
T 7I. mp

%ECUnlITY CLASSIFICATION OF THIS PAGE (Wen Dole Entered)
PAGE READ INSTRUCTIONSREPORT DOCUMENTATION BEFORE COMPLETIN4G FORM

I. REPORIT NUME0 2. GOVT ACCESSION NO. S. RECIPIENT'$ CATALOG HUMIER
NW-LIS-89-10-05

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Normalized Time and its Use in Architectural Technical
00 Design

4. PERFORMING ORG. REPORT NUMNER

0 7. AUTHOR(@) . CONTRACT OR GRANT NUMER(o)

Sam Ho, Tom Holman, Larry Snyder N00014-88-K-0453

. PERFORIo ORGANIZATION NAME AND A -DRESS 10. PROGRAM KLEME.1 1 . PROJECT. TASK
Northwest Laboratory for Integrated Systems AREAI WORKUNI UMUERS

University of Washington
Dept. of Comp. Science, FR-35 Seattle, WA 9819!

It. CONTROLLING OFFICE NAME AND ADDRESS ". REPORT DATE
DARPA- ISTO October 1989

1400 Wilson Boulevard 13. .u*EA OF PAGES

ArlLngton- VA 22209 3
14. MONITORING AGENCY NAME I AODRESS(II different from Conlrollinl Office) 1I. SECURITY CLASS. (of this report)

Office of Naval Research - ONR
Information Systems Program - Code 1513: CAF Unclassified
800 North Quincy Street is.. ECL ASSI FICATION/ DOWNGRADING
Arlington, VA 22217 SCNEDULE

I. OISTRI UTION STATEMENT (of thle Report)

Distribution of this report is unlimited. D L C

II. SUPPLEMENTARY NOTES

I$. KEY WORDS (Cotinue an rever e side It neceeary md Identify by block number)

NW LIS, normalized analysis, greedy, architecture, microprocessor
enhancements.

20. ASISTRACT (Continue on revere lde Ii neceseary and Identify by block nuIber)

This document reports on the idea of normalized analysis: that the cost
of a modification is just as important as its benefits. This study has extend d
the model of normalized time to pultiple groups of modifications. It then
analyzes the results of the simplest, greedy, algorithm as a tool for
selecting the best set of modifications.

oo, 7s 1473 E0ITION OF I NOV IS O.SOLETE
SS/N

D102-LF-014-6601SECURITY CL.ASIFICATION OF THIS PlAGE (Whn DOI twteeq)

- KO'Ae-;

~~.77

- ~j ., Z

A-.

Normalized Time and its Use in
Architectural Design

Sam Ho, Torn Holman, Larry Snyder

DeparLmtnt of Computer Science & Engineering
University of Washington

Seattle, WA 98195

Technical Report 89-10-05
September 1989

Normalized Time and its Use in
Architectural Design

Sam Ho, Tom Holman, Larry Snyder

Department of Computer Science & Engineering
University of Washington

Seattle, WA 98195

Technical Report 89-10-05
September 1989

Acoession For
NTIS GRA&I

DTIC TAB

This paper appears in the Proceedings of the Unannounced 0
twenty-seventh annual Allerton conference on Justificatio

Communication, Control, and Computing,
Allerton Park, Illinois, September 1989. By _

Distribution/
Avail.abliity Codes

Avail and/or

Dist Spacial

Supported in part by Defense Advanced Research Projects Agency
under ONR Contract #N00014-88-K-0453.

NORMALIZED TIME AND ITS USE IN Definition 1 Fix the computation. Then define
ARCHITECTURAL DESIGN

T -Time
S. Ho, T. HOLMAN,

1 L. SNYDER o Cose

University of Washington, Co Cost

Seattle, Washington ToCo Normalized Time.

INTRODUCTION The subscript zero denotes the base architecture.
The units, e.g. sm 2 , are irrelevant, as we are only

Building better and faster computers is always the making comparisons here.
goal of computer design. To do this, designers often
propose modifications and improvements to corn- To the base architecture, we then add modifi-
puters. Typically, these so-called improvements cations. We stipulate that, akin to Amdahl's law
must also carry some cost, in additional size or [Amdahl], some fraction f is affected by the change,
complexity. All too often, only the benefits and speeding it up by some factor S, and the rest is left
not the costs are the subject of analysis. As an ex- undisturbed. We also stipulate that the change in-
ample, the Berkeley RISC design [Patterson] had creases the cost by some fraction c.
a reduced instruction set, as well as register win- As an example, a floating point coprocessor
dows. The extra cost of the register windows was might produce a speedup of a factor of twelve, but
offset by the smaller control. But what then, if we only on sixteen percent of all instructions. It might
had allocated this cost to, say, a carry-lookahead also increase the cost, measured as chip area, by
adder, or some other part? Would this have been thirty-eight percent. (These figures are for rela-
a wiser choice? tional operations in a bitonic sort on the Transputer

Holman [1988] addressed this problem. The T800. [Holman 1989])
method of normalized analysis is a way of fairly
resolving both the costs and benefits of a modifi- Proposition 1 A medification m affecting a frac-
cation. [Holman 1989] A concrete example of such tion f, with speedup S and cost c obeys
analysis is to ask:

Do programs run faster on (parallel) T = T 1-f+ f

computers when floating-point coproces-

sors are installed, or when the equivalent C = CO(1 + c).

amount of hardware is used instead for ad- The comparison is then between the normalized
ditional processor elements? times. In our floating point example above, we find

We may repeat this question for each additional the normalized time is 1.18 times larger with the
proposed modification, such as multipliers, shifters, coprocessor than without. The coprocessor is not
etc. used enough, in the relational operations of this

This analysis allows determining whether a par- case, to be worthwhile, as the cost exceeds the ben-
ticular modification is, individually, cost-effective. efit.
In real designs, though, the number of potential We can combine modifications by summing the
modifications is not one, but many. Further, these time and cost. For simplicity, let us assume that the
changes may interact variously. A multiplier may modifications do not interact. Interacting combina-
obviate the need for a shifter, a shifter may dupli- tions would have a speedup term for each possible
cate part of a floating point unit, and so forth. We combination, but would otherwise be similar.
need an algorithm for taking the varied set of mod-
ifications, and choosing that set which, working in Proposition 2 For a set of noninteracting modi-
concert, provides the best cost-benefit ratio. We fications mi, given fi, ci, Si, we have
first extend the normalized analysis to the more

*understandable concept of normalized time. We T = T i+L
then examine the effect of selecting multiple mod-ifications with the simplest algorithm, the greedy

* algorithm. ~ IDLC Z co I + ci)

MIODEL)

First, we -rust define our model. We Rtart with Two ARE RETTr THAN ONE

some base architecture, and then evaluate the time Before we consider the greedy algorithm, let us
and cost, on a fixed problem: The normalized time first examine the effect of the simplest combina-
is then their product. tion: two noninteracting modifications combined.

'Currently with Sun Microsystems, Mountain View. CA In this case, the cost is less than the product of the

............. Neither m1 nor M 2 , taken alone, is worthwhile.

rnt The algorithm will leave the base architecture un-
touched, yet the optimal set is both of {mi, m2 }.

Nevertheless, the greedy algorithm is conserva-
tive, in the sense that every greedily chosen modi-

Base Architecture m2 fication is also a member of the optimal set. This
is because the cross term is always positive.

Theorem 3 The greedy algorithm is conservatite.

Proof" Let G be the greedily chosen set, and S the
Figure 1: Representation of cross terms optimal set of modifications. Consider G - S. If

nonempty, it must have normalized time less than
algorithm greedy one. Then, SU(G-S) must have normalized time
X -0 better than S, which is optimal, a contradiction.
do Therefore G - S = 0, or G C S.

for each i, mi E M CONCLUSION
compute TC
if TC > TCo then X -- X U {mi} We began with the idea of normalized analysis:

Base -- Base U X that the cost of a modification is just as impor-
while X 0 tant as its benefits. We have extended the model

of normalized time to multiple groups of modifica-
tions. We then analyzed the results of the simplest.

Figure 2: The Greedy Algorithm greedy, algorithm as a tool for selecting the best set
of modifications.

two costs, relative to the base, individually. This is In doing so, we find that the greedy algorithm is
expressed by the inequality provably a suboptimal algorithm, even for the very

simple types of modifications considered here. Nev-
1 + c1 + c2 < (1 + cl)(l + c 2). ertheless, since it is a conservative algorithm, it is

Graphically, this is demonstrated in Figu-e 1. The still useful as a starting point for further selection.
product overestimates the cost by the lashed in- By running the fast and simple greedy algorithm,

we can select many of the same modifications thatteraction term. A similar relationship holds for the w ud b on ya y bte loih ,tu e

time. Thus, we have would be found by any better algorithm, thus re-
ducing the number of choices that the other algo-

Theorem 1 The combined normalized time of two rithm must make.
noninteracting modifications is less than the prod- With this theoretical basis, and the results of an
uct of their separate normalized times, initial algorithm, it may now be possible for com-

T 12C 12 T 1CI T 2C 2 puter designers to select, in a more analytical man-
TOC < ner, which of the multitude of potential modifica-
THE o GREED AOTH" tions to include in a computer system. ,THE GREEDY ALGORITHM /<-g / (

REFERENCES
Now we may consider the greedy algorithm, illus-
trated in Figure 2, for minimizing normalized time. Amdahl G. MI. Amdahl, "Validity of the sin-
The algorithm considers each modification in turn. gle processor approach to achieving large-scale
All comparing favorably are added, becoming part computing capabilities," in Proc AFIPS Vol.
of the new base architecture, and the process re- 30, pp. 483-465, 1967.
peats until no (individually) favorable modifica- Holman 1988 T. J. Holman, Processor Element
tions remain. Architecture for Non-shared Memory Parallel

Unfortunately, the greedy algorithm ignores the Computers, PhD Thesis, University of Wash-
cross term described above. ington, 1988.

Theorem 2 The greedy algorithm is suboptimal. Holman 1989 T. J. Holman and L. Snyder, "Ar-

As an example, take f, = f2 = 1/2, 'i = % = 1, chitectural Tradeoffs ;n Parallel C-mputer De-
and S1 = S2 = 5. We then have sign," in Decennial Caltech Conference on

TCt T2C 2 6 VLSI, 1989.

To = 7-Co Co 5 Patterson D. A. Patterson and C. H. Sequin, "A
T 2C 12 3 VLSI RISC," Computer, 15(9):8-21, 1982.
ToCo 5

