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I. INTRODUCTION

This is the final report for Contract N00014-86-C-2055. It covers research performed
by Berkeley Scholars, Inc. from 6 December 1985 to 5 December 1987:¢ The research
involved the theoretical and numerical analysis of the physics of free electron lasers using
relativistic particle beams.

The major emphasis of the research was to obtain design criteria for the development
of a two-stage FEL oscillator operating in the trapped particle mode, and for a UV-FEL
operating in an oscillator configuration with an intense CO, laser beam as a pumping
source instead of the usual wiggler field. In order to carry out this program it is necessary
to provide an appropriate model for the radiation physics of both types of FEL's, to
examine the relevant nonlinear wave-particle dynamics, and to model the characteristics,
development and evolution of the associated electron beam.

Task 1, to develop a general model for the radiation physics occurring in a FEL with
specific application to a two-stage FEL oscillator operating in the trapped-particle mode,
and to a UV-FEL operating in an an oscillator configuration that uses an intense CO,
laser beam as a pumping source, is a necessary prerequisite for Task 2 and Task 3. These
tasks are model applications, and the research addressing these tasks has given rise to new
results. This final report documents the research, and the six appendices contain the details
of the work. Articles prepared from the appendices have been submitted to professional
journals or technical conferences. These articles have been prepared in collaboration with
scientists from the Plasma Theory Branch at the Naval Research Laboratory.

The effects of radiation damping on beam quality in the inverse free electron laser
accelerator are discussed in Appendix I, also published in the journal Particle Accelerators.
A beam envelope equation is derived and solved for an arbitrarily tapered wiggler field.
The expression for the evolution of the normalized transverse beam emittance is derived
and found to decrease exponentially with distance due to radiation damping until it is
limited by quantum excitation. Our results show that substantial improvements in beam
quality can be realized for acceleration distances comparable to the radiation damping
e-folding length.

The subsequent appendices give an account of the subsequent part of our research,
viz., analyses directly addressing the electron beam quality issues that form task three of
the statement of work. Appendix II, also published in Physical Review Letters, concerns
the nonlinear particle-wave processes that can give rise to radiation focusing and guiding
in a free electron laser. If the centroid of the electron beam is transversely displaced the
radiation can be guided by the electron beam. A spatial modulation on the electron beam
envelope can also modify the radiation field. These and other phenomena are studied using
a novel source dependent modal representation of the fully three dimensional radiation field,
the Source Dependent Expansion (SDE) method. Among the merits of this approach is
that few modes are needed for an accurate description of the radiation.
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Appendix III, also published in the Physical Review A, is a further study of the
focusing and guidance of the radiation by the electron beam using the SDE method.
Fast and accurate numerical solutions of the fully three dimensional FEL problem can
be obtained over distances of many Raleigh lengths. The effects of finite emittance and
wiggling of the electron beam can also be studied. Appendix IV, presented at the 1986
International FEL conference in Scotland, treats similar material. Appendix V, presented
at the 1986 Conference of Particle Accelerators, expands on this work by examining the
perfectly guided radiation beams in the Compton exponential gain regime of an FEL.

Appendix VI, also published in the Physical Review A, uses the SDE method for
a related problem, viz., the optical gain, phase shift, and spatial profile of the coupled
electron and radiation beams in an FEL. This research was carried out in collaboration
with B. Hafizi from SAIC and with NRL personnel. The gain, phase shift, wavefront
curvature and radius of the radiation envelope in a free electron laser amplifier are obtained
in the small signal regime. The electron beam is assumed to have a Gaussian density
distribution in the transverse direction. Numerical calculations indicate that the radius and
curvature of the radiation beam entering a wiggler asymptote to unique, spatially constant
values after a finite transition region. However, in the asymptotic regime the wavefronts
diverge. Analytical expressions for the gain, phase shift, curvature and spot size are
derived. It is shown analytically that small perturbations of the optical waist and curvature
about the matched value are spatially damped out, indicating the stability of the matched
envelope. When the electron beam is modulated in space, the optical spot size oscillates
with an almost identical wavelength but delayed in phase. In the case of small amplitude,
long-wavelength betatron oscillation of the electron beam envelope, generation of optical
sidebands in wave number space is examined. The effect of the dispersion characteristics
of the primary wave is found to be negligible for typical experimental parameters.




II. TECHNICAL DISCUSSION

Electron beam quality as measured by the transverse emittance is usually determined
by the gun and propagation configurations in accelerators (see Ting and Sprangle, 1987
for this discussion). Under idealized conditions, the transverse normalized beam emittance
remains a constant of motion as the beam propagates through the accelerator. Therefore,
to improve the quality of the beam, it is necessary to decrease the beam emittance at the
injection point. However, since the normalized beam emittance is essentially the trans-
verse area in phase space for the collection of beam particles, one can in principle reduce
the emittance if a dissipative mechanism is introduced. A natural candidate for such a
dissipation mechanism is the induced synchrotron radiation damping due to the transverse
motion of the particles in an external periodic transverse magnetic field. It is this mecha-
nism that will be focused on in Appendix I when the external magnetic field i1s chosen to
be a helical wiggler field. Since this radiation damping effect is small at low energies, it is
in the context of the recently proposed high energy IFEL accelerators (references 1-11 in
Appendix I) that will be emphasized and concentrated on in Appendix I.

First, the electron orbits in an IFEL accelerator must be obtained. A fully relativistic
formulation of the equations of motion which include radiation damping force is consid-
ered. The damping coefficients are obtained from the transverse dynamics of the particles
while the axial dynamics describe the acceleration of the particles. In the second section,
a relativistic envelope equation for the average radius of the electron beam is derived,
assuming continuous emission of the synchrotron radiation. It is apparent from this en-
velope equation that the normalized transverse emittance decays exponentially at a rate
given by the radiation damping coefficient. The envelope equation is solved using a WIKB
method and the spatial evolution of the beam radius is obtained. Quantum excitation sets
a minimum value on the normalized transverse emittance in an IFEL accelerator and it is
derived in the fourth section of Appendix I. Strong focusing is found to be necessary to
reduce such minimum to an acceptable value. An example is given in the last section of
Appendix I for a set of proposed IFEL accelerator parameters (reference 2 in Appendix I).
It is found that radiation damping does reduce the emittance of the accelerated electron
beam while resulting in an insignificant loss in particle energy.

In analyzing radiation focusing and steering in the FEL by using a source depen-
dent expansion technique, it is found that in the one-dimensional analysis of the FEL
the radiation field, wiggler field and clectron beam resonantly couple so as to modify the
longitudinal wave number of the radiation field (references 1-3 in Appendix III; also see
Sprangle, Ting and Tang, 1987a for this discussion). This can lead to focusing of the
radiation beam, a phenomena which has been shown to play a central role in the practical
utilization of the FEL (reference 9 in Appendix III) since in many proposed experiments
the short wavelength radiation beam will not be confined or guided by a waveguide struc-
ture. Furthermore, the interaction length (wiggler length) is usually long compared to the
Rayleigh length associated with the radiation beam. Therefore, focusing of the radiation
beam via the resonant interaction with the electron beam is necessary in order to overcome
the natural tendency of the radiation beam to diffract. If diffraction of the radiation field
were not fully or partially offset by the focusing effect, the FEL would suffer from reduced
gain and efficiency.




Two primary objectives are associated with the use of a source dependent expansion
technique in the analyses presented in Appendix III (Sprangle, Ting and Tang, 1987a) and
Appendix IV (Sprangle, Ting and Tang, 1987b), namely to present a general method of
formulating and solving problems involving radiation focusing and guiding for mechanisms
in which the refractive index is known and to apply this approach to the focusing and steer-
ing of radiation in FELs with arbitrary gain. The method is a general, self-consistent, fully
nonlinear, modal representation with application to the phenomena of radiation focusing
and guiding in FELs. The source function (driving current) is incorporated self-consistently
into the functional dependence of the radiation waist, the radiation wave front curvature
and the radiation complex amplitude. The fundamental mode remains dominant through-
out the evolution of the radiation field due to the source dependent nature of this moc
expansion. This source dependent expansion (SDE) scheme appears to have a num ser
of advantages over the conventional vacuum representation (reference 7 in Appendix IV).
Among the advantages are that relatively few modes are needed, compared to the vacuum
expansion approach, to accurately describe the radiation beam. Because far fewer modes
are needed, fast numerical solutions of the fully three-dimensional wave equation can be
obtained over long propagation distances. It therefore appears feasible, using the SDE ap-
proach, to incorporate simultaneously into the model for the driving current density, the
cffects of electron beam emittance, energy spread, wiggler gradients, sideband frequencies,
etc. Furthermore, since the lowest order terms in this expansion are a good approximation
to the radiation field even for propagation distances long compared to a Rayleigh length.
valuable insight concerning focusing and guiding can be obtained.
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Appendix I:

Effects of radiation damping on beam quality in the
inverse Free Electron Laser Accelerator




I. Single Particle Dynamics

We shall consider the motion of an electron under the influence of a
helical wiggler field and a circularly polarized electromagnetic wave with the

inclusion of the radiation reaction force. The fully relativistic equation of

motion is '*
dp vx?B R
a.f--lel(go S ) + F, (1)
where I l
2 alp| 2 d d
R 4 Y= 1 )24 22 d 4
E- r,,{mzcz [T g - Y+ Fogh

o

is the radiation damping force, g = 2|e|2/3n°c3, and Y2 = 1 + |p_|2/m§cz.
The radiation field i{s given by its vector potential AL-AL(cou;x- sin«:y).
where ¢ = kz-yt. We shall assume z~-dependence for both the magnitude and
period of the wiggler field. The vector potential -&w for the helical wiggler
field is given by ﬁuzAw[cose;xi'sine;y] where Aw = Aw(z) and 6 = !)Z kw(z')dz'.
The requirement that the wiggler field satisfies both V - Ew = 0 and
Vx Ew = 0 introduces transverse variation as well as a nonzero z-component of
the magnetic field.'s

Since we shall be ptfinar'ily interested in laser driven accelerators, the
normalized wiggler field strength a, = |e|Aw/m°c2 is assumed to be much
greater than the corresponcing quantity a, = |e|AL/moez for the radiation,
{.e., a, >» aL. It can then be shown that the major contribution to the
radiation damping is from the wiggler fleld.

We shall first look at the radiation damping term in Eq. (1). By
neglecting the transverse dependence of the wiggler field for a beam that is

confined sufficiently close to the axis, we have the immed{ate consequence

that the canonical momenta in the x and y directions are constants of motion




and ©ay be chosen to be zero. The mechanical momenta are then given by

lel 5 .c -lel g e .
Py ¢ Aoy Py c & y where Ap = A, * 4.

order approximation, the total relativistic energy is conserved which leads

Also, in the zeroth

~

to Y = % and 52 = 0. Therefore, the only significant term remaining in the

radiation reaction force is

2
p p dp2
R
F' = TRY[d_E-‘ﬁ(d—t.) 1.
t moc

Neglecting terms of order a /aw << 1, the components of the radiation reaction

< ot

R
force are Fx = vlépx, F v

= = vlfp ’ F: = - vlcpz, where
2 2
Yl = tRkac(aw + 1), (2a)

ca

2
W ’ (2b)

z N

vl = rRYk
are respectively the spatial decay coefficients due to radiation damping in
the transverse and axial directions. Note that vL - v' for as >> 1 which {is
the case in the IFEL accelerator,

The most significant feature of the transverse motions of the electrons
1s the betatron oscillation caused by either the inhomogeneity of the wiggler
field in the transverse plane or other focusing mechanisms. It can be shown
that, for small oscillations about the axis of the wiggler field, the

transverse equaticns of motion are,

2
d“x . .2 ' dx
+ Kx = =(=+v) =, (3a)
12 B YV 4z
2
dy 2 SR & dy
dz'KBy (Y"’j_)dz’ (30)
z

where d/dt = vzafaz, vz « ¢, ' ® 3/3z have been used, and KB is the wave




number of the longitudinal betatron oscillation. For betatron oscillations
that are originated from the v x B force due to the nonzero magnetic field in

the z-direction of the realizable wiggler field,'” K_ = a k /(/27) .

B
The axial motion of the electron is governed by

dp dv
z 2z dy - Iel -
@z "Ma T ™Wraz " o2 (v x E)z VIPz )

where

o “lely B Glpl® v vpd)
dz m 03 m203Y )
(¢} o

It is straightforward to show that the axial electron acceleration is

2
v, o 93, 2awaLkwc 2, 3vlaLaw
az -~ T "2 * 5 siny - — v|vz tT—=—
2Y 9z Y K Y

cos vy , (5)

z

where ¢y = 6 + ¢ = f (k + kw(z’) - w/vz(z')]dz' * v 1s the phase between the
0

electrons and the ponderomotive wave generated by the beating between the

radiation and wiggler fields, and vo is the initial phase at the entrance of
the interaction region. Equation (5) can be transformed into the following
pendulum equation
2 dk 332 2a kk 2v,k 3 la a k
dy W K W WL v M " V1% %
+ sin ¢ - o + 5

2 dz 272 92 Y2 oY

cos y . (6)

The rate of change of relativistic energy may be obtained from Eq. (4) and {s

a ak v]a a v
dy L w . Lwk _ - 1.2 2
9z - 5 siny le + = _kw 2) cos ¢ 7 (a, *a) . (7




Equations (3), (6) and (7) will be the basic equations we shall use in
studying the effects on beam quality due to radiation damping. The terms
containing cos ¢ in Eqs. (5), (6) and (7) as well as the last term in Eq. (7)
may be neglected when the conditions as >> ai ' ai > j. k > kw , and

72 >> 1 are satisfied. These conditions are easily achieved in high energy

IFEL accelerators.




I1. Derivation of Envelope Equation with Radiation Damping

The single particle equations of motion that we have developed in the
last section will enable us to study the macroscopib behavior of the beam.
This {s accomplished by considering the evolutibn of various averaged
quantities associated with the single particle variables.12'13 We begin by
multiplying Eq. (3a) by x' and x, and Eq. (3b) by y' and y, where '

denotes 9/3z. Combining the resulting equations yields the following set of

equations
k2 |
P e e
19_3_,.2‘8 +k2 2. -pd 2 (8b)
2 42 1 B 2 dz !
%.-u,, (8c)

where r2 = x2 + y2, gi - x'z + y'2. p= Y'Y + vl. anq L = (x'y - y'x) {s the
normalized angular momentum. We eliminated gi by substituting Eq. (8b) into

Eq. (8a). By taking transverse ensemble averages over beam particles in Eq.
2

2 . <r2>, we obtain an

(8), and denoting the ensemble average of r< by a
equation which governs the evolution of the root-mean-square radius of the

electron beanm,

2 : 3.2
2d 2, d° 2 2 2 d pd 2 1d%° d .22
@3 tv—za rAakga s GG a) ¢ 5 =5+ F(Kgat)
dz dz .
2d 2
*KBa-z-a -0 . (9)

It is easy to show that the integratfon factor for Eq. (9) is 3232 where

z
32 - Yzexp(zf v,dz') . Equation (9) can now be put into the form

'l

o
d/az g2(ada'r + pada’ + a Kg)] -« 0, and can be integrated to give




3 2

32[333" + pa“at + a"xg] = H , where H2 13 a constant of motion associated

with the beam. It can be shown that, using the following representation for

the particles' normalized transverse veloeities,'zv

a
gl"a—l‘ep0

ee + G_B-l ]

"ols

where sgi is the normalized tranaverse velocity spread, and L = <i> from

Eq. (8c), the constant He 1s given by

2
e = Y (0)L2(0) + vza2<|egl|2>exp(2j vez)
(o]

where Y(0) = Y(z=0) and L(0) = L(z=0). We may therefore define the squared

12,16 2.2

normalized beam emittance as e:(z) - Ya <|6§i|2> and arrive at the

following envelope equation

2 2. 2
a2a 1 ay da 2 [en(z) + YL (2)]

+ (s +vy) —+Ka- =0 . (10)
az2 Ydz "|" dz B v2a3

The spatial dependence of the normalized emittance and average angular

momentum are given respectively by
z
e, (2) = en(O)exp(-I vlgz') ’ (11a)
o ,
z
L(z) = (¥(0)/Y) L(0)exp(- vjdz) (11b)
o
where en(o) = en(z=0). Equation (10) together with Eq. (11a,b) constitute the
beam envelope equation with radiation damping terms included.

One can see that when vl = 0, Eq. (11a) shows that €, remains constant

and Eq. (10) reduces to the usual relativistic beam envelope equation where




cn 1s the familiar normalized beam emittance.’z"6 Therefore, in the presence
of radiation damping, the root-mean-square beam radius {s still described by
an envelope equation but the normalized beam emittaﬁce is no longer constant
but decays exponentially according to Eq. (11a); However, the decay of the
normalized beam emittance will eventually be limited by quantum excitation due
to the discrete nature of the synchrotron radiation. It is shown in a later
section that when an equilibrium i{s reached between these two competing
processes, the minimum normalized emittance achievable through radiation

damping in the IFEL accelerator is given by (en) -3ﬁazkw/(/5mocKB) .

min

In the presence of radiation damping, the average angular momentum also
decays exponentially as given by Eq. (11b). However, one may choose L(0) = 0
for beam generation schemes that do not impart an average angular momentum to
the electron beam, i.e., zero magnetic field at the cathode. We shall assume

that this is the case in our study of beam quality. We shall also not

distinguish between v, and v, , and will denote both by v.
1 I




I11. Evolution of Beam Radius

The equation for the root-mean-square radius a {n Eq. (10) is nonlinear.
It is found, however, that the mean square radius al satisfies Eq. (9), which
is a linear differential equation. For beam focusing provided by the wiggler,
Eq. (9) may be solved exactly for untapered wiggler fields when Y' = 0,
If Y' « O or when the tapering is known, it can be solved using a WKB method
if we assume the coefficients are slowly varying. Equation (9) can be
simplified in certain limits of accelerator designs to facilitate analytical

study. It can be shown that, Y'/Y <KC K_ and v KB' which allow us to arrive

B

at the following approximate equation

S''' + 3uS't ¢+ HK§S' + [uuxg +2(K§)']S =0, (12)
where S = a2.

In order to obtain net acceleration of the electrons trapped in the
ponderomotive potential, the wiggler field must be spatially tapered. In such
a case, the envelope equation, Eq. (12), is a 1linear differential equation
with spatially dependent coefficients. We solved it by using the WKB-method
which assumes these coeffients to be slouly-varyiné functions of longitudinal
distance. By assuming both Ké/KB and u << KB‘ the general solution to
Eq. (12) is found to be

_y Kg(O)
S = e -K—B—m-[A‘BCOSZ}:’CSiUZEJO

z z
where M = [ u(z°)dz",and I = [ Kg(z7)dz". The coefficients A, B, C can be
o o
found by using the initial conditions for a matched beam, a(z=0) = A

’ (B ]
a (z=0) = 0, a (z=0) =0 . The matched beam radius a, is related to the

10




fnitial transverse emittance a: - c:(o)/(Kg(O)YZ(O)) . Using the {nitial
conditions, we arrive at the following expression for the root-mean-square

beam radius,

K.(0) u(0) + K2(0)/K_(0)
-M/2 1B 172 B B 172
R N o L o s aElt. aw

Equation (13) shows that the beam radius does not remain constant even when
the beam is matched at injection. In addition to the exponential decay from
the radiation damping, the beam envelope developes an induced betatron
osclllatlop. However, the normalized emittance is just an exponential decay
given by Eq. (11a).

We may gain some insight into the general effect of radiation damping on
the transverse emittance by studying Eq. (12) in the case of untapered wiggler
field. We shall first consider the case where Y' = 0. This could be the
situation when the acceleration mechanism 13 saturated by the radiation
damping and the beam energy is constant. The evolution of the beam radius is
then given by the appropriate limit of Eq. (13). Since there is no tapering
of the wiggler, the solution is exact and given by
1 + = sin Az 1'/2 |

Xp

a = aoe-vzlz[
The beam radius again exponentially decays with an induced betatron
oscillation. Since Y i{s constant, the damping rate v is constant, and the
normalized emittance ¢ 1is given by cn(z) - en(O) exp(-~vz).

Next, we consider the situation when an accelerated beam is cooled by
passing it through an untapered external wiggler field. Since the beam

decelerates due to the synchrotron radiation damping, we have Y'/Y = -y,

1T




This gives y = 0 and since K_ = awk"/(/iY). the betatron wave number Kg is a

B
function of z. The spatial dependence of Y can be evaluated using Y'/Y = -y,
and Eq. (13) reduces to a = ao(1 + vszz), where v, - tRasksYoc. Although the
beam radius remains constant up to order of 0(2‘2). the normalized beam
emittance decreases algebraically, €, = en(O)/(l*voz).

The relevance of the above analysis depends on the magnitude of the
damping rate Vo© For the following set of accelerator parameters.z
E, = 1.5x10% V/cm., B, = 50 kG., A = 1 m, it 1s estimated that the e-fold
length, 1/v_, could be as short as £ 600 m for Y = 10°. Therefore, our

results show that one can improve, by induced synchrotron radiation, the

quality of an electron beam by passing it through an external wiggler field.




IV. Quantum Excitation

An estimate for the minimum transver2e normalized beam emittance due to
qQuantum excitation in an IFEL accelerator can be obtained from the following
qualitative treatment. Similar arguments can bélmade for electron beams in
storage rings.?7'?8 The normalized transverse velocity and radial
displacement of an electron in a wiggler field are given by Bw-aulv, and
Pw-a"lw/(ZIY). For a fluctuation SE in the energy of the electron, the

corresponding fluctuations in r, and Bw are er-nGE/E, and GBH-EGE/E. where

n-a"xw/(ZnY) and E-aw/Y. The increase in normalized emittance due to such

2

u> + <683>/KB], which for a weakly focusing

2

fluctuations 13?7’?9 be = YLKy <ér
channel, Kp<<k,, can be approximated by Acn ~ Y<685>/KB - (YEZ/KB)<GE >/E2 .
Due to the discrete nature of the synchrotron radiation, <6E2> {a given

by N(ﬂwc)2 where N-Pz/(cﬂuc) is the number of photons emitted in a distance z,
P {e the synchrotron radiation power, and ﬁmc is the energy associated with a
quantum of synchrotron radiation. We can therefore obtain the rate of change

of € due to quantum excitation,

de 2 Phw
(dzn)Q E. %L zc :
i B cE

However, with radiation damping, the total change in €n is given by

de de
n n
(G =~ ven * (G qE.

The normalized emittance, € reaches a minimum, den/dz-o, when the two
effects are balanced. This gives en-Yzzﬁwc/(KBE) for the minimum normalized
emittance, where we have used ve~P/E. For synchrotron radiation,
ﬂuc-3h073/(29) where p-Y/(a"kw) is the radius of curvature of the electron

orbit in the wiggler. The minimum transverse normalized beam emittance is

then approximately given by




3
(cn)Mn - 3ﬁawkv’(2nocx5) . (14)

In the case of weak focusing due to wiggler transvefse gradients,
K, - aukw/(lﬁv). and the minimum normalized emittance is

(e )y - 3nn§/(/5noc) ) (15)

Using the accelerator parameters at the end of section III, Eq. (15)
gives the value of the minimum normalized emittance to be ~1.8 cm-rad.
Such a large value of the minimum emittance indicates the inadequacy of the
weak focusing from the wiggler transverse gradients. Strong focusing from,
for example, a rotating quadrupole field produced by a pair of (or four)

helical current windingszo'Z'

may be required. The betatron wavenumber for
such a focusing mechanism?? is given by Kg - |e|(aB/3r)/moc2 , where 3B/3r is
the magnetic field gradient of the quadrupole field on axis. For

3B/3r-250 G/ca, a,=600, A =10m, and Y=hx10°* Eq.(14) gives a minimum
normalized emittance of en-0.13 cm-rad. Another possible strong focusing
force could be the electrostatic radial electric field of an ion column. Such
a column could be created by the ionization of the residual gas by a low
energy, high current electron beam pulse preceeding the main accelerating beam
pulse.23'25 The betatron wavenumber for such a focusing sechanisa can be
easfly shown to be Kg - uﬁi(nilno)/(zvcz). where "pi is the ion plasma
frequency and (milmo) is the mass ratio between the ions and the electrons.

For n;=10'%/cu3, =600, A =10m, and Y=4x10’

» Eq. (14) gives a minimum
normalized emittance of en~0.0h cm-rad. An additional benefit of having ion
focusing in the IFEL accelerator is that the radial plasma electron density

profile in an ion column can also be a focusing medium for the laser beam.




V. Numerical Example

We shall consider only resonant particles whose phase y satisfies the

oonditions dy/dz = 0 and c:lzv/dz2 = 0. The first condition gives

Y- J;lﬁz B, k. -372, (160)
anoc

(16b)
/2 lel® .3 .-372
V=3 JTLE B” k * , (16¢c)

where R, = .’Zlelt‘tsinwnl(moczv’ﬁ) » Ry = |e|6k/(3ngc1°) » Vg 18 the resonance
phase, E; the laser electric field strength, and k the laser wave number. The
second condition together with the pendulum equation, Eq. (6), provide the

spatial dependences of k, and B,

3 3
4 B
3k - T B, + E" sin ¢ B" 2/Zn0° R, L (17)
W lelvk &—

Equation (17) shows that the required tapering of the wiggler field may
be obtained by prescribing QB and a relationship i)etween k, and B, in
Eq. (17). As an example, we assume the tapering of the wiggler field to be
that of a maximum rate IFEL acc:elerat,or'.2 For such a case the wiggler

strength and the wiggler period are related by the following power law,

1/4 7/8

-(R /63) K,

Equation (17) may then be solved to give

B, = B (O[1 + R,z1 77, (18a)

15
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kw = kw(O)[l + R4Z] , (18Db)
where
2
9/2mc 3/7 9/7
R, = ———— R, (R, /6R,) B (0) .

Evaluating Egs. (11) and (l6a) with (l6c) and (l18a,b) gives the
nromalized transverse emittance and the resonant energy of the beam
as functions of the propagation distances.

For our example, we ill consider the following set of acceler-
ator parameterszz EL =1.5 x 109V/cm, Bw(O) = 50 kG, AW(O) = 100 cm,
and A» = 10.6 uym with a resonance phase of sin wR = 0.6. The initial
conditions are for a matched beam with a radious of lmm and a
normalized emittance of €9 = 0.205 cm-rad, and the required beam
injection energy is ~52 GeV. The beam is allowed to propagate for
1 km without depleting the laser radiation. We repeated the calcula-
tion by assuming there is not radiation damping but with the same
power law tapering of the wiggler field.

The results are represented in Figs. 1, 2, and 3. The open
squares denote the presence of radiation damping, while open
circles denote its absence. From Fig. 1, we can see that the
final energy is not significantly reduced by the radiation damping.
Figure 2 shows the exponential decay of the normalized emittance.

At the end of the one-kilometer accelerator, the normalized
emittance is reduced to 0.05 cm-rad, which is very close to the
minimum normalized emittance of ~0.04 cm-rad at that point if
ion-column focusing is assumed in the accelerator. 1In Fig. 3, the

appropriate tapering of Kw and B, for the two cases is shown.

16




Conclusion

We have studied the evolution of transverse emittance and the beam radius
due to the radiation damping effect in an IFEL accelerator. We derived the
beam envelope equation, Eq. (10), which includes the effects of radiation
damping, and have demonstrated that the normalized transverse emittance
decreases exponentially with a damping rate given by the radiation damping
coefficient v until it reaches a minimum value due to quantum excitation .
The beam envelope equation was solved analytically for a slowly-varying
wiggler field. We have derived an expression for the minimum normalized
emittance in the IFEL accelerator and showed that strong focusing is essential
in reducing this minimum emittance due to quantum excitationf We have shown
that radiation damping can play an important role in improving beam quality

without a significant sacrifice in beam energy.
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Figure Captions
Fig. 1 Evolution of beam energy in an IFEL accelerator with and without

radiation damping.
Fig. 2 Exponential decay of normalized beam emittance, eﬁ .

Fig. 3 Spatial tapering of wiggler period and field with and without

radiation damping.
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Appendix II:

Radiation focusing and guiding with applications
to the Free Electron Laser

10




In the one-dimensional analysis of the free electron laser (FEL) the
radiation field, viggler field and electron beam resonantly couple so as to
modify the longitudinal vave number of the radiation field.1‘3 This

resonant interaction can lead to focusing of the radiation beam. This
phenomena vas first analyzed for the lov gain PEL vith transverse effects4
vhere it vas showvn that the diffractive spreading of th2 radiation beam
could be overcome by a focusing effect arising from the modified index of
refraction. This radiation focusing phenomena has been shown to play a
central role in the practical utilization of the PEL,5 since, in many
proposed experiments the radiation beam will not be confined or guided by a
vaveguide structure. Recently optical guiding in FELs has been studied in
the small signal, exponential growvth regime,6-9 for the asymptotic behavior
of the radiation beam.

In this letter, we present a general, self-consistent, fullf
nonlinear, modal representation formalism vhich wve apply to the phenomena
of radiation focusing and guiding in FELs. The novel aspect of our modal
expansion is that the characterisfics of the modes are governed by the
driving current density, as opposed to a heuristic numerical approach,10
and hence it is called the "source dependent expansion™ (SDE). Instead of
using the usual modal expansion consisting of vacuum Laguerre-Gaussian
functions11 ve incorporate the source function (driving current) self-
consistently into the functional dependence of, i) the radiation waist, ii)
the radiation wave front curvature, as well as iii) the radiation complex
amplitude. Because of the source dependent nature of our modal expansion,
the fundamental mode remains dominant throughtout the evolution of the
radiation field. This approach, vhich can be applied to a vide range of

problems, lends itself to fast and accurate numerical solutions as vell as

to a better analytical description of the FEL focusing and guiding problem.




Using the SDE approach in numerical simulations of the FEL, one can
efficiently incorporate simultaneously the effects of electron beasm
exittance, energy spread, viggler gradients, sideband frequencies, etc.

An envelope equation for the radiation is derived which describes the
transient as vell as asymptotic behavior of the radiation beam. The
effects on the radiation beam of a transversely displaced electron beam as
vell as a longitudinally modulated electron beam have also been considered.

In our model the vector potential of the radiation field is
QR(r,e,z,t) = (1/2)A(r,e,z)exp(i(wz/c-wt));x + c.c., vhere A(r,96,z) is the
complex amplitude, w is the frequency and c.c. denotes the complex

conjugate. The radiation field satisfies the reduced wvave equation,

2
1 9 0 ) . W a
[; P (rs;) A S T 2i c 3z a(r,0,z) = S(r,0,2z), (1)
r- 96
vhere a(r,6,z) = IeIA/moc2 = |alexp(i¢) is the normalized complex radiation

field amplitude and we have assumed that a'laa/az << w/¢. The source

function, S, has the general form

S(r,8,2) = (we)l(1-n?(r,6,2,a))a(r,8,2), (2)
vhere n(r,8,z,a) is the complex index of refraction.
Ve choose the followving representation for a(r,8,z) in terms of

associated Laguerre polynomials,

a(r,0,2) = L L €, (8,2)D(r), (3)
n p

vhere m and p = 0,1,2,---,

Cm’p(e,z) = am’p(z)cos po + bm,p(z)sin pe, (4a)
— 2 . 2,2
p 2r Y p 2 (1 - ie(z))r/r(z)
DP(r) = ———(z)) LP E—z ]e (%), (4b)
s <(2)
2




In Eqs. (4a,b), a_ (z) and b (z) are complex, r_(z) is the radiation
m,p m,p s
spot size, a(z) is related to the curvature of the vavefront and Lz is the
associated Laguerre polynomial. The z dependence of these parameters wvill
be determined by the source function in Eq. (1).
Substituting (3) into (1) and using the orthogonality properties of

LE, cos pB, and sin p6, ve obtain,

(a . fa (z) a (2)
[%’_ ’ A"'P(z)] "n'p] " "‘B(’)[b‘-l'p(z)] - 1(m+p+1)8*(z){b"*1op ]

\ ®,p ®-1,p m+1.P(z)
(F (2)

= -1 ™ P ]1 (Sayb)
Gm’p(z)

vhere

A (2) =t /r + i(2m+p+1)[(1 v )clurt - ir a'/z) (6a)
m,p s s s s s '

B(z) = - (a.r;/rs + (1 - az)c/mri - a'/zJ - i(r;/rs . Zu/mri), (6b)

the prime denotes 3/3z, * denotes the complex conjugate and

21! ® -1
(2) ! « (148 1) “cos pé
o, p c m! p D,
[Zm p(z)] " 2re (m+p)! J.de J‘ dt S(%,6,z) (Dm(a)] [ ],
? o o

sin p8
(6c,d)

vhere § = 2r2/r§. The equations for am,p and bm,p in (5) are
underdetermined, since the function B(z) can be showvn to be arbitrary. If
ve choose B(z) = 0, for example, we would in effect be expanding the
radiation field in the conventional vacuum Laguerre-Gaussian modes.11 For
a source free medium, B = 0 would be the most appropriate choice. 1In the

presence of a source term a more appropriate choice for B(z) can be found.

This is accomplished by considering the case vhere the radiation beam at




z = 0 has & Gaussian radial profile symmetric about the z-axis. Let us
further assume that for z > O the radiation beam profile remains
approximately Gaussian vith a nearly circular cross section. In this case,

ve expect the magnitude of the coefficients, a p(z) and b.I p(z) to become
4

progressively smaller as = and p take on larger values. A good
approximation to the radiation beam is then given by the lovest order mode,
80,0(2)' Prom (5a), ve find that only the m = 0,1 and p = 0 equations are
relevant and they are (3/3z + AO,O)aO,O = - iFO,O and PI,O - 880,0’ The
second equation provides us wvith a specific expression for B(z) in terms of
one of the moments, Fl,O’ of the source term. The choice of B(z) =
FI,O(Z)/aO,O(Z) is source dependent and when substituted into (6b) yields
first order coupled differential equations for the parameters, T, and «a, of
the Laguerre-Gaussian expansion in (3) and (4a,b). The set of equations in
(5a,b) may nov be solved self-consistently for the modal coefficients am,p

and b .
m,p

Ve first consider the dynamics of an axially symmetric radiation field

4,5,7,12

in the FEL. The appropriate index of refraction for a Gaussian

beam density profile is

2 .
n(r,z,a) = 1 A v (N
12,8) = 1+ 3 w2 Y [a(r,z) ]’
vhere 2(r z) = 2(r /T (z))zexp(—rz/rz(z)) r, (z) is the electron beam
plfs2) = BolTye T piZ77 Ty

radius, Tyo = rb(O), wo 1s the initial beam plasma frequency on axis,
a, = |e|Bv/kvmoc2 is the normalized viggler amplitude, y is the electron’s
Lorentz factor, y is the electron’s phase in the ponderomotive wave
potential and < > denotes the ensemble average over all electrons. VWith

the assumption that in the source function the complex radiation amplitude




can be approximated by the lowest order mode, we find that (2) can be

vritten as

r /r -1u)&/2

S(E,z) = -4v(a /rb) T——L—T < f> ’ (8)

vhere v = (wbo rb0/2c)2 = Ib/17x103 is Budker’s constant and Ib is the

electron beam current in amperes.

An envelope equation for the radiation beam can be obtained using (8)

and (6b),
r'’ + Kz(z r,,r_,|a I)r =0 (9
s b s’ 170,01 s !
vhere
K2 = (2c/0)?]-1 + CP<sing? +2C<cosw + (w/2c)r§ ¢ <sing | r7%,
(10)

and C(z) =(2v/y)ﬂ(z)av/|ao’o(z)|, measures the coupling between the
radiation and electron beam, H(z) =(1-F)/(1+F)2 and F(z) = ri/rz is the
filling factor. The first term on the right hand side of (10) is the usual
diffraction term, the second and third terms are always focusing while the
last term is usually a defocusing contribution. In the high gain trapped
particle regime, <siny> and <cosy> are approximately constant, while

|a o, O(z)| increases with z. Hence, K strongly depends on z and a guided
beam (r; = 0) cannot be maintained. In the low gain trapped particle
regime |a°,o(z)| increases slightly and, therefore, a guided beam can be
approximately achieved. In either the Compton13 or Raman exponential gain
regime, conditions for a stable guided beam can be found.

The FEL parameters used in the following illustrations are similar to

those used in Ref. 14 and are given in Table I where the resonant phase




approximation is used and Zp = nrz(O)/A is the Rayleigh length. Ve present
first a comparison between; a) the exact numerical solution of the wave
equation in (1), (using 64x64 Fourier modes), b) the solution using a
vacuum Laguerre-Gaussian modal expansion (B = 0, using 10 modes) and c¢) the
solution from the Laguerre-Gaussian SDE approach (B = Fl,O/aO,O’ using 10
modes). For an axially symmetric configuration, we show in Fig. 1 the
evolution of the radiation beam amplitude on-axis obtained from methods
(a), (b) and (c). The SDE solution (c) is in excellent agreement with
solution (a) while solution (b), beyond a Rayleigh length, grossly deviates
from (a) and (c). The excellent results obtained with the SDE approach are
also reflected in the radiation amplitude profile. Figure 2 shows the
evolution of the radiation beam radius, s in the linear, exponential gain
regime of the FEL for the parameters in Table I. Five transverse modes
vere used in the numerical calculation.

Ve now consider the case where the electron beam centroid is displaced
transversely in the x direction. The index of refraction in this case is
given by (7) with w%(r,z) multiplied by (1 + Z(rsxb/rg)cose) vhere xb(z) is

the displacement of the electron beam’s centroid and bel «Kr In the

b
FEL source term we consider only the lowest order symmetric and anti-
symmetric mode with respect to the x axis. The centroid of the radiation
beam is given approximately by
rs(z) [ao 1]
- 5_4_. ,
0,0'R

(11)

vhere XL is defined so that |a| is proportional to exp(-((x - xL)“ + yz)/ri)

and ( )R denotes the real part. Figure 3 shows the electron and radiation

beam centroids, x, = X (l—sech(kcz)) and x, for x /4 = .075cm

b L c = b

and XC = ?n/kC = zR/A = 2.7m. In these numerical illustrations, 10 radial




modes and 2 angular modes vere used. After an initial transient, the
radiation centroid is guided by and oscillates about the electron beam’s
centroid. Ve have also studied the situation vhere the electron beam centroid
oscillates according to Xy = X, sin kcz vith X, <« Ty and Xc - 2n/kC < Zp-
Because of the high gain in the radiation field the radiation centroid
eventually follovs the average position of the electron beam’s centrofd. Vhen
the electron beam centroid osciilation is due to the wiggler field, there is
no change in the evolution of the radiation field.

Under certain conditions the electron beam envelope can be spatially
modulated about the z-axis if the weak focusing force due to the wiggler
gradient is not balanced by the defocusing forces arising from emittance and
self field effects. It can be shown that the amplitude and waist of the
radiation field undergo a modulation similar to the electron beam envelope
modulation.

Ve have analyzed, using the SDE formalism, a number of effects associated
with radiation focusing and guiding in the FEL. This approach can be readily
generalized to include both spatial and temporal variations in the radiation

field in order to study sideband generation and focusing effects

simultaneously in the FEL.




Table I

Electron Beam

Current Ib = 2kA, (v = 0.118)
Energy & - 50 MeV, (v = 100)
Radius To ™ 0.3 cm

Radiation Beam

Vavelength A= 10.6um
Input Pover P(z=0) = 230MV, (|a(0,0)] = 1.84x10™%)
Spot Size rs(O) = 0.6 cm, (zR = 10.7 m)

Viggler Field
Vavelength Xv = 8 cm

Viggler Strength Bv = 2.3 kG, (av = 1.716)

Resonant Phase *R = 0.358 rad
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Fig. 1
Fig. 2
Fig. 3

Figure Captions

Radiation amplitude on axis, |a(0,z)| for a) exact numerical
solution (64x64 Pourier modes), b) vacuum modal expansion solution
(10 modes), and c) SDE solution (10 modes) at distance of

z = AzR = 42.8 m.

Evolution of the radiation beam radius, 1/e widtn. .y for initial

spot sizes: a) 0.35 cm, b) 0.24 cm, and c¢) 0.15 cm.

Electron and radiation beam centroids, Xy and X, for a displaced
electron beam, Xy = xc(l-sech(kcz)) vith X, = rb/b and

A =2k = z_ /4.
c c R
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Table 1.

Table Caption

FEL simulation parameters
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Appendix III:
Analysis of radiation focusing and steering in

the Free Electron Laser by use of a source dependent
expansion technique

11




I1. Formulation of the Source Dependent Expansion (SDE)

The radiation focusing and guiding configuration for the FEL is shown

in Fig. 1. In our model the vector potential of the linearly polarized

radiation field is
ﬁR(r»eozvt) = éiEingl el(wz/c—wt)ex 4 C.C., (1)
wvhere A(r,8,z) is the complex radiation field amplitude, w is the frequency

and c.c. denotes the complex conjugate.

The wvave equation is

2 2 2 .
13 3 1 3 3 13 4n
[;5?[“)* fIT IR A @

vhere Jx(r.e,z,t) is the driving current density associated with the

medium. Substituting (1) into (2) leads to the following reduced wave

equation,
12 (2).1 @ w2
(; Er (rs;) + T T 2i < 3z a(r,8,z) = S(r,90,2z), (3)
r- 96
vhere a(r,8,z) = |e|A/moc2 = |alexp(i¢) is the normalized complex radiation

field amplitude and ve have assumed that a(r,6,z) is a slowly varying
function of z, i.e., a l3a/3z << w/c. The amplitude, |a(r,®8,z)|, and phase
¢(r,8,2z) are real functions expressed in terms of the polar coordinates,
r,8 and z. The source function, S, has the general form

2 .

S(r,8,2z) = 95 (l—nz(r,e,z,a))a(r,e,z), (4)

c

vhere n(r,8,z,a) is the index of refraction associated with the medium and

is in general complex and a function of r,6,z as well as the radiation

field, a.




Ve choose the following representation for a(r,6,z) in terms of

associated Laguerre polynomials,

a(r,8,2) = [ L ¢, (8,2)D)(r), (5)
m p

vhere m « 0,1,2,:+-, p = 0,1,2,---,

Cm,p(e,z) = am'p(z)cos pe «+ bm’p(z)sin pe, (6a)
= 2 2,2
P vor P P (2r -(1 - ia(2))r/ri(2)
oP(r) - [‘s(z)) LP E——Z(z))e s(2), (6b)
s

In Eqs. (6a,b), the complex coefficients a_ p(z) and bm p(z) are functions
3

1

of z, rs(z) is the radiation spot size, «(z) is related to the inverse of
the radius of curvature of the radiation beam (curvature of wavefront) and
Lﬂ is the associated Laguerre polynomial. Solving for the unknown
quantities am,p, bm.p’ ry and o in terms of the source term S allows us to
completely describe the radiation dynamics. It will be shown later that
the representation in (5) is underspecified, there are more unknown
quantities in (5) than available equations. The additional degrees of
freedom in our representation allow us to specify particular functional
relationships for the unknown quantities Ty and « in such a way that the
number of terms (modes needed to accurately describe the radiation beam) is
small.

To proceed with the derivation we substitute (5) into (3) and obtain

2
e (o (e 2y _ 2l
[a& (& aa] - 4{]}}Dm(£)

e

Y lac. (82732 + ¢ (8i2)lE - 4
L mpr ot ENEE T T pt U ez T

m,p

MNI

- %%)s(i,e.z). (7)




vhere § = 2r2/r§(z). It can be showvn that the second term on the left side

of (7) can be put into the form

2
8 _ 4ic 3 ) _p |iyp
{az 2 [a& ({ a&) 4{]}Dm(£)
S

- &y @DPCE) - i DBEID] (8 - i(mep)B (DD (), (®)
vhere
A (z) = r'/r + i(2m+p+1)((1 + az)c/wr2 - ur’/r + u'/2] (%a)
m,p s s s s’ s !

B(z) = - (ur;/rs . (- uz)c/wrz - a'/z] - i[r;/rs - 2ac/wr§), (9b)

* denotes the complex conjugate and the prime denotes a derivative with

respect to 2z, i.e., ’ = 3/3z.

In obtaining (8) the following identities wvere used:

P _ p p P
&b = @mepeUP — (mey0P L - (mepytP o,
zaaug/a{ - (2m+p—£)U§ - 2(m+p)U£_1, and

&azug/aaz . aug/ai - (1/4)({ . plre - 2(2m+p+1))Uz,

vhere Uﬁ(&) = Ep/zLﬁ(i)exp(—E/Z). Substituting (8) into (7) and performing

the operation

2n
J (cos p’'6, sin p’'6)d6/2n,

o

on the resulting equation yields




m, p

a a
Zi:[og(a/az . Am’p)[bm'P] - tfemys 0P L (m+P)B*D£_1)[bm'p]]
m=0

2n

. (1+8
-1C p'
- 5l j de S({.e,z)[

° sin p6

vhere §

integrating over § from O to = yields

0)°1cos pe]

m,p

(10a,b)

o is the Kronecker delta. Multiplying (10) by (Dg)* and

m+1,p

(11a,b)

(a a (2) a (z)
3 . m,pl _ . m-1,p o * m+1l,p
[az Am,p(z)]‘bm’p] 1mB(z)[bm_lip(z)] 1(m+p+1)B (z)[b (z)]
o Wm’p(z)]
Fm,p(z)

o o0

(2) ' .
m,p _ .t _m p
[-:; (Z)J T 2nw (m+p)! j de d£ S(EyeyZ) (Dm(a)) [

In obtaining (11) wve used the orthogonality relation,

[oPce) oPcer)"ae - xR

0

m,n’

The function B(z) is arbitrary and is not

for ag p and bm in (11) are underdetermined,

’ )

be shown to be arbitrary. If we choose B(z) =
effect be expanding the radiation field in the

Laguerre-Gaussian modes.11 Ve will shov later

-1
(1+6p’0) cos p®
sin pé
(12a,b)
specified. The equations

since the function B(z) can
0, for example, we would in
conventional vacuum

that, in general, expansion




in terms of the vacuum modes, B =« 0, would require far too many modes to
accurately describe the radiation beam over distances of many Rayleigh
lengths. A more appropriate choice for B(z) vill depend on the particular
problem under consideration. Let us consider one of the most common
situations vhere the radiation beam at z = 0 is known and has a Gaussian
radial profile symmetric about the z-axis. In this case the complex
radiation amplitude at z « 0, is given by a(r,9,0) = a0,0 exp

(-(1 - iu(O))rZ/ri(O)) and is independent of 6. Let us further assume that
for z > O the radiation beam profile remains approximately Gaussian with a
nearly circular cross section. That is, the dominant part of the source
S(r,®,z) has an r and z dependence and the 6 dependent part is weak. In
this case we expect the magnitude of the coefficients, am,p(z) and bm,p(z)
to become progressively smaller as m and p take on larger values, i.e.,

[, |b The lowest

la ,| and |bm,p| >> |b

m,pl >> Iam+1,pl’ Iaﬂl,P*‘ m+1,P m’p+1|.

order approximation to the radiation beam is given by the a, o(z) mode.
Hence, if the a5 o mode gives a rough approximation to the radiation field
ve may solve for a, 0(z), rs(z) and o(z) using (1la). From (lla) we find
that only the m = 0,1 and p = 0 equations are relevant and yield

- iF

(e/2z + A (13a)

0,0°30,0 = 0,0’

Ba F (13b)

0,0 © "1,0°

Ve nov have a specific expression for B(z), from (13b), in terms of one
of the moments, Fl 0 of the source term. Substituting (9b) into
B(z) = Fl 0(z)/a0 O(z) yields the following first order coupled

differential equations for re and «

’

re - 2ca/mrs = - rs(Fl,O/aO,O)I’ (14a)




: 2. 2
o« - 201+ ad)esurl - 2((F1'0/a0'0)R - «(Fy o/ag o) ), (14b)

wvhere ( denotes the real and imaginary part of the enclosed function.

)R, 1

Since rs(z) and «(z) are nowv known from (l4a,b) we may solve for Am p(z)
]

using (9a),

2
Am,p(z) = 2cu/wrs -( /a

F1,07%0,0'1

. i(2m+p+1)(2c/wr§ + (Fy o/30.0) }. (15)

Using B(z) = F (z)/a (z) and the resulting equations for r_ and « in
1,0 0,0 s
(14) allows us to solve for am,p and bm,p in (11a,b).

It is useful at this point to consider the simple case of propagation
of a radiation beam in vacuum (no source term). To illustrate this well-

b r_ and o« in the source-free case,

knovn limit we evaluate a ,
m,p s

'
m,p

. re 2 3
Fm,p = Gm,p = B = 0. Equations (l4a,b) become re = (2¢c/w) /rs and

o = (w/2c)rsrS and have the solutions

2,.2,1/2

rs(z) = rS(O)(l + 2 /zR) , (163)

a(z) = 2z/2 (16b)

R’

vhere rs(O) is the minimum radiation spot size at z = O, zp = (w/2c)r§(0) =

nrz(O)/A is the Rayleigh length and X = 2nc/w is the wavelength. From

(102) wve find that Al p(z) = 2(a(z) + i(2m+p+1))cwr§(z) vhich allovs us to

solve for a
m,

a (z)] [a (0)]
m, P - |, ™P r (0)/r (z)]e
[bm,p(z) by, (O [ s s )

p and bm,p using (11)

—i(2m+p+1)tan_1(z/zR)' (17)

Equations (16a,b) and (17) together with the representation in (5), (6a,b)

is in agreement with the conventional vacuum Gaussian-Laguerre form.




III. Radiation Focusing and Steering in FELs

A. Radiation Beam Envelope Equation
Ve first consider the dynamics of an axially symmetric radiation
field in the FEL. For a linearly polarized wiggler field and axially
symmetric electron beam having a Gaussian density profile, the appropriate

4,5,9,12

index of refraction for the FEL mechanism is

2 .
wb(r,z) o1 a,
n(ryz,a) =1+ 3 _;5_——_ <; a(r,z)| (18)

—

vhere wi(t,z) = wbi(rbo/rb(z))zexp(-rz/ri(z)), rb(z) is the electron beam

172 is the initial beam plasma

. 2
radius, r o = 1, (0), @, = (4nje] Npo/™o)
frequency on axis, Mo is the initial beam density on axis,

2 . . . . . .
a, = |e|Bv/kUmoc is the normalized wiggler amplitude, Bv is the wizgler
magnetic field strength, kv is the viggler wave number, y is the electron’s
Lorentz factor, ¢ is the electron’s phase in the ponderomotive wave
potential and < > denotes the ensemble average over all electrons.

Substituting (18) into (4) and noting that |1-n|<<1, gives the FEL source

function

2 .
- wb(r,z) e-1w> a(r,z
S(r,z) = —c—z-— a, <’; ‘,z%?‘:-;g—[ . (19)

Since the electron beam radius, Iy, may not be matched with respect to the
focusing fields (wiggler gradients) and defocusing effects (beam emittance)
ve allowv r, to be a function 6f z (this case is considered in Sec. IIIC).
To proceed vith the analysis ve assume that in the source function the
complex radiation field amplitude in (5) can be approximated by the lowvest
order mode, ao,o(z)exp(—(l-ia)rz/ri). Vith this assumption the source

function can be wvritten as

10




r /r —1u)£/2

S(&z) = -4v(a /rb) T——*—T < f> ' (20)

vhere v = (wbo rb0/2c)2 = Ib/17x103 is Budker’s constant and Ib is the
electron beam current in amperes. The moments of the source function,

Fm p(z), are given by (12a)

ymel (21)

C
Fm, =-46\:(a /rb)T—’—T< v>

vhere we have assumed ¢ to be constant across the electron beam. Since we

MM(AN
U‘NU’N

are considering an axially symmetric electron beam and radiation field we

te that = F =G =0 f > 0. Substitutin 21) int l4a,b
note that a m,p n,p or p g (21) into (l4a,b)
and (15) yields

’

c .
rr. - 2c/w = -25 C(z) <sin ¥>, (22a)
2! 2 c .
rle’- 21 + &¥)esw = -4 c(2) (<cos W + a <sin w>], (22b)
O(z)_ 2 [a + 1(2m+1) - C(2) ((sin w>+i(2m+l)<cosw>J], (22¢)
r'w
S

vhere C(z) =(2v/1)B(2)a,/ |ag o(2) |, B(z) =(1- F)/(1+F)% and F(z) - g 2 s

the filling factor. The function C(:z) measures the coupling between the
radiation and electron beam and decreases as the radiation grows.
Equations (22a) and (22b) can be combined to give the following

envelope equation for the radiation beam

, 2
r'' + K (z’rb’rs’la0,0l)rs = 0, (23a)

s
vhere the initial condition on r! is found from (22a) and

11




K2 = (2c/w)2 -1 « C2<sinw>2 +2C<cosy> + (w/2c)r§ C'<siny r;G.

(23b)

The first term on the right-hand side of (23b) is defocusing and
corresponds to the usual diffraction expansion, the second and third terms
are alvays focusing while the last term is a defocusing contribution.
B. Radiation Focusing

Focusing occurs when K2 > 0. In the high gain trapped particle
regime, the condition for a perfectly guided beam (K = 0) cannot be
maintained since Kz decreases as the radiation grows. In the small signal,
exponential gain regime the quantities <siny> and <cosy> may be calculated
from the linearized orbit equations. The envelope equation may then be
solved to determine r,as a function of distance along the wviggler. One
finds that in this regime, conditions for a perfectly guided radiation beam
can be achieved.13

Using (1la) or (13a) we find that the magnitude of ag 0(z) evolves

according to

2
* . * *
(3/3z + (hg o + Ay o)) |ag ol = -1(Fg o 35 o - Fg 00,0 (24)

Substituting (21) and (22c¢) with m = O into (24) and using (22a) yields

4o v r <siny>
3z (rslaO Ol) T w Y ay 2, ° (25)
(r” « rb)

vhere (rsla0 0|)2 is proportional to the radiation power, P(z) = 2.15x1010

(Ia0 O(z)lrs/x)zlvatts]. Equation (25) should be solved together with

(23a) and show that the maximum rate of increase in power occurs vhen

12




C. Radiation Steering in the FEL
In the FEL the centroid of the electron beam may be displaced off-
axis by a misalignment, a redirection of the beam or because of the
oscillations in the wiggler field. To determine the degree to which the
radiation beam will followv or be steered by the electron beam, we consider
the case vhere the electron beam centroid is displaced transversely in the
X direction. The index of refraction in this case is given by (18) with

wg(r,z) replaced by

2,2
-r /rb

wi(r,e,z) = w%o(rbo/rb)2 e (1 + (2rxb(z)/r§)cose], (26)

vhere xb(z) is the displacement of the electron beam’s centroid and
|xb|<< ry- In the source term, given by (19), ve consider only the lowest
order symmetric and anti-symmetric mode with respect %o the x axis,

172

a(r,0,z) -~ (a0 0" 2.1 £ cos8)exp(-(1-ia)&/2). With this assumption

the moments of the source function, Fm p(z), for p = 0,1 are,
b

. ) 2/ 2 1)m

o 2. /e " 20,0 .[30,1] (rg/ry -

fnp” %G \’(av/rb)<v ¢>W[C(Z) TS 0t) 2, meel
! ' (r /r. +1)
s b

(27)

172 2 .

vhere €(z) = 2 xb(z)rs(z)/rb and Gm p = 0. For small displacements of

the electron beam centroid it is easy to show that the centroid of the

radiation beam is given by

r (z) f(a
x (2) = S [—ng] (28)

V2 20,07R

vhere x, is defined so that [a| is proportional to exp(-((x - xL)2 +

2.,.2
y )/rs)-

13




D. Effect of a Modulated Electron Beam

The electron beam envelope in the FEL can undergo modulations.

The modulation is symmetric about the z-axis and can be caused by improper
values for the beam emittance, radius and/or current injected into the
viggler region. For small perturbations about the matched beam radius,
Tpor ve find from the electron beam envelope equation that rb(z) = Tyo

(1 + Asin(KBz)) vhere Tho = (2€n/avkv)1/2, KB - avkv/JEY is the betatron
vave number, due to the weak focusing effect of viggler gradients, e is
the normalized emittance, a_ - IeIBv/(kvmocz) and & << 1. The modulation
of the electron beam envelope may be included in the source term, Eq. (19),
through the electron beam plasma frequency, wb(r,z). The effect of a
modulated electron beam on the radiation beam is illustrated in the next
section.

In cases where the electron beam centroid or envelope is displaced
or modulated with a spatial period close to the wiggler period, it becomes
necessary to include in the source function, Eq. (19), the rapidly varying
part of the phase y. This rapidly oscillating contribution to the phase,

(ai/(& + 2a3))sin 2kvz, arises from the linearly polarized wviggler field.

14




IV. Numerical Results

In this section wve apply the SDE formulation, given by (11) together
wvith (12) to the FEL. Using the source term given in (4) and (18) ve first
present a comparison between; a) the exact numerical solution of the wvave
equation in (4), (using 64x64 Fourier modes), b) the solution obtained
using a vacuum Laguerre modal expansion (B=0, using 10 modes) and c¢) the
solution obtained from the Laguerre SDE approach (B « Fl,O/aO,O’ using 10
modes). The FEL parameters used in these illustrations are similar to
those used in Ref. 14 and are given in Table I where the resonant phase
approximation, <exp(-iy)> = exp(-in), is used for demonstration purposes.
Propagation distances are measured in terms of the Rayleigh length, 2p =
nri(O)/A vhere A\ is the wvavelength and rS(O) is the minimum spot size.

For an axially symmetric configuration, Fig. 2 shows the radiation
magnitude, |a(r,z)| as a function of r at four Rayleigh lengths
(z = 42R = 42.8m) for the (a), (b) and (c) methods of solution. The SDE
solution (c) shows excellent agreement with solution (a), whiie solution
(b) is in poor agreement. To continue this comparison we showv in Fig. 3
the evolution of the radiation beam amplitude on-axis obtained from methods
(a), (b) and (c) as a function of propagation distance. The SDE solution
(c) is again in good agreement with solution (a) where as solution (b),
beyond a Rayleigh length, grossly deviates from (a) and (c). The results
in Figs. 2 and 3 clearly shov the improved accuracy of the SDE approach
over the conventional vacuum expansion-method. As an example of radiation
focusing, for an FEL in the small signal, exponential gain regime, the
radiation beam radius is found to asymptotically approach a matched
perfectly guided value as shown in Fig. 4. For this example, the

parameters of Table I were used and five modes employed.

15




Ve nov use the SDE method to illustrate the steering of the radiation
beam when the electron beam is displaced off-axis. 1In these numerical
jllustrations, 10 radial modes (m = 0,...,9) and 2 angular modes
(p = 0,1) vere used. In the first example, the electron beam centroid is
displaced off-axis according to Xy = X, (l—sech(kcz)). Figure 5 shovs the
electron and radiation beam centroids Xy and Xy for X, = rb/b = 0.075¢m and
XC = 2n/Kc = AzR = 42.8m. The radiation centroid follows and oscillates
about the electron beam’s centroid. Figure 6 shows the radiation profile
at twvelve Rayleigh lengths (z = 12 zR). The asymmetry of the radiation
profile is apparent. Figure 7 shovws another illustration of steering where
the electron beam is displaced more abruptly, with Xc = zR/A = 2.7m. After
an initial transient, the radiation centroid is again steered by and
oscillates about the electron beam’'s centroid. In the next example we take
the electron beam centroid to be oscillating about the z-axis, Xy = xcsin
kcz, vith amplitude X, = rb/4 and period Xc = 2p = 10.7m. Figure B shows
the electron and radiation centroids Xy and X;, @s a function of Z/ZR'
Because of the high gain in the radiation field, the radiation centroid
eventually follows the average position of the electron beam’s centroid.
Figure 9 shovs the distortion of the radiation profile due to the
oscillating electron beam at twelve Rayleigh lengths (z = 122R). In the
case wvhere the electron beam centroid oscillation is due to the wiggler
field, X, = av/ka and kc = ZH/AV, no noticeable change in the evolution of
the radiation field (compared to the case for X, = 0) is observed.

The last illustration is for the case where the electron beam envelope
is spatially modulated. Using the parameters in Table I we find that
£, = 0.06 cm-rad and AB = 2n/KB = 4.66m. Figure 10 shows the amplitude of
the radiation field on-axis as a function of propagation distance when the
electron beam envelope is not matched, Ty = Ty (1 + Asin(KBz)), vhere
= 0.3cm and 8 = 0.1.

Tbo
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V. Conclusion

In this paper a technique for solvinﬁ the three-dimensional wvave
equation vith a driving current density has been developed. Using this
source dependent expansion technique, a number of effects associated wvith
radiation focusing and steering in the FEL have been illustrated. The
formalism is used to derive a general envelope equation for the radiation
beam. Using the envelope equation, we find that it is possible to have a
stable guided optical beam in the exponential gain (small signal) regime
but not in the high gain trapped particle regime. Ve also considered the
effects on the radiation beam vhen the electron beam centroid is
transversely displaced and vhen the electron beam envelope is modulated.
The source dependent expansion approach lends itself to fast and accurate
numerical solutions as wvell as to a better analytical description of
focusing and steering in the FEL. Ve conclude by noting that this approach
can be readily generalized to include both spatial and temporal variations
in the radiation field in order to study sideband generation and focusing

effects simultaneously in the FEL.
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Electron Beam

Current
Energy

Radius

Radiation Beam

Vavelength
Input Power

Spot Size

Viggler Field

Vavelength
Viggler Strength

Resonant Phase

Table 1
Ib = 2kA, (v = 0.118)
g = S0 MeV, (v = 100)
fvo = 0.3 cm
A = 10-6Um

P(2=0) = 230MV, (a(0,0)]| = 1.84x107%)

rs(O) = 0.6 cm, (zR = 10.7 m)

A =8 cm
v
Bv = 2.3 kG, (av = 1.716)
wR = 0.358 rad
19




Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

10

. beam, x, = xc(l-sech(kcz)) vith X, = rb/b and X = 2n/kC = AzR.

Figure Captions

Schematic of radiation focusing and guiding in an FEL.
Radiation amplitude profile, |a(r,z)| for; a) exact numerical
solution (64x64 Fourier modes), b) vacuum modal expansion solution
(10 modes), and c¢) SDE solution (10 modes) at a distance of z = AzR
= 42.8 m.
Radiation amplitude on axis, [a(0,z)| for; a) exact numerical
solution (64x64 Fourier modes), b) vacuum modal expansion solution
(10 modes), and c) SDE solution (10 modes).
Spatial evolution of the radiation spot size in the exponential
gain regime for initial spot sizes; a) 0.35 em, b) 0.24cm, and
c) 0.15 cm.
Electron and radiation beam centroids, Xy and X, for a displaced
electron beanm, Xy = xc(l-sech(kcz)) with X, = rb/A and
XC = Zn/kC = AzR. H
Radiation amblitude profile at z = 122R for a displaced electron

b -

Electron and radiation beam centroids, Xy and Xy for a displaced

C

electron beam, Xy = xc(l—sech(kcz)) with X, = rb/a and

XC = Zn/kc = ZR/A.

Electron and radiation beam centroids, Xy and X, for an oscillating

r4

electron beam, x, = x sin k z vith x_ = r, /4 and A = 2n/k .
b c c c b c c R

Radiation amplitude profile at z = 12 2p for an oscillating

electron beam, x, = x sin k z vith x_ = r, /4 and A = 2n/k_ = z,.
b c d c b c c R

Radiation amplitude on axis, |a(0,z)| for a modulated electron

beam, r, = rbo(l + B sin(KBz)) vith Tyo = 0.3¢cm, & = 0.1,

b

XB = 2n/KB = 4.66 m.
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Appendix IV:

Radiation focusing and guiding in the Free
Electron Laser




II. Formulation of the Source Dependent Expansion (SDE)

The radiation focusing and guiding configuration for the FEL is shown
in Fig. 2. In our model the vector potential of the linearly polarized
radiation field is A (r,0,z,t) = (1/2)A(r,e,z)exp(i(wz/c-mt))éx + c.c.,
vhere A(r,9,z) is the complex radiation amplitude, w is the frequency

and c.c. denotes the complex conjugate.

The radiation field satisfies the wave equation (Vz—c—zaz/atz)QR =

—4nc—1Jxex, vhere Jx(r,e,z,t) is the driving current density associated with

the medium. Substituting A, into the wave equation leads to the .olloving

R

reduced wave equation,

2
13 9 1 3 , W 9
[; _a? [r—a?) + 2 —2 + 21 c ‘5‘2' a(r,Q,Z) = S(r)eyz)! (1)
r- @86
wvhere a(r,8,z) = |e|A/moc2 = |alexp(i¢) is the normalized complex radiation

field amplitude and we have assumed that a(r,8,z) is a slowly varying
function of z, i.e., a—laa/az << w/c. The source function, S, has the
general form
2
S(r,8,2) = 5 (1-n%(r,8,2,a))a(r,8,2), (2)
c

where n(r,8,z,a) is the index of refraction associated with the medium and

is in general complex.

We choose the following representation for a(r,6,z) in terms of

associated Laguerre polynomials,

a(r,8,2) = L L €, (8,2)D0(r), (3)
m p




vhere m = 0,1,2,---, p = 0,1,2,+-+,

Cm,p(e,z) = am,p(z)cos po + bm’p(z)sin re, (4a)
= p 2 _ g 2,2
Dp(r) ) (/21 ) LP 2r ]e (1 ic(7))r /rs(z)' (4b)
m r (z) m 2
s (z)
S
In Eqs. (4a,b), am,p(z) and bm’p(z) are complex, rs(z) is the radiation

spot size, a(z) is related to the curvature of the wavefront and Lz is the

associated Laguerre polynomial.

Substituting (3) into (1) and using the orthogonality properties of

Lﬁ, cos pH, and sin po, we obtain,

3 am’p _ am_l,p(z) ' N am+l’p(z)
[—— + Am,p(z))[b ] - 1mB(z)[b (zy| - i(m+p+1)B (z2) b (2)

az m, p m-1,p m+1,p
(2)
_ _ | mp
= 1{2 (2)], (5a,b)
m,p
vhere
r . 2 [ ’ ’
Am’p(z) = rS/rS + 1(2m+p+1)[(1 + o )c/wrs - ozrs/rS + o /2), (6a)
B(z) = - [ar'/r v (- od)eswrl - a'/z) . i(r'/r _ 2ac/wr2) (6b)
- s s S s s s/’

* denotes the complex conjugate and the prime denotes a derivative with

respect to z, i.e., ' = 3/3z and
2!1 @ _1
() ! 5 [(1+8 ) "cos p@
m, p < _m! p p,0
{:; (2)] T 2Rw (mep)! J- de J- dg 5((»9.2)(Dm({)] [ . ,
mp sin p@
0 )
(6¢,d)




wvhere § = 2r2/r§.

The function B(z) is arbitrary and if not specified, the equations for
a p and bm,p in (5) are underdetermined. If we choose B(z) = 0, for
example, we would in affect be expanding the radiation field in the
conventional vacuum Laguerre modes.7 Ve will show later that, in general,
expansion in terms of the vacuum modes, B = 0, would require far too many
modes to accurately describe the radiation beam over distances of many
Rayleigh lengths. To find a more appropriate choice for B(z), we consider
the case wvhere the radiation beam at z = 0 has a Gaussian radial profile
symmetric about the z-axis. In this case the complex radiation amplitude,
at z = 0, is given by a(r,6,0) = a0,0 exp (-(1 - ia(O))rz/rz(O)) and is
independent of 6. Let us further assume that for z > O the radiation beam
profile remains approximately Gaussian with a nearly circular cross
section. In this case we expect the magnitude of the coefficients, a, p(z)

and bm,p(z) to become progressively smaller as m and p take on larger
values. The 1lowest order approximation to the radiation beam is then
given by the aO,O(Z) mode. From (5a) we find that only the m = 0,1 and p =
0 equations are relevant and are (d/3z + AO,O)aO,O = - iFO,O and 0 = -
i(Fl,O - BaO,O)' Ve now have a specific expression for B(z) in terms of
one of the moments, Fl,O’ of the source term. Substituting B(z) =
Fl,O(Z)/aO,O(z) into {6b) yields first order coupled differential equations
for ry and o. Also using B(z) = Fl,O(z)/aO,O(Z) allows us to solve for

Am,p in (6a) and hence for am’p and bm’p in (5a,b).




I11. Radiation Focusing and Guiding in FELs

A. Radiation Beam Envelope Equation
We first consider the dynamics of an axially symmetric radiation
field in the FEL. For a linearly polarized wiggler field and axially
symmetric electron beam having a Gaussian density profile, the appropriate

index of refraction for the FEL mechanism4’5’6’8 is

N

n(r,z,a) = 1 +

wﬁ(r,z) g_i a, 2
2 Y [a(r,2)] (

vhere w%(r,z) = wbi(rbolrb(z))zexp(-rz/ri(z)), rb(z) is the electron beam

1/2

. i 2 . ...
radius, ry = 1, (0), &, = (4nfe] Npo/ ™) is the initial beam plasma

frequency on axis, Mo is the initial beam density on axis,

IeIBw/kwm 2 is the normalized wiggler amplitude, Bw is the wiggler

OC
magnetic field strength, kw is the wiggler wave number, y is the electron’'s
Lorentz factor, y is the electron’s phase in the ponderomotive wave
potential and < > denotes the ensemble average over all electrons. With
the assumption that in the source function the complex radiation amplitude

can be apprcximated by the lowest order mode, we find that (2) can be

vritten as

r /r -1a)£/2

S(&,2z) = -4V(a /rb) ]——‘—T< w> ) (8)

vhere v = (wbo rbo/2c)2 = Ib/17x103 is Budker’s constant and Ib is the

electron beam current in amperes. Since we are considering an axially

symmetric electron beam and radiation field we note that a_ b~ Fm b = 0
’ *

for p > 0.

Using (8), equation (6b) can be used to obtain the following

envelope equation for the radiation beam,




2
AN K (z,rb,rs,lao’ol)rS = 0, (9)
wvhere

4

K2 = (2c/w)2 -1 + C2<sinw>2 +2C<cosy> + (w/2c)r§ C,<sinw> r;

(10)

and C(z) =(2v/Y)H(z)aw/|a0 0(z)], H(z) =(1—F)/(1+F)2 and F(z) = r /ri is

2
b
the filling factor. The function C(z) measures the coupling between the
radiation and electron beam and decreases as the radiation grows. The
first term on the right hand side of (10) is defocusing and corresponds to
the usual diffraction expansion, the second and third terms are always
focusing while the last term is a defocusing contribution. The envelope
equation in (9) indicates that in the high gain trapped particle regime,
conditions for a matched beam can not be maintained. However, in the low
gain trapped particle regime or in the exponential gain regime, conditions
for a nearly matched beam can be achieved. Using (5a) we find that the
magnitude of aO,O(Z) evolves according to

a(rslao’ol)/az =(4c/w)(v/y)awrs<sinw>/(r§+r§), vhere (rs|aO,Ol)2 is

proportional to the radiation pover, P(z)=2.15x1010(|ao 0(2)[rs/A)2[Watts].
*

B. Radiation Guiding in the FEL
In the FEL the centroid of the electron beam may be displaced off-
axis by a misalignment, a redirection of the beam or because of the
oscillations in the wiggler field. To determine the degree to which the
radiation beam will follow or be guided by the electron beam, we consider

the case where the electron beam centroid is displaced transversely in the




x direction. The index of refraction in this case is given by (7) with

wi(r,z) multiplied by (1 + 2(rsxb/ri)cose) vhere xb(z) is the displacement

of the electron beam’'s centroid andlxb|<< ry. In the FEL source term wve
consider only the lovest order symmetric and anti-symmetric mode with
1/2

respect to the x axis, a(r,6,z) -~ (a0 0 * 3 1{ cosO)exp(-(1-ia)&/2).
) ]
With this assumption the moments of the source function, Fm p(z), for
]
p=0,1, can be evaluated. For small displacements of the electron beam

centroid it is easy to show that the centroid of the radiation beam is

given approximately by

r (z) (a
x (2) = = (59’-1—] : (11)
V2 0,0°R
. . s . . 2 2 2
vhere x is defined so that |a] is proportional to exp(-((x - x )7+ ¥y /)

and ( )R denotes the real part.

C. Effect of a Modulated Electron Beam
The electron beam envelope in the FEL can undergo modulations.
The modulation is symmetric about the z-axis and can be caused by improper
values for the beam emittance, radius and/or current injected into the
wviggler region.
For small perturbations about the matched beam radius, Iygr Ve
find from the electron beam envelope equation that rb(z) = Iio (1 + Asin(KBz))

where r = (2¢ /a k )1/2, K, = a k /42y is the betatron wave number, due to
n v w B vow

b0
the weak focusing effect of wiggler gradients, € is the normalized emittance,

and & << 1.




IV. Numerical Results

In this section we apply the SDE formulation, given by (5) together
vith (6), to the FEL. Using the source term given in (2) together with (7)
ve first present a comparison between; a) the exact numerical solution of
the wave equation in (1), (using 64x64 Fourier modes), b) the solution
using a vacuum Laguerre modal expansion (B=0, using 10 modes) and c) the
solution from the Laguerre SDE approach (B = Fl,O/aO,O’ using 10 modes).
The FEL parameters used in these illustrations are similar to those used in
Ref. 9 and are given in Table I where the resonant phase approximation,
<exp(-iy)> = ex}(—in), is used for demonstration purposes and zp = nrz(O)/X
is the Rayleigh length, X\ is the wavelength and rS(O) is the minimum spot
size.

For an axially symmetric configuration, we show in Fig. 2 the evolution
of thz radiation beam amplitude on-axis obtained from methods (a), (b) and
(c), as a function of propagation distance. The SDE solution (c) is in
excellent agreement with solution (a) wvhile solution (b), beyond a Rayleigh
length, grossly deviates from (a) and (c). This indicates that more modes
are required for the vacuum expansion solution. The excellent results
obtained with the SDE approach are also reflected in the radiation
amplitude profile.

Ve nov use the SDE method to illustrate guiding of the radiation beam
wvhen the electron beam is displaced off-axis. In these numerical
illustrations, 10 radial modes (m = 0,...,9) and 2 angular modes (p = 0,1)
vere used. In the first example, the electron beam centroid is displaced
off axis according to Xp = X (l—sech(kcz)). Figure 3 shows the electron
and radiation beam centroids, Xp and XL for Xo = rb/é = .075cm and XC =

2n/kC = zR/A = 2.7m. After an initial transient, the radiation centroid is




guided by and oscillates about the electron beam’s centroid. In the next
example we take the electron beam centroid to be oscillating about the

z axis, X = X, sin k 2, with amplitude X, = rb/4 and period Ac = 2Zp =
10.7m. Figure 4 shows the electron and radiation beam centroids. Because
of the high gain in the radiation field the radiation centroid eventually
follows the average position of the electron beam’s centroid. In the case
vhere the electron beam centroid oscillation is due to the wiggler field,
X = aw/ka and kc = 2n/kv, no noticeable change in the evolution of the
radiation field (compared to the case for X, = 0) is observed.

The last illustration is for the case where the electron beam envelope
is spatially modulated. Using the parameters in Table I we find that e =
0.06 cm-rad and XB = 2n/KB = 4.66m. Figure 5 shows the amplitude of the
radiation field on-axis as a function of propagation distance when the

electron beam envelope is not matched, Iy = Tyo (1 + Asin(KBz)), vhere

Tvo 0.3cm and & = 0.1

10




Electron Beam
Current
Energy

Radius

Radiation Beam

Wavelength
Input Power

Spot Size

Viggler Field
Vavelength
Viggler Strength

Resonant Phase

los]
fl
[N

Table 1

—
It

2kA, (v = 0.118)

b

Eb = 50 MeV, (v = 100)
o = 0.3 cm
X = 10.6um

223 4
P(z=0) = BOOMW, (|a(0,0)| = 1.84x107 ")

rS(O) = 0.6 cm, (zR = 10.7 m)

A =8 cm
.3 kG, (aw = 1.716)

¢, = 0.358 rad
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Fig.

Fig.

Fig.

Fig.

Fig.

Figure Captions

Schematic of radiation focusing and guiding in an FEL.

Radiation amplitude on axis, |a(0,2)| for a) exact numerical
solution (64x64 Fourier modes), b) vacuum modal expansion solution
(10 modes), and c) SDE solution (10 modes) at distance of

z = 42R = 42.8 m.

Electron and radiation beam centroids, Xy and Xy for a displaced
electron beam, Xy = xc(l—sech(kcz)) wvith X, =T /4 and

b
A =2ﬂ/k =z /4.

d c R
Electron and radiation beam centroids, Xy angd X for an
oscillating electron beam, Xy = xcsin kcz vith Xo = rb/4 and

XC = 2n/kC = zR.

Radiation amplitude on axis, |a(0,z)| for a modulated electron
beam, ry = rbO(l + O 51n(KBz)) vith I'vo = 0.3cm, & = 0.1 and

XB = 2n/KB = 4.66 m.
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Appendix V:

Radiation focusing, guiding and steering in the Free
Electron Laser




RADIATION FOCUSING. GUIDING AND STEERING IN FREE ELECTRON LASERS®

P. Sprangle. A. Tlng‘. B.

Hatiz1"" and C. M. Tang

Naval Research Laboratory
VYashangton, DC 20375-5000

Abstrac:

In a free eleciron laser (FEL). *the radiation
field. wviggler field and eleccron beas resonantly
coupie and modify the refractive i1ndex in the vicinity
of the electron beam. The refractive index {s
sod:fied such that the radiation beas vill tend to
focus upon the electron bean. A method for solving
the 1-D vave equation for the FEL process is outlined.
This approach, called the source dependent expansion
sethod, provides an excellent analytical and numerical
technique for studying optical focusing, guiding and
steering in FELs. A radistion envelope equation is
derived. Conditions and paraseters necessary to
achjeve guided radiation beams (constant radius) in
the exponential gain regime are obtained for FELs
driven by either induction linacs or rtf linacs.
Immediately prior to saturation in the exponentia]
gain region, the ponderomotive potential is large
enough "o trap the beam electrons. The viggler field,
at this point, could be tapered to further increase
the operating efficiency. The possibility of bending
2T steer:ing radiation beams in FELs is discussed and a
condition necessarv for radiation guiding along a
curved electron beam orbit is obtained.

introduction

In manv short wvavelength free electron laser
Jevices the radiation beam wvill not be confined or
grrided by a plructure such as a vaveguide,
furtnermore, in order to provide high gain and
efficiency. it is usually necessary for the
tnteraction length (length of wiggler field) to be
iong compared to the diffraction length (Rayleigh
length) associated vith the radiation beam. 1In the
FEL the tendency of the radiation beas to diffract
avay over a distance of a fev Rayleigh lengths can be
overcome by a focusing phenowenon arising from the
resonant coupling of the radiation and viggler fields
vith the electron beas [1,2]. This radiation focusing
sffect plays a central role in the practical
ut:lization of the FEL. This phenomenon vas first
analvzed for the lov gain FEL vith transverse effects
vhere 1t vas shown that the diffractive spreading of
the radiation beam could be overcome by a focusing
effect arising from the wmodified index of refraction
f1}. Optical guiding in FELs operating in the small
signai exponential gain regiwe has been studied for
the asveptotic behavior of the radiation beam [3-6].
Recentlv, a general formalism for optical focusing,
guxdiTgland steering has been developed and applied to
FELs .

In the folloving, wve esploy a modal expansion
technique to examine the optical beam as it propagates
through the viggler. The formaliss has the merit that
vith only a {ev wodes 1t permits an accurate solution
ot the wvave equation throughout the interaction
region.

Model
in our model. rhe vector potential of an axially

svmmerric. linearly polarized, radiation field is

i(uz/c—-t)é

Qa(r.z.t) - A(t.z) e !/2 ¢ c.c., (1)

vhere A(r.z) {s the romplex radiation field amplitude,
w {5 the frequency and c.c. denotes the complex

conlugate.

The vave equation governing é& s

? 2.0 2 o2 X
r(r 3?] s 377325 -¢c "7 Nt l uJ

|

vhere J (r.z,t) is the driving curtent density.
Substilu‘ing (1Y 1nto (2) leads *o the !ollov;kg
reduced vave equation,

-
-

12 a 2l
[; Ty (r 5;J - 2 g s;Ja(r.z) « S(r.z.a}), (@3

vhere a(r.z) - [eja/m c2 - lalexp(i®) 15 the
normalized complex radiafion amplitude and ve have
assumed that a(r.z) is a slovly varying function of =.
i.e., |(3a/3z)/a| << we. The source function, S. is

given by,
/e
4 -1 -
g . . 4w [ I (t.2.0e ilwz/c “()dt. ()
c g X

o

It is possible to relate the source function., S.
to the index of refraction associated vith the medium
by noting that the vave equation for &, in a
nonmagnetic, time-independent, nonlihear medium is

a2
(Vz - (nz(r.z.a)/rz)a‘/atz)gR
index of refraction associated vith the wmedium and is.
in general. complex and a nonlinear function of
a(r.z). Comparing the reduced vave equation vritten
in terms of n(r.z.a) vith (3) ve find that the source
function can be wvritten in terms of n.

= 0. vhere n 15 the

S(r,z,a) = (aVc32[l-nz(r,z,a))a(r.z). (S)

Source Dependent Expansion Method

In order to solve (3) wve will wuse the source
dependent expansion (SDE) method {7]. In this method.
ve choose the folloving representation for a(r.z) in
terms of Laguerre-Gaussian functions,

(6)

)

a(r.z) = L a (@)l |3
rs(z)

[ 2r2 J -(l-ia(z))r“‘r;(z)
e .

| ]

vhere @ « 0,1,2,---. In Eq. (6), a (2) are the

complex amplitude coefficients. r_(z) is the radiation

spot size, a(2) is related to the radius of cugvature

of the radiation beam vavefront, R =« - (uv?c)l;'a

and L is the Laguerre polynomial. Solving tor the
unknovn quantities a_, r_and a in terms of the source
L ) ;

ters S allovs us to consletely describe the radiation
dynasics. The representation in (6) is underspecified.
since, vhen (6) is substituted into (J) and wmoment< ot
the source function taken, there remain moie unknown
quantities than available equations. The additional
degrees of freedom in our representation allov u< to
specify a patticular functional relationship tor the
unknown quantities r and a in such a vay that, 1f the
radiation beam profile remains approximately Saussian.
the number of sodes needed to accuratelv describe the
radiation beas is swmall. This yields the tolloving
first order coupled differential equations for . and
a,

t7a)

r; - 2ca/urs .- T HI'

a - 2(l~a2>c/urz - 2(HR “HI)' [@LY




and 2 <et ot tirst order atdinary difterentigl
equations for the cosplex asplitudes l-(z).
-
a_ - Al - x{F. - eBa_ - (a.1)8 l.‘l]. (2¢)

vhere R « F -5 , e 3/31, and ( ) denotes the real
and 1-ag1na}y gar! of the cncloseg';uncﬁion. In 2qs.
(7). the functions A - B. and F_ are given by

- -
A1)y + 77t + i(lm l¢1 « a)e w - </ P
'3 s Te ( 'l)x(' 2 )¢ .s uxs rs + @ /<].

- Ny 2 2 ), 2
B(.)--[axsfrso(l-a )c'-ts - a /‘]-1(rs/rs- 2,:/.15)'

C
F.(Z) * w

4 S([.Z)L.(()Q‘P(~(l-ia)(/:).

0 teny

vhere { « Zr‘/ri.

The merits of the SDE sethod can be desonstrated
in a coamparison betveen: a) the exact nuserical
solution of the wvave equation in (3), (using 64x6é
Fourier modes). b) the solution wusing a vacuus
Laguerre-Gaussian modal expansion (10 weodes) and ¢)
the solution from the Laguerre-Gaussian SDE approach
(10 w®odes). Figure ! shovs the radiation beanm
ampliiude on-axts obtained from weethods (a). (b) and
(c) after four Rayleigh lengths for the FEL parameter
in Table I. The SDE solution (c¢) is in excellent
agreement vith solution (a) vhile solution (b), bdevond
a Rayleigh length, grossly deviates from (a) and (c).

X0 —a

Radiatlon Amplitude Profile
latr, 2}

X /fg(0)

Radiation ampiitude profile, la(r,z)| for:
a) exact numerical solution (64x64) Fourier
sodes). b) vacuum wmodal expansion solution
(10 modes), and c) SDE solution (10 wodes) at
a distance of z » AZR.

va

Fig.

Refractive Index Associated vith FELs

In the tolloving derivation of the refractive
index associated vith the FEL, a number of simplifying
assumptions are made. Ve assume, for example, that
the beaw electirons are monoenergetic vithout betatron
oscillations and that the radiation is of a8 single
frequency [8}. To obtain an expression for the
tefractive index wve vrite the nonlinear driving
current density, {‘. as

i, - .lelnb(x)gv(z)vozfa(z-zn.zo))dro. (8)
vhere n (r) 1s the ambient beam density, v fs the
axial e?ecrron velocit, at z = 0O, t_ st % (ime a
given electron rrosses the z - 0 plane,

v (2 - ]clAvivuor(exp(ihv:) SRR B

1s the viggle velocity, v is the Lorent: factor, Ao ;-
the vector potential amplitude of the planar viggle:
field and &k <2m/) is the wviggler vave numher

Substituting 18) inYo the expression for S. (&), gives

ub(r) P e -1((!-kv]l—ul]
S aujd(d2ljdtoe < Sroriz L thyv.

c
°
(N
z
vhere a leja /a R gz (
L ’ . - - - .
v v o J z v: < "o) and
o

the t_integration is over all entrv times. Equating
(Q) vith (5) and carrying out the integration over U,
ve find the index of refraction associated vith the
FEL to be given by
2 2. 3% /'™
- * / - .
nfel(t'z'a) 1 (Nb(r) 26°) T;T <‘ )' (10)
(]

vhere
z
¢ . J [ﬁVC .k, - ilncas{al) - u/vz(z.wo))dz <o
o
{s the relative phase betveen the election and the
- - i it h f
ponderomotive wvave, 'o wto is the 1nitial phase o
2n
A -1
a given electron and < >. « (2n) J dvo is an
/% ;
ensesble average over the initial phases. The radia!
profile of the index of refraction as given by Za.
(10) supports self-focusing of the radiation in an

FEL. It should be noted, for completeness. that the
relative phase satisfies the pendulum equation given

by
32 /3 2 ok /32 ‘z(uc) 4332/32 -k a a sinv] (1
¥z = ok, -y v [t ’

Radiation Beam Envelope Equation

Equations (7a) and (7b) «can be combined o give
the folloving envelope equation for the radiation beam
r® +« Kr_ =0, (1

s s

vhere
2 2 2, .. 2 P B
K a({2c/w) [-I‘C <sine> 02C<cosv>o(u/2c)tsc <sxnw>]r< .
(1)
and C(z) = (Zv/Y)G(z)av/|a (z)|, measures the coupling
betveen the radidtiof and electron beam,

bl

v (& rb/ZC)‘ - Ib/17x103 is Budker’'s constant,

Ib is the

G(z) = (l-f)/(l‘f)2 and f(2) - (rb/rs)‘ 1< the filling

electron beam current in asperes,

factor associated wvith a Gaussjan electron bheam
density profile. The first term on the right-hand
side of (13) is the usual diffraction tetm, the second
and third teres are focusing vhile the last rer~
provides a focusing or detocn<ing contriburtien. In
the high gain trapped particle 1egime. <sine> and
(cos¢> are approximately constant, while Ia (21
increases with 2. Hence, K depends on z and a guided
beas (r’ « () cannot be exactly maintained in this
regime,  although, the rtadiation envelope is <ti!}
reasonably vell-confined. In the lov gain trapped
particle regime la ()] increases  slightly  ana.
therefore, a guide beam can be approvimatei,




achieved. In ejther the Coepton ot Raean evponential
gain tegiee. conditions for a stable guided beaa can 0.34
be tound. '

Cuided Radiation Beams in the Exponential Cain Regime

0.26

In thas section. ve obtain the necessary
tond:tions ‘o achieve guided radiation beaws in both
the Coepton (noncollective) and Rasan (collective)
exponential gain regiaes. Bv considering the lovest
nrier sone (faursian profile) wve find "hat che source
ters appropriate for the high gain Coapton and Raman
regime is, respectively, 0.10 ¢

—~1
) [ (& -i)”

a(r.z)l 'l/-‘ 0 o'm A " A

™rry

0.20
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‘YC
Z
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vhere & and T are the wvave number shift and grovth Fig. 2 Spatial evolution of the radiation spot size
rate respectively and f is the usual 4ifference of in the exponential gain regime for indu
Bessel functions due tg the 1linear wviggler. The linac driven FEL parameters given in Tabl:(ion
lovest order mode is taken to have the form )
.

a(r.,z2) = ao(O)exp(iJ(Ak-ir)dz‘-(l—xa)r‘/r;). (15)

(<]

{cm)

-

For 'he purposes of illustration. ve vill consider the
Compton FEL regime in which the electron beam has a

b
saussian density profile, nb(r) a noexp(- r r;)

The zonditions for a guided radiatfon beam require
that the vaist and curvature of the radiation beaw
remain constant, (r’. « a’ = Q). Setting r’ = a’'a0 in
fas. (7a.b) and sol¥ing for [, &k, r_, %and a. the
folloving results for a guided beam are oBtained.

r. (ha")'l(l‘?!)'lro. Ak sal, (16a,b)

Radlation |/e Rodlus,
N
T

-

374 R
flu.(l‘Zf 372 z(m)
44%76 .(16c)
A
(1.28/2) Fig 3

5
b4 .a’
1/ A (1 av/I)

s T v 774 1.2 172
2 a 1 i
§pat:al evolution of the radiation spot size
Qa 2 7)3/2 in the' exponential gain regime for i1nitial
.alsa Spotl sizes; a) 0.35 cm, b) 0.24
(16d) 0.15 ¢cm. € and )

s
- e ————
a = (£(2e3E 2, (16e) \/
1 -
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vhere _°=‘fg(v/v) avkv(l»av/?) and fory e

the filling factor.

Figure 2 showvs the spatial evolution of the
rad{ation vaist for the induction linac driven FEL
paraseters in Table I. The parameters i1n Table I are
consistent wvith Eqs. (16) and have been chosen to
produce a guided radiation beas in the Compton
exponential gain regime. The guided beam conditions
can be shovn (o be stable {9], this 1is showvn
numerically by changing the spot size of the injected 0 — A PUY
radtation beam. Figyre 3 shovs that irrespective of
the initial value. the spot size asymptotes to the 0 2 4 6 8 10
eatched (guided) beam value. Figure 4 shovs the
evolution of the spot size for the tf linac-driven FEL b Tp T
parameters in Table II. As in Table [, the parameters
in Table Il have been chosen to produce a guided Fig. ¢ Spatial evolution of the tadiation spot size
radiation beam in the Compton exponential gain regime {n the exponential gain regime for rf linac
and are consistent vith Eqs. (16). driven FEL parameters given i1n Table 11

05}

te (mm)




Free Electron tasers driven by either induction
or rf linacs could initially operate in the guided.
evponential gain regive until saturatfon occurs.
lmsediately prior to saturation. the ponderoeotjve
potential can bde large enough. as 1n the above
illusrrations. to trap a significant traction of the
besa electrons. Ar this point. the viggler field can
be spatiallv rapered to achieve a significant fncrease
in the operaring etficiency and s somevhat ssaller
input signal into the FEL asplifier.

To determine the viability of —tapering the
wviggler. prior to sarturation, the trapping potential
associated vith the ponderosotive vave is needed. For
linearlv polarized vaves. the fractional trapping
potential 1s

leie aa 172
—2 [ Y ] ) an
Y@ C lea“/2

[+ v

The radiation amplitude at saturation can be obtained
trom the intrinsic efficiency of the FEL. \Using
arguments based on elecrron trapping in the
ponderosotive wvave. ve find that the intrinsic
efficiency in the exponential (maximum) gain regime is

n = &/k'i‘ (18)

Using the induction linac parameters in Table I as an
illustration, ve find that the intrinsic efficiency is
n e Ak = 0.66. From this, the fractional

‘rapping potenrial at the end of the exponential gain

regime is je|e, /vn°¢2=62. making it possible to

rap
trap the electron beam vhile tapering the viggler
field. In addiftion. the (initial fractional energy

spread of the electron beas wust be somevhat less than
n. This places a limitation on the fractional energy
spread of the electron beam, 8E/E,_ < 0.66X. One

contribution to the bear engrgy spread is the

transverse emittance, 6£/Eb = (1/2)(tn/fb)2-
Therefore. the norsalized be.: emittance must satisfy,
172

€, < (ZAk/ku) Ty = 0.034 cm-tad.

Bending and Guiding of Radiation Beass

Using the SDE formaliss, it {s possible to
discuss the bending of a radiation beam by a3 curved
electron beam in an FEL. For small displacesents of
the electron beam centroid, a nonaxisymmetric sodal
expansion similar to (6) can be performed and the
spatia]l evolution of the centroid of the radiation
beam found. Figure 5 shovs the <centroids of the
electron and radiation beams for an FEL in the trapped
particle repime wvith parameters given in Table I.
Steering of the radiation beam by v electron beas is
clearly deaonstirated in this figurs

It is interesting to consider the conditions
under vhich the radiation beas could be guided by a
curved electron beas, as shown in Fig. 6. Such a
situation could wmake possible a cyclic FEL driven by,
for example, a betatron generated electron beam. In a
cyclic FEL, the radiation beam would be guided by a
citcular electron beaam. The wviggler field, vhich is
along the circular orbit of the electron beaa, cannot
be spatially contoured. Therefore, in the trapped
particle regime, enhancement of the FEL efficiency
eust bhe achieved by inducing an accelerating electric
field along the beam orbit. For cyclic electron
beams, the induced electric tield can be generated by
increasing the wagnetic flux wvithin the orbit of the
electron beam.

‘L/’b( rodation centroi¢)

-

;/;;:":;7‘-"'~'-"'""'-F--d

"b/'b (é-beam centroid)

o >

L
»
-

‘
[ ]
T

Centrolds, lb/'b ond .L/'b

o
~
»
*
-
3
~

t ¥4 1.

Fig. 5 Electron and radiation beam centroids, «x

and x for a displaced electron beam:
x = "x (l-sech(k 2)) wvith «x = r, /4 and
x: -k .az. © ¢ b

radiation
profile

curved
e-bean

Fig. 6 Configuration shoving guiding of radiation
heam by a curved electron beam vith radius of
curvature, RO

To examine the conditions undet vhich guiding can
be achieved in the exponential gain regime, ve denote
the radial position by r = R « x, vhere R_ 1< rhe.
radius of curvature of the el&ctron beaw and % is the
radial displacement from the center of the curved
electron heam (see Fig. 6). The FEL refractive index
(correct to order x/Ro) is

N =n . X/Ro. (]Q)

fel
vhere ne 1 is given by (10). In the exponential gain
regime, 5 guided radiation beam in a curved FEL is
possible if Ro b Rnin vhere

Roin * rs/|Re(l-n[el)|. (20

Substituting the expressions for [, @&k ann t_. from

Eqs. (16), into (20) vields

4(1-!)fv:x

min® 172 b‘ 142 [ (2iar
. 1 2 cac ey lie 1/2
(126)(3F.2) fBaV(X a, ) (v/v)
4
1.2 v'xb
R (tel) = < - -3 {21k
=in (Bau(l-a;'l')l,‘(\’/v)l~




For & nuser:caj exaeple nt tonsider the

arn’
tolloving paraseters., v « 100. I = 0 A, Ty o 0.) c»,
a o« V.20 ¢ ) and o » 0.8% (Table I} For these

-
paraseters. "he winimum turning radius required for a
guides radiation beam s chn . 455 a.

Table I

Paramerers Assoc:ated vith an Inguction Linac Jruven
FEL :n 'ne Exponentiai 5ain Regime

Elec ron Beam

Curcent lb + XA, (v« 9.118)

Energy Eb s SO Mev. (v = 100)

Raotius Ty - 0.3 cm

Em1ttance 1 < 34x10 cm-rad
Viggler Field

vavelength A' « 8 cm

viggler Strength Bv -« 2.3 kG (av = 1.72)
Radiation Beas

Vavelength A= 10.5 um

Spot Size L 0.2% cm. (ZR =2 =)

(guided bdeam) ,

e-folding length Le e /T 5 % 2@

Intrinsic Efficiency noe Skrk s D.66X

-4
. 560 %MV (a » 7x10 )

|4
Sarturated Pover Psat
- fo 2
Trapping Potential 'el‘i!ap v <t . 6.0Z
Table II

Parameters Associated vith an RF Linac Driven
FEL in the Exponential Gain Regime

Electron Beam

Peak Current Ib = 500 A

Energy Eb « 150 Nev

Radius Ty - 1 -,

Emittance e, < 7x10 cm-rad
Viggler Field (planar)

Vavelength A = 12 e

Viggler Strength B: = 900 G (a, = D)
Radiation Beam i
vavelengt A=l um

Spot Size ts(O) s 1.] om (ZR - 3.8 m)
(guided beanm)
e-folaing length Le « /T = 196 .»

Intrinsic Efficiency

no- &/, - 0.252

Saturated Powver Psat s 180 KV (a « 7.25x10_5)
2

Trapping Potential lefe ve . 22

/
trap

Conclusion

expansion (SDE) wmethod
providec an excejlent analytical and nuwerical
technique for studying optical Cfocusing, guiding and
steering in TELs. Ve tind that guided radiation beams
in the FEL can be achieved hoth in the Cospton and
Raman exponential gain regimes but cannot be
maintained in the high gain trapped particle (tapered
viggler) regime.

The source dependent

Free electron lasers driven hy either 1ndirt,nn
Itnacs, such as the ATA, or high ryrtrent ¢ iinar- ~aq
operate In the guided. erponent:al gain regime ynry|
saturation occurs. At this point. ihe “iggler fieia
could be spatially tapered <o a< to operate *he FEL in
the trapped particle regime in order ta furthe:
increase the operating efticiancy

Ve also examined ‘'he possihility of hending
steering radiation beams in FELs Je {ind a -onnitinn
vhich piaces a lover [1mi*' on rhe -adine a¢ ~urvas:nn
of the elec:ron beam necessary for :he radiar:on ‘o he
guided along a curved path.
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Appendix VI:

Optical gain, phase shift. and profile in the
Free Electron Laser

1




I. Introduction

A vell-knovn feature of the free-electron laser (FEL) is that the
refractive index of the medium is a complex function and hence the
radiation is amplified and to some extent focused in the vicinity of the

1,2 It may then be possible for the electron and radiation

electron beam.
beams to interact over an extended length along the wviggler, with the
diffractive tendency being compensated by the FEL interaction, thereby
enhancing the efficiency of the process.

Considerable progress has been made in studying this process by
several authors.3-8 The purpose of this paper is to apply the formalism of
the Gaussian-Laguerre modal source dependent expansion (SDE) of Ref. 8 to
examine the propagation and guiding of the optical wave in an amplifier
operating in the exponential gain regime, for a variety of operating
conditions.

The plan of this paper is as follows. 1In Section II the formalism of
the SDE is employed to obtain the evolution equations for the radius and
the curvature for the lovest order mode of the optical beam, along vith the
relevant dispersion relation for a Gaussian electron beam driving an FEL
amplifier in the small signal regime. In Section III numerical solutions
of the single-mode equation for the radius of the optical beam are
presented and ccmpared to the result from a multi-mode truncation of the
radiation field. In this case, and for cases not presented herein, the
single-mode and multi-mode results indicate that the radiation beam profile
entering the viggler asymptotes to a unique form after an initial
transient. Additionally, the numerical values of the radius of the
radiation envelope and of the wavefront curvature are in fair agreement,
irrespective of the degree of mode truncation, indicating the usefulness of

the single-mode equations. Limiting ourselves to these equations, the




I

electron beam is then alloved to oscillate at the betatron vavelength and
the resulting radiation profile examined. It is found that the optical
bean envelope follows that of the electrons vith almost identical
vavelength, but retarded in phase. Section IV discusses the results,
deriving formulae for the matched radiation beam profile (i.e., radius and
curvature) in terms of the electron beam and viggler parameters. It is
shown analytically that perturbations of the profile are spatially damped
out, consistent with the numerical observations indicating a unique,
asymptotic matched radius and curvature. Appendix A presents the necessary
details required to derive the source term, for the wvave equation, for a
planar viggler and an electron beam vith uniform density along the
direction of propagation. Appendix B considers the effect of the
modulation of the electron beam on the optical vave. Specifically, a
simple analysis, taking into account sideband generation, indicates that
the dispersion characteristics of the primary vave are only slightly
modified for typical experimental parameters. Appendix C presents the

details of the stability calculation.

I1. Mathematical Pormulation

The purpose of the present section is to present the salient features
of the source dependent expansion method8 so as to fix the notation and for
reference in the subsequent sections.

For a planar wviggler, it is appropriate to assume a linearly polarized

radiation vector potential

W z
A= ( 1/2) A(r,e,z)exp[l[—z— - w t]}gx 4+ C.C.,




vith angular frequency w and complex amplitude A. In the slovly varying
envelope approximation, the wave equation reduces to

1 a2 2w
- +

) 3
T I T « 8 - S(r’e'z)l (1)
or ar r2 ae2 c 3z]

|

vhere a = le[A/mocz, and the source function is given by

w2z
S(r,0,z) = - §£l§l {Jx(r,e,-)exp[-i[——— - w t]}} . (2)

c
mC
o slov

Here e is the charge on an electron of (rest) mass m Jx(r,G.z) is the

current density and { indicates that only the spatially and

}slov
temporally slov part of the quantity in braces is to be retained.
The basic premise of the work presented herein is that the radiation

field is azimuthally symmetric and the vector potential is expressible as:

[--

a (r,8,z) = 3 a_(z)D_(&,2), (3)

o=0

vith Dm = Lm(i) exp {-[1-ia(2))&/2), vhere & = 2r2/r§(z), rs(z) is related
to the radiation spot size, a(z) is proportional to the curvature of the
vavefront, and Lm({) is the Laguerre polynomial of order =a.

Now, if the transverse profile of the radiation beam is close tec a

) . 5,7,8
Gaussian, the lovest order mode is expected to dominate3’ T, and,

folloving Ref. 8, it is simple to show that the associated vector potential

evolves according to

3 .
(az + Ao)ao = -1 FO' (4)

and the spot size and vavefront curvature evolve via




d 2ca 1
dz 's T wr T % C_)' (3a)
s o'l
3% « - 2(1+a?)—S 5 - 2[C—l) - “él)x]' (5b)
wr o R o
s

vhere

A 4 i[(l 2) < _a d r . 14 ]

o " r dz 's* te 2 r_dz 's 24z %)
s wr s

the F's are given by the follovwing overlap integral:

F(2) = §—wj dE S(E,2)D_"(&,12), (6)

o
and the label R (I) indicates the real (imaginary) part.
Noting that LO(E) = 1, the normalized vector potential is seen to be

given by [Eq. (3)]

2
a(r,8,z) = ao(Z) eXP{—ll—ia(Z)] 2r } (7)

z
r (z)
vhere, in the exponential gain, small-signal regime,

Z

ao(z) = a(o) exp {i fdzl[Ak(zl)-ir(zl)]}. (8)

0

Bere a(o) is the input signal at z = o, and the twvo components of the

refractive index are given by

e e 23 Lode)
n, = [1-+ ° } -1 " (T -3 3 (%a)
s
2 .
nrz%(u‘ i). (9b)
wr
S
4




Assuming the electron beam profile to be given by

2

n,(z) n [:Eg——} exp [ - rz } (10)
b bo rb(z) ri(z)

vhere rb(z) is the electron beam radius at z and Moo is the beam density at
rb(z) = Tyor the source term in Eq. (1) may be readily evaluated (Appendix

A), to obtain

2

wbz Ty 2 w kvasa
S(r,z) = f 2 [ 2 } exp ( - rz ] (11)
b

B 5,32 [Tp(®) r c(tk-in?

vhere the vector potential of the planar wiggler of periodicity 2n/kv is

given by
A v = Avcos(kvz)g " (12)
2 _
a, = IelAv/moC y (13)

v is the relativistic mass factor, fB is the usval difference of Bessel

functions, = Jo(() - Jl(C), = (1/4)33/[1 “ (1/2)a3], and

fB
2 172
W = (Anlef nbo/mo]
is the plasma frequency of the electron beam vith density Do
Substituting Eqs. (8) and (11) into Eq. (6) and making use of Eqs. (4)

and (S5), it is simple to show that the equations reduce to

k
da 2 v 1 1 1
d(k z) 2(1sa )(Z } 2’ 2[[;—5 ]R - @ [:'a ]I}' (14a)

v (kvrs) v 0 v O

¥ O

dik r ck 2 |
d—%(:—zj'—) - Au[—;“-} - 2[: i }I (kvrs) , (14b)




k 2
fk—v 1 2C “’) 1(;:/‘:5]2 . 2[i1a )[1 . C—b) ] -0, (14c)

vhere
2
2 2 2
Fl ) ({x.;g) Tbo i (fb/rsJ (&ék_ y _r_)-Z (144)
k a " "Blck r,(z) 3 2 k -
v O v b 2y 2 v v
1+2(rb/rs)

The spatial evolution of the system is governed by the differential
system (l4a) and (14b) along vith the dispersion relation (l4c), the

solution of vhich yields a(z), rs(z), Ak(z) and I(z).

II1. Numerical Results

Having obtained the single mode system of Eqs. (l4), it is of interest
to determine the extent to vhich it approximates the general solution in
(3). Once it is established that Eqs. (14) provide an adequate
representation of the general solution, it is then possible to study a
variety of problems of interest by solving a simple set of equations.

Briefly, the numerical procedure for solving an initial-value problem
is the followving. Substituting Eq. (14d) into Eq. (lé4c) yields a cubic
(algebraic) equation for &k - iT vhich may be solved, at each z, in terms
of rs(z), a(z) and rb(z), thus enabling Eqs. (14a) and (14b) to be stepped
forvard in z. Since in the absence of source terms an input radiation

signal diffracts avay on the scale length defined by the Rayleigh range 20

w ri(z)
- — 19
R T 2c 2=0" (15)




it is informative to present the numerical results vith the distance along
the viggler measured in units of the Rayleigh range. 1In all the numerical
results to ve presented, the radiation field is assumed to be in the form

of plane vaves at the entrance to the viggler, i.e., «(2z=0) - O.

Case I
To begin vith, Fig. 1 shovs the results for the folloving parameters:
beam current, Ib = 270 A, Tho ™ 0.01 cm, vy = 2000, 2n/kv = 10 cm, a, = 6.15

172 difference betveen the

and rs(z-O) = 0.02 cm. Noting the factor of 2
definition of a_ in Eq. (13) and that in Ref. 4, it is clear from Fig. 1(a)
that after a transient oscillation over a distance of about 20 Rayleigh
ranges, the radiation spot size approaches a value quite close to that
obtained with the tvo-dimensional FEL code FRED at the Lavrence Livermore
National Laboratory (LL.NL),A Ve also find that for all the numerical cases
examined, a unique, asymptotic spot size is obtained irrespective of the
initial optical vaist. Figure 1(b) shows the spatial evolution of g,
indicating that it, too, approaches a constant value after an initial
transient behavior.

The solid curve in Fig. 2 shows the evolution of 1/e width of the
radiation amplitude vith a five mode (®»=0,1,2,3,4) source dependent
expansion calculation using the same set of FEL parameters. The radiation
field is represented by Eq. (3) and the source term is given by Eq. (11).
Vith the assumption that the fundamental mode dominates, only the &k and T
of a, (r,z) are involved in the source function and they are obtained from
Eqs. (l4c) and (14d). It is found that the fundamental mode remains

dominant over many Rayleigh lengths. For comparison the dashed curve in

Fig. 2 shows the fuadamental mode spot size of Fig. 1(a), and the

asymptotic results are seen to differ by about 10¥. This suggests that the




single-mode system of Eqs. (14) may be regarded as a reasonable and
accurate simplification of Eq. (3). Henceforth the results presented

pertain to Eqs. (14).

Case 11
Figure 3 presents the results for a case vhere the electron beam is

not matched; i.e., the envelope of the electron beam is modulated:

rb(z) =Tt 6rbsin(ksz), (16)

vhere 6rb is the amplitude of the modulation and for simplicity kB is
chosen to be equal to the betatron vave number10 kvav/(ifysz), neglecting
self-fields.11 Bz is the beam speed along the wviggler axis normalized
to c. The parameters, typical of the Advanced Test Accelerator experiment

at LLNL, are I, =~ 2 kAl Tho = 0.3 cm, v = 100, 2n/kv = 8 cm, a, = 1.72,

b
rs(z=0) = 0.35 cm. In Fig. 3, vhere 6rb/rbo = 0.1, it is observed that the
optical spot size follovs the modulations in the electron envelope
apparently identically. Specifically, a number of cases vere examined vith
6rb/rbo up to 0.4. 1In all cases the electron and optical beams oscillate
vith almost identical vavelength, although the radiation beam appears to
lag behind in phase. BHovever, defining the modulation depth

6 = |

(f)pax ~ (D gind /1) gy * (r)min], it is found from Fig. 3(a) that

As = 0.087 wvhereas, from Eq. (16), Ab = 6rb/rbo = 0.1. Although the
modulation depth of the electron beam differs from that of the radiation
beam, it is found that AS increases in proportion to 6rb.

More generally, alloving for the defocusing effect of self-fields,
there is alvays the possibility of a small amplitude ripple on the electron

beam envelope and hence on the radiation beam envelope. In Appendix B,

generation of sidebands is considered in a simplified model and found to




have, for typical cases, an insignificant effect on the linear dispersion
characteristics of the primary optical vave, as {mplicitly assumed by

employing the source term in Eq. (11) in the present case.

IV. Analysis of Results

One interesting feature of the numerical results is that in all cases
the radiation spot size has a unique, asymptotic limit irrespective of the
initial value. The asymptotic value of r, and of a« is determined by the

fixed points of Eqs. (l4a) and (l14b); i.e., at the fixed point

ck
2(1ea? ) ¥ —1- L2 mla ] Kla J ] - 0, (172)
(kvrs) voo/p viol;
ck 2
v 1
ba —2 -2 [:vao] (kvrs) - 0. (17b)

Combining Egqs. (17a) and (17b) one obtains

F
v 2 1
< (kor) ] = o,
v S (kvao

vhich, upon making use of Eq. (l4d), yields

ck

(1 - ia)2

kirbnl/z 4
&k = 3% 7 T = e,
l+a
vhere
2
n -t (_9_)(f§9]2(;29]2 v
B ckv ckv b 2y3
and { = (rb/rs)2 is the filling factor. Substituting the expressions for

& and T into the dispersion relation (l4c), one obtains




« = [£703F « 20112,

2 3/4
i (Y/v)l/A (lea /2) f1/31’203/2
s ~ .3/4 174 1/2 374 !
27"k vEy 2, (1+43£/2)

vhere v = (uborb°/2c)2 is Budker’s parameter. These expressions may be
used to obtain the asymptotic spot size for a given filling factor, and
then one obtains the corresponding electron beam radius via ry, - rsfl/z.
To avoid complications arising at the outer edges of the op <cal beam,

vhere the field amplitude is small, typically a filling factor f < 1/2 is

appropriate. It is also possible to rearrange the expression for r, to

obtain
2 3
f3+f +G—-iq]f—q=0,
vhere
o 2 )Y
v oWV 2 1+a3/2

The cubic equation for f may be solved to obtain an explicit expression for
Te- Noting that the sum and the product of the three roots of the cubic

equal -1 and q, respectively, it follovs that there is a unique, real value

for the asymptotic spot size re-

To examine stability, it is convenient to define

and substitute Eg. (14d) into Eq. (l4c) to obtain the local dispersion

relation:

10




.

2 2
ck ck r le(r, /1)
3. 2{ v] 1de 2, [ b] e (/1 (18)

w 2 w r 212
(kvrs) [ [1¢2(rb/rs) ]

vhich may be solved iteratively. It turns out that for the parameters of
Case I, at the lovest order, the right-hand side balances the quadratic
term on the left. The relevant root, vith &k, I > 0, may be substituted

into Eq. (14d) to obtain, for « > o,

F, ~ck,, Lia . ]1/2 u-1[1+(1+a23/2]
ky3o w (kvrs)2+(kvrb)2 L(1+a2) [1«(1+a2)1/2]1/2
2
(kvrs) (kvrs)(kvrb) (19)
(k. r 2e2(k r )2 2 21172
Vs W) Jorofekr’?

Perturbing Eqs. (l4a) and (14b) about the fixed point and making use of
Eq. (19), it is simple to shov that the perturbation is spatially damped,
thus indicating the stability of the fixed point. The algebraic details
are relegated to Appendix C.

Another aspect of the results vhich is of interest pertains to the
nature of the phase fronts and the flux of optical power in the asymptotic
region. From Eqs. (7) and (8) it is simple to check that, in differential
form, the surfaces of constant phase are given by (w/c + A&k)&8z + (2ra/r§)6r
= 0, and hence, noting that &k, a« > 0, the vavefronts are divergent in the
direction of propagation. Consistent vith this, there is a nonvanishing
transverse component of the Poynting flux. Specifically, for r/rs <1 the

ratio of flux of optical energy in the transverse direction to that along

the 2z axis is ~ ar/krz << 1.




V. Conclusion

Based on the results presented herein, the simplicity and accuracy of
the single-mode Gaussjan-lLaguerre approximation to the solution of
Maxvell’s equations has been demonstrated. It is shown that, in the
exponential gain regime of operation of an FEL amplifier, there is a
unique, asymptotic spot size for the radiation beam irrespective of that at
the entrance of the viggler. There is, hovever, a transverse flux of
optical pover. It is showvn analytically that the asymptotic profile
(i.e., the radius and the curvature at large z) is stable to small
amplitude perturbations. Vith a spatially modulated electron beam

envelope, that of the optical beam is found to oscillate on the same

spatial scale.

12
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Appendix A: Source Term
In this appendix, the details of the evaluation of the source term S

in Eq. (11) are presented.

The FEL source current, Jx(r.e,z), in a linear viggler is given by
J (r,8,2) = -IeI&nb(r,G,z)vx

a le 'Zmbe—ikvz
= ZYEOC Av + C.C.

vhere &n, is the perturbed beam density and the relation v, SV, leIAv .

cos(kvz)/ymoc has been used. Equation (2) can then be vritten as

2 ,
4nje|“8nja. -if(k + k )z - wt
b v [ v ]} (A1)

S(r,8,z) = {—___—TT___-Q
2,¢ slow

vhere k = w/c.

The perturbed beam density can be evaluated from the continuity

equation,
d6nb aévz
v = ™ T3z’ (42)

and the equation of motion in the z-direction,

i:i - le] [1551 Vz(v;Ex ] (A3)

vhere electron self-field effects are neglected. Taking the convective
time derivative of Ec. (A2), and incorporating the linearized version of

Eq. (A3), one car arrive at the folloving equation for the perturbed beam

density,

14




2
d“&n, - leln, 3 (3_ Yy g_], "
dtz o 9z \8z 2 3t/ pond
vhere
- IelAvA 1[(k + k )z - wt]
* - e v + Cc.c
pond 4 2
’f‘moc

Vith the assumption that A(r,8,z) is a slowly varying function of z,

i.e., |3lnA/3z| << k, << k, Eq. (A4) becomes

a2an Ielzn A A iflk + k |z-wt
b b'w v
= k ke + C.C. (AD)
2 2 2 2 v
dt 2y m_cC

vhere the resonance condition, w = vz(k + kw) is used.

For a near Gaussian radiation field in the exponential gain reginme,

2
2

A(r,e,z)on(r,e,z)=Ao(o)exp{iJ[Ak(zl)-ir(zl)]dzl—[l—ia(z)] rg(z)}
s

o

and assuming &k, [, « and r are slowvly varying functions of z, Eq. (A53)
can be integrated immediately to give
le|%n A A k k [« k)2 -0 t]
v v

= e + Cc.C. (A6)
2v%m % (ak-i1)?

Vhen Eq. (A6) is substituted into Eq. (Al), taking into account the

usual difference of Bessel functions for a planar wviggler, and Eq. (10) for

the beam profile, the source function in Eq. (1) is then given by Eq. (11).
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Appendix B: Sideband Generation

In this appendix generation of sidebands to the primary optical wvave,
due to the spatial‘modulation of the electron beam, is analyzed. It is to
be emphasized that the folloving analysis is intended merely to show that
the dispersion characteristics of the primary optical wvave are only
slightly modified [~ (GNO/NO)zl for typical experimental parameters, as
implicitly assumed in applying the results of Appendix A to the case of a
modulated electron beam in Section III.

The development of the linear theory herein generalizes that of
Sprangle et al.,12 to vhich reference should be made for further details.

The form of the vector potential of a planar viggler employed in this

appendix is slightly different to that given by Eq. (12):
= Av[exp(ikvz) - c.c.]g "

vhere Av is purely imaginary, and that of the linearly polarized radiaticun

field is taken to be of the form

A = {A* exp[ik¢z—iw t] + A exp[ik_z-iwt]

+ Ao exp(ik z-iw t] + c.c.} €

vhere it is assumed that the electron density, modulated at the betatron

vavelength 2n/k,, has the simple form

6’

o o 20 [eXP(iksz) + c.c.],

vith kB <X kv << k, and k‘ = k + kB, k =k - ks.

16




Folloving Ref. 12, the vave equation is found to be

2
% ;32 % - An}elz 5
( 2 - 2 .2 ° 2) A - “v!
9z c¢” at Yoc Yomoc

vhere Y, is the relativistic factor in the absence of the radiation field,

1/2, and &n is the density perturbation caused by the

2
w = (4mn_le|"/m )
radiation. Note that the velocity Voo along the viggler axis 1is not
affected by the betatron oscillation and hence Y,r to lovest order in

IeAv/yomoczlz, is not a function of z. Defining the ponderomotive

potential

g oozlel o,

pond Y 2

the momentum, continuity and Poisson’s eguations may be combined to obtain

2 v 3n 4mn ]e'z le] an
— 8 20 (——9]9— dn o« —2 & . 8 0_12] 3t
dt2 ng 3z /dt o 2 o 2 \az 3z
070"z 0V "z
v
-le} 3 9 20 g_)
m Yy 82 © (az VAR ’pond’ (B1)
00 c
2, 2.-1/2 . .
vhere Y, = (l—vzo/c ) , & is the scalar potential, and terms such as

azno/azz, vhich are on the order of ké, have been neglected.
Vriting k‘ = k + kﬁ' k_ = k - kB'

&n = {6n‘ exp{i(k‘ + kv)z—iw t] + &n_ exp[i(k_ + kv)z—iw t]

+ énoexp[i[k + kv)z-iwt] + c.c.},

noting that, on the left-hand side of Eq. (Bl), the ratio of the fourth to

the third term is on the order of kB/k << 1, one finds that

17




i T 7]
%11 * €A P 13 A,
&)1 yp * €8y, 4 A -0
&m o c2 A
%31 32 33 * L8, L
- . B

vhere € = (SNO/ZNO), and yqr Wyy = 0(:2). It is then simple to show that,

correct to 0(c2), the dispersion relation is given by

2 2
. _[‘No] [‘”32"‘23 . l“12"‘21] . {&No] [a . [’% L2 ] J o
22 2N° Dqq LI 2No 22 22 g myy
vhere
2 “bz w2 @, 2
o 2 0
Dy = Tpy (k) = {[“’ -(k *kv)“zo] -T2 }[" I 2}
Yo¥z ¢ Yo©
2
2
_ “bo K k 82’
3 v 'w
Yo
is the usual matrix element for the primary wave, By = m22(k*),

Byy = Byy(k ),

By, = m12(k+’ k, kB)

2 2 wb2
0 0

x 2 {[w - (ks kv)vzo] - 2}
To© Yo'z

0o 2z
. 2 2 2
(k2__*mbo)_wbokka.
C2 2 3 ‘VE'
YOC Y0
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£yye Byp(kek,o - Kglv myy = mp (Kik ikg)s myy = ompy (KK, - K],

4 2,2 2
2mbo 2wbo%§vzo
a2 7~ 22" 2
YOYZC YOC
2 2
a - fﬁg— kv w - [k + k )V - wbo )
- 2 g zo V) zo| + 2
+ Yo © YooY,

and Wy " (énezNo/mo)l/z. Note that vith the definition chosen for Av in

2 2.2
this appendix, a_ = (eAv/moc y© < 0.

To proceed along the lines of Ref. 12, it is convenient to wvrite

m = M + C

22 22 22'
vhere
2 wb2 2 “bz
(o] 2 w 0
sz = {[w - (k + kv)vzo] - 2} (k - c2 + 2),
YoY, Yo C
and
2
- 2wb
0 2
C22 = — k kvav
Yo

is the "coupling” term. The dispersion relation then becomes

2

&N a &N a a
{1‘( ﬁf) C;3 ‘ m;l] ]”22 = - [1‘ (m:) [m;3 ‘m;1 ” €22
&N 2 m, M m,,m
G [
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sz ylelds the dispersion relation for uncoupled electromagnetic and space
charge vaves. The right-hand side of Eq. (B2) introduces the FEL

interaction and coupling to sidebands, and its effect is included

iteratively. At the lovest order, sz = 0 for some (w,k). Substituting in

the right-hand side, the second set of terms vanishes; the term

proportional to C22 survives.

Substantial modification of this dispersion relation is expected if

1 + == + << 1
2N By By
i.e., if
&N
o -3/2 1/2 _ 1/2_ 3/4
No 2 kBcwbo (Zk vzo) e Yo )

For typical experimental parameters, the right-hand side of this equation

exceeds unity, vhereas éNO/No << 1, implying the insignificance of the

effect of modulation on the dispersion relation.
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Appendix C: Stability Analysis

The purpose of this appendix is to establish the stability of the
fixed point (rs.a) of Egqs. (14).
Perturbing Eqs. (l4a) and (14b) about the fixed point and making use

of Eq. (19), it is seen that the perturbation evolves according to:

d (6&)
d(k z) \&
v
8o
-2 |?n a12] ( ,
[a21 a3y, éx)
2 2
vhere x = (kyr )™y = (kvrb) ,
- a(ckv/w) 3
211 7 T xay NS Sl (XR ) “XI)’
—(1+a2)(ckv/w)y(2x+y) 3 [ J
a. . - I | S
12 xz(x+y)2 ox XR I
xX
a = ’_l - X L X ]
21 a da 1
a(ckv/m) 3
32 7 - 7 EE(XXIJ'
(x+y)
and
1/2
1/2 . 2
‘. . ;_ _J__’ a—1[l+ (14-(! ] J X Xy )1/2 (Cl)
7 2(1*a2) 172,172 x+2y \xs+y )

[1+[l+a2] ]

Assuming that 8a, &x - exp(kkvz), one finds that

. [ u(ckv/w](X¢2y) s, 51] . {[liﬁi&iifl; s, le ) 53} ’

(my)2 (x+y)

21
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vhere

e ["1 ] axI] [—(haz]_(ckv/w] yiye2x) [XR- dl)]-

.
« da XZ(X*Y)z ox

(Note that all the variables in this appendix are evaluated at the fixed

point.) Making use of Eq. (Cl) it is simple to shov that XI/u - X,/8a > 0,

I
a(xR - aXI)/ax < 0, whence 53 > 0 and hence, noting that 52 + S1 > 0, and
that the perturbation solution for Eq. (18) implies S1 < a(ckv/w)/(x+y), one
finds that Re A < 0, thus indicating the stability of the fixed point to

small amplitude perturbations.
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Fig.

Fig.

Fig.

Figure Captions

Spot size (rs), o, phase shift (&k), and gain (T) vs. distance

along the viggler. z is normalized to the Rayleigh range 2p- In
(c¢) and (d) the number on the ordinate must be multiplied by 10—6
and 10'3 to obtain the actual value for &k/k  and T/7%
respectively.

(1/e)-vidth of the optical field vs. distance along the wviggler.

Solid curve: 5 mode system; dashed curve: 1 mode system.

Spot size (rs), «, phase shift (Ak), gain (T), and radius of

electron beam (rb) vs. distance along wiggler.
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