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I. INTRODUCTION

This is the final report for Contract N00014-86-C-2055. It covers research performed
by Berkeley Scholars, Inc. from 6 December 1985 to 5 December 1987;- The research
involved the theoretical and numerical analysis of the physics of free electron lasers using
relativistic particle bealns.

The major emphasis of the research was to obtain design criteria for the development
of a two-stage FEL oscillator operating in the trapped particle mode, and for a UV-FEL
operating in an oscillator configuration with an intense CO 2 laser beam as a pumping
source instead of the usual wiggler field. In order to carry out this program it is necessary
to provide an appropriate model for the radiation physics of both types of FEL's, to
examine the relevant nonlinear wave-particle dynamics, and to model the characteristics,
development and evolution of the associated electron beam.

Task 1, to develop a general model for the radiation physics occurring in a FEL with
specific application to a two-stage FEL oscillator operating in the trapped-particle mode,
and to a UV-FEL operating in an an oscillator configuration that uses an intense CO 2

laser beam as a pumping source, is a necessary prerequisite for Task 2 and Task 3. These
tasks are model applications, and the research addressing these tasks has given rise to new
results. This final report documents the research, and the six appendices contain the details
of the work. Articles prepared from the appendices have been submitted to professional
journals or technical conferences. These articles have been prepared in collaboration with
scientists from the Plasma Theory Branch at the Naval Research Laboratory.

The effects of radiation damping on beam quality in the inverse free electron laser3 accelerator are discussed in Appendix I, also published in the journal Particle Accelerators.
A beam envelope equation is derived and solved for an arbitrarily tapered wiggler field.
The expression for the evolution of the normalized transverse beam emittance is derived
and found to decrease exponentially with distance due to radiation damping until it is
limited by quantum excitation. Our results show that substantial improvements in beam
quality can be realized for acceleration distances comparable to the radiation damping
e-folding length.

The subsequent appendices give an account of the subsequent part of our research.
viz., analyses directly addressing the electron beam quality issues that form task three of
the statement of work. Appendix II, also published in Physical Review Letters, concerns
the nonlinear particle-wave processes that can give rise to radiation focusing and guiding
in a free electron laser. If the centroid of the electron beam is transversely displaced the
radiation can )e guided bv the electron beam. A spatial modulation on the electron beam
envelope can also modify the radiation field. These and other phenomena are stuli(led using
a novel source d(el)en(ent modal representation of the fully three dimensional radiation field,
the Source Dependent Expansion (SDE) method. Among the merits of this approach is3 that few mo(les are needed for an accurate description of the ra(tiat ion.
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Appendix III, also published in the Physical Review A, is a further study of the
focusing and guidance of the radiation by the electron beam using the SDE method.
Fast and accurate numerical solutions of the fully three dimensional FEL problem can
be obtained over distances of many Raleigh lengths. The effects of finite emittance and
wiggling of the electron beam can also be studied. Appendix IV, presented at the 1986
International FEL confererve in Scotland, treats similar material. Appendix V, presented
at the 1986 Conference of Particle Accelerators, expands on this work by examining the
perfectly guided radiation beams in the Compton exponential gain regime of an FEL.

Appendix VI, also published in the Physical Review A, uses the SDE method for
a related problem, viz., the optical gain, phase shift, and spatial profile of the coupled
electron and radiation beams in an FEL. This research was carried out in collaboration
with B. Hafizi from SAIC and with NRL personnel. The gain, phase shift, wavefront
curvature and radius of the radiation envelope in a free electron laser amplifier are obtained
in the small signal regime. The electron beam is assumed to have a Gaussian density
distribution in the transverse direction. Numerical calculations indicate that the radius and
curvature of the radiation beam entering a wiggler asymptote to unique, spatially constant
values after a finite transition region. However, in the asymptotic regime the wavefronts
diverge. Analytical expressions for the gain, phase shift, curvature and spot size are
derived. It is shown analytically that small perturbations of the optical waist and curvature
about the matched value are spatially damped out, indicating the stability of the matched
envelope. When the electron beam is modulated in space, the optical spot size oscillates
with an almost identical wavelength but delayed in phase. In the case of small amplitude,
long-wavelength betatron oscillation of the electron beam envelope, generation of optical
sidebands in wave number space is examined. The effect of the dispersion characteristics
of the primary wave is found to be negligible for typical experimental parameters.
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II. TECHNICAL DISCUSSION

Electron beam quality as measured by the transverse emittance is usually determined
by the gun and propagation configurations in accelerators (see Ting and Sprangle, 1987
for this discussion). Under idealized conditions, the transverse normalized beam emittance
remains a constant of motion as the beam propagates through the accelerator. Therefore,
to improve the quality of the beam, it ib necessary to decrease the beam emittance at the
injection point. However, since the normalized beam emittance is essentially the trans-
verse area in phase space for the collection of beam particles, one can in principle reduce
the emittance if a dissipative mechanism is introduced. A natural candidate for such a
dissipation mechanism is the induced synchrotron radiation damping due to the transverse
motion of the particles in an external periodic transverse magnetic field. It is this mecha-
nism that will be focused on in Appendix I when the external magnetic field is chosen to
be a helical wiggler field. Since this radiation damping effect is small at low energies, it is
in the context of the recently proposed high energy IFEL accelerators (references 1-11 in
Appendix I) that will be emphasized and concentrated on in Appendix I.

First, the electron orbits in an IFEL accelerator must be obtained. A fully relativistic
formulation of the equations of motion which include radiation damping force is consid-
ered. The damping coefficients are obtained from the transverse dynamics of the particles
while the axial dynamics describe the acceleration of the particles. In the second section,
a relativistic envelope equation for the average radius of the electron beam is derived,
assuming continuous emission of the synchrotron radiation. It is apparent from this en-
velope equation that the normalized transverse emittance decays exponentially at a rate
given by the radiation damping coefficient. The envelope equation is solved using a WKB
method and the spatial evolution of the beam radius is obtained. Quantum excitation sets
a minimum value on the normalized transverse emittance in an IFEL accelerator and it is
derived in the fourth section of Appendix I. Strong focusing is found to be necessary to
reduce such minimum to an acceptable value. An example is given in the last section of3 Appendix I for a set of proposed IFEL accelerator parameters (reference 2 in Appendix I).
It is found that radiation damping does reduce the emittance of the accelerated electron
beam while resulting in an insignificant loss in particle energy.

In analyzing radiation focusing and steering in the FEL by using a source depen-
dent expansion technique, it is found that in the one-dimensional analysis of the FEL
the radiation field, wiggler field and electron beam resonantly couple so as to modify the
longitudinal wave number of the radiation field (references 1-3 in Appendix III; also see
Sprangle, Ting and Tang, 1987a for this discussion). This can lead to focusing of the3 radiation beam, a phienomena which has been shown to play a central role in the practical
utilization of the FEL (reference 9 in Appendix III) since ini many proposed experiments
the short wavelength radiation beam will not be confined or guided by a waveguide struc-
ture. Furthermore, the interaction length (wiggler length) is usually long comIpared to the
Rayleigh length associated with the radiation beam. Therefore, focusing of the radiation
beam via the resonant interaction with the electron beam is necessary in order to overcome,
the natural tendency of the radiation beam to diffract. If diffraction of the radiat ion field
were not fully or partially offset by the focusing effect, the FEL would suffer from reduced
gain and efficiency.
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Two primary objectives are associated with the use of a source dependent expansion
technique in the analyses presented in Appendix III (Sprangle, Ting and Tang, 1987a) and
Appendix IV (Sprangle, Ting and Tang, 1987b), namely to present a general method of
formulating and solving problems involving radiation focusing and guiding for mechanisms
in which the refractive index is known and to apply this approach to the focusing and steer-
ing of radiation in FELs with arbitrary gain. The method is a general, self-consistent, fully
nonlinear, modal representation with application to the phenomena of radiation focusing
and guiding in FELs. The source function (driving current) is incorporated self-consistent ly
into the functional dependence of the radiation waist, the radiation wave front curvature
and the radiation complex amplitude. The fundamental mode remains dominant through-
out the evolution of the radiation field due to the source dependent nature of this mo(
expansion. This source dependent expansion (SDE) scheme appears to have a num ,er
of advantages over the conventional vacuum representation (reference 7 in Appendix IV).
Among the advantages are that relatively few modes are needed, compared to the vacuum
expansion approach, to accurately describe the radiation beam. Because far fewer modes
are needed, fast numerical solutions of the fully three-dimensional wave equation can be
obtained over long propagation distances. It therefore appears feasible, using the SDE ap-
proach, to incorporate simultaneously into the model for the driving current density, the
effects of electron beam emittance, energy spread, wiggler gradients, sidebald frequencies,
etc. Furthermore, since the lowest order terms in this expansion are a good approximation
to the radiation field even for propagation distances long compared to a Rayleigh length.
valuable insight concerning focusing and guiding can be obtained.
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I. Single Particle Dynamics

We shall consider the motion of an electron under the influence of a

helical wiggler field and a circularly polarized electromagnetic wave with the

inclusion of the radiation reaction force. The fully relativistic equation of

motion is 14

dp vxB
-t--II. -)+ FA  (1). _- le I(E +

where

R2-- 1, d1I 1.2 dp 2  + d _
UR - (RI.2 [----j--) - )

m c
0

is the radiation damping force, "R - 21e1 2/3oc3, and y2 - 1 + 10i2/m2C2.

The radiation field is given by its vector potential A L-AL (cose x- sine y),

where * - kz-wt. We shall assume z-dependence for both the magnitude and

period of the wiggler field. The vector potential A for the helical wiggler-W
a a z

field is given by Aw -A w[cosOex+sinGey] where Aw = Aw(z) and 8 = f kw (z')dz'.
0

The requirement that the wiggler field satisfies both V - B - 0 and-w

V x B - 0 introduces transverse variation as well as a nonzero z-omponent of--w

the magnetic field.
15

Since we shall be primarily interested In laser driven accelerators, the

normalized wiggler field strength aw - IeIA,/moc2 is assumed to be much

greater than the corresponcing quantity aL - IeIAL/moc 2 for the radiation,

i.e., aw >> a L . It can then be shown that the major contribution to the

radiation damping is from the wiggler field.

We shall first look at the radiation damping term in Eq. (1). By

neglecting the transverse dependence of the wiggler field for a beam that is

confined sufficiently close to the axis, we have the immediate consequence

that the canonical momenta in the x and y directions are constants of motion
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i and 0ay be chosen to be zero. The mechanical momenta are then given by

p e-" x , "p c T,- e y,whereI -A + A Also, in thez eroth

order approximation, the total relativistic energy Is conserved which leads

to i - 7 and pz W 0. Therefore, the only significant term remaining in the

radiation reaction force is

R d2,R R dP 2
F [-YC 2---2 ( F )

dt mc0

Neglecting terms of order a L/aw << 1, the components of the radiation reaction

force are0 - F R - , wherex V ICP, y V1 Cpy, F - vcPzh

V1  TRYk 2c(a + 1), (2a)

Ik 2 a 2 (2b)

H are respectively the spatial decay coefficients due to radiation damping in

the transverse and axial directions. Note that - for a 2 >? 1 which is

the case in the IFEL accelerator.

H The most significant feature of the transverse motions of the electrons

H Is the betatron oscillation caused by either the inhomogeneity of the wiggler

field in the transverse plane or other focusing mechanisms. It can be shown

Ithat, for small oscillations about the axis of the wiggler field, the

transverse equaticns of motion are,

H 2 Kx -- ( I'+ ,.i dx+ K x IU- (3a)
dz2

H K T2 ' (3b)

dz2

where d/dt v z3/3z, v z  c, ' 3 a/az have been used, and KB is the wave

H



number of the longitudinal betatron oscillation. For betatron oscillations

that are originated from the v x B force due to the nonzero magnetic field in

the z-direction of the realizable wiggler field, 1 5 KB = aw k w/(/2Y)

The axial motion of the electron is governed by

dp z dv zdY__JL
vdz dz _hi (v x B) - vlp z  (4)d- - Y 7, U - + v z dU-Z" " 2 - -z

c Izz

where

-lelv " E ( i1i2 + V
dY -II' vjj vp~ I
dz m o3 m2c3y

0 0

It is straightforward to show that the axial electron acceleration is

dv aa 2  2awa kwc 2k 3vIaLaw
Z c w + w Lw snw V + 2 o (5)

dT 2Y2 az y2 sin k --- kvv +

z
where - 0 + f + k w (z) - W/Vz (z')jdz' +4 4 is the phase between the

0
electrons and the ponderomotive wave generated by the beating between the

radiation and wiggler fields, and to is the initial phase at the entrance of

the Interaction region. Equation (5) can be transformed into the following

pendulum equation

2 dw k 3aw2  2 awaLkkw 2vk 3vIa awkd w k d - sin 2 + cos 4,. (6)dz 2  z 22 z- + 2 c cY 2

The rate of change of relativistic energy may be obtained from Eq. (4) and is

dY aLaw vkaLawk 2 2

K- - 2) cos q$ - 7i(a a)
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Equations (3). (6) and (7) will be the basic equations we shall use in

studying the effects on beam quality due to radiation damping. The terms

containing cos * In Eqs. (5), (6) and (7) as well as the last term in Eq. (7)
2 2 2

may be neglected when the conditions aw >> a , a2 >> 1, k >> k , and

Y2 >> 1 are satisfied. These conditions are easily achieved in high energy

IFEL accelerators.



II. Derivation of Envelope Equation with Radiation Damping

The single particle equations of motion that we have developed in the

last section will enable us to study the macroscopic behavior of the beam.

This is accomplished by considering the evolution of various averaged

quantities associated with the single particle variables. 12'1 3 We begin by

multiplying Eq. (3a) by x' and x, and Eq. (3b) by y' and y, where '

denotes 3/3z. Combining the resulting equations yields the following set of

equations

1 K 2 (8a)T - 1+--2 d-- r PeI I(a

1 d 2  2 2 r2 d r2

d 2 B  - z , (8b)

dtd ti (8c)

where r2  x2 + y2  2 x + y'2  Y'/Y + vIan. L (X'y - y'x) is the
, - -

normalized angular momentum. We eliminated 81 by substituting Eq. (8b) into

Eq. (8a). By taking transverse ensemble averages over beam particles in Eq.

(8), and denoting the ensemble average of r 2 by a2 - <r 2 >, we obtain an

equation which governs the evolution of the root-mean-square radius of the

electron beam,

2 d 2 d 2  2 2 2 d d 2) 1 d 3 a 2  d 2 2z ~a +U- a + 2pK a + z(d dzK" + ;-2 B 2 3?) ?.d (~

2d 2
+ K -a 0. (9)

It is easy to show that the integration factor for Eq. (9) Is g22 where
2 2 Z

g - 2exp(2J Vldz') . Equation (9) can now be put Into the form

d/dz[ g 2 (a 3 at* +a 3 a' + a K2)] - 0 , and can be integrated to give

7



g 2a [a'' I a 3a' + a 4KB 21 . I? where H2 is a constant of motion associated

Iwith the beam. It can be shown that, using the following representation for

the particles' normalized transverse velocities,12

-ja

where 68 Is the normalized transverse velocity spread, and L - <L> from1IEq. (8c), the constant H 2 Is given by

I H2 . *2 (O)L 2 (0) + Y 2a 2<1 12 >x jv 1dzt)

where Y(0) -Y(z-0) and L(O) - LUz-O). We may therefore define the squared

normalized beam emittancel2 ,16 as c I()-B.La2<6I1 and arrive at the

following envelope equation

2 ccn (z) + Y 2L 2(z)3
da+(-- +v)-La+ K2a- n 0 . (10)

z2 Y dz Ijdz B Y2a3

3The spatial dependence of the normalized emittance and average angular

momentumn are given respectively by

Iz
t Cn (z) C n (O)exp(-J vz) ,(Ila)

LVz) a ((0)Y) L(O)exp(-f vdzt) *(hIb)

I where c (0) - £ (z-0). Equation (10) together with Eq. (I1a,b) constitute then n
beam envelope equation with radiation damping terms included.

One can see that when vI- 0, Eq. (ha) shows that c n remains constant

and Eq. (10) reduces to the usual relativistic beam envelope equation where

3 8



n Is the familiar normalized beam emittance.12, 16  Therefore, in the presence

or radiation damping, the root-mean-square beam radius is still described by

an envelope equation but the normalized beam emittance Is no longer constant

but decays exponentially according to Eq. (11a). However, the decay of the

normalized beam emittance will eventually be limited by quantum excitation due

to the discrete nature of the synchrotron radiation. It is shown in a later

section that when an equilibrium is reached between these two competing

processes, the minimum normalized emittance achievable through radiation

damping In the IFEL accelerator is given by (cn) na 3 kw/(,/2mocK) .

In the presence of radiation damping, the average angular momentum also

decays exponentially as given by Eq. (11b). However, one may choose L(O) - 0

for beam generation schemes that do not impart an average angular momentum to

the electron beam, i.e., zero magnetic field at the cathode. We shall assume

that this is the case in our study of beam quality. We shall also not

distinguish between v and v, , and will denote both by v.

9
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III. Evolution of Beam Radius

The equation for the root-mean-square radius a in Eq. (10) is nonlinear.

It is found, however, that the mean square radius a 2 satisfies Eq. (9), which

His a linear differential equation. For beam focusing provided by the wiggler,

E Eq. (9) may be solved exactly for untapered wiggler fields when Y' - 0.

If Y1' 0 or when the tapering is known, it can be solved using a WKB method

I if we assume the coefficients are slowly varying. Equation (9) can be

simplified in certain limits of accelerator designs to facilitate analytical

study. It can be shown that, Y'/Y << KB and v K KB, which allow us to arrive

I at the following approximate equation

I Si' + 31S + 4K 2 S' + (40K2 +2(K2)']S - 0 , (12)

where S = a2 .

In order to obtain net acceleration of the electrons trapped in the

ponderomotive potential, the wiggler field must be spatially tapered. In such

I a case, the envelope equation, Eq. (12), is a linear differential equation

i with spatially dependent coefficients. We solved it by using the WKB-method

which assumes these coeffients to be slowly-varying functions of longitudinal

I distance. By assuming both KjKB and V << KB. the general solution to

Eq. (12) is found to beI
S - e- KB-(-) [ A + B cos 2r + C sin 2E

z z
where M - f (z')dz',and I = KB(z')dz'. The coefficients A, B, C can be

0 0

found by using the initial conditions for a matched beam, a(z-0) - ao ,

a (z-0) - 0, a (z-0) - 0 . The matched beam radius ao is related to the

I 10



4i 2 2 2initial transverse emittance a - c (O)/(KB MY (0)) . Using the initial

conditions, we arrive at the following expression for the root-mean-square

beam radius,

-/2 K B(0) ]12 p(O) + Kj(O)/KB(O)a -ao e 1 a+() sin 2 1 2"  •(13)
0KB ()AB(0

Equation (13) shows that the beam radius does not remain constant even when

the beam Is matched at injection. In addition to the exponential decay from

the radiation damping, the beam envelope developes an induced betatron

oscillation. However, the normalized emittance is just an exponential decay

given by Eq. (Ila).

We may gain some insight into the general effect of radiation damping on

the transverse emittance by studying Eq. (12) in the case of untapered wiggler

field. We shall first consider the case where Y' - 0. This could be the

situation when the acceleration mechanism is saturated by the radiation

damping and the beam energy is constant. The evolution of the beam radius is

then given by the appropriate limit of Eq. (13). Since there is no tapering

of the wiggler, the solution is exact and given by

a oa0 eVZ/ 2 [ 1 * B sin 2KBZ 1 2

The beam radius again exponentially decays with an Induced betatron

oscillation. Since Y Is constant, the damping rate v is constant, and the

normalized emittance cn is given by n(z) - cn (0) exp(-vz).

Next, we consider the situation when an accelerated beam Is cooled by

passing it through an untapered external wiggler field. Since the beam

decelerates due to the synchrotron radiation damping, we have Y'/Y - -v.

11



.

This gives V - 0 and since K - aw k /(r2Y), the betatron wave number KB is a

function of z. The spatial dependence of Y can be evaluated using y'/y - -v,

and Eq. (13) reduces to a - ao(1 + vz ), where vo W I a k 2Yc. Although the

Ibeam radius remains constant up to order of O(z2 ), the normalized beam

emittance decreases algebraically, £n =  n(O)/(t+Voz).

The relevance of the above analysis depends on the magnitude of the

damping rate vo . For the following set of accelerator parameters,
2

EL - 1.5x10 9 V/e., Bw = 50 kG., Aw = 1 m, it is estimated that the e-foldI 5
length, 1/v0 , could be as short as < 600 m for Yo - 10 . Therefore, our

results show that one can improve, by induced synchrotron radiation, the

quality of an electron beam by passing it through an external wiggler field.

I
I
I
I
I
1
I
I
I
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IV. Quantum Excitation

An estimate for the minimum transverse normalized beam emittance due to

quantum excitation in an IFEL accelerator can be obtained from the following

qualitative treatment. Similar arguments can be made for electron beams in

storage rings.17i18 The normalized transverse velocity and radial

displacement of an electron in a wiggler field are given by BOwaw/Y, and

r w-aw A w/(2NY). For a fluctuation 6E in the energy of the electron, the

corresponding fluctuations In rw and 8w are 6rwmn6E/E , and 68w=t6E/E. where

n-aw A w/(2vY) and -a w/Y. The increase in normalized emittance due to such

fluctuations is17 '19 An a 2 2 which for a weakly focusing

n w Kwn( B)6E/
channel, KB<<kw, can be approximated by Ac - Y<60 >/ - ( B2/KB)<6E2>VE2

Due to the discrete nature of the synchrotron radiation, <6E 2> is given

by N(e) 2 where N-Pz/(c cw.) Is the number of photons emitted in a distance z,

P is the synchrotron radiation power, and fic is the energy associated with a

quantum of synchrotron radiation. We can therefore obtain the rate of change

of Cn due to quantum excitation,

(dn) 2 Phwc
dz Q.E. KB  cE2

However, with radiation damping, the total change In cn Is given by

dcn dcn
(dEn) "- + (nE)
dz n dz Q.E.

The normalized emittance, £n, reaches a minimum, dc n/dz-O, when the two

effects are balanced. This gives cn-Y& 2 A, /(KE) for the minimum normalized

emittance, where we have used vc-P/E. For synchrotron radiation,

fiwc-3cT3/(2p) where p-Y/(aw k W ) Is the radius of curvature of the electron

orbit In the wiggler. The minimum transverse normalized beam emittance is

then approximately given by

13
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(Ci 36 a 3 k/(2focK) (14i)

In the case of weak focusing due to wiggler transverse gradients,

% - awk/(fY), and the minimum normalized emittance is

2 (Cn) ft 31ia2l(/-moc) (15)
n min w 0

Using the accelerator parameters at the end of section III, Eq. (15)

gives the value of the minimum normalized emittance to be -1.8 cm-rad.

Such a large value of the minimum emittance Indicates the inadequacy of the

weak focusing from the wiggler transverse gradients. Strong focusing from,

for example, a rotating quadrupole field produced by a pair of (or four)

helical current windings2 0'2 1 may be required. The betatron wavenumber for

such a focusing mechanism22 is given by 2 - lel(3BlBr)lYmoc , where Blar Is

I the magnetic field gradient of the quadrupole field on axis. For

BB/ar-250 G/cm, aw=6 00, AMw-1m, and Y-=x10 5' Eq.(11) gives a minimum

I normalized emittance of c -0.13 cm-rad. Another possible strong focusingn

force could be the electrostatic radial electric field of an ion oolumn. Such

a column could be created by the Ionization of the residual gas by a low

I energy, high current electron beam pulse preceeding the main accelerating beam

pulse.23- 25 The betatron vavenumber for such a focusing mechanism can be

I easily shown to be M 1
2 (mI/m0 )/(2Yc

2) where vpi Is the ion plasma

II frequency and (mi/mo ) is the mass ratio between the ions and the electrons.

For nil102 /cm 3, aw-600 , x=lOre, and Y-x105 , Eq. (1l4) gives a minimum

normalized emittance of On-O.O4 cm-rad. An additional benefit of having Ion

focusing in the IFEL accelerator Is that the radial plasma electron density

profile In an Ion column can also be a focusing medium for the laser beam.

I
I



V. Numerical Example

We shall consider only resonant particles whose phase , satisfies the

2 2
oonditions d*/dz - 0 and d */dz 2  0. The first condition gives

y- 2 B k ,3/2 (16a)

0

* R R k 2  - R2 w kw (16b)

3 m cw w
-4 ~ B~ ~3 ' 2 W *(16c)

moc
0

where R1 - /7IeELsin*R/(moc 2v ) , R2 - IeI 6 k/(3mSc 1° ) , is the resonance

phase, EL the laser electric field strength, and k the laser wave number. The

second condition together with the pendulum equation, Eq. (6), provide the

spatial dependences of kw and Bw,

2 -w 4EL 0 3  22mc2 
3

w -~B +-- w w *RB -R 2 ---- 0R2 (17)
w

Equation (17) shows that the required tapering of the wiggler field may

be obtained by prescribing #R and a relationship between kw and Bw in

Eq. (17). As an example, we assume the tapering of the wiggler field to be

that of a maximum rate IFEL accelerator. 2  For such a case the wiggler

strength and the wiggler period are related by the following power law,

1/4 7/8
BW a(R/6 R 2) k

Equation (17) may then be solved to give

Bw - Bw(O)[I + Riz3- 7 / 9  (18a)

15



k = k (0) [1 + R 4Z] 8 9  (18b)k w w 4 1b

where

R4 9v2mc 2  3/7 9/7
R =e - R2 (RI/6R2 ) B (0)

Evaluating Eqs. (11) and (16a) with (16c) and (18a,b) gives the

nromalized transverse emittance and the resonant energy of the beam

as functions of the propagation distances.

For our example, we ill consider the following set of acceler-atrprmtr2 19Vc
ator parameters EL = 1.5 x 10 V/cm, B w(0) = 50 kG, X w(0) = 100 cm,

and X = 10.6 pm with a resonance phase of sin R = 0.6. The initial

conditions are for a matched beam with a radious of 1mm and a

normalized emittance of c 0 = 0.205 cm-rad, and the required beam

injection energy is %52 GeV. The beam is allowed to propagate for

1 km without depleting the laser radiation. We repeated the calcula-

tion by assuming there is not radiation damping but with the same

power law tapering of the wiggler field.

The results are represented in Figs. 1, 2, and 3. The open

squares denote the presence of radiation damping, while open

circles denote its absence. From Fig. 1, we can see that the

final energy is not significantly reduced by the radiation damping.

Figure 2 shows the exponential decay of the normalized emittance.

At the end of the one-kilometer accelerator, the normalized

emittance is reduced to 0.05 cm-rad, which is very close to the

minimum normalized emittance of ' 0.04 cm-rad at that point if

ion-column focusing is assumed in the accelerator. In Fig. 3, the

appropriate tapering of Kw and Bw for the two cases is shown.

16



Conclusion

We have studied the evolution of transverse emittance and the beam radius

due to the radiation damping effect in an IFEL accelerator. We derived the

beam envelope equation, Eq. (10), which includes the effects of radiation

damping, and have demonstrated that the normalized transverse emittance

decreases exponentially with a damping rate given by the radiation damping

coefficient v until it reaches a minimum value due to quantum excitation

The beam envelope equation was solved analytically for a slowly-varying

wiggler field. We have derived an expression for the minimum normalized

emittance in the IFEL accelerator and showed that strong focusing is essential

in reducing this minimum emittance due to quantum excitation. We have shown

that radiation damping can play an important role in improving beam quality

without a significant sacrifice in beam energy.
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Figure Captions

Fig. 1 Evolution of beam energy in an IFEL accelerator with and without

radiation damping.

I 2
Fig. 2 Exponential decay of normalized beam emittance, c

Fig. 3 Spatial tapering of wiggler period and field with and without

radiation damping.
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In the one-dimensional analysis of the free electron laser (FEL) the

radiation field, wiggler field and electron bean resonantly couple so as to

modify the longitudinal wave number of the radiation field.1- 3 This

resonant interaction can lead to focusing of the radiation beam. This

phenomena vas first analyzed for the loy gain FEL vith transverse effects4

-- where it was shown that the diffractive spreading of the radiation beam

* could be overcome by a focusing effect arising from the modified index of

refraction. This radiation focusing phenomena has been shown to play a

central role in the practical utilization of the FEL,5 since, in many

proposed experiments the radiation beam will not be confined or guided by a

I vaveguide structure. Recently optical guiding in FELs has been studied in

the small signal, exponential growth regime, for the asymptotic behavior

U of the radiation beam.

In this letter, we present a general, self-consistent, fully

nonlinear, modal representation formalism which we apply to the phenomena

3 of radiation focusing and guiding in FELs. The novel aspect of our modal

expansion is that the characteristics of the modes are governed by the

I driving current density, as opposed to a heuristic numerical approach,1 0

and hence it is called the "source dependent expansion" (SDE). Instead of

using the usual modal expansion consisting of vacuum Laguerre-Gaussian

functions I1 we incorporate the source function (driving current) self-

consistently into the functional dependence of, i) the radiation waist, ii)

i the radiation wave front curvature, as vell as iii) the radiation complex

amplitude. Because of the source dependent nature of our modal expansion,

Ithe fundamental mode remains dominant throughtout the evolution of the

3radiation field. This approach, which can be applied to a wide range of

problems, lends itself to fast and accurate numerical solutions as well as

3to a better analytical description of the FEL focusing and guiding problem.

I1



Using the SDE approach in numerical simulations of the FEL, one can

efficiently incorporate simultaneously the effects of electron beam

emittance, energy spread, wiggler gradients, sideband frequencies, etc.

An envelope equation for the radiation is derived which describes the

transient as well as asymptotic behavior of the radiation beam. The

effects on the radiation beam of a transversely displaced electron beam as

well as a longitudinally modulated electron beam have also been considered.

In our model the vector potential of the radiation field is

AN(r,O,z,t) - (l/2)A(r,O,z)exp(i(wz/c-wt))e x + c.c., where A(r,O,z) is the

complex amplitude, w is the frequency and c.c. denotes the complex

conjugate. The radiation field satisfies the reduced wave equation,

(r2 + 2i c 1a(riez) S(r,e,z), (1)

where a(r,8,z) = eIA/mc 2  alexp(i+) is the normalized complex radiation

field amplitude and we have assumed that a- 1a/az << w/c. The source

function, S, has the general form

S(r,e,z) = (w/c)2 (1-n 2(r,e,z,a))a(r,6,z), (2)

where n(r,6,z,a) is the complex index of refraction.

We choose the following representation for a(r,e,z) in terms of

associated Laguerre polynomials,

a(r,O,z) - E E C,p (e,z)DP(r), (3)

m p

where m and p = 0,1,2,--',

C m p(e,z) = a mp(z)cos pe + bmp (z)sin p9, (4a)

mpmp 2 m2p

(/2r 12r _r_ -0 - I 2(z))r 2/r (z)
D (r) - L e) (4b)

2



In Eqs. (4ab), a6p (z) and bsp (z) are complex, rs (z) is the radiation

spot size, e(z) is related to the curvature of the vavefront and LP is the3

associated Laguerre polynomial. The z dependence of these parameters vil

be determined by the source function in Eq. (1).

Substituting (3) into (1) and using the orthogonality properties of

Lp  cos p8, and sin pe, we obtain,

[( + A W p(zJb] P) iz (z)j - i(m+p+l)B *(z) 3m1,p (z)-IZ 'PP/ I t() -'P(W)/ mp M+IP(Z)/

= Mp(Z) , (5a,b)

where

A i(2m+p+l) (I + c)c/r 2 /r + a/2), (6a)Ap(z) =s/rs++~)/r-~ /

B(z) = - + (1 a2)cr - _ /2) -i (r'/r -s2j/r , (6b)

the prime denotes 3/az, * denotes the complex conjugate and

(z) ) I 2n w * (1+6p0)-r1Cos p

mp (z) - 2nw (M+p) d sin pe0 0

(6c,d)

where t = 2r2 /r2. The equations for a and b in (5) aresm,p m,p

underdetermined, since the function B(z) can be shown to be arbitrary. If

we choose B(z) = 0, for example, we would in effect be expanding the
11

radiation field in the conventional vacuum Laguerre-Gaussian modes. For

a source free medium, B = 0 would be the most appropriate choice. In the

presence of a source term a more appropriate choice for B(z) can be found.

This is accomplished by considering the case where the radiation beam at

I3



z - 0 has a Gaussian radial profile symmetric about the z-axis. Let us

further assume that for z > 0 the radiation beam profile remains

approximately Gaussian with a nearly circular cross section. In this case,

we expect the magnitude of the coefficients, a mp(z) and bmp (z) to become

progressively smaller as m and p take on larger values. A good

approximation to the radiation beam is then given by the lowest order mode,

ao,o(z). From (5a), ye find that only the m - 0,1 and p - 0 equations are

relevant and they are (3/az . A0 ,0 )a0 ,0 - - IFo,0 and F1,0 - Ba The

second equation provides us with a specific expression for B(z) in terms of

one of the moments, F1 ,0, of the source term. The choice of B(z) =

F1 ,0(z)/aoo(z) is source dependent and when substituted into (6b) yields

first order coupled differential equations for the parameters, r5 and a, of

the Laguerre-Gaussian expansion in (3) and (4a,b). The set of equations in

(5a,b) may nov be solved self-consistently for the modal coefficients am, p

and b
m,p

We first consider the dynamics of an axially symmetric radiation field

in the FEL. The appropriate index of refraction4'5'7'12 for a Gaussian

beam density profile is

2
n(r,z,a)_ 1 (rz) (7)

2 2 2 2 2where % (r,z) = wO(rbO/rb(z)) exp(-r /r b(z)), rb(z) is the electron beam

radius, rbO = rb(O), wbO is the initial beam plasma frequency on axis,

2a. = leiB./kwm C is the normalized wiggler amplitude, y is the electron's

Lorentz factor, * is the electron's phase in the ponderomotive wave

potential and < > denotes the ensemble average over all electrons. With

the assumption that in the source function the complex radiation amplitude

4



I
can be approximated by the lowest order mode, we find that (2) can be

written as

rS(,z) -4v(a/e , (8)

where v - (wbO rbO/2c)2 _ Ib/17xl0 3 is Budker's constant and Ib is the

electron beam current in amperes.

An envelope equation for the radiation beam can be obtained using (8)

and (6b),

r'' + 2 (z,rbr, aooj)rs - 0, (9)|s bys

whereI
K 2= (2c/cw) 2(_, + C2<s in *>2 +2C<cos*> + (w/2c)r 2 C'<i* rS s

(10)

and C(z) =(2v/y)H(z)a /ao 0 (z)1, measures the coupling between the

radiation and electron beam, H(z) =(I-F)/(l+F) 2 and F(z) = r 2/r 2 is the
b s

filling factor. The first term on the right hand side of (10) is the usual

diffraction term, the second and third terms are always focusing while the

last term is usually a defocusing contribution. In the high gain trapped

particle regime, <sinp> and <cos*> are approximately constant, while

laoo (z)l increases with z. Hence, K strongly depends on z and a guided

beam (r' 0 0) cannot be maintained. In the low gain trapped particles
regime laoo (z)l increases slightly and, therefore, a guided beam can be

approximately achieved. In either the Compton1 3 or Raman exponential gain

regime, conditions for a stable guided beam can be found.

The FEL parameters used in the following illustrations are similar to

those used in Ref. 14 and are given in Table I where the resonant phase
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approximation is used and zR = nr (0)/X is the Rayleigh length. we present

first a comparison between; a) the exact numerical solution of the wave

equation in (1), (using 64x64 Fourier modes), b) the solution using a

vacuum Laguerre-Gaussian modal expansion (B = 0, using 10 modes) and c) the

solution from the Laguerre-Gaussian SDE approach (B = F],0/a0,0 , using 10

modes). For an axially symmetric configuration, we show in Fig. 1 the

evolution of the radiation beam amplitude on-axis obtained from methods

(a), (b) and (c). The SDE solution (c) is in excellent agreement with

solution (a) while solution (b), beyond a Rayleigh length, grossly deviates

from (a) and (c). The excellent results obtained with the SDE approach are

also rpflected in the radiation amplitude profile. Figure 2 shows the

evolution of the radiation beam radius, rE, in the linear, exponential gain

regime of the FEL for the parameters in Table I. Five transverse modes

were used in the numerical calculation.

We now consider the case where the electron beam centroid is displaced

transversely in the x direction. The index of refraction in this case is

given by (7) with (r,z) multiplied by (1 + 2(rsx /r2)cosO ) where x(Z ) is

the displacement of the electron beam's centroid and jxbl << rb. In the

FEL source term we consider only the lowest order symmetric and anti-

symmetric mode with respect to the x axis. The centroid of the radiation

beam is given approximately by

xL(z) = r (a0 , (11)

/220,O
where xL is defined so that jai is proportional to exp(-((x - XL) + y /r 2

whr L a1 ep-( LY + sI

and ( denotes the real part. Figure 3 shows the electron and radiation

beam centroids, xb = x (1-sech(kc z)) and x L for xc = r b/A = .075cm

and X = 2n/k = ZR /4 = 2.7m. In these numerical illustrations, 10 radial

c c



modes and 2 angular modes were used. After an Initial transient, the

radiation centroid is guided by and oscillates about the electron beam's

centroid. We have also studied the situation where the electron beam centroid

oscillates according to xb = Xc sin kc z with Xc << rb and X - 2n/kc < ZR.

Because of the high gain in the radiation field the radiation centroid

eventually follows the average position of the electron beam's centroid. When

the electron beam centroid osciilation is due to the wiggler field, there is

no change in the evolution of the radiation field.

3 Under certain conditions the electron beam envelope can be spatially

modulated about the z-axis if the weak focusing force due to the wiggler

I gradient is not balanced by the defocusing forces arising from emittance and

self field effects. It can be shown that the amplitude and waist of the

radiation field undergo a modulation similar to the electron beam envelope

3 modulation.

We have analyzed, using the SDE formalism, a number of effects associated

3 with radiation focusing and guiding in the FEL. This approach can be readily

generalized to include both spatial and temporal variations in the radiation

m field in order to study sideband generation and focusing effects

simultaneously in the FEL.
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Table I

Electron Beam

Current Ib - 2kA, (v = 0.118)

Energy % = 50 HeV, (y - 100)

Radius r. - 0.3 cm

Radiation Beam

Wavelength X - 10.6um

Input Power P(z=0) = 230KW, (la(0,0)I = 1.84x10 - 4 )

Spot Size rs (0) - 0.6 cm, (zR - 10.7 m)

Wiggler Field

Wavelength X V 8 cm

Wiggler Strength B = 2.3 kG, (a. = 1.716)

Resonant Phase *R - 0.358 rad
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Figure Captions

Fig. 1 Radiation amplitude on axis, la(O,z)l for a) exact numerical

solution (64x64 Fourier modes), b) vacuum modal expansion solution

(10 modes), and c) SDE solution (10 modes) at distance of

z - 4zR = 42.8 m.

Fig. 2 Evolution of the radiation beam radius, l/e vidtn. -,, for initial

spot sizes: a) 0.35 cm, b) 0.24 cm, and c) 0.15 cm.

Fig. 3 Electron and radiation beam centroids, xb and xL for a displaced

electron beam, xb = x c(1-sech(kc z)) with x C r b4 and

X = 2n/k = z 4.
c c R

11



I
I Table Caption

1 Table I. FEL simulation parameters

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I



10 f)

J( ' )

ap lldV-SJIP~



U'o

IE
vIz

I0
Iw) j&np~ / OIID



0 *0

__ _o_ _ __ _ _ _ __ _ _ _

qj PD q/qx p! j 4 a:



I
I
I

i Appendix III:

Analysis of radiation focusing and steering in
I the Free Electron Laser by use of a source dependent

expansion technique

I
I
I
I
I
I
I
I
I
I
I
I 1



II. Formulation of the Source Dependent Expansion (SDE)

The radiation focusing and guiding configuration for the FEL is shown

in Fig. 1. In our model the vector potential of the linearly polarized

radiation field is

AR(r,e,z,t)= 2 e ex + c.c., ()

where A(r,e,z) is the complex radiation field amplitude, w is the frequency

and c.c. denotes the complex conjugate.

The wave equation is

1 2 a2 2
Il2(2 l22.= -n Jxex (2)r r ;r "r 2  ae z2  c2 , 2 at 2 -- x x'

where J (r,e,z,t) is the driving current density associated with the

medium. Substituting (1) into (2) leads to the following reduced wave

equation,

a - ri- + 2  2 z '
L -+2i W a' a(r,e,z) = S(r,O,z), (3)
r 2 C

where a(r,G,z) = reA/moc  = lalexp(i ) is the normalized complex radiation

field amplitude and we have assumed that a(r,e,z) is a slowly varying

function of z, i.e., a-l a/Bz << w/c. The amplitude, a(r,e,z)l, and phase

*(r,O,z) are real functions expressed in terms of the polar coordinates,

r,8 and z. The source function, S, has the general form

2
S(r,O,z) = - (l-n2 (r,6,z,a))a(r,9,z), (4)

2c

where n(r,O,z,a) is the index of refraction associated with the medium and

is in general complex and a function of r,e,z as well as the radiation

field, a.
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We choose the following representation for a(r,O,z) in terms of

associated Laguerre polynomials,

a(r,O,z) = E C (e,z)DP(r), (5)

I mp

where m ,,2,., p =0 2,

C m~p(O,z) a mrp(z)cos pe + bmp (z)sin pO, (6a)

r 2 p - 0 - ia(z))r2 / 2(z)

DP(r) = (L re -)(. (6b)I r )s (z)

In Eqs. (6a,b), the complex coefficients amp (z) and bmp (z) are functions

of z, r (z) is the radiation spot size, m(z) is related to the inverse ofs

the radius of curvature of the radiation beam (curvature of wavefront) and

LP is the associated Laguerre polynomial. Solving for the unknown
m

quantities a mp, b mp, rs and a in terms of the source term S allows us to

completely describe the radiation dynamics. It will be shown later that

the representation in (5) is underspecified, there are more unknown

quantities in (5) than available equations. The additional degrees of

freedom in our representation allow us to specify particular functional

relationships for the unknown quantities rs and a in such a way that the

number of terms (modes needed to accurately describe the radiation beam) is

small.

3 To proceed with the derivation we substitute (5) into (3) and obtain

I, ,~e (, L-) Pj [Cinp(e'z)/az 4 C , 2 - - -~ 0 (El)

~p Z s

ic2 S(,e,z), (7)

1
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where 2r 2/r 2(z). It can be shown that the second term on the left side
s

of (7) can be put into the form

z wr2  ak a& 4&- D
s

= A (z)D(&) - i(m+l)B(z)D+ (&) - i(m+p)B*(z)Dm_ (0) (8)
mVp m m+l 1'

where

A ()=rs/rs'  +( a2 /r ',
Am,p(z) = + i(2m+p+l) (1 + a)c/wr - r/r + a'/2, (9a)

B(z) -(r /r+ (1 - a)c/wr- a /2) - i(r'/r - 2.c/'r), (9b)Bsz =- srs s s s

* denotes the complex conjugate and the prime denotes a derivative with

respect to z, i.e., ' = a/az.

In obtaining (8) the following identities were used:

&UP = (2m+p+l)UP - (m+l)U p  - (m+p)Upr m+l m-i'

2&aUP/2& = (2m+p-&)U2 - 2(m+p)U p _, and

m2uP/a&2 + aum/a& = (1/4)( p2/&- 2(2m+p+l))UP,

where U(&) = &p/2Lp(&)exp(-&/2). Substituting (8) into (7) and performing

the operation

2n

(cos p'8, sin p'e)dO/2n,

0

on the resulting equation yields

6



ZDP(a/az + A fm ]- (M.4)B Dp + (m+p)B Dp fmvp)

M l~pJ bmp) M m 1 b~m)I m=O

ic2n 0+ r)-1 CsPIn i fde S(E&,e~z)(sin 1e (10a,b)
0

v here 6 is the Kronecker delta. Multiplying (10) by (DP)* and
p90 n3 integrating over t from 0 to - yields

L a WP( )J bWp] imB(z)(b -1 p (Z) J -i(m+p+1)B (z) (b b 1l (Z)J

= - m , (z) (l1 a,b)

3 where

-~~E cO f d&~ S(&,z)(DP(&)J*{l: ~sp

(12a, b)

3 In obtaining (11) we used the orthogonality relation,

f~ ~(p&)*d = (n+p)! S

0

I The function B(z) is arbitrary and is not specified. The equations

for a m and b m in (11) are underdetermined, since the function B(z) can

I be shown to be arbitrary. If we choose B(z) = 0, for example, we would in

* effect be expanding the radiation field in the conventional vacuum

Laguerre-Gaussian modes. 11We will show later that, in general, expansion



in terms of the vacuum modes, B 0 0, would require far too many modes to

accurately describe the radiation beam over distances of many Rayleigh

lengths. A more appropriate choice for B(z) will depend on the particular

problem under consideration. Let us consider one of the most common

situations where the radiation beam at z - 0 is known and has a Gaussian

radial profile symmetric about the z-axls. In this case the complex

radiation amplitude at z - 0, is given by a(r,e,O) - a0 ,0 exp

(-(1 - ic(O))r 2/r (0)) and is independent of 6. Let us further assume that
(

for z > 0 the radiation beam profile remains approximately Gaussian with a

nearly circular cross section. That is, the dominant part of the source

S(r,e,z) has an r and z dependence and the 6 dependent part is weak. In

this case we expect the magnitude of the coefficients, a m(z) and b Mp(Z)

to become progressively smaller as m and p take on larger values, i.e.,

lam~pI >> a M+lp , Ia m'p+l and lbm pI >> lbm+l,p1 , lbm'p+l1. The lowest

order approximation to the radiation beam is given by the a0 ,0 (z) mode.

hence, if the a0,0 mode gives a rough approximation to the radiation field

we may solve for a0 ,0 (z), rs(z) and a(z) using (lla). From (lla) we find

that only the m = 0,1 and p = 0 equations are relevant and yield

(a/az + A0 ,0 )a0 0 = - iF (13a)

Bao,0 -F 1, .  (13b)

We now have a specific expression for B(z), from (13b), in terms of one

of the moments, F1 ,0, of the source term. Substituting (9b) into

B(z) = F1 , (z)/a 0,0 (z) yields the following first order coupled

differential equations for rs and a

rr s - 2caJ/r= - rs (F1 ,0 /a0 ,0 )i, (14a)

8



I
20 + a ( 2 )c/wr 2 . 2 ((F1 ,0/aOO)R - a,(F1 0 /a0 0 O)1 ), (14b)

I where ( R,I denotes the real and imaginary part of the enclosed function.

Since rs (z) and a(z) are now known from (14a,b) we may solve for A m(z)

using (9a),

A (z) = 2co/wr2 -(F /a )
m,p s 1,0 0,0 1

I + i(2m+p+l)(2c/wr2 + (F 0/a )R). (15)

I Using B(z) = F1 , (z)/a 0 ,0 (z) and the resulting equations for rs and a in

(14) allows us to solve for amP p and bM p in (lla,b).

It is useful at this point to consider the simple case of propagation

of a radiation beam in vacuum (no source term). To illustrate this well-

known limit we evaluate am,p , bm~p, rs and a in the source-free case,

Fm,p Gm,p B 0. Equations (14a,b) become r = (2c/w) /r and

c = (w/2c)r r and have the solutions

2 2 1/2
r s(z) = r (0)(l + z /Z R) , (16a)

a(z) = Z/ZR, (16b)

where r (0) is the minimum radiation spot size at z = 0, zR = (w/2c)r2(0)

nr 2(0)/X is the Rayleigh length and X = 2nc/w is the wavelength. From

(lOa) we find that A (z) = 2(a(z) + i(2m+p+l))cr W(z) which allows us to

solve for am p and bm p using (11)

I ( W(z) rp 0 )ei(2 m p+l)tan- 1 (z/zR)
I = b p(O) (rs(O)/rs(z) (17)

Equations (16a,b) and (17) together with the representation in (5), (6a,b)

is in agreement with the conventional vacuum Gaussian-Laguerre form.

9I



III. Radiation Focusing and Steering in FELs

A. Radiation Beam Envelope Equation

We first consider the dynamics of an axially symmetric radiation

field in the FEL. For a linearly polarized wiggler field and axially

symmetric electron beam having a Gaussian density profile, the appropriate

index of refraction for the FEL mechanism 4'5'9'1 2 is

21 W2b(r'z) e-1 av

n(r,z,a) 1 + \2 ja(r w z (18)

where 2 (r,z) = %b (rbO/rb(z)) 2exp(-r 2/rb(z)), rb(z) is the electron beam

radius, rbO = rb(O), wbO = (4tje 2nbO/mo)1/ 2 is the initial beam plasma

frequency on axis, nbO is the initial beam density on axis,

aw = IeIBw/kwm0 c
2 is the normalized wiggler amplitude, B is the wiggler

magnetic field strength, kw is the wiggler wave number, y is the electron's

Lorentz factor, 1P is the electron's phase in the ponderomotive wave

potential and < > denotes the ensemble average over all electrons.

Substituting (18) into (4) and noting that Il-nl<<l, gives the FEL source

function

2

2%(r,z) -S(r z) _-°b~r z  _ a -i a(r,z) (9
S 2 a(r,z) (19)

c

Since the electron beam radius, rb, may not be matched with respect to the

focusing fields (wiggler gradients) and defocusing effects (beam emittance)

we allow rb to be a function of z (this case is considered in Sec. IIIC).

To proceed with the analysis we assume that in the source function the

complex radiation field amplitude in (5) can be approximated by the lowest
2

order mode, ao0 (z)exp(-(l-ia)r 2/r). With this assumption the source

function can be written as

10



i

where v (wbo rbo/2c)2 I b /17xlO3 is Budker's constant and I b is the

electron beam current in amperes. The moments of the source function,

F FM p(z), are given by (12a)

F ( 2 0 0 1  sr/b (21M,0 W w b~ FTjI\ /y ( 2 /r2 + (21
(r b

where we have assumed * to be constant across the electron beam. Since we

are considering an axially symmetric electron beam and radiation field we

note that a = F = G = 0 for p > 0. Substituting (21) into (14a,b)
noeta m,p rm,p m,p

and (15) yields

r r - 2caJw = -2- C(z) <sin >,(22a)

2' 2 cW<o 2b

r -2 a' 2( + a 2 )c/w = -4- C(z) <cos + a <sin ,> (22b)s W]
S 2 + i(2m+1) - C(z) <sin *>+i(2m+l)<cos*>J, (22c)

Is

where C(z) =(2v/y)H(z)a /ao(z) I, H(z) =(l-F)/(l-F)2 and F(z) = r 2/r 2 is
w 0,0 b s

I the filling factor. The function C(z) measures the coupling between the

radiation and electron beam and decreases as the radiation grows.

Equations (22a) and (22b) can be combined to give the following

envelope equation for the radiation beam

r'' 14 K2(Z'r r ,a,0o)rs = 0, (23a)

I where the initial condition on r' is found from (22a) andI
11

I



K2  (2c/w)2 -1 C2<sin> 2 ,2C<cos> + (w/2c)r 2 C'<sin>) r s

(23b)

The first term on the right-hand side of (23b) is defocusing and

corresponds to the usual diffraction expansion, the second and third terms

are always focusing while the last term is a defocusing contribution.

B. Radiation Focusing

Focusing occurs when K2 > 0. In the high gain trapped particle

regime, the condition for a perfectly guided beam (K = 0) cannot be

maintained since K2 decreases as the radiation grows. In the small signal,

exponential gain regime the quantities <sin*> and <cosW> may be calculated

from the linearized orbit equations. The envelope equation may then be

solved to determine r5 as a function of distance along the wiggler. One

finds that in this regime, conditions for a perfectly guided radiation beam
13

can be achieved.

Using (11a) or (13a) we find that the magnitude of a0 ,0 (z) evolves

according to

2
(a/az 4 (A 0 , 0 + A 0,O))Iao'0o = -i(F0 ,0 a0 0 - F0 ,oa 0 , 0 ). (24)

Substituting (21) and (22c) with m = 0 into (24) and using (22a) yields

r <sinw>
4c v s 

(25)

az (r s ao, O 1 ( )(5
a 2 2 (z s ~ w(r s 4 rb)

where (r sao'0 o)
2 is proportional to the radiation power, P(z) = 2.15x102°

(Iao,o(z)lrs/X) 2[Watts ]. Equation (25) should be solved together with

(23a) and show that the maximum rate of increase in power occurs when

r =r
s  V

12



C. Radiation Steering in the FEL

In the FEL the centroid of the electron beam may be displaced off-

axis by a misalignment, a redirection of the beam or because of the

oscillations in the wiggler field. To determine the degree to which the

I radiation beam will follow or be steered by the electron beam, we consider

the case where the electron beam centroid is displaced transversely in the

x direction. The index of refraction in this case is given by (18) with

2
I%(rz) replaced by

S2/r 2)cos,

I%(r,e,z) = 2O(rbO/rb) e -  b (1 + (2rxb(z)/rb (26)

where xb(z) is the displacement of the electron beam's centroid and

xb 1<< rb. In the source term, given by (19), we consider only the lowest

I order symmetric and anti-symmetric mode with respect t o the x axis,

a(r,O,z) - (a0 ,0 + a0 ,1 &I/2 cose)exp(-(l-ia)/2). With this assumption

the moments of the source function, F (z), for p = 0,i are,

= 
m-p 

a Cz ao'0)I P(r 2/r 2 )
F -8 Cv(a /r 2Ket 070 s__ (r b

(r b+)

(27)

where c(z) = 21/2 2 and m 0. For small displacements of

the electron beam centroid it is easy to show that the centroid of the

radiation beam is given by

I~ x(Z) = r-)(a 1  (28)
L vy ( 02 YR'

2where xL is defined so that jal is proportional to exp(-((x - XL) +
2 2rI y )/r )

13



D. Effect of a Modulated Electron Beam

The electron beam envelope in the FEL can undergo modulations.

The modulation is symmetric about the z-axis and can be caused by improper

values for the beam emittance, radius and/or current injected into the

wiggler region. For small perturbations about the matched beam radius,

rbO, we find from the electron beam envelope equation that rb(z) - rbO

(1 + Asin(KBz)) where rbO (2 cn/awkw) 1/2, KB = av k/'12Y is the betatron

wave number, due to the weak focusing effect of wiggler gradients, cn is
2n

the normalized emittance, aw = eJBw/(kwmoc 2) and 6 << 1. The modulation

of the electron beam envelope may be included in the source term, Eq. (19),

through the electron beam plasma frequency, (rz). The effect of a

modulated electron beam on the radiation beam is illustrated in the next

section.

In cases where the electron beam centroid or envelope is displaced

or modulated with a spatial period close to the wiggler period, it becomes

necessary to include in the source function, Eq. (19), the rapidly varying

part of the phase *. This rapidly oscillating contribution to the phase,

(aw/( 4 + 2a2 ))sin 2kz, arises from the linearly polarized wiggler field.

14



IV. Numerical Results

In this section we apply the SDE formulation, given by (11) together

with (12) to the FEL. Using the source term given in (4) and (18) we first

present a comparison between; a) the exact numerical solution of the wave

equation in (4), (using 64x64 Fourier modes), b) the solution obtained

using a vacuum Laguerre modal expansion (B=0, using 10 modes) and c) the

solution obtained from the Laguerre SDE approach (B - F1 ,0/ao,0, using 10

modes). The FEL parameters used in these illustrations are similar to

those used in Ref. 14 and are given in Table I where the resonant phase

I approximation, <exp(-i+)> = exp(-ipR), is used for demonstration purposes.

Propagation distances are measured in terms of the Rayleigh length, zR =

nr2 (0)/X where X is the wavelength and r (0) is the minimum spot size.

For an axially symmetric configuration, Fig. 2 shows the radiation

magnitude, Ia(r,z)j as a function of r at four Rayleigh lengths

3 (z = 4zR = 42.8m) for the (a), (b) and (c) methods of solution. The SDE

solution (c) shows excellent agreement with solution (a), while solution

I(b) is in poor agreement. To continue this comparison we show in Fig. 3

* the evolution of the radiation beam amplitude on-axis obtained from methods

(a), (b) and (c) as a function of propagation distance. The SDE solution

(c) is again in good agreement with solution (a) where as solution (b),

beyond a Rayleigh length, grossly deviates from (a) and (c). The results

in Figs. 2 and 3 clearly show the improved accuracy of the SDE approach

over the conventional vacuum expansion-method. As an example of radiation

focusing, for an FEL in the small signal, exponential gain regime, the

* radiation beam radius is found to asymptotically approach a matched

perfectly guided value as shown in Fig. 4. For this example, the

parameters of Table I were used and five modes employed.

I1
15

I



We now use the SDE method to illustrate the steering of the radiation

beam when the electron beam is displaced off-axis. In these numerical

Illustrations, 10 radial modes (m = 0,...,9) and 2 angular modes

(p - 0,1) were used. In the first example, the electron beam centroid is

displaced off-axis according to xb = Xc (1-sech(kc z)). Figure 5 shows the

electron and radiation beam centroids xb and xL for xc - rb/4 - 0.075cm and

Xc = 2n/Kc = 4zR = 42.8m. The radiation centroid follows and oscillates

about the electron beam's centroid. Figure 6 shows the radiation profile

at twelve Rayleigh lengths (z = 12 ZR). The asymmetry of the radiation

profile is apparent. Figure 7 shows another illustration of steering where

the electron beam is displaced more abruptly, with X = z R/4 = 2.7m. After

an initial transient, the radiation centroid is again steered by and

oscillates about the electron beam's centroid. In the next example we take

the electron beam centroid to be oscillating about the z-axis, xb = x csin

kcz, with amplitude xc = rb/ 4 and period Xc = zR = 10.7m. Figure 8 shows

the electron and radiation centroids xb and xL, as a function of z/zR.

Because of the high gain in the radiation field, the radiation centroid

eventually follows the average position of the electron beam's centroid.

Figure 9 shows the distortion of the radiation profile due to the

oscillating electron beam at twelve Rayleigh lengths (z = 12zR). In the

case where the electron beam centroid oscillation is due to the wiggler

field, xc = aw/ykw and kc = 2n/Xw , no noticeable change in the evolution of

the radiation field (compared to the case for xc = 0) is observed.

The last illustration is for the case where the electron beam envelope

is spatially modulated. Using the parameters in Table I we find that

cn = 0.06 cm-rad and XB = 2 n/KB = 4.66m. Figure 10 shows the amplitude of

the radiation field on-axis as a function of propagation distance when the

electron beam envelope is not matched, rb = rbO (1 4 Asin(KBz)), where

r bO = 0.3cm and 6 = 0.1.

16
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V. Conclusion

In this paper a technique for solving the three-dimensional wave

Iequation with a driving current density has been developed. Using this

source dependent expansion technique, a number of effects associated with

radiation focusing and steering in the FEL have been illustrated. The

formalism is used to derive a general envelope equation for the radiation

beam. Using the envelope equation, we find that it is possible to have a

stable guided optical beam in the exponential gain (small signal) regime

but not in the high gain trapped particle regime. We also considered the

Ieffects on the radiation beam when the electron beam centroid is

transversely displaced and when the electron beam envelope is modulated.

The source dependent expansion approach lends itself to fast and accurate

numerical solutions as well as to a better analytical description of

focusing and steering in the FEL. We conclude by noting that this approach

Ican be readily generalized to include both spatial and temporal variations

in the radiation field in order to study sideband generation and focusing

effects simultaneously in the FEL.

U
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Table I

Electron Beam

Current I b= 2kA, (v - 0.118)

3Energy c b = 50 HeV, (y =100)

Radius r bO = 0.3 cm

I Radiation Beam

Wavelength X = 10.6um -

Input Power P(z=0) =230MW, (ja(0O) I =1.84x10 )

Spot Size r s(0) =0.6 cm, (z R- 10.7 M)

Wiggler Field

IWavelength w = 8cm

Wiggler Strength Bw 2.3 kG, (a = 1.716)

Resonant Phase = 0.358 rad



Figure Captions

Fig. I Schematic of radiation focusing and guiding in an FEL.

Fig. 2 Radiation amplitude profile, a(r,z)l for; a) exact numerical

solution (64x64 Fourier modes), b) vacuum modal expansion solution

(10 modes), and c) SDE solution (10 modes) at a distance of z - 4zR

= 42.8 m.

Fig. 3 Radiation amplitude on axis, la(O,z)I for; a) exact numerical

solution (64x64 Fourier modes), b) vacuum modal expansion solution

(10 modes), and c) SDE solution (10 modes).

Fig. 4 Spatial evolution of the radiation spot size in the exponential

gain regime for initial spot sizes; a) 0.35 cm, b) 0.24cm, and

c) 0.15 cm.

Fig. 5 Electron and radiation beam centroids, xb and xL for a displaced

electron beam, xb = xc(1-sech(kcz)) with xc = rb/ 4 and

X -2n/k -4zc c R"

Fig. 6 Radiation amplitude profile at z = 12z R for a displaced electron

beam, xb = X c(1-sech(kcz)) with xc= rb/ 4 and Xc = 2 n/kc = 4zR

Fig. 7 Electron and radiation beam centroids, xb and xL for a displaced

electron beam, xb  X c(1-sech(kc z)) with xc  r /4 and

X = 2n/k = z /4.c c R

Fig. 8 Electron and radiation beam centroids, xb and xL for an oscillating

electron beam, xb = xcsin k cz with Xc = rb/4 and Xc = 2n/kc = ZR"

Fig. 9 Radiation amplitude profile at z = 12 zR for an oscillating

electron beam, xb = x csin kc z with xc = r b/4 and Xc = 2n/kc = zR'

Fig. 10 Radiation amplitude on axis, ja(0,z)I for a modulated electron

beam, rb = rbO(1 4 A sin(KBz)) with r bo = 0.3cm, A = 0.1,

XB = 2In/KB = 4.66 m.
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II. Formulation of the Source Dependent Expansion (SDE)

The radiation focusing and guiding configuration for the FEL is shown

in Fig. 2. In our model the vector potential of the linearly polarized

radiation field is AR(r,e,z,t) = (1/2)A(r,e,z)exp(i(wz/c-wt))ex + c.c.,

where A(r,e,z) is the complex radiation amplitude, w is the frequency

and c.c. denotes the complex conjugate.

The radiation field satisfies the wave equation (V 2-c- 22 /t 2)AR =

-4nc -Jxex, where J x(r,8,z,t) is the driving current density associated with

the medium. Substituting AR into the wave equation leads to the Lollowing

reduced wave equation,

3 1 32
- (rL) +2 a(r,O,z) = S(r,E,z), (1)

where a(r,e,z) = eIA/m0c
2 = alexp(i ) is the normalized complex radiation

field amplitude and we have assumed that a(r,e,z) is a slowly varying

function of z, i.e., a -la/az << w/c. The source function, S, has the

general form

2 2
S(r,ez) - (1-n (reza))a(rez), (2)

c

where n(r,e,z,a) is the index of refraction associated with the medium and

is in general complex.

We choose the following representation for a(r,e,z) in terms of

associated Laguerre polynomials,

a(r,O,z) = Z E Cmp (e,z)Dm(r), (3)

m p

3



I
I

where m = 0,I,2,--, p = 0I2''

C (e,z) = a (z)cos p@ 4 b (z)sin rO, (4a)
m ,p MP mp

2 P up 2r 2  
- i(X(7))r 2/r 2 (z)

I
In Eqs. (4a,b), amp (z) and bmp (z) are complex, rs (z) is the radiation

spot size, a(z) is related to the curvature of the wavefront and Lp is the

associated Laguerre polynomial.

Substituting (3) into (1) and using the orthogonality properties of

m' cos pe, and sin pe, we obtain,

I + Amp(Z)]b mp - imB(z) bm-lP( z) i(m+p+l)B*(z)r m+l'P(Z)

+A m mp m b- m-l:p ( z  m+l,P ( z )

Ii p()J, (5a,b)

I where

A (z) r /r + i(2m+p+l) (1 )c/wrZ- acxr/r + a'/2, (6a)m~p s s s s s

B(z) = - cr s /r s + (I - 2 )c/ - a /2) - i (r/rs - 2ac/wr , (6b)

I
* denotes the complex conjugate and the prime denotes a derivative with

respect to z, i.e., ' a/az and

(z ! 2n - (+pO-lcsP
m1 p(z) - 2rw (eC p) -- de d S( ,e,z) (DP(Q)* sin -1

p) pe

(6c,d)

4



2 2
where < = 2r /rs

The function B(z) is arbitrary and if not specified, the equations for

a and b in (5) are underdetermined. If we choose B(z) = 0, for
m,p m,p

example, we would in affect be expanding the radiation field in the

conventional vacuum Laguerre modes. We will show later that, in general,

expansion in terms of the vacuum modes, B = 0, would require far too many

modes to accurately describe the radiation beam over distances of many

Rayleigh lengths. To find a more appropriate choice for B(z), we consider

the case where the radiation beam at z = 0 has a Gaussian radial profile

symmetric about the z-axis. In this case the complex radiation amplitude,

at z = 0, is given by a(r,e,0) = a exp (-(1 - ic(0))r 2/r2 (0)) and is

independent of e. Let us further assume that for z > 0 the radiation beam

profile remains approximately Gaussian with a nearly circular cross

section. In this case we expect the magnitude of the coefficients, a mp(Z)

and bmp (z) to become progressively smaller as m and p take on larger

values. The lowest order approximation to the radiation beam is then

given by the a0,0 (z) mode. From (5a) we find that only the m = 0,1 and p =

0 equations are relevant and are (8/az + A0 ,0 )a0 ,0 = - iF0,0 and 0 = -

i(F ,0 - Ba 0,). We now have a specific expression for B(z) in terms of

one of the moments, F 1 0, of the source term. Substituting B(z) =

F1 ,0(z)/a0,0(z) into (6b) yields first order coupled differential equations

for rs and a. Also using B(z) = F1 ,0 (z)/a 0 ,0 (z) allows us to solve for

A in (6a) and hence for a and b in (5a,b).
m,p m,p m,p

5



U III. Radiation Focusing and Guiding in FELs

A. Radiation Beam Envelope Equation

We first consider the dynamics of an axially symmetric radiation

field in the FEL. For a linearly polarized wiggler field and axially

symmetric electron beam having a Gaussian density profile, the appropriate

I index of refraction for the FEL mechanism4 ,5 ,6 ,8 is

n~~ z a) = 1 wr z -1 a-

n(rrz) 1-i4 a 1t (7)-2 W 2  \ (Y Ia(r,z)l

2 2 2 2 2h(r,z) = wb 0(r bO/r b(z))2exp(_r2/r b(z)),22 rb (z) is the electron beam

radius, rbO = rb(O), = (4nje1 2 nbO/mo) 1/2 is the initial beam plasma

frequency on axis, nbO is the initial beam density on axis,

2.
aw = eBw/kwm c  is the normalized wiggler amplitude, B is the wiggler

magnetic field strength, kw is the wiggler wave number, y is the electron's

Lorentz factor, * is the electron's phase in the ponderomotive wave

potential and < > denotes the ensemble average over all electrons. With

the assumption that in the source function the complex radiation amplitude

can be apprcximated by the lowest order mode, we find that (2) can be

written as

a 2r /r 2_ic /
S( ,z) = - 4 v(aw/r ) O e 5 , (8)

where \)= (wbo rbo/2c)2 = Ib/17xl03 is Budker's constant and Ib is the

electron beam current in Amperes. Since we are considering an axially

symmetric electron beam and radiation field we note that a = F = 0m,p m,p

for p > 0.

Using (8), equation (6b) can be used to obtain the following

envelope equation for the radiation beam,

6



+ 2(zrb' r,, 0  ")r, = 0 (9)

where

K2=(2c/w) 2 [_ , (2s in P> 2+2C~cosWp> + (w/2c)r 2 C <sinq, r5

(10)

and C(z) =(2v/y)H(z)a / a0,0(z)I, H(z) =(1-F)/(L+F)2 and F(z) = rbs is

the filling factor. The function C(z) measures the coupling between the

radiation and electron beam and decreases as the radiation grows. The

first term on the right hand side of (10) is defocusing and corresponds to

the usual diffraction expansion, the second and third terms are always

focusing while the last term is a defocusing contribution. The envelope

equation in (9) indicates that in the high gain trapped particle regime,

conditions for a matched beam can not be maintained. However, in the low

gain trapped particle regime or in the exponential gain regime, conditions

for a nearly matched beam can be achieved. Using (5a) we find that the

magnitude of a0,0(z) evolves according to

a(r lao 0 1)/az =(4c/l)(v/y)awrs<Sint>/(r2+rb), where (r5 1aoo1) 2 is

proportional to the radiation power, P(z)=2.15xl0 (lao,0 (z)lrs/X) 2[Watts].

B. Radiation Guiding in the FEL

In the FEL the centroid of the electron beam may be displaced off-

axis by a misalignment, a redirection of the beam or because of the

oscillations in the wiggler field. To determine the degree to which the

radiation beam will follow or be guided by the electron beam, we consider

the case where the electron beam centroid is displaced transversely in the

7
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I x direction. The index of refraction in this case is given by (7) with

(r,z) multiplied by (1 + 2 (rsxb/rb)cos)where xb(z)is the displacement

of the electron beam's centroid and lxbJ<< rb. In the FEL source term we

consider only the lowest order symmetric and anti-symmetric mode with

respect to the x axis, a(r,e,z) - (a0,0 + a0 ,
1 1 2 cose)exp(-(l-ia)&/2).

With this assumption the moments of the source function, Fmp (z), for

p=O,l, can be evaluated. For small displacements of the electron beam

centroid it is easy to show that the centroid of the radiation beam is

given approximately by

S(z (z) (aO--, (11)

SOR

where x is defined so that lal is proportional to exp(-((x - x) + y2 )/r2

and R denotes the real part.

U
C. Effect of a Modulated Electron Beam

The electron beam envelope in the FEL can undergo modulations.

The modulation is symmetric about the z-axis and can be caused by improper

values for the beam emittance, radius and/or current injected into the

wiggler region.

For small perturbations about the matched beam radius, rbO, we

find from the electron beam envelope equation that rb(z) = rbO (1 + &sin(KBz))

where r bO = (2c n/aw k w) 2, KB = aw k w /
42y is the betatron wave number, due to

the weak focusing effect of wiggler gradients, cn is the normalized emittance,

and 4 << 1.

8



IV. Numerical Results

In this section we apply the SDE formulation, given by (5) together

with (6), to the FEL. Using the source term given in (2) together with (7)

we first present a comparison between; a) the exact numerical solution of

the wave equation in (1), (using 64x64 Fourier modes), b) the solution

using a vacuum Laguerre modal expansion (B=O, using 10 modes) and c) the

solution from the Laguerre SDE approach (B = F1,0 /ao,0, using 10 modes).

The FEL parameters used in these illustrations are similar to those used in

Ref. 9 and are given in Table I where the resonant phase approximation,

2
<exp(-iq)> = exp(-iWR), is used for demonstration purposes and zR = nr (O)/X

is the Rayleigh length, X is the wavelength and rs (0) is the minimum spot

size.

For an axially symmetric configuration, we show in Fig. 2 the evolution

of t2 radiation beam amplitude on-axis obtained from methods (a), (b) and

(c), as a function of propagation distance. The SDE solution (c) is in

excellent agreement with solution (a) while solution (b), beyond a Rayleigh

length, grossly deviates from (a) and (c). This indicates that more modes

are required for the vacuum expansion solution. The excellent results

obtained with the SDE approach are also reflected in the radiation

amplitude profile.

We nov use the SDE method to illustrate guiding of the radiation beam

when the electron beam is displaced off-axis. In these numerical

illustrations, 10 radial modes (m = 0,...,9) and 2 angular modes (p = 0,1)

were used. In the first example, the electron beam centroid is displaced

off axis according to xb = xc (l-sech(kcz)). Figure 3 shows the electron

and radiation beam centroids, xb and xL for xc = r b/4 = .075cm and Xc =

2n/kc = z R/4 = 2.7m. After an initial transient, the radiation centroid is

9
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I

guided by and oscillates about the electron beam's centroid. In the next

example we take the electron beam centroid to be oscillating about the

z axis, xb  x sin kcz, with amplitude x = r /4 and period Xr . z
z axs Xb =c bc R

10.7m. Figure 4 shows the electron and radiation beam centroids. Because

of the high gain in the radiation field the radiation centroid eventually

I follows the average position of the electron beam's centroid. In the case

where the electron beam centroid oscillation is due to the wiggler field,

xc = a w /yk w and kc = 2n/Xw , no noticeable change in the evolution of the

radiation field (compared to the case for xc = 0) is observed.

The last illustration is for the case where the electron beam envelope

3 is spatially modulated. Using the pirameters in Table I we find that n =

0.06 cm-rad and 'B = 2n/KB = 4.66m. Figure 5 shovs the amplitude of the

radiation field on-axis as a function of propagation distance when the

electron beam envelope is not matched, rb = rbO (I + 6sin(KBz)), where

r bO 0.3cm and L= 0.1

I

I1



Table I

Electron Beam

Current Ib  2kA, (v = 0.118)

Energy Cb = 50 MeV, (y = 100)

Radius r bO 0.3 cm

Radiation " a'

Wavelength X = 10.6wm

-4
Input Pover P(z=0) BOGMW, (ja(0,0)1 = 1.84x10 - )

Spot Size r s(0) = 0.6 cm, (zR = 10.7 m)

Wiggler Field

Wavelength X = 8 cm

Wiggler Strength B = 2.3 kG, (a, = 1.716)

Resonant Phase qR = 0.358 rad

11
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Figure Captions

Fig. 1 Schematic of radiation focusing and guiding in an FEL.

Fig. 2 Radiation amplitude on axis, Ia(0,z)I for a) exact numerical

solution (64x64 Fourier modes), b) vacuum modal expansion solution

(10 modes), and c) SDE solution (10 modes) at distance of

z = 4zR = 42.8 m.

Fig. 3 Electron and radiation beam centroids, x b and x L for a displaced

electron beamn, x = X (l-sech(k z)) with xc = r /4 and
b c c c b

X = 2n/k= z /4.
c c R

Fig. 4 Electron and radiation beam centroids, xb and xL for an

oscillating electron beam, xb = xCsin kc z with xc = r b/4 and

X = 2n/k = z
c c

Fig. 5 Radiation amplitude on axis, la(0,z)l for a modulated electron

beam, rb =r bO (I + sin(KBZ)) with rb0 = 0.3cm, 6 = 0.1 and

XB = 2 n/KB = 4.66 m.
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RADIATION FOCUSING. GUIDING AND STEERING IN FREE ELECTRON LASERS

P. Sprangle. A. Ting', B. Haltizt and C. M. Tang

Naval Research Laboratory

Washington. DC 20375-5000

Abstract

In a !ree elec:ron laser (FEL). 'he radiation ar , r A R
fteld. wiggler field and electron beau resonantly
couple and modify the refractive index in the vicinity where J (r.z,t) is the driving curtent densit,
of the electron beam. The refractive index is Substituting (1) into (2) leads 'o the following
sod:fIed such that the radiation beam will tend to reduced wave equation.
focus upon the electron beam. A method for solving
!he 3-Z) -ave equation for the FTL process is outlined.
This approach, called the source dependent expansion )r 21 L S(r.z.a). (Ii
method, provides an excellent analytical and numerical r aja(r.z)

techniquie for studying optical focusing, guiding and 2
steering in FELs. A radiation envelope equation is where a(rz) - eIA/uc . jaexp(i) is the
derived. Conditions and parameters necessary to normalized complex radiaion amplitude and we have
achieve guided radiation beams (constant radius) in assumed that a(r.z) is a slowly varying function of z.
the exponential gain regim are obtained for FELs i.e., I(aa/Iz)/aI (< /c. The source function. S. is
driven by either induction linacs or rf linacs. given by,
Immediately prior to saturation in the exponential 2n/w
gain region, the ponderomotive potential is large r/
enough *o trap the beam electrons. The wiggler field. S - - - J ~ zc)e /t-. ()
at *his point, could be tapered to further increase J
the operating efficiency. The possibility of bending
or steering radiation beams in FELs is discussed and a It is possible to relate the source function. S.
condition necessary for radiation guiding along a to the index of refraction associated with the mediuim
curved electron beam orbit is obtained, by noting that the wave equation for AR in a

nonmag1netic, time-independent, nonlinear medium is
7ntroduction )/2)a/t = 2 )

(V' - (n
2
(r.z.a)/r2t2)A = 0 where n is the

:n many short wavelength free electron laser index of refraction associated with the seditim and is.
devices :he radiation beam will not be confined or in general, complex and a nonlinear function of
g,,ided by a Structure such as a vaveguide. a(r.z). Comparing the reduced wave equation written
Furthermore. in order to provide high gain and in terms of n(r.z.a) with (3) we find that the source
efficiency, it is usually necessary for the function can be written in terms of n.
interact:on length (length of wiggler field) to be
long compared to the diffraction length (Rayleigh S(rz,a) (4/c)2

(-n 2 (r,z.a))a(r.z). (5)
lergth) associated with the radiation beam. In the
FEL the ttndency of the radiation beam to diffract
away over a distance of a few Rayleigh lengths can be
overcome by a focusing phenomenon arising from the Source Dependent Expansion Method
resonant coupling of the radiation and wiggler fields
with the electron beam (1.21. This radiation focusing In order to solve (3) we will use the source
effect plays a central role in the practical dependent expansion (SDE) method 171. In this method.
utilization of the FEL. This phenomenon was first we choose the following representation for a(rz) in
analyzed for the low gain FEL with transverse effects terms of Laguerre-Gaussian functions.
where it was shown that the diffractive spreading of -
The radiation beam could be overcome by a focusing (2r 2  

-(1-id(z))r 'r'(z)
effect arising from the modified index of refraction a(r,z) - E am(z)LmII e s (6)
1.1. Optical guiding in FELs operating in the small ars(z)
signal exponential gain regime has been studied for
The asymptotic behavior of the radiation beam 13-61. where a - 0,1,2,''. In Eq. (6). a (z) are the
Re'entlv, a general formalism for optical focusing, complex amplitude coefficients. rs(z) is t~e radiation
guiding and steering has been developed and applied to spot size. aft) is related to the radius of cuvature
F 171 of the radiation beam vavefront. P - (&w2c)tWa

s
and Lu Is the Laguerre polynomial. Solving for the

In The following, ve employ a modal expansion unknown quantities a , r and a in terms of the sourre
'echnique to examine the optical beam as it propagates term S allows us to completely describe the radiation
,hrottgh the wiggler. The formalism has the merit that dynamics. The representation in (6) is underspecified.
with only a few modes it permits an accurate solution since, when (6) is substituted into (3) and vnment of
of the wave equation throughout the interaction the source function taken, there remain mote unknnu
region. quantities than available equations. The additional

degrees of freedom in our representatinn alloys us tn

Model specify a particular functional relationship lot tilh

unknown quantities r and a in such a wav that, If th'
in our model. 'he vector potential of an axially radiation beam profile remains approximatel'y .ausstn.

symmetric, linearly polarized, radiation field is the number of nodes needed to accuratelv describe the
/.t c-c. eradiation beam is small. This yields the tollowinR

Arz)/2 c.c., (1) first order coupled differential equatls for rs and

where Mr.z) Is the 7owplex radiation field amplitude. r- 2cmiwr - r H (7t
is the frequency and c-c. denotes the complex r V 1

2, 2

'he vave equation governing is a' s s(. cw 2(H~ R I ~



ani a er of first order o'dinary differential V (z - IA ., oj(exp(ikv z) - c e,
eouat ions fo the complex amplitudes am(z]. (

a As .  Fe - mfa -( )B a.. 7c is the wiggle velocity, Y is the toren,: fltor . Am - the vector potential amplitude of the plaat vIgl.,

field and k *2ai) Is the wiggler wave nulmhr
where , /,.-a z. and ( ) denotes the real Substituting re) in~o the expression for S. (4). gives

and imaginaiv Fart of the enclosel'unction. In Eqs.
,t. ,he functions A , . and . are given byu r . .a j d--W -- adt 0e oT( z

r S )c '0 OU /S a 0

"(). vi-a)c to 20

B ( s.- .1-)s . S swhere a. IA e ,' c. t t * dz''v (Z'.! ) and

f (z) - T dC S(',ziL (()ep-l1ia)&), the t integration is over all entry times. Equating

o (9) vth (5) and carrying out the integration over t.

we find the index of refraction associated with the
where C - 2r /r 

.  FEL to be given by

2 2 a -

The merits of the SDE method can be demonstrated n fel (rz a) - 1 - (&(r)/2w) T'7 (10)

in a comparison between; a) the exact numerical 0

solution of the wave equation in (3), (using 64x64 where

Fourier modes). b) the solution using a vacuum

Laguerre-Gaussian modal expansion (10 modes) and c) z

the solution from the Laguerre-Gaussian SDE approach J (a/c k iln(a/lal) (z.* ))dz
(10 modes). Figure 1 snows the radiation beam J V z 0
amplitude on-axis obtained from methods (a), (b) and

(c) after four Rayleigh lengths for the FEL parameter is the relative phase between the election and the

in Table I. The SDE solution (c) is in excellent ponderomotive wave. o * - Wt is the initial phase of

agreement dith solution (a) while solution (b). 5eyond 0 0

a Rayleigh length, grossly deviates from (a) and (c). it

-a _a given electron and K (2n) j J is an
I 0 ensemble average over the initial phases. The radial

a- profile of the Index of refraction as given by Ea.

5 (b) (10) supports self-focusing of the radiation in an

FEL. It should be noted, for completeness. that the

relative phase satisfies the pendulum equation given

Z_ 4 Z byCL 1:25/ 2 2=
E2~; -3-#;-.; 3 -2 (61/0[42a az -ka a sin*] (11

2- Radiation Beam Envelope Equation

' Equations (7a) and (7b) can be combined ,o give

o the following envelope equation for the radiation beam

' • r" r - O.(12)
-e o 4 8 s s

X /r(O) where

K 2. (2c/w) 
2 
(-1 C'<sin 2 2C<,o s>-(.,2c)r 'C <s1n*> r I, .

Fig. Radiation amplitude profile. ea(r.z)l for:
a) exact numerical solution (64x64) Fourier W)
:odes) b) vacuum modal expansion solution
(10 modes), and c) SDE solution (10 modes) at and CWz - (2v/-f)G(z)a w/la (z) 1, measures the couplingI
adistance of z - 4 ZR .  between the 2radiatioR and electron beam.

Refractive Index Associated with FELs \ or/2 1XO i uie' osat

Ib is the electron beam current in amperes.

In the following derivation of the refractive G(z) . (l-f)/(l.f) 
2 
and f(z) - (rb/rs s is the filling

index associated with the FEL. a number of simplifying factor associated with a Gaussian electron hea'

assumptions are made. Ue assume, for example, that

the beam electrons are monoenergetic without betatron density profile. The first term on the right-had
oscillations and that the radiation is of a single side of (13) is the usual diffraction term, the second

frequency 181. To obtain an expression for the and third terms are focusing while the laci Tet-

refractive index we write the nonlinear driving provides a focusing or detocnring contrihu ron. In

current density, Jx' as the high gain trapped particle tegime. <Sin*) and

<coso> are approximately constant, while ja (z)[

J --eInb(r )v_ -1v V (z-z(t.t ))dt , (8) increases with z. Hence. K depends on z and a goIde1
x w oz0 0a beam (r : cannot be exactly maintained in th;,

re P.although. the radiation envelope is citil
where n (r) is the ambient beam density. v is the reasonably vell-confined. In the low gain trapped
axial eltectron velohi at z O, t is tR time a particle regime a (:)I i creases slghIv an,given electron rrosses the 7 • 0 plane.0 therefore, a gulde8 be&- can be appto-imatei,,



achIeved. n e ither the Cr"Vt on oc Raman L 'onentJla
gain regime. conditions for a stable guided beam can 0.34
be found.

uided Radiation Beams in the Exponential Gain Regime
0.26

In this section. we obtain the necessary
cond:tions !o achieve guided radiation beams in both
!he Comoton (noncollective) and Raman (collective) E
exoonential gain regimes. By considering the lowest
nrier mote (raii sian profi!e we find 'hat !he source

term appropriate for the high gain Compton and Raman
regime is. respectively, 0.10

f 1

(t ir)/c) (ak 3 )| (Ok-ir)"
S(r.z) a(rz) /2 0.00

S-fz) Iv~i .'2) T z
c

-e, r 6k •T2%(r)( -ir) 0 1 2 3

(14&.b) zIzR

where 6k and r are the vave number shift and growth Fig. 2 Spatial evolution of the radiation spot size
rate respectively and f is the usual difference of In the exponential gain regime for induction
Bessel functions due the linear wiggler. The linac driven FEL parameters given in Table 1.
lowest order mode is taken to have the fot-

.4
z

a(r:) - a (O)exp(i(6k-ir)dz'-(l-ia)r /r'). (15)

0

For 'he purposes of illustration. ye will consider the .3
Compton FEL regime in which the electron beam has a1x
Gaussian density profile, nb(r) - noexp(- rZ r).
The conditions for a guided radiation beam require

that the vaist and curvature of the radiation beam -
remain constant, (r' -a' = 0). Setting r' = a'0 in C
Ens. 1Ta.b) and soljing for r. bk. r ,Sand a. the
following results for a guided beam are o tained.

1- (1]. ' -]2!)-T r a - 2 , (16a,b)
0

rs /4 (1a/2) f (l2f) Z(m)
-1( a 2 (1-3f/2)

3
'' .(16c)

B a Fig. 3 Spatial evolution of the radiation spot size
I ,,3/2 in the exponential gain regime for initial

(l.a' ), 2 spot sizes; a) 0.35 cm, b) 0.24 cm., and c)

r(f.1) 0.2'5 x'(1Jl/ 4  - !, 1/2' (16d) 0.15 m
Yf a.B v

/12
a - (f,(2.cf)) 

/ 2  
(abe)

1/2k a 1/2where o=2f (V/Y) a (l.a12) and '.r 'r is
o B ww V b s

the filling factor. E

Figure 2 shows the spatial evolution of the E
radiation waist for the induction linac driven FEL 0.5
parameters in Table I. The parameters in Table I are
consistent with Eqs. (16) and have been chosen to
produce a guided radiation beam in the Compton

exponential gain regime. The guided beam conditions

can be shown to be stable 191. this is shov
numerically by changing the spot size of the injected 0
radiation beam. Figure 3 shovs that irrespective of
,he Initial value, the spot size asymptotes to the 0 2 4 6 8 10
matched (guided) beam value. Figure 4 shows the
evolution of the spot size for the rf linac-driven FEL Z./Zm
parametet in Table I. As in Table I. the parameters
in Table II have been chosen to produce a guided Fig. 4 Spatial evolution of the radiation spot size
radiation beam in the Compton exponential gain regime in the exponential gain regime for rf linac
and are onsistent with Eqs. (16). driven FEL parameters Riven in Table TI



Fee Electron L.sets driven by either induction
or rt linatcs could initially operate in the guided. -4
-ponential gain regime until sat,ration occurs. b6

IImmedatelv prIor to seturation, the ponderomotive xL/rb(rotIofl Csrtt )
potential can be large enough, as in the above
illustrations. to trap a signtificant fraction of the .4
beam electrons. At this point. the wiggler field can - . .....
be spatially tapered to achieve a significant increase

iin the opratng efficiency and a somehat smaller 0
input signal into the FEL amplifier. n

To determine the viability of tapering the
wiggler, prior to saturation, the trapping potential
associated with the ponderomotive wave is needed. For
linearly polarized waves, the fractional trapping
potential is 2D

lei 1 2

e.trap w . 211 4 6 a to 1
I ~ 2 ,f2 -- . (17)4 •,0a

Via
c 
2tl.112) Z

0v R

The radiation amplitude at saturation can be obtained
from the intrinsic efficiency of the FEL. Using Fig. 5 Electron and radiation beam cenroids, b
arguments based on electron trapping in the and xL for a displaced electron beam.
ponderomotive wave. we find that the intrinsic b - x (l-sech(k z)) with x - rb!

6  
and

efficiency in the exponential (maximum) gain regime is c c 2,/k C 4Z.

i - a /k • (18)

Using the induction linac parameters in Table I as an
illustration, we find that the intrinsic efficiency is

* ok/ k - 0.66:. From this, the fractionalIrapping potential at the end of the exponential gain

regime is iele.rap r" 7 6%. makinR it possxble to

trap !he electron beam while tapering the wiggler
field. In addition, the initial fractional energy dx
spread of the electron beam must be somewhat less than profileS. Ths places a limitation on the fractional energy

spread of the electron beam, E/E < 0.66 . Onecontribution to the beam engrgy spread is the

transverse emittance. W/Eb - (l/2)(cn/rb) curved 2b
Therefore. the normalized be; i emittance must satisfy, e-beim

Er < (2t/k )
1

1
2

r b - 0.034 ca-rad.

Bending and Guiding of Radiation Beams
Fig. 6 Configaration shoving guiding of radiation

Using the SDE formalism, it is possible to hr by a curved electron beam with radius of
discuss the bending of a radiation beam by a curved curvature, R0
electron beam in an FEL. For small displacements of
the electron beam centroid, a nonaxisymmetric modal
expansion similar to (6) can be performed and the To examine the conditions under which guiding can
spatial evolution of the centroid of the radiation be achieved in the exponential gain regime, ve denote
beam found. Figure 5 shows the centroids of the the radial position by r = R x. where R i !he.
electron and radiation beams for An FEL in the trapped radius of curvature of the electton beam and X is theparticle regime with parameter5 given in Table I. radial displacement from the cente[ of the turved
Steering of the radiation beam by V elertron beam is electron beam (see Fig. 6). The FEL refractive inde
clearly demonstrated in this figuro (correct to order x/F° ) is

It is interesting to consider the conditions
tender which the radiation beam could be guided by a n - nfel / (10)
ctrved electron beam. az shown in Fig. 6. Such a
sittation could make possible a cyclic FEL driven by, re fe uided radiation beam in a curved FEL is
for example. a betatron generated electron beam. In a
cyclic FEL, the radiation beam would be guided by a possible if R° 0 min where

circular electron beam. The wiggler field, which is
along the circular orbit of the electron beam, cannot Rin r/ 1R(I-ntel) I.
be spatially contoured. Therefore, in the trapped
particle regime, enhancement of the FEL efficiency Substituting the expressions 0 r. ai.,, t fiom
oust be achieved by inducing an accelerating electric Eqs. (16), Into (20) yields

field along the beam orbit. For cyclic electron
beams, the induced electric field can be generated by __________b
increasing the magnetic flux within the orbit of the min' (I.21l/2 ,b ,IA

electron beam. (ff)(3f)f Bav
(

1.2 W?

| !p
Fmin

(f
-
l)  

" - / 2 h
( a ( l -a

2
' ) ' ( V

/V
)



t a niuer Y a evample of RI onsider the Free electron lasers dt ,ive hv either ind.,- !I in

fol1-vinR parameters. * 100. 1 * 2 &A. r - 0.3 Cm. linacs. such as the ATA. nr high rut ronf r; inAr- allb operate In the guided. erpn-ent:al In ,egt - 'jiIlI
a I and f * .85 iTable I) For these saturation occurs. At this point. :he *iggJer field
parameters. *he vinim,nm turning radius required for a could be spatially tapered so a to oretat- *he FFL in
guided radiation beam is Fm n  455 a. the trapped particle regime in order !n "rthe,

increase the operating efficiency

We also examined !he possihility oft e.ng -i
Table I steering radiation beams in FELs V- ind a -nnd A- nd

vhich piaces a lover ivmi- on ,he - dlis of -t.t :nfi

Paramelers Assoc~ated with an 1nouc!2on LUnac Driven of the electron beam necessary for :he adia'ion 7o he
FEL :n the Exponential ;ain Regie guided along a curved path.

Electron Beam
rur~ent I b 2kA. (v * 0.118R
Energy E. 50 Mev. (Y •OO) Reference1Enrr 1u r - 0.3 cm.
Pa nce b < b x0O

3 
crad 111 P. Sprangle and C.M. Tang. Appl. Phys. Lett. 39,n 3677 (1961).

121 N.M. Kroll. P.L. Morton and M.N. Rosenbluth. IEEEwigle gth * 8 cm lJ. Ouantum Electron. QE-17. 1436 (i9Bl).

Wiggler Strength B 
= 
2.3 kG (a, - 1.72) (31 C.T. Moore, Nuc. Instrum. Methods in Phys. Res.

V A239. 19 (1985).
Radiation Beam (4 E.T. Scharlemann, A.M. Sessler and J.S. Vurtele.

Vavelength X 10.6 um Phys. Rev. Lett. 54. 1925 (1985).

Spot Size r 0. : Co. (2R - 2 a) 151 J.E. LaSala. D.A.G. Deacon and E.T. Scnarlemann.

guided beam) s Nucl. Instrum. Methods in Phys. Res. A25U. 389

e-folding length L 1 '/ 4 c!m (1986).
e 161 M. Xie and D.A.G. Deacon, Nucl. Instrum. 4ethods

intrinsic Efficiency n - ak/k * 0.66% in Phys. Res. A250. 426 (1986).
17 1 P. Sprangle. A. Ting and C.M. Tang. accepted for

Saturated Power P * 660 MV (a - 7xlO
4
) publication in Phys. Rev. A (1987) and Phys. Rev.

sat Lett. (1987): also in Proceedings of 8th Intl.

Trapping ?otentiai ej* YIN 6.0 FEL Conf. held 1-5 Sep 1986 in Vlasgov. Scotland.
erap 0 181 P. Sprangle. C.M. Tang and V. Manheimer. Phys.

Rev. A, 21, 302 (1980).
191 B. Hafizi. P. Sprangle and A. Ting, submitted to

Phys. Rev. A (1987).

Table II
* Work supported by U. S. ARMY STRATECIC DEFENSE

Parameters Associated vith an RF Linac Driven COMMAND
FEL in the Exponential Gain Regime . Berkeley Research Asso., Inc., Springfield VA

Science Applications Intl. Corp., McLean, VA

Electron Beam
Peak Current Ib - 500 A
Energy Eb . 150 MeW
Radius rb - 0Emittance C < 7x10 cm-rad

Wiggler Field (planar)

Wavelength X, =2 cm
Wiggler Strength B V 00 C (a - ])

v v

Radiation Beam
Wavelength X I um
Spot Size r (0) - 1.I - (Z. . 3.8 m)
(guided beam) s

e-folding length L e - i/ 196 .m

Intrinsic Efficienc ti - ,d/k = 0.25%

Saturated Power P s 180 MW (a - 7.25xi0
-5

sat
Trapping Potential IeC~trap/Vmo 2%

Conclusion

The source dependent expansion (SDE) method
provide an excellent analytical and numerical
technique for studying optical focusing, guiding and

steering in ?ELs. We find that guided radiation beams
In the FEL can be achieved both in the Compton and
Reman exponential gain regimes but cannot be
maintained in the high gain trapped particle (tapered

viggler) reRime.
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I. Introduction

A well-known feature of the free-electron laser (FEL) Is that the

refractive index of the medium is a complex function and hence the

radiation is amplified and to some extent focused in the vicinity of the

electron beam.' 2 It may then be possible for the electron and radiation

beams to interact over an extended length along the wiggler, with the I
diffractive tendency being compensated by the FEL interaction, thereby

enhancing the efficiency of the process.

Considerable progress has been made in studying this process by

several authors. 3-8 The purpose of this paper is to apply the formalism of

the Gaussian-Laguerre modal source dependent expansion (SDE) of Ref. 8 to I
examine the propagation and guiding of the optical wave in an amplifier

operating in the exponential gain regime, for a variety of operating

conditions.

The plan of this paper is as follows. In Section II the formalism of

the SDE is employed to obtain the evolution equations for the radius andI

the curvature for the lowest order mode of the optical beam, along with the

relevant dispersion relation for a Gaussian electron beam driving an FEL

amplifier in the small signal regime. In Section III numerical solutions

of the single-mode equation for the radius of the optical beam are

presented and compared to the result from a multi-mode truncation of the

radiation field. In this case, and for cases not presented herein, the

single-mode and multi-mode results indicate that the radiation beam profile

entering the wiggler asymptotes to a unique form after an initial

transient. Additionally, the numerical values of the radius of the

radiation envelope and of the vavefront curvature are in fair agreement,

irrespective of the degree of mode truncation, indicating the usefulness of

the single-mode equations. Limiting ourselves to these equations, the

I I



electron beam is then allowed to oscillate at the betatron wavelength and

the resulting radiation profile examined. It is found that the optical

beam envelope follows that of the electrons with almost identical

wavelength, but retarded in phase. Section IV discusses the results,

deriving formulae for the matched radiation beam profile (i.e., radius and

curvature) in terms of the electron beam and viggler parameters. It is

shown analytically that perturbations of the profile are spatially damped

U out, consistent with the numerical observations indicating a unique,

asymptotic matched radius and curvature. Appendix A presents the necessary

details required to derive the source term, for the wave equation, for a

3 planar wiggler and an electron beam with uniform density along the

direction of propagation. Appendix B considers the effect of the

I modulation of the electron beam on the optical wave. Specifically, a

simple analysis, taking into account sideband generation, indicates that

the dispersion characteristics of the primary wave are only slightly

modified for typical experimental parameters. Appendix C presents the

details of the stability calculation.U
II. Mathematical Formulation

The purpose of the present section is to present the salient features

3 of the source dependent expansion method 8 so as to fix the notation and for

reference in the subsequent sections.

3 For a planar wiggler, it is appropriate to assume a linearly polarized

radiation vector potential

A=C1/2 ) A( r, ,z )exp i( u' C - w tjje X+C.,

3 2



with angular frequency w and complex amplitude A. In the slowly varying

envelope approximation, the wave equation reduces to

I 2 1 a , ,
rr 2 a 2  c z S(rO,z), (1)

where a - eJA/m 0 c
2 , and the source function is given by

S(rez) - 8nlej (,O,)exp -1 u--- t (2)
~ 3  X jlmo slow

Here e is the charge on an electron of (rest) mass mo , (rOz) is the

current density and { )slow indicates that only the spatially and

temporally slow part of the quantity in braces is to be retained.

The basic premise of the work presented herein is that the radiation

field is azimuthally symmetric and the vector potential is expressible as:

a (r,e,z) = E a (z)D m(,z), (3)
m=o

with D = L () exp [-[l-im(z)IE,/2), where =2r2/r2(z), r (z) is relatedm m s 1$

to the radiation spot size, a(z) is proportional to the curvature of the

wavefront, and L () is the Laguerre polynomial of order m.

Now, if the transverse profile of the radiation beam is close to a

Gaussian, the lowest order mode is expected to dominate 3 5 '7 '8 , and,

following Ref. 8, it is simple to show that the associated vector potential

evolves according to

Aja - i F., (L)
az 0

and the spot size ind wavefront curvature evolve via

3



d rs-2ca - Fl)(

z w r sO 05a

d - 2(1c2 C 1 a[~i~ (5b)
wo 0R 0

I where

o r sdz s wr 2 r d z s zj
s s

the F's are given by the following overlap integral:

m 2w j M 63 0

and the label R (1) indicates the real (imaginar-y) part.

Noting that L 0~ 1, the normalized vector potential is seen to-be

given by [Eq. (3)]

a(r,e),z) =a 0(z) exp -1iaz 2 r(7)

where, in the exponential gain, small-signal regime,

Ia 0()= a(o) exp i dI kzI -1" A(8)

0

3 Sere a(o) is the input signal at z = o, and the two components of the

refractive index are given by

n= tiSC-)i S. -r -r 2 a -i~j (9a)

2cr

n = ri ) (9b)
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Assuming the electron beam profile to be given by

nbz) nbo rb exp [ r (z)] (10)

where rb(z) is the electron beam radius at z and nbo is the beam density at

rb(z) - rbo, the source term in Eq. (1) may be readily evaluated (Appendix

A), to obtain

2 r ] 2 1wka2a
__B bobo rj v

S(rz) -f 2 [rb(z)j exp - 2 (11)B 2Y c 2 b~)r b 2 c( &k- ir) 2

where the vector potential of the planar wiggler of periodicity 2n/k isV

given by

A W = A cos(k z)e x, (12)

2
a, = eIAw/m0c , (13)

Y is the relativistic mass factor, fB is the usual difference of Bessel

functions, fB = J (C) - J ( )  < - (1/4)a2 /[1 (1/2 )a2], andB 0 w w

1/2

'b= (4nI e1
2 n bo/mo)1/

is the plasma frequency of the electron beam with density nbo.

Substituting Eqs. (8) and (11) into Eq. (6) and making use of Eqs. (4)

and (5), it is simple to show that the equations reduce to

da = 2(1a2) ( J 2 -- , (14a)
d(kwz) (kw r S)

d ( k r S ) = c k V 2

d(kz) W ao.- - (krs 1b

5



- [-+2 2 1 + 0 o (0c

where

F 1 B( )[r 7a (rb/rS -~2

k Va 0  B ( ~) y31+2(r b/rS) 2] 2 k

The spatial evolution of the system is governed by the differential

system (la) and (14b) along with the dispersion relation (14c), the

solution of which yields a(z), r (z), 6k(z) and r(z).

III. Numerical Results

Baying obtained the single mode system of Eqs. (14), it is of interest

to determine the extent to which it approximates the general solution in

(3). Once it is established that Eqs. (14) provide an adequate

representation of the general solution, it is then possible to study a

variety of problems of interest by solving a simple set of equations.

Briefly, the numerical procedure for solving an initial-value problem

is the following. Substituting Eq. (14d) into Eq. (14c) yields a cubic

(algebraic) equation for &k - iF which may be solved, at each z, in terms

of r s(z), a(z) and rb(z), thus enabling Eqs. (14a) and (14b) to be stepped

forward in z. Since in the absence of source terms an input radiation

I signal diffracts away on the scale length defined by the Rayleigh range ZR,

I2
Wrs(Z)

ZR 2c (T5)

I
I
*



it is Informative to present the numerical results with the distance along

the wiggler measured in units of the Rayleigh range. In all the numerical

results to oe presented, the radiation field is assumed to be in the form

of plane waves at the entrance to the wiggler, i.e., a(z-O) . 0.

Case I

To begin with, Fig. I shows the results for the following parameters:

beam current, b ' 270 A, rbo - 0.01 cm, y = 2000, 2r./kw - 10 cm, a . 6.15

and r (z-O) - 0.02 cm. Noting the factor of 21/2 difference between the
5

definition of a in Eq. (13) and that in Ref. 4, it is clear from Fig. 1(a)w

that after a transient oscillation over a distance of about 20 Rayleigh

ranges, the radiation spot size approaches a value quite close to that

obtained with the two-dimensional FEL code FRED at the Lawrence Livermore

National Laboratory (LLNL).4 We also find that for all the numerical cases

examined, a unique, asymptotic spot size is obtained irrespective of the

initial optical waist. Figure l(b) shows the spatial evolution of E,

indicating that it, too, approaches a constant value after an initial

transient behavior.

The solid curve in Fig. 2 shows the evolution of I/e width of the

radiation amplitude with a five mode (m=0,1,2,3,4) source dependent

expansion calculation using the same set of FEL parameters. The radiation

field is represented by Eq. (3) and the source term is given by Eq. (11).

With the assumption that the fundamental mode dominates, only the &k and r

of a (r,z) are involved in the source function and they are obtained fromo

Eqs. (14c) and (14d). It is found that the fundamental mode remains

dominant over many Rayleigh lengths. For comparison the dashed curve in

Fig. 2 shows the fu.,U'amental mode spot size of Fig. l(a), and the

asymptotic results are seen to differ by about 10%. This suggests that the

7



single-mode system of Eqs. (14) may be regarded as a reasonable and

accurate simplification of Eq. (3). Henceforth the results presented

pertain to Eqs. (14).

Case II

Figure 3 presents the results for a case where the electron beam is

not matched; i.e., the envelope of the electron beam is modulated:

rb(z) - rbo " Srbsin(k z), (16)

where 6rb is the amplitude of the modulation and for simplicity ka is

chosen to be equal to the betatron wave number 1 0 k aw / 2 y ), neglecting

self-fields. 11 z is the beam speed along the wiggler axis normalized

to c. The parameters, typical of the Advanced Test Accelerator experiment

at LLNL, are Ib . 2 kA, rbo = 0.3 cm, y - 100, 2rn/k w  8 cm, a. = 1.72,

r s(z=O) = 0.35 cm. In Fig.3, where 6rb/rbo = 0.1, it is observed that the

optical spot size follows the modulations in the electron envelope

apparently identically. Specifically, a number of cases were examined with

6rb/rbo up to 0.4. In all cases the electron and optical beams oscillate

with almost identical wavelength, although the radiation beam appears to

lag behind in phase. However, defining the modulation depth

6 = [(r)ma x - (r) min /[(r)max - (r) min, it is found from Fig. 3(a) that

bs = 0.087 whereas, from Eq. (16), b 6 8rb /r bo = 0.1. Although the

modulation depth of the electron beam differs from that of the radiation

beam, it is found that bS increases in proportion to 6rb.

More generally, allowing for the defocusing effect of self-fields,

there is always the possibility of a small amplitude ripple on the electron

beam envelope and hence on the radiation beam envelope. In Appendix B,

generation of sidebands is considered in a simplified model and found to
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have, for typical cases, an insignificant effect on the linear dispersion

characteristics of the primary optical wave, as implicitly assumed by

employing the source term in Eq. (11) in the present case.

IV. Analysis of Results

One interesting feature of the numerical results is that in all cases

the radiation spot size has a unique, asymptotic limit irrespective of the

initial value. The asymptotic value of rs and of a is determined by the

fixed points of Eqs. (14a) and (14b); i.e., at the fixed point

2(+a ) 2 (17a)

(k rs) 0 ]1

ck )
4a 2 (kw = 0. (17b)

Combining Eqs. (17a) and (17b) one obtains

2 ck 2 F
(I - it) W- kw (kr S )  F O,

which, upon making use of Eq. (14d), yields

k2 r)1/2
w b

6k. l+2f 2' r = &k/

where

f2 ,r 2 a 2

EB(c k)\ k ) "b

and f (rb/rS) 2 is the filling factor. Substituting the expressions for

&k and r into the dispersion relation (14c), one obtains

9



I 1/2
a - [f/(3f + 2)]

1/4 1+&2 /)3/4 /

r (/V)/ V (a12) 1 fi1 4(].2f)3/2
s 2 3 /4 k 1/4 1/2 (1.3f/2) 3/42 vfB av

where v .(bor bo/2c) 2 is Budker's parameter. These expressions may be

used to obtain the asymptotic spot size for a given filling factor, and

1/2then one obtains the corresponding electron beam radius via r b -r sf

To avoid complications arising at the outer edges of the op cal beam,

where the field amplitude is small, typically a filling factor f < 1/2 is

appropriate. It is also possible to rearrange the expression for r to

I obtain

+ f2 + - qf - q - 0,

I -where

[a2  13 b 4 1a2/2"

V

The cubic equation for f may be solved to obtain an explicit expression for

r s . Noting that the sum and the product of the three roots of the cubic

equal -1 and q, respectively, it follows that there is a unique, real value

3 for the asymptotic spot size rs.

To examine stability, it is convenient to defineI
Y k r

kkI w V

and substitute Eq. (14d) into Eq. (14c) to obtain the local dispersion

I relation:

I



3 2 ( -k v I c 2 I y 2 k ( ]2 b) 1 ( r r ,) 2 2'( )Yk + 2• (18)
I3 W ] (ki 2 r _) 2 _W_ rs] [l42( rb /rs) 2]2'

which may be solved iteratively. It turns out that for the parameters of

Case I, at the lowest order, the right-hand side balances the quadratic

term on the left. The relevant root, with bk, r > 0, may be substituted

into Eq. (14d) to obtain, for a > o,

F -ck 1/2 1-i [I+(I 2J/2

kwao (kVs 2 +(kwrb) 2 -2 +(1 2)] 1 (1+ 2)1/2]1/2

(kr S)2 (k r s)(k r b )
)2+2(k 1/2" (19)(r 2(krs rb)L r 2+(kwr

Perturbing Eqs. (14a) and (14b) about the fixed point and making use of

Eq. (19), it is simple to show that the perturbation is spatially damped,

thus indicating the stability of the fixed point. The algebraic details

are relegated to Appendix C.

Another aspect of the results which is of interest pertains to the

nature of the phase fronts and the flux of optical power in the asymptotic

region. From Eqs. (7) and (8) it is simple to check that, in differential

form, the surfaces of constant phase are given by (w/c + 6k)Sz + (2r./r 2)6r

= 0, and hence, noting that k, a > 0, the wavefronts are divergent in the

direction of propagation. Consistent with this, there is a nonvanishing

transverse component of the Poynting flux. Specifically, for r/r < 1 the

ratio of flux of optical energy in the transverse direction to that along
2

the z axis is - cr/kr << 1.
S

11
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V. Conclusion

Based on the results presented herein, the simplicity and accuracy of

the single-mode Gaussi an-Laguerre approximation to the solution of

Maxvell's equations has been demonstrated. It Is shown that, in the

exponential gain regime of operation of an FEL amplifier, there is a

unique, asymptotic spot size for the radiation beam irrespective of that at

the entrance of the wiggler. There is, however, a transverse flux of

optical power. It is shown analytically that the asymptotic profile

(i.e., the radius and the curvature at large z) is stable to small

amplitude perturbations. Vith a spatially modulated electron beam

envelope, that of the optical beam is found to oscillate on the same

spatial scale.

12
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* Appendix A: Source Term

In this appendix, the details of the evaluation of the source term S

in Eq. (11) are presented.

The FEL source current, J x(r,O,z), in a linear wiggler is given by

J x(r,e,z) = -Ielbb(r,e,z)vx

- -el&nb2 -1k Vz A+CCI-le 2 ne v  c.c.
2ym 0c w

where nb is the perturbed beam density and the relation v = v w JelA

cos(kVz)/Yinc has been used. Equation (2) can then be written as

SU~z {4nje 2 &nb a Ve -i[(k + kw)z - wt] AlS(r, e,z) ______2_ ei (Al)

SYM c slow

where k - (a/c.

The perturbed beam density can be evaluated from the continuity

* equation,

d 6nb - vz

dt -nb a ' (A2)

and the equation of motion in the z-direction,

dv ze v XB y -v (v X( 
3d-'.--J -Xm °  c2 J (AS)

where electron self-field effects are neglected. Taking the convective

time derivative of Ec. (A2), and incorporating the linearized version of

Eq. (A3), one can arrive at the following equation for the perturbed beam

density,

I



d2 -nb  - le inb a (a (A4

2 Ym az 2z 4 2 t pond

where

- - IeIA VA e i[(k + kw)z w ot] + c.c.
pond " 4Y 0c

2

With the assumption that A(re, z) is a slowly varying function of z,

i.e., jalnA/azj << kV << k, Eq. (A4) becomes

2 2 2 k ke + c.c. (A5)
dt 2  2y 2m c 2

where the resonance condition, w v (k + k ) is used.

For a near Gaussian radiation field in the exponential gain regime,

z
(f 2

A~re~z-- (r,(),z)=A o)exp i [Ak(z )-ir(z )]dzl-li(~
s0 0 r (Z)

IS

and assuming Ak, r, a and r sare slowly varying functions of z, Eq. (A5)

can be integrated immediately to give

jej 2nbAVA k kV  i[ (k + kw)z -a t]
6nb =2- 2 2 2c4 ( _ir)2 e + c.c. (A6)

When Eq. (A6) is substituted into Eq. (Al), taking into account the

usual difference of Bessel functions for a planar wiggler, and Eq. (10) for

the beam profile, the source function in Eq. (1) is then given by Eq. (11).
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Appendix B: Sideband Generation

In this appendix generation of sidebands to the primary optical vave,

due to the spatial modulation of the electron beam, is analyzed. It is to

be emphasized that the following analysis is intended merely to show that

the dispersion characteristics of the primary optical wave are only

slightly modified [- (& 0 IN) 2] for typical experimental parameters, as

implicitly assumed in applying the results of Appendix A to the case of a

modulated electron beam in Section III.

The development of the linear theory herein generalizes that of

12
Sprangle et al., to which reference should be made for further details.

The form of the vector potential of a planar wiggler employed in this

appendix is slightly different to that given by Eq. (12):

A-V A,[exp(ikz) -c.c.]Ie >X?

where A is purely imaginary, and that of the linearly polarized radiatiun

field is taken to be of the form

A = {A. exp[ik z-iw t] I A exp lik-z-iwtJI

I+ A 0exp (ik z-iw tJ) c.C.}IeX

I where it is assumed that the electron density, modulated at the betatron

I wavelength 2n/k, has the simple form

&N

n N exp(ik) c.

with k << k << k, and k = k k, k - k-k

* 16



Following Ref. 12, the wave equation is found to be

2

2  2 a 2 2) - 2 -
az0 c a0t Y0c YoM c

where y 0 is the relativistic factor in the absence of the radiation field,
2/ 1/2

- (4 nole , and &n is the density perturbation caused by the

radiation. Note that the velocity vzo along the wiggler axis is not

affected by the betatron oscillation and hence Yo, to lowest order in

JeAV/Ym 0c 212, is not a function of z. Defining the ponderomotive

potential

pond - - 2 A A,

the momentum, continuity and Poisson's equations may be combined to obtain

d 2  an 4- n 1 e 12 a n a#

dt 2 n 0 dt mn Y Y Z0) az
0o 0z ooz

- zo a # (BI)
moY ° az 0 az c 2  Tt pond'

wher Yz l-v2/ d -1/2
where y) = (1-v c2 / 2,*- is the scalar potential, and terms such as

2 2 2a no/az , which are on the order of k, have been neglected.

Writing k - k +ke k, = k - ko,

n {n. exp[i(k + kv)z-iw t] - 6n_ exp[i(k_ + k)z-iw t]

. n 0 exp[i (k + kw)z-i t ] - c. c.

noting that, on the left-hand side of Eq. (BI), the ratio of the fourth to

the third term is on the order of k /k << 1, one finds that

17



I2
C1 a- "m 12 in 13 A +

Lm21 m 22 + c a22  C a23 A 0 0,

I h 31 32 233 + C2a  A

Iwhere c - &No/2No) and m 13' m31 .OC 2). It is then simple to show that,

correct to O(c 2), the dispersion relation is given by

S2 ( 3 2 + ' 2 1 +2+a + ] I) ( 2
m22 2NoJ m 33 ro 1 22 m22 ro3lla 1

where

22 2 2 (k) a u 0 -(k +kw)vzo] 2 (k2 -2 -*
YOYZ c Yo 0

I 2
o k k a2

3 w1 W?

is the usual matrix element for the primary wave, m 1 = 22(k+) ,

I i 33 = m22(k _ ) ,

I 1 2 = l12 (k+, k, k

2 2 2• (r
i b (k k O)v -

2

{kevt3 Vz - (k +kv)vjo - b2}
YoYz

I 2 2 2
2b wb2 o k k a2

(k 2 2)-I C T0  Y

0

* 18



M21- IM 12 (kk. , - k M23 "12 (kk ,)' ' 3 2  '12 (kk,- k

4 2 22 22 o 2 C b00 V z o
a2 2  - 2 2 c 2

Tyc 'rc
0oz 0

a2 {k0 zok V - k + kv] 2

c 2 T O CO Z 1 / 2

and wbo = (4 re2No/mo)1/2. Note that with the definition chosen for Av in
2 (e~ 2)2<O

this appendix, a 2 (eA /M c ) < 0.
V w0

To proceed along the lines of Ref. 12, it is convenient to write

M 22 = 22 C22'

where

2 2 2

M22  [ - (k + k ) zo 2  2+ - o
TOYz c y0 c

and

2% 2

C22  3 Va
TO

is the "coupling" term. The dispersion relation then becomes

2
+m f33 - a2 2 J• (B2)

19



m

K 22 yields the dispersion relation for uncoupled electromagnetic and space

charge waves. The right-hand side of Eq. (B2) introduces the FEL

interaction and coupling to sidebands, and its effect is included

iteratively. At the lovest order, M22 - 0 for some (w,k). Substituting in

the right-hand side, the second set of terms vanishes; the term

proportional to C2 2 survives.

Substantial modification of this dispersion relation is expected if

*~N 1 11&J~a +rl ) «<1
i.e., if

0 -2kCA -3/2 ( )1/2 1/2 3/4
N zo z 0

I For typical experimental parameters, the right-hand side of this equation

exceeds unity, vhereas IN << 1, implying the insignificance of the

effect of modulation on the dispersion relation.

I
I
m
I
I
1
I
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Appendix C: Stability Analysis

Th e purpose of this appendix is to establish the stability of the

fixed point (rsa) of Eqs. (14).

Perturbing Eqs. (14a) and (14b) about the fixed point and making use

of Eq. (19), it is seen that the perturbation evolves according to:

d (t)
d(k z) T)

S 21 a 22 (U),

2 2
where x (kr ) , y = (k rb)

- a (ck/V ()all x~ X (XR- mXI)'

-( ! * 2 ) (ck,,/"°))Y(2x'y)

12  -- 2 (x+y)2 a x (-R - ¢x J'

xX2 1a1= - - x ~-X 1

a(ck V/ wJ 2X,

a22  2(x-Y) 2 ix

and

1 2 a r [' 1+2 ) 1/2 
1 2

2 2(1 + m2 2 1/2 1/72 x+2y vyJ .Cl

Assuming that 6a, Sx - exp(Xkvz), one finds that

- (ck)/w(x+2y 2 * S- - { ckv/Q S S2- s1 2 S3

21



vhere

3XR  x II s1  - x1

I ~2 . a -

1 aXrI (+C 2 ) (ckVl/) y(y+2x)

3 a J 2 x(x+y)2  + K J a

(Note that all the variables in this appendix are evaluated at the fixed

point.) Making use of Eq. (Cl) it Is simple to show that XI/a - ax I/a > 0,

a(XR - mcXdax < 0, whence S3 > 0 and hence, noting that S 2 + S1 > 0, and

that the perturbation solution for Eq. (18) implies SI < d(ckV/w)/(x+y), one

finds that Re X < 0, thus indicating the stability of the fixed point to

small amplitude perturbations.

II
I
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Figure Captions

Fig. 1. Spot size (rs), a, phase shift (k), and gain (r) vs. distance I
along the wiggler. z is normalized to the Rayleigh range zR* In

(c) and (d) the number on the ordinate must be multiplied by 10- 4

and 10- 3 to obtain the actual value for Ak/k. and r/k , 3
respectively.

Fig. 2. (I/e)-vidth of the optical field vs. distance along the wiggler. 3
Solid curve: 5 mode system; dashed curve: I mode system.

I
Fig. 3. Spot size (r s), a, phase shift (Ak), gain (r), and radius of

electron beam (rb) vs. distance along wiggler. 3
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