Density
$\rho_{\text {, }} \quad$ Free-stream density
ϕ
$\Phi_{1} \quad$ First-order disturbance potential for $\dot{q}_{x}=0$
$\phi_{1}^{\prime} \quad$ Equals $\phi_{1}+\left(\mathrm{M}_{\infty} / \beta^{2}\right) \phi_{\mathrm{a}}+\mathrm{V}_{\infty}\left[\mathrm{t}-\mathrm{x} \mathrm{M}_{\infty}^{2} /\left(\beta^{2} \mathrm{~V}_{\infty}\right)\right] \phi_{\mathrm{b}}$
(Total first-order disturbance potential ϕ_{a} and ϕ_{b} are equivalent static problem potentials.)
Φ_{2}

Absolute temperature ratio
General term in computing reduced frequency

DISTRIBUTION

Copies

Copies

Commander
Naval Sea Systems Command
Attn: SEA-62G2 (Mr. L. Pasiuk)
Technical Library
1
1
Washington, DC 20362-5101
Commander
Naval Air Systems Command
Attn: AIR-93D (Dr. G. Heiche)
Ai i-!32J (Mr. D. Hutchins)
Technical Library
Washington, DC 20361-0001
Commander
Naval Weapons Center
Attn: Technical Library
Mr. C. S. Porter
Dr. R. G. Burman
Mr. R.E.Smith
Mr. L. W. Strutz
China Lake, CA 93555-6001
Commander
Naval Ship Research and Development Center
Attn: Dr. J. Schott
Technical Library
Washington, DC 20007
Chief of Naval Research
Attn: Mr. D. Siegel (ONT)
Dr. R. Whitehead
Dr. S. Lykoudis
Dr. T. C. Tai
Technical Library
800 N. Quincy Street
Arlington, VA 22217

Commander
Naval Development Center
Attn: Mr. S. Greenhalgh
1
Mr. W. Tseng 1
Dr. A. Cenko
Technical Library
Warminster, PA 18974
Superintendent
U.S. Naval Academy

Attn: Head, Weapons Dept. 1
Head, Science Dept. 1
Technical Library 1
Annapolis, MD 21402

Superintendent

U.S. Naval Postgraduate School

Attn: Prof. T.Sarpkaya 1
Dr. R. Howard 1
Dr. D.Salinas 1
Technical Library 1
Monterey, CA 95076
Officer in Charge
Naval Intelligence Support Center
Attn: Dr. M. Krumins 1
Technical Library 1
4301 Suitland Road
Washington, DC 20390
Commanding Officer
Naval Ordnance Station
Attn: Technical Library

DISTRIBUTION (CONTINUED)

Copies

Copies

Commanding Officer Naval Weapons Support Center
Attn: Code 5062 (Mr. D. Jensen)
Crane, IN 47522
Defense Intelligence Agency
Attn: DIAC/DT-4A (Mr. P. Murad)
Washington, DC 20546
Commanding General
Ballistic Research Laboratory
Attn: Dr.C.H. Murphy
Dr. R. Sedney
Dr. W. Sturek
Mr. C. Nietubicz
Dr. A. Mikhail
Technical Library
Aberdeen, MD 21005
Commander
U. S. Army ARDEC

Attn: Mr.R.W. Kline
Mr. J.Grau 1
Technical Library
Picatinny Arsenal, NJ 07806
Commanding General
U. S. Army Missile R\&D Command DROMI-TDK
Redstone Arsenal
Attn: Mr. Billy J. Walker
Dr. C. D. Mikkelsen
Technical Library
Huntsville, AL 35809
Commanding Officer
Harry Diamond Laboratories
Attn: Technical Library
Adelphi, MD 20783

Arnold Engineering Development Center
USAF
Attn: Dr. D. Daniel 1
Technical Library 1
Tullahoma, TN 37389
Commanding Officer
Air Force Armament Laboratory (AFATL)
Attn: Dr. D. Belk 1
Mr.C.Cottrell $\quad 1$
Mr.S.Korn $\quad 1$
Dr.L.E.Lijewski 1
Elgin AFB, FL 32542
Commanding Officer
Air Force Wright Aeronautical Laboratories (AFSC)
Attn: Dr. V. Dahlem 1
Mr. M. Pinney $\quad 1$
Dr. G. Kurylowich $\quad 1$
Mr. D. Shereda $\quad 1$
Mr. J. Jenkins 1
Wright-Patterson AFB, OH 45433
Commanding Officer
HQ/FTD/SDDV (72651)
Attn: Mr.R.D.Samuels
1
Wright-Patterson AFB, OH 45433
USAF Academy
Attn: Technical Library 1
Colorado Springs, CO 80912
Advanced Research Projects Agency
Department of Defense
Attn: Technical Library
Washington, DC 20305

DISTRIBUTION (CONTINUEI)

Copies Copies

NASA
Attn: Technical Library
Washington, DC 20546
NASA
Ames Research Center
Attn: Dr. G. Chapman
Dr. J. Nielsen Technical Library
Moffett Field, CA 94035
NASA
Langley Research Center
Attn: Mr. J. South
Mr. C. M. Jackson, Jr.
Mr. W. C. Sawyer
Mr. J. M. Allen
Technical Library
Hampton, VA 23365
Library of Congress
Attn: Gift and Exchange Division4

Washington, DC 20540
Virginia P.I.S. University
Department of Aerospace and Ocean Engineering
Attn: Prof. J. A. Schetz
1
Prof. B. Grossman
Technical Library
Blacksburg, VA 24060
North Carolina State University
Department of Mechanical and Aerospace Engineering
Attn: Prof. F. R. DeJarnette
Prof. H. A. Hassan 1
Technical Library 1
Box 5246
Raleigh, NC 27607

The University of Tennessee
Space Institute
Attn: Prof. J. M. Wu
Technical Library
Tullahoma, TN 37388
University of Notre Dame
Department of Aerospace and Mechanical Engineering
Attn: Dr. R. Nelson
Technical Library
Notre Dame, IN 46556
Purdue University
School of Engineering and Technology
Attn: Prof. A.Ecer 1
Technical Library 1
P. O. Box 647

1201 E. 38th Street
Indianapolis, IN 46223
Stanford University
Department of Aeronautics and Astronautics
Attn: Prof. M. D. Van Dyke 1
Technical Library 1
Stanford, CA 94305
University of Texas
Aerospace Engineering and Engineering Mechanics Department
Attn: Prof. J. J. Bertin
Technical Library 1
Austin, TX 78712

DISTRIBUTION (CONTINUED)

CopiesCopies

The Johns Hopkins University Applied Physics Laboratory Attn: Mr.E.T. Marley

Mr. E. Lucero
Mr. L. E. Tisserand
Mr. R.E. Lee
Johns Hopkins Road
Laurel, MD 20810
Raytheon Missile Systems
Attn: Mr. R. Sterchele
Dr. D. P. Forsmo
Dr. H. T. Flomenhoft
P. O. Box 1201

Tewksbury, MA 01876-0901
McDonnell-Douglas Astronautics Company (West)
Attn: Dr. J. Xerikos
5301 Bolsa Avenue
Hunington Beach, CA 92647
McDonnell-Douglas Astronautics
Company (East)
Attn: Mr. J. Williams
Dr. R. Krieger
Mr. S. Vukelich
Box 516
St. Louis, MO 61366
Lockheed Missiles and Space Company, Inc.
Attn: Dr. L. E.Ericsson
Mr. P. Reding
Sunnyvale, CA 94086

Lockheed Missiles and Space Company, Inc.
Attn: Mr. T. Lundy
Huntsville, AL 35807
Sverdrup Technology
Attn: Mr. M. S. Miller
P. O. Box 1935

Elgin AFB, FL 32542
Nielsen Engineering and Research, Inc.
Attn: Dr. M. Mendenhall 1
Dr. M.F.E.Dillenius $\quad 1$
510 Clyde Avenue
Mountain View, CA 95043
General Electric Company
Armament Systems Department
Attn: Mr. R. Whyte
1
Burlington, VT 05401
CALSPAN
PWT-4T MS-600
Attn: Dr. W. B. Baker, Jr. 1
Mr. W. A. Crosby $\quad 1$
Arnold AFS, TN 37389
Ling-Temco-Vought
Attn: Mr.F.Prillman 1
Dr. W. B. Brooks $\quad 1$
Mr.R.Stancil 1
P. O. Box 5907

Dallas, TX 75222

I)ISTRIBUTION (CONTINUEI))

Copies

Copies

Hughes Aircraft Corporation
Attn: Mr. R. Reed
Mr. H. August
Canoga Park, CA 91304
Northrup Corporation
Aircraft Group
Attn: Dr. J.Sun
1515 Rancho Conejo Blvd.
Newbury Park, CA 91320
Sandia National Laboratories
Attn: Dr. W. Oberkampf
Mr. W. Rutledge
Albuquerque, NM 87115
Martin Marietta Aerospace Co.
Attn: Mr. L. A. Kania
Mr. J. Donahue
P. O. Box 5837

Orlando, FL 32805
Motorola, Inc.
Missile System Operations
Attn: Mr. G. H. Rapp
P. O. Box 1417

Scottsdale, AZ 85252
TRW Space and Technology Group
Attn: Dr. T. Shivananda
One Space Park
Redondo Beach, CA 90278
TRW Electronics and Defense Sector
Attn: Dr. T. Lin
1
Building 527
P. O. Box 1310

San Bernadino, CA 92402

VRA, Inc.
Attn: Dr.C.H. Lewis
1
P. O. Box 50

Blacksburg, VA 24060
Integrated Systems, Inc.
Attn: Mr. M. M. Briggs
151 University Avenue
Palo Alto, CA 94301
DEI Tech., Inc.
Attn: Mr. K. Walkley
11838 Bunker Blvd., Suite 500
Newport News, VA 23606
Grumman Aerospace Corporation
Research and Development Center
M. S. A 08-35

Attn: Dr. M. J. Siclari
Bethpage, NY 11714
Olin Corporation
Attn: Mr. L. A. Mason
1
P. O. Box G

Marion, IL 62959
United Technologies
Norden Systems
Attn: Dr. G. Ramanathan Mr. M. Fink
M. S. K041

Norwalk, CT 06856
Aerojet Tactical Systems Co.
Attn: Mr. D. O. Matejka
1
Sacramento, CA 98513

IDSTRIBUTION (CONTINUEI)

Copies CopiesGeneral DynamicsConvair Division
Attn: Mr. K. Hively
Mr. D. Brower
P. O. Box 85357
San Diego, CA 92138
AVCO Systems Division
Attn: Mr. E. Lawlor
201 Lowell Street
Wilmington, MA 01887
Aerojet Electro Systems Co.
Attn: Dr. Y. C. Shen
P. O. Box 296-III
Azusa, CA 91702
North American AircraftOperations
Rockwell International
Attn: Mr. R. CavageDr. E. Bonner
P. O. Box 92098
Los Angeles, CA 90009
PRC Kentron
Attn: Dr. M. Hemsch 1
3221 N. Armisted Avenue
Hampton, VA 23666
Tracor Aerospace, Inc.
Attn: Mr. W. Estes
MIS 6-5
6500 Tracor Lane
Austin, TX 78721
Teledyne Ryan AeronauticalAttn: Mr.J.C. Grams1
2701 Harbor Drive
San Diego, CA 92138
Goodyear Aerospace Corporation Attn: Mr.S. Black 1 1210 Massilan Road Akron, OH 44315
Texas Instruments, Inc.
Attn: Mr. D. Vosburgh 1
M. S. 3405
P. O. Box 405
Louisville, TX 75067
DYNA East Corporation
Attn: Mr. W. J. Clark 1
3132 Market Street
Philadelphia, PA 19104
Internal Distribution:
E 1
E211 (M. Green) 1
E231 10
E31 (GIDEP) 1
F 1
G 1
G06 1
G10 1
G13 1
G20 1
G205 1
G21 1
G22

DISTRIBUTION (CONTINUEI))

Copies
Internal Distribution (Cont'd): G23 1
G23 (Devan) 20
G23 (Hardy) 1G301

G33 1
G40 1
G42 (Graff) 1
H 1
K 1K201
K204 1K22K24N1
N40 1
R 1
R44 (Wardlaw, Priolo) 2
U1

