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NORMALIZED TIME AND ITS USE IN Definition 1 Fix the computation. Then define
ARCHITECTURAL DESIGN

T -Time
S. Ho, T. HOLMAN,

1 L. SNYDER o Cose

University of Washington, Co  Cost

Seattle, Washington ToCo Normalized Time.

INTRODUCTION The subscript zero denotes the base architecture.
The units, e.g. sm 2 , are irrelevant, as we are only

Building better and faster computers is always the making comparisons here.
goal of computer design. To do this, designers often
propose modifications and improvements to corn- To the base architecture, we then add modifi-
puters. Typically, these so-called improvements cations. We stipulate that, akin to Amdahl's law
must also carry some cost, in additional size or [Amdahl], some fraction f is affected by the change,
complexity. All too often, only the benefits and speeding it up by some factor S, and the rest is left
not the costs are the subject of analysis. As an ex- undisturbed. We also stipulate that the change in-
ample, the Berkeley RISC design [Patterson] had creases the cost by some fraction c.
a reduced instruction set, as well as register win- As an example, a floating point coprocessor
dows. The extra cost of the register windows was might produce a speedup of a factor of twelve, but
offset by the smaller control. But what then, if we only on sixteen percent of all instructions. It might
had allocated this cost to, say, a carry-lookahead also increase the cost, measured as chip area, by
adder, or some other part? Would this have been thirty-eight percent. (These figures are for rela-
a wiser choice? tional operations in a bitonic sort on the Transputer

Holman [1988] addressed this problem. The T800. [Holman 1989])
method of normalized analysis is a way of fairly
resolving both the costs and benefits of a modifi- Proposition 1 A medification m affecting a frac-
cation. [Holman 1989] A concrete example of such tion f, with speedup S and cost c obeys
analysis is to ask:

Do programs run faster on (parallel) T = T 1-f+ f

computers when floating-point coproces-

sors are installed, or when the equivalent C = CO(1 + c).

amount of hardware is used instead for ad- The comparison is then between the normalized
ditional processor elements? times. In our floating point example above, we find

We may repeat this question for each additional the normalized time is 1.18 times larger with the
proposed modification, such as multipliers, shifters, coprocessor than without. The coprocessor is not
etc. used enough, in the relational operations of this

This analysis allows determining whether a par- case, to be worthwhile, as the cost exceeds the ben-
ticular modification is, individually, cost-effective. efit.
In real designs, though, the number of potential We can combine modifications by summing the
modifications is not one, but many. Further, these time and cost. For simplicity, let us assume that the
changes may interact variously. A multiplier may modifications do not interact. Interacting combina-
obviate the need for a shifter, a shifter may dupli- tions would have a speedup term for each possible
cate part of a floating point unit, and so forth. We combination, but would otherwise be similar.
need an algorithm for taking the varied set of mod-
ifications, and choosing that set which, working in Proposition 2 For a set of noninteracting modi-
concert, provides the best cost-benefit ratio. We fications mi, given fi, ci, Si, we have
first extend the normalized analysis to the more

*understandable concept of normalized time. We T = T i+L
then examine the effect of selecting multiple mod-ifications with the simplest algorithm, the greedy

* algorithm. ~ IDLC Z co I + ci)

MIODEL)

First, we -rust define our model. We Rtart with Two ARE RETTr THAN ONE

some base architecture, and then evaluate the time Before we consider the greedy algorithm, let us
and cost, on a fixed problem: The normalized time first examine the effect of the simplest combina-
is then their product. tion: two noninteracting modifications combined.

'Currently with Sun Microsystems, Mountain View. CA In this case, the cost is less than the product of the



............. Neither m1 nor M 2 , taken alone, is worthwhile.

rnt The algorithm will leave the base architecture un-
touched, yet the optimal set is both of {mi, m2 }.

Nevertheless, the greedy algorithm is conserva-
tive, in the sense that every greedily chosen modi-

Base Architecture m2  fication is also a member of the optimal set. This
is because the cross term is always positive.

Theorem 3 The greedy algorithm is conservatite.

Proof" Let G be the greedily chosen set, and S the
Figure 1: Representation of cross terms optimal set of modifications. Consider G - S. If

nonempty, it must have normalized time less than
algorithm greedy one. Then, SU(G-S) must have normalized time
X -0 better than S, which is optimal, a contradiction.
do Therefore G - S = 0, or G C S.

for each i, mi E M CONCLUSION
compute TC
if TC > TCo then X -- X U {mi} We began with the idea of normalized analysis:

Base -- Base U X that the cost of a modification is just as impor-
while X 0 tant as its benefits. We have extended the model

of normalized time to multiple groups of modifica-
tions. We then analyzed the results of the simplest.

Figure 2: The Greedy Algorithm greedy, algorithm as a tool for selecting the best set
of modifications.

two costs, relative to the base, individually. This is In doing so, we find that the greedy algorithm is
expressed by the inequality provably a suboptimal algorithm, even for the very

simple types of modifications considered here. Nev-
1 + c1 + c2 < (1 + cl)(l + c 2 ). ertheless, since it is a conservative algorithm, it is

Graphically, this is demonstrated in Figu-e 1. The still useful as a starting point for further selection.
product overestimates the cost by the lashed in- By running the fast and simple greedy algorithm,

we can select many of the same modifications thatteraction term. A similar relationship holds for the w ud b on ya y bte loih ,tu e

time. Thus, we have would be found by any better algorithm, thus re-
ducing the number of choices that the other algo-

Theorem 1 The combined normalized time of two rithm must make.
noninteracting modifications is less than the prod- With this theoretical basis, and the results of an
uct of their separate normalized times, initial algorithm, it may now be possible for com-

T 12C 12  T 1CI T 2C 2  puter designers to select, in a more analytical man-
TOC < ner, which of the multitude of potential modifica-
THE o GREED AOTH" tions to include in a computer system. ,THE GREEDY ALGORITHM /<-g / (
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