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Introduction

The long-pulse induction linac at-NRL (1-6] is considered for the first stage of a

two-stage free electron laser (FEL) oscillator. This research effort studies several

effects that can significantly influence the performance of such an FEL. The -NRL FEL is

parameterized in a set of dimensionless variables that can summarize several physical

effects without the use of detailed calculation as well as relating the physical to other

FEL designs. A waveguide analysis shows the primary modifications on the FEL

interaction, electron beam distribution functions representing energy spread and

emittance are evaluated in the high gain regime, and a multimode analysis of the

trapped-particle instability is performed for parameters describing the N'tRL FEL. The

3 research in intended to extend the simulation theory of high-gain FEL oscillators.

In the two-stage FEL, the first-stage uses a normal FEL interaction with the usual

static undulator to produce an intense electromagnetic wave in a high-power resonator.

The wavelength in the first stage is around 1cm, and provides the periodic undulator in

the second stage of the interaction. The electromagnetic undulator has a shorter

wavelength with a more intense field than can be attained from a static magnetic field,

and allows the second stage to reach short optical wavelengths with a low energy

electron beam. But, the performance of the two-stage FEL is completely determined by

the all important first-stage. For this reason, the emphasis of this research is
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concentrated on understanding the high power operation of the high-gain FEL oscillator.

Data and design parameters from the first six references below provide a physical

description of the NRL FEL. Many physical variables like current and beam energy

changed from experiment to experiment but remained in the general range described

2here. The NRL FEL uses a ymc = 7keV electron beam so that y=2.4. The beam

current I is about 200A in a beam radius of re = 0.5cm. Reference [4] gives the angular

spread of the electron beam as AO z 0.014, and there is a 2% energy spread. The

undulator has a X = 4cm period over N =22 periods, and the peak field strength is

B = 625Gauss with helical polarization. The "undulator constant" for such an undulator

is K = eB ko/21mc 2 = 0.23. An a = 3cm diameter waveguide confines the radiation to a

small volume around the co-propagating electron beam. The lowest order mode has a

beam radius of w o = 0.8cm. The combined waveguide, resonator, and output coupling

loss each pass n is about 30%, so that in the absence of gain the optical field would

decay as o e- n l2 Q where Q =3- 4. The long-pulse NRL accelerator provides current

3 for about 21±s, or about n = 200 passes.

2 2The filling factor F = 7cr2 /nw 2 = 0.4 describes the reduced coupling due to the

3 mismatch in the electron beam and radiation beam sizes. The Rayleigh length for the

radiation that would be emitted from the electron beam with no waveguide is much

shorter than the interaction length L =NX0 =88cm. It is shown below that this could

3significantly reduce coupling in the NRL FEL. The general criteria for the use of a

waveguide in an FEL is derived.

3 The electron beam density p=5x10 10cm -4 and the filling factor determine the

dimensionless beam current j =8N(e nKL) 2pF/y 3mc 2 = 320. When j >> 1, the FEL has

3 the potential for high exponential gain if there is sufficient beam quality. The weak field

power gain is given by G =e(/2)' /9 and is G =103, or G =30dB. These levels of

I amplification are in rough agreement with the experiment, but there is some degradation

due to beam quality. The gain spectrum bandwidth is given by A(, = 4j 16 = 2n for thisI
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[] FEL.

For a low-energy, high-current electron beam, interparticle Coulomb forces can

cause plasma oscillations to modify the simple FEL interaction mechanism. The

3 relativistic plasma frequency is QP = (41ce 2 p/y 3M) 1' 2 = 3x10 9s - 1 . The number of plasma

oscillations during a passage of the beam through the undulator in the interaction time

Lic is Nplasma = QPL/2¢cc = 1.6. This is larger than for most FEL experiments, but still
small enough that the main interaction would be determined by the exponential growth

I described above.

Another unique feature of the NRL experiment is that it did not use a uniform guide

field to contain the low-energy electron beam along the undulator. The helical undulator

field focuses in both transverse dimensions and causes NP=NKy22.2 betatron

oscillations along the interaction length. Both the radius of the electron beam and the

angular spread contribute to the spread in electron phase velocities during the

interaction. Energy spread also deters bunching. To compare these effects on the

3 same footing, they are all related to the gain spectrum bandwidth 1/2N. For an angular

spread of AO in a beam of radius r,, the spread in electron phase velocities is given by

I .. 2 2 2 2o0=4xN (K kore + 02)/(1+K("2)

I When , = x, the spread in phase velocities is comparable to the gain spectrum

bandwidth, and gain degradation becomes important. Both the angular spread and

beam size contributions should be matched consistent with the beam emittance in r,der

to optimize performance. In the NRL FEL, (YO = 8 indicating there will be some loss of

gain due to beam quality. More importantly, it is reported in several of the references

that the position of the electron centered can be off of the undulator axis by as much as

the beam radius 0.5cm. This causes a shift and a spread in the phase velocity

I distribution of the .beam. The shift alone is AoP =35 and should cause dramatic

changes in the interaction strength. In the high-gain regime, the shape of the electronI
I
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I distribution function becomes extremely important in determining the interaction

characteristics along the undulator. A much more detailed analysis of these features is

covered in an appendix.

FELs using Waveguides

When an FEL uses a waveguide to confine the radiation along the undulator, there

are changes to the simple FEL interaction. Usually the goal of the design is to make the

* changes as small as possible while confining the wave around the co-propagating

electron beam.

I General Criteria for the FEL Waveguide: When the FEL optical wavelength is long, free

space diffraction can spread the optical wavefront away from the co-propagating

electron beam and reduce coupling. The natural distance for a light beam of wavelength

2. 2X to double its initial beam area, nwo, is the Rayleigh length Z o = wo /X. Comparing

this length to the undulator length L defines the dimensionless Rayleigh length

Zo=nWo/L.. Without a waveguide, the optical wavelength is determined by the

resonance condition, X = Xo(1+K2 )12 y 2 where K = eBo/2itmc2 is the undulator

I parameter, Xo=ko/2n is the undulator wavelength, and m c 2 is the electron beam

energy. The Rayleigh length becomes zo=2nwo y 1+K 2)NX , and expresses how an

I FEL with a low energy electron beam gives a short Rayleigh length.

A design attempting to compensate for low y by expanding the optical beam size

w o would suffer reduced coupling because of a small filling factor F o = 7tre /WO ; r, is the

3 electron beam radius. When natural diffraction spreads the optical wave away the

electron beam the filling factor is reduced further; assuming the light remains in the

lowest order Gaussian mode with its waist at the center of the undulator, the average

2 - 2filling factor over the undulator length is, =Fo/(1+/1 2 zo), orF = Y,/(zo+1/12zo) where

a, = r,(1t/Lk)" 2 is the dimensionless electron beam radius. Typically, a, 1 in an FEL,

but the following arguments are independent of that value and only depend on the

U
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Rayleigh length z0. For zo _4 0, F - 0 and coupling -+0, because the optical wave

spreads away from the electron beam at the two ends of the undulator; for zo

F -4 0 and coupling -* 0 again, because the wavefront is too large compared to electron

beam. The maximum filling factor, F maX=Fo/2 , or F max='-a,, occurs at
max 2-1/2.

zo  = (12) . The maximum is relatively broad in zo and F max drops to half of its

peak value, '3 2/2, at zo = 0.11 and 0.75.

The filling factor could be increased for an optical wavefront of any size, if the

electron beam size is increased. But, as the electrons move off of the undulator axis,

approaching the undulator magnets, the field strength B increases and deflects

electrons back towards the axis causing betatron oscillations. The extra transverse

motion decreases z velocity of the relativistic electrons and changes the resonance

condition. The change in the electron phase velocity in a matched beam with radius re

is Avo = 47rW(Kkor) 2/(l+K 2). Gain degradation begins when the beam radius is large

enough to cause AvP= i. The limit on the beam radius for good coupling is then

r, < (1 +K 2 )1/2 X0/4"KN 1/2 . Generally, a typical FEL has N = 102 so that the electron

radius is restricted to a much smaller value than the undulator wavelength. For K = 1,

we have re -< 0.01 X, or for K << 1, we have re 5 0.01 Xo/K.

The combination of (1) the restriction on the spread of electron phase velocities, or

beam radius, and (2) the requirement of good coupling, or large filling factor F with a

given optical beam size wo, gives a restriction on the Rayleigh length in terms of 'Y and

N. To relate r, and w., assume that the filling factor is not too small, say F > F o >_ 0.1,

2 22
so that wo < 3r,. Then, the dimensionless Rayleigh length is limited by zo y y 2 ir2 N

Either a low energy beam or a long undulator can limit zo to a small value and decrease

the filling factor. The limit is relaxed when K is small, because the electron beam can be

expanded to support a wide optical wavefront without much diffraction. Gain

degradation begins to occur when the coupling is reduced by small values of F. The

peak value of F, 4- 2, decreases to less than half its value when the limit above
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restricts zo  < 0.1. Therefore, an FEL design requires

y:5 KN/2

so that natural diffraction does not significantly decrease the interaction strength. An

FEL with low electron beam energy and a long, strong undulator, requires a waveguide

for good coupling strength.

FEL Resonance in a Waveguide: When a waveguide is used to confine the radiation near

the co-propagating electron beam there is a change in the FEL resonance condition. In

a single waveguide mode, the cross-section of the mode can be used in the filling factor

to estimate coupling to the mode. The electron beam size should be close to, but

smaller than, the radiation cross-section for best coupling. Assuming the electron beam

is on-axis, the mode should have a transverse electric field on-axis as well. Higher order

modes will average to smaller coupling if the electron beam size is not much smaller

than the mode. At NRL, the waveguide is cylindrical in cross-section with a a = 1.5cm

radius. Since the electron beam size is about re = 0.5cm, and is comparable to the

fundamental mode size, no more than 2 to 3 nodes should not couple well.

The time dependence of the waveguide fields is taken to be -e - i " with

longitudinal dependence - el ikz . Waveguide modes are separated into two classes: TE

- transverse electric modes where the longitudinal component of the electric field E = 0

everywhere, and TM - transverse magnetic modes where the longitudinal component of

the magnetic field B. = 0 everywhere. At the waveguide wall, the TE mode boundary

condition is BZ' 0 while the TM mode boundary condition is E, = 0. The waveguide

cross-section and boundary conditions specify and eigenvalue problem with a number of

eigenvalues AP, where p = 1,2,3 ...... For a given frequency, the wave equation in the

waveguide determines the wavenumber kP for each value of p,

2 2 2 A
kp =o c-A
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I When the frequency is below cut-off, o/c <AP, the wavenumber kP is zero, or

imaginary, and mode does not propagate; op= cAP is called the cut-off frequency of the

waveguide.
l + ikp z -i (ot

All waveguide modes have the form E, e The backward propagating
- ikp z

wave, E,cc e , results in an FEL interaction at rather long wavelengths. It can

sometimes be of interest, but most applications of the relativistic FEL interaction seek

shorter wavelengths. Therefore, the backward propagating wave is not discussed here,l ikp z -i Ot
and we concentrate on waveguide modes with form Ec c e+ . When the

polarization of the waveguide mode is chosen to match the electron motion in the

periodic undulator field, we have the best coupling. The form of the transverse electron
ikoz

motion is ,- e where X0 =21rk o is the undulator wavelength. The fourth

component of the Lorentz force equation governs the electron energy evolution and

bunching. It has the form , cE e i ° +  , and naturally defines the electron

phase = (ko+kp)z-wt where ko, kP, and co are fixed by the FEL design, and C(t) follows

the evolution of z(t). The corresponding the phase velocity is - . Generally, the

electron phase and phase velocity evolve over the whole undulator length L so that it is

natural to relate the time t to the evolution time L/c3, =L/c in the relativistic FEL with

electron beam z velocity P,. The natural definition for the electron phase velocity is then

1/2

I I ] 2A; I

The electron phase velocity v(t) depends on ko, kP, 0o, and L, which are fixed in an FEL

design, and follows the evolution of the electron z velocity 0, (t).

The electron motion in the periodic undulator and interaction with the waveguide

mode are resonant when v = 0. This occurs at the resonant frequency co* = c (ko+kp ) p3,

I where kP =(0" 2/c 2*A) 1 2 . This can solved for co* in terms of ko, kP, and . The

I
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eigenvalue AP depends on the waveguide dimension and shape. For the rectangular

waveguide with sides a and b we have

a 2 b 1/2

where m,n = 0,1,2,3 ...... but not both m = n 0. For the circular waveguide with radius

a,

Anm =Xw.,/a

where x,, is the root of J,'(x,) = 0. Looking at the first few roots, we see that roughly,

x,,, = irm. For both waveguides, the cut-off frequency is cop = cAP. The NRL waveguide

is circular with a = 1.5cm so that the lowest values are roughly AP - 7,n/a and give the

cut-off frequency oP = cnm/a z 1OGHz. The NRL FEL operates above cut-off at

o= 35GHz. Far above cut-off, the expression for the electron phase velocity can be

expanded in Ap. This give the lowest order shift in phase velocity and clarifies the effect

of the waveguide and the FEL performance.

Expanding in AP gives the form of the phase velocity v = v(°)+ AvP + .... where v(°)

is the old phase velocity definition without waveguide corrections,

v(°) = L [(k0 o/c)P, -O/c], and AvP is the first order waveguide correction in AP. The old,

unperturbed resonance condition, v( ) = 0 gives the resonant frequency

(o* =ck0 /(1- 2) 2 cko/(1+K 2). A relativistic FEL that is near resonance (o-o* for

maximum coupling, has a shift in phase velocities caused by the waveguide,

N X Ap2(I+K 2 )

AvP - - N

where N = L/X is the number of undulator periods. The shift in resonance is negative,

and diminishes when y-*- . In a rectangular waveguide
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R itNX 4(l+K2) FM2  
2lA 8y 2  a 2  b2

As an example, consider the LLNL ELF experiment where yz7, Xo= 10cm, N z30,

K --2.4, and waveguide dimension is b =3cm. The waveguide shift is then
AELF2 EL

AvL =-6n 2 , and AvEL F =-6n for the lowest order mode. This is a relatively large

shift should be detectable. The gain spectrum bandwidth for ELF is 4j' /6 = 4n is

comparable.

The NRL FEL uses a circular waveguide; the waveguide shift in a circular

waveguide is

AC N N (1+K) FX_1
AP -- 8y 2 LaJ

For the NRL parameters y=2.4, X =4cm, N =22, and a--1.5cm, the shift is

Nak - m 2/2, and RL =-7U2 in the lowest order mode. The gain spectrum

bandwidth is 4j 1/6 =2n so that several modes could be near resonance with good

coupling.

Gain Degradation and Electron Beam Quality (Summary of Appendix A)

Maintaining the coherence of the electron bunches over a significant interaction

length imposes important restrictions on the electron-beam quality. An energy or

angular spread (due to emittance) in the NRL experiment would contribute a random

component to the electron motion that decreases the coherent bunching in time.

Accelerators present a design trade off between high-current and high-beam quality that

makes it essential to accurately evaluate the effects of beam quality in present and

future experiments. The theoretical approach presented in the publication of Appendix

A uses a convenient, yet powerful, method of including an arbitrary electron distribution



-10-

function in a self-consistent integral equation for the complex optical field. The FEL is

described by solving the Lorentz-Maxwell equations self-consistently in weak optical

fields. The field evolution is determined by an integral equation that allows the inclusion

of an arbitrary electron distribution function in a simple way. FEL gain and the effects of

beam quality can then be calculated analytically or integrated on a small computer. In

strong optical fields, the effects of beam quality are diminished because large optical

buckets induce and even larger spread than in the initial beam.

Computer simulations are not as useful in solving this kind of FEL problem because

they use a prohibitively large number of sample particles, and introduce a large amount

of numerical noise when distributed over a large volume of phase space.

In Appendix A, contour maps are used to show the gain degradation due to an

electron-beam energy spread and an electron-beam angular spread. Figures 3 and 4

are specifically chosen to represent the NRL experiment. They show that the amount of

beam spread expected in the NRL experiment can diminish gain. Furthermore, the two

distributions give quite different results for the same amount of spread emphasizing the

importance of the detailed shape of the distribution function. When there is high gain, as

in the NRL experiment, the exponential growth-rate becomes less susceptible to

degradation from the electron-beam quality. Other types of distribution functions can be

added to the theoretical technique developed. If solved numerically, even experimental

distribution functions peculiar to a given accelerator or transport system can be added.

This research resulted in the publication included in Appendix A. The reference is

W. B. Colson, J. C. Gallardo, and P. M. Bosco, "Free-Electron Laser Gain Degradation

and Electron Beam Quality", Physical Review A34, 4875 (1986).
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Electron Trapping in FEL Oscillators and Amplifiers (Summary of Appendix B)

In high-power FELs, the electrons can become trapped in deep potential wells

formed by the combined optical and undulator field forces. The trapped current

oscillates at the synchrotron frequency, and can drive the optical wave at sideband

frequencies around the fundamental. This "trapped-particle instability" can occur in both

the oscillator and amplifier configurations. This is an undesirable effect for many

applications, and would certainly be a serious problem for the two-stage FEL.

The trapped-particle instability starts when electrons become trapped in deep

potential wells formed by the combined optical and undulator fields. Electrons near the

bottom of the well oscillate in harmonic orbits at the synchrotron frequency causing the

carrier wave to develop sidebands. The instability has been clearly observed in the

high-power FEL oscillator at LANL, and possibly in the TRW/Stanford oscillator. Here,

the multimode sideband theory is reviewed with examples from oscillators, and

amplifiers. Common features and differences are discussed along with there relevance

to the NRL experiment.

Increasing the current density j or the resonator Q increases the steady-state

power, the synchrotron frequency, and the sideband gain. Over many hundreds of

passes, the stored optical wave "sees" many synchrotron oscillations, so that any

sideband gain above threshold gives large growth from a small amount of noise. The

resulting steady-state features are therefore not affected by the details of the noise

source employed. The addition of sideband power is cumulative, since the presence of

a strong sideband again increases the steady-state power. This gives a broad, possibly

chaotic, optical power spectrum, and a broad electron distribution. If taper is introduce

into the undulator design, the synchrotron frequency is only slightly modified, and the

sideband gain is reduced.

If the electron pulse is not short, it is prudent to simulate the FEL by sampling a

smaller window with periodic boundary conditions. In the long-pulse limit, as in the NRL
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experiment, the wrapped-window approach is the only viable solution to the FEL

multimode simulation.

In the high-current FEL amplifier, j>>I, large optical power can be produced in a

single pass through the undulator. The FEL growth rates are so large that electrons

become trapped early in the undulator and begin executing synchrotron oscillations.

Even the limited number of synchrotron cycles can result in significant sideband gain

owing to the large current density j. The trapped-particle instability in FEL amplifiers

differs in many ways from the oscillator case. Sources of noise are much more

important, and there is no resonator Q to consider. When the sideband instability does

occur, the FEL does not reach steady-state operation even in strong optical fields. The

power continues to increase and so does the synchrotron frequency.

This research resulted in the publication included in Appendix B. The reference is

W.B. Colson, "The Effect of Electron Trapping in Free-Electron Laser Oscillators and

Amplifiers", Proceedings of the 1985 International Conf. on LASERs, Las Vegas CA

(1986).

NRL FEL Simulations

Some simlulations are shown below that correspond to the parameters of the NRL

FEL experiment. In the next figures, the current density j = 100 is used with Q = 2 and

Q =3. Details of the figures are explained in Appendix B. The evolution of the optical

field, optical spectrum, electron spectrum, net gain G, and power are shown. Each

simulations starts from shot noise and runs for n = 200 passes. Both cases show that

the sideband instability has increased the optical spectrum P (v) beyond the gain

spectrum bandwidth in weak fields G(v). When the Q is increased, the power

increases, but the spectral quality decreases. The field amplitude I a (z,n) I shown in

the upper left corner would provide the electromagnetic undulator in the two-stage NRL

FEL. Because of the sideband instability, it would be a poor quality undulator.
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FEL Wrap Evolution ***
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~~ FEL Wrap Evolution
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I On the previous page the figures show simulation results with the current density

j = 300 using Q = 3 and Q = 4. The simulations are started from shot noise and run for

200 passes as in the first two figures. The increased current increases the final field

strength dramatically from about I a I - 250 to I a I - 900. The increased power spreads

the electrons over a wider range of phase velocities, but also degrades the optical

spectrum P (v). The optical field and spectrum are now chaotic and broad band.
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ABSTRACT

I
The free electron laser can be described by solving the Lorentz-Maxwell equations

self-consistently in weak optical fields. The field evolution is determined by an integral

equation that allows the inclusion of an arbitrary electron distribution function in a

simple way. Contour maps are used to show the gain degradation due to an electron

beam energy spread and an electron beam angular spread. In the limit of low gain, the

gain spectrum is related to the spontaneous emission line-shape through successively

higher derivatives. In the limit of high gain, it is shown that the growth rate becomes

* less susceptible to degradation from the electron beam quality.

I. Introduction

In a free-electron laser (FEL), a relativistic electron beam amplifies a co-propagating,

coherent optical wave traveling through a periodic undulator magnetic field [1]. In the oscillator

configuration, coherent electron bunching develops on each pass while resonator mirrors allow

the stored optical power to grow over many passes. In the amplifier configuration, coherent

electron bunches develop rapidly in the first part of the undulator followed by rapid growth of the

optical field. Maintaining the coherence of the electron bunches over a significant interaction

length imposes important restrictions on the electron beam quality. An energy or angular spread

(due to emittance) contributes a random component to the electron motion that decreases the

coherent bunching in time.
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Some of the earliest FEL experiments used electron beams that were essentially

monoenergetic [2-51, but practically all subsequent experiments have made use of higher current

sources with significant energy spread or emittance. Many accelerators present a design trade-off

between high current and high beam quality. This makes it essential to accurately evaluate the

effects of beam quality in present and future experiments. It is particularly important for FELs

designed to operate at XUV or X-ray wavelengths (6]. Several theoretical models involving

simulations and plasma dispersion relations have discussed the detrimental effects of electron

beam quality in the FEL interaction [7-24]. The theory presented here uses a convenient, yet

powerful, method of including an arbitrary electron distribution function in a self-consistent integral

equation for the complex optical field. FEL gain and the effects of beam quality can then be

calculated analytically or integrated on a small computer.

Since the basic equations solved here are the same as in computer simulations or the

plasma dispersion methods, specific physical results have been shown to agree with those

methods when a direct comparison is possible. The computer simulations have proved to be a

useful method of understanding many aspects of the FEL interaction, but one of the most difficult

effects to accurately characterize is that of electron beam quality. Even a prohibitively large

number of sample particles is far short of the number in a real experiment, and yet introduces a

large amount of numerical noise when distributed over a large volume of phase-space. To

reproduce some of the results shown later in this paper, we found the simulation method to be

several hundred to a thousand times less efficient. While many other FEL topics are most

efficiently studied through simulations, the detrimental effects of beam quality are probably better

handled through a combination of analytic and numerical techniques. The stability analysis used

to obtain plasma dispersion relations usually calculates the reduced FEL growth rates due to poor

beam quality. This method can lead to analytical expressions, but depends upon specific models

for the electron beam distribution, and does not easily describe more complicated transient

behavior where the FEL growth rate is not constant; the FEL is often designed to operate in this

regime. In addition, the exact formulation presented here works smoothly between different

regimes of operation like high and low gain. The only requirement is weak optical fields.
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II. Basic Theory

5 We solve the electron Lorentz and optical wave equations self-consistently with the

assumption of weak optical fields. The effects of beam quality are typically less important when

the optical field strength is large near saturation, and the issue of beam quality is most important

in weak fields where the accurate evaluation of gain can determine whether the FEL is above or

* below threshold.

The electrons travel through a periodic undulator with the field on the z-axis described by

f-= B [ cos(ko z), sin(k0 z), 0 ] where B is the peak magnetic field amplitude. The undulator field

extends over a length L =NXo with a number of periods N, and wavelength Xo=2T/ko. The

electron velocity in a perfect helical orbit is c ' = c [ - (K/y) cos(ko z), - (KIy) sin(ko z), 13o ] where

K = eB Vo/2mnc 2, e is the electron's charge magnitude, m is the electron's mass, c is the speed of

light, p=(1- (1-+K 2)/Y2 )1/2, and ymc
2 is the electron's energy. Imperfect injection due to poor

beam quality is more meaningfully introduced after some further theoretical development. A

typical undulator uses B = 2kG and X0 = 5cm, so that K = 1. Since the electrons are relativistic

(y >> 1), the transverse excursions are small compared to X0.

5 The optical vector potential with the polarization that best couples to the above trajectory is

A =k - IE I[siny,cosi,0] where V=kz-at++, and X=2rk =2ntc/o is the optical carrier

wavelength. The complex electric field envelope, E(z,t)=IE(z,t)e' (.), is taken to vary slowly

in z and t, so that terms containing two derivatives in the wave equation are small compared to

5 terms with single derivative [25]. No transverse (x,y)-dependence is included so that diffraction is

taken to be a small over the interaction length L, and the electron beam remains aligned near the

5 center of the optical mode. The transverse motion above, proportional to (K/y), defines the

transverse current for each electron in the beam. If the current density is uniform over a sufficient

5 length, each point z + ct in the optical field envelope evolves according *o the slowly-varying wave

equation [251

I=-~j< e-i> , (1)

dT

where a = 4NnreKLE/y 2rc2 is the dimensionless optical field strength, -c=ct/L is the

dimensionless time (0 < t < 1), j = 8N(neKL) p/Yac 2 is the dimensionless current density, p is

the actual electron particle density, C = (k+ko)z- ot is the electron phase in the combined optical

and undulator fields, and <...> represents a normalized average over all electrons in the beam
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driving a (r). The electrons are labeled by their initial phase-space coordinates; the initial phase is

, = C (0) , and the initial phase velocity is vi= d C(O)/dr = L [( k + k 0 ) 30- k ] . There are a large

number of electrons spread randomly over each optical wavelength (-107 ), so that the , can be

accurately taken to be uniformly spread along each section of the electron beam one wavelength

of light long. It can be easily seen in (1) that bunching the electrons near the relative phase

+ 0 = ir drives the optical wave amplitude producing gain, while bunching near C + 0 = 7r/2 drives

the optical phase 4 without gain. Bunching electrons near C + 0 = 0 results in negative gain, or

absorption. The dimensionless electron phase velocity vi has an initial spread associated with the

beam quality.

The electron motion in the presence of the optical wave is described by the Lorentz force

equation; dy Idt = - (e /mc) '.. In the FEL, it is important to distinguish between collective

Coulomb forces and collective high-gain effects [26]. Most FELs do not use current densities

large enough for Coulomb forces to be a significant effect for the relativistic electrons; yet, high

gain is possible and will be included. Using the definitions and assumptions above, the Lorentz

force takes on the form of the pendulum equation [27],

d2  dvd 2 
- d a I cos (2)d r 2  d-r

The combined equations (1) and (2) are valid in weak or strong optical fields, for large or small

gain, and for an arbitrary electron distribution. Strong fields near saturation mean that (a ( >> n,

and weak fields occur when Ia I << ir. High gain is achieved when j >> 1 and low gain occurs

when j < 1 [28]. Useful FEL configurations display a wide range of current densities. The

electron beam area is typically between 1mm and 5mm, but the current ranges from 1A up to

1OkA. Undulator lengths L now range from 1 m to 5m, but will soon be made to L =20m and

beyond. With electron energies in the range 10MeV to 1GeV, the corresponding values of j are

from unity to more than 5x04 [1]. Both the high-gain, single-pass and the low-gain, oscillator

configurations have important applications.

Equations (1) and (2) were originally derived [25] for the more general case where the

electron energy can change significantly during a single pass; in this case, an additional factor

i=(1 -v/2nrN) alters the wave and electron equations so that a = -j< -1-e -> and,

= v = a Ij 'cos (C + 4) with () = d( )/d . The following work, however, will be confined to weak

optical fields where j z 1. An extension to higher harmonics and linearly polarized undulators is
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also possible without any change in form of (1) and (2), so that the general conclusions and

methods of this paper are immediately applicable to a wide range of FEL designs.

We now proceed to solve (1) and (2) in weak fields, I a I << r, to obtain an integral equation

for a(r) incorporating an arbitrary electron distribution function. The electron phase can be

expressed as = + vit + ( where r ) is the first-order perturbation in a. Expanding (1) and

(2) we have

a (r) = ao + ii/''ds < exp[ -i( Ci + vis ) (1)(s) > ,(3

S q

(1 )(s) = qJd (u) exp( i( + viu )+ a* (u) exp( -i( j + viu)]

where the initial optical field is a(O)= Ja(0)j =aO and 0(0)=0. We have made use of

<exp(-iCj>= f dr.exp(-i )/27r=0 , since the initial electrons are spread uniformly in

phase. The reference to the individual electron phases (') can be explicitly removed by

combining the equations in (3). Then, we have an integral equation governing the evolution of the

optical field a(t):

a(r) =a 0 + i- j dsf dqf du < exp (-ivi( s-u) ) > a ,(u) (4)

where <...> is now an average over the initial electron velocity distribution, and all reference to the

electron phases has been removed. Since (4) is an iterated triple integral, it may be rewritten (29]

as a double integral,

a (c) =a ao+ i- jdSjod q < exp ( -iv,(s-q) ) > ( s-q) a(q) (5)
200

A normalized electron distribution function f (vi) can be used to evaluate the remaining average:

< L...> - Ldv, f (v,)(..) with Ldv f (v) = 1.

I. Simple Electron Distributions

We begin by considering two simple examples with perfect beam quality. In the first, we

start the FEL on resonance where the electron-optical wave coupling is largest, f(v,)= (v,).

The optical wave is most simply determined from (4).
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a (r) =a 0 + .iif dsf dq du a(u)
2 o0 0 0

The integral equation (6) can also be written in a differential form by taking successive derivatives,
3

a (r) = ija (,t)/2. The complete solution uses the form a (r) = ,,a,,exp( ajt) where the a, are the
X=1

three complex roots of the cubic equation a 3 - ij12 = 0, and the coefficients a, are determined by

the initial conditions a (0) = a o, and i (0) = d(O) = 0 [1]. The solution for a ( 'r) is

a (T)=a-0- exp ((j12)" a(i+-3),rl2 )+ exp ((j/2 )1/3(i-43),c2) +exp (- i(j/2)113) .t (7)

If the current density is small j -. 0, orr << 1 , we have the trivial result a ('t) =a 0 (+ij 3 3/12+...)

for an FEL starting on resonance. There is no change in the optical amplitude j a I = a0 +... to

lowest order, and therefore no gain. The optical phase 0(,r) increases slowly in proportion to T 3

The FEL gain is defined as G(r) =a(r)1 2 -a )/a0 , and

G (t) =- [2cosh((j/2) 43) + 4 cos((j/2).3 3,r2)cosh((j/2). -'3/2)-6 (8)

In the high current limit, j >>1 on resonance, the expressions simplify because one fastest-

growing root dominates and describes exponential growth in 'r. As seen from (7) there is little

1/3
change in the field during the bunching time, r < "tB (21j )z, that precedes exponential growth.

During this time, the electrons move from their initially uniform phase distribution to bunch near

the phase C + 0 = n/2. As soon as bunching forms, the high current immediately causes

exponential field growth and high gain. Then,

ao )ja,1)t
a (T)=-= exp(j/21'3"t'3/2j and G(t) = exp[(l2 1 3 ] (9)

3 9

A second simple example is a high quality electron beam starling off resonance at vo. This

is characterized byf (vi) = 5( vi -v o ). The optical field is then determined by

a(r)=ao+ fds dq du a(u) (10)

For low current, j!51, the optical field evolution away from a0 is small so that a (u) = a0 can can be

extracted from the integrand in (10). The resulting integrals are easily solved to obtained the
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usual low current gain and phase shift formulas [27].

2 - 2cos(vo:) - vor sin(voT) 2 sin(vo') - vot ( 1 + coS(Vo-r)
G(t)=j , and 0(r) (11)

The maximum final gain is G =0.135j at vo= 2.6 and c= 1, while the range of modes with

significant gain is 8vo z 1 about the peak.

In order to obtain the general solution, use the substitution b =a e i v" in (10). Successive

derivatives then lead to the differential form of (10), b - ivb" - ijb/2 = 0. Solutions of the form
3

b = Tb,,exp( ,,t) have roots a,, that satisfy the cubic equation a3,, - ivoa,2, - ij2 = 0. In the limit
R-=1

of high current j >> 1, the exponential gain coefficient is reduced by the factor - Vo2 / 3,3 ( j1/2 )13

so that the gain spectrum is centered about vo = 0 with a characteristic range 5vo = 4.22j "S. In the

high current case, the range of modes with significant gain increases slowly as j increases. We

go on now to look at more interesting FEL distributions describing less than perfect electron

beams.

IV. More General Electron Distributions

New cases of interest involve more complicated distributions f (v;) describing the initial

electron beam in the integral equation (5). Two electrons starting at the same phase C at the

beginning of the undulator (r = 0), but with different z-velocities, c Po and c (0o + Apo), will drift apart

as they travel through the undulator. The amount of drift is not easily predicted without solving the

full problem, because electrons can influence each other through the self-consistently evolving

optical wave. In this sense, the effect of FEL beam quality is collective. However, the times for

the two electrons to traverse the undulator are nearly identical since they are relativistic, L Doc =

L /(Do + APo)c = L 1c. An estimate of their separation at the end of the undulator ('t 1) is

Az = APoL, and their approximate phase difference is AC = (k + k o)Az = k Az =kL Ao . If the

velocity difference Apo is due to an initial energy difference Aymc 2, we have Apo (1+K 2)AY/Y 3

and an approximate final phase separation AC = 4iN Ay / y.

Any random phase difference AC - n, or larger, between electrons in the beam is important

to the FEL operation, because bunching on the optical wavelength scale is diminished

significantly. At the end of the undulatoi, the final phase difference is roughly estimated by

AC = Av, for each electron. From the definition of the electron phase velocity vi , we see that a
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small change in the initial electron energy Aymc 2 corresponds to a change in the initial phase

velocity, Av, z 4mrNAy/ yfor y>> 1. A distribution of initial electron energies from an accelerator or

storage ring is often accurately represented by the normal distribution function so that we can take

exp (-(vi -vo) 2 / 2a 2 )
f ,2 (12)

where a is the standard deviation of vi away from the peak phase velocity vo. If AY ic 2 is taken to

2be the standard deviation of the electron energy away from 7'mc , then a = 4rtNAy/y . Two

electrons starting at the same phase C , but with an energy difference Ay,= y/ 4N will drift apart by

roughly half of one optical wavelength at the end of the undulator. A random spread of width a = t

causes a random phase spread of approximately A = it at the end of the undulator and impairs

bunching. Inserting (12) into (5) gives
i; i

a()=ao+-Jdsodq e- "2 ) 2 e-iV.(J-) (s-q)a(q) (13)

The gaussian factor in the integrand decreases the coupling current j as -t increases, and

describes the degradation of bunching due to the spread in electron phase velocities. The

complicated self-consistent evolution of the electron beam distribution and the optical field are

described exactly in (13), but before evaluation, we can generalize its form further.

An angular spread is also possible due to the finite emittance of an electron beam. An

electron of energy ymc 2 entering the undulator with a small injection angle 0, has a reduced z -

velocity, 0 --) 13 cos 9 =o (1-,? / 2) The resulting z-velocity change is A13o O /2 ,

reducing the initial phase velocity by Av =- 27rN'y 2
97 ,/(1+K 2) . A gaussian distribution of angles

about the z -axis with standard deviation AO gives the exponential distribution function

exp ( - (v o - vi) / aO)
f(vi)- for v,<vO ,and f(vi)=O for v,>v o , (14)

ae

where ae = 4r,- ' 2tO 
2 /(1+K 2) and vo is the phase velocity for electrons entering on-axis. The

distribution function (14) is sharply peaked at vi = vo where electrons enter on-axis, and decays

exponentially for vi < vo because the injection at any angle O8 can only decrease the electron's

longitudinal velocity and its phase velocity v,. If each element of the energy distribution (12) is

given an angular spread according to (14), then the resulting integral equation for the optical field

becomes
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a(£T)=ao+ ds dq e i e- (S-q) (s-q)a(q) (15)
a ~ 2=aaL 0 1 -a( s -q)

The transverse motion of electrons injected at an angle is sometimes confined by either the

natural off-axis undulator fields or external focusing elements. The focusing forces resut in

transverse betatron oscillations about the undulator axis. When the electron beam is injected to

Imatch the natural focusing properties of an undulator, the number of betatron oscillations along

the undulator is N =NK/I-2y. In the limit of large y and/or small K, the angular spread of

I electrons can be important, ar8 > 1, while the transverse focusing can be made negligible, NP < 1 .

In this limit, the integral equation (15) applies.

I The complex optical field a (t) now depends on an input energy spread characterized by a,

and an input angular spread characterized by ag . Other types of distribution functions can be

added in a similar way. If (5) is solved numerically, even experimental distribution functions

peculiar to a given accelerator or transport system can be added. The general result (5) and the

specific example (15) are important results of this paper. They provide analytic expressions

describing FEL performance with an arbitrary electron distribution function.

V. Low-Current FELs

IOne of the cases of general interest is the low current FEL oscillator. Radiation energy is

stored in an optical resonator, and repeatedly driven by successive electron pulses from an

accelerator like a linac or storage ring. An important issue for the oscillator is the detrimental

effect of the electron energy and angular distributions when the oscillator is starting from weak

optical fields. In the low-current case, we can simplify (15) by taking a(q) = a0 in the integrand of

the integral equation, and neglecting higher-order terms in j . Without a(q) in the integrand, the

integral can be further simplified by noticing that iqe-tVoq - a, e . Then,

a(r)-ao j a ldf q7/ v
a- a dq - e (16)

ao 2 avo  1- iaq

Direct integration of (16) is possible, but the result is a complicated expression containing many

error-functions [30].

We can alter the form of (16), however, to obtain some important physical interpretations.

The factors e - " "2 and (1- iaq ) can be interpreted as power series expansions in q
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-i ;ten (-i e-ivoq - a, e-vOq Now, write

multiplying the factor e •,then (-iq) e

a(T)-a 0  j exp(a 2 a2/2) £ -iv.q
- - - 3~f dsf dqe (7

ao 2 1 +av. a o (17)

The double integral is simply vo2 (1 - ivo0- - e ), so that the complex integrations in (16) have

been replaced with a power series expansion to all orders in a and ae. To first order in a and a6 ,

an explicit expression for a (c) is easily obtained from (17). This is a useful limg cae since a

low-current FEL system would not typically use a low quality electron beam ( large a or ae ) and

remain above threshold. From (17), the low-current FEL gain at the end of the undulator is

= exp( ,2 a /2) [s(vo/2) 1
G =- - + CFO a, a,,. ( v/2 ) . (18)
2 1+a ~ [

We recognize the factor in brackets [...] as the FEL spontaneous emission line-shape for an

electron in a perfect trajectory through the undulator. It has been known for some time that the

gain is fundamentally related to the derivative of the spontaneous emission line-shape [31]. The

new feature presented in (18) is to express how the electron beam energy and angular spreads

affect that relationship through successively higher derivatives.

With the physical interpretation of the line-shape factor [..] , we can substitute alternate

forms. One convenient choice is -...] -- exp (vo 2 /4n) which approximately reproduces the

correct features of the simple FEL gain spectrum, G = (jv o /4 ) exp ( -vo2/4n). The successive

derivatives evaluating the effects of beam quality lead to more compact expressions, and illustrate

how (18) can be used in practical situations. Even an experimental line-shape could be used in

(18).

While the analytic results presented have their merit, the complete integral (15) is easy to

integrate on a small computer. The values needed for the contour plots of this paper were

evaluated in this way. Figure 1 shows a combined intensity and contour plot of In(1+G(a,vo))

where the final gain at the end of the FEL undulator is G =(a*(1)a(1)-a )la 2 . In Fig. 1

ae = 0 , so that gain degradation is only due to an energy spread with no angular spread. The

current density is j = 1, and gives low gain so that In(1+G) = G . The brightest points (white) on

the (a,vo)-surface indicate peak gain G = 0.13j, while the darkest points (black) indicate maximum

absorption G = - 0.13j. Zero gain is indicated by the intermediate grey shown in the scale at the
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top. Specific contours of constant gain, ln(1+G)=+0.06,±0.08,±0.1, and ±0.12, are

superimposed on the intensity plot. The gain surface is approximately antisymmetric about vo = 0,

and in the limit j -4 0, the gain G (avo) becomes exactly antisymmetric. The characteristic

amount of spread required to decrease the gain is seen from Fig. 1 and (18) to be a *= 1. Note

also that as the spread a increases, the phase velocity for peak gain vo* z 2.6 increases slightly.

Peak absorption occurs at - v0* and slightly decreases with increasing a.

IEI6EM FEL Gain Surfmce XCC

j-I a- _=  -0.13 K-.+G) 0.13

3

C0.!= o.oe

0,1

Fig. 1. Intensity and contour plot of In (1+G (ovo)) with j = 1 and a= 0. The weak-field gain

degradation in this low-current FEL is due to an electron beam energy spread with a normal

distribution function.

Figure 2 shows a combined intensity and contour plot of In (1+G (o6 ,vo)) evaluated by (15)

with j = 1 and a = 0. The gain degradation here is due to a monoenergetic electron beam entering

the undulator with an angular spread described by a9 . The grey scale and contours of gain are

the same as in Fig. 1. Unlike Fig. 1, the absorption contours (white) have a much different shape

than the gain contours (black). Since the distribution function f(vi) due to an angular spread is

skewed, there is no reason to expect the antisymmetric properties of G (ag = OVo) to be
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maintained at a. > 0 As seen in Fig. 1 and (18), the characteristic value for the degradation of

gain is ag *= 1. The phase velocity for peak gain, and peak absorption, both increase with

increasing a8 roughly as vo* = aq. Note that the general features of Figs. I and 2 are quite

different owing to the different forms of the electron distributions. This emphasizes the importance

of the shape of the electron distribution in evaluating gain degradation in FELs, and the need for

an accurate, flexible theory as presented here.

~ee~aFUh Gain Surf~ me

ji i o_,
j=-00-0 -0+13 0,13

Jo3

6

0.12

PC

Fig. 2. Intensity and contour plot of In (1+G (c,vo)) with j = 1 and c= 0. The weak-field gain

degradation in this low-current FEL is due to an electron beam angular spread with a normal

distribution; the resultant phase-velocity distribution is the exponential distribution function.

VI. High-Current FELs

The integral representation of the optical field in (15) is also valid for high-current FELs

where j >> 1. In this case, a(T) acquires a non-linear dependence on j ( recall expression (7))

and cannot be removed from the integrand of (15). To proceed analytically, it is convenient to

remove one integral from (15) by taking the "r-derivative of both sides, and use the form a = a 0 e
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for the optical field. Since j >> 1, assume that c has some large real part, even though the

exponential growth may be somewhat diminished by the presence of a and Co. The magnitude a 0

cancels on both sides, and a change of variables gives the form

3 ' -1 -, e-" 21 a 2a i, ,,a
.= jds s - e (19)
2 o 1- i e S/(9

The upper integration limit in (19) has been extended to infinity because the integrand containing

the factor e -' becomes negligible for large s.

Eqn. (19) describes several properties of high-gain FELs without integration. If a, vo, and ao

all - 0, then a has the same roots found in (7). If the current density j -- oo so that a real part of

a - -, then we obtain the same limit, since a, Va, and ae all appear divided by ax in (19). Unlike

the low-current FEL, the importance of beam quality in a high-current FEL depends on the current

density j . This feature has been seen in FEL experiments and simulations, but is now expressed

analytically. The importance of beam quality can be made more quantitative by iterating (19).

Estimating the real part of the fast-growing root as ax* = ( j/2 )13 -3/2, the integrand of (19) is only

significantly modified when a * = (j/2 ) 1/3 437 or when a_* = ( j/2 )113 3 /2. In the high-current

FEL, the characteristic values of beam quality, a * and ae*, are not equal, and increase with the

current density j. These expressions should be helpful in designing high-gain experiments where

there is a trade-off between beam quality and beam current.

Figure 3 shows a combined intensity and contour plot of In (1+G (aVo)) for moderately high

current j = 100 and ae = 0. The points at the peak gain In (1+G) = 4.3 are indicated by white on the

(a,vo)-surface; black indicates zero gain. Contours of constant gain, In(1+G) = 2.0, 2.5, 3.0, 3.5,

and 4.0 are superimposed on the intensity plot. For the high quality electron beam, small a, gain

is confined to a region near resonance, but extends to a broader range in vo than in the low-

current cases of Figs. 1 or 2. This agrees with the discussion below (11), and gives the range of

optical wavelengths over which there is significant gain 8v= 4j16 z 7 . To find the range of

wavelengths, use A) /%=Avo/2mcN about the resonant wavelength X= X0(1+K 2 )/2y 2 . The

maximum available gain decreases significantly as a --)(* = 4.5 as predicted in the previous

paragraph, and the phase velocity for peak gain roughly follows vo* = a.

I
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Fig. 3. Intensity and contour plot of In (1+G(a,vo)) with j = 100 and a = 0. The weak-field gain

degradation in this FEL is due to an electron beam with a normal distribution in energy.

Figure 4 shows the plot of In (1+G (oe,vo)) with a= 0 so that the gain degradation is caused

by an angular spread in the electron beam. The contours of constant gain differ from Fig. 3

because of the new shape of the electron distribution function. As a. increases, there is a slower

decrease in gain because ae* > a * as found above. When expressed in dimensionless form, an

angular spread is better tolerated in an FEL than is an energy spread. The points of peak gain

increase with increasing 06 similar to Fig. 3.
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Fig. 4. Intensity and contour plot of In (1+G (aE,vo)) with j = 100 and a = 0. The weak-field gain

degradation in this FEL is due to an electron beam with an angular spread producing an

exponential distribution in phase velocities.

Figure 5 shows the combined intensity and contour plot of In(1+G(a,vo)) for high current

j = 104 with O = 0. There are no negative gain regions, and the available peak gain is much

larger than for the lower current. For a = 0, the position of peak gain is essentially at resonance

Vo = 0, but again increases roughly as vo* = a while beam quality diminishes. The width of the

gain spectrum at a = 0 is wider than the lower current case, and agrees well with 5vo = 4j "6 = 12.

The contours of constant gain, In(1+G) = 14,..., 24, show that the range of wavelengths for gain

becomes narrower as a increases, and the maximum available gain decreases significantly as

a->a* z20.
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Fig. 5. Intensity and contour plot of In(1+G(a,vo)) with j 104 and ae= 0. The weak-field gain

degradation in this high-gain FEL is due to an electron beam with a normal distribution in

energy.

Figure 6 shows the plot of In (1+G (aqe,Vo)) for high current j = 104 with a = 0. Again, the

contours of constant gain, In(1+G) = 14,..., 24, are distinct from Fig. 5 showing the importance of

the electron beam distribution function even at high gain. As a0 -ae*, the gain decreases

significantly, but again the angular spread is seen to be less harmful than an energy spread.

Unlike Fig. 5, the position of peak gain stays closer to resonance as a0 increases.
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Fig. 6. Intensity and contour plot of In (1+G (ag,vo)) with] = 104 and a= 0. The weak-field gain

degradation in this high-gain FEL is due to an electron beam with an angular spread

producing an exponential distribution in phase velocities.
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Free-Electron Laser Oscillators and AmplifiersI
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ABSTRACT

In high-power free-electron lasers, the electrons can become trapped in deep

potential wells formed by the combined optical and undulator field forces. The

trapped current oscillates at the synchrotron frequency, and can drive the optical

wave at sideband frequencies around the fundamental. This "trapped-particle

instability" can occur in both the oscillator and amplifier configurations.

I 1. Introduction

Many free-electron laser (FEL) oscillators [1], and FEL amplifiers [2] are designed to
produce large optical power. In both configurations, a relativistic, high-current electron beam

amplifies a copropagating electromagnetic wave as they pass through a periodic, transverse

magnetic field undulator. The trapped-particle instability starts when electrons become trapped in

deep potential wells formed by the combined optical and undulator fields. Electrons near the

bottom of the well oscillate in harmonic orbits at the synchrotron frequency causing the carrier
wave to develop sidebands. The "trapped-particle instability" was first predicted using a single-

mode theory describing high-power, low-gain FEL oscillators with a tapered undulator [3]; the

tapered undulator design reaches high power by trapping electrons in potential wells that remain

resonant as the electrons lose energy [4]. At the same time, multimode simulations of short-pulse

FEL oscillators observed the effects of the instability as pulse modulation [5-7]. Recently, the

instability has been observed in the high-power FEL oscillator at LANL [1], and possibly in the

TRW/Stanford oscillator [8]. It has been termed the sideband, Kroll-Rosenbluth, synchrotron,
Raman, and the trapped-particle instability [9-231. Here, the multimode sideband theory is

reviewed with examples from short-pulse FELs, oscillators, and amplifiers. Common features and

differences are discussed.
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2. Multimode Simulation Theory

The electrons injected into the FEL undulator evolve due to the combined optical and

undulator electromagnetic fields. When the relativistic electrons of energy Y{mc 2 (yo>>1) are

properly injected into the undulator, the transverse electron motion is periodic with amplitude

K;%/2n-yo and phase exp(iko Z) where K = effX/2tmcn2, e is the electron charge magnitude, B is

the rms undulator field strength, X0 = 2nrk o is the undulator wavelength, m is the electron mass,

and c is the speed of light in vacuum. The average speed of the beam along the Z-axis is r30c

where 0 =1-(1+K2)/2 y2. We follow the beam evolution with the dimensionless time

= Poct/L = 0-+1 along the undulator length L = NXO with N periods.

The light wave evolves in the presence of the electron beam according to the transverse

wave equation. The optical carrier wave with frequency (o = kc = 2nc /X has the single-mode

phase exp[i (kZ--ot)] and a complex slowly-varying coefficient a (z) = aR (z) + ia1 (z) = I a (z) I e io(z)

evaluated at many discrete sites z. The dimensionless coordinate z is the ratio Z/NX where the

"slippage distance" NX is defined by the number of optical wavelengths that pass over a resonant

electron as that electron traverses the undulator length L. With the slowly-varying amplitude and

phase approximation, and the coordinate change Z-Z+ct, the wave operator reduces to a single

derivative in time. The dimensionless optical field envelope is a(z) =4tNeKLE(z)/y02mc2 where

E(z) is the complex optical electric field, and Yomc 2 is the resonant electron energy,

yo2 = k(1+K 2)/2k. Simulations take place within a window of width W along z that is an integral

number of slippage distances long. At any c, electrons at coordinate z + t in the electron beam

overlap the light at coordinate z in the optical wave. The electron phase relative to the optical

wave and undulator fields is = (k+ko)Z- cot, and the phase velocity is v ==L[ (k+ko)o, -k .

The self-consistent electron and optical equat, ns [24] are

v(z+-r) [1 - v (z +r)/2 V 12 ( a? (z)cos( (z+,r) - a(z)sin( C (z .)) ) (1)

(z +r) = v(z +T) (2)

aR(z) =- (z+) < [1 -v (z +T)/2rEN ] 1,2 COS( C (z+-) ) > (3)

a1 (z) = j(z+t) <[1 - v (z +s-)/27rN 12 sin( (z+T) ) > (4)

where the dimensionless current density is j(z) = 8N(ernKL) 2p(z)/Y3mc 2, p(z) is the actual particle

density at site z, time derivatives are wth respect to the dimensionless time -, and <...> is an

average over sample electrons at site z + T in the electron beam.
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In order to maintain strong coupling between the electrons and light, the phase velocity v

cannot be too far from resonance, v = 0. The initial resonance condition v (T=0) = vo is taken to be

at the maximum of the weak-field gain spectrum. In both the amplifier and oscillator cases, we

start the optical field at low values a (=0) = a0 , well below saturation. The dimensionless current

density j represents low single-pass gain when j=1, and high gain when j >> 1. Typically, the FEL

oscillator configuration uses j=1, while the FEL amplifier configuration uses j>>1. Weak optical

fields give values of I a I <t, while strong fields give values of I a 1 >7. For small current and weak

fields, maximum gain is at vo = 2.6; for large current and weak fields, maximum gain is at vo = 0.

The electron beam at each z has a uniform distribution of initial phases ('r=0) over a 27C range so

that the initial optical phase is arbitrary; we take (r=0) = 0 at each z. The factors [1-v/2tN] in

(1)-(4) are close to unity unless the electrons lose a significant fraction of their energy and

become less relativistic. Electron motion in terms of v corresponds to changes in the electron

energy through the relation v = 4TN( y- yo) / -o. We take N = 50 in our examples as a common

value typical of both amplifiers and oscillators. The final optical power spectrum P(k) is made

more relevant by expressing k, the optical wavenumber, in terms of the corresponding resonance

parameter v (k); similarly, the electron distribution function f (y) is expressed in terms of v (-y). The

power spectrum P(v (k)) and the electron distribution function f(v (Y)) are more physically

meaningful in terms of their affect on the resonance condition.

The single-mode version of (I)-(4) is obtained by removing all z dependence; all sites are

given the same initial values of , vo, and a (z) = a0 . An estimate of the trapped-particle motion is

obtained by considering the electrons in harmonic orbits near the stable fixed-point C" = n/2. With

j not too large, and and small energy extraction (N>>1), Ia I remains approximately constant

during the synchrotron oscillations at saturation. Then, the motion of a trapped electron is

C(,)= + ( vo / vs ) sin( vst ) with the initial position (v, Vo). The synchrotron or trapped-particle

oscillation frequency is vs =a"' 2 . When the trapped electrons oscillate through a synchrotron

cycle, part of the current driving the optical field in (3) and (4) also oscillates through one cycle. It

is the oscillation of the driving phase in the average <...> that causes the trapped-particle

frequency to be imposed on the optical wave as it slips over electrons. The sidebands appear at

vo ± vs, so that the new FEL power is shifted from the fundamental wavelength by AX/X = Vs/2t.N.

The shift has a simple interpretation; A X = "the number of synchrotron oscillations"/ "the number

of undulator periods".I
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3. The Trapped-Particle Instability in Short-Pulse Oscillators

An FEL oscillator that is powered by an RF accelerator injects a series of short picosecond

electron pulses into the undulator while the optical pulse bounces between mirrors separated by a

distance S >L. High-power saturation is reached after many passes, and the FEL continues to

work for an additional 103 to 104 passes. The current density of each short pulse j(z) is taken to

be parabolic with the form j (z) = j ( 1 -2Z 2/2 ) for I z I< a,/'2 and j (z)=0 for I z I > az/ 2; the

length a is normalized by the slippage distance N%. Typically, RF accelerators produce current

densities which give values of j in the moderate range 1 -- 100 and a, = 1 --> 30. The loss on each

pass (due to mirror absorption and transmission) is described by e-"'Q where n is the pass

number. Usually, Q is from 2-- 200.

The repetition frequency of successive electron pulses must be matched to the bounce

frequency of the light pulse, 2Sc. When synchronized, each new electron pulse arrives at the

beginning of the undulator simultaneous to the rebounding optical pulse. The "desynchronism,"

d = 2AS/NX, is the displacement between the pulses after each pass when the mirrors are

separated by S -AS. If I d I is too large, the electron and optical pulses do not overlap for a

sufficient number of passes and the FEL operates below threshold coupling. If d = 0, exact

synchronism, the FEL is also below threshold [5-7,11-14,21] due to an effect termed "laser

lethargy" (12]. Because of slippage, gain is preferentially deposited on the trailing edge of the

optical pulse causing the optical pulse centroid to travel slower than c in vacuum; therefore, the

optical bounce frequency 2Sc is overestimated. To compensate for the "lethargic" light, the path S

must be reduced by operating at d>0.

I
U
I
I

I
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i Fig. 1. Driven by the short electron pulse j(z+t), the trapped-particle instability has modulated

the optical pulse envelope a(z) at the synchrotron period Vs = 2n. The total optical power

P (n) and gain G (n) reach steady-state after n =400 passes through the oscillator. G (v) is

the weak-field gain spectrum, included for reference. The final optical power spectrum P (v)

has an additional sideband at v0 + vs due to the instability. The final electron distribution

f (v) is broad because of the strong fields.

A short-pulse simulation is shown in Fig. 1. Steady-state is reached after n = 400 passes

with moderately high current j = 20, an intermediate pulse length a, = 12, N = 50, desynchronism

d = 0.04, and Q = 3. Large output coupling is used ( low Q ) because the gain is far above

threshold. The top right figure follows the power P (n) averaged over the whole window. Second

on the right is the net gain G (n) experienced by the pulse each pass. The lower left picture shows

the electron pulse shape before (t=0) and after (,= 1) the slippage of one unit per pass in a

window of width W = 20. The upper left figures show the final optical field amplitude I a (z) I and

the optical phase profile 4(z) plotted along z where -W/2<z <W/2. The jumps in phase of 2n are

meaningless, but the slope of the phase profile indicates a local change in the laser lightI
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wavenumber and a resonance change Av (k)= - '(z) away from v0 . The grey scale on O(z)

shows the local frequency component matching the gain spectrum G (v) on the right. The grey

scale superimposed on the field amplitude shows the local gain experienced by each part of a (z)

on the last pass in the undulator. This grey scale matches the scale in G (n) pictured on the right.

Third on the right is the final electron distribution f (v), and fifth is the final optical power spectrum

P(v) found from the Fourier transform of a (z). The fourth picture G (v) is the weak-field gain

spectrum for the current density j = 20.

The simulation has reached saturation with peak fields near I a I 60. Each pass, those

electrons near the center of the pulse, that become trapped, encounter fields strong enough to

cause about one synchrotron oscillation since 4 = 21c. Normal saturation takes place early and

the power is steady for about 50 passes; then the power increases again as the sideband grows.

Strong optical fields and the resulting trapped-particle oscillations must occur before there is

significant gain at the sideband frequency Vs. The extra power is in the sidebands and the

fundamental remains saturated (17,231. A simple calculation shows that the field component at

the sideband frequency grows as a (r) = as exp ((j/4vs) 1 "2 T) where v s = Ia 1 12 at saturation, and

as is the initial sideband field at v s . In this simulation, (jI4vs)"'2 = 0.8 and the loss rate is

-(2 Q)-= - 0.2, so the sideband gain is above threshold. The sideband structure is clear in

I a (z) I, and the power spectrum P (v). The modulation length is close to the slippage distance

indicating v s = 2yt, and the sideband in P (v) occurs at Av = 27 above the fundamental. The full-

width of the electron distribution is given by the height of the closed-orbit region in phase-space,
41a1 1/2

The characteristics of the trapped-particle instability in short-pulse FELs are briefly outlined

below [21]. Most characteristics have now been confirmed by experiments [1,8,111.

1. At small d>0, the FEL usually reaches power levels large enough to cause the trapped-

particle instability. This gives a broad, possibly chaotic, optical power spectrum, and a

broad electron distribution.

2. At large d, the steady-state power is small due to the reduced coupling, and the trapped-

particle instability is less likely to occur. The final optical power spectrum is narrow and in a

single-mode; the final electron distribution is narrow due to the weak optical fields.
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3. When d is in the intermediate range, we have often observed limit-cycle behavior in the

simulations [5,6,13,211. In this case, the pulse continually changes shape while the

trapped-particle instability creates new subpulses.

4. Increasing the current density j or the resonator Q increases the steady-state power, the

synchrotron frequency, and the sideband gain. The addition of sideband power is

cumulative, since the presence of a strong sideband again increases the steady-state

power.

5. If taper is introduce into the undulator design, the synchrotron frequency is only slightly

modified, and the sideband gain is reduced [13,22,23].

6. When the pulse length a, is near unity, the short-pulse effects can be dramatic [11. Since

the sideband modulation first appears near the slippage distance, a short pulse may not be

long enough to support modulation at the synchrotron frequency. The optical pulse can be

made significantly shorter or longer than the picosecond electron pulse by adjusting d.

4. Simulations in a "Wrapped-Window"

If the electron pulse is not short (o,>>1) it is prudent to simulate the FEL by sampling a

smaller window W<< o with periodic boundary conditions such that C (z-W/2) = C (z+W12); these

can be called "wrapped-window" simulations [17,22,231. Using a number of sites Nw in a window

of width W we follow a restricted number of modes v1 =vo-(2n/W)(I-Nw/2) where

=0, 1,2,..., Nw-i" the mode spacing is Av = 27W. The desynchronism d and the pulse length

a, don't enter the problem, and the current density j (z)=j is constant along the window.

The FEL simulation in Fig. 2 uses j =20, Q =3, and N =50 (as in Fig. 1), but for a long

pulse a,>>W= 4. The individual pictures are the same as in Fig. 1 except for the reference to

pulse shape. Without some noise source, no power would develop at frequencies other than the

fundamental and every site z would evolve identically. Specific sources of noise can vary from

one experiment to the next. In Fig. 2, the initial electron phases are uniformly spread over a 2n

range, but with an additional random phase of zero mean and standard deviation 5C Z 1.0xi 0-.

Electron shot noise is a typical source of this kind of noise. In the pulse simulations no random

noise is introduced, since the spectral features of j(z) are sufficient. After n = 400 passes, the

steady-state optical fields peak at I a I : 60 just as in Fig. 1, and the final power spectrum P (v) is

similar to Fig. 1, but without the short pulse features.
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CAYE" FEL Optica Modes XIX%*

j=2o R=1.oXIo- =3
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Fig. 2. The "wrapped-window" simulation gives a clear example of the trapped-particle instability

in the FEL oscillator without the complicating features of short pulses.

Wrapped-window simulations have many of the same characteristics as for pulses, but

without the effects of desynchronism. As a, - t o the wrapped-window approach is the only viable

solution to the FEL multimode simulation.

1. Increases in j or Q make the trapped-particle instability more severe. It is unusual to find

the periodic, even modulation shown in Fig. 2.

2. When there is taper in the undulator design, the instability is less prominent for the same

reasons as stated in the pulse case.
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3. Over many hundreds of passes, the stored optical wave "sees" many synchrotron

oscillations, so that any sideband gain above threshold gives large growth from a small

amount of noise. The resulting steady-state features are therefore not affected by the

details of the noise source employed.

5. The Trapped-Particle Instability in High-Current FEL Amplifiers

In the high-current FEL amplifier, j>>l, large optical power can be produced in a single

pass through the undulator. An induction linac accelerator and a long undulator can result in

values j = 104_+105 [2]. The electron pulses are long, cy, -4 -, so that the wrapped-window

simulation method is essential. The FEL growth rates are so large that electrons become trapped

early in the undulator and begin executing synchrotron oscillations. There can be from several to

many tens of synchrotron oscillations along the undulator so that the optical field experiences far

fewer synchrotron cycles than in the oscillator case. However, even the lirnited number of

synchrotron cycles can result in significant sideband gain owing to the large current density j.

The wrapped-window simulation in Fig. 3 follows the power and gain from 'r = 0-)1 for an

FEL with high current j = 8x1 04, an initial field ao = 20 starting at vo = 0, and N = 50. No electron

phase noise is present, but a small initial sideband field as = 0.01 is introduced at v s = 20i.

Spontaneous emission or electron shot noise from the trapped electrons can lead to a contribution

of this size because j is large. The power P(tr) and gain G(t) are seen to oscillate with the

synchrotron frequency vs = 20n and impose a strong modulation on the light wave envelope a (z).

The final power spectrum P(v) shows that the sideband has grown to almost equal the

fundamental power.
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Fig. 3. The trapped-particle instability can create significant sideband power during one pass in

the FEL amplifier. The high-currents used in amplifiers give much stronger optical fields at

early stages of the undulator that can cause several synchrotron oscillations, and impose a

corresponding modulation onto the optical wave envelope. In this example, the sideband is

spaced at vs = 2On.

The trapped-particle instability in FEL amplifiers differs in many ways from the oscillator

case. Sources of noise are much more important, and there is no resonator Q to consider.

1. Large current j makes the trapped-particle instability more likely. Using the sideband

growth rate, we can evaluate the current j' needed to make the sideband field as equal to

the fundamental, a 0 
= vs. This gives

j" = 16vsln2(vSsI a)
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3 The current j* has a slow logarithmic dependence on the initial sideband field as so that an

accurate estimate is not too crucial; we take as = 0.01. We also estimate that there must be

at least a few synchrotron oscillations, say Vs = 16n, before the optical wave could

accurately determine the synchrotron frequency. This gives a characteristic current density

j =3x10 4 where sidebands could be expected to significantly alter the final FEL amplifier

spectrum.

2. In the tapered undulator case, less current is trapped, and the synchrotron oscillations have

a smaller amplitude so that the trapped-particle instability is observed to be less severe, as

in FEL oscillators.

3. Input noise at the sideband frequency is important to the development of significant

sideband power in FEL amplifiers. Shot noise and spontaneous emission cannot be

eliminated, and may be a significant contribution at large current densities.

4. For the large currents j>j*, the FEL does not reach steady-state operation even in strong

3 optical fields I a I. The power continues to increase and so does the synchrotron frequency.

This continual change in the synchrotron frequency may play a useful role in suppressing

3 the growth at any particular sideband frequency.

In conclusion, we find that the trapped-particle instability is more difficult to suppress in the

FEL oscillator than in the FEL amplifier. The large number of synchrotron oscillations experienced

by the light stored in the oscillator make the effective gain over for many passes large. But, while

the trapped-particle instability has already been observed in the FEL oscillator, it has not yet been

found in the FEL amplifier. The many differences between FEL oscillator and amplifier

simulations implies that we should not use the oscillator case as a direct proof that there will be an

* equally prominent instability in real FEL amplifiers.
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